US20220184633A1 - System and method for recovery of valuable constituents from steel-making slag fines - Google Patents

System and method for recovery of valuable constituents from steel-making slag fines Download PDF

Info

Publication number
US20220184633A1
US20220184633A1 US17/385,363 US202117385363A US2022184633A1 US 20220184633 A1 US20220184633 A1 US 20220184633A1 US 202117385363 A US202117385363 A US 202117385363A US 2022184633 A1 US2022184633 A1 US 2022184633A1
Authority
US
United States
Prior art keywords
batch
group
iron
particles
relatively
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/385,363
Inventor
Raymond C. FRITZ
Raymond J. Fritz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fritz Enterprises Inc
Original Assignee
Fritz Enterprises Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fritz Enterprises Inc filed Critical Fritz Enterprises Inc
Priority to US17/385,363 priority Critical patent/US20220184633A1/en
Assigned to FRITZ ENTERPRISES, INC. reassignment FRITZ ENTERPRISES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRITZ, RAYMOND C., FRITZ, RAYMOND J.
Publication of US20220184633A1 publication Critical patent/US20220184633A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B9/00General arrangement of separating plant, e.g. flow sheets
    • B03B9/04General arrangement of separating plant, e.g. flow sheets specially adapted for furnace residues, smeltings, or foundry slags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/14Separating or sorting of material, associated with crushing or disintegrating with more than one separator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B7/00Combinations of wet processes or apparatus with other processes or apparatus, e.g. for dressing ores or garbage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/16Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
    • B03C1/18Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with magnets moving during operation
    • B03C1/20Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with magnets moving during operation in the form of belts, e.g. cross-belt type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to recovering valuable constituents from the by-products of the iron and steel-making processes, and more particularly to recovering commercial quality iron product from iron-bearing slag fines.
  • Slag in various forms and constituent compositions, is a voluminous by-product of the iron and steel making process.
  • kish slag or de-sulf slag is a by-product of iron making which includes a relatively low content of iron along with a relatively high content of non-ferrous materials, including sulfur and silicates.
  • Iron-bearing fines from various other similar manufacturing and reclamation sources including iron blast furnace fines and steel fines, also include potentially valuable constituents for which to date an economical method of separating the valuable constituents from the aggregate has remained elusive.
  • the disclosed system and method is directed to the cost-efficient recovery of valuable iron constituents from iron blast furnace and steel-making slag fines.
  • the slag is obtained and subjected to a series of classification steps which progressively sort the slag fines by magnetic properties, size, and density into relatively iron-rich and relatively iron-poor classifications, resulting in the isolation of iron-rich commercial byproduct at the completion of one or more of the classification steps.
  • the remaining, relatively iron-poor but sulfur and silicate rich residue may be used for other industrial purposes unrelated to steel or iron production, such as additives for cement aggregate or agricultural soil enhancement.
  • the slag fines are sorted magnetically to isolate the relatively larger iron-bearing constituents from the non-magnetic materials.
  • the resulting iron-bearing product is typically then sorted by size or by density in a series of separate classifying steps to progressively separate and isolate relatively iron-rich product from relatively iron-poor remainder.
  • the relatively iron-rich sort resulting from that step may be isolated for sale or subjected to further processing to further classify the processed material by size or by density.
  • An additional step of reducing the size of a batch of slag fines such as by crushing or grinding the material, may be employed as desired to prepare the batch for any of the disclosed classifying steps.
  • Various grinding mills or crushers may be employed for this purpose.
  • the magnetic classification step(s) may include introduction of a batch of the slag fines to one of a variety of magnetic separators.
  • the size classification step(s) may include the introduction of a batch of the slag fines onto a variety of dry-screen or wet-screen devices available for this purpose.
  • the density classification step(s) may include introduction of a batch of the slag fines in slurry form into a hydraulic (or other non-compressible fluid) fluidized bed separator.
  • This progressive method of magnetic, size, and density classification results in the separation and isolation of one or more separate commercial-quality iron-rich products from the progressively iron-poorer byproduct which then may be re-sold depending upon the nature of its non-ferrous constituencies.
  • the disclosed system employs the above-described method in a fines processing plant which includes one or more magnetic sorting stations, one or more screening (i.e., size sorting) stations, and at least one fluidized bed for separation and classification of the fines by density/specific gravity into relatively heavier (i.e., metal-rich) and lighter (i.e., silicate-rich) constituencies.
  • a fines processing plant which includes one or more magnetic sorting stations, one or more screening (i.e., size sorting) stations, and at least one fluidized bed for separation and classification of the fines by density/specific gravity into relatively heavier (i.e., metal-rich) and lighter (i.e., silicate-rich) constituencies.
  • FIG. 1 is a block diagram of the basic steps of one embodiment of the disclosed recovery method
  • FIG. 2 is a schematic of one embodiment of the disclosed recovery system.
  • FIG. 3 is a block diagram of the recovery method employed in the system disclosed in FIG. 2 .
  • the disclosed recovery method 10 employs a series of processing and classifying steps which are progressively and, as required, iteratively employed to isolate relatively iron-rich products from slag fines.
  • Iron and steel-making slag fines 12 such as kish or de-sulf fines, are supplied as input in the process.
  • the slag fines are first input to a magnetic sorter 14 to separate the magnetic (i.e., iron-bearing) fines 16 from the non-magnetic fines 18 .
  • the material 16 resulting from the magnetic separation is then subjected to one or more additional classifying steps.
  • the material 16 is then screened, at 20 , to separate the particles in the batch by size. It may be desirable, for example, and it is often the case, that the relatively larger-sized particle material 22 isolated as a result of this size classification may be sufficiently iron-rich (e. g., about 40-70% iron by weight) to be collected and sold without further processing.
  • the relatively smaller-sized particle material 24 may then be provided as input to another processing or classifying step in order to further isolate and separate the relatively iron-rich and iron-poor constituents of the material.
  • material 24 may then be provided, at 26 , as an input batch to a fluidized bed separator where the material 24 particles are isolated and may be separated by density.
  • the relatively light constituents of the input batch 24 (which typically include slag and other non-metallic particles) 28 are isolated and separated from the relatively heavy constituents 30 (typically including iron and other heavy metals).
  • the heavy product 30 may, at this point, be sufficiently iron-rich (e. g., about 40-80% iron by weight) to be collected and sold without further processing.
  • the heavy product 30 isolated from this density classification 26 may be supplied as an input batch for further processing, where it may be subjected to size or magnetic, or other separation processing to further isolate the relatively iron-rich constituents from the remaining material.
  • the light product 28 may be disposed of, or may be reused as, for example an agricultural or cement product additive, depending upon the content of silicate, sulfur and other non-iron constituents of the product 28 .
  • the particle size and constituents of the slag fines collected and used as input to the disclosed recovery system will vary from batch to batch.
  • the initial iron content generally, by way of example, less than about 25% for steel slag and less than about 40% for kish slag
  • the iron content of the relatively iron-rich batches developed at each station in the disclosed process may vary.
  • the scope, order, type and number of classification operations may vary in order to obtain optimal iron-rich end products.
  • the typical raw material, kish fines include iron content ranging from about 25-40% by weight, sulfur content ranging from about 0.9-3% by weight, and slag content ranging from about 60-30% by weight, as well as lesser amounts of metal (e.g. manganese, molybdenum) alloys.
  • the characteristics of the resultant batches disclosed in the following description, also variable from batch to batch, reflect typical results using the aforementioned described raw material input.
  • FIG. 2 illustrates one embodiment of the system which may be employed to implement the disclosed recovery methods.
  • the system 50 may include a magnetic separator/conveyor 52 upon which an input batch of the raw material (e. g., kish slag fines) is placed.
  • a permanent head pulley is utilized for this purpose.
  • other magnetic separators including, for example, top pluck or cross belt magnetic separators, may be used as appropriate.
  • the magnetic portion of the batch remains on the conveyor, while the non-magnetic portion 54 of the batch is stockpiled for recovery as a potential non-ferrous by-product, or discarded.
  • the magnetic portion of the batch is conveyed to a dry-screen station 56 where it is classified by size.
  • the illustrated system employs a screen 56 suitable for separating batch particles of about 10 mm or greater in size from particles of less than about 10 mm.
  • the relatively larger sized portion 58 is stockpiled. It has been found that this 10+ millimeter magnetic material has a high enough iron content (typically about 50-70%) to be sold as a product (known as “B Scrap”), typically to steel mills.
  • Various commercially available dry screens may be employed for the size classification station 56 , depending upon the particular nature of the input batch and the desired size classification objectives.
  • system 50 is depicted as a continuous, in-line process
  • various portions of the illustrated processing stations may be installed and operated at separate geographic locations.
  • the magnetic separating station 52 and the size screening station 56 are physically located at the site of the slag since, in this embodiment the source of the slag, a steel mill, retains the recovered B Scrap 58 at the site.
  • shipping costs round-trip to the site of the remaining system stations
  • the relatively smaller sized portion separated at screening station 56 is next conveyed as an input batch to a vertical shaft mill 60 , where the material is crushed, thereby breaking much of the slag away from the iron-bearing portion of the batch, as well as reducing the size of the batch particles.
  • a vertical shaft mill 60 may be employed as an alternative to vertical shaft milling station 60 .
  • the material output from the milling station 60 may next be provided as an input batch to a screening station 62 where the input batch particles are again classified by size.
  • the screening station 62 employs a wet-screening process suitable for separating batch particles of about 1 mm or greater in size from particles of less than about 1 mm. It has been found that the relatively larger sized portion 64 is stockpiled. It has been found that this 1+ mm material often has a high enough iron content (typically about 60-80%) to be sold as a product.
  • various commercially available wet screens may be employed for size classification station 62 , depending upon the particular nature of the input batch and the desired size classification objectives.
  • the 1+mm material separated at screening station 62 may optionally be provided as input to a magnetic separator/conveyor 67 where the non-magnetic content of this batch is separated, thereby further raising the iron content of thel+mm material 64 .
  • the relatively smaller sized portion of the batch separated at screening station 62 may then be provided as an input batch to the controlled, hydraulic fluidized bed separator 66 where the material is then separated by density.
  • the input batch is in a slurry form as a result of the wet screening operation at screening station 62 .
  • the fluidized bed separator 66 includes one or more chambers capable of containing a fluidized bed comprising a non-compressible fluid, such as, for example, water.
  • the slurry batch is introduced into the chamber(s).
  • water is supplied from the bottom of the chamber with a controlled, upwardly flowing current so that the input batch slurry and water form a fluidized bed having a very high turbidity, causing the relatively lower density constituents to migrate upward in a fluidized bed, while the relatively higher density constituents (e.g., iron) to settle in the receptacle.
  • the water flow may be controlled to achieve the appropriate separation of the lighter density constituents from the heavier density constituents, and migration of the lighter density constituents from an upper outlet 68 while the heavier constituents exit from outlet 70 .
  • the density separator station 66 is controlled to separate the slurry batch into a portion that has a relatively lower density of about 2.30-2.70 g/cm 3 , and a portion that has a relatively higher density of about 5.0-6.0 g/cm 3 .
  • the target densities may, of course, be varied based upon the types and densities of the different constituents present in the input batch, as well as the densities of those constituents targeted for isolation and recovery (e.g., iron).
  • the fluidized bed density separation system may be controlled as described in U.S. Pat. No. 6,142,311, issued to Rolf Korber, for a “Process For Controlling A Sand And Gravel Sorting And Sizing Device,” the disclosure of which is hereby incorporated herein in its entirety.
  • the relatively heavier portion developed at station 66 is collected at a de-watering screening station 72 where the still slurry batch portion is dried and moved by conveyor 74 to be stockpiled (at 76 ).
  • the relatively lighter portion developed at station 66 is collected at a de-watering screening station 78 , where this slurry is dried and moved by conveyor 80 to be stockpiled (at 82 ).
  • Relatively small screens typically less than about 0.8 mm openings, suitable for filtering out only the water and as little of the particulate as possible
  • Various commercially available models of de-watering screens are available for use in stations 72 and 78 .
  • the resulting relatively heavy product 76 typically includes an iron-rich (e.g., about 40-75% by weight) content, making it suitable for resale. This material is usable by iron and steel makers, and may as well be used for other applications, such as, for example, for making counterweights.
  • the resulting relatively lighter dried product 82 is typically discarded.
  • the freshwater is then discharged from the hydro-cyclone 86 into a clean water tank 88 for reintroduction back into the system.
  • the particulate recovered from the hydro-cyclone (not shown) may then be discharged onto a de-watering screen from which the water can be returned to clean water tank 88 , and the dried particulates thereafter discarded.
  • cleaning and recycling the system water provides an energy-efficient, resource-efficient and cost efficient, closed-loop system.
  • Other types of filtration systems such as, for example, belt presses, filter presses, settling tanks, and flocculants, may, of course, be utilized to accomplish the same goal.
  • FIG. 3 illustrates one of the methods that may be implemented with the system 50 shown in FIG. 2 .
  • the slag fines may first be sorted magnetically, at 102 , to isolate the relatively larger iron-bearing constituents 104 from the non-magnetic materials 106 .
  • the resulting iron-bearing product is typically then sorted, at 108 , by size, typically by dry-screening the material.
  • the relatively larger (e.g., greater than about 10 mm) particles 110 separated during this dry-screening step comprise a relatively iron-rich (i.e., about 50-70% by weight) which may be isolated from further processing and resold to steel producers as B-scrap for use as input in the iron blast furnace.
  • the remaining, relatively smaller and iron-poor fines 112 are then further processed, typically by milling or grinding, at 114 , to physically separate the slag portion from the iron portion of the material.
  • the milling or grinding station also reduces the average particle size of the batch.
  • the milled material is then again sorted by size, at 116 , typically by wet-screening.
  • the relatively larger (e.g., greater than about 1 mm) particles 118 separated during this screening step have also been found to comprise another relatively iron-rich (i.e., about 60-80% by weight) product which may again be isolated from further processing for re-sale again, for example, to steel makers for use as input material in their sinter plant.
  • the relatively smaller (e.g., less than about 1 mm) material 120 produced by the wet-screening step are then classified by density, at 122 .
  • This resulting material, now a slurry, is introduced as feed material into a hydraulic fluidized-bed density separator which is controlled to separate the suspended particles by their differing densities.
  • the relatively denser slurry (the “heavy product”) 124 is relatively iron-rich (i.e., about 40-75% by weight), and may have sufficient iron content to be resold again, for example, as input to an iron sinter plant.
  • the lower density slurry (the “light product”) 126 comprises a greater proportion of slag material (and other low-density non-ferrous constituents).
  • Each of the heavy product 124 and light product 126 slurries are dried, typically by discharging the slurries onto de-watering screens. The dried heavy and light products are then stockpiled for sale and/or disposal.
  • the disclosed system and method may be employed to perform the various classifying processes in a variety of different sequences, depending upon the characteristics of the slag fines and the desired iron content recovery.
  • the portion of the system and method, utilizing certain selected, but not all of the disclosed, classifying methods where such alternatives are efficient and productive For example, in one embodiment a method including only the steps described at 114 , 116 , and 122 of FIG. 3 , to effectively recover iron-rich product.
  • system and method of the present invention may be modified to obtain recovered product of a variety of different ratios of iron/slag/minerals, where such products are indicated as useful in industries other than iron and/or steel-making, such as, for example, the cement industry, the agricultural industry, or the aggregate industry.

Abstract

A system and method directed to the economical recovery of valuable iron constituents from iron blast furnace and steel-making slag fines wherein the slag is obtained and subjected to a series of classification steps which progressively sort the slag fines by various physical characteristics, including magnetism, size, and density, into relatively iron-rich and relatively iron-poor classifications, resulting in the isolation of iron-rich commercial byproduct at one or more of the classification steps.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 16/601,722 filed Oct. 15, 2019 and issued as U.S. Pat. No. 11,071,987, which is a continuation of U.S. application Ser. No. 14/997,769 filed Jan. 18, 2016 and issued as U.S. Pat. No. 10,478,826, which is a continuation of U.S. application Ser. No. 14/211,953 filed Mar. 14, 2014 (now abandoned), which claims the benefit of U.S. provisional application Ser. No. 61/791,231 filed Mar. 15, 2013, the disclosures of which are hereby incorporated in their entirety by reference herein.
  • TECHNICAL FIELD
  • The present invention relates to recovering valuable constituents from the by-products of the iron and steel-making processes, and more particularly to recovering commercial quality iron product from iron-bearing slag fines.
  • BACKGROUND
  • Slag, in various forms and constituent compositions, is a voluminous by-product of the iron and steel making process. In particular, kish slag or de-sulf slag is a by-product of iron making which includes a relatively low content of iron along with a relatively high content of non-ferrous materials, including sulfur and silicates. Though current attempts to reclaim iron-rich constituents from slag, including grinding, screening and magnetic sortation, have been employed to isolate and recover some of the iron-rich content, steel mills are left with constantly growing stockpiles of the remaining fine particle iron and steel slag. These ever-growing piles of “fines” must be disposed of economically and in an environmentally safe manner.
  • Iron-bearing fines from various other similar manufacturing and reclamation sources, including iron blast furnace fines and steel fines, also include potentially valuable constituents for which to date an economical method of separating the valuable constituents from the aggregate has remained elusive.
  • It is thus desirable to develop further processing methods and systems to re-claim as much of the valuable content of these slag fines for productive use, as well as reduce the disposal costs for the remaining material.
  • SUMMARY
  • The disclosed system and method is directed to the cost-efficient recovery of valuable iron constituents from iron blast furnace and steel-making slag fines. The slag is obtained and subjected to a series of classification steps which progressively sort the slag fines by magnetic properties, size, and density into relatively iron-rich and relatively iron-poor classifications, resulting in the isolation of iron-rich commercial byproduct at the completion of one or more of the classification steps. The remaining, relatively iron-poor but sulfur and silicate rich residue may be used for other industrial purposes unrelated to steel or iron production, such as additives for cement aggregate or agricultural soil enhancement.
  • In the disclosed method, the slag fines are sorted magnetically to isolate the relatively larger iron-bearing constituents from the non-magnetic materials. The resulting iron-bearing product is typically then sorted by size or by density in a series of separate classifying steps to progressively separate and isolate relatively iron-rich product from relatively iron-poor remainder. At the conclusion of each step, the relatively iron-rich sort resulting from that step may be isolated for sale or subjected to further processing to further classify the processed material by size or by density.
  • An additional step of reducing the size of a batch of slag fines, such as by crushing or grinding the material, may be employed as desired to prepare the batch for any of the disclosed classifying steps. Various grinding mills or crushers may be employed for this purpose.
  • The magnetic classification step(s) may include introduction of a batch of the slag fines to one of a variety of magnetic separators.
  • The size classification step(s) may include the introduction of a batch of the slag fines onto a variety of dry-screen or wet-screen devices available for this purpose.
  • The density classification step(s) may include introduction of a batch of the slag fines in slurry form into a hydraulic (or other non-compressible fluid) fluidized bed separator.
  • This progressive method of magnetic, size, and density classification results in the separation and isolation of one or more separate commercial-quality iron-rich products from the progressively iron-poorer byproduct which then may be re-sold depending upon the nature of its non-ferrous constituencies.
  • The disclosed system employs the above-described method in a fines processing plant which includes one or more magnetic sorting stations, one or more screening (i.e., size sorting) stations, and at least one fluidized bed for separation and classification of the fines by density/specific gravity into relatively heavier (i.e., metal-rich) and lighter (i.e., silicate-rich) constituencies.
  • The frequency and order of the above classification steps, as well as the architecture of the system employed to implement this disclosed method, may be varied depending upon the characteristics of the particular slag fines being processed, as well as the targeted minimum iron content(s) for the recovered iron-rich product(s). Similarly, further processing and/or classification steps may be employed in addition to the disclosed steps to isolate and recover reusable product(s) from the remaining, relatively iron-poor fines.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of the basic steps of one embodiment of the disclosed recovery method;
  • FIG. 2 is a schematic of one embodiment of the disclosed recovery system; and
  • FIG. 3 is a block diagram of the recovery method employed in the system disclosed in FIG. 2.
  • DETAILED DESCRIPTION
  • As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
  • Referring now to FIG. 1, in one embodiment, the disclosed recovery method 10 employs a series of processing and classifying steps which are progressively and, as required, iteratively employed to isolate relatively iron-rich products from slag fines. Iron and steel-making slag fines 12, such as kish or de-sulf fines, are supplied as input in the process. In this disclosed embodiment, the slag fines are first input to a magnetic sorter 14 to separate the magnetic (i.e., iron-bearing) fines 16 from the non-magnetic fines 18.
  • Based upon various characteristics of the batch, including the iron content, particle size, and potentially the non-iron constituents, the material 16 resulting from the magnetic separation is then subjected to one or more additional classifying steps. In this disclosed embodiment the material 16 is then screened, at 20, to separate the particles in the batch by size. It may be desirable, for example, and it is often the case, that the relatively larger-sized particle material 22 isolated as a result of this size classification may be sufficiently iron-rich (e. g., about 40-70% iron by weight) to be collected and sold without further processing. The relatively smaller-sized particle material 24 may then be provided as input to another processing or classifying step in order to further isolate and separate the relatively iron-rich and iron-poor constituents of the material.
  • In this disclosed embodiment, material 24 may then be provided, at 26, as an input batch to a fluidized bed separator where the material 24 particles are isolated and may be separated by density. The relatively light constituents of the input batch 24 (which typically include slag and other non-metallic particles) 28 are isolated and separated from the relatively heavy constituents 30 (typically including iron and other heavy metals). The heavy product 30 may, at this point, be sufficiently iron-rich (e. g., about 40-80% iron by weight) to be collected and sold without further processing. Alternatively, the heavy product 30 isolated from this density classification 26 may be supplied as an input batch for further processing, where it may be subjected to size or magnetic, or other separation processing to further isolate the relatively iron-rich constituents from the remaining material. The light product 28 may be disposed of, or may be reused as, for example an agricultural or cement product additive, depending upon the content of silicate, sulfur and other non-iron constituents of the product 28.
  • It will be appreciated that the particle size and constituents of the slag fines collected and used as input to the disclosed recovery system will vary from batch to batch. Similarly, the initial iron content (generally, by way of example, less than about 25% for steel slag and less than about 40% for kish slag), as well as the iron content of the relatively iron-rich batches developed at each station in the disclosed process, may vary. Thus the scope, order, type and number of classification operations may vary in order to obtain optimal iron-rich end products. In the disclosed system the typical raw material, kish fines, include iron content ranging from about 25-40% by weight, sulfur content ranging from about 0.9-3% by weight, and slag content ranging from about 60-30% by weight, as well as lesser amounts of metal (e.g. manganese, molybdenum) alloys. The characteristics of the resultant batches disclosed in the following description, also variable from batch to batch, reflect typical results using the aforementioned described raw material input.
  • FIG. 2 illustrates one embodiment of the system which may be employed to implement the disclosed recovery methods. The system 50 may include a magnetic separator/conveyor 52 upon which an input batch of the raw material (e. g., kish slag fines) is placed. In this disclosed embodiment, a permanent head pulley is utilized for this purpose. However, other magnetic separators, including, for example, top pluck or cross belt magnetic separators, may be used as appropriate.
  • As the input batch is conveyed, the magnetic portion of the batch remains on the conveyor, while the non-magnetic portion 54 of the batch is stockpiled for recovery as a potential non-ferrous by-product, or discarded. The magnetic portion of the batch is conveyed to a dry-screen station 56 where it is classified by size. The illustrated system employs a screen 56 suitable for separating batch particles of about 10 mm or greater in size from particles of less than about 10 mm. The relatively larger sized portion 58 is stockpiled. It has been found that this 10+ millimeter magnetic material has a high enough iron content (typically about 50-70%) to be sold as a product (known as “B Scrap”), typically to steel mills. Various commercially available dry screens may be employed for the size classification station 56, depending upon the particular nature of the input batch and the desired size classification objectives.
  • It should be appreciated that, while the system 50 is depicted as a continuous, in-line process, various portions of the illustrated processing stations may be installed and operated at separate geographic locations. For example, in one embodiment the magnetic separating station 52 and the size screening station 56 are physically located at the site of the slag since, in this embodiment the source of the slag, a steel mill, retains the recovered B Scrap 58 at the site. Thus, for this embodiment, shipping costs (round-trip to the site of the remaining system stations) are avoided for the B Scrap portion of the process material.
  • In this disclosed embodiment of the system 50, the relatively smaller sized portion separated at screening station 56 is next conveyed as an input batch to a vertical shaft mill 60, where the material is crushed, thereby breaking much of the slag away from the iron-bearing portion of the batch, as well as reducing the size of the batch particles. It will be appreciated that other commercially available mills, grinders, and/or crushers may be employed as an alternative to vertical shaft milling station 60.
  • The material output from the milling station 60 may next be provided as an input batch to a screening station 62 where the input batch particles are again classified by size. In the illustrated embodiment the screening station 62 employs a wet-screening process suitable for separating batch particles of about 1 mm or greater in size from particles of less than about 1 mm. It has been found that the relatively larger sized portion 64 is stockpiled. It has been found that this 1+ mm material often has a high enough iron content (typically about 60-80%) to be sold as a product. Again, as with the dry screen utilized in station 56, various commercially available wet screens may be employed for size classification station 62, depending upon the particular nature of the input batch and the desired size classification objectives.
  • In the disclosed system 50, the 1+mm material separated at screening station 62 may optionally be provided as input to a magnetic separator/conveyor 67 where the non-magnetic content of this batch is separated, thereby further raising the iron content of thel+mm material 64.
  • The relatively smaller sized portion of the batch separated at screening station 62 may then be provided as an input batch to the controlled, hydraulic fluidized bed separator 66 where the material is then separated by density. At this stage, the input batch is in a slurry form as a result of the wet screening operation at screening station 62. In the illustrated embodiment, the fluidized bed separator 66 includes one or more chambers capable of containing a fluidized bed comprising a non-compressible fluid, such as, for example, water. The slurry batch is introduced into the chamber(s). In the disclosed embodiment, water is supplied from the bottom of the chamber with a controlled, upwardly flowing current so that the input batch slurry and water form a fluidized bed having a very high turbidity, causing the relatively lower density constituents to migrate upward in a fluidized bed, while the relatively higher density constituents (e.g., iron) to settle in the receptacle. The water flow may be controlled to achieve the appropriate separation of the lighter density constituents from the heavier density constituents, and migration of the lighter density constituents from an upper outlet 68 while the heavier constituents exit from outlet 70.
  • In the disclosed embodiment of the system 50, the density separator station 66 is controlled to separate the slurry batch into a portion that has a relatively lower density of about 2.30-2.70 g/cm3, and a portion that has a relatively higher density of about 5.0-6.0 g/cm3. The target densities may, of course, be varied based upon the types and densities of the different constituents present in the input batch, as well as the densities of those constituents targeted for isolation and recovery (e.g., iron). The fluidized bed density separation system may be controlled as described in U.S. Pat. No. 6,142,311, issued to Rolf Korber, for a “Process For Controlling A Sand And Gravel Sorting And Sizing Device,” the disclosure of which is hereby incorporated herein in its entirety.
  • The relatively heavier portion developed at station 66 is collected at a de-watering screening station 72 where the still slurry batch portion is dried and moved by conveyor 74 to be stockpiled (at 76). Similarly, the relatively lighter portion developed at station 66 is collected at a de-watering screening station 78, where this slurry is dried and moved by conveyor 80 to be stockpiled (at 82). Relatively small screens (typically less than about 0.8 mm openings, suitable for filtering out only the water and as little of the particulate as possible) may be employed at de-watering stations 72 and 78. Various commercially available models of de-watering screens are available for use in stations 72 and 78.
  • The resulting relatively heavy product 76 typically includes an iron-rich (e.g., about 40-75% by weight) content, making it suitable for resale. This material is usable by iron and steel makers, and may as well be used for other applications, such as, for example, for making counterweights. The resulting relatively lighter dried product 82 is typically discarded.
  • Process water collected from de-watering stations 72 and 78, as well as directly from fluidized bed separator 66, is collected in receiving tank 84, and then pumped under high pressure into a hydro-cyclone 86, where the remaining particulate is separated from the water by centrifugal force. The freshwater is then discharged from the hydro-cyclone 86 into a clean water tank 88 for reintroduction back into the system. The particulate recovered from the hydro-cyclone (not shown) may then be discharged onto a de-watering screen from which the water can be returned to clean water tank 88, and the dried particulates thereafter discarded.
  • It will be appreciated that cleaning and recycling the system water provides an energy-efficient, resource-efficient and cost efficient, closed-loop system. Other types of filtration systems, such as, for example, belt presses, filter presses, settling tanks, and flocculants, may, of course, be utilized to accomplish the same goal.
  • FIG. 3 illustrates one of the methods that may be implemented with the system 50 shown in FIG. 2. In this illustrated method 100, the slag fines may first be sorted magnetically, at 102, to isolate the relatively larger iron-bearing constituents 104 from the non-magnetic materials 106.
  • The resulting iron-bearing product is typically then sorted, at 108, by size, typically by dry-screening the material. The relatively larger (e.g., greater than about 10 mm) particles 110 separated during this dry-screening step comprise a relatively iron-rich (i.e., about 50-70% by weight) which may be isolated from further processing and resold to steel producers as B-scrap for use as input in the iron blast furnace.
  • The remaining, relatively smaller and iron-poor fines 112 are then further processed, typically by milling or grinding, at 114, to physically separate the slag portion from the iron portion of the material. The milling or grinding station also reduces the average particle size of the batch.
  • The milled material is then again sorted by size, at 116, typically by wet-screening. The relatively larger (e.g., greater than about 1 mm) particles 118 separated during this screening step have also been found to comprise another relatively iron-rich (i.e., about 60-80% by weight) product which may again be isolated from further processing for re-sale again, for example, to steel makers for use as input material in their sinter plant.
  • The relatively smaller (e.g., less than about 1 mm) material 120 produced by the wet-screening step are then classified by density, at 122. This resulting material, now a slurry, is introduced as feed material into a hydraulic fluidized-bed density separator which is controlled to separate the suspended particles by their differing densities. The relatively denser slurry (the “heavy product”) 124 is relatively iron-rich (i.e., about 40-75% by weight), and may have sufficient iron content to be resold again, for example, as input to an iron sinter plant. The lower density slurry (the “light product”) 126 comprises a greater proportion of slag material (and other low-density non-ferrous constituents). Each of the heavy product 124 and light product 126 slurries are dried, typically by discharging the slurries onto de-watering screens. The dried heavy and light products are then stockpiled for sale and/or disposal.
  • It should be appreciated that, as previously described, the disclosed system and method may be employed to perform the various classifying processes in a variety of different sequences, depending upon the characteristics of the slag fines and the desired iron content recovery. Similarly, the portion of the system and method, utilizing certain selected, but not all of the disclosed, classifying methods where such alternatives are efficient and productive. For example, in one embodiment a method including only the steps described at 114, 116, and 122 of FIG. 3, to effectively recover iron-rich product.
  • It should similarly be appreciated that the system and method of the present invention may be modified to obtain recovered product of a variety of different ratios of iron/slag/minerals, where such products are indicated as useful in industries other than iron and/or steel-making, such as, for example, the cement industry, the agricultural industry, or the aggregate industry.
  • While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.

Claims (10)

What is claimed is:
1. A method for recovering iron-rich material from iron blast furnace and steelmaking slag fines comprising performing the following steps in one or more iterations:
a) classifying a selected input batch of material based upon its magnetic properties into a magnetic material group and a non-magnetic material group;
b) classifying a selected input batch of material based upon its size into a relatively larger particle size group and relatively smaller particle size group; and
c) classifying a selected input batch of material based upon its density by introducing the material as a slurry into a hydraulic fluidized bed separator.
2. The method of claim 1 wherein the magnetic material obtained in step a) is supplied as the selected input batch for classifying step b).
3. The method of claim 2 wherein the relatively larger particle size group is greater than about 10 mm.
4. The method of claim 2 wherein the relatively smaller particle size material obtained in at least one iteration of step b) is provided as the selected input batch to be crushed in a grinding or milling operation.
5. The method of claim 4 wherein the crushed material is provided as the selected input batch for at least one iteration of classifying step b), and wherein the resulting relatively smaller particle size group is provided as the selected input batch for at least one iteration of classifying step c).
6. The method of claim 5 wherein the relatively larger particle size group resulting from classifying step b) is greater than about 1 mm.
7. The method of claim 6 wherein the relatively larger particle size group is provided as the selected input batch for at least one iteration of classifying step a).
8. The method of claim 1 wherein the classifying steps are performed in the sequence a), then b), then c), and wherein the input batch for classifying step b) is the magnetic material group obtained from classifying step a), and the input batch for classifying step c) is the relatively smaller particle size group obtained from classifying step b).
9. A method for recovering iron-rich material from iron-making and steelmaking slag fines comprising subjecting the slag fines to a series of classification steps which progressively sort the slag fines by various physical properties of the material, including magnetism, size, and density, into relatively iron-rich and relatively iron-poor classifications, wherein at least one of the classification steps includes introducing the slag fines as a slurry into a non-compressible fluid fluidized bed separator to separate relatively lower density and relatively higher density constituents of the slag fine particles suspended within the fluidized bed.
10. A system for recovering relatively iron-rich material from slag fines, the system including:
a magnetic classifying station for receiving a first batch of material and separating the particles in the first batch into magnetic and non-magnetic groups;
a first size classifying station for receiving a second batch including the nonmagnetic group, and separating the particles in the second batch into a group of particles of size greater than or equal to about 10 mm and a group of particles of size less than about 10 mm;
a milling station for receiving a third batch including the group of particles of size less than about 10 mm and milling the particles in the third batch;
a second size classifying station for receiving the third batch and separating the particles in the third batch into a group of particles of size greater than or equal to about 1 mm and a group of particles of size less than about 1 mm; and
a hydraulic fluidized bed density separator for receiving a fourth batch including the group of particles of size less than about 1 mm and separating the particles in the fourth batch into a group of particles having a density in the range of about 5.0-6.0 g/cm3 and a group of particles having a density in the range of about 2.3-2.7 g/cm3.
US17/385,363 2013-03-15 2021-07-26 System and method for recovery of valuable constituents from steel-making slag fines Abandoned US20220184633A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/385,363 US20220184633A1 (en) 2013-03-15 2021-07-26 System and method for recovery of valuable constituents from steel-making slag fines

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361791231P 2013-03-15 2013-03-15
US14/211,953 US20140262968A1 (en) 2013-03-15 2014-03-14 System and method for recovery of valuable constituents from steel-making slag fines
US14/997,769 US10478826B2 (en) 2013-03-15 2016-01-18 System and method for recovery of valuable constituents from steel-making slag fines
US16/601,722 US11071987B2 (en) 2013-03-15 2019-10-15 System and method for recovery of valuable constituents from steel-making slag fines
US17/385,363 US20220184633A1 (en) 2013-03-15 2021-07-26 System and method for recovery of valuable constituents from steel-making slag fines

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/601,722 Continuation US11071987B2 (en) 2013-03-15 2019-10-15 System and method for recovery of valuable constituents from steel-making slag fines

Publications (1)

Publication Number Publication Date
US20220184633A1 true US20220184633A1 (en) 2022-06-16

Family

ID=51522721

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/211,953 Abandoned US20140262968A1 (en) 2013-03-15 2014-03-14 System and method for recovery of valuable constituents from steel-making slag fines
US14/997,769 Active 2034-10-14 US10478826B2 (en) 2013-03-15 2016-01-18 System and method for recovery of valuable constituents from steel-making slag fines
US16/601,722 Active US11071987B2 (en) 2013-03-15 2019-10-15 System and method for recovery of valuable constituents from steel-making slag fines
US17/385,363 Abandoned US20220184633A1 (en) 2013-03-15 2021-07-26 System and method for recovery of valuable constituents from steel-making slag fines

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US14/211,953 Abandoned US20140262968A1 (en) 2013-03-15 2014-03-14 System and method for recovery of valuable constituents from steel-making slag fines
US14/997,769 Active 2034-10-14 US10478826B2 (en) 2013-03-15 2016-01-18 System and method for recovery of valuable constituents from steel-making slag fines
US16/601,722 Active US11071987B2 (en) 2013-03-15 2019-10-15 System and method for recovery of valuable constituents from steel-making slag fines

Country Status (1)

Country Link
US (4) US20140262968A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024030355A3 (en) * 2022-08-01 2024-03-07 Fritz Enterprises, Inc. System and method for iron casting to increase casting volumes

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9789491B2 (en) * 2013-03-28 2017-10-17 Kolonglotech. Inc Sorting method and apparatus for recycling filler included in artificial turf
US9370780B2 (en) * 2014-09-17 2016-06-21 Shane T. Nolan Scrap separation system and device
BR102014023373B1 (en) * 2014-09-19 2021-08-10 Rolth do Brasil Indústria, Comércio e Serviços Ltda. PROCESS AND SYSTEM FOR THE ELIMINATION OF THE EXPANSIBILITY OF THE LD E LE SHIELD SLAG
CN104785359B (en) * 2015-04-07 2017-12-05 山东鑫海矿业技术装备股份有限公司 A kind of mobile ore dressing plant
CN105107614B (en) * 2015-08-18 2017-05-31 赣州金环磁选设备有限公司 The recovery method of metallic iron in a kind of weak magnetism and Armco magnetic iron mixing slag
JP2017074604A (en) * 2015-10-15 2017-04-20 新東工業株式会社 Method for regeneration of casting mold sand and regeneration system
CN105833985B (en) * 2016-03-24 2018-05-11 清华大学 A kind of industrial solid waste residue Selective Separation and recoverying and utilizing method
CN107433226A (en) * 2016-05-27 2017-12-05 南京梅山冶金发展有限公司 A kind of method that acid sludge recycles
CN106914335A (en) * 2017-03-28 2017-07-04 响水恒生不锈钢铸造有限公司 Slag crushing screening technology
CN107159426A (en) * 2017-04-27 2017-09-15 酒泉钢铁(集团)有限责任公司 A kind of slag is secondary to select iron method
CN108031546B (en) * 2017-12-27 2019-11-05 大连地拓环境科技有限公司 A kind of method of red mud recycling iron
US10799916B2 (en) * 2018-11-26 2020-10-13 CD Processing Ltd. Systems and methods for sorting and collecting enhanced grade metal-bearing ores from metal bearing ores
CN109692753A (en) * 2019-01-08 2019-04-30 中冶北方(大连)工程技术有限公司 A kind of ore-dressing technique handling easy argillization Ultra-low-grade magnetite stone
BR112022010893A2 (en) * 2019-12-06 2022-08-16 Canada Iron Ore Co CLASSIFICATION SYSTEM OF PARTICLES TRANSPORTED BY FLUID AND METHOD OF USE
CN111282966A (en) * 2020-03-09 2020-06-16 温州桂森环境科技有限公司 Slag treatment system
CN112156876B (en) * 2020-07-24 2021-05-28 广东郡睿环保科技有限公司 Method for improving recovery rate of nonferrous metals in household garbage incinerator slag
CN112275434A (en) * 2020-10-19 2021-01-29 稷山县华越建材有限公司 Production process convenient for manufacturing slag micro powder
CN113019678B (en) * 2021-03-12 2022-03-11 四川四创生物环保科技有限公司 Sorting process of biomass combustion furnace slag
WO2023152545A1 (en) * 2022-02-10 2023-08-17 Arcelormittal Method for the treatment of ferrous scrap comprising magnetic and non-magnetic materials and associated plant

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3049305A (en) * 1960-02-16 1962-08-14 Spang & Company Process for recovering substantially clean magnetic metal pieces and magnetic oxides from steel plant debris
US3330644A (en) 1964-10-01 1967-07-11 Harsco Corp Method of treating solidified steelmaking slags for the recovery of fe values therefrom
US3905556A (en) * 1974-05-20 1975-09-16 Air Prod & Chem Method and apparatus for recovery of metals from scrap
US4666591A (en) * 1984-01-10 1987-05-19 Kawasaki Jukogyo Kabushiki Kaisha Slag disposal method
US5507393A (en) * 1994-09-14 1996-04-16 Yang; David C. Device and process for gravitational separation of solid particles
US5609256A (en) 1995-01-04 1997-03-11 Carpco, Inc. Process for recovery of values from solid waste materials
DE19630085C2 (en) 1996-07-26 2001-03-08 Allmineral Aufbereitungstech Method for controlling a sorting and classifying device for sand and gravel
US6258150B1 (en) 1998-03-24 2001-07-10 Mackellar William James Process for the beneficiation of waste material and the product developed therefrom
US7810746B2 (en) 2006-12-21 2010-10-12 Westwood Lands, Inc. Processing of steel making slags
US9016477B2 (en) * 2012-03-19 2015-04-28 Mid-American Gunite, Inc. Method and system for processing slag material
US9566587B2 (en) * 2012-10-12 2017-02-14 Blue Sky Mines Ltd. Methods of and systems for treating incinerated waste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024030355A3 (en) * 2022-08-01 2024-03-07 Fritz Enterprises, Inc. System and method for iron casting to increase casting volumes

Also Published As

Publication number Publication date
US11071987B2 (en) 2021-07-27
US20140262968A1 (en) 2014-09-18
US20160129454A1 (en) 2016-05-12
US20200038876A1 (en) 2020-02-06
US10478826B2 (en) 2019-11-19

Similar Documents

Publication Publication Date Title
US20220184633A1 (en) System and method for recovery of valuable constituents from steel-making slag fines
CN105233976B (en) Magnetic tailing recovery process is regrinded in preenrichment roasting
US8741023B2 (en) Ore beneficiation
CN109894259B (en) Comprehensive utilization method of gold tailings containing gold, iron and feldspar
CN105057089A (en) Beneficiation technology for rock-type primary ilmenite
CN104549692A (en) Mineral processing process of copper sulphide ores containing high-grade native copper
WO2018039146A1 (en) System and method for recovering glass and metal from a mixed waste stream
CN104384020A (en) Depth-induced crushing mineral separation technology of super-lean magnetic iron ore
CN108187880B (en) A kind of slag advanced treatment process
CN105233977B (en) Magnetic separation recovery mine tailing technique is regrinded in magnetic separation circulation roasting
CN104324798A (en) Ore dressing method for magnetic ores
CN108144740B (en) High-pressure roller grinding superfine coarse grain tailing discarding method applied to ludwigite
CN109909061B (en) Garnet efficient washing and selecting device and technology
CN111545341A (en) Process for removing chromium from laterite-nickel ore
US3791595A (en) Method for processing iron ore concentrates
KR20210080382A (en) Air separation method and equipment
AU2020101235A4 (en) Method for the Beneficiation of Iron Ore Streams
CN101549321A (en) Bottom slag incineration washing procedure
CA2418020C (en) Steel slag processing jig system
CN106964469B (en) Wollastonite ore dressing production line
CN108144741B (en) Method for improving grade of boron concentrate by removing iron through high-gradient vertical ring magnetic separator
CN114471936B (en) Ore size fraction parallel pre-sorting process
JP2019511361A (en) Method and system for manufacturing aggregate
CN102766704B (en) Steelmaking desulfurization slag treatment system and steelmaking desulfurization slag treatment method
CN117019376A (en) Ore dressing and grinding process method for hematite

Legal Events

Date Code Title Description
AS Assignment

Owner name: FRITZ ENTERPRISES, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FRITZ, RAYMOND C.;FRITZ, RAYMOND J.;REEL/FRAME:056978/0897

Effective date: 20140317

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION