US20220153724A1 - Inhibitors Of Plasma Kallikrein - Google Patents

Inhibitors Of Plasma Kallikrein Download PDF

Info

Publication number
US20220153724A1
US20220153724A1 US17/666,213 US202217666213A US2022153724A1 US 20220153724 A1 US20220153724 A1 US 20220153724A1 US 202217666213 A US202217666213 A US 202217666213A US 2022153724 A1 US2022153724 A1 US 2022153724A1
Authority
US
United States
Prior art keywords
methyl
formula
alkyl
mmol
aryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/666,213
Inventor
Hannah Joy Edwards
David Michael Evans
Premji Meghani
Andrew Richard NOVAK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kalvista Pharmaceuticals Ltd
Original Assignee
Kalvista Pharmaceuticals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/GB2014/052510 external-priority patent/WO2015022546A1/en
Application filed by Kalvista Pharmaceuticals Ltd filed Critical Kalvista Pharmaceuticals Ltd
Priority to US17/666,213 priority Critical patent/US20220153724A1/en
Publication of US20220153724A1 publication Critical patent/US20220153724A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/455Nicotinic acids, e.g. niacin; Derivatives thereof, e.g. esters, amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • A61K31/4725Non-condensed isoquinolines, e.g. papaverine containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/5381,4-Oxazines, e.g. morpholine ortho- or peri-condensed with carbocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Definitions

  • This invention relates to inhibitors of plasma kallikrein and to pharmaceutical compositions containing and the uses of such derivatives.
  • the inhibitors of the present invention are inhibitors of plasma kallikrein and have a number of therapeutic applications, particularly in the treatment of retinal vascular permeability associated with diabetic retinopathy and diabetic macular edema.
  • Plasma kallikrein is a trypsin-like serine protease that can liberate kinins from kininogens (see K. D. Bhoola et al., “Kallikrein-Kinin Cascade”, Encyclopedia of Respiratory Medicine , p 483-493; J. W. Bryant et al., “Human plasma kallikrein-kinin system: physiological and biochemical parameters” Cardiovascular and haematological agents in medicinal chemistry, 7, p 234-250, 2009; K. D. Bhoola et al., Pharmacological Rev., 1992, 44, 1; and D. J.
  • Plasma prekallikrein is encoded by a single gene and synthesized in the liver. It is secreted by hepatocytes as an inactive plasma prekallikrein that circulates in plasma as a heterodimer complex bound to high molecular weight kininogen which is activated to give the active plasma kallikrein.
  • Kinins are potent mediators of inflammation that act through G protein-coupled receptors and antagonists of kinins (such as bradykinin antagonists) have previously been investigated as potential therapeutic agents for the treatment of a number of disorders (F. Marceau and D. Regoli, Nature Rev., Drug Discovery, 2004, 3, 845-852).
  • Plasma kallikrein is thought to play a role in a number of inflammatory disorders.
  • the major inhibitor of plasma kallikrein is the serpin C1 esterase inhibitor.
  • Patients who present with a genetic deficiency in C1 esterase inhibitor suffer from hereditary angioedema (HAE) which results in intermittent swelling of face, hands, throat, gastro-intestinal tract and genitals.
  • HAE hereditary angioedema
  • Blisters formed during acute episodes contain high levels of plasma kallikrein which cleaves high molecular weight kininogen liberating bradykinin leading to increased vascular permeability.
  • Treatment with a large protein plasma kallikrein inhibitor has been shown to effectively treat HAE by preventing the release of bradykinin which causes increased vascular permeability (A.
  • the plasma kallikrein-kinin system is abnormally abundant in patients with advanced diabetic macular edema. It has been recently published that plasma kallikrein contributes to retinal vascular dysfunctions in diabetic rats (A. Clermont et al. “Plasma kallikrein mediates retinal vascular dysfunction and induces retinal thickening in diabetic rats” Diabetes, 2011, 60, p 1590-98). Furthermore, administration of the plasma kallikrein inhibitor ASP-440 ameliorated both retinal vascular permeability and retinal blood flow abnormalities in diabetic rats. Therefore a plasma kallikrein inhibitor should have utility as a treatment to reduce retinal vascular permeability associated with diabetic retinopathy and diabetic macular edema.
  • ASP-634 An Oral Drug Candidate for Diabetic Macular Edema
  • ARVO 2012 May 6-May 9, 2012, Fort Lauderdale, Fla., Presentation 2240 ASP-440
  • absorption may be improved by creating a prodrug such as ASP-634.
  • prodrugs can suffer from several drawbacks, for example, poor chemical stability and potential toxicity from the inert carrier or from unexpected metabolites.
  • indole amides are claimed as compounds that might overcome problems associated with drugs possessing poor or inadequate ADME-tox and physicochemical properties although no inhibition against plasma kallikrein is presented or claimed (Griffioen et al, “Indole amide derivatives and related compounds for use in the treatment of neurodegenerative diseases”, WO2010, 142801).
  • BCX4161 An Oral Kallikrein Inhibitor: Safety and Pharmacokinetic Results Of a Phase 1 Study In Healthy Volunteers”, Journal of Allergy and Clinical Immunology, Volume 133, Issue 2, Supplement, February 2014, page AB39 and “A Simple, Sensitive and Selective Fluorogenic Assay to Monitor Plasma Kallikrein Inhibitory Activity of BCX4161 in Activated Plasma”, Journal of Allergy and Clinical Immunology, Volume 133, Issue 2, Supplement February 2014, page AB40).
  • human doses are relatively large, currently being tested in proof of concept studies at doses of 400 mg three times daily.
  • Preferred compounds will possess a good pharmacokinetic profile and in particular will be suitable as drugs for oral delivery.
  • the present invention relates to a series of amides that are inhibitors of plasma kallikrein. These compounds demonstrate good selectivity for plasma kallikrein and are potentially useful in the treatment of impaired visual acuity, diabetic retinopathy, macular edema, hereditary angioedema, diabetes, pancreatitis, cerebral haemorrhage, nephropathy, cardiomyopathy, neuropathy, inflammatory bowel disease, arthritis, inflammation, septic shock, hypotension, cancer, adult respiratory distress syndrome, disseminated intravascular coagulation, cardiopulmonary bypass surgery and bleeding from post operative surgery.
  • the invention further relates to pharmaceutical compositions of the inhibitors, to the use of the compositions as therapeutic agents, and to methods of treatment using these compositions.
  • the present invention provides compounds of formula I
  • B is a fused 6,5- or 6,6-heteroaromatic bicyclic ring, containing N and, optionally, one or two additional heteroatoms independently selected from N, O and S, which is optionally mono-, di or tri-substituted with a substituent selected from alkyl, alkoxy, OH, halo, CN, COOR8, CONR8R9, CF 3 and NR8R9;
  • n 0, 1 or 2;
  • R5, R6 and R7 are independently absent or independently selected from H, alkyl, alkoxy, halo, OH, aryl, heteroaryl, —NR8R9, CN, COOR8, CONR8R9, —NR8COR9 and CF 3 ;
  • R16 is independently selected from H, alkyl, alkoxy, halo, OH, NR8R9, aryl, heteroaryl and CF 3 ;
  • A is selected from aryl, heteroaryl, and a substituent group selected from formula (A), (B), (C), and (D):
  • G is selected from H, alkyl, cycloalkyl, CO-aryl, SO 2 -aryl, (CH 2 ) m -aryl, and (CH 2 ) m -heteroaryl;
  • n is selected from 0 and 1;
  • p is selected from 0, 1, 2 and 3;
  • R23 is selected from aryl and heteroaryl
  • R24 is selected from aryl and heteroaryl
  • L is a linker selected from a covalent bond, —(CHR17)-, —(CH 2 ) 1-10 —, —O—(CH 2 ) 2-10 —, —(CH 2 ) 1-10 —O—(CH 2 ) 1-10 —, —(CH 2 ) 1-10 —NH—(CH 2 ) 1-10 —, —CONH—(CH 2 ) 1-10 —, —CO—, and —SO 2 —;
  • U and V are independently selected from C and N such that the aromatic ring containing U and V is phenyl, pyridine or pyrazine;
  • R1 is absent when U is N;
  • R2 is absent when V is N;
  • R1 and R2 are independently selected from H, alkyl, alkoxy, CN, halo and CF 3 ;
  • R3 is selected from H, alkyl, alkoxy, CN, halo and CF 3 ;
  • P is H and Q is —C(R18)(R19)NH 2 , or P is —C(R18)(R19)NH 2 and Q is H;
  • R8 and R9 are independently selected from H and alkyl
  • R12 and R13 are independently selected from H and alkyl, or may together form a cycloalkyl ring;
  • R17 is selected from alkyl and OH
  • R18 and R19 are independently selected from H and alkyl, or may together form a cycloalkyl ring or a cyclic ether;
  • alkyl is a linear saturated hydrocarbon having up to 10 carbon atoms (C 1 -C 10 ) or a branched saturated hydrocarbon of between 3 and 10 carbon atoms (C 3 -C 10 ); alkyl may optionally be substituted with 1 or 2 substituents independently selected from (C 1 -C 6 )alkoxy, OH, CN, CF 3 , COOR10, CONR10R11, fluoro, phenyl and NR10R11;
  • cycloalkyl is a monocyclic saturated hydrocarbon of between 3 and 7 carbon atoms
  • a cyclic ether is a monocyclic saturated hydrocarbon of between 4 and 7 carbon atoms, wherein one of the ring carbons is replaced by an oxygen atom;
  • alkoxy is a linear O-linked hydrocarbon of between 1 and 6 carbon atoms (C 1 -C 6 ) or a branched O-linked hydrocarbon of between 3 and 6 carbon atoms (C 3 -C 6 ); alkoxy may optionally be substituted with 1 or 2 substituents independently selected from OH, OCH 3 , CN, CF 3 , COOR10, CONR10R11, fluoro and NR10R11;
  • aryl is phenyl, biphenyl or naphthyl; aryl may be optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, methylenedioxy, ethylenedioxy, OH, halo, CN, morpholinyl, piperidinyl, heteroaryl, —(CH 2 ) 0-3 —O-heteroaryl, aryl b , —O-aryl b , —(CH 2 ) 1-3 -aryl b , —(CH 2 ) 1-3 -heteroaryl, —COOR10, —CONR10R11, —(CH 2 ) 1-3 —NR14R15, CF 3 and —NR10R11;
  • aryl b is phenyl, biphenyl or naphthyl, which may be optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, OH, halo, CN, morpholinyl, piperidinyl, —COOR10, —CONR10R11, CF 3 and NR10R11;
  • heteroaryl is a 5, 6, 9 or 10 membered mono- or bi-cyclic aromatic ring, containing, where possible, 1, 2 or 3 ring members independently selected from N, NR8, S and O; heteroaryl may be optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, OH, halo, CN, aryl, morpholinyl, piperidinyl, —(CH 2 ) 1-3 -aryl, heteroaryl b , —COOR10, —CONR10R11, CF 3 and —NR10R11;
  • heteroaryl b is a 5, 6, 9 or 10 membered mono- or bi-cyclic aromatic ring, containing, where possible, 1, 2 or 3 ring members independently selected from N, NR8, S and O; wherein heteroaryl b may be optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, OH, halo, CN, morpholinyl, piperidinyl, aryl, —(CH 2 ) 1-3 -aryl, —COOR10, —CONR10R11, CF 3 and NR10R11;
  • R10 and R11 are independently selected from H and alkyl; or R10 and R11 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which may be saturated or unsaturated with 1 or 2 double bonds and which may be optionally mono- or di-substituted with substituents selected from oxo, alkyl, alkoxy, COOR8, OH, F and CF 3 ;
  • R14 and R15 are independently selected from alkyl, aryl b and heteroaryl b ; or R14 and R15 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which may be saturated or unsaturated with 1 or 2 double bonds, and optionally may be oxo substituted;
  • the present invention provides a prodrug of a compound of formula (I) as herein defined, or a pharmaceutically acceptable salt thereof.
  • the present invention provides an N-oxide of a compound of formula (I) as herein defined, or a prodrug or pharmaceutically acceptable salt thereof.
  • the present invention provides compounds of formula Ia
  • B is a fused 6,5- or 6,6-heteroaromatic bicyclic ring, containing N and, optionally, one or two additional heteroatoms independently selected from N, O and S which is optionally mono-, di or tri-substituted with a substituent selected from alkyl, alkoxy, OH, halo, CN, COOR8, CONR8R9, CF 3 and NR8R9;
  • n 0, 1 or 2;
  • R5, R6 and R7 are independently absent or independently selected from H, alkyl, halo, OH, aryl, heteroaryl and CF 3 ;
  • R16 is independently selected from H, alkyl, alkoxy, halo, OH, aryl, heteroaryl and CF 3 ;
  • A is selected from aryl, heteroaryl, and a non-aromatic five or six-membered ring containing N or NR10 and optionally containing one or two additional heteroatoms selected from N, O and S, wherein said ring is optionally fused to phenyl;
  • L is a linker selected from a covalent bond, —(CH 2 ) 1-10 —, —O—(CH 2 ) 2-10 —, —(CH 2 ) 1-10 —O—(CH 2 ) 1-10 —, —(CH 2 ) 1-10 —NH—(CH 2 ) 1-10 —, —CONH—(CH 2 ) 1-10 —, —CO—, and —SO 2 —;
  • U and V are independently selected from C and N such that the aromatic ring containing U and V is phenyl, pyridine or pyrazine;
  • R1 is absent when U is N;
  • R2 is absent when V is N;
  • R1 and R2 are independently selected from H, alkyl, alkoxy, CN, halo and CF 3 ;
  • R3 is selected from H, alkyl, alkoxy, CN, halo and CF 3 ;
  • P is H and Q is —C(R18)(R19)NH 2 , or P is —C(R18)(R19)NH 2 and Q is H;
  • R8 and R9 are independently selected from H and alkyl
  • R12 and R13 are independently selected from H and alkyl, or may together form a cycloalkyl ring;
  • R18 and R19 are independently selected from H and alkyl, or may together form a cycloalkyl ring or a cyclic ether;
  • alkyl is a linear saturated hydrocarbon having up to 10 carbon atoms (C 1 -C 10 ) or a branched saturated hydrocarbon of between 3 and 10 carbon atoms (C 3 -C 10 ); alkyl may optionally be substituted with 1 or 2 substituents independently selected from (C 1 -C 6 )alkoxy, OH, CN, CF 3 , COOR10, CONR10R11, fluoro and NR10R11;
  • cycloalkyl is a monocyclic saturated hydrocarbon of between 3 and 7 carbon atoms
  • a cyclic ether is a monocyclic saturated hydrocarbon of between 4 and 7 carbon atoms, wherein one of the ring carbons is replaced by an oxygen atom;
  • alkoxy is a linear O-linked hydrocarbon of between 1 and 6 carbon atoms (C 1 -C 6 ) or a branched O-linked hydrocarbon of between 3 and 6 carbon atoms (C 3 -C 6 ); alkoxy may optionally be substituted with 1 or 2 substituents independently selected from OH, CN, CF 3 , COOR10, CONR10R11, fluoro and NR10R11;
  • aryl is phenyl, biphenyl or naphthyl; aryl may be optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, methylenedioxy, ethylenedioxy, OH, halo, CN, morpholinyl, piperidinyl, heteroaryl, —(CH 2 ) 0-3 —O-heteroaryl, aryl b , —O-aryl b , —(CH 2 ) 1-3 -aryl b , —(CH 2 ) 1-3 -heteroaryl, —COOR10, —CONR10R11, —(CH 2 ) 1-3 —NR14R15, CF 3 and —NR10R11;
  • aryl b is phenyl, biphenyl or naphthyl, which may be optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, OH, halo, CN, morpholinyl, piperidinyl, —COOR10, —CONR10R11, CF 3 and NR10R11;
  • heteroaryl is a 5, 6, 9 or 10 membered mono- or bi-cyclic aromatic ring, containing, where possible, 1, 2 or 3 ring members independently selected from N, NR8, S and O; heteroaryl may be optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, OH, halo, CN, aryl, morpholinyl, piperidinyl, —(CH 2 ) 1-3 -aryl, heteroaryl b , —COOR10, —CONR10R11, CF 3 and —NR10R11;
  • heteroaryl b is a 5, 6, 9 or 10 membered mono- or bi-cyclic aromatic ring, containing, where possible, 1, 2 or 3 ring members independently selected from N, NR8, S and O; wherein heteroaryl b may be optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, OH, halo, CN, morpholinyl, piperidinyl, aryl, —(CH 2 ) 1-3 -aryl, —COOR10, —CONR10R11, CF 3 and NR10R11;
  • R10 and R11 are independently selected from H and alkyl; or R10 and R11 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which may be saturated or unsaturated with 1 or 2 double bonds;
  • R14 and R15 are independently selected from alkyl, aryl b and heteroaryl b ; or R14 and R15 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which may be saturated or unsaturated with 1 or 2 double bonds, and optionally may be oxo substituted;
  • the invention comprises a subset of the compounds of formula I
  • L is a linker selected from a covalent bond, —(CHOH)—, and —(CH 2 ) 1-6 —;
  • B is a fused 6,5- or 6,6-heteroaromatic bicyclic ring, containing N and, optionally, one or two additional heteroatoms independently selected from N, O and S, which is optionally mono-, di or tri-substituted with a substituent selected from alkyl, alkoxy, OH, halo, CN, COOR8, CONR8R9, CF 3 and NR8R9;
  • the invention comprises a subset of the compounds of formula (I), as defined by formula (II),
  • R20, R21 and R22 are independently selected from H, alkyl, COOR8, CONR8R9, OH, alkoxy, NR8R9, F and Cl; and wherein A, L, W, X, Y, Z, R5, R6, R7, alkyl, alkoxy, R8 and R9 are as defined according to formula (I) or formula (Ia) above;
  • the invention comprises a subset of the compounds of formula (I), as defined by formula (II),
  • R20, R21 and R22 are independently selected from H, alkyl, COOR8, CONR8R9, OH, alkoxy, NR8R9, F and Cl;
  • L is a linker selected from —(CHOH)—, and —(CH 2 ) 1-6 —;
  • the invention comprises a subset of the compounds of formula (I), as defined by formula (III),
  • R20, R21 and R22 are independently selected from H, alkyl, COOR8, CONR8R9, OH, alkoxy, NR8R9, F and Cl; and wherein A, W, X, Y, Z, R5, R6, R7, alkyl, alkoxy, R8 and R9 are as defined according to formula (I) or formula (Ia) above;
  • the invention comprises a subset of the compounds of formula (I), as defined by formula (IV),
  • R20 and R22 are independently selected from H, alkyl, COOR8, CONR8R9, OH, alkoxy, NR8R9, F and Cl; and wherein A, W, X, Y, Z, R5, R6, R7, alkyl, alkoxy, R8 and R9 are as defined according to formula (I) or formula (Ia) above;
  • the invention comprises a subset of the compounds of formula (I), as defined by formula (V),
  • the present invention also comprises the following aspects and combinations thereof:
  • B is a fused 6,5- or 6,6-heteroaromatic bicyclic ring, containing N and, optionally, one or two additional heteroatoms independently selected from N, O and S, which is optionally mono-, di or tri-substituted with a substituent selected from alkyl, alkoxy, OH, halo, CN, COOR8, CONR8R9, CF 3 and NR8R9; wherein R8 and R9 are independently selected from H and alkyl; wherein when B is a fused 6,5-heteroaromatic aza-bicycle, it is linked to —(CR12R13) n - via its 6-membered ring component.
  • B is a fused 6,5 or 6,6-heteroaromatic bicyclic ring, containing one, two or three N atoms, which is optionally mono-substituted with a substituent selected from alkyl, alkoxy, OH, halo, CN, COOR8, CONR8R9, CF 3 and NR8R9; wherein R8 and R9 are independently selected from H and alkyl.
  • B is a fused 6,6-heteroaromatic aza-bicycle, which is optionally mono-substituted with a substituent selected from alkyl, alkoxy, OH, halo, CN, COOR8, CONR8R9, CF 3 and NR8R9; wherein R8 and R9 are independently selected from H and alkyl.
  • B is a fused 6,5- or 6,6-heteroaromatic bicyclic ring, containing N and, optionally, one or two additional heteroatoms independently selected from N and O, which is optionally mono-substituted with a substituent selected from alkyl, alkoxy, OH, halo, CN, COOR8, CONR8R9, CF 3 and NR8R9; wherein R8 and R9 are independently selected from H and alkyl.
  • B is a fused 6,6-heteroaromatic aza-bicycle, which is optionally mono-substituted with a substituent selected from alkyl, alkoxy, OH, and NR8R9; wherein R8 and R9 are independently selected from H and alkyl.
  • B is a fused 6,6-heteroaromatic aza-bicycle, which is optionally mono-substituted with NR8R9; wherein R8 and R9 are independently selected from H and alkyl.
  • B is optionally mono-, di or tri-substituted isoquinolinyl, wherein said optional substituent(s) are selected from alkyl, alkoxy, OH, F, Cl, CN, COOR8, CONR8R9, CF 3 and NR8R9; wherein R8 and R9 are independently selected from H and alkyl.
  • B is optionally mono-substituted isoquinolinyl; wherein said optional substituent is selected from alkyl, alkoxy, OH, and NR8R9; wherein R8 and R9 are independently selected from H and alkyl.
  • B is optionally substituted 1H-pyrrolo[2,3-b]pyridine wherein said optional substituent(s) are selected from alkyl, alkoxy, OH, F, Cl, CN, COOR8, CONR8R9, CF 3 and NR8R9 and wherein R8 and R9 are independently selected from H and alkyl.
  • R1, R2, R3, P, Q, U and V are as defined according to formula (I) or formula (Ia) above.
  • R1, R2, R3, P and Q are as defined according to formula (I) or formula (Ia) above.
  • R1, R2, R3 and P are as defined according to formula (I) or formula (Ia) above.
  • B is optionally mono-substituted isoquinolinyl, wherein said optional substituent is NR8R9; and wherein R8 and R9 are H.
  • R1 is absent when U is N
  • R2 is absent when V is N
  • R1 and R2 are independently selected from H, alkyl, alkoxy, CN, halo and CF 3 .
  • R1 and R2 are independently selected from H, methyl, methoxy, Cl, F and CF 3 .
  • R3 is selected from H, alkyl, alkoxy, CN, halo and CF 3 ;
  • R12 and R13 are independently selected from H and alkyl, or may together form a cycloalkyl ring.
  • R12 and R13 are independently selected from H and methyl.
  • Preferred are compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, X is selected from C, C(R16)-C, C(R16) C or N.
  • Preferred are compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, X is selected from C(R16)-C or C(R16) C and R16 is H; Y is N; and W and Z are C.
  • R5, R6 and R7 are independently absent, or are independently selected from H, alkyl, alkoxy, halo, OH, aryl, heteroaryl, —NR8R9, CN, COOR8, CONR8R9, —NR8COR9 and CF 3 .
  • R5, R6 and R7 are independently absent, or are independently selected from H, alkyl, alkoxy, halo, OH, aryl, heteroaryl and CF 3 .
  • R5 is selected from H, methyl and OH; R6 is absent; and R7 is H.
  • R14 and R15 are independently selected from alkyl, aryl b and heteroaryl b ; or R14 and R15 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which may be saturated or unsaturated with 1 or 2 double bonds, and optionally may be oxo substituted.
  • R14 and R15 are independently selected from alkyl and heteroaryl b ; or R14 and R15 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which may be saturated or unsaturated with 1 or 2 double bonds, and optionally may be oxo substituted.
  • R16 is independently selected from H, alkyl, alkoxy, halo, OH, NR8R9, aryl, heteroaryl and CF 3 .
  • R16 is independently selected from H and alkoxy and OH.
  • L is a linker selected from a covalent bond, —(CHR17)-, —(CH 2 ) 1-10 —, —O—(CH 2 ) 2-10 —, —(CH 2 ) 1-10 —O—(CH 2 ) 1-10 —, —(CH 2 ) 1-10 —NH—(CH 2 ) 1-10 —, —CONH—(CH 2 ) 1-10 —CO—, and —SO 2 —.
  • L is a linker selected from a covalent bond, —(CH 2 ) 1-10 —, —O—(CH 2 ) 2-10 —, —(CH 2 ) 1-10 —O—(CH 2 ) 1-10 —, —(CH 2 ) 1-10 —NH—(CH 2 ) 1-10 —, —CONH—(CH 2 ) 1-10 —, —CO—, and —SO 2 —.
  • G is selected from H, alkyl, cycloalkyl, CO-aryl, SO 2 -aryl, (CH 2 ) m -aryl, and (CH 2 ) m -heteroaryl;
  • n is selected from 0 and 1;
  • p is selected from 0, 1, 2 and 3;
  • R23 is selected from aryl and heteroaryl
  • R24 is selected from aryl and heteroaryl
  • alkyl, cycloalkyl, aryl and heteroaryl are as defined according to formula (I) or formula (Ia) above.
  • A is selected from aryl and heteroaryl, each optionally substituted as specified according to formula (I) or formula (Ia) above.
  • A is heteroaryl optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, OH, halo, CN, aryl, morpholinyl, piperidinyl, —COOR10, —CONR10R11, CF 3 and —NR10R11; wherein R10 and R11 are selected from H and alkyl or R10 and R11 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which may be saturated or unsaturated with 1 or 2 double bonds; and wherein alkyl, alkoxy and aryl are as defined according to formula (I) or formula (Ia) above.
  • A is heteroaryl optionally substituted with a substituent selected from alkyl, alkoxy, OH, halo, CN, aryl, morpholinyl and piperidinyl; and wherein alkyl, alkoxy and aryl are as defined according to formula (I) or formula (Ia) above.
  • the invention comprises a compound selected from:
  • the compounds of the present invention are potent and selective inhibitors of plasma kallikrein. They are therefore useful in the treatment of disease conditions for which over-activity of plasma kallikrein is a causative factor.
  • the present invention provides a compound of formula (I) for use in medicine.
  • the present invention also provides for the use of a compound of formula (I) in the manufacture of a medicament for the treatment or prevention of a disease or condition in which plasma kallikrein activity is implicated.
  • the present invention also provides a compound of formula (I) for use in the treatment or prevention of a disease or condition in which plasma kallikrein activity is implicated.
  • the present invention also provides a method of treatment of a disease or condition in which plasma kallikrein activity is implicated comprising administration to a subject in need thereof a therapeutically effective amount of a compound of formula (I).
  • diseases or conditions in which plasma kallikrein activity is implicated include impaired visual acuity, diabetic retinopathy, diabetic macular edema, hereditary angioedema, diabetes, pancreatitis, cerebral haemorrhage, nephropathy, cardiomyopathy, neuropathy, inflammatory bowel disease, arthritis, inflammation, septic shock, hypotension, cancer, adult respiratory distress syndrome, disseminated intravascular coagulation, cardiopulmonary bypass surgery and bleeding from post operative surgery.
  • the disease or condition in which plasma kallikrein activity is implicated is retinal vascular permeability associated with diabetic retinopathy and diabetic macular edema.
  • Suitable combination therapies include a compound of formula (I) combined with one or more agents selected from agents that inhibit platelet-derived growth factor (PDGF), endothelial growth factor (VEGF), integrin alpha5beta1, steroids, other agents that inhibit plasma kallikrein and other inhibitors of inflammation.
  • PDGF platelet-derived growth factor
  • VEGF endothelial growth factor
  • integrin alpha5beta1 steroids
  • specific examples of therapeutic agents that may be combined with the compounds of the present invention include those disclosed in EP2281885A and by S. Patel in Retina, 2009 June; 29(6 Suppl):S45-8.
  • the compounds of the present invention and said combination agents may exist in the same or different pharmaceutical compositions, and may be administered separately, sequentially or simultaneously.
  • the compounds of the present invention may be administered in combination with laser treatment of the retina.
  • the combination of laser therapy with intravitreal injection of an inhibitor of VEGF for the treatment of diabetic macular edema is known (Elman M, Aiello L, Beck R, et al. “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema” Ophthalmology. 27 Apr. 2010).
  • alkyl includes saturated hydrocarbon residues including:
  • linear groups up to 10 carbon atoms (C 1 -C 10 ), or of up to 6 carbon atoms (C 1 -C 6 ), or of up to 4 carbon atoms (C 1 -C 4 ).
  • alkyl groups include, but are not limited, to C 1 — methyl, C 2 — ethyl, C 3 — propyl and C 4 — n-butyl.
  • alkyl groups include, but are not limited to, C 3 — iso-propyl, C 4 — sec-butyl, C 4 — iso-butyl, C 4 — tert-butyl and C 5 — neo-pentyl.
  • Cycloalkyl is a monocyclic saturated hydrocarbon of between 3 and 7 carbon atoms; wherein cycloalkyl may be optionally substituted with a substituent selected from alkyl, alkoxy and NR10R11; wherein R10 and R11 are independently selected from H and alkyl or R10 and R11 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which may be saturated or unsaturated with 1 or 2 double bonds. Cycloalkyl groups may contain from 3 to 7 carbon atoms, or from 3 to 6 carbon atoms, or from 3 to 5 carbon atoms, or from 3 to 4 carbon atoms. Examples of suitable monocyclic cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.
  • alkoxy includes O-linked hydrocarbon residues including:
  • linear groups of between 1 and 6 carbon atoms (C 1 -C 6 ), or of between 1 and 4 carbon atoms (C 1 -C 4 ).
  • alkoxy groups include, but are not limited to, C 1 — methoxy, C 2 — ethoxy, C 3 — n-propoxy and C 4 — n-butoxy.
  • alkoxy groups include, but are not limited to, C 3 — iso-propoxy, and C 4 — sec-butoxy and tert-butoxy.
  • halo is selected from Cl, F, Br and I.
  • Aryl is as defined above. Typically, aryl will be optionally substituted with 1, 2 or 3 substituents. Optional substituents are selected from those stated above. Examples of suitable aryl groups include phenyl and naphthyl (each optionally substituted as stated above). Preferably aryl is selected from phenyl, substituted phenyl (substituted as stated above) and naphthyl.
  • Heteroaryl is as defined above.
  • suitable heteroaryl groups include thienyl, furanyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, oxadiazolyl, thiadiazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolyl, benzimidazolyl, benzotriazolyl, quinolinyl and isoquinolinyl (optionally substituted as stated above).
  • heteroaryl is selected from pyridyl, benzothiazole, indole, N-methylindole, thiazole, substituted thiazole, thiophenyl, furyl, pyrazine, pyrazole and substituted pyrazole; wherein substituents are as stated above.
  • N-linked such as in “N-linked heterocycloalkyl”, means that the heterocycloalkyl group is joined to the remainder of the molecule via a ring nitrogen atom.
  • O-linked such as in “O-linked hydrocarbon residue”, means that the hydrocarbon residue is joined to the remainder of the molecule via an oxygen atom.
  • “Pharmaceutically acceptable salt” means a physiologically or toxicologically tolerable salt and includes, when appropriate, pharmaceutically acceptable base addition salts and pharmaceutically acceptable acid addition salts.
  • pharmaceutically acceptable base addition salts that can be formed include sodium, potassium, calcium, magnesium and ammonium salts, or salts with organic amines, such as, diethylamine, N-methyl-glucamine, diethanolamine or amino acids (e.g.
  • a compound of the invention contains a basic group, such as an amino group
  • pharmaceutically acceptable acid addition salts that can be formed include hydrochlorides, hydrobromides, sulfates, phosphates, acetates, citrates, lactates, tartrates, mesylates, succinates, oxalates, phosphates, esylates, tosylates, benzenesulfonates, naphthalenedisulphonates, maleates, adipates, fumarates, hippurates, camphorates, xinafoates, p-acetamidobenzoates, dihydroxybenzoates, hydroxynaphthoates, succinates, ascorbates, oleates, bisulfates and the like.
  • Hemisalts of acids and bases can also be formed, for example, hemisulfate and hemicalcium salts.
  • Prodrug refers to a compound which is convertible in vivo by metabolic means (e.g. by hydrolysis, reduction or oxidation) to a compound of the invention. Suitable groups for forming pro-drugs are described in ‘The Practice of Medicinal Chemistry, 2 nd Ed. pp 561-585 (2003) and in F. J. Leinweber, Drug Metab. Res., 1987, 18, 379.
  • the compounds of the invention can exist in both unsolvated and solvated forms.
  • solvate is used herein to describe a molecular complex comprising the compound of the invention and a stoichiometric amount of one or more pharmaceutically acceptable solvent molecules, for example, ethanol.
  • solvent molecules for example, ethanol.
  • hydrate is employed when the solvent is water.
  • references herein to “treatment” include references to curative, palliative and prophylactic treatment.
  • the compounds of formula (I) should be assessed for their biopharmaceutical properties, such as solubility and solution stability (across pH), permeability, etc., in order to select the most appropriate dosage form and route of administration for treatment of the proposed indication. They may be administered alone or in combination with one or more other compounds of the invention or in combination with one or more other drugs (or as any combination thereof). Generally, they will be administered as a formulation in association with one or more pharmaceutically acceptable excipients.
  • excipient is used herein to describe any ingredient other than the compound(s) of the invention which may impart either a functional (i.e., drug release rate controlling) and/or a non-functional (i.e., processing aid or diluent) characteristic to the formulations. The choice of excipient will to a large extent depend on factors such as the particular mode of administration, the effect of the excipient on solubility and stability, and the nature of the dosage form.
  • compositions suitable for the delivery of compounds of the present invention and methods for their preparation will be readily apparent to those skilled in the art. Such compositions and methods for their preparation may be found, for example, in Remington's Pharmaceutical Sciences, 19th Edition (Mack Publishing Company, 1995).
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of formula (I) and a pharmaceutically acceptable carrier, diluent or excipient.
  • the compounds of the invention may be administered in a form suitable for injection into the ocular region of a patient, in particular, in a form suitable for intra-vitreal injection. It is envisaged that formulations suitable for such use will take the form of sterile solutions of a compound of the invention in a suitable aqueous vehicle. The compositions may be administered to the patient under the supervision of the attending physician.
  • the compounds of the invention may also be administered directly into the blood stream, into subcutaneous tissue, into muscle, or into an internal organ.
  • Suitable means for parenteral administration include intravenous, intraarterial, intraperitoneal, intrathecal, intraventricular, intraurethral, intrasternal, intracranial, intramuscular, intrasynovial and subcutaneous.
  • Suitable devices for parenteral administration include needle (including microneedle) injectors, needle-free injectors and infusion techniques.
  • Parenteral formulations are typically aqueous or oily solutions. Where the solution is aqueous, excipients such as sugars (including but not restricted to glucose, mannitol, sorbitol, etc.), salts, carbohydrates and buffering agents (preferably to a pH of from 3 to 9), but, for some applications, they may be more suitably formulated as a sterile non-aqueous solution or as a dried form to be used in conjunction with a suitable vehicle such as sterile, pyrogen-free water.
  • excipients such as sugars (including but not restricted to glucose, mannitol, sorbitol, etc.), salts, carbohydrates and buffering agents (preferably to a pH of from 3 to 9), but, for some applications, they may be more suitably formulated as a sterile non-aqueous solution or as a dried form to be used in conjunction with a suitable vehicle such as sterile, pyrogen-free water.
  • Parenteral formulations may include implants derived from degradable polymers such as polyesters (i.e., polylactic acid, polylactide, polylactide-co-glycolide, polycapro-lactone, polyhydroxybutyrate), polyorthoesters and polyanhydrides. These formulations may be administered via surgical incision into the subcutaneous tissue, muscular tissue or directly into specific organs.
  • degradable polymers such as polyesters (i.e., polylactic acid, polylactide, polylactide-co-glycolide, polycapro-lactone, polyhydroxybutyrate), polyorthoesters and polyanhydrides.
  • parenteral formulations under sterile conditions may readily be accomplished using standard pharmaceutical techniques well known to those skilled in the art.
  • solubility of compounds of formula (I) used in the preparation of parenteral solutions may be increased by the use of appropriate formulation techniques, such as the incorporation of co-solvents and/or solubility-enhancing agents such as surfactants, micelle structures and cyclodextrins.
  • the compounds of the invention may be administered orally.
  • Oral administration may involve swallowing, so that the compound enters the gastrointestinal tract, and/or buccal, lingual, or sublingual administration by which the compound enters the blood stream directly from the mouth.
  • Formulations suitable for oral administration include solid plugs, solid microparticulates, semi-solid and liquid (including multiple phases or dispersed systems) such as tablets; soft or hard capsules containing multi- or nano-particulates, liquids, emulsions or powders; lozenges (including liquid-filled); chews; gels; fast dispersing dosage forms; films; ovules; sprays; and buccal/mucoadhesive patches.
  • Formulations suitable for oral administration may also be designed to deliver the compounds of the invention in an immediate release manner or in a rate-sustaining manner, wherein the release profile can be delayed, pulsed, controlled, sustained, or delayed and sustained or modified in such a manner which optimises the therapeutic efficacy of the said compounds.
  • Means to deliver compounds in a rate-sustaining manner are known in the art and include slow release polymers that can be formulated with the said compounds to control their release.
  • rate-sustaining polymers include degradable and non-degradable polymers that can be used to release the said compounds by diffusion or a combination of diffusion and polymer erosion.
  • rate-sustaining polymers include hydroxypropyl methylcellulose, hydroxypropyl cellulose, methyl cellulose, ethyl cellulose, sodium carboxymethyl cellulose, polyvinyl alcohol, polyvinyl pyrrolidone, xanthum gum, polymethacrylates, polyethylene oxide and polyethylene glycol.
  • Liquid (including multiple phases and dispersed systems) formulations include emulsions, solutions, syrups and elixirs. Such formulations may be presented as fillers in soft or hard capsules (made, for example, from gelatin or hydroxypropylmethylcellulose) and typically comprise a carrier, for example, water, ethanol, polyethylene glycol, propylene glycol, methylcellulose, or a suitable oil, and one or more emulsifying agents and/or suspending agents. Liquid formulations may also be prepared by the reconstitution of a solid, for example, from a sachet.
  • the compounds of the invention may also be used in fast-dissolving, fast-disintegrating dosage forms such as those described in Liang and Chen, Expert Opinion in Therapeutic Patents, 2001, 11 (6), 981-986.
  • the total daily dose of the compounds of the invention is typically in the range 0.01 mg and 1000 mg, or between 0.1 mg and 250 mg, or between 1 mg and 50 mg depending, of course, on the mode of administration.
  • the total dose may be administered in single or divided doses and may, at the physician's discretion, fall outside of the typical range given herein. These dosages are based on an average human subject having a weight of about 60 kg to 70 kg. The physician will readily be able to determine doses for subjects whose weight falls outside this range, such as infants and the elderly.
  • the compounds of the present invention can be prepared according to the procedures exemplified by the specific examples provided herein below. Moreover, by utilising the procedures described herein, one of ordinary skill in the art can readily prepare additional compounds that fall within the scope of the present invention claimed herein.
  • the compounds illustrated in the examples are not, however, to be construed as forming the only genus that is considered as the invention.
  • the examples further illustrate details for the preparation of the compounds of the present invention. Those skilled in the art will readily understand that known variations of the conditions and processes of the following preparative procedures can be used to prepare these compounds.
  • the compounds of the invention may be isolated in the form of their pharmaceutically acceptable salts, such as those described previously herein above.
  • reactive functional groups e.g. hydroxy, amino, thio or carboxy
  • Conventional protecting groups for example those described by T. W. Greene and P. G. M. Wuts in “Protective groups in organic chemistry” John Wiley and Sons, 4 th Edition, 2006, may be used.
  • a common amino protecting group suitable for use herein is tert-butoxy carbonyl (Boc), which is readily removed by treatment with an acid such as trifluoroacetic acid or hydrogen chloride in an organic solvent such as dichloromethane.
  • the amino protecting group may be a benzyloxycarbonyl (Z) group which can be removed by hydrogenation with a palladium catalyst under a hydrogen atmosphere or 9-fluorenylmethyloxycarbonyl (Fmoc) group which can be removed by solutions of secondary organic amines such as diethylamine or piperidine in an organic solvents.
  • Carboxyl groups are typically protected as esters such as methyl, ethyl, benzyl or tert-butyl which can all be removed by hydrolysis in the presence of bases such as lithium or sodium hydroxide.
  • Benzyl protecting groups can also be removed by hydrogenation with a palladium catalyst under a hydrogen atmosphere whilst tert-butyl groups can also be removed by trifluoroacetic acid. Alternatively a trichloroethyl ester protecting group is removed with zinc in acetic acid.
  • a common hydroxy protecting group suitable for use herein is a methyl ether, deprotection conditions comprise refluxing in 48% aqueous HBr for 1-24 hours, or by stirring with borane tribromide in dichloromethane for 1-24 hours. Alternatively where a hydroxy group is protected as a benzyl ether, deprotection conditions comprise hydrogenation with a palladium catalyst under a hydrogen atmosphere.
  • the compounds according to general formula (I) can be prepared using conventional synthetic methods.
  • an amine may be coupled using standard peptide coupling conditions to an activated alpha carboxylic acid.
  • an additional amine functional group may be suitably amino-protected with a standard protecting group such as tert-butyloxycarbonyl (Boc), benzyloxycarbonyl (Z) or 9-fluorenylmethyloxycarbonyl (Fmoc).
  • the activating group may be N-hydroxysuccinimide. The use of such groups is well known in the art.
  • peptide coupling methods include the reaction of acids with amines in the presence of hydroxybenzotriazole and carbodiimide such as water soluble carbodiimide, or 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethylammonium hexafluorophosphate or benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate or bromo-trispyrrolidino-phosphonium hexafluorophosphate or 2-(3H-[1,2,3]triazolo[4,5-b]pyridin-3-yl)-1,1,3,3-tetramethylisouronium hexafluorophosphate(V) (HATU) in the presence of organic bases such as triethylamine, diisopropylethylamine or N-methylmorpholine.
  • organic bases such as triethylamine, diisopropylethylamine
  • An amine may typically be alkylated or acylated.
  • Acylation may be carried out by treatment with an acylating agent such as an acyl chloride, for example acetyl chloride or benzoyl chloride, in the presence of a base, typically a tertiary amine base such as triethylamine or diisopropylethylamine.
  • Alkylation may typically be carried by treatment with an alkyl halide or by reductive alkylation.
  • the amine is allowed to react with an aldehyde or ketone in the presence of a suitable reducing agent such as sodium cyanoborohydride or sodium acetoxyborohydride in a suitable solvent such as methanol, at room temperature.
  • a suitable reducing agent such as sodium cyanoborohydride or sodium acetoxyborohydride in a suitable solvent such as methanol
  • a nitrile compound may typically be reduced by hydrogenation. Conversion may be achieved in a single step either by direct reduction of the nitrile by hydrogenation in a suitable solvent such as methanol in the presence of a suitable catalyst such as palladium on charcoal in the presence of an acid such as hydrochloric acid or reduction with a suitable borohydride in the presence of a suitable transition metal such as cobalt or nickel chloride in a suitable solvent such as methanol at room temperature.
  • a suitable solvent such as methanol
  • a suitable catalyst such as palladium on charcoal
  • an acid such as hydrochloric acid
  • reduction with a suitable borohydride in the presence of a suitable transition metal such as cobalt or nickel chloride in a suitable solvent such as methanol at room temperature.
  • the tert-butoxycarbonyl (Boc) protected amine may be isolated (using, for example, the method as described in S. Caddick et al., Tetrahedron Lett., 2000, 41, 3513
  • LCMS Chrolith Speedrod RP-18e column, 50 ⁇ 4.6 mm, with a linear gradient 10% to 90% 0.1% HCO 2 H/MeCN into 0.1% HCO 2 H/H 2 O over 13 min, flow rate 1.5 mL/min, or using Agilent, X-Select, acidic, 5-95% MeCN/water over 4 min.
  • Data was collected using a Thermofinnigan Surveyor MSQ mass spectrometer with electrospray ionisation in conjunction with a Thermofinnigan Surveyor LC system.
  • silica gel for chromatography, 0.035 to 0.070 mm (220 to 440 mesh) (e.g. Merck silica gel 60), and an applied pressure of nitrogen up to 10 p.s.i accelerated column elution.
  • Reverse phase preparative HPLC purifications were carried out using a Waters 2525 binary gradient pumping system at flow rates of typically 20 mL/min using a Waters 2996 photodiode array detector.
  • reaction mixture was cooled to room temperature and extra 1,1′-bis(diphenylphosphino) ferrocene (423 mg, 0.77 mmol) and tris(dibenzylideneacetone) dipalladium(0) (350 mg, 0.38 mmol) were added and the reaction was heated at 120° C. for a further 28 hrs.
  • the reaction mixture was cooled to RT filtered through celite and washed with ethyl acetate (250 mls). The filtrate washed with sat NaHCO 3 (1 ⁇ 30 mls), water (1 ⁇ 30 mls), brine (1 ⁇ 30 mls), dried (Na 2 SO 4 ) and evaporated in vacuo.
  • the reaction was partitioned between DCM (10 mL) and sat. NH 4 Cl (20 mL). MeOH (1 mL) was added to aid solubility. The aqueous layer was extracted with DCM (10 mL) before the combined organic layers were washed with water (10 mL) and dried (Na 2 SO 4 ), filtered and concentrated in vacuo. The crude product was purified by chromatography on RediSep (12 g column, 0-10% MeOH (NH3) in DCM) and dried in a dessicator overnight.
  • methyl 4-bromopicolinate 0.5 g, 2.314 mmol
  • 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) 0.705 g, 2.78 mmol
  • potassium acetate 0.681 g, 6.94 mmol
  • dry dioxane 20 mL
  • the solvent was degassed (N 2 ) for 10 minutes before PdCl 2 (dppf) (0.085 g, 0.116 mmol) was added.
  • the dark red solution was heated to 80° C. (base-plate temp.) for 20 h.
  • the aqueous layer was concentrated in vacuo to dryness. The residue was redissolved in water (3.0 mL) and acidified to pH 3-4 with 1 N HCl to precipitate the product. The suspension was stirred at room temperature for 30 minutes before the solid was collected by filtration, washing with water (2 ⁇ 3.0 mL) and dried by suction for 15 minutes then in a vacuum oven (40° C.) over the weekend. The product was isolated as a white solid identified as 6-oxo-1-[4-(2-oxo-2H-pyridin-1-ylmethyl)-benzyl]-1,6-dihydro-pyridine-3-carboxylic acid (0.28 g, 0.816 mmol, 79% yield).
  • 6-oxo-1-(4-((2-oxopyridin-1(2H)-yl)methyl)benzyl)-1,6-dihydropyridine-3-carboxylic acid 50 mg, 0.149 mmol
  • 6-(aminomethyl)isoquinolin-1-amine dihydrochloride (40.2 mg, 0.164 mmol)
  • 2-(3H-[1,2,3]triazolo[4,5-b]pyridin-3-yl)-1,1,3,3-tetramethylisouronium hexafluorophosphate(V) (65.0 mg, 0.171 mmol) and dry DCM (2.5 mL) to give a white suspension.
  • N-ethyl-N-isopropylpropan-2-amine (104 ⁇ l, 0.595 mmol) was added and the resulting suspension was stirred at room temperature for 2 hrs.
  • LC-MS showed conversion to product.
  • the reaction mixture was partitioned between DCM (30 mL) and sat. aq. NH 4 Cl (20 mL). Extracted with DCM/IPA (20:1, 2 ⁇ 20 mL). The combined organic layers were washed with water (20 mL) and brine (20 mL) then dried (Na2SO4), filtered and concentrated in vacuo.
  • the crude was purified by column chromatography (12 g RediSep, dry loaded, 0-10% MeOH (1% NH3) in DCM).
  • N-ethyl-N-isopropylpropan-2-amine (97 ⁇ l, 0.557 mmol) was added to give a pale yellow opaque solution.
  • the reaction was stirred at room temperature for 2 hrs. Further (1H-pyrrolo[2,3-b]pyridin-5-yl)methanamine (9.85 mg, 0.067 mmol) was added and stirring continued for 1 h and a tan coloured suspension formed.
  • the reaction mixture was diluted with MeOH (5.0 mL) and isolated by SCX capture and release. The crude material was then purified by column chromatography RediSep (12 g silica, dry loaded, 0-10% MeOH (1% NH 3 ) in DCM).
  • the mixture was degassed with N 2 for 10 minutes, then further Pd(PPh 3 ) 4 (0.081 g, 0.070 mmol) added and the reaction heated at 110° C. for 2 hrs.
  • the mixture was cooled and treated with further dicyanozinc (0.379 g, 3.23 mmol) and Pd(PPh 3 ) 4 (0.081 g, 0.070 mmol), then stirred and heated at 110° C. for 3 hrs and to 120° C. for 2 hrs, then at ambient temperature over a weekend.
  • the mixture was diluted with DCM (50 mL) and filtered through Celite, washing with DCM (100 mL). Solvents were removed under vacuum and the residue purified by flash chromatography loading in DCM, eluting with a gradient of 0 to 50% EtOAc/DCM to afford the title compound (353 mg).
  • a scintillation vial was charged with 5-(4-((4-methyl-1H-pyrazol-1-yl)methyl)benzoyl)nicotinic acid (134 mg, 0.417 mmol), 6-(aminomethyl)isoquinolin-1-amine dihydrochloride (113 mg, 0.459 mmol), 2-(3H-[1,2,3]triazolo[4,5-b]pyridin-3-yl)-1,1,3,3-tetramethylisouronium hexafluorophosphate(V) (174 mg, 0.459 mmol), dry DCM (3 mL) and DMF (0.3 ml).
  • N,N-diisopropylethylamine (291 ⁇ l, 1.668 mmol) was added and the mixture allowed to stir at ambient temperature overnight.
  • the reaction mixture was concentrated under vacuum and purified by SCX ( ⁇ 3.5 g), washing with MeOH, eluting with 1% NH3/MeOH.
  • the crude residue was purified by flash chromatography, loading in DCM (trace MeOH), eluting with a gradient of 0 to 7% MeOH/DCM (containing 0.3% NH3).
  • Product containing fractions were combined and re-purified by flash chromatography loading in DCM, eluting with a gradient of 0 to 30% EtOH/EtOAc.
  • Methyl 5-bromonicotinate (2.95 g, 13.67 mmol), diacetoxypalladium (0.153 g, 0.683 mmol), potassium (4-boc-piperazin-1-yl)methyltrifluoroborate (5.022 g, 16.40 mmol), cesium carbonate (11.13 g, 34.2 mmol), and X-Phos (0.652 g, 1.367 mmol) dissolved in THE (40 mL) and water (10 mL) added. The resulting mixture was purged with N 2 for 10 minutes, stirred and heated at 70° C. o/n. The mixture was diluted with water (10 mL) and extracted with EtOAc (3 ⁇ 30 mL).
  • the ability of the compounds of formula (I) to inhibit plasma kallikrein may be determined using the following biological assays:
  • Plasma kallikrein inhibitory activity in vitro was determined using standard published methods (see e.g. Johansen et al., Int. J. Tiss. Reac. 1986, 8, 185; Shori et al., Biochem. Pharmacol., 1992, 43, 1209; Sturzebecher et al., Biol. Chem. Hoppe-Seyler, 1992, 373, 1025).
  • Human plasma kallikrein (Protogen) was incubated at 37° C. with the fluorogenic substrate H-DPro-Phe-Arg-AFC and various concentrations of the test compound. Residual enzyme activity (initial rate of reaction) was determined by measuring the change in optical absorbance at 410 nm and the IC 50 value for the test compound was determined.
  • KLK1 inhibitory activity in vitro was determined using standard published methods (see e.g. Johansen et al., Int. J. Tiss. Reac. 1986, 8, 185; Shori et al., Biochem. Pharmacol., 1992, 43, 1209; Sturzebecher et al., Biol. Chem. Hoppe-Seyler, 1992, 373, 1025).
  • Human KLK1 (Callbiochem) was incubated at 37° C. with the fluorogenic substrate H-DVal-Leu-Arg-AFC and various concentrations of the test compound. Residual enzyme activity (initial rate of reaction) was determined by measuring the change in optical absorbance at 410 nm and the IC 50 value for the test compound was determined.

Abstract

The present invention provides compounds of formula (I),compositions comprising such compounds; the use of such compounds in therapy (for example in the treatment or prevention of a disease or condition in which plasma kallikrein activity is implicated); and methods of treating patients with such compounds; wherein R5, R6, R7, R12, R13, A, L, B, n, W, X, Y and Z are as defined herein.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 16/254,102, filed Jan. 22, 2019, which is a continuation of U.S. patent application Ser. No. 14/907,842, filed Jan. 27, 2016, which is the National Stage of International Patent Application No. PCT/GB2014/052510 filed Aug. 14, 2014, which claims the benefit of U.S. Provisional Patent Application No. 61/865,732, filed Aug. 14, 2013 and U.S. Provisional Patent Application No. 61/865,756, filed Aug. 14, 2013, the disclosures of which are incorporated herein by reference in their entireties.
  • FIELD OF THE INVENTION
  • This invention relates to inhibitors of plasma kallikrein and to pharmaceutical compositions containing and the uses of such derivatives.
  • BACKGROUND TO THE INVENTION
  • The inhibitors of the present invention are inhibitors of plasma kallikrein and have a number of therapeutic applications, particularly in the treatment of retinal vascular permeability associated with diabetic retinopathy and diabetic macular edema.
  • Plasma kallikrein is a trypsin-like serine protease that can liberate kinins from kininogens (see K. D. Bhoola et al., “Kallikrein-Kinin Cascade”, Encyclopedia of Respiratory Medicine, p 483-493; J. W. Bryant et al., “Human plasma kallikrein-kinin system: physiological and biochemical parameters” Cardiovascular and haematological agents in medicinal chemistry, 7, p 234-250, 2009; K. D. Bhoola et al., Pharmacological Rev., 1992, 44, 1; and D. J. Campbell, “Towards understanding the kallikrein-kinin system: insights from the measurement of kinin peptides”, Brazilian Journal of Medical and Biological Research 2000, 33, 665-677). It is an essential member of the intrinsic blood coagulation cascade although its role in this cascade does not involve the release of bradykinin or enzymatic cleavage. Plasma prekallikrein is encoded by a single gene and synthesized in the liver. It is secreted by hepatocytes as an inactive plasma prekallikrein that circulates in plasma as a heterodimer complex bound to high molecular weight kininogen which is activated to give the active plasma kallikrein. Kinins are potent mediators of inflammation that act through G protein-coupled receptors and antagonists of kinins (such as bradykinin antagonists) have previously been investigated as potential therapeutic agents for the treatment of a number of disorders (F. Marceau and D. Regoli, Nature Rev., Drug Discovery, 2004, 3, 845-852).
  • Plasma kallikrein is thought to play a role in a number of inflammatory disorders. The major inhibitor of plasma kallikrein is the serpin C1 esterase inhibitor. Patients who present with a genetic deficiency in C1 esterase inhibitor suffer from hereditary angioedema (HAE) which results in intermittent swelling of face, hands, throat, gastro-intestinal tract and genitals. Blisters formed during acute episodes contain high levels of plasma kallikrein which cleaves high molecular weight kininogen liberating bradykinin leading to increased vascular permeability. Treatment with a large protein plasma kallikrein inhibitor has been shown to effectively treat HAE by preventing the release of bradykinin which causes increased vascular permeability (A. Lehmann “Ecallantide (DX-88), a plasma kallikrein inhibitor for the treatment of hereditary angioedema and the prevention of blood loss in on-pump cardiothoracic surgery” Expert Opin. Biol. Ther. 8, p 1187-99).
  • The plasma kallikrein-kinin system is abnormally abundant in patients with advanced diabetic macular edema. It has been recently published that plasma kallikrein contributes to retinal vascular dysfunctions in diabetic rats (A. Clermont et al. “Plasma kallikrein mediates retinal vascular dysfunction and induces retinal thickening in diabetic rats” Diabetes, 2011, 60, p 1590-98). Furthermore, administration of the plasma kallikrein inhibitor ASP-440 ameliorated both retinal vascular permeability and retinal blood flow abnormalities in diabetic rats. Therefore a plasma kallikrein inhibitor should have utility as a treatment to reduce retinal vascular permeability associated with diabetic retinopathy and diabetic macular edema.
  • Other complications of diabetes such as cerebral haemorrhage, nephropathy, cardiomyopathy and neuropathy, all of which have associations with plasma kallikrein may also be considered as targets for a plasma kallikrein inhibitor.
  • Synthetic and small molecule plasma kallikrein inhibitors have been described previously, for example by Garrett et al. (“Peptide aldehyde . . . .” J. Peptide Res. 52, p 62-71 (1998)), T. Griesbacher et al. (“Involvement of tissue kallikrein but not plasma kallikrein in the development of symptoms mediated by endogenous kinins in acute pancreatitis in rats” British Journal of Pharmacology 137, p 692-700 (2002)), Evans (“Selective dipeptide inhibitors of kallikrein” WO03/076458), Szelke et al. (“Kininogenase inhibitors” WO92/04371), D. M. Evans et al. (Immunolpharmacology, 32, p 115-116 (1996)), Szelke et al. (“Kininogen inhibitors” WO95/07921), Antonsson et al. (“New peptides derivatives” WO94/29335), J. Corte et al. (“Six membered heterocycles useful as serine protease inhibitors” WO2005/123680), J. Sturzbecher et al. (Brazilian J. Med. Biol. Res 27, p 1929-34 (1994)), Kettner et al. (U.S. Pat. No. 5,187,157), N. Teno et al. (Chem. Pharm. Bull. 41, p 1079-1090 (1993)), W. B. Young et al. (“Small molecule inhibitors of plasma kallikrein” Bioorg. Med. Chem. Letts. 16, p 2034-2036 (2006)), Okada et al. (“Development of potent and selective plasmin and plasma kallikrein inhibitors and studies on the structure-activity relationship” Chem. Pharm. Bull. 48, p 1964-72 (2000)), Steinmetzer et al. (“Trypsin-like serine protease inhibitors and their preparation and use” WO08/049595), Zhang et al. (“Discovery of highly potent small molecule kallikrein inhibitors” Medicinal Chemistry 2, p 545-553 (2006)), Sinha et al. (“Inhibitors of plasma kallikrein” WO08/016883), Shigenaga et al. (“Plasma Kallikrein Inhibitors” WO2011/118672), and Kolte et al. (“Biochemical characterization of a novel high-affinity and specific kallikrein inhibitor”, British Journal of Pharmacology (2011), 162(7), 1639-1649). Also, Steinmetzer et al. (“Serine protease inhibitors” WO2012/004678) describes cyclized peptide analogs which are inhibitors of human plasmin and plasma kallikrein.
  • To date, no small molecule synthetic plasma kallikrein inhibitor has been approved for medical use. The molecules described in the known art suffer from limitations such as poor selectivity over related enzymes such as KLK1, thrombin and other serine proteases, and poor oral availability. The large protein plasma kallikrein inhibitors present risks of anaphylactic reactions, as has been reported for Ecallantide. Thus there remains a need for compounds that selectively inhibit plasma kallikrein, that do not induce anaphylaxis and that are orally available. Furthermore, the vast majority of molecules in the known art feature a highly polar and ionisable guanidine or amidine functionality. It is well known that such functionalities may be limiting to gut permeability and therefore to oral availability. For example, it has been reported by Tamie J. Chilcote and Sukanto Sinha (“ASP-634: An Oral Drug Candidate for Diabetic Macular Edema”, ARVO 2012 May 6-May 9, 2012, Fort Lauderdale, Fla., Presentation 2240) that ASP-440, a benzamidine, suffers from poor oral availability. It is further reported that absorption may be improved by creating a prodrug such as ASP-634. However, it is well known that prodrugs can suffer from several drawbacks, for example, poor chemical stability and potential toxicity from the inert carrier or from unexpected metabolites. In another report, indole amides are claimed as compounds that might overcome problems associated with drugs possessing poor or inadequate ADME-tox and physicochemical properties although no inhibition against plasma kallikrein is presented or claimed (Griffioen et al, “Indole amide derivatives and related compounds for use in the treatment of neurodegenerative diseases”, WO2010, 142801).
  • BioCryst Pharmaceuticals Inc. have reported the discovery of the orally available plasma kallikrein inhibitor BCX4161 (“BCX4161, An Oral Kallikrein Inhibitor: Safety and Pharmacokinetic Results Of a Phase 1 Study In Healthy Volunteers”, Journal of Allergy and Clinical Immunology, Volume 133, Issue 2, Supplement, February 2014, page AB39 and “A Simple, Sensitive and Selective Fluorogenic Assay to Monitor Plasma Kallikrein Inhibitory Activity of BCX4161 in Activated Plasma”, Journal of Allergy and Clinical Immunology, Volume 133, Issue 2, Supplement February 2014, page AB40). However, human doses are relatively large, currently being tested in proof of concept studies at doses of 400 mg three times daily.
  • There are only few reports of plasma kallikrein inhibitors that do not feature guanidine or amidine functionalities. One example is Brandl et al. (“N-((6-amino-pyridin-3-yl)methyl)-heteroaryl-carboxamides as inhibitors of plasma kallikrein” WO2012/017020), which describes compounds that feature an amino-pyridine functionality. Oral efficacy in a rat model is demonstrated at relatively high doses of 30 mg/kg and 100 mg/kg but the pharmacokinetic profile is not reported. Thus it is not yet known whether such compounds will provide sufficient oral availability or efficacy for progression to the clinic. Other examples are Brandl et al. (“Aminopyridine derivatives as plasma kallikrein inhibitors” WO2013/111107) and Flohr et al. (“5-membered heteroarylcarboxamide derivatives as plasma kallikrein inhibitors” WO2013/111108). However, neither of these documents report any in vivo data and therefore it is not yet known whether such compounds will provide sufficient oral availability or efficacy for progression to the clinic.
  • Therefore there remains a need to develop new plasma kallikrein inhibitors that will have utility to treat a wide range of disorders, in particular to reduce retinal vascular permeability associated with diabetic retinopathy and diabetic macular edema. Preferred compounds will possess a good pharmacokinetic profile and in particular will be suitable as drugs for oral delivery.
  • SUMMARY OF THE INVENTION
  • The present invention relates to a series of amides that are inhibitors of plasma kallikrein. These compounds demonstrate good selectivity for plasma kallikrein and are potentially useful in the treatment of impaired visual acuity, diabetic retinopathy, macular edema, hereditary angioedema, diabetes, pancreatitis, cerebral haemorrhage, nephropathy, cardiomyopathy, neuropathy, inflammatory bowel disease, arthritis, inflammation, septic shock, hypotension, cancer, adult respiratory distress syndrome, disseminated intravascular coagulation, cardiopulmonary bypass surgery and bleeding from post operative surgery. The invention further relates to pharmaceutical compositions of the inhibitors, to the use of the compositions as therapeutic agents, and to methods of treatment using these compositions.
  • In an aspect, the present invention provides compounds of formula I
  • Figure US20220153724A1-20220519-C00002
  • wherein
  • B is
  • Figure US20220153724A1-20220519-C00003
  • or B is a fused 6,5- or 6,6-heteroaromatic bicyclic ring, containing N and, optionally, one or two additional heteroatoms independently selected from N, O and S, which is optionally mono-, di or tri-substituted with a substituent selected from alkyl, alkoxy, OH, halo, CN, COOR8, CONR8R9, CF3 and NR8R9;
  • n is 0, 1 or 2;
  • W, X, Y and Z are independently selected from C, C(R16)-C, C(R16)=C, C═N, N, O and S, such that the ring containing W, X, Y and Z is a six-membered aromatic heterocycle;
  • wherein,
  • R5, R6 and R7 are independently absent or independently selected from H, alkyl, alkoxy, halo, OH, aryl, heteroaryl, —NR8R9, CN, COOR8, CONR8R9, —NR8COR9 and CF3; and
  • R16 is independently selected from H, alkyl, alkoxy, halo, OH, NR8R9, aryl, heteroaryl and CF3;
  • A is selected from aryl, heteroaryl, and a substituent group selected from formula (A), (B), (C), and (D):
  • Figure US20220153724A1-20220519-C00004
  • wherein:
  • G is selected from H, alkyl, cycloalkyl, CO-aryl, SO2-aryl, (CH2)m-aryl, and (CH2)m-heteroaryl;
  • m is selected from 0 and 1;
  • p is selected from 0, 1, 2 and 3;
  • R23 is selected from aryl and heteroaryl;
  • R24 is selected from aryl and heteroaryl;
  • L is a linker selected from a covalent bond, —(CHR17)-, —(CH2)1-10—, —O—(CH2)2-10—, —(CH2)1-10—O—(CH2)1-10—, —(CH2)1-10—NH—(CH2)1-10—, —CONH—(CH2)1-10—, —CO—, and —SO2—;
  • U and V are independently selected from C and N such that the aromatic ring containing U and V is phenyl, pyridine or pyrazine;
  • R1 is absent when U is N;
  • R2 is absent when V is N;
  • or, when present, R1 and R2 are independently selected from H, alkyl, alkoxy, CN, halo and CF3;
  • R3 is selected from H, alkyl, alkoxy, CN, halo and CF3;
  • P is H and Q is —C(R18)(R19)NH2, or P is —C(R18)(R19)NH2 and Q is H;
  • R8 and R9 are independently selected from H and alkyl;
  • R12 and R13 are independently selected from H and alkyl, or may together form a cycloalkyl ring;
  • R17 is selected from alkyl and OH;
  • R18 and R19 are independently selected from H and alkyl, or may together form a cycloalkyl ring or a cyclic ether;
  • alkyl is a linear saturated hydrocarbon having up to 10 carbon atoms (C1-C10) or a branched saturated hydrocarbon of between 3 and 10 carbon atoms (C3-C10); alkyl may optionally be substituted with 1 or 2 substituents independently selected from (C1-C6)alkoxy, OH, CN, CF3, COOR10, CONR10R11, fluoro, phenyl and NR10R11;
  • cycloalkyl is a monocyclic saturated hydrocarbon of between 3 and 7 carbon atoms;
  • a cyclic ether is a monocyclic saturated hydrocarbon of between 4 and 7 carbon atoms, wherein one of the ring carbons is replaced by an oxygen atom;
  • alkoxy is a linear O-linked hydrocarbon of between 1 and 6 carbon atoms (C1-C6) or a branched O-linked hydrocarbon of between 3 and 6 carbon atoms (C3-C6); alkoxy may optionally be substituted with 1 or 2 substituents independently selected from OH, OCH3, CN, CF3, COOR10, CONR10R11, fluoro and NR10R11;
  • aryl is phenyl, biphenyl or naphthyl; aryl may be optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, methylenedioxy, ethylenedioxy, OH, halo, CN, morpholinyl, piperidinyl, heteroaryl, —(CH2)0-3—O-heteroaryl, arylb, —O-arylb, —(CH2)1-3-arylb, —(CH2)1-3-heteroaryl, —COOR10, —CONR10R11, —(CH2)1-3—NR14R15, CF3 and —NR10R11;
  • arylb is phenyl, biphenyl or naphthyl, which may be optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, OH, halo, CN, morpholinyl, piperidinyl, —COOR10, —CONR10R11, CF3 and NR10R11;
  • heteroaryl is a 5, 6, 9 or 10 membered mono- or bi-cyclic aromatic ring, containing, where possible, 1, 2 or 3 ring members independently selected from N, NR8, S and O; heteroaryl may be optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, OH, halo, CN, aryl, morpholinyl, piperidinyl, —(CH2)1-3-aryl, heteroarylb, —COOR10, —CONR10R11, CF3 and —NR10R11;
  • heteroarylb is a 5, 6, 9 or 10 membered mono- or bi-cyclic aromatic ring, containing, where possible, 1, 2 or 3 ring members independently selected from N, NR8, S and O; wherein heteroarylb may be optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, OH, halo, CN, morpholinyl, piperidinyl, aryl, —(CH2)1-3-aryl, —COOR10, —CONR10R11, CF3 and NR10R11;
  • R10 and R11 are independently selected from H and alkyl; or R10 and R11 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which may be saturated or unsaturated with 1 or 2 double bonds and which may be optionally mono- or di-substituted with substituents selected from oxo, alkyl, alkoxy, COOR8, OH, F and CF3;
  • R14 and R15 are independently selected from alkyl, arylb and heteroarylb; or R14 and R15 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which may be saturated or unsaturated with 1 or 2 double bonds, and optionally may be oxo substituted;
  • and tautomers, isomers, stereoisomers (including enantiomers, diastereoisomers and racemic and scalemic mixtures thereof), pharmaceutically acceptable salts and solvates thereof.
  • In another aspect the present invention provides a prodrug of a compound of formula (I) as herein defined, or a pharmaceutically acceptable salt thereof.
  • In yet another aspect the present invention provides an N-oxide of a compound of formula (I) as herein defined, or a prodrug or pharmaceutically acceptable salt thereof.
  • It will be understood that certain compounds of the present invention may exist in solvated, for example hydrated, as well as unsolvated forms. It is to be understood that the present invention encompasses all such solvated forms.
  • In an aspect, the present invention provides compounds of formula Ia
  • Figure US20220153724A1-20220519-C00005
  • wherein
  • B is
  • Figure US20220153724A1-20220519-C00006
  • or B is a fused 6,5- or 6,6-heteroaromatic bicyclic ring, containing N and, optionally, one or two additional heteroatoms independently selected from N, O and S which is optionally mono-, di or tri-substituted with a substituent selected from alkyl, alkoxy, OH, halo, CN, COOR8, CONR8R9, CF3 and NR8R9;
  • n is 0, 1 or 2;
  • W, X, Y and Z are independently selected from C(R16)-C, C(R16)=C, C, N, O and S, such that the ring containing W, X, Y and Z is a six-membered aromatic heterocycle;
  • wherein,
  • R5, R6 and R7 are independently absent or independently selected from H, alkyl, halo, OH, aryl, heteroaryl and CF3; and
  • R16 is independently selected from H, alkyl, alkoxy, halo, OH, aryl, heteroaryl and CF3;
  • A is selected from aryl, heteroaryl, and a non-aromatic five or six-membered ring containing N or NR10 and optionally containing one or two additional heteroatoms selected from N, O and S, wherein said ring is optionally fused to phenyl;
  • L is a linker selected from a covalent bond, —(CH2)1-10—, —O—(CH2)2-10—, —(CH2)1-10—O—(CH2)1-10—, —(CH2)1-10—NH—(CH2)1-10—, —CONH—(CH2)1-10—, —CO—, and —SO2—;
  • U and V are independently selected from C and N such that the aromatic ring containing U and V is phenyl, pyridine or pyrazine;
  • R1 is absent when U is N;
  • R2 is absent when V is N;
  • or, when present, R1 and R2 are independently selected from H, alkyl, alkoxy, CN, halo and CF3;
  • R3 is selected from H, alkyl, alkoxy, CN, halo and CF3;
  • P is H and Q is —C(R18)(R19)NH2, or P is —C(R18)(R19)NH2 and Q is H;
  • R8 and R9 are independently selected from H and alkyl;
  • R12 and R13 are independently selected from H and alkyl, or may together form a cycloalkyl ring;
  • R18 and R19 are independently selected from H and alkyl, or may together form a cycloalkyl ring or a cyclic ether;
  • alkyl is a linear saturated hydrocarbon having up to 10 carbon atoms (C1-C10) or a branched saturated hydrocarbon of between 3 and 10 carbon atoms (C3-C10); alkyl may optionally be substituted with 1 or 2 substituents independently selected from (C1-C6)alkoxy, OH, CN, CF3, COOR10, CONR10R11, fluoro and NR10R11;
  • cycloalkyl is a monocyclic saturated hydrocarbon of between 3 and 7 carbon atoms;
  • a cyclic ether is a monocyclic saturated hydrocarbon of between 4 and 7 carbon atoms, wherein one of the ring carbons is replaced by an oxygen atom;
  • alkoxy is a linear O-linked hydrocarbon of between 1 and 6 carbon atoms (C1-C6) or a branched O-linked hydrocarbon of between 3 and 6 carbon atoms (C3-C6); alkoxy may optionally be substituted with 1 or 2 substituents independently selected from OH, CN, CF3, COOR10, CONR10R11, fluoro and NR10R11;
  • aryl is phenyl, biphenyl or naphthyl; aryl may be optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, methylenedioxy, ethylenedioxy, OH, halo, CN, morpholinyl, piperidinyl, heteroaryl, —(CH2)0-3—O-heteroaryl, arylb, —O-arylb, —(CH2)1-3-arylb, —(CH2)1-3-heteroaryl, —COOR10, —CONR10R11, —(CH2)1-3—NR14R15, CF3 and —NR10R11;
  • arylb is phenyl, biphenyl or naphthyl, which may be optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, OH, halo, CN, morpholinyl, piperidinyl, —COOR10, —CONR10R11, CF3 and NR10R11;
  • heteroaryl is a 5, 6, 9 or 10 membered mono- or bi-cyclic aromatic ring, containing, where possible, 1, 2 or 3 ring members independently selected from N, NR8, S and O; heteroaryl may be optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, OH, halo, CN, aryl, morpholinyl, piperidinyl, —(CH2)1-3-aryl, heteroarylb, —COOR10, —CONR10R11, CF3 and —NR10R11;
  • heteroarylb is a 5, 6, 9 or 10 membered mono- or bi-cyclic aromatic ring, containing, where possible, 1, 2 or 3 ring members independently selected from N, NR8, S and O; wherein heteroarylb may be optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, OH, halo, CN, morpholinyl, piperidinyl, aryl, —(CH2)1-3-aryl, —COOR10, —CONR10R11, CF3 and NR10R11;
  • R10 and R11 are independently selected from H and alkyl; or R10 and R11 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which may be saturated or unsaturated with 1 or 2 double bonds;
  • R14 and R15 are independently selected from alkyl, arylb and heteroarylb; or R14 and R15 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which may be saturated or unsaturated with 1 or 2 double bonds, and optionally may be oxo substituted;
  • and tautomers, isomers, stereoisomers (including enantiomers, diastereoisomers and racemic and scalemic mixtures thereof), pharmaceutically acceptable salts and solvates thereof.
  • In an aspect, the invention comprises a subset of the compounds of formula I
  • Figure US20220153724A1-20220519-C00007
  • wherein
  • L is a linker selected from a covalent bond, —(CHOH)—, and —(CH2)1-6—;
  • B is
  • Figure US20220153724A1-20220519-C00008
  • or B is a fused 6,5- or 6,6-heteroaromatic bicyclic ring, containing N and, optionally, one or two additional heteroatoms independently selected from N, O and S, which is optionally mono-, di or tri-substituted with a substituent selected from alkyl, alkoxy, OH, halo, CN, COOR8, CONR8R9, CF3 and NR8R9;
  • and wherein A, W, X, Y, Z, R1, R2, R3, R5, R6, R7, R8, R9, R12, R13, R17, alkyl, alkoxy and n are as defined according to formula (I) or formula (Ia) above,
  • and tautomers, isomers, stereoisomers (including enantiomers, diastereoisomers and racemic and scalemic mixtures thereof), pharmaceutically acceptable salts and solvates thereof.
  • In an aspect, the invention comprises a subset of the compounds of formula (I), as defined by formula (II),
  • Figure US20220153724A1-20220519-C00009
  • wherein R20, R21 and R22 are independently selected from H, alkyl, COOR8, CONR8R9, OH, alkoxy, NR8R9, F and Cl; and wherein A, L, W, X, Y, Z, R5, R6, R7, alkyl, alkoxy, R8 and R9 are as defined according to formula (I) or formula (Ia) above;
  • and tautomers, isomers, stereoisomers (including enantiomers, diastereoisomers and racemic and scalemic mixtures thereof), pharmaceutically acceptable salts and solvates thereof.
  • In an aspect, the invention comprises a subset of the compounds of formula (I), as defined by formula (II),
  • Figure US20220153724A1-20220519-C00010
  • wherein R20, R21 and R22 are independently selected from H, alkyl, COOR8, CONR8R9, OH, alkoxy, NR8R9, F and Cl;
  • L is a linker selected from —(CHOH)—, and —(CH2)1-6—;
  • and wherein A, W, X, Y, Z, R5, R6, R7, alkyl, alkoxy, R8 and R9 are as defined according to formula (I) or formula (Ia) above;
  • and tautomers, isomers, stereoisomers (including enantiomers, diastereoisomers and racemic and scalemic mixtures thereof), pharmaceutically acceptable salts and solvates thereof.
  • In an aspect, the invention comprises a subset of the compounds of formula (I), as defined by formula (III),
  • Figure US20220153724A1-20220519-C00011
  • wherein R20, R21 and R22 are independently selected from H, alkyl, COOR8, CONR8R9, OH, alkoxy, NR8R9, F and Cl; and wherein A, W, X, Y, Z, R5, R6, R7, alkyl, alkoxy, R8 and R9 are as defined according to formula (I) or formula (Ia) above;
  • and tautomers, isomers, stereoisomers (including enantiomers, diastereoisomers and racemic and scalemic mixtures thereof), pharmaceutically acceptable salts and solvates thereof.
  • In an aspect, the invention comprises a subset of the compounds of formula (I), as defined by formula (IV),
  • Figure US20220153724A1-20220519-C00012
  • wherein R20 and R22 are independently selected from H, alkyl, COOR8, CONR8R9, OH, alkoxy, NR8R9, F and Cl; and wherein A, W, X, Y, Z, R5, R6, R7, alkyl, alkoxy, R8 and R9 are as defined according to formula (I) or formula (Ia) above;
  • and tautomers, isomers, stereoisomers (including enantiomers, diastereoisomers and racemic and scalemic mixtures thereof), pharmaceutically acceptable salts and solvates thereof.
  • In an aspect, the invention comprises a subset of the compounds of formula (I), as defined by formula (V),
  • Figure US20220153724A1-20220519-C00013
  • wherein A, W, X, Y, Z, R1, R2, R3, R5, R6, R7, P and Q are as defined according to formula (I) or formula (Ia) above;
  • and tautomers, isomers, stereoisomers (including enantiomers, diastereoisomers and racemic and scalemic mixtures thereof), pharmaceutically acceptable salts and solvates thereof.
  • The present invention also comprises the following aspects and combinations thereof:
  • Compounds of formula (I) wherein B is a fused 6,5- or 6,6-heteroaromatic bicyclic ring, containing N and, optionally, one or two additional heteroatoms independently selected from N, O and S, which is optionally mono-, di or tri-substituted with a substituent selected from alkyl, alkoxy, OH, halo, CN, COOR8, CONR8R9, CF3 and NR8R9; wherein R8 and R9 are independently selected from H and alkyl; wherein when B is a fused 6,5-heteroaromatic aza-bicycle, it is linked to —(CR12R13)n- via its 6-membered ring component.
  • Compounds of formula (I) wherein, B is a fused 6,5 or 6,6-heteroaromatic bicyclic ring, containing one, two or three N atoms, which is optionally mono-substituted with a substituent selected from alkyl, alkoxy, OH, halo, CN, COOR8, CONR8R9, CF3 and NR8R9; wherein R8 and R9 are independently selected from H and alkyl.
  • Compounds of formula (I) wherein, B is a fused 6,6-heteroaromatic aza-bicycle, which is optionally mono-substituted with a substituent selected from alkyl, alkoxy, OH, halo, CN, COOR8, CONR8R9, CF3 and NR8R9; wherein R8 and R9 are independently selected from H and alkyl.
  • Compounds of formula (I) wherein, B is a fused 6,5- or 6,6-heteroaromatic bicyclic ring, containing N and, optionally, one or two additional heteroatoms independently selected from N and O, which is optionally mono-substituted with a substituent selected from alkyl, alkoxy, OH, halo, CN, COOR8, CONR8R9, CF3 and NR8R9; wherein R8 and R9 are independently selected from H and alkyl.
  • Compounds of formula (I) wherein, B is a fused 6,6-heteroaromatic aza-bicycle, which is optionally mono-substituted with a substituent selected from alkyl, alkoxy, OH, and NR8R9; wherein R8 and R9 are independently selected from H and alkyl.
  • Compounds of formula (I) wherein, B is a fused 6,6-heteroaromatic aza-bicycle, which is optionally mono-substituted with NR8R9; wherein R8 and R9 are independently selected from H and alkyl.
  • Compounds of formula (I) wherein, B is optionally mono-, di or tri-substituted isoquinolinyl, wherein said optional substituent(s) are selected from alkyl, alkoxy, OH, F, Cl, CN, COOR8, CONR8R9, CF3 and NR8R9; wherein R8 and R9 are independently selected from H and alkyl.
  • Compounds of formula (I) wherein, B is optionally mono-substituted isoquinolinyl; wherein said optional substituent is selected from alkyl, alkoxy, OH, and NR8R9; wherein R8 and R9 are independently selected from H and alkyl.
  • Compounds of formula (I) wherein, B is optionally substituted 1H-pyrrolo[2,3-b]pyridine wherein said optional substituent(s) are selected from alkyl, alkoxy, OH, F, Cl, CN, COOR8, CONR8R9, CF3 and NR8R9 and wherein R8 and R9 are independently selected from H and alkyl.
  • Compounds of formula (I) wherein, B is:
  • Figure US20220153724A1-20220519-C00014
  • and wherein R1, R2, R3, P, Q, U and V are as defined according to formula (I) or formula (Ia) above.
  • Compounds of formula (I) wherein, B is:
  • Figure US20220153724A1-20220519-C00015
  • and wherein R1, R2, R3, P and Q are as defined according to formula (I) or formula (Ia) above.
  • Compounds of formula (I) wherein, B is:
  • Figure US20220153724A1-20220519-C00016
  • and wherein R1, R2, R3 and P are as defined according to formula (I) or formula (Ia) above.
  • Preferred are compounds of formula (I) wherein, B is optionally mono-substituted isoquinolinyl, wherein said optional substituent is NR8R9; wherein R8 and R9 are independently selected from H and alkyl.
  • More preferred are compounds of formula (I) wherein, B is optionally mono-substituted isoquinolinyl, wherein said optional substituent is NR8R9; and wherein R8 and R9 are H.
  • Compounds of formula (I) wherein, U and V are independently selected from C and N such that the aromatic ring containing U and V is phenyl, pyridine or pyrazine.
  • Compounds of formula (I) wherein, U and V are independently selected from C and N such that the aromatic ring containing U and V is phenyl or pyridine.
  • Preferred are compounds of formula (I) wherein, U and V are C such that the aromatic ring containing U and V is phenyl.
  • Compounds of formula (I), wherein R1 is absent when U is N, R2 is absent when V is N; and wherein, when present, R1 and R2 are independently selected from H, alkyl, alkoxy, CN, halo and CF3.
  • Compounds of formula (I) or formula (V) wherein, when present, R1 and R2 are independently selected from H, methyl, methoxy, Cl, F and CF3.
  • Compounds of formula (I) or formula (V) wherein, when present, R1 and R2 are independently selected from H, methyl and F.
  • Compounds of formula (I) or formula (V) wherein, when present, R1 is selected from H and methyl.
  • Compounds of formula (I) or formula (V) wherein, when present, R2 is selected from H and F.
  • Compounds of formula (I) or formula (V) wherein, R3 is selected from H, alkyl, alkoxy, CN, halo and CF3;
  • Compounds of formula (I) or formula (V) wherein, R3 is selected from H and alkyl.
  • Preferred are compounds of formula (I) or formula (V) wherein, R3 is selected from H and methyl.
  • Preferred are compounds of formula (I) or formula (V) wherein, P is —C(R18)(R19)NH2 and Q is H.
  • Preferred are compounds of formula (I), formula (II), formula (III) or formula (IV) wherein, R20, R21 and R22 are independently selected from H and alkyl.
  • Preferred are compounds of formula (II) or formula (III) wherein, R20, R21 and R22 are H.
  • Preferred are compounds of formula (IV) wherein, R20 and R22 are H.
  • Compounds of formula (I) wherein, R12 and R13 are independently selected from H and alkyl, or may together form a cycloalkyl ring.
  • Preferred are compounds of formula (I) wherein, R12 and R13 are independently selected from H and methyl.
  • Most preferred are compounds of formula (I) wherein R12 and R13 are H.
  • Compounds of formula (I) wherein, n is 0, 1 or 2.
  • Compounds of formula (I) wherein, n is 1 or 2.
  • Preferred are compounds of formula (I) wherein, n is 1.
  • Compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, W, X, Y and Z are independently selected from C═N, C(R16)-C, C(R16)=C, C, N, O and S, such that the ring containing W, X, Y and Z is a six-membered aromatic heterocycle.
  • Compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, W, X, Y and Z are independently selected from C═N, C, C(R16)-C, C(R16)=C and N, such that the ring containing W, X, Y and Z is a six-membered aromatic heterocycle; wherein R16 is selected from H, alkyl and OH.
  • Compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, W, X, Y and Z are independently selected from C, C(R16)-C, C(R16)=C and N, such that the ring containing W, X, Y and Z is a six-membered aromatic heterocycle; wherein R16 is selected from H, alkyl and OH.
  • Preferred are compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, W is C or N.
  • Preferred are compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, X is selected from C, C(R16)-C, C(R16)=C or N.
  • Preferred are compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, X is selected from C(R16)-C or C(R16)=C and R16 is H; Y is N; and W and Z are C.
  • Most preferred are compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, W, X, Y and Z form a six-membered aromatic heterocycle selected from:
  • Figure US20220153724A1-20220519-C00017
  • Compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, R5, R6 and R7 are independently absent, or are independently selected from H, alkyl, alkoxy, halo, OH, aryl, heteroaryl, —NR8R9, CN, COOR8, CONR8R9, —NR8COR9 and CF3.
  • Compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, R5, R6 and R7 are independently absent, or are independently selected from H, alkyl, alkoxy, halo, OH, aryl, heteroaryl and CF3.
  • Compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, R5 is selected from H, alkyl and OH; and wherein R6 and R7 are independently absent or H.
  • Preferred are compounds of formula (I), formula (II), formula (III) or formula (IV) wherein, R5 is selected from H, methyl and OH; R6 is absent; and R7 is H.
  • Compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, R14 and R15 are independently selected from alkyl, arylb and heteroarylb; or R14 and R15 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which may be saturated or unsaturated with 1 or 2 double bonds, and optionally may be oxo substituted.
  • Compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, R14 and R15 are independently selected from alkyl and heteroarylb; or R14 and R15 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which may be saturated or unsaturated with 1 or 2 double bonds, and optionally may be oxo substituted.
  • Compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, R14 and R15 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which may be saturated or unsaturated with 1 or 2 double bonds, and optionally may be oxo substituted.
  • Compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, R16 is independently selected from H, alkyl, alkoxy, halo, OH, NR8R9, aryl, heteroaryl and CF3.
  • Compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, R16 is independently selected from H and alkoxy and OH.
  • Preferred are compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, R16 is H.
  • Compounds of formula (I) or formula (II) wherein, L is a linker selected from a covalent bond, —(CHR17)-, —(CH2)1-10—, —O—(CH2)2-10—, —(CH2)1-10—O—(CH2)1-10—, —(CH2)1-10—NH—(CH2)1-10—, —CONH—(CH2)1-10—CO—, and —SO2—.
  • Compounds of formula (I) or formula (II) wherein, L is a linker selected from a covalent bond, —(CH2)1-10—, —O—(CH2)2-10—, —(CH2)1-10—O—(CH2)1-10—, —(CH2)1-10—NH—(CH2)1-10—, —CONH—(CH2)1-10—, —CO—, and —SO2—.
  • Compounds of formula (I) or formula (II) wherein, L is —(CH2)1-6— or —(CHR17)-.
  • Preferred are compounds of formula (I) or formula (II) wherein, L is —(CH2)1-6— or —(CHOH)—.
  • Most preferred are compounds of formula (I) or formula (II) wherein L is —CH2—.
  • Compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, A is selected from aryl, heteroaryl, and a substituent group selected from formula (A), (B), (C), and (D):
  • Figure US20220153724A1-20220519-C00018
  • wherein:
  • G is selected from H, alkyl, cycloalkyl, CO-aryl, SO2-aryl, (CH2)m-aryl, and (CH2)m-heteroaryl;
  • m is selected from 0 and 1;
  • p is selected from 0, 1, 2 and 3;
  • R23 is selected from aryl and heteroaryl;
  • R24 is selected from aryl and heteroaryl;
  • wherein alkyl, cycloalkyl, aryl and heteroaryl are as defined according to formula (I) or formula (Ia) above.
  • Compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, A is selected from aryl, heteroaryl, and a substituent selected from formula (C) and (D).
  • Preferred are compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, A is selected from aryl and heteroaryl, each optionally substituted as specified according to formula (I) or formula (Ia) above.
  • Compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, A is heteroaryl optionally substituted with 1, 2 or 3 substituents independently selected from alkyl, alkoxy, OH, halo, CN, aryl, morpholinyl, piperidinyl, —COOR10, —CONR10R11, CF3 and —NR10R11; wherein R10 and R11 are selected from H and alkyl or R10 and R11 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which may be saturated or unsaturated with 1 or 2 double bonds; and wherein alkyl, alkoxy and aryl are as defined according to formula (I) or formula (Ia) above.
  • Compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, A is heteroaryl optionally substituted with a substituent selected from alkyl, alkoxy, OH, halo, CN, aryl, morpholinyl and piperidinyl; and wherein alkyl, alkoxy and aryl are as defined according to formula (I) or formula (Ia) above.
  • Preferred are compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, A is heteroaryl substituted by phenyl.
  • Preferred are compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, A is thiazolyl substituted by phenyl.
  • Preferred are compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, A is phenyl substituted by heteroaryl, —(CH2)1-3-heteroaryl and —(CH2)1-3—NR14R15; and wherein heteroaryl, R14 and R15 are as defined according to formula (I) or formula (Ia) above.
  • Preferred are compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, A is selected from:
  • Figure US20220153724A1-20220519-C00019
  • Compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein, p is selected from 0, 1, 2 and 3.
  • Preferred are compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein p is 2.
  • Compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein R23 and R24 are independently selected from aryl and heteroaryl; wherein aryl and heteroaryl are as defined according to formula (I) or formula (Ia) above.
  • Preferred are compounds of formula (I), formula (II), formula (III), formula (IV) or formula (V) wherein R23 and R24 are heteroaryl; wherein heteroaryl is as defined according to formula (I) or formula (Ia) above.
  • In an aspect, the invention comprises a compound selected from:
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({4-[(4-methylpyrazol-1-yl)methyl]phenyl}methyl)pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-4-({4-[(4-methylpyrazol-1-yl)methyl]phenyl}methyl)pyridine-2-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-6-oxo-1-({4-[(2-oxopyridin-1-yl)methyl]phenyl}methyl)pyridine-3-carboxamide;
    • N-((1-Aminoisoquinolin-6-yl)methyl)-5-(hydroxy(4-((4-methyl-1H-pyrazol-1-yl)methyl)phenyl)methyl)nicotinamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-6-({4-[(4-methylpyrazol-1-yl)methyl]phenyl}methyl)pyrimidine-4-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-6-({4-[(4-methylpyrazol-1-yl)methyl]phenyl}methyl)pyrazine-2-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-6-[(2-methylquinolin-6-yl)methyl]pyrazine-2-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({4-[(4-methylpyrazol-1-yl)methyl]phenyl}methyl)pyridazine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-1-({4-[(4-methylpyrazol-1-yl)methyl]phenyl}methyl)-6-oxopyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-1-[(2-methylquinolin-6-yl)methyl]-6-oxopyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-[(2-methylquinolin-6-yl)methyl]pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-6-(methylamino)-5-[(2-methylquinolin-6-yl)methyl]pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-2-methyl-5-[(2-methylquinolin-6-yl)methyl]pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-(quinolin-6-ylmethyl)pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({3-methoxy-4-[(4-methylpyrazol-1-yl)methyl]phenyl}methyl)pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-[(4-methyl-2,3-dihydro-1,4-benzoxazin-7-yl)methyl]pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(4-methylpyrazol-1-yl)ethoxy]methyl}pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(2-oxopyrrolidin-1-yl)pyridin-3-yl]methyl}pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(pyrrolidin-1-yl)pyridin-3-yl]methyl}pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(2-methylpyrrolidin-1-yl)pyridin-3-yl]methyl}pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(3-fluoropyrrolidin-1-yl)pyridin-3-yl]methyl}pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(3-methylpyrrolidin-1-yl)pyridin-3-yl]methyl}pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(2,2-dimethylpyrrolidin-1-yl)pyridin-3-yl]methyl}pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(diethylamino)pyridin-3-yl]methyl}pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({6-[2-(hydroxymethyl)pyrrolidin-1-yl]pyridin-3-yl}methyl)pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({6-[isopropyl(methyl)amino]pyridin-3-yl}methyl)pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(3,3-dimethylpyrrolidin-1-yl)pyridin-3-yl]methyl}pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(pyrrolidin-1-yl)pyridin-4-yl]methyl}pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(piperidin-1-yl)pyridin-4-yl]methyl}pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(2-methylpyrrolidin-1-yl)pyridin-4-yl]methyl}pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(3,3-difluoropyrrolidin-1-yl)pyridin-4-yl]methyl}pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(3-fluoropyrrolidin-1-yl)pyridin-4-yl]methyl}pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(3-methylpyrrolidin-1-yl)pyridin-4-yl]methyl}pyridine-3-carboxamide;
    • N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({2-[2-(hydroxymethyl)pyrrolidin-1-yl]pyridin-4-yl}methyl)pyridine-3-carboxamide;
    • N-{[4-(Aminomethyl)-2-methylphenyl]methyl}-5-({4-[(4-methylpyrazol-1-yl)methyl]phenyl}methyl)pyridine-3-carboxamide;
    • N-{[4-(Aminomethyl)-2,6-dimethylphenyl]methyl}-5-({4-[(4-methylpyrazol-1-yl)methyl]phenyl}methyl)pyridine-3-carboxamide;
    • N-{[4-(Aminomethyl)-2,6-dimethylphenyl]methyl}-6-({4-[(4-methylpyrazol-1-yl)methyl]phenyl}methyl)pyrazine-2-carboxamide;
  • and pharmaceutically acceptable salts and solvates thereof.
  • Therapeutic Applications
  • As previously mentioned, the compounds of the present invention are potent and selective inhibitors of plasma kallikrein. They are therefore useful in the treatment of disease conditions for which over-activity of plasma kallikrein is a causative factor.
  • Accordingly, the present invention provides a compound of formula (I) for use in medicine.
  • The present invention also provides for the use of a compound of formula (I) in the manufacture of a medicament for the treatment or prevention of a disease or condition in which plasma kallikrein activity is implicated.
  • The present invention also provides a compound of formula (I) for use in the treatment or prevention of a disease or condition in which plasma kallikrein activity is implicated.
  • The present invention also provides a method of treatment of a disease or condition in which plasma kallikrein activity is implicated comprising administration to a subject in need thereof a therapeutically effective amount of a compound of formula (I).
  • In one aspect, diseases or conditions in which plasma kallikrein activity is implicated include impaired visual acuity, diabetic retinopathy, diabetic macular edema, hereditary angioedema, diabetes, pancreatitis, cerebral haemorrhage, nephropathy, cardiomyopathy, neuropathy, inflammatory bowel disease, arthritis, inflammation, septic shock, hypotension, cancer, adult respiratory distress syndrome, disseminated intravascular coagulation, cardiopulmonary bypass surgery and bleeding from post operative surgery.
  • In another aspect, the disease or condition in which plasma kallikrein activity is implicated is retinal vascular permeability associated with diabetic retinopathy and diabetic macular edema.
  • Combination Therapy
  • The compounds of the present invention may be administered in combination with other therapeutic agents. Suitable combination therapies include a compound of formula (I) combined with one or more agents selected from agents that inhibit platelet-derived growth factor (PDGF), endothelial growth factor (VEGF), integrin alpha5beta1, steroids, other agents that inhibit plasma kallikrein and other inhibitors of inflammation. Specific examples of therapeutic agents that may be combined with the compounds of the present invention include those disclosed in EP2281885A and by S. Patel in Retina, 2009 June; 29(6 Suppl):S45-8.
  • When combination therapy is employed, the compounds of the present invention and said combination agents may exist in the same or different pharmaceutical compositions, and may be administered separately, sequentially or simultaneously.
  • In another aspect, the compounds of the present invention may be administered in combination with laser treatment of the retina. The combination of laser therapy with intravitreal injection of an inhibitor of VEGF for the treatment of diabetic macular edema is known (Elman M, Aiello L, Beck R, et al. “Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema” Ophthalmology. 27 Apr. 2010).
  • Definitions
  • The term “alkyl” includes saturated hydrocarbon residues including:
  • linear groups up to 10 carbon atoms (C1-C10), or of up to 6 carbon atoms (C1-C6), or of up to 4 carbon atoms (C1-C4). Examples of such alkyl groups include, but are not limited, to C1— methyl, C2— ethyl, C3— propyl and C4— n-butyl.
  • branched groups of between 3 and 10 carbon atoms (C3-C10), or of up to 7 carbon atoms (C3-C7), or of up to 4 carbon atoms (C3-C4). Examples of such alkyl groups include, but are not limited to, C3— iso-propyl, C4— sec-butyl, C4— iso-butyl, C4— tert-butyl and C5— neo-pentyl.
  • each optionally substituted as stated above.
  • Cycloalkyl is a monocyclic saturated hydrocarbon of between 3 and 7 carbon atoms; wherein cycloalkyl may be optionally substituted with a substituent selected from alkyl, alkoxy and NR10R11; wherein R10 and R11 are independently selected from H and alkyl or R10 and R11 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which may be saturated or unsaturated with 1 or 2 double bonds. Cycloalkyl groups may contain from 3 to 7 carbon atoms, or from 3 to 6 carbon atoms, or from 3 to 5 carbon atoms, or from 3 to 4 carbon atoms. Examples of suitable monocyclic cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.
  • The term “alkoxy” includes O-linked hydrocarbon residues including:
  • linear groups of between 1 and 6 carbon atoms (C1-C6), or of between 1 and 4 carbon atoms (C1-C4). Examples of such alkoxy groups include, but are not limited to, C1— methoxy, C2— ethoxy, C3— n-propoxy and C4— n-butoxy.
  • branched groups of between 3 and 6 carbon atoms (C3-C6) or of between 3 and 4 carbon atoms (C3-C4). Examples of such alkoxy groups include, but are not limited to, C3— iso-propoxy, and C4— sec-butoxy and tert-butoxy.
  • each optionally substituted as stated above.
  • Unless otherwise stated, halo is selected from Cl, F, Br and I.
  • Aryl is as defined above. Typically, aryl will be optionally substituted with 1, 2 or 3 substituents. Optional substituents are selected from those stated above. Examples of suitable aryl groups include phenyl and naphthyl (each optionally substituted as stated above). Preferably aryl is selected from phenyl, substituted phenyl (substituted as stated above) and naphthyl.
  • Heteroaryl is as defined above. Examples of suitable heteroaryl groups include thienyl, furanyl, pyrrolyl, pyrazolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, oxadiazolyl, thiadiazolyl, tetrazolyl, pyridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, indolyl, benzimidazolyl, benzotriazolyl, quinolinyl and isoquinolinyl (optionally substituted as stated above). Preferably heteroaryl is selected from pyridyl, benzothiazole, indole, N-methylindole, thiazole, substituted thiazole, thiophenyl, furyl, pyrazine, pyrazole and substituted pyrazole; wherein substituents are as stated above.
  • The term “N-linked”, such as in “N-linked heterocycloalkyl”, means that the heterocycloalkyl group is joined to the remainder of the molecule via a ring nitrogen atom.
  • The term “O-linked”, such as in “O-linked hydrocarbon residue”, means that the hydrocarbon residue is joined to the remainder of the molecule via an oxygen atom.
  • In groups such as —COOR*, “-” denotes the point of attachment of the substituent group to the remainder of the molecule.
  • “Pharmaceutically acceptable salt” means a physiologically or toxicologically tolerable salt and includes, when appropriate, pharmaceutically acceptable base addition salts and pharmaceutically acceptable acid addition salts. For example (i) where a compound of the invention contains one or more acidic groups, for example carboxy groups, pharmaceutically acceptable base addition salts that can be formed include sodium, potassium, calcium, magnesium and ammonium salts, or salts with organic amines, such as, diethylamine, N-methyl-glucamine, diethanolamine or amino acids (e.g. lysine) and the like; (ii) where a compound of the invention contains a basic group, such as an amino group, pharmaceutically acceptable acid addition salts that can be formed include hydrochlorides, hydrobromides, sulfates, phosphates, acetates, citrates, lactates, tartrates, mesylates, succinates, oxalates, phosphates, esylates, tosylates, benzenesulfonates, naphthalenedisulphonates, maleates, adipates, fumarates, hippurates, camphorates, xinafoates, p-acetamidobenzoates, dihydroxybenzoates, hydroxynaphthoates, succinates, ascorbates, oleates, bisulfates and the like.
  • Hemisalts of acids and bases can also be formed, for example, hemisulfate and hemicalcium salts.
  • For a review of suitable salts, see “Handbook of Pharmaceutical Salts: Properties, Selection and Use” by Stahl and Wermuth (Wiley-VCH, Weinheim, Germany, 2002).
  • “Prodrug” refers to a compound which is convertible in vivo by metabolic means (e.g. by hydrolysis, reduction or oxidation) to a compound of the invention. Suitable groups for forming pro-drugs are described in ‘The Practice of Medicinal Chemistry, 2nd Ed. pp 561-585 (2003) and in F. J. Leinweber, Drug Metab. Res., 1987, 18, 379.
  • The compounds of the invention can exist in both unsolvated and solvated forms. The term ‘solvate’ is used herein to describe a molecular complex comprising the compound of the invention and a stoichiometric amount of one or more pharmaceutically acceptable solvent molecules, for example, ethanol. The term ‘hydrate’ is employed when the solvent is water.
  • Where compounds of the invention exist in one or more geometrical, optical, enantiomeric, diastereomeric and tautomeric forms, including but not limited to cis- and trans-forms, E- and Z-forms, R-, S- and meso-forms, keto-, and enol-forms. Unless otherwise stated a reference to a particular compound includes all such isomeric forms, including racemic and other mixtures thereof. Where appropriate such isomers can be separated from their mixtures by the application or adaptation of known methods (e.g. chromatographic techniques and recrystallisation techniques). Where appropriate such isomers can be prepared by the application or adaptation of known methods (e.g. asymmetric synthesis).
  • In the context of the present invention, references herein to “treatment” include references to curative, palliative and prophylactic treatment.
  • General Methods
  • The compounds of formula (I) should be assessed for their biopharmaceutical properties, such as solubility and solution stability (across pH), permeability, etc., in order to select the most appropriate dosage form and route of administration for treatment of the proposed indication. They may be administered alone or in combination with one or more other compounds of the invention or in combination with one or more other drugs (or as any combination thereof). Generally, they will be administered as a formulation in association with one or more pharmaceutically acceptable excipients. The term ‘excipient’ is used herein to describe any ingredient other than the compound(s) of the invention which may impart either a functional (i.e., drug release rate controlling) and/or a non-functional (i.e., processing aid or diluent) characteristic to the formulations. The choice of excipient will to a large extent depend on factors such as the particular mode of administration, the effect of the excipient on solubility and stability, and the nature of the dosage form.
  • Compounds of the invention intended for pharmaceutical use may be administered as a solid or liquid, such as a tablet, capsule or solution. Pharmaceutical compositions suitable for the delivery of compounds of the present invention and methods for their preparation will be readily apparent to those skilled in the art. Such compositions and methods for their preparation may be found, for example, in Remington's Pharmaceutical Sciences, 19th Edition (Mack Publishing Company, 1995).
  • Accordingly, the present invention provides a pharmaceutical composition comprising a compound of formula (I) and a pharmaceutically acceptable carrier, diluent or excipient.
  • For the treatment of conditions such as retinal vascular permeability associated with diabetic retinopathy and diabetic macular edema, the compounds of the invention may be administered in a form suitable for injection into the ocular region of a patient, in particular, in a form suitable for intra-vitreal injection. It is envisaged that formulations suitable for such use will take the form of sterile solutions of a compound of the invention in a suitable aqueous vehicle. The compositions may be administered to the patient under the supervision of the attending physician.
  • The compounds of the invention may also be administered directly into the blood stream, into subcutaneous tissue, into muscle, or into an internal organ. Suitable means for parenteral administration include intravenous, intraarterial, intraperitoneal, intrathecal, intraventricular, intraurethral, intrasternal, intracranial, intramuscular, intrasynovial and subcutaneous. Suitable devices for parenteral administration include needle (including microneedle) injectors, needle-free injectors and infusion techniques.
  • Parenteral formulations are typically aqueous or oily solutions. Where the solution is aqueous, excipients such as sugars (including but not restricted to glucose, mannitol, sorbitol, etc.), salts, carbohydrates and buffering agents (preferably to a pH of from 3 to 9), but, for some applications, they may be more suitably formulated as a sterile non-aqueous solution or as a dried form to be used in conjunction with a suitable vehicle such as sterile, pyrogen-free water.
  • Parenteral formulations may include implants derived from degradable polymers such as polyesters (i.e., polylactic acid, polylactide, polylactide-co-glycolide, polycapro-lactone, polyhydroxybutyrate), polyorthoesters and polyanhydrides. These formulations may be administered via surgical incision into the subcutaneous tissue, muscular tissue or directly into specific organs.
  • The preparation of parenteral formulations under sterile conditions, for example, by lyophilisation, may readily be accomplished using standard pharmaceutical techniques well known to those skilled in the art.
  • The solubility of compounds of formula (I) used in the preparation of parenteral solutions may be increased by the use of appropriate formulation techniques, such as the incorporation of co-solvents and/or solubility-enhancing agents such as surfactants, micelle structures and cyclodextrins.
  • In one embodiment, the compounds of the invention may be administered orally. Oral administration may involve swallowing, so that the compound enters the gastrointestinal tract, and/or buccal, lingual, or sublingual administration by which the compound enters the blood stream directly from the mouth.
  • Formulations suitable for oral administration include solid plugs, solid microparticulates, semi-solid and liquid (including multiple phases or dispersed systems) such as tablets; soft or hard capsules containing multi- or nano-particulates, liquids, emulsions or powders; lozenges (including liquid-filled); chews; gels; fast dispersing dosage forms; films; ovules; sprays; and buccal/mucoadhesive patches.
  • Formulations suitable for oral administration may also be designed to deliver the compounds of the invention in an immediate release manner or in a rate-sustaining manner, wherein the release profile can be delayed, pulsed, controlled, sustained, or delayed and sustained or modified in such a manner which optimises the therapeutic efficacy of the said compounds. Means to deliver compounds in a rate-sustaining manner are known in the art and include slow release polymers that can be formulated with the said compounds to control their release.
  • Examples of rate-sustaining polymers include degradable and non-degradable polymers that can be used to release the said compounds by diffusion or a combination of diffusion and polymer erosion. Examples of rate-sustaining polymers include hydroxypropyl methylcellulose, hydroxypropyl cellulose, methyl cellulose, ethyl cellulose, sodium carboxymethyl cellulose, polyvinyl alcohol, polyvinyl pyrrolidone, xanthum gum, polymethacrylates, polyethylene oxide and polyethylene glycol.
  • Liquid (including multiple phases and dispersed systems) formulations include emulsions, solutions, syrups and elixirs. Such formulations may be presented as fillers in soft or hard capsules (made, for example, from gelatin or hydroxypropylmethylcellulose) and typically comprise a carrier, for example, water, ethanol, polyethylene glycol, propylene glycol, methylcellulose, or a suitable oil, and one or more emulsifying agents and/or suspending agents. Liquid formulations may also be prepared by the reconstitution of a solid, for example, from a sachet.
  • The compounds of the invention may also be used in fast-dissolving, fast-disintegrating dosage forms such as those described in Liang and Chen, Expert Opinion in Therapeutic Patents, 2001, 11 (6), 981-986.
  • The formulation of tablets is discussed in Pharmaceutical Dosage Forms: Tablets, Vol. 1, by H. Lieberman and L. Lachman (Marcel Dekker, New York, 1980).
  • For administration to human patients, the total daily dose of the compounds of the invention is typically in the range 0.01 mg and 1000 mg, or between 0.1 mg and 250 mg, or between 1 mg and 50 mg depending, of course, on the mode of administration.
  • The total dose may be administered in single or divided doses and may, at the physician's discretion, fall outside of the typical range given herein. These dosages are based on an average human subject having a weight of about 60 kg to 70 kg. The physician will readily be able to determine doses for subjects whose weight falls outside this range, such as infants and the elderly.
  • Synthetic Methods
  • The compounds of the present invention can be prepared according to the procedures exemplified by the specific examples provided herein below. Moreover, by utilising the procedures described herein, one of ordinary skill in the art can readily prepare additional compounds that fall within the scope of the present invention claimed herein. The compounds illustrated in the examples are not, however, to be construed as forming the only genus that is considered as the invention. The examples further illustrate details for the preparation of the compounds of the present invention. Those skilled in the art will readily understand that known variations of the conditions and processes of the following preparative procedures can be used to prepare these compounds.
  • The compounds of the invention may be isolated in the form of their pharmaceutically acceptable salts, such as those described previously herein above.
  • It may be necessary to protect reactive functional groups (e.g. hydroxy, amino, thio or carboxy) in intermediates used in the preparation of compounds of the invention to avoid their unwanted participation in a reaction leading to the formation of the compounds. Conventional protecting groups, for example those described by T. W. Greene and P. G. M. Wuts in “Protective groups in organic chemistry” John Wiley and Sons, 4th Edition, 2006, may be used. For example, a common amino protecting group suitable for use herein is tert-butoxy carbonyl (Boc), which is readily removed by treatment with an acid such as trifluoroacetic acid or hydrogen chloride in an organic solvent such as dichloromethane. Alternatively the amino protecting group may be a benzyloxycarbonyl (Z) group which can be removed by hydrogenation with a palladium catalyst under a hydrogen atmosphere or 9-fluorenylmethyloxycarbonyl (Fmoc) group which can be removed by solutions of secondary organic amines such as diethylamine or piperidine in an organic solvents. Carboxyl groups are typically protected as esters such as methyl, ethyl, benzyl or tert-butyl which can all be removed by hydrolysis in the presence of bases such as lithium or sodium hydroxide. Benzyl protecting groups can also be removed by hydrogenation with a palladium catalyst under a hydrogen atmosphere whilst tert-butyl groups can also be removed by trifluoroacetic acid. Alternatively a trichloroethyl ester protecting group is removed with zinc in acetic acid. A common hydroxy protecting group suitable for use herein is a methyl ether, deprotection conditions comprise refluxing in 48% aqueous HBr for 1-24 hours, or by stirring with borane tribromide in dichloromethane for 1-24 hours. Alternatively where a hydroxy group is protected as a benzyl ether, deprotection conditions comprise hydrogenation with a palladium catalyst under a hydrogen atmosphere.
  • The compounds according to general formula (I) can be prepared using conventional synthetic methods. For example, an amine may be coupled using standard peptide coupling conditions to an activated alpha carboxylic acid. If present, an additional amine functional group may be suitably amino-protected with a standard protecting group such as tert-butyloxycarbonyl (Boc), benzyloxycarbonyl (Z) or 9-fluorenylmethyloxycarbonyl (Fmoc). The activating group may be N-hydroxysuccinimide. The use of such groups is well known in the art. Other standard peptide coupling methods include the reaction of acids with amines in the presence of hydroxybenzotriazole and carbodiimide such as water soluble carbodiimide, or 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethylammonium hexafluorophosphate or benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium hexafluorophosphate or bromo-trispyrrolidino-phosphonium hexafluorophosphate or 2-(3H-[1,2,3]triazolo[4,5-b]pyridin-3-yl)-1,1,3,3-tetramethylisouronium hexafluorophosphate(V) (HATU) in the presence of organic bases such as triethylamine, diisopropylethylamine or N-methylmorpholine. In a typical second step the protecting group, if present, is removed using standard methods as previously described.
  • An amine may typically be alkylated or acylated. Acylation may be carried out by treatment with an acylating agent such as an acyl chloride, for example acetyl chloride or benzoyl chloride, in the presence of a base, typically a tertiary amine base such as triethylamine or diisopropylethylamine. Alkylation may typically be carried by treatment with an alkyl halide or by reductive alkylation. Typically, in a reductive alkylation procedure the amine is allowed to react with an aldehyde or ketone in the presence of a suitable reducing agent such as sodium cyanoborohydride or sodium acetoxyborohydride in a suitable solvent such as methanol, at room temperature.
  • A nitrile compound may typically be reduced by hydrogenation. Conversion may be achieved in a single step either by direct reduction of the nitrile by hydrogenation in a suitable solvent such as methanol in the presence of a suitable catalyst such as palladium on charcoal in the presence of an acid such as hydrochloric acid or reduction with a suitable borohydride in the presence of a suitable transition metal such as cobalt or nickel chloride in a suitable solvent such as methanol at room temperature. Alternatively, the tert-butoxycarbonyl (Boc) protected amine may be isolated (using, for example, the method as described in S. Caddick et al., Tetrahedron Lett., 2000, 41, 3513) and subsequently deprotected by standard means described previously to give the amine.
  • EXAMPLES
  • The invention is illustrated by the following non-limiting examples in which the following abbreviations and definitions are used:
  • DCM Dichloromethane
    DMA N,N-Dimethylacetamide
    DMF N,N-Dimethylformamide
    EtOAc Ethyl Acetate
    HATU 2-(3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)-1,1,3,3-
    tetramethylisouronium hexafluorophosphate(V)
    hrs Hours
    HOBt Hydroxybenzotriazole
    LCMS Liquid chromatography mass spectrometry
    Me Methyl
    MeCN Acetonitrile
    MeOH Methanol
    Min Minutes
    MS Mass spectrum
    NMR Nuclear magnetic resonance spectrum - NMR
    spectra were recorded at a frequency of 400
    MHz unless otherwise indicated
    Pet. Ether Petroleum ether fraction boiling at 60-80° C.
    Ph Phenyl
    rt room temperature
    THF Tetrahydrofuran
    TFA Trifluoroacetic acid
  • All reactions were carried out under an atmosphere of nitrogen unless specified otherwise.
  • 1H NMR spectra were recorded on a Bruker (400 MHz) spectrometer with reference to deuterium solvent and at rt.
  • Molecular ions were obtained using LCMS which was carried out using a Chromolith Speedrod RP-18e column, 50×4.6 mm, with a linear gradient 10% to 90% 0.1% HCO2H/MeCN into 0.1% HCO2H/H2O over 13 min, flow rate 1.5 mL/min, or using Agilent, X-Select, acidic, 5-95% MeCN/water over 4 min. Data was collected using a Thermofinnigan Surveyor MSQ mass spectrometer with electrospray ionisation in conjunction with a Thermofinnigan Surveyor LC system.
  • Chemical names were generated using the Autonom software provided as part of the ISIS draw package from MDL Information Systems, or in the IUPAC form using Chemaxon software.
  • Where products were purified by flash chromatography, ‘silica’ refers to silica gel for chromatography, 0.035 to 0.070 mm (220 to 440 mesh) (e.g. Merck silica gel 60), and an applied pressure of nitrogen up to 10 p.s.i accelerated column elution. Reverse phase preparative HPLC purifications were carried out using a Waters 2525 binary gradient pumping system at flow rates of typically 20 mL/min using a Waters 2996 photodiode array detector.
  • All solvents and commercial reagents were used as received.
  • Methods I to V below describe the synthesis of intermediates useful in the preparation of examples.
  • I. 6-Aminomethyl-isoquinolin-1-ylamine hydrochloride
  • Figure US20220153724A1-20220519-C00020
  • A. 2-((E)-2-Dimethylamino-vinyl)-terephthalonitrile ester
  • Methylterephthalonitrile (1.42 g, 9.99 mmol) and Bredereck's reagent (3.48 g, 19.98 mmol) were dissolved in DMF (15 mL). The reaction mixture was heated at 75° C. under nitrogen for 72 hrs after which time the solvent was removed in vacuo. Trituration with Pet Ether gave a bright yellow solid identified as 2-((E)-2-dimethylamino-vinyl)-terephthalonitrile ester (1.88 g, 0.95 mmol, 95%).
  • 1H NMR (CD3OD) δ: 3.20 (6H, s), 5.34 (1H, d, J=13.4 Hz), 7.21 (1H, dd, J=8.0 Hz, 1.4 Hz), 7.9 (1H, d, 13.4 Hz), 7.61 (1H, d, J=8.0 Hz), 7.94 (1H, d, J=1.2 Hz)
  • B. 1-Amino-2-(2,4-dimethoxy-benzyl)-1,2-dihydro-isoquinoline-6-carbonitrile
  • 2-((E)-2-Dimethylamino-vinyl)-terephthalonitrile ester (1.85 g, 9.38 mmol) was dissolved in 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone (5 mL) and 2,4-dimethoxybenzylamine (2.35 g, 14.07 mmol) was added. The reaction mixture was heated at 75° C. under nitrogen. After 3 hrs the reaction mixture was cooled and diethyl ether/Pet Ether (15:85) was added. The yellow solid was filtered off, dried in vacuo, and identified as 1-amino-2-(2,4-dimethoxy-benzyl)-1,2-dihydro-isoquinoline-6-carbonitrile (2.65 g, 8.38 mmol, 89%).
  • [M+H]+=320.0
  • 1H NMR (CD3OD) δ: 3.85 (3H, s), 3.92 (3H, s), 5.02 (2H, s), 6.39 (1H, d, J=7.4 Hz), 6.57 (1H, dd, J=8.4 Hz, 2.4 Hz), 6.66 (1H, d, 2.4 Hz), 7.18 (1H, d, 8.4 Hz), 7.24 (1H, d, 7.4 Hz), 7.72 (1H, dd, J=8.5 Hz, 1.4 Hz), 7.93 (1H, s), 8.45 (1H, d, J=8.5 Hz)
  • C. 1-Amino-isoquinoline-6-carbonitrile
  • 1-Amino-2-(2,4-dimethoxy-benzyl)-1,2-dihydro-isoquinoline-6-carbonitrile (1.6 g, 5.0 mmol) was dissolved in anisole (17 mL) and trifluoroacetic acid (20 mL). The reaction mixture was heated at 105° C. under nitrogen for 12 hrs after which time the reaction mixture was cooled, diethyl ether/Pet Ether (3:7) was added, the resultant solid was filtered off, dried in vacuo and identified as 1-amino-isoquinoline-6-carbonitrile (770 mg, 4.54 mmol, 91%).
  • [M+H]+=170.0
  • 1H NMR (CD3OD) δ: 7.23-7.25 (1H, d, J=6.9 Hz), 7.65 (1H, d, J=6.8 Hz), 8.11 (1H, dd, J=8.7 Hz, 1.6 Hz), 8.33 (1H, s), 8.45 (1H, d, J=8.7 Hz).
  • D. (1-Amino-isoquinolin-6-ylmethyl)-carbamic acid tert-butyl ester
  • 1-Amino-isoquinoline-6-carbonitrile (200 mg, 1.18 mmol) was dissolved in methanol (20 mL). This solution was cooled to 0° C. Nickel (II) chloride hexahydrate (28 mg, 0.12 mmol) and di-tertbutyl decarbonate (516 g, 2.36 mmol) were added followed by sodium borohydride (313 g, 8.22 mmol) portionwise. The reaction mixture was stirred at 0° C. to room temp for 3 days. The MeOH was removed by evaporation. The residue was dissolved in CHCl3 (70 ml), washed with sat NaHCO3 (1×30 mL), water (1×30 mL), brine (1×30 mL), dried (Na2SO4) and evaporated in vacuo to give a yellow oil identified as (1-amino-isoquinolin-6-ylmethyl)-carbamic acid tert-butyl ester (110 mg, 0.4 mmol, 34%).
  • [M+H]+=274.1.
  • E. 6-Aminomethyl-isoquinolin-1-ylamine Hydrochloride
  • (1-Amino-isoquinolin-6-ylmethyl)-carbamic acid tert-butyl ester (110 mg, 0.40 mmol) was dissolved in 4M HCl in dioxan (40 mL). After 18 hrs at room temperature the solvent was removed in vacuo to give a pale brown solid identified as 6-aminomethyl-isoquinolin-1-ylamine hydrochloride (67 mg, 0.39 mmol, 96%).
  • [M+H]+=174.3
  • II. C-(4,6-Dimethyl-1H-pyrrolo[2,3-b]pyridin-5-yl)-methylamine hydrochloride
  • Figure US20220153724A1-20220519-C00021
  • A. 1-tert-Butyl-4,6-dimethyl-1H-pyrrolo[2,3-b]pyridine-3-carbonitrile
  • A mixture of 5-amino-1-tert-butyl-1H-pyrrole-3-carbonitrile (2.6 g, 15.93 mmol) and pentane-2,4-dione (1.595 g, 15.93 mmol,) were dissolved in ethanol (80 mL) and concentrated HCl (0.2 mL) was added. The reaction mixture was heated at reflux for 18 hrs. The mixture was concentrated in vacuo and the crude purified by flash chromatography (silica) eluting in step gradients 95:5 to 9:1 Pet. Ether/ethyl acetate to give a yellow oil identified as 1-tert-butyl-4,6-dimethyl-1H-pyrrolo[2,3-b]pyridine-3-carbonitrile (3.05 g, 13 mmol, 84% yield).
  • [M+H]+=228.4
  • 1H NMR: (CDCl3), δ: 1.81 (9H, s), 2.58 (3H, s), 2.70 (3H, s), 6.84 (1H, s), 7.75 (1H, s)
  • B. 5-Bromo-1-tert-butyl-4,6-dimethyl-1H-pyrrolo[2,3-b]pyridine-3-carbonitrile
  • A solution of 1-tert-butyl-4,6-dimethyl-1H-pyrrolo[2,3-b]pyridine-3-carbonitrile (2.820 g, 12.4 mmol) in dichloromethane (50 mL) under an atmosphere of N2 was cooled to at least −5° C. (Ice/NaCl, 3:1). 1,3-Dibromo-5,5-dimethylhydantoin (1.774 g, 6.203 mmol) was then added and the reaction was stirred at −5° C. or below. After stirring at −5° C. further 1,3-dibromo-5,5-dimethylhydantoin (88 mg, 0.31 mmol) was added and stirring continued at −5° C. for a further 3 hrs The reaction mixture was quenched with Na2SO3 (aq) before warming the reaction to rt. 1M NaOH was added and the layers separated. The aqueous phase was extracted with dichloromethane (2×10 mL), the combined organic extracts were washed with brine (2×10 mL) and concentrated in vacuo. The crude product was purified by flash column chromatography on silica eluting with Pet. Ether/ethyl acetate 95:5. Fractions containing product were concentrated and the residue recrystalised from ethyl acetate/Pet. Ether to give a white solid identified as 5-bromo-1-tert-butyl-4,6-dimethyl-1H-pyrrolo[2,3-b]pyridine-3-carbonitrile (3.19 g, 10.42 mmol, 84% yield).
  • [M+H]+=305.7
  • 1H NMR: (CDCl3), δ: 1.81 (9H, s), 2.78 (3H, s), 2.82 (3H, s), 7.78 (1H, s)
  • C. 5-Bromo-4,6-dimethyl-1H-pyrrolo[2,3-b]pyridine-3-carbonitrile
  • 5-Bromo-1-(tert-butyl)-4,6-dimethyl-1H-pyrrolo[2,3-b]pyridine-3-carbonitrile (2.1 g, 6.87 mmol) was added portionwise to a stirring suspension of aluminum trichloride (2.75 g, 20.6 mmol) in chlorobenzene (160 mL). After the addition, the mixture was heated to 100° C. overnight forming a black gummy solution. After 24 hrs, the reaction was allowed to cool then poured into water (300 mL) and dichloromethane (300 mL). The mixture was treated cautiously with conc. HCl (135 mL) and the mixture stirred for 10 min then filtered, washing with water and dichloromethane. The resultant solid was dried under vacuum in the presence of CaCl2 over a weekend to give a pale grey solid identified as 5-bromo-4,6-dimethyl-1H-pyrrolo[2,3-b]pyridine-3-carbonitrile (1.56 mg, 6.16 mmol, 90% yield).
  • D. 5-Bromo-4,6-dimethyl-1H-pyrrolo[2,3-b]pyridine
  • A suspension of 5-bromo-4,6-dimethyl-1H-pyrrolo[2,3-b]pyridine-3-carbonitrile (1.56 g, 6.16 mmol) in conc. hydrochloric acid, 37% (235 mL) was heated at reflux overnight. Further conc. HCl (100 mL) was added and the reaction was heated at reflux for a further 20 hrs. The mixture was cooled and poured into ice-water (1 L) and neutralised with 2N NaOH until pH 9, forming a precipitate. This was filtered, washed with water then dried under vacuum in the presence of CaCl2 to give a grey solid identified as 5-bromo-4,6-dimethyl-1H-pyrrolo[2,3-b]pyridine (1.3 g, 5.72 mmol, 92% yield).
  • [M+H]+=225.1
  • 1H NMR: (CDCl3), δ: 2.66 (3H, s), 2.82 (3H, s), 6.49 (1H, dd, J=3.5, 2.1 Hz), 7.29 (1H, dd, J=3.4, 2.7 Hz), 11.14 (1H, br.s)
  • E. 4,6-Dimethyl-1H-pyrrolo[2,3-b]pyridine-5-carbonitrile
  • 5-Bromo-4,6-dimethyl-1H-pyrrolo[2,3-b]pyridine (1.3 g, 5.72 mmol) was dissolved in N,N-dimethylacetamide (20 mL). The solution was degassed with N2 before the addition of zinc powder (45 mg, 0.693 mmol), zinc acetate (127 mg, 0.693 mmol), 1,1′-bis(diphenylphosphino)ferrocene (128 mg, 0.23 mmol), Zn(CN)2 (339 mg, 2.888 mmol) and tris(dibenzylideneacetone)dipalladium(0) (106 mg, 0.116 mmol). The reaction was heated at 120° C. for 48 hrs. After cooling to rt the reaction was diluted with ethyl acetate and washed with 2M NH4OH and brine. Organic layer was dried over MgSO4 and filtered. After concentration in vacuo crude product was purified by flash column chromatography on silica eluting with 9:1, 8:2, 7:3, 1:1. (Pet. Ether/Ethyl acetate). Fractions were collected and concentrated in vacuo. The yellow solid was triturated in diethyl ether to give an off white solid identified as 4,6-dimethyl-1H-pyrrolo[2,3-b]pyridine-5-carbonitrile (660 mg, 3.83 mmol, 67% yield).
  • [M+H]+=172.1
  • 1H NMR: (CDCl3), δ: 2.76 (3H, s), 2.86 (3H, s), 6.59 (1H, dd, J=3.5, 2.0 Hz), 7.36 (1H, dd, J=3.5, 2.4 Hz), 10.86 (1H, br.s)
  • F. (4,6-Dimethyl-1H-pyrrolo[2,3-b]pyridin-5-ylmethyl)-carbamic acid tert-butyl ester
  • 4,6-Dimethyl-1H-pyrrolo[2,3-b]pyridine-5-carbonitrile (610 mg, 3.56 mmol) was dissolved in methanol (75 mL). This solution was cooled to 0° C. Nickel (II) chloride hexahydrate (85 mg, 0.36 mmol) and di-tertbutyl dicarbonate (1.56 g, 7.13 mmol) were added followed by sodium borohydride (943 mg, 24.94 mmol) portionwise. The reaction mixture was stirred at 0° C. to room temp for 18 hrs. The MeOH was removed by evaporation. The residue was dissolved in CHCl3 (70 mL), washed with sat NaHCO3 (1×30 mL), water (1×30 mL) and brine (1×30 mL), dried (Na2SO4) and evaporated in vacuo to give a yellow oil. Purified by flash chromatography, (silica), eluant 40% Pet. Ether, 60% EtOAc to give white solid identified as identified as (4,6-dimethyl-1H-pyrrolo[2,3-b]pyridin-5-ylmethyl)-carbamic acid tert-butyl ester (710 mg, 2.56 mmol, 72% yield).
  • [M+H]+=276.1
  • 1H NMR: (CDCl3), 1.49 (9H, s), 2.61 (3H, s), 2.71 (3H, s), 4.46 (1H, br.s), 4.51 (2H, d, J=4.4 Hz), 6.50 (1H, dd, J=3.5, 2.0 Hz), 7.25 (1H, dd, J=3.4, 2.5 Hz), 9.64 (1H, br.s).
  • G. C-(4,6-Dimethyl-1H-pyrrolo[2,3-b]pyridin-5-yl)-methylamine hydrochloride
  • 4,6-Dimethyl-1H-pyrrolo[2,3-b]pyridin-5-ylmethyl)-carbamic acid tert-butyl ester (710 mg, 2.56 mmol) was dissolved in 4M HCl in dioxane (10 mL). After 2 hrs at rt the solvent was removed in vacuo to give a yellow solid identified as C-(4,6-dimethyl-1H-pyrrolo[2,3-b]pyridin-5-yl)-methylamine hydrochloride (360 mg, 2.00 mmol, 80% yield).
  • [M+H]+=176.4
  • 1H NMR: (d6-DMSO), 2.53 (3H, s), 2.60 (3H, s), 3.94 (2H, s), 4.76 (2H, br.s), 6.43 (1H, d, J=2.3 Hz), 7.28 (1H, dd, J=3.2, 1.9 Hz), 11.32 (1H, br.s)
  • III. (4-Aminomethyl-3,5-dimethyl-benzyl)-carbamic acid tert-butyl ester
  • Figure US20220153724A1-20220519-C00022
  • A. (4-Bromo-2,6-dimethyl-benzyl)-carbamic acid tert-butyl ester
  • 4-Bromo-2,6-dimethylbenzonitrile (2.5 g, 11.9 mmol) was dissolved in methanol (150 mls). This solution was cooled to 0° C. Nickel (II) chloride hexahydrate (238 mg, 1.19 mmol) and di-tertbutyl dicarbonate (5.19 g, 23.80 mmol) were added followed by sodium borohydride (3.15 g, 83.30 mmol) portionwise. The reaction mixture was stirred at 0° C. to room temp for 3 days. The MeOH was removed by evaporation. The residue was dissolved in CHCl3 (70 mls), washed with sat NaHCO3 (1×30 mls), water (1×30 mls), brine (1×30 mls), dried (Na2SO4) and evaporated in vacuo to give a colourless oil identified as (4-bromo-2,6-dimethyl-benzyl)-carbamic acid tert-butyl ester (3.0 g, 9.55 mmol, 80%).
  • B. (4-Cyano-2,6-dimethyl-benzyl)-carbamic acid tert-butyl ester
  • To a degassed solution of (4-bromo-2,6-dimethyl-benzyl)-carbamic acid tert-butyl ester (3.0 g, 9.55 mmol) in N,N-dimethylacetamide (30 mls) was added zinc powder (75 mg, 1.15 mmol), zinc acetate (210 mg, 1.15 mmol), 1,1′-bis(diphenylphosphino) ferrocene (635 mg, 1.15 mmol), zinc cyanide (560 mg, 4.77 mmol), and tris(dibenzylideneacetone) dipalladium(0) (524 mg, 0.57 mmol). The reaction was heated at 120° C. for 4 hrs. After which the reaction mixture was cooled to room temperature and extra 1,1′-bis(diphenylphosphino) ferrocene (423 mg, 0.77 mmol) and tris(dibenzylideneacetone) dipalladium(0) (350 mg, 0.38 mmol) were added and the reaction was heated at 120° C. for a further 28 hrs. The reaction mixture was cooled to RT filtered through celite and washed with ethyl acetate (250 mls). The filtrate washed with sat NaHCO3 (1×30 mls), water (1×30 mls), brine (1×30 mls), dried (Na2SO4) and evaporated in vacuo. The residue was purified by flash chromatography, (silica), eluant 80% Pet. Ether (60-80° C.), 20% EtOAc to give an off white solid identified as (4-cyano-2,6-dimethyl-benzyl)-carbamic acid tert-butyl ester (630 mg, 2.42 mmol, 25%).
  • [M+H]+=261.06.
  • C. 4-Aminomethyl-3,5-dimethyl-benzonitrile Hydrochloride
  • (4-Cyano-2,6-dimethyl-benzyl)-carbamic acid tert-butyl ester (630 mg, 2.42 mmol) was dissolved in 4M HCl in dioxan (10 mls). After one hour at room temperature the solvent was removed in vacuo to give a pale brown solid identified as 4-aminomethyl-3,5-dimethyl-benzonitrile hydrochloride (470 mg, 2.39 mmol, 99%).
  • D. (4-Cyano-2,6-dimethyl-benzyl)-carbamic acid benzyl ester
  • 4-Aminomethyl-3,5-dimethyl-benzonitrile hydrochloride (470 mg, 2.39 mmol) was dissolved in dichloromethane (50 mls) and the solution was cooled to 0° C. N,N-Diisopropylethylamine (679 mg, 5.26 mmol) was added followed by benzyl chloroformate (489 mg, 2.87 mmol) was added. After one hour at 0° C. to room temperature the reaction mixture was diluted with chloroform, this solution was washed with sat NaHCO3 (1×30 mls), water (1×30 mls), brine (1×30 mls), dried (Na2SO4) and evaporated in vacuo to give a brown oil identified as (4-cyano-2,6-dimethyl-benzyl)-carbamic acid benzyl ester (700 mg, 2.38 mmol, 99%).
  • [M+H]+=295.04
  • E. [4-(tert-Butoxycarbonylamino-methyl)-2,6-dimethyl-benzyl]-carbamic acid benzyl ester
  • (4-Cyano-2,6-dimethyl-benzyl)-carbamic acid benzyl ester (700 mg, 2.38 mmol) was dissolved in methanol (75 mls). This solution was cooled to 0° C. Nickel (II) chloride hexahydrate (57 mg, 0.24 mmol) and di-tertbutyl decarbonate (1.04 g, 4.76 mmol) were added followed by sodium borohydride (630 mg, 16.65 mmol) portionwise. The reaction mixture was stirred at 0° C. to room temp for 3 days. The MeOH was removed by evaporation. The residue was dissolved in CHCl3 (70 ml), washed with sat NaHCO3 (1×30 mls), water (1×30 mls), brine (1×30 mls), dried (Na2SO4) and evaporated in vacuo. The residue was purified by flash chromatography, (silica), eluant 65% Pet. Ether (60-80° C.), 35% EtOAc to give an off white solid identified as [4-(tert-butoxycarbonylamino-methyl)-2,6-dimethyl-benzyl]-carbamic acid benzyl ester (600 mg, 1.51 mmol, 63%).
  • m/z=421.05 (M+Na).
  • F. (4-Aminomethyl-3,5-dimethyl-benzyl)-carbamic acid tert-butyl ester
  • [4-(tert-Butoxycarbonylamino-methyl)-2,6-dimethyl-benzyl]-carbamic acid benzyl ester (600 mg, 1.51 mmol) was dissolved in methanol (60 mls). This solution was hydrogenated over 10% Pd/C (100 mg) at atmospheric pressure and room temperature for one hour after which time the catalyst was filtered off and washed with methanol (30 mls), the combined filtrates were evaporated in vacuo to give a white solid identified as (4-aminomethyl-3,5-dimethyl-benzyl)-carbamic acid tert-butyl ester (350 mg, 1.32 mmol, 88%).
  • m/z=287.07 (M+Na).
  • IV. 5-((2-Phenylthiazol-4-yl)methyl)nicotinic acid
  • Figure US20220153724A1-20220519-C00023
  • A. Methyl 5-((2-phenylthiazol-4-yl)methyl)nicotinate
  • To a microwave vial was added: (5-(methoxycarbonyl)pyridin-3-yl)boronic acid (540 mg, 2.089 mmol), potassium carbonate (412 mg, 2.98 mmol), 4-(bromomethyl)-2-phenylthiazole (379 mg, 1.492 mmol), THE (3 mL) and water (0.3 mL). The mixture was degassed for 10 mins before Pd(Ph3)4 catalyst (172 mg, 0.149 mmol) was added. Heated in the CEM Discover microwave at 80° C./300 W for 20 mins. Reaction mixture was diluted with EtOAc (80 mL) and water (50 mL). The organic extracts were combined and washed with saturated brine (50 mL) and then dried over MgSO4, filtered and concentrated in vacuo. The crude product was purified by chromatography (20-60% EtOAc in isohexanes) to afford methyl 5-((2-phenylthiazol-4-yl)methyl)nicotinate (184 mg, 0.545 mmol, 36.6% yield) as a yellow viscous oil.
  • [M+H]+=311.1
  • B. 5-((2-Phenylthiazol-4-yl)methyl)nicotinic acid
  • To a stirred solution of methyl 5-((2-phenylthiazol-4-yl)methyl)nicotinate (189 mg, 0.609 mmol) in THE (4 mL) and MeOH (2 mL) was added NaOH 2M (913 μl, 1.827 mmol) and left at rt for 1.5 hrs. Reaction mixture was acidified by the addition of acetic acid (3 mL) and solvent removed under vacuum. Azeotroped with toluene (2×30 mL) to remove acetic acid to give 5-((2-phenylthiazol-4-yl)methyl)nicotinic acid (98 mg, 0.298 mmol, 48.9% yield) as an off-white solid.
  • [M+H]+=297.1
  • V. 1-(4-(Bromomethyl)benzyl)-4-methyl-1H-pyrazole
  • Figure US20220153724A1-20220519-C00024
  • A. (4-((4-Methyl-1H-pyrazol-1-yl)methyl)phenyl)methanol
  • To a round bottom flask under N2 was added: (4-(chloromethyl)phenyl)methanol (10.04 g, 60.9 mmol), 4-methyl-1H-pyrazole (5.05 ml, 60.9 mmol) and dry MeCN (100 mL). Next, potassium carbonate (9.26 g, 67.0 mmol) was added and the white suspension was heated to 60° C. for 18 h. The volatiles were removed in vacuo. The residue was partitioned between EtOAc (100 mL) and water (150 mL). Aqueous layer was neutralised to pH 7 with 1 N HCl and extracted with EtOAc (2×100 mL). The combined organic layers were washed with water (100 mL), brine (50 mL) then dried (MgSO4), filtered and concentrated in vacuo. The crude product was purified by chromatography (10-80% EtOAc in iso-hexanes) to afford
  • (4-((4-methyl-1H-pyrazol-1-yl)methyl)phenyl)methanol (2.9 g, 14.05 mmol, 23.07% yield) as a free-flowing oil that solidified on standing.
  • [M+H]+=203.2
  • B. 1-(4-(Bromomethyl)benzyl)-4-methyl-1H-pyrazole
  • To a flask under N2 was added: (4-((4-methyl-1H-pyrazol-1-yl)methyl)phenyl)methanol (250 mg, 1.236 mmol), triphenylphosphine (373 mg, 1.421 mmol) and dry DCM (5.0 mL). Cooled in an ice bath before perbromomethane (451 mg, 1.360 mmol) was added. Stirred at rt for 1 h. Concentrated in vacuo and purified by column chromatography (0-20% EtOAc in iso-hexanes) to afford 1-(4-(bromomethyl)benzyl)-4-methyl-1H-pyrazole (0.33 g, 1.182 mmol, 96% yield) as an oil that solidified on standing to a white solid.
  • [M+H]+=265.1/267.1
  • Example 1 N-[(1-Aminoisoguinolin-6-yl)methyl]-5-({4-[(4-methylpyrazol-1-yl)methyl]phenyl}methyl)pyridine-3-carboxamide
  • Figure US20220153724A1-20220519-C00025
  • A. 5-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-nicotinic acid methyl ester
  • To a dried flask under N2 was added: 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (0.441 g, 1.736 mmol), methyl 5-bromonicotinate (0.25 g, 1.157 mmol), potassium acetate (0.341 g, 3.47 mmol) and dry dioxane (10 mL). The reaction was degassed under nitrogen for 5 minutes before Pd(dppf)Cl2 (0.085 g, 0.116 mmol) was added to give a bright red solution. The reaction was heated to 80° C. for 16 h. The reaction mixture was partitioned between EtOAc (50 mL) and sat. aq. NH4Cl (30 mL). The aqueous layer was extracted with EtOAc (2×30 mL). The combined organic layers were washed with water (30 mL) then brine (20 mL) and dried (MgSO4), filtered and concentrated in vacuo to a brown oil which was used in the next step without further purification.
  • B. 5-[4-(4-Methyl-pyrazol-1-ylmethyl)-benzyl]-nicotinic acid methyl ester
  • To a microwave vial was added: methyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nicotinate (0.5 g, 0.760 mmol), potassium carbonate (0.150 g, 1.086 mmol), 1-(4-(bromomethyl)benzyl)-4-methyl-1H-pyrazole (0.144 g, 0.543 mmol), THE (10 mL) and water (1.0 mL). The solvent was degassed for 10 mins before Pd(PPh3)4 (0.063 g, 0.054 mmol) was added. The reaction was heated in a microwave at 80° C. for 20 mins, after which time LC-MS showed complete conversion to product. The reaction mixture was partitioned between EtOAc (50 mL) and water (20 mL). The organic layer was separated and washed with water (20 mL), brine (20 mL) then dried (MgSO4), filtered and concentrated in vacuo. The crude was purified by column chromatography (12 g RediSep, 0-80% EtOAc in iso-hexanes) and the product dried under vacuum (40° C.) for 1 h. 5-[4-(4-Methyl-pyrazol-1-ylmethyl)-benzyl]-nicotinic acid methyl ester was identified as a brown (151 mg, 0.460 mmol, 85% yield).
  • [M+H]+=322.2
  • C. 5-[4-(4-Methyl-pyrazol-1-ylmethyl)-benzyl]-nicotinic acid
  • To a round bottom flask was added: methyl 5-(4-((4-methyl-1H-pyrazol-1-yl)methyl)benzyl)nicotinate (0.19 g, 0.591 mmol), THE (7.0 mL), MeOH (3.0 mL) then lithium hydroxide (0.042 g, 1.774 mmol) in water (3.0 mL). The light brown solution heated to 65° C. for 1 hour. The reaction mixture was partitioned between EtOAc (20 mL) and water (20 mL). The aqueous layer was concentrated in vacuo to a black oil, acidified to pH 3 with 1 N HCl and extracted with EtOAc (4×30 mL). The combined organic layers were washed with water (25 mL), brine (20 mL), dried (Na2SO4), filtered then concentrated in vacuo to a pale yellow solid. The product was dried under vacuum (40° C.) overnight to afford 5-[4-(4-methyl-pyrazol-1-ylmethyl)-benzyl]-nicotinic acid as a pale yellow powder (0.145 g, 0.462 mmol, 78% yield).
  • [M+H]+=308.2
  • D. N-(1-Amino-isoquinolin-6-ylmethyl)-5-[4-(4-methyl-pyrazol-1-ylmethyl)-benzyl]-nicotinamide
  • To a vial was added: 5-(4-((4-methyl-1H-pyrazol-1-yl)methyl)benzyl)nicotinic acid (45 mg, 0.146 mmol), 6-(aminomethyl)isoquinolin-1-amine (26.6 mg, 0.154 mmol), HATU (61.2 mg, 0.161 mmol) and DCM (3.0 mL) to give an orange suspension. Next, DIPEA (77 μl, 0.439 mmol) was added to give a pale orange solution. Stirred at room temperature for 2 hrs over which time an orange precipitate formed. LC-MS showed complete conversion to desired product. The reaction mixture was partitioned between DCM (10 mL) and sat. NH4Cl (20 mL). MeOH (1 mL) was added to aid solubility. The aqueous layer was extracted with DCM (10 mL) and the combined organic layers were washed with water (10 mL) and dried (Na2SO4), filtered and concentrated in vacuo. The crude product was purified by chromatography on RediSep (12 g column, 0-10% MeOH (1% NH3) in DCM). The product was dried in a dessicator overnight to afford an off-white solid (57 mg, 0.121 mmol, 82% yield) identified as N-(1-amino-isoquinolin-6-ylmethyl)-5-[4-(4-methyl-pyrazol-1-ylmethyl)-benzyl]-nicotinamide
  • [M+H]=463.3
  • 1H NMR (d6-DMSO) δ: 1.97 (3H, s), 4.01 (2H, s), 4.60 (2H, d, J=5.9 Hz), 5.18 (2H, s), 6.71 (2H, br. s), 6.86 (1H, d, J=5.6 Hz), 7.13 (2H, d, J=8.2 Hz), 7.21-7.24 (3H, m), 7.40 (1H, dd, J=1.7, 8.6 Hz), 7.50 (1H, t, J=0.8 Hz), 7.56 (1H, br. s), 7.76 (1H, d, J=5.8 Hz), 8.06 (1H, t, J=2.1 Hz), 8.13 (1H, d, J=8.6 Hz), 8.63 (1H, d, J=2.1 Hz), 8.91 (1H, d, J=2.1 Hz), 9.27 (1H, t, J=5.9 Hz).
  • Example 2 5-({4-[(4-Methylpyrazol-1-yl)methyl]phenyl}methyl)-N-{7H-pyrrolo[2,3-b]pyridin-3-ylmethyl}pyridine-3-carboxamide
  • Figure US20220153724A1-20220519-C00026
  • To a vial was added: 5-(4-((4-methyl-1H-pyrazol-1-yl)methyl)benzyl)nicotinic acid (48 mg, 0.156 mmol), (1H-pyrrolo[2,3-b]pyridin-5-yl)methanamine hydrochloride (28.7 mg, 0.156 mmol), HATU (65.3 mg, 0.172 mmol) and DCM (3.0 mL) to give a white suspension. Next, DIPEA (82 μl, 0.469 mmol) was added to give a colourless solution. The reaction was stirred at rt for 2 hrs over which time the colour changed to orange. LC-MS showed complete conversion to desired product. The reaction was partitioned between DCM (10 mL) and sat. NH4Cl (20 mL). MeOH (1 mL) was added to aid solubility. The aqueous layer was extracted with DCM (10 mL) before the combined organic layers were washed with water (10 mL) and dried (Na2SO4), filtered and concentrated in vacuo. The crude product was purified by chromatography on RediSep (12 g column, 0-10% MeOH (NH3) in DCM) and dried in a dessicator overnight. The product was isolated as a white solid and identified as 5-[4-(4-methyl-pyrazol-1-ylmethyl)-benzyl]-N-(1H-pyrrolo[2,3-b]pyridin-5-ylmethyl)-nicotinamide (57 mg, 0.128 mmol, 82% yield).
  • m/z 437.3 (M+H)+(ES+) at 1.49
  • NMR (d6-DMSO) δ: 1.97 (3H, s), 3.99 (2H, s), 4.55 (2H, d, J=5.8 Hz), 5.17 (2H, s), 6.41 (1H, dd, J=1.9, 3.4 Hz), 7.12 (2H, d, J=8.2 Hz), 7.21-7.23 (3H, m), 7.44 (1H, dd, J=2.7, 3.2 Hz), 7.50 (1H, t, J=0.7 Hz), 7.88 (1H, d, J=1.6 Hz), 8.03 (1H, t, J=2.1 Hz), 8.20 (1H, d, J=2.0 Hz), 8.60 (1H, d, J=2.0 Hz), 8.87 (1H, d, J=2.0 Hz), 9.17 (1H, t, J=5.6 Hz), 11.57 (1H, s).
  • Example 3 N-[(1-Aminoisoguinolin-6-yl)methyl]-4-({4-[(4-methylpyrazol-1-yl)methyl]phenyl}methyl)pyridine-2-carboxamide
  • Figure US20220153724A1-20220519-C00027
  • A. 4-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine-2-carboxylic acid methyl ester
  • To an oven dried flask was added: methyl 4-bromopicolinate (0.5 g, 2.314 mmol), 4,4,4′,4′,5,5,5′,5′-octamethyl-2,2′-bi(1,3,2-dioxaborolane) (0.705 g, 2.78 mmol), potassium acetate (0.681 g, 6.94 mmol) and dry dioxane (20 mL). The solvent was degassed (N2) for 10 minutes before PdCl2(dppf) (0.085 g, 0.116 mmol) was added. The dark red solution was heated to 80° C. (base-plate temp.) for 20 h. The reaction mixture was partitioned between EtOAc (100 mL) and sat. aq. NH4Cl (50 mL). The aqueous layer was extracted with EtOAc (2×30 mL). The combined organic layers were washed with water (3×30 mL) then brine (20 mL), dried (MgSO4) and filtered. Concentration in vacuo afforded a brown oil identified as 4-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-pyridine-2-carboxylic acid methyl ester (1.0 g, 2.281 mmol, 99% yield). The product was used in subsequent reaction without further purification
  • [M+H]+=182.1
  • B. 4-[4-(4-Methyl-pyrazol-1-ylmethyl)-benzyl]-pyridine-2-carboxylic acid methyl ester
  • To a microwave vial was added: methyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)picolinate (0.77 g, 1.756 mmol), potassium carbonate (0.347 g, 2.509 mmol), 1-(4-(bromomethyl)benzyl)-4-methyl-1H-pyrazole (0.333 g, 1.254 mmol), THE (10.0 mL) and water (0.5 mL). The solvent was degassed with N2 for 10 mins before Pd(PPh3)4 (0.072 g, 0.063 mmol) was added. The reaction was heated to 80° C. in the microwave for 35 minutes. The reaction mixture was partitioned between EtOAc (50 mL) and water (30 mL). The aqueous layer was extracted with EtOAc (2×30 mL). The combined organic layers were washed with water (3×20 mL) then brine (20 mL) and dried (MgSO4), filtered and concentrated in vacuo. The crude material was purified by column chromatography (40 g RediSep, dry loaded. 10-100% EtOAc in iso-hexanes). The product eluted at 100% EtOAc to afford a brown solid identified as 4-[4-(4-methyl-pyrazol-1-ylmethyl)-benzyl]-pyridine-2-carboxylic acid methyl ester (0.111 g, 0.321 mmol, 25.6% yield)
  • [M+H]+=322.2
  • C. 4-[4-(4-Methyl-pyrazol-1-ylmethyl)-benzyl]-pyridine-2-carboxylic acid
  • To a round bottom flask was added: methyl 4-(4-((4-methyl-1H-pyrazol-1-yl)methyl)benzyl)picolinate (0.19 g, 0.503 mmol), THE (6.0 mL), MeOH (2.0 mL) and lithium hydroxide (0.036 g, 1.508 mmol) as a solution in water (2.0 mL). The resulting brown solution was heated to 65° C. for 1 hour. LC-MS showed complete conversion to desired acid. The reaction mixture was concentrated in vacuo then partitioned between EtOAc (20 mL) and water (20 mL). The aqueous was acidified to pH 4-5 with 1 N HCl and the layer was extracted with EtOAc (3×30 mL). The product was sparingly soluble. The combined organic layers were washed with water (25 mL) then concentrated in vacuo to afford a white solid. The solid was azeotroped with toluene (2×20 mL) to remove water. The product was dried in a vacuum oven (40° C.) over the weekend to afford an off white solid identified as 4-[4-(4-methyl-pyrazol-1-ylmethyl)-benzyl]-pyridine-2-carboxylic acid (0.3 g, 0.436 mmol, 87% yield).
  • [M+H]+=308.2
  • D. 4-[4-(4-Methyl-pyrazol-1-ylmethyl)-benzyl]-pyridine-2-carboxylic acid (1-amino-isoquinolin-6-ylmethyl)-amide
  • To a vial was added: 4-(4-((4-methyl-1H-pyrazol-1-yl)methyl)benzyl)picolinic acid (50 mg, 0.065 mmol), 6-(aminomethyl)isoquinolin-1-amine (11.27 mg, 0.065 mmol), HATU (27.2 mg, 0.072 mmol) and dry DCM (2.5 mL). Next, DIPEA (114 μl, 0.651 mmol) was added and the reaction was stirred at room temperature. LC-MS after 1 hour showed complete conversion to the desired product. The reaction mixture was partitioned between DCM (20 mL) and sat. aq. NH4Cl (20 mL). The aqueous layer was extracted with DCM (2×20 mL). The combined organic layers were washed with water (20 mL), then brine (20 mL) and dried (Na2SO4), filtered then concentrated in vacuo. The crude was purified by column chromatography (4 g RediSep, dry loaded, 0-10% MeOH (1% NH3) in DCM). The pure product was dried in a vacuum oven overnight to afford a colourless glass identified as 4-[4-(4-methyl-pyrazol-1-ylmethyl)-benzyl]-pyridine-2-carboxylic acid (1-amino-isoquinolin-6-ylmethyl)-amide (7.7 mg, 0.013 mmol, 20.47% yield).
  • [M+H]+=463.2
  • NMR (d6-DMSO) δ: 1.98 (3H, s), 4.05 (2H, s), 4.60 (2H, d, J=6.4 Hz), 5.19 (2H, s), 5.75 (2H, s), 6.90 (1H, d, J=6.0 Hz), 7.13-7.15 (2H, m), 7.22-7.25 (2H, m), 7.47 (1H, dd, J=1.7, 5.0 Hz), 7.50-7.51 (1H, m), 7.57 (1H, br. s), 7.71 (1H, d, J=6.0 Hz), 7.87-7.88 (1H, m), 8.17 (1H, d, J=8.6 Hz), 8.54 (1H, dd, J=0.6, 4.9 Hz), 9.43 (1H, t, J=6.6 Hz)
  • Example 4 4-({4-[(4-Methylpyrazol-1-yl)methyl]phenyl}methyl)-N-{7H-pyrrolo[2,3-b]pyridin-3-ylmethyl}pyridine-2-carboxamide
  • Figure US20220153724A1-20220519-C00028
  • To a vial was added: 4-(4-((4-methyl-1H-pyrazol-1-yl)methyl)benzyl)picolinic acid, HCl (100 mg, 0.145 mmol), (1H-pyrrolo[2,3-b]pyridin-5-yl)methanamine hydrochloride (28.0 mg, 0.153 mmol), HATU (60.8 mg, 0.160 mmol) and dry DCM (2.5 mL). Next, DIPEA (254 μl, 1.454 mmol) was added and the reaction mixture was stirred at room temperature overnight. LC-MS showed conversion to desired compound, so the reaction mixture was partitioned between DCM (10 mL) and sat. NH4Cl (10 mL). The aqueous layer was extracted with DCM (3×10 mL). The combined organic layers were washed with water (20 mL), brine (10 mL) then dried (Na2SO4), filtered and concentrated in vacuo to an oil. The crude was purified by column chromatography (4 g RediSep, Dry loaded, 0-10% MeOH (1% NH3) in DCM). The product was dried overnight under vacuum (40° C.) to afford a glassy solid identified as 4-[4-(4-methyl-pyrazol-1-ylmethyl)-benzyl]-pyridine-2-carboxylic acid (1H-pyrrolo[2,3-b]pyridin-5-ylmethyl)-amide (11 mg, 0.020 mmol, 13.86% yield).
  • [M+H]+=437.20
  • NMR (d6-DMSO) δ: 1.98 (3H, s), 4.03 (2H, s), 4.54 (2H, d, J=6.4 Hz), 5.19 (2H, s), 6.39 (1H, dd, J=1.9, 3.4 Hz), 7.12-7.14 (2H, m), 7.21-7.23 (3H, m), 7.41-7.44 (2H, m), 7.51-7.52 (1H, m), 7.86-7.88 (2H, m), 8.20 (1H, d, J=2.0 Hz), 8.50 (1H, dd, J=0.6, 4.9 Hz), 9.30 (1H, t, J=6.4 Hz), 11.54 (1H, br. s)
  • Example 5 N-[(1-Aminoisoguinolin-6-yl)methyl]-6-oxo-1-({4-[(2-oxopyridin-1-yl)methyl]phenyl}methyl)pyridine-3-carboxamide
  • Figure US20220153724A1-20220519-C00029
  • A. 6-Oxo-1-[4-(2-oxo-2H-pyridin-1-ylmethyl)-benzyl]-1,6-dihydro-pyridine-3-carboxylic acid methyl ester
  • To a round bottom flask under an atmosphere of nitrogen was added: methyl 1-(4-(chloromethyl)benzyl)-6-oxo-1,6-dihydropyridine-3-carboxylate (0.45 g, 1.234 mmol), pyridin-2-ol (0.129 g, 1.357 mmol), potassium carbonate (0.341 g, 2.468 mmol) and dry MeCN (8 mL) to give a golden orange coloured reaction mixture. The reaction was heated to 88° C. (base plate temp.) overnight. Upon completion, the reaction mixture was partitioned between EtOAc (50 mL) and water (30 mL). The aqueous layer was extracted with EtOAc (2×20 mL). The combined organic layers were washed with water (20 mL), brine (20 mL), dried (Na2SO4), filtered and concentrated in vacuo. The crude product was purified by chromatography on RediSep (12 g column, 0-10% EtOH in EtOAc), to afford a powdery white solid identified as 6-oxo-1-[4-(2-oxo-2H-pyridin-1-ylmethyl)-benzyl]-1,6-dihydro-pyridine-3-carboxylic acid methyl ester (0.37 g, 1.035 mmol, 84% yield).
  • [M+H]+=351.2 (M+H)+
  • B. 6-Oxo-1-[4-(2-oxo-2H-pyridin-1-ylmethyl)-benzyl]-1,6-dihydro-pyridine-3-carboxylic acid
  • To a round bottom flask was added: methyl 6-oxo-1-(4-((2-oxopyridin-1(2H)-yl)methyl)benzyl)-1,6-dihydropyridine-3-carboxylate (0.37 g, 1.035 mmol), THE (1.0 mL), MeOH (1.0 mL) and lithium hydroxide (0.124 g, 5.17 mmol) as a solution in water (2.0 mL). The reaction was heated to 65° C. for 16 hrs after which time LC-MS showed complete conversion to desired compound. The volatiles were removed in vacuo and the residue was partitioned between water (20 mL) and EtOAc (20 mL). The aqueous layer was concentrated in vacuo to dryness. The residue was redissolved in water (3.0 mL) and acidified to pH 3-4 with 1 N HCl to precipitate the product. The suspension was stirred at room temperature for 30 minutes before the solid was collected by filtration, washing with water (2×3.0 mL) and dried by suction for 15 minutes then in a vacuum oven (40° C.) over the weekend. The product was isolated as a white solid identified as 6-oxo-1-[4-(2-oxo-2H-pyridin-1-ylmethyl)-benzyl]-1,6-dihydro-pyridine-3-carboxylic acid (0.28 g, 0.816 mmol, 79% yield).
  • [M+H]+=337.1 (M+H)+
  • C. 6-Oxo-1-[4-(2-oxo-2H-pyridin-1-ylmethyl)-benzyl]-1,6-dihydro-pyridine-3-carboxylic acid (1-amino-isoquinolin-6-ylmethyl)-amide
  • To a vial was added: 6-oxo-1-(4-((2-oxopyridin-1(2H)-yl)methyl)benzyl)-1,6-dihydropyridine-3-carboxylic acid (50 mg, 0.149 mmol), 6-(aminomethyl)isoquinolin-1-amine dihydrochloride (40.2 mg, 0.164 mmol), 2-(3H-[1,2,3]triazolo[4,5-b]pyridin-3-yl)-1,1,3,3-tetramethylisouronium hexafluorophosphate(V) (65.0 mg, 0.171 mmol) and dry DCM (2.5 mL) to give a white suspension. Next, N-ethyl-N-isopropylpropan-2-amine (104 μl, 0.595 mmol) was added and the resulting suspension was stirred at room temperature for 2 hrs. LC-MS showed conversion to product. The reaction mixture was partitioned between DCM (30 mL) and sat. aq. NH4Cl (20 mL). Extracted with DCM/IPA (20:1, 2×20 mL). The combined organic layers were washed with water (20 mL) and brine (20 mL) then dried (Na2SO4), filtered and concentrated in vacuo. The crude was purified by column chromatography (12 g RediSep, dry loaded, 0-10% MeOH (1% NH3) in DCM). The product was dried under vacuum (40° C.) for 6 hrs to afford a pale yellow solid identified as 6-oxo-1-[4-(2-oxo-2H-pyridin-1-ylmethyl)-benzyl]-1,6-dihydro-pyridine-3-carboxylic acid (1-amino-isoquinolin-6-ylmethyl)-amide (32 mg, 0.062 mmol, 42.0% yield).
  • [M+H]=492.3
  • NMR (d6-DMSO) δ: 4.56 (2H, d, J=5.8 Hz), 5.06 (2H, s), 5.13 (2H, s), 6.21 (1H, dt, 1.3, 6.7 Hz), 6.38 (1H, br d, J=9.1 Hz), 6.46 (1H, d, J=9.5 Hz), 6.87-6.89 (3H, m), 7.24-7.29 (4H, m), 7.38-7.42 (2H, m), 7.55 (1h, br s), 7.74-7.76 (2H, m), 7.93 (1H, dd, J=2.6, 9.5 Hz), 8.15 (1H, d, J=8.6 Hz), 8.48 (1H, d, J=2.5 Hz), 8.89 (1H, t, J=5.8 Hz)
  • Example 6 6-Oxo-1-({4-[(2-oxopyridin-1-yl)methyl]phenyl}methyl)-N-{7H-pyrrolo[2,3-b]pyridin-3-ylmethyl}pyridine-3-carboxamide
  • Figure US20220153724A1-20220519-C00030
  • To a vial was added: 6-oxo-1-(4-((2-oxopyridin-1(2H)-yl)methyl)benzyl)-1,6-dihydropyridine-3-carboxylic acid (75 mg, 0.223 mmol), (1H-pyrrolo[2,3-b]pyridin-5-yl)methanamine (36.1 mg, 0.245 mmol), 2-(3H-[1,2,3]triazolo[4,5-b]pyridin-3-yl)-1,1,3,3-tetramethylisouronium hexafluorophosphate(V) (98 mg, 0.256 mmol) and dry DCM (3.0 mL) to give a white suspension. Next, N-ethyl-N-isopropylpropan-2-amine (97 μl, 0.557 mmol) was added to give a pale yellow opaque solution. The reaction was stirred at room temperature for 2 hrs. Further (1H-pyrrolo[2,3-b]pyridin-5-yl)methanamine (9.85 mg, 0.067 mmol) was added and stirring continued for 1 h and a tan coloured suspension formed. The reaction mixture was diluted with MeOH (5.0 mL) and isolated by SCX capture and release. The crude material was then purified by column chromatography RediSep (12 g silica, dry loaded, 0-10% MeOH (1% NH3) in DCM). The product was dried in a vacuum oven (40° C.) over the weekend to afford a pale yellow solid identified as 6-oxo-1-[4-(2-oxo-2H-pyridin-1-ylmethyl)-benzyl]-1,6-dihydro-pyridine-3-carboxylic acid (1H-pyrrolo[2,3-b]pyridin-5-ylmethyl)-amide (80 mg, 0.167 mmol, 74.8% yield).
  • [M+H]+=466.2
  • NMR (d6-DMSO) δ: 4.50 (2H, d, J=5.6 Hz), 5.05 (2H, s), 5.11 (2H, s), 6.21 (1H, dt, J=1.4, 6.7 Hz), 6.37-6.41 (2H, m), 6.43 (1H, d, 9.5 Hz), 7.23-7.27 (4H, m), 7.40 (1H, dq, J=2.1, 9.2 Hz), 7.44 (1H, t, J=2.8 Hz), 7.74 (1H, dd, J=1.6, 6.8 Hz), 7.87 (1H, d, J=1.6 Hz), 7.90 (1H, dd, J=2.6, 9.5 Hz), 8.19 (1H, d, J=2.0 Hz), 8.44 (1H, d, J=2.5 Hz), 8.76 (1H, t, J=5.6 Hz), 11.58 (1H, s).
  • Example 7 N-((1-Aminoisoguinolin-6-yl)methyl)-5-(hydroxy(4-((4-methyl-1H-pyrazol-1-yl)methyl)phenyl)methyl)nicotinamide
  • Figure US20220153724A1-20220519-C00031
  • A. 4-((4-Methyl-1H-pyrazol-1-yl)methyl)benzaldehyde
  • A solution of (4-((4-methyl-1H-pyrazol-1-yl)methyl)phenyl)methanol (2.54 g, 12.56 mmol) in DCM (85 mL) was treated with manganese(IV) oxide, activated (21.84 g, 251 mmol) and the mixture allowed to stir at ambient temperature overnight. The mixture was filtered through a pad of Celite, washing with DCM (200 mL), then concentrated under vacuum to afford 4-((4-methyl-1H-pyrazol-1-yl)methyl)benzaldehyde (2.04 g, 9.68 mmol, 77% yield) as a clear oil.
  • [M+H]+=201.2 (M+H)+
  • B. (5-Bromopyridin-3-yl)(4-((4-methyl-1H-pyrazol-1-yl)methyl)phenyl)methanol
  • Butyllithium, 2.5M in hexanes (4.08 ml, 10.19 mmol) was added dropwise to a cooled solution (−78° C.) of 3,5-dibromopyridine (2.390 g, 10.09 mmol) in dry ether (50 mL), keeping the temperature below −70° C. The mixture was stirred for 15 minutes and a solution of 4-((4-methyl-1H-pyrazol-1-yl)methyl)benzaldehyde (2.04 g, 10.19 mmol) in dry ether (5 mL) added dropwise, keeping the temperature below −70° C. The mixture was stirred for 15 minutes, and then allowed to warm to ambient temperature over 1 hour. The mixture was allowed to stir at ambient temperature overnight. The mixture was cooled in an ice-bath and quenched by the addition of saturated aqueous NH4Cl solution (50 mL). The layers were separated and the aqueous phase extracted with EtOAc (3×50 mL). The combined organics were dried (MgSO4), filtered and concentrated. The crude material was purified by flash chromatography loading in DCM, eluting with a gradient of 0 to 100% EtOAc/Iso-Hexanes to afford (5-bromopyridin-3-yl)(4-((4-methyl-1H-pyrazol-1-yl)methyl)phenyl)methanol (1.30 g, 3.27 mmol, 32.4% yield) as a sticky yellow gum on drying.
  • [M+H]+=358.1/360.1 (M+H)+
  • C. (5-Bromopyridin-3-yl)(4-((4-methyl-1H-pyrazol-1-yl)methyl)phenyl)methanone
  • A solution of (5-bromopyridin-3-yl)(4-((4-methyl-1H-pyrazol-1-yl)methyl)phenyl)methanol (1.08 g, 2.261 mmol) in chloroform (35 mL) was treated with manganese(IV) oxide, activated (3.93 g, 45.2 mmol) and the mixture allowed to stir at ambient temperature overnight. The mixture was filtered through Celite and concentrated under vacuum. The crude residue was purified by flash chromatography loading in DCM, eluting with a gradient of 0 to 70% EtOAc/Iso-Hexanes to afford the title compound.
  • [M+H]+=356.1/358.1 (M+H)+
  • D. 5-(4-((4-Methyl-1H-pyrazol-1-yl)methyl)benzoyl)nicotinonitrile
  • A stirred solution of (5-bromopyridin-3-yl)(4-((4-methyl-1H-pyrazol-1-yl)methyl)phenyl)methanone (0.500 g, 1.404 mmol) in anhydrous DMA (9 mL) was treated with dicyanozinc (0.379 g, 3.23 mmol) and de-gassed by bubbling through with N2. Pd(PPh3)4 (0.081 g, 0.070 mmol) was charged and the mixture further de-gassed with N2, then heated to 110° C. (Drysyn bath temperature) for 5 hrs then at ambient temperature overnight. The mixture was degassed with N2 for 10 minutes, then further Pd(PPh3)4 (0.081 g, 0.070 mmol) added and the reaction heated at 110° C. for 2 hrs. The mixture was cooled and treated with further dicyanozinc (0.379 g, 3.23 mmol) and Pd(PPh3)4 (0.081 g, 0.070 mmol), then stirred and heated at 110° C. for 3 hrs and to 120° C. for 2 hrs, then at ambient temperature over a weekend. The mixture was diluted with DCM (50 mL) and filtered through Celite, washing with DCM (100 mL). Solvents were removed under vacuum and the residue purified by flash chromatography loading in DCM, eluting with a gradient of 0 to 50% EtOAc/DCM to afford the title compound (353 mg).
  • [M+H]+=303.2 (M+H)+
  • E. 5-(4-((4-Methyl-1H-pyrazol-1-yl)methyl)benzoyl)nicotinic acid
  • A solution of 5-(4-((4-methyl-1H-pyrazol-1-yl)methyl)benzoyl)nicotinonitrile (248 mg, 0.574 mmol) in THE (3 mL) and water (1 mL) was treated with lithium hydroxide (68.8 mg, 2.87 mmol) and the mixture heated to 80° C. for 21 hrs. Organic solvents were removed under vacuum and the residue partitioned between EtOAc (15 mL) and water (10 mL, at pH 10). The aqueous was extracted with further EtOAc (10 mL) and the aqueous layer adjusted to pH 3 with 1M HCl. The aqueous was re-extracted with EtOAc (3×15 mL) and the combined organics dried (MgSO4), filtered and concentrated to afford 5-(4-((4-methyl-1H-pyrazol-1-yl)methyl)benzoyl)nicotinic acid (138 mg, 0.408 mmol, 71.1% yield) as a yellow foam.
  • [M+H]+=322.1 (M+H)+
  • F. N-((1-Aminoisoquinolin-6-yl)methyl)-5-(4-((4-methyl-1H-pyrazol-1-yl)methyl)benzoyl)nicotinamide
  • A scintillation vial was charged with 5-(4-((4-methyl-1H-pyrazol-1-yl)methyl)benzoyl)nicotinic acid (134 mg, 0.417 mmol), 6-(aminomethyl)isoquinolin-1-amine dihydrochloride (113 mg, 0.459 mmol), 2-(3H-[1,2,3]triazolo[4,5-b]pyridin-3-yl)-1,1,3,3-tetramethylisouronium hexafluorophosphate(V) (174 mg, 0.459 mmol), dry DCM (3 mL) and DMF (0.3 ml). Next, N,N-diisopropylethylamine (291 μl, 1.668 mmol) was added and the mixture allowed to stir at ambient temperature overnight. The reaction mixture was concentrated under vacuum and purified by SCX (˜3.5 g), washing with MeOH, eluting with 1% NH3/MeOH. The crude residue was purified by flash chromatography, loading in DCM (trace MeOH), eluting with a gradient of 0 to 7% MeOH/DCM (containing 0.3% NH3). Product containing fractions were combined and re-purified by flash chromatography loading in DCM, eluting with a gradient of 0 to 30% EtOH/EtOAc. The cleanest fractions were combined to afford N-((1-aminoisoquinolin-6-yl)methyl)-5-(4-((4-methyl-1H-pyrazol-1-yl)methyl)benzoyl)nicotinamide (34 mg, 0.070 mmol, 16.77% yield) as a pale yellow powder.
  • [M+H]+=477.3 (M+H)+
  • G. N-((1-Aminoisoquinolin-6-yl)methyl)-5-(hydroxy(4-((4-methyl-1H-pyrazol-1-yl)methyl)phenyl)methyl)nicotinamide
  • A solution of N-((1-aminoisoquinolin-6-yl)methyl)-5-(4-((4-methyl-1H-pyrazol-1-yl)methyl)benzoyl)nicotinamide (50 mg, 0.105 mmol) in anhydrous MeOH (1.5 mL) was treated with sodium borohydride (11.91 mg, 0.315 mmol) and the mixture allowed to stir at ambient temperature for 2.5 hrs. LCMS indicated clean conversion to the desired compound. Solvents were removed under vacuum and the residue partitioned between EtOAc (30 mL) and water (20 mL). The aqueous layer was extracted with EtOAc (30 mL) and the combined organics washed with brine (20 mL), dried (MgSO4), filtered and concentrated. The crude product was purified by flash chromatography loading in DCM (trace MeOH), eluting with a gradient of 0 to 10% MeOH/DCM (containing 0.3% NH3) to afford N-((1-aminoisoquinolin-6-yl)methyl)-5-(hydroxy(4-((4-methyl-1H-pyrazol-1-yl)methyl)phenyl)methyl)nicotinamide (34 mg, 0.070 mmol, 67.0% yield) as a clear glass.
  • [M+H]+=479.3
  • NMR (d6-DMSO) δ: 1.97 (3H, s), 4.61 (2H, d, J=5.8 Hz), 5.19 (2H, s), 5.83 (1H, d, J=3.9 Hz), 6.19 (1H, d, J=3.9 Hz), 6.72 (2H, s), 6.86 (1H, d, J=5.8 Hz), 7.13-7.19 (2H, m), 7.21 (1H, s), 7.33-7.44 (3H, m), 7.51 (1H, s), 7.56 (1H, s), 7.76 (1H, d, J=5.8 Hz), 8.14 (1H, d, J=8.6 Hz), 8.20 (1H, t, J=2.1 Hz), 8.70 (1H, d, J=2.1 Hz), 8.93 (1H, d, J=2.1 Hz), 9.32 (1H, t, J=5.9 Hz).
  • Example 44 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({4-[(2-fluorophenyl)methyl]piperazin-1-yl}methyl)pyridine-3-carboxamide
  • Figure US20220153724A1-20220519-C00032
  • A. tert-Butyl 4-((5-(methoxycarbonyl)pyridin-3-yl)methyl)piperazine-1-carboxylate
  • Methyl 5-bromonicotinate (2.95 g, 13.67 mmol), diacetoxypalladium (0.153 g, 0.683 mmol), potassium (4-boc-piperazin-1-yl)methyltrifluoroborate (5.022 g, 16.40 mmol), cesium carbonate (11.13 g, 34.2 mmol), and X-Phos (0.652 g, 1.367 mmol) dissolved in THE (40 mL) and water (10 mL) added. The resulting mixture was purged with N2 for 10 minutes, stirred and heated at 70° C. o/n. The mixture was diluted with water (10 mL) and extracted with EtOAc (3×30 mL). The combined organics were dried (MgSO4), filtered and concentrated. The crude was purified by flash chromatography (EtOAc in i-Hex 0-100%, containing 1% Et3N) to afford tert-butyl 4-((5-(methoxycarbonyl)pyridin-3-yl)methyl)piperazine-1-carboxylate (4.81 g, 13.62 mmol, 100% yield) as a light brown solid.
  • [M+H]+=336.1
  • B. Methyl 5-(piperazin-1-ylmethyl)nicotinate
  • To a stirred solution of tert-butyl 4-((5-(methoxycarbonyl)pyridin-3-yl)methyl)piperazine-1-carboxylate (4.81 g, 14.34 mmol) in DCM (10 mL) at rt was added trifluoroacetic acid (10 mL, 130 mmol). The resulting solution was stirred at rt for 5 h. Reaction mixture was diluted with toluene (20 mL) and loaded on SCX (28 g), washing with MeOH and eluting with 1% NH3 in MeOH. Solvent evaporated under reduced pressure to give methyl 5-(piperazin-1-ylmethyl)nicotinate (3.55 g, 14.34 mmol, 100% yield) as a pale yellow solid.
  • [M+H]+=236.0 (M+H)+
  • C. Methyl 5-((4-(2-fluorobenzyl)piperazin-1-yl)methyl)nicotinate
  • To a stirred solution of 2-fluorobenzaldehyde (79 mg, 0.638 mmol) and methyl 5-(piperazin-1-ylmethyl)nicotinate (150 mg, 0.638 mmol) in DCM (4 mL) was added a drop of acetic acid and left at RT for 1 hour. To this was added methyl 5-(piperazin-1-ylmethyl)nicotinate (150 mg, 0.638 mmol) and left at rt overnight. Reaction mixture was diluted with DCM (5 mL) and NaHCO3(aq) (5 mL) added. Layers separated and aqueous extracted with DCM (2×5 mL); combined organics dried (Na2SO4), filtered and evaporated under reduced pressure to give methyl 5-((4-(2-fluorobenzyl)piperazin-1-yl)methyl)nicotinate (160 mg, 0.410 mmol, 64.3% yield) as a pale yellow thick oil.
  • [M+H]+=344.1
  • D. 5-((4-(2-Fluorobenzyl)piperazin-1-yl)methyl)nicotinic acid
  • To a stirred solution of methyl 5-((4-(2-fluorobenzyl)piperazin-1-yl)methyl)nicotinate (147 mg, 0.428 mmol) in THE (2 mL) and water (1 mL) at rt was added lithium hydroxide (51.3 mg, 2.140 mmol). The resulting solution was stirred at rt overnight. Reaction mixture was loaded on SCX (2 g), washing with MeOH and eluting with 1% NH3 in MeOH. Solvent evaporated under reduced pressure to give 5-((4-(2-fluorobenzyl)piperazin-1-yl)methyl)nicotinic acid (130 mg, 0.395 mmol, 92% yield) as a colourless sticky oil.
  • [M+H]+=330.0
  • E. N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({4-[(2-fluorophenyl)methyl]piperazin-1-yl}methyl)pyridine-3-carboxamide
  • To a stirred solution of 5-((4-(2-fluorobenzyl)piperazin-1-yl)methyl)nicotinic acid (118 mg, 0.358 mmol), 6-(aminomethyl)isoquinolin-1-amine dihydrochloride (97 mg, 0.394 mmol), HATU (163 mg, 0.430 mmol) in DCM (2 mL) was added diisopropylethylamine (250 μl, 1.433 mmol). The resulting mixture was stirred at rt overnight. Reaction mixture was diluted with EtOAc (20 mL) and washed with 1M NaOH(aq) (2×10 mL). Organics dried (Na2SO4), filtered and evaporated under reduced pressure to give crude compound which was purified by flash chromatography (EtOH in EtOAc 0-50%), twice to afford N-((1-aminoisoquinolin-6-yl)methyl)-5-((4-(2-fluorobenzyl)piperazin-1-yl)methyl)nicotinamide (39.3 mg, 0.079 mmol, 22.07% yield) as a pale yellow solid.
  • m/z 485.1 (M+H)+
  • NMR (d6-DMSO) δ: 2.20-2.47 (8H, m), 3.51 (2H, s), 3.55 (2H, s), 4.63 (2H, d, J=5.8 Hz), 6.72 (2H, s), 6.87 (1H, d, J=5.6 Hz), 7.10-7.19 (2H, m), 7.26-7.34 (1H, m), 7.35-7.45 (2H, m), 7.58 (1H, s), 7.76 (1H, d, J=5.8 Hz), 8.12-8.17 (2H, m), 8.61 (1H, d, J=2.0 Hz), 8.97 (1H, d, J=2.1 Hz), 9.32 (1H, t, J=5.9 Hz).
  • Example 77 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(pyrrolidin-1-yl)pyridin-4-yl]methyl}pyridine-3-carboxamide
  • Figure US20220153724A1-20220519-C00033
  • A. 4-(Chloromethyl)-2-fluoropyridine
  • A 500 ml flask was charged with 2-fluoro-4-methylpyridine (25 g, 225 mmol), N-chlorosuccinimide (45.1 g, 337 mmol), benzoyl peroxide, Luperox (1.453 g, 4.50 mmol), acetic acid (1 mL, 17.47 mmol) and acetonitrile (132 mL, 2527 mmol). The reaction mixture was heated to gentle reflux giving a pale yellow solution which was left to reflux for 5 hours then at ambient temperature overnight. The mixture was partitioned between water (20 mL) and EtOAc (30 mL). Brine (30 mL) was added to form two layers. These were separated and the aqueous re-extracted with further EtOAc (2×30 mL). The combined organics were washed with brine (30 mL), dried (MgSO4), filtered and concentrated. On cooling a precipitate was filtered, washing with DCM (40 mL) then concentrated under vacuum again. The residue was re-purified by flash chromatography loading in a minimum quantity of DCM, eluting with a gradient of 0 to 15% EtOAc/Iso-Hexanes (holding at 6% to elute product) to afford 4-(chloromethyl)-2-fluoropyridine (11.8 g, 78 mmol, 34.6% yield) as a clear oil.
  • B. Methyl 5-((2-fluoropyridin-4-yl)methyl)nicotinate
  • A solution of 4-(chloromethyl)-2-fluoropyridine (2.012 g, 13.82 mmol) and methyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)nicotinate (4.00 g, 15.20 mmol) in THE (40 mL) and water (1 mL) was treated with potassium carbonate (3.82 g, 27.6 mmol) and the mixture degassed with N2 for 5 minutes. Pd(Ph3)4 catalyst (1.597 g, 1.382 mmol) was added and the mixture briefly degassed again before heating to 90° C. (Drysyn bath temperature) for 2 hours. The reaction was partitioned between EtOAc (150 mL) and water (75 mL). The aqueous layer was extracted with further EtOAc (2×70 mL) and the combined organics washed with brine (75 mL), dried (MgSO4), filtered and concentrated. The crude material was purified by flash chromatography loading in DCM, eluting with a gradient of 10 to 70% EtOAc/Iso-Hexanes (holding at 55% to elute product) to afford methyl 5-((2-fluoropyridin-4-yl)methyl)nicotinate (1.99 g, 8.00 mmol, 57.9% yield) as a yellow gum
  • m/z=247.1 (M+H)+
  • C. Ammonium 5-((2-fluoropyridin-4-yl)methyl)nicotinate
  • A solution of methyl 5-((2-fluoropyridin-4-yl)methyl)nicotinate (2.45 g, 9.95 mmol) in MeOH (25 mL) and THE (60 mL) was treated with water (20 mL) and lithium hydroxide (0.286 g, 11.94 mmol), then stirred at ambient temperature overnight. Further lithium hydroxide (0.286 g, 11.94 mmol) was added and the mixture stirred at ambient temperature overnight. The majority of the organic solvents were removed under vacuum and water (25 mL) added. The pH was adjusted to ˜5 and the mixture purified directly by SCX (45 g), washing with MeOH, eluting with 1% NH3/MeOH. The isolated product was triturated with DCM (30 mL) and filtered to afford ammonium 5-((2-fluoropyridin-4-yl)methyl)nicotinate (1.85 g, 7.35 mmol, 73.9% yield) as a white powder.
  • m/z=233.1 (M+H)+
  • D. N-((1-Aminoisoquinolin-6-yl)methyl)-5-((2-fluoropyridin-4-yl)methyl)nicotinamide
  • A mixture of ammonium 5-((2-fluoropyridin-4-yl)methyl)nicotinate (1.40 g, 5.62 mmol), 6-(aminomethyl)isoquinolin-1-amine dihydrochloride (1.521 g, 6.18 mmol) and 2-(3H-[1,2,3]triazolo[4,5-b]pyridin-3-yl)-1,1,3,3-tetramethylisouronium hexafluorophosphate(V) (2.349 g, 6.18 mmol) in a mixture of anhydrous DCM (20 mL) and anhydrous DMF (2 mL) was treated with N,N-diisopropylethylamine (5.28 ml, 30.3 mmol) and the resultant suspension sonicated briefly before stirring at ambient temperature overnight. The solvents were removed under vacuum. The residue was partitioned between EtOAc (50 mL, trace MeOH for solubility) and saturated aqueous NH4Cl (50 mL). The aqueous layer was extracted with further EtOAc (6×50 mL) and the combined organics dried (MgSO4), filtered and concentrated. The crude material was purified by flash chromatography loading in DCM (trace MeOH), eluting with a gradient of 0 to 30% EtOH/EtOAc to afford N-((1-aminoisoquinolin-6-yl)methyl)-5-((2-fluoropyridin-4-yl)methyl)nicotinamideas a pale yellow powder.
  • m/z=388.2 (M+H)+
  • E. N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(pyrrolidin-1-yl)pyridin-4-yl]methyl}pyridine-3-carboxamide
  • A mixture of N-((1-aminoisoquinolin-6-yl)methyl)-5-((2-fluoropyridin-4-yl)methyl)nicotinamide (100 mg, 0.258 mmol) and pyrrolidine (424 μl, 5.16 mmol) in anhydrous dioxanes (200 μL) were heated together at 90° C. for 5 hours. Solvents were removed under vacuum and the residue purified by flash chromatography loading in DCM, eluting with a gradient of 0 to 7.5% MeOH/DCM (containing 0.3% NH3). The compound was dissolved in a minimum quantity of DCM and Et2O added to precipitate. This mixture was sonicated and stirred for ˜30 minutes, then filtered to afford N-((1-aminoisoquinolin-6-yl)methyl)-5-((2-(pyrrolidin-1-yl)pyridin-4-yl)methyl)nicotinamide (73 mg, 0.165 mmol, 63.8% yield) as a white powder.
  • (M+H)+=439.1
  • NMR (d6-DMSO) δ: 1.90 (4H, m), 3.33 (4H, m), 3.93 (2H, s), 4.61 (2H, d, J=5.9 Hz), 6.37 (1H, s), 6.41 (1H, dd, J=5.1, 1.4 Hz), 6.74 (2H, s), 6.86 (1H, d, J=5.9 Hz), 7.40 (1H, dd, J=8.6, 1.7 Hz), 7.56 (1H, s), 7.76 (1H, d, J=5.8 Hz), 7.94 (1H, d, J=5.1 Hz), 8.10 (1H, t, J=2.2 Hz), 8.13 (1H, d, J=8.6 Hz), 8.67 (1H, d, J=2.1 Hz), 8.94 (1H, d, J=2.1 Hz), 9.32 (1H, t, J=5.9 Hz).
  • The compounds in the following tables were synthesised as described for Examples 1-7 and 44 and 77.
  • TABLE 1
    Figure US20220153724A1-20220519-C00034
    Free
    Base
    Example Number G MW [M + H]+
    8
    Figure US20220153724A1-20220519-C00035
    463.5 464.3
    9
    Figure US20220153724A1-20220519-C00036
    463.5 464.3
    10
    Figure US20220153724A1-20220519-C00037
    434.5 435.1
    11
    Figure US20220153724A1-20220519-C00038
    463.5 464.3
  • TABLE 2
    Figure US20220153724A1-20220519-C00039
    Example Number A Free Base MW [M + H]+
    12
    Figure US20220153724A1-20220519-C00040
    464.6 465.3
    13
    Figure US20220153724A1-20220519-C00041
    435.5 436
  • TABLE 3
    Figure US20220153724A1-20220519-C00042
    Example Number A Free Base MW [M + H]+
    14
    Figure US20220153724A1-20220519-C00043
    467.5 468.2
    15
    Figure US20220153724A1-20220519-C00044
    478.6 479.3
    16
    Figure US20220153724A1-20220519-C00045
    449.5 449.6
  • TABLE 4
    Figure US20220153724A1-20220519-C00046
    Example Number R6 R5 Free Base MW [M + H]+
    17 H H 433.5 434.2
    18 OCH3 H 463.5 463.7
    19 H OCH3 463.5 464.2
    20 H OH 449.5 450.3
    21 NHCH3 H 462.55 463.1
    22 H CH3 447.5 448.1
  • TABLE 5
    Figure US20220153724A1-20220519-C00047
    Free
    Example Base
    Number A MW [M + H]+
    23
    Figure US20220153724A1-20220519-C00048
    368.4 369.2
    24
    Figure US20220153724A1-20220519-C00049
    451.5 452.2
    25
    Figure US20220153724A1-20220519-C00050
    398.5 398.8
    26
    Figure US20220153724A1-20220519-C00051
    398.5 398.7
    27
    Figure US20220153724A1-20220519-C00052
    434.5 434.8
    28
    Figure US20220153724A1-20220519-C00053
    419.5 419.6
    29
    Figure US20220153724A1-20220519-C00054
    398.5 398.8
    30
    Figure US20220153724A1-20220519-C00055
    434.5 435.3
    31
    Figure US20220153724A1-20220519-C00056
    419.5 420.2
    32
    Figure US20220153724A1-20220519-C00057
    448.5 449.1
    33
    Figure US20220153724A1-20220519-C00058
    492.6 493.1
    34
    Figure US20220153724A1-20220519-C00059
    442.5 443.1
    35
    Figure US20220153724A1-20220519-C00060
    516.6 517.2
    36
    Figure US20220153724A1-20220519-C00061
    480.6 481.3
    37
    Figure US20220153724A1-20220519-C00062
    469.6 470.3
    38
    Figure US20220153724A1-20220519-C00063
    439.51 440
    39
    Figure US20220153724A1-20220519-C00064
    452.6 453.1
    40
    Figure US20220153724A1-20220519-C00065
    416.5 417.1
  • TABLE 6
    Figure US20220153724A1-20220519-C00066
    Example Number A Free Base MW [M + H]+
    41
    Figure US20220153724A1-20220519-C00067
    466.6 467.3
    42
    Figure US20220153724A1-20220519-C00068
    496.6 497.2
    43
    Figure US20220153724A1-20220519-C00069
    458.6 459.1
    45
    Figure US20220153724A1-20220519-C00070
    496.6 497.1
    46
    Figure US20220153724A1-20220519-C00071
    484.6 485.1
    47
    Figure US20220153724A1-20220519-C00072
    470.6 469.2
    48
    Figure US20220153724A1-20220519-C00073
    484.6 485.3
    49
    Figure US20220153724A1-20220519-C00074
    496.6 495.1
    50
    Figure US20220153724A1-20220519-C00075
    494.6 495.3
    51
    Figure US20220153724A1-20220519-C00076
    480.6 481.1
    52
    Figure US20220153724A1-20220519-C00077
    434.5 435.1
  • TABLE 7
    Figure US20220153724A1-20220519-C00078
    Example Free Base
    Number A MW [M + H]+
    53
    Figure US20220153724A1-20220519-C00079
    452.5 452.6
    54 F 387.4 388.2
    55
    Figure US20220153724A1-20220519-C00080
    438.5 438.8
    56
    Figure US20220153724A1-20220519-C00081
    452.6 453.3
    57
    Figure US20220153724A1-20220519-C00082
    474.5 475
    58
    Figure US20220153724A1-20220519-C00083
    452.6 453.1
    59
    Figure US20220153724A1-20220519-C00084
    454.5 455
    60
    Figure US20220153724A1-20220519-C00085
    456.5 457.1
    61
    Figure US20220153724A1-20220519-C00086
    452.6 453.1
    62
    Figure US20220153724A1-20220519-C00087
    468.6 469.1
    63
    Figure US20220153724A1-20220519-C00088
    454.5 455.1
    64
    Figure US20220153724A1-20220519-C00089
    467.6 468.1
    65
    Figure US20220153724A1-20220519-C00090
    466.6 467.1
    66
    Figure US20220153724A1-20220519-C00091
    440.5 441.1
    67
    Figure US20220153724A1-20220519-C00092
    468.6 469.1
    68
    Figure US20220153724A1-20220519-C00093
    481.6 482.2
    69
    Figure US20220153724A1-20220519-C00094
    481.6 482.2
    70
    Figure US20220153724A1-20220519-C00095
    427.5 428.1
    71
    Figure US20220153724A1-20220519-C00096
    468.6 469.1
    72
    Figure US20220153724A1-20220519-C00097
    510.6 511.1
    73
    Figure US20220153724A1-20220519-C00098
    440.5 441.2
    74
    Figure US20220153724A1-20220519-C00099
    466.6 467.1
    75
    Figure US20220153724A1-20220519-C00100
    482.5 483.1
  • TABLE 8
    Figure US20220153724A1-20220519-C00101
    Example Number A Free Base MW [M + H]+
    76
    Figure US20220153724A1-20220519-C00102
    452.5 453.3
    78
    Figure US20220153724A1-20220519-C00103
    452.6 453.3
    79
    Figure US20220153724A1-20220519-C00104
    452.6 453.1
    80
    Figure US20220153724A1-20220519-C00105
    474.5 475.1
    81
    Figure US20220153724A1-20220519-C00106
    454.5 455.1
    82
    Figure US20220153724A1-20220519-C00107
    456.5 457.1
    83
    Figure US20220153724A1-20220519-C00108
    452.6 453.1
    84
    Figure US20220153724A1-20220519-C00109
    466.6 467.2
    85
    Figure US20220153724A1-20220519-C00110
    454.5 455.1
    86
    Figure US20220153724A1-20220519-C00111
    467.6 468.1
    87
    Figure US20220153724A1-20220519-C00112
    440.5 441.2
    88
    Figure US20220153724A1-20220519-C00113
    468.6 469.2
    89
    Figure US20220153724A1-20220519-C00114
    468.6 469.1
    90
    Figure US20220153724A1-20220519-C00115
    481.6 482.2
    91
    Figure US20220153724A1-20220519-C00116
    481.6 482.2
    92
    Figure US20220153724A1-20220519-C00117
    468.6 469.1
  • TABLE 9
    Figure US20220153724A1-20220519-C00118
    Example Number R1 R2 R3 W Free Base MW [M + H]+
    93 H H CH3 CH 439.6 440.0
    94 CH3 H CH3 CH 453.6 454.1
    95 CH3 H CH3 N 454.6 455.1
    96 H F H CH 443.5 444.1
  • TABLE 10
    Example No Name
    8 N-[(1-Aminoisoquinolin-6-yl)methyl]-6-({4-[(4-methylpyrazol-1-
    yl)methyl]phenyl}methyl)pyrimidine-4-carboxamide
    9 N-[(1-Aminoisoquinolin-6-yl)methyl]-6-({4-[(4-methylpyrazol-1-
    yl)methyl]phenyl}methyl)pyrazine-2-carboxamide
    10 N-[(1-Aminoisoquinolin-6-yl)methyl]-6-[(2-methylquinolin-6-
    yl)methyl]pyrazine-2-carboxamide
    11 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({4-[(4-methylpyrazol-1-
    yl)methyl]phenyl}methyl)pyridazine-3-carboxamide
    12 N-({2,4-Dimethyl-7H-pyrrolo[2,3-b]pyridin-3-yl}methyl)-5-({4-[(4-
    methylpyrazol-1-yl)methyl]phenyl}methyl)pyridine-3-carboxamide
    13 N-({2,4-Dimethyl-7H-pyrrolo[2,3-b]pyridin-3-yl}methyl)-5-[(2-
    methylquinolin-6-yl)methyl]pyridine-3-carboxamide
    14 N-[(1-Aminoisoquinolin-6-yl)methyl]-6-oxo-1-[(2-phenyl-1,3-thiazol-4-
    yl)methyl]pyridine-3-carboxamide
    15 N-[(1-Aminoisoquinolin-6-yl)methyl]-1-({4-[(4-methylpyrazol-1-
    yl)methyl]phenyl}methyl)-6-oxopyridine-3-carboxamide
    16 N-[(1-Aminoisoquinolin-6-yl)methyl]-1-[(2-methylquinolin-6-
    yl)methyl]-6-oxopyridine-3-carboxamide
    17 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-[(2-methylquinolin-6-
    yl)methyl]pyridine-3-carboxamide
    18 N-[(1-Aminoisoquinolin-6-yl)methyl]-6-methoxy-5-[(2-methylquinolin-
    6-yl)methyl]pyridine-3-carboxamide
    19 N-[(1-Aminoisoquinolin-6-yl)methyl]-2-methoxy-5-[(2-methylquinolin-
    6-yl)methyl]pyridine-3-carboxamide
    20 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-[(2-methylquinolin-6-
    yl)methyl]-2-oxo-1H-pyridine-3-carboxamide
    21 N-[(1-Aminoisoquinolin-6-yl)methyl]-6-(methylamino)-5-[(2-
    methylquinolin-6-yl)methyl]pyridine-3-carboxamide
    22 N-[(1-Aminoisoquinolin-6-yl)methyl]-2-methyl-5-[(2-methylquinolin-6-
    yl)methyl]pyridine-3-carboxamide
    23 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-benzylpyridine-3-carboxamide
    24 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-[(2-phenyl-1,3-thiazol-4-
    yl)methyl]pyridine-3-carboxamide
    25 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-[(3-
    methoxyphenyl)methyl]pyridine-3-carboxamide
    26 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-[(4-
    methoxyphenyl)methyl]pyridine-3-carboxamide
    27 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[4-(pyrazol-1-
    yl)phenyl]methyl}pyridine-3-carboxamide
    28 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-(isoquinolin-7-
    ylmethyl)pyridine-3-carboxamide
    29 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-[(2-
    methoxyphenyl)methyl]pyridine-3-carboxamide
    30 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[3-(pyrazol-1-
    yl)phenyl]methyl}pyridine-3-carboxamide
    31 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-(quinolin-6-ylmethyl)pyridine-
    3-carboxamide
    32 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[3-(pyrazol-1-
    ylmethyl)phenyl]methyl}pyridine-3-carboxamide
    33 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({3-methoxy-4-[(4-
    methylpyrazol-1-yl)methyl]phenyl}methyl)pyridine-3-carboxamide
    34 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[4-(2-
    methoxyethoxy)phenyl]methyl}pyridine-3-carboxamide
    35 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[4-(benzenesulfonyl)piperazin-
    1-yl]methyl}pyridine-3-carboxamide
    36 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-[(4-benzoylpiperazin-1-
    yl)methyl]pyridine-3-carboxamide
    37 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({4-[(4-methylpyrazol-1-
    yl)methyl]piperidin-1-yl}methyl)pyridine-3-carboxamide
    38 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-[(4-methyl-2,3-dihydro-1,4-
    benzoxazin-7-yl)methyl]pyridine-3-carboxamide
    39 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-[(4-phenylpiperazin-1-
    yl)methyl]pyridine-3-carboxamide
    40 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(4-methylpyrazol-1-
    yl)ethoxy]methyl}pyridine-3-carboxamide
    41 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-[(4-benzylpiperazin-1-
    yl)methyl]pyridine-3-carboxamide
    42 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({4-[(2-
    methoxyphenyl)methyl]piperazin-1-yl}methyl)pyridine-3-carboxamide
    43 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[4-
    (cyclopentylmethyl)piperazin-1-yl]methyl}pyridine-3-carboxamide
    45 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({4-[(4-
    methoxyphenyl)methyl]piperazin-1-yl}methyl)pyridine-3-carboxamide
    46 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({4-[(3-
    fluorophenyl)methyl]piperazin-1-yl}methyl)pyridine-3-carboxamide
    47 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({4-[(1-methylpyrazol-4-
    yl)methyl]piperazin-1-yl}methyl)pyridine-3-carboxamide
    48 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({4-[(4-
    fluorophenyl)methyl]piperazin-1-yl}methyl)pyridine-3-carboxamide
    49 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({4-[(3-
    methoxyphenyl)methyl]piperazin-1-yl}methyl)pyridine-3-carboxamide
    50 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[4-(3-phenylpropyl)piperazin-
    1-yl]methyl}pyridine-3-carboxamide
    51 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[4-(2-phenylethyl)piperazin-1-
    yl]methyl}pyridine-3-carboxamide
    52 {4-[(5-{[(1-Aminoisoquinolin-6-yl)methyl]carbamoyl}pyridin-3-
    yl)methyl]piperazin-1-yl}acetic acid
    53 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(2-oxopyrrolidin-1-
    yl)pyridin-3-yl]methyl}pyridine-3-carboxamide
    54 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-[(6-fluoropyridin-3-
    yl)methyl]pyridine-3-carboxamide
    55 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(pyrrolidin-1-yl)pyridin-3-
    yl]methyl}pyridine-3-carboxamide
    56 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(piperidin-1-yl)pyridin-3-
    yl]methyl}pyridine-3-carboxamide
    57 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(3,3-difluoropyrrolidin-1-
    yl)pyridin-3-yl]methyl}pyridine-3-carboxamide
    58 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(2-methylpyrrolidin-1-
    yl)pyridin-3-yl]methyl}pyridine-3-carboxamide
    59 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(3-hydroxypyrrolidin-1-
    yl)pyridin-3-yl]methyl}pyridine-3-carboxamide
    60 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(3-fluoropyrrolidin-1-
    yl)pyridin-3-yl]methyl}pyridine-3-carboxamide
    61 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(3-methylpyrrolidin-1-
    yl)pyridin-3-yl]methyl}pyridine-3-carboxamide
    62 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(3-methoxypyrrolidin-1-
    yl)pyridin-3-yl]methyl}pyridine-3-carboxamide
    63 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(morpholin-4-yl)pyridin-3-
    yl]methyl}pyridine-3-carboxamide
    64 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(4-methylpiperazin-1-
    yl)pyridin-3-yl]methyl}pyridine-3-carboxamide
    65 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(2,2-dimethylpyrrolidin-1-
    yl)pyridin-3-yl]methyl}pyridine-3-carboxamide
    66 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(diethylamino)pyridin-3-
    yl]methyl}pyridine-3-carboxamide
    67 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({6-[2-
    (hydroxymethyl)pyrrolidin-1-yl]pyridin-3-yl}methyl)pyridine-3-
    carboxamide
    68 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({6-[3-
    (dimethylamino)pyrrolidin-1-yl]pyridin-3-yl}methyl)pyridine-3-
    carboxamide
    69 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({6-[3-
    (dimethylamino)pyrrolidin-1-yl]pyridin-3-yl}methyl)pyridine-3-
    carboxamide
    70 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-[(6-isopropoxypyridin-3-
    yl)methyl]pyridine-3-carboxamide
    71 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({6-[3-
    (hydroxymethyl)pyrrolidin-1-yl]pyridin-3-yl}methyl)pyridine-3-
    carboxamide
    72 Ethyl 1-{5-[(5-{[(1-aminoisoquinolin-6-yl)methyl]carbamoyl}pyridin-3-
    yl)methyl]pyridin-2-yl}pyrrolidine-3-carboxylate
    73 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({6-
    [isopropyl(methyl)amino]pyridin-3-yl}methyl)pyridine-3-carboxamide
    74 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[6-(3,3-dimethylpyrrolidin-1-
    yl)pyridin-3-yl]methyl}pyridine-3-carboxamide
    75 1-{5-[(5-{[(1-Aminoisoquinolin-6-yl)methyl]carbamoyl}pyridin-3-
    yl)methyl]pyridin-2-yl}pyrrolidine-3-carboxylic acid
    76 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(2-oxopyrrolidin-1-
    yl)pyridin-4-yl]methyl}pyridine-3-carboxamide
    78 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(piperidin-1-yl)pyridin-4-
    yl]methyl}pyridine-3-carboxamide
    79 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(2-methylpyrrolidin-1-
    yl)pyridin-4-yl]methyl}pyridine-3-carboxamide
    80 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(3,3-difluoropyrrolidin-1-
    yl)pyridin-4-yl]methyl}pyridine-3-carboxamide
    81 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(3-hydroxypyrrolidin-1-
    yl)pyridin-4-yl]methyl}pyridine-3-carboxamide
    82 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(3-fluoropyrrolidin-1-
    yl)pyridin-4-yl]methyl}pyridine-3-carboxamide
    83 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(3-methylpyrrolidin-1-
    yl)pyridin-4-yl]methyl}pyridine-3-carboxamide
    84 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(2,2-dimethylpyrrolidin-1-
    yl)pyridin-4-yl]methyl}pyridine-3-carboxamide
    85 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(morpholin-4-yl)pyridin-4-
    yl]methyl}pyridine-3-carboxamide
    86 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(4-methylpiperazin-1-
    yl)pyridin-4-yl]methyl}pyridine-3-carboxamide
    87 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(diethylamino)pyridin-4-
    yl]methyl}pyridine-3-carboxamide
    88 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-{[2-(3-methoxypyrrolidin-1-
    yl)pyridin-4-yl]methyl}pyridine-3-carboxamide
    89 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({2-[2-
    (hydroxymethyl)pyrrolidin-1-yl]pyridin-4-yl}methyl)pyridine-3-
    carboxamide
    90 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({2-[3-
    (dimethylamino)pyrrolidin-1-yl]pyridin-4-yl}methyl)pyridine-3-
    carboxamide
    91 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({2-[3-
    (dimethylamino)pyrrolidin-1-yl]pyridin-4-yl}methyl)pyridine-3-
    carboxamide
    92 N-[(1-Aminoisoquinolin-6-yl)methyl]-5-({2-[3-
    (hydroxymethyl)pyrrolidin-1-yl]pyridin-4-yl}methyl)pyridine-3-
    carboxamide
    93 N-{[4-(Aminomethyl)-2-methylphenyl]methyl}-5-({4-[(4-methylpyrazol-
    1-yl)methyl]phenyl}methyl)pyridine-3-carboxamide
    94 N-{[4-(Aminomethyl)-2,6-dimethylphenyl]methyl}-5-({4-[(4-
    methylpyrazol-1-yl)methyl]phenyl}methyl)pyridine-3-carboxamide
    95 N-{[4-(Aminomethyl)-2,6-dimethylphenyl]methyl}-6-({4-[(4-
    methylpyrazol-1-yl)methyl]phenyl}methyl)pyrazine-2-carboxamide
    96 N-{[4-(Aminomethyl)-3-fluorophenyl]methyl}-5-({4-[(4-methylpyrazol-
    1-yl)methyl]phenyl}methyl)pyridine-3-carboxamide
  • TABLE 11
    1H NMR data of examples (solvent d6-DMSO)
    Example No Chemical Shift (ppm)
    8 4.22 (2H, s), 4.60 (2H, d, J = 6.3 Hz), 6.72 (2H, s), 6.83 (1H, dd, J = 5.9, 0.8 Hz),
    7.22-7.28 (1H, m), 7.31-7.34 (4H, m), 7.40 (1H, dd, J = 8.6, 1.7 Hz), 7.50-7.55
    (1H, m), 7.74 (1H, d, J = 5.8 Hz), 7.92 (1H, d, J = 1.3 Hz), 8.11 (1H, d, J = 8.6 Hz),
    9.24 (1H, d, J = 1.3 Hz), 9.68 (1H, t, J = 6.4 Hz).
    9 1.96 (3H, s), 4.21 (2H, s), 4.65 (2H, d, J = 6.3 Hz), 5.18 (2H, s), 6.78 (2H, s),
    6.85 (1H, d, J = 5.9 Hz), 7.14 (2H, d, J = 8.1 Hz), 7.21 (1H, s), 7.35 (2H, d, J =
    8.1 Hz), 7.43 (1H, dd, J = 8.7, 1.7 Hz), 7.51 (1H, s), 7.56 (1H, s), 7.76 (1H, d, J =
    5.8 Hz), 8.14 (1H, d, J = 8.6 Hz), 8.80 (1H, s), 9.04 (1H, s), 9.46 (1H, t, J = 6.3 Hz)
    10 2.63 (3H, s), 4.44 (2H, s), 4.66 (2H, d, J = 6.3 Hz), 6.71 (2H, s), 6.81 (1H, d, J =
    5.9 Hz), 7.37 (1H, d, J = 8.4 Hz), 7.44 (1H, dd, J = 1.7, 8.6 Hz), 7.56 (1H, s), 7.72-
    7.80 (2H, m), 7.83-7.90 (2H, m), 8.14 (2H, overlapping d, J = 7.4, 8.6 Hz), 8.88
    (1H, s), 9.07 (1H, s), 9.47 (1H, t, J = 6.3 Hz).
    11 1.98 (3H, s), 4.10 (2H, s), 4.64 (2H, d, J = 6.3 Hz), 5.20 (2H, s), 6.70 (2H, s),
    6.84 (1H, d, J = 5.2 Hz), 7.15 (2H, d, J = 8.1 Hz), 7.22 (1H, s), 7.28 (2H, d, J =
    8.1 Hz), 7.42 (1H, dd, J = 8.7, 1.7 Hz), 7.49-7.55 (2H, m), 7.74 (1H, d, J =
    5.8 Hz), 8.00 (1H, d, J = 2.1 Hz), 8.12 (1H, d, J = 8.6 Hz), 9.36 (1H, d, J = 2.2 Hz),
    9.90 (1H, t, J = 6.3 Hz).
    12 1.97 (3H, s), 2.52 (3H, s), 2.57 (3H, s), 3.97 (2H, s), 4.59 (2H, d), 5.17 (2H, s),
    6.44 (1H, dd, J = 3.5, 1.9 Hz), 7.09-7.15 (2H, m), 7.17-7.24 (3H, m), 7.29 (1H,
    dd, J = 3.5, 2.4 Hz), 7.47-7.53 (1H, m), 8.00 (1H, t, J = 2.2 Hz), 8.56 (1H, d, J =
    2.1 Hz), 8.61 (1H, t, J = 4.7 Hz), 8.81 (1H, d, J = 2.1 Hz), 11.33 (1H, s).
    13 2.51 (3H, s), 2.56 (3H, s), 2.62 (3H, s), 4.19 (2H, s), 4.58 (2H, d, J = 4.6 Hz),
    6.43 (1H, dd, J = 1.9, 3.5 Hz), 7.29 (1H, dd, J = 2.4, 3.5 Hz), 7.38 (1H, d, J =
    8.4 Hz), 7.59 (1H, dd, J = 2.0, 8.7 Hz), 7.75 (1H, d, J = 2.0 Hz), 7.84 (1H, d, J =
    8.6 Hz), 8.09 (1H, t, J = 2.1 Hz), 8.17 (1H, d, J = 8.4 Hz), 8.63-8.69 (2H, m), 8.84
    (1H, d, J = 2.1 Hz), 11.35 (1H, s).
    14 4.58 (2H, d, J = 5.7 Hz), 5.31 (2H, s), 6.50 (1H, d, J = 9.6 Hz), 6.74 (2H, s), 6.85
    (1H, d, J = 5.6 Hz), 7.40 (1H, d, J = 8.6 Hz), 7.45-7.52 (3H, m), 7.55 (2H, d, J =
    4.6 Hz), 7.76 (1H, d, J = 5.8 Hz), 7.82-7.95 (2H, m), 7.99 (1H, dd, J = 2.6 &
    9.6 Hz), 8.14 (1H, d, J = 8.6 Hz), 8.59 (1H, d, J = 2.5 Hz), 8.89-9.02 (1H, m).
    15 1.98 (3H, s), 4.56 (2H, d, J = 5.8 Hz), 5.14 (2H, s), 5.20 (2H, s), 6.47 (1H, d, J =
    9.5 Hz), 6.73 (2H, s), 6.86 (1H, d, J = 5.7 Hz), 7.18 (2H, d, J = 8.3 Hz), 7.23 (1H,
    s), 7.28 (2H, d, J = 8.2 Hz), 7.38 (1H, dd, J = 1.6 & 8.6 Hz), 7.53 (2H, d, J =
    6.1 Hz) 7.77 (1H, d, J = 5.8 Hz), 7.94 (1H, dd, J = 2.6 & 9.5 Hz), 8.13 (1H, d, J =
    8.6 Hz), 8.49 (1H, d, J = 2.5 Hz), 8.90 (1H, t, J = 5.9 Hz).
    16 2.64 (3H, s), 4.56 (2H, d, J = 5.8 Hz), 5.34 (2H, s), 6.51 (1H, d, J = 9.5 Hz), 6.73
    (2H, s), 6.84 (1H, dd, J = 0.8, 6.0 Hz), 7.35-7.44 (2H, m), 7.54 (1H, d, J =
    1.7 Hz), 7.67 (1H, dd, J = 2.0, 8.7 Hz), 7.75 (1H, d, J = 5.8 Hz), 7.78 (1H, d, J =
    2.0 Hz), 7.90 (1H, d, J = 8.7 Hz), 7.98 (1H, dd, J = 2.6, 9.5 Hz), 8.12 (1H, d, J =
    8.6 Hz), 8.20-8.26 (1H, m), 8.52-8.63 (1H, m), 8.93 (1H, t, J = 5.9 Hz).
    17 2.63 (3H, s), 4.24 (2H, s), 4.61 (2H, d, J = 5.8 Hz), 6.72 (2H, s), 6.85 (1H, d, J =
    5.8 Hz), 7.37-7.43 (2H, m), 7.56 (1H, s), 7.63 (1H, dd, J = 2.0 & 8.6 Hz), 7.76
    (1H, d, J = 5.8 Hz), 7.79 (1H, d, J = 1.9 Hz), 7.86 (1H, d, J = 8.6 Hz), 8.10-8.17
    (2H, m), 8.19 (1H, d, J = 8.4 Hz), 8.74 (1H, d, J = 2.1 Hz), 8.95 (1H, d, J = 2.1 Hz),
    9.30 (1H, t, J = 5.9 Hz).
    18 2.62 (3H, s), 3.94 (3H, s), 4.10 (2H, d, J = 1.3 Hz), 4.58 (2H, d, J = 5.8 Hz), 6.73
    (2H, s), 6.82-6.88 (1H, m), 7.33-7.43 (2H, m), 7.54 (1H, d, J = 1.7 Hz), 7.59
    (1H, dd, J = 2.0, 8.7 Hz), 7.70 (1H, d, J = 1.9 Hz), 7.75 (1H, d, J = 5.8 Hz), 7.84
    (1H, d, J = 8.6 Hz), 8.04 (1H, d, J = 2.3 Hz), 8.08-8.20 (2H, m), 8.65 (1H, d, J =
    2.3 Hz), 9.12 (1H, t, J = 5.9 Hz).
    19 2.62 (3H, s), 3.98 (3H, s), 4.14 (2H, s), 4.60 (2H, d, J = 6.1 Hz), 6.69 (2H, s),
    6.82 (1H, dd, J = 0.8, 5.9 Hz), 7.367.42 (2H, m), 7.54 (1H, d, J = 1.7 Hz), 7.59
    (1H, dd, J = 2.0, 8.6 Hz), 7.727.78 (2H, m), 7.84 (1H, d, J = 8.6 Hz), 8.03 (1H, d,
    J = 2.5 Hz), 8.11 (1H, d, J = 8.6 Hz), 8.15-8.20 (1H, m), 8.32 (1H, d, J = 2.5 Hz),
    8.87 (1H, t, J = 6.1 Hz).
    20 2.63 (3H, s), 4.00 (2H, s), 4.64 (2H, d, J = 5.9 Hz), 6.93 (1H, d, J = 6.1 Hz), 7.30
    (2H, s), 7.42 (2H, dd, J = 8.7, 22.5 Hz), 7.55-7.63 (2H, m), 7.68-7.78 (3H, m),
    7.85 (1H, d, J = 8.6 Hz), 8.158.27 (3H, m), 10.32 (1H, t, J = 6.0 Hz), 12.50 (1H,
    d, J = 6.4 Hz).
    21 2.63 (3H, s), 2.89 (3H, d, J = 4.5 Hz), 3.98 (2H, s), 4.53 (2H, d, J = 5.9 Hz), 6.69
    (3H, d, J = 3.4 Hz), 6.82 (1H, dd, J = 0.8, 6.0 Hz), 7.34-7.40 (2H, m), 7.50 (1H, d,
    J = 1.7 Hz), 7.57 (1H, dd, J = 2.0, 8.7 Hz), 7.61 (1H, d, J = 2.3 Hz), 7.70 (1H, d, J =
    1.9 Hz), 7.74 (1H, d, J = 5.8 Hz), 7.86 (1H, d, J = 8.6 Hz), 8.11 (1H, d, J = 8.6 Hz),
    8.16 (1H, d, J = 8.4 Hz), 8.58 (1H, d, J = 2.3 Hz), 8.80 (1H, t, J = 6.0 Hz).
    22 2.48 (3H, s), 2.63 (3H, s), 4.16 (2H, s), 4.55 (2H, d, J = 5.9 Hz), 6.71 (2H, s),
    6.80 (1H, dd, J = 0.8, 5.9 Hz), 7.36-7.43 (2H, m), 7.51-7.57 (1H, m), 7.62 (1H,
    dd, J = 2.0, 8.6 Hz), 7.69 (1H, d, J = 2.2 Hz), 7.74-7.80 (2H, m), 7.85 (1H, d, J =
    8.6 Hz), 8.16 (2H, dd, J = 8.5, 13.6 Hz), 8.50 (1H, d, J = 2.2 Hz), 9.03 (1H, t, J = 6.0 Hz)
    23 4.05 (2H, s), 4.62 (2H, d, J = 5.8 Hz), 6.72 (2H, s), 6.84-6.89 (1H, m), 7.14-7.26
    (1H, m), 7.26-7.35 (4H, m), 7.38-7.45 (1H, m), 7.57 (1H, s), 7.77 (1H, d, J =
    5.8 Hz), 8.10 (1H, t, J = 2.2 Hz), 8.14 (1H, d, J = 8.6 Hz), 8.67 (1H, d, J = 2.1 Hz),
    8.94 (1H, d, J = 2.1 Hz), 9.30 (1H, t, J = 6.0 Hz).
    24 4.25 (2H, s), 4.63 (2H, d, J = 5.9 Hz), 6.71 (2H, s), 6.85 (1H, d, J = 5.6 Hz), 7.42
    (1H, dd, J = 1.7 & 8.6 Hz), 7.44-7.52 (4H, m), 7.57 (1H, s), 7.76 (1H, d, J =
    5.8 Hz), 7.88-7.94 (2H, m), 8.14 (1H, d, J = 8.6 Hz), 8.21 (1H, t, J = 2.1 Hz), 8.74
    (1H, d, J = 2.1 Hz), 8.97 (1H, d, J = 2.1 Hz), 9.32 (1H, t, J = 5.9 Hz).
    25 9.29 (t, J = 5.9 Hz, 1H), 8.93 (d, J = 2.1 Hz, 1H), 8.66 (d, J = 2.1 Hz, 1H), 8.14
    (d, J = 8.6 Hz, 1H), 8.09 (t, J = 2.1 Hz, 1H), 7.76 (d, J = 5.8 Hz, 1H), 7.56 (s, 1H),
    7.41 (dd, J = 8.6, 1.7 Hz, 1H), 7.25-7.19 (m, 1H), 6.89-6.81 (m, 2H), 6.78 (ddd,
    J = 8.2, 2.6, 0.8 Hz, 1H), 6.72 (s, 2H), 4.61 (d, J = 5.9 Hz, 2H), 4.01 (s, 2H), 3.72 (s, 3H).
    26 3.71 (3H, s), 3.97 (2H, s), 4.61 (2H, d, J = 5.9 Hz), 6.71 (2H, s), 6.81-6.92 (3H,
    m), 7.14-7.23 (2H, m), 7.40 (1H, dd, J = 1.7 & 8.6 Hz), 7.54-7.60 (1H, m), 7.76
    (1H, d, J = 5.8 Hz), 8.05 (1H, t, J = 2.2 Hz), 8.14 (1H, d, J = 8.6 Hz), 8.63 (1H, d,
    J = 2.1 Hz), 8.91 (1H, d, J = 2.1 Hz), 9.28 (1H, t, J = 5.9 Hz).
    27 2.50 (4H, s), 4.09 (2H, s), 4.61 (2H, d, J = 5.9 Hz), 6.52 (1H, d of ds, J = 1.8 &
    2.4 Hz), 6.78 (2H, s), 6.86 (1H, d, J = 5.8 Hz), 7.37-7.45 (4H, m), 7.57 (1H, s),
    7.69-7.81 (4H, m), 8.09-8.18 (2H, m), 8.42-8.48 (1H, m), 8.69 (1H, d, J = 2.1
    Hz), 8.94 (1H, d, J = 2.1 Hz), 9.31 (1H, t, J = 5.9 Hz).
    28 4.28 (2H, s), 4.60 (2H, d, J = 5.9 Hz), 6.70 (2H, s), 6.84 (1H, d, J = 5.9 Hz), 7.40
    (1H, dd, J = 8.6, 1.8 Hz), 7.55 (1H, s), 7.71 (1H, dd, J = 8.4, 1.8 Hz), 7.75 (1H, d,
    J = 5.8 Hz), 7.78 (1H, d, J = 5.7 Hz), 7.92 (1H, d, J = 8.5 Hz), 8.00 (1H, s), 8.09-
    8.19 (2H, m), 8.46 (1H, d, J = 5.7 Hz), 8.74 (1H, d, J = 2.1 Hz), 8.95 (1H, d, J =
    2.1 Hz), 9.23-9.32 (2H, m).
    29 3.77 (3H, s), 3.97 (2H, s), 4.60 (2H, d, J = 5.8 Hz), 6.77 (2H, s), 6.83-6.93 (2H,
    m), 6.98 (1H, d, J = 7.7 Hz), 7.17-7.27 (2H, m), 7.40 (1H, dd, J = 8.6, 1.6 Hz),
    7.56 (1H, s), 7.75 (1H, d, J = 5.8 Hz), 8.03 (1H, t, J = 2.1 Hz), 8.14 (1H, d, J =
    8.6 Hz), 8.59 (1H, d, J = 2.1 Hz), 8.90 (1H, d, J = 2.1 Hz), 9.30 (1H, t, J = 5.9 Hz).
    30 4.13 (2H, s), 4.61 (2H, d, J = 5.8 Hz), 6.51-6.55 (1H, m), 6.77 (2H, s), 6.86 (1H,
    d, J = 5.8 Hz), 7.22 (1H, d, J = 7.6 Hz), 7.38-7.46 (2H, m), 7.57 (1H, s), 7.66-
    7.71 (1H, m), 7.72 (1H, d, J = 1.5 Hz), 7.75 (1H, d, J = 5.8 Hz), 7.81 (1H, s),
    8.14 (2H, m), 8.47 (1H, d, J = 2.4 Hz), 8.72 (1H, d, J = 2.0 Hz), 8.95 (1H, d, J =
    2.0 Hz), 9.30 (1H, t, J = 5.9 Hz).
    31 4.27 (2H, s), 4.60 (2H, d, J = 5.9 Hz), 6.79 (2H, s), 6.85 (1H, d, J = 5.8 Hz), 7.41
    (1H, dd, J = 8.6, 1.7 Hz), 7.51 (1H, dd, J = 8.3, 4.2 Hz), 7.56 (1H, s), 7.69 (1H,
    dd, J = 8.7, 2.0 Hz), 7.74 (1H, d, J = 5.8 Hz), 7.85 (1H, d, J = 1.7 Hz), 7.97 (1H,
    d, J = 8.6 Hz), 8.11-8.16 (2H, m), 8.31 (1H, dd, J = 8.4, 1.0 Hz), 8.74 (1H, d, J =
    2.1 Hz), 8.85 (1H, dd, J = 4.2, 1.7 Hz), 8.95 (1H, d, J = 2.1 Hz), 9.29 (1H, t, J = 5.9 Hz).
    32 4.02 (2H, s), 4.61 (2H, d, J = 5.9 Hz), 5.29 (2H, s), 6.23 (1H, t, J = 2.1 Hz), 6.72
    (2H, s), 6.86 (1H, d, J = 5.6 Hz), 7.01 (1H, d, J = 7.6 Hz), 7.15 (1H, s), 7.19 (1H,
    d, J = 7.8 Hz), 7.27 (1H, t, J = 7.6 Hz), 7.39-7.44 (2H, m), 7.57 (1H, d, J = 1.7
    Hz), 7.76 (1H, d, 5.8 Hz), 7.78 (1H, dd, J = 2.3, 0.6 Hz), 8.07 (1H, t, J = 2.1 Hz),
    8.14 (1H, d, J = 8.6 Hz), 8.62 (1H, d, J = 2.1 Hz), 8.93 (1H, d, J = 2.1 Hz), 9.28
    (1H, t, J = 5.9 Hz).
    33 1.97 (3H, d, J = 0.8 Hz), 3.80 (3H, s), 4.01 (2H, s), 4.61 (2H, d, J = 5.8 Hz), 5.13
    (2H, s), 6.72-6.82 (4H, m), 6.86 (1H, d, J = 8.6 Hz), 6.99 (1H, s), 7.20 (1H, s),
    7.37-7.44 (2H, m), 7.56 (1H, d, J = 1.6 Hz), 7.76 (1H, d, J = 5.8 Hz), 8.09 (1H, t,
    J = 2.1 Hz), 8.14 (1H, d, 8.6 Hz), 8.66 (1H, d, J = 2.1 Hz), 8.92 (1H, d, J = 2.1
    Hz), 9.27 (1H, t, J = 5.9 Hz).
    34 3.28 (3H, s), 3.59-3.65 (2H, m), 3.97 (2H, s), 4.00-4.08 (2H, m), 4.61 (2H, d, J =
    5.8 Hz), 6.71 (2H, s), 6.83-6.91 (3H, m), 7.14-7.22 (2H, m), 7.40 (1H, dd, J =
    1.6 & 8.7 Hz), 7.56 (1H, s), 7.76 (1H, d, J = 5.8 Hz), 8.06 (1H, t, J = 2.1 Hz),
    8.13 (1H, d, J = 8.5 Hz), 8.63 (1H, d, J = 2.1 Hz), 8.91 (1H, d, J = 2.1 Hz), 9.28
    (1H, t, J = 5.9 Hz).
    35 2.42-2.50 (4H, m), 2.77-3.08 (4H, m), 3.57 (2H, s), 4.61 (2H, d, J = 5.8 Hz),
    6.74 (2H, s), 6.86 (1H, dd, J = 0.8, 6.0 Hz), 7.41 (1H, dd, J = 1.7, 8.7 Hz), 7.54-
    7.60 (1H, m), 7.60-7.70 (2H, m), 7.69-7.84 (4H, m), 8.09 (1H, t, J = 2.2 Hz),
    8.14 (1H, d, J = 8.6 Hz), 8.58 (1H, d, J = 2.0 Hz), 8.96 (1H, d, J = 2.2 Hz), 9.29
    (1H, t, J = 5.9 Hz).
    36 2.35-2.50 (4H, m), 3.62 (4H, br s), 4.65 (2H, d, J = 5.8 Hz), 6.92 (1H, d, J = 6.0
    Hz), 7.00 (2H, s), 7.33 7.52 (6H, m), 7.63 (1H, d, J = 1.6 Hz), 7.76 (1H, d, J =
    5.9 Hz), 8.09 8.23 (2H, m), 8.66 (1H, d, J = 2.0 Hz), 9.00 (1H, d, J = 2.1 Hz),
    9.35 (1H, t, J = 5.9 Hz).
    37 1.13-1.27 (2H, m), 1.37-1.48 (2H, m), 1.67-1.81 (1H, m), 1.86-1.96 (2H, m),
    1.98 (3H, s), 2.77 (2H, d, J = 11.4 Hz), 3.53 (2H, s), 3.90 (2H, d, J = 7.1 Hz),
    4.64 (2H, d, J = 5.8 Hz), 6.73 (2H, s), 6.88 (1H, d, J = 5.6 Hz), 7.20 (1H, s), 7.40-
    7.45 (2H, m), 7.59 (1H, s), 7.77 (1H, d, J = 5.8 Hz), 8.11-8.18 (2H, m), 8.61
    (1H, d, J = 2.0 Hz), 8.97 (1H, d, J = 2.1 Hz), 9.33 (1H, t, J = 6.0 Hz).
    38 2.77 (3H, s), 3.133.19 (2H, m), 3.84 (2H, s), 4.16-4.21 (2H, m), 4.61 (2H, d, J =
    5.8 Hz), 6.57 (1H, d, J = 2.0 Hz), 6.61 (1H, d, J = 8.2 Hz), 6.67 (1H, dd, J = 2.0,
    8.2 Hz), 6.72 (2H, s), 6.86 (1H, dd, J = 0.8, 5.9 Hz), 7.41 (1H, dd, J = 1.8, 8.6 Hz),
    7.52-7.59 (1H, m), 7.76 (1H, d, J = 5.8 Hz), 8.04 (1H, t, J = 2.2 Hz), 8.14 (1H, d,
    J = 8.6 Hz), 8.61 (1H, d, J = 2.1 Hz), 8.90 (1H, d, J = 2.1 Hz), 9.28 (1H, t, J = 5.9 Hz)
    39 2.51-2.57 (4H, m), 3.09-3.17 (4H, m), 3.63 (2H, s), 4.64 (2H, d, J = 5.8 Hz),
    6.71 (2H, s), 6.76 (1H, t, J = 7.3 Hz), 6.87 (1H, d, J = 5.7 Hz), 6.91 (2H, d, J =
    7.9 Hz), 7.19 (2H, dd, J = 7.3 & 8.7 Hz), 7.43 (1H, dd, J = 1.7 & 8.6 Hz), 7.59
    (1H, s), 7.76 (1H, d, J = 5.8 Hz), 8.15 (1H, d, J = 8.6 Hz), 8.21 (1H, t, J = 2.1 Hz),
    8.67 (1H, d, J = 2.0 Hz), 9.00 (1H, d, J = 2.1 Hz), 9.34 (1H, t, J = 5.9 Hz).
    40 1.99 (3H, s), 2.11 (3H, s), 4.43 (2H, t, J = 5.3 Hz), 4.61 (4H, d of ts, J = 4.4 &
    5.7 Hz), 6.81 (2H, s), 6.85-6.93 (1H, m), 7.23 (1H, s), 7.41 (1H, dd, J = 1.8 &
    8.7 Hz), 7.50 (1H, t, J = 0.9 Hz), 7.56 (1H, d, J = 1.7 Hz), 7.75 (1H, d, J = 5.8
    Hz), 8.03 (1H, dd, J = 1.0 & 2.4 Hz), 8.15 (1H, d, J = 8.6 Hz), 8.53-8.58 (1H, m),
    9.08 (1H, t, J = 6.0 Hz).
    41 2.40 (8H, s), 3.46 (2H, s), 3.56 (2H, s), 4.64 (2H, d, J = 5.9 Hz), 6.72 (2H, s),
    6.88 (1H, d, J = 5.6 Hz), 7.20-7.35 (5H, m), 7.43 (1H, dd, J = 1.7 & 8.6 Hz),
    7.59 (1H, s), 7.77 (1H, d, J = 5.8 Hz), 8.12-8.18 (2H, m), 8.62 (1H, d, J = 2.0
    Hz), 8.98 (1H, d, J = 2.1 Hz), 9.33 (1H, t, J = 5.9 Hz).
    42 2.45 (8H, s), 3.55 (4H, d, J = 19.0 Hz), 3.76 (3H, s), 4.64 (2H, d, J = 5.8 Hz),
    6.88 6.99 (5H, m), 7.18 7.26 (1H, m), 7.29 (1H, dd, J = 1.8 & 7.4 Hz), 7.45
    (1H, dd, J = 1.8, 8.6 Hz), 7.61 (1H, d, J = 1.6 Hz), 7.75 (1H, d, J = 5.9 Hz), 8.13-
    8.21 (2H, m), 8.62 (1H, d, J = 2.0 Hz), 8.98 (1H, d, J = 2.1 Hz), 9.34 (1H, t, J = 5.9 Hz).
    43 1.08-1.19 (2H, m), 1.39-1.57 (4H, s), 1.59-1.69 (2H, s), 2.02 (1H, quintet, J =
    7.4 Hz), 2.16 (2H, d, J = 7.5 Hz), 2.22-2.47 (8H, m), 3.55 (2H, s), 4.63 (2H, d, J =
    5.8 Hz), 6.73 (2H, s), 6.87 (1H, d, J = 5.7 Hz), 7.42 (1H, dd, J = 1.7 & 8.6 Hz),
    7.56-7.60 (1H, m), 7.76 (1H, d, J = 5.8 Hz), 8.15 (2H, dd, J = 3.2 & 5.3 Hz),
    8.62 (1H, d, J = 2.0 Hz), 8.98 (1H, d, J = 2.1 Hz), 9.33 (1H, t, J = 6.0 Hz).
    45 2.18-2.46 (8H, m), 3.38 (2H, s), 3.55 (2H, s), 3.72 (3H, s), 4.63 (2H, d, J = 5.8
    Hz), 6.75 (2H, s), 6.86 (3H, dd, J = 3.2 & 9.9 Hz), 7.18 (2H, d, J = 8.7 Hz), 7.43
    (1H, dd, J = 1.7 & 8.6 Hz), 7.58 (1H, s), 7.76 (1H, d, J = 5.8 Hz), 8.15 (2H, dd, J =
    2.9 & 5.0 Hz), 8.61 (1H, d, J = 2.0 Hz), 8.97 (1H, d, J = 2.1 Hz), 9.32 (1H, t, J = 5.9 Hz).
    46 2.23-2.47 (8H, s), 3.47 (2H, s), 3.56 (2H, s), 4.63 (2H, d, J = 5.8 Hz), 6.73 (2H,
    s), 6.87 (1H, d, J = 5.7 Hz), 7.02-7.15 (3H, m), 7.34 (1H, td, J = 6.4 & 8.0 Hz),
    7.42 (1H, dd, J = 1.7 & 8.6 Hz), 7.58 (1H, s), 7.76 (1H, d, J = 5.8 Hz), 8.12-8.20
    (2H, m), 8.62 (1H, d, J = 2.0 Hz), 8.97 (1H, d, J = 2.1 Hz), 9.32 (1H, t, J = 5.9 Hz).
    47 2.16-2.47 (8H, m), 3.31 (2H, s), 3.54 (2H, s), 3.77 (3H, s), 4.63 (2H, d, J = 5.9
    Hz), 6.74 (2H, s), 6.87 (1H, d, J = 5.6 Hz), 7.26 (1H, s), 7.42 (1H, dd, J = 1.6 &
    8.7 Hz), 7.52 (1H, s), 7.58 (1H, s), 7.76 (1H, d, J = 5.9 Hz), 8.09-8.19 (2H, m),
    8.61 (1H, d, J = 1.9 Hz), 8.97 (1H, d, J = 2.1 Hz), 9.32 (1H, t, J = 6.0 Hz).
    48 2.39 (8H, s), 3.44 (2H, s), 3.56 (2H, s), 4.64 (2H, d, J = 5.8 Hz), 6.73 (2H, s),
    6.88 (1H, dd, J = 0.8, 5.9 Hz), 7.07-7.18 (2H, m), 7.26-7.36 (2H, m), 7.43 (1H,
    dd, J = 1.7, 8.6 Hz), 7.59 (1H, d, J = 1.7 Hz), 7.77 (1H, d, J = 5.8 Hz), 8.15 (2H,
    dd, J = 3.1, 5.2 Hz), 8.62 (1H, d, J = 2.0 Hz), 8.98 (1H, d, J = 2.1 Hz), 9.33 (1H,
    t, J = 5.9 Hz).
    49 2.25-2.47 (8H, m), 3.44 (2H, s), 3.56 (2H, s), 3.72 (3H, s), 4.63 (2H, d, J = 5.8
    Hz), 6.76-6.90 (6H, m), 7.21 (1H, t, J = 8.0 Hz), 7.43 (1H, dd, J = 1.7 & 8.6 Hz),
    7.59 (1H, s), 7.76 (1H, d, J = 5.8 Hz), 8.15 (2H, dd, J = 2.9 & 5.0 Hz), 8.62 (1H,
    d, J = 2.0 Hz), 8.97 (1H, d, J = 2.1 Hz), 9.33 (1H, t, J = 5.9 Hz).
    50 1.67-1.75 (2H, m), 2.29-2.35 (2H, m), 2.36-2.47 (8H, m), 2.54-2.60 (2H, m),
    3.56 (2H, s), 4.63 (2H, d, J = 5.9 Hz), 6.78 (2H, s), 6.88 (1H, d, J = 5.8 Hz), 7.17
    (3H, dd, J = 7.0 & 15.3 Hz), 7.23-7.29 (2H, m), 7.43 (1H, dd, J = 1.6 & 8.6 Hz),
    7.59 (1H, s), 7.76 (1H, d, J = 5.8 Hz), 8.15 (2H, dd, J = 2.7 & 4.7 Hz), 8.62 (1H,
    d, J = 2.0 Hz), 8.98 (1H, d, J = 2.1 Hz), 9.33 (1H, t, J = 5.8 Hz).
    51 2.30-2.47 (8H, d), 2.51-2.54 (2H, m), 2.69-2.76 (2H, m), 3.57 (2H, s), 4.64
    (2H, d, J = 5.8 Hz), 6.77 (2H, s), 6.89 (1H, d, J = 5.8 Hz), 7.15-7.24 (3H, m),
    7.24-7.30 (2H, m), 7.44 (1H, dd, J = 1.6 & 8.6 Hz), 7.60 (1H, s), 7.77 (1H, d, J =
    5.8 Hz), 8.16 (2H, d, J = 8.4 Hz), 8.64 (1H, d, J = 2.0 Hz), 8.99 (1H, d, J = 2.1
    Hz), 9.35 (1H, t, J = 5.9 Hz).
    52 2.38-2.48 (4H, s), 2.57-2.69 (4H, d, J = 48.2 Hz), 3.13 (2H, s), 3.57 (2H, s),
    4.63 (2H, d, J = 5.8 Hz), 6.77 (2H, s), 6.88 (1H, d, J = 5.8 Hz), 7.43 (1H, dd, J =
    1.6 & 8.6 Hz), 7.59 (1H, s), 7.76 (1H, d, J = 5.8 Hz), 8.13-8.18 (2H, m), 8.63
    (1H, d, J = 2.0 Hz), 8.98 (1H, d, J = 2.1 Hz), 9.33 (1H, t, J = 5.9 Hz).
    53 1.98-2.05 (2H, m), 2.53-2.59 (2H, m), 3.92-3.99 (2H, m), 4.05 (2H, s), 4.62
    (2H, d, J = 5.8 Hz), 6.71 (2H, s), 6.87 (1H, d, J = 5.6 Hz), 7.41 (1H, dd, J = 1.7 &
    8.6 Hz), 7.57 (1H, s), 7.72 (1H, dd, J = 2.4 & 8.6 Hz), 7.76 (1H, d, J = 5.8 Hz),
    8.09 (1H, t, J = 2.1 Hz), 8.14 (1H, d, J = 8.6 Hz), 8.21-8.27 (1H, m), 8.37 (1H, d,
    J = 1.8 Hz), 8.68 (1H, d, J = 2.1 Hz), 8.94 (1H, d, J = 2.1 Hz), 9.29 (1H, t, J = 5.9 Hz).
    54 4.09 (2H, s), 4.62 (2H, d, J = 5.8 Hz), 6.71 (2H, s), 6.86 (1H, d, J = 5.9 Hz), 7.13
    (1H, dd, J = 8.5, 2.9 Hz), 7.41 (1H, dd, J = 8.6, 1.7 Hz), 7.57 (1H, s), 7.76 (1H, d,
    J = 5.8 Hz), 7.90 (1H, td, J = 8.2, 2.6 Hz), 8.09-8.18 (2H, m), 8.24 (1H, s), 8.70
    (1H, d, J = 2.1 Hz), 8.94 (1H, d, J = 2.1 Hz), 9.29 (1H, t, J = 5.9 Hz).
    55 1.86-1.94 (4H, m), 3.29-3.34 (4H, m), 3.87 (2H, s), 4.61 (2H, d, J = 5.8 Hz),
    6.37 (1H, d, J = 8.6 Hz), 6.74 (2H, s), 6.86 (1H, d, J = 6.2 Hz), 7.36 (1H, dd, J =
    8.6, 2.5 Hz), 7.40 (1H, dd, J = 8.6, 1.8 Hz), 7.56 (1H, s), 7.75 (1H, d, J = 5.8 Hz),
    8.00-8.07 (2H, m), 8.13 (1H, d, J = 8.6 Hz), 8.63 (1H, d, J = 2.1 Hz), 8.91 (1H, d,
    J = 2.1 Hz), 9.31 (1H, t, J = 5.9 Hz).
    56 1.44-1.63 (6H, m), 3.40-3.49 (4H, m), 3.88 (2H, s), 4.61 (2H, d, J = 5.9 Hz),
    6.66-6.78 (3H, m), 6.86 (1H, d, J = 6.0 Hz), 7.36-7.43 (2H, m), 7.56 (1H, s),
    7.76 (1H, d, J = 5.8 Hz), 8.03-8.09 (2H, m), 8.14 (1H, d, J = 8.6 Hz), 8.64 (1H, d,
    J = 2.1 Hz), 8.91 (1H, d, J = 2.1 Hz), 9.28 (1H, t, J = 5.9 Hz).
    57 2.46 (1H, d, J = 7.4 Hz), 2.522.56 (1H, m), 3.57 (2H, t, J = 7.3 Hz), 3.78 (2H, t, J =
    13.4 Hz), 3.92 (2H, s), 4.61 (2H, d, J = 5.9 Hz), 6.51 (1H, dd, J = 0.9, 8.7 Hz),
    6.76 (2H, s), 6.87 (1H, dd, J = 0.8, 5.9 Hz), 7.41 (1H, dd, J = 1.8, 8.6 Hz), 7.46
    (1H, dd, J = 2.4, 8.6 Hz), 7.56 (1H, d, J = 1.9 Hz), 7.75 (1H, d, J = 5.8 Hz), 8.05
    (1H, t, J = 2.1 Hz), 8.09 (1H, dd, J = 0.8, 2.5 Hz), 8.14 (1H, d, J = 8.6 Hz), 8.64
    (1H, d, J = 2.1 Hz), 8.91 (1H, d, J = 2.1 Hz), 9.29 (1H, t, J = 5.9 Hz)
    58 1.11 (3H, d, J = 6.2 Hz), 1.59-1.69 (1H, m), 1.872.05 (3H, m), 3.17-3.24 (1H,
    m), 3.37-3.46 (1H, m), 3.87 (2H, s), 4.02-4.10 (1H, m), 4.61 (2H, d, J = 5.8 Hz),
    6.38 (1H, dd, J = 0.8, 8.6 Hz), 6.72 (2H, s), 6.86 (1H, dd, J = 0.8, 6.0 Hz), 7.35
    (1H, dd, J = 2.5, 8.6 Hz), 7.40 (1H, dd, J = 1.7, 8.6 Hz), 7.56 (1H, d, J = 1.7 Hz),
    7.76 (1H, d, J = 5.8 Hz), 7.99-8.08 (2H, m), 8.13 (1H, d, J = 8.6 Hz), 8.63 (1H, d,
    J = 2.1 Hz), 8.91 (1H, d, J = 2.1 Hz), 9.29 (1H, t, J = 5.9 Hz).
    59 1.87 (1H, m), 1.98 (1H, m), 3.25 (1H, m), 3.37-3.46 (3H, m), 4.35 (1H, m),
    4.61 (2H, doublet, J = 5.8 Hz), 4.90 (1H, d, J = 3.7 Hz), 6.37 (1H, dd, J = 0.8,
    8.6 Hz), 6.75 (2H, s), 6.84-6.89 (1H, m), 7.36 (1H, dd, J = 2.4, 8.6 Hz), 7.41 (1H,
    dd, J = 1.8, 8.6 Hz), 7.50-7.61 (1H, m), 7.75 (1H, d, J = 5.8 Hz), 7.98-8.07 (2H,
    m), 8.14 (1H, d, J = 8.6 Hz), 8.63 (1H, d, J = 2.1 Hz), 8.91 (1H, d, J = 2.1 Hz),
    9.29 (1H, t, J = 5.9 Hz)
    60 2.03-2.31 (2H, m), 3.34-3.43 (1H, m), 3.47-3.71 (3H, m), 3.90 (2H, s), 4.61
    (2H, d, J = 5.8 Hz), 5.31-5.52 (1H, m), 6.44 (1H, dd, J = 0.8, 8.6 Hz), 6.71 (2H,
    s), 6.86 (1H, dd, J = 0.8, 5.9 Hz), 7.41 (2H, dt, J = 2.3, 8.7 Hz), 7.52-7.61 (1H,
    m), 7.76 (1H, d, J = 5.8 Hz), 8.00-8.09 (2H, m), 8.13 (1H, d, J = 8.6 Hz), 8.64
    (1H, d, J = 2.1 Hz), 8.91 (1H, d, J = 2.1 Hz), 9.28 (1H, t, J = 5.9 Hz)
    61 1.05 (3H, d, J = 6.6 Hz), 1.53 (1H, m), 2.05 (1H, m), 2.25-2.35 (1H, m), 2.86
    (1H, dd, J = 7.6, 10.1 Hz), 3.25-3.30 (1H, m), 3.45 (1H, m), 3.53 (1H, dd, J =
    7.2, 10.0 Hz), 3.87 (2H, s), 4.61 (2H, d, J = 5.9 Hz), 6.35 (1H, dd, J = 0.8, 8.7 Hz),
    6.76 (2H, s), 6.87 (1H, dd, J = 0.8, 6.0 Hz), 7.35 (1H, dd, J = 2.5, 8.6 Hz), 7.41
    (1H, dd, J = 1.8, 8.7 Hz), 7.56 (1H, d, J = 1.7 Hz), 7.75 (1H, d, J = 5.8 Hz), 8.00-
    8.06 (2H, m), 8.14 (1H, d, J = 8.6 Hz), 8.63 (1H, d, J = 2.1 Hz), 8.91 (1H, d, J =
    2.1 Hz), 9.29 (1H, t, J = 5.9 Hz)
    62 2.02 (2H, m), 3.24 (3H, s), 3.30 (1H, d, J = 1.9 Hz), 3.39-3.45 (3H, m), 3.88 (2H,
    s), 4.04 (1H, m), 4.61 (2H, d, J = 5.9 Hz), 6.39 (1H, d, J = 8.6 Hz), 6.90 (1H, d, J =
    6.0 Hz), 6.92 (2H, s), 7.37 (1H, dd, J = 2.4, 8.6 Hz), 7.43 (1H, dd, J = 1.8,
    8.6 Hz), 7.59 (1H, d, J = 1.8 Hz), 7.74 (1H, d, J = 5.9 Hz), 7.97-8.08 (2H, m), 8.17
    (1H, d, J = 8.6 Hz), 8.63 (1H, d, J = 2.1 Hz), 8.91 (1H, d, J = 2.1 Hz), 9.30
    (1H, t, J = 5.9 Hz)
    63 3.37 (4H, dd, J = 4.1, 5.7 Hz), 3.64-3.69 (4H, m), 3.92 (2H, s), 4.61 (2H, d, J =
    5.9 Hz), 6.76 (2H, s), 6.78 (1H, d, J = 8.8 Hz), 6.87 (1H, d, J = 5.8 Hz), 7.41 (1H,
    dd, J = 1.7, 8.7 Hz), 7.46 (1H, dd, J = 2.5, 8.7 Hz), 7.57 (1H, d, J = 1.7 Hz), 7.76
    (1H, d, J = 5.8 Hz), 8.06 (1H, t, J = 2.1 Hz), 8.11 (1H, d, J = 2.5 Hz), 8.14 (1H, d, J =
    8.6 Hz), 8.65 (1H, d, J = 2.1 Hz), 8.92 (1H, d, J = 2.1 Hz), 9.29 (1H, t, J = 5.9 Hz)
    64 2.28 (3H, s), 2.45-2.49 (4H, m), 3.40-3.51 (4H, m), 3.91 (2H, s), 4.61 (2H, d, J =
    5.9 Hz), 6.79 (1H, d, J = 8.8 Hz), 6.83 (2H, s), 6.88 (1H, d, J = 5.9 Hz), 7.43 (2H,
    m), 7.57 (1H, d, J = 1.7 Hz), 7.75 (1H, d, J = 5.8 Hz), 8.06 (1H, t, J = 2.2 Hz), 8.09
    (1H, d, J = 2.4 Hz), 8.15 (1H, d, J = 8.6 Hz), 8.65 (1H, d, J = 2.1 Hz), 8.92 (1H, d, J =
    2.1 Hz), 9.30 (1H, t, J = 5.9 Hz)
    65 1.44 (6H, s), 1.78-1.90 (4H, m), 3.31 (2H, m), 3.86 (2H, s), 4.61 (2H, d, J =
    5.8 Hz), 6.36 (1H, d, J = 8.7 Hz), 6.70 (2H, s), 6.86 (1H, d, J = 5.8 Hz), 7.32 (1H,
    dd, J = 2.5, 8.7 Hz), 7.41 (1H, dd, J = 1.7, 8.6 Hz), 7.56 (1H, d, J = 1.7 Hz), 7.76
    (1H, d, J = 5.8 Hz), 8.01 (1H, d, J = 2.5 Hz), 8.07 (1H, t, J = 2.2 Hz), 8.13 (1H, d, J =
    8.6 Hz), 8.64 (1H, d, J = 2.1 Hz), 8.91 (1H, d, J = 2.1 Hz), 9.29 (1H, t, J = 5.9 Hz)
    66 1.06 (6H, t, J = 7.0 Hz), 3.44 (4H, q, J = 7.0 Hz), 3.86 (2H, s), 4.61 (2H, d, J =
    5.8 Hz), 6.51 (1H, d, J = 8.7 Hz), 6.73 (2H, s), 6.87 (1H, d, J = 5.8 Hz), 7.34 (1H,
    dd, J = 2.5, 8.7 Hz), 7.41 (1H, d, J = 8.6 Hz), 7.57 (1H, s), 7.76 (1H, d, J = 5.8 Hz),
    8.01 (1H, d, J = 2.5 Hz), 8.07 (1H, s), 8.14 (1H, d, J = 8.6 Hz), 8.64 (1H, d, J =
    2.0 Hz), 8.91 (1H, d, J = 2.1 Hz), 9.29 (1H, t, J = 5.8 Hz)
    67 1.80-1.99 (4H, m), 3.13-3.27 (2H, m), 3.36-3.43 (1H, m), 3.54 (1H, dt, J = 4.6,
    9.7 Hz), 3.88 (2H, s), 3.96 (1H, m), 4.61 (2H, d, J = 5.8 Hz), 4.87 (1H, dd, J =
    5.0, 6.1 Hz), 6.44 (1H, d, J = 8.6 Hz), 6.70 (2H, s), 6.82-6.89 (1H, m), 7.39 (2H,
    ddd, J = 2.1, 8.6, 11.2 Hz), 7.53-7.60 (1H, m), 7.76 (1H, d, J = 5.8 Hz), 8.01-8.03
    (1H, m), 8.05 (1H, t, J = 2.1 Hz), 8.13 (1H, d, J = 8.6 Hz), 8.64 (1H, d, J = 2.1 Hz),
    8.91 (1H, d, J = 2.1 Hz), 9.28 (1H, t, J = 5.9 Hz)
    68 1.76 (1H, dq, J = 9.5, 11.9 Hz), 2.08-2.14 (1H, m), 2.18 (6H, s), 2.66-2.77 (1H,
    m), 3.05 (1H, dd, J = 8.1, 10.0 Hz), 3.22-3.29 (1H, m), 3.51 (1H, ddd, J = 2.2,
    8.8, 10.6 Hz), 3.61 (1H, dd, J = 7.1, 10.0 Hz), 3.88 (2H, s), 4.61 (2H, d, J =
    5.9 Hz), 6.40 (1H, d, J = 8.6 Hz), 6.71 (2H, s), 6.86 (1H, d, J = 5.8 Hz), 7.39 (2H,
    ddd, J = 2.1, 8.6, 13.7 Hz), 7.56 (1H, d, J = 1.7 Hz), 7.76 (1H, d, J = 5.8 Hz), 8.03
    (2H, q, J = 2.3 Hz), 8.13 (1H, d, J = 8.6 Hz), 8.63 (1H, d, J = 2.1 Hz), 8.91 (1H, d, J =
    2.1 Hz), 9.28 (1H, t, J = 6.0 Hz)
    69 1.76 (1H, dq, J = 9.5, 12.0 Hz), 2.09-2.14 (1H, m), 2.18 (6H, s), 2.71 (1H, m),
    3.05 (1H, dd, J = 8.1, 10.1 Hz), 3.24-3.29 (1H, m), 3.51 (1H, ddd, J = 2.2, 8.7,
    10.6 Hz), 3.61 (1H, dd, J = 7.1, 10.0 Hz), 3.88 (2H, s), 4.61 (2H, d, J = 5.9 Hz),
    6.40 (1H, d, J = 8.6 Hz), 6.71 (2H, s), 6.86 (1H, d, J = 5.8 Hz), 7.37 (1H, dd, J =
    2.5, 8.6 Hz), 7.40 (1H, dd, J = 1.8, 8.6 Hz), 7.56 (1H, d, J = 1.7 Hz), 7.76 (1H, d, J =
    5.8 Hz), 8.03 (2H, q, J = 2.3 Hz), 8.13 (1H, d, J = 8.6 Hz), 8.63 (1H, d, J =
    2.1 Hz), 8.91 (1H, d, J = 2.1 Hz), 9.28 (1H, t, J = 5.9 Hz)
    70 1.25 (6H, d, J = 6.2 Hz), 3.97 (2H, s), 4.61 (2H, d, J = 5.8 Hz), 5.19 (1H, h, J =
    6.2 Hz), 6.67 (1H, dd, J = 0.7, 8.5 Hz), 6.71 (2H, s), 6.84-6.88 (1H, m), 7.41 (1H,
    dd, J = 1.7, 8.6 Hz), 7.54-7.59 (2H, m), 7.76 (1H, d, J = 5.8 Hz), 8.09 (1H, t, J =
    2.2 Hz), 8.11 (1H, d, J = 2.4 Hz), 8.14 (1H, d, J = 8.6 Hz), 8.67 (1H, d, J = 2.1 Hz),
    8.93 (1H, d, J = 2.1 Hz), 9.28 (1H, t, J = 6.0 Hz)
    71 1.70 (1H, m), 1.98 (1H, m), 2.37 (1H, m), 3.10 (1H, dd J = 6.4, 10.4 Hz), 3.25-
    3.30 (1H, m), 3.35-3.47 (4H, m), 3.88 (2H, s), 4.61 (2H, d, J = 5.9 Hz), 4.66 (1H,
    t, J = 5.2 Hz), 6.36 (1H, d, J = 8.6 Hz), 6.77 (2H, s), 6.87 (1H, d, J = 5.8 Hz), 7.36
    (1H, dd, J = 2.4, 8.6 Hz), 7.41 (1H, dd, J = 1.7, 8.6 Hz), 7.57 (1H, d, J = 1.7 Hz),
    7.75 (1H, d, J = 5.8 Hz), 8.00-8.07 (2H, m), 8.15 (1H, d, J = 8.6 Hz), 8.63 (1H, d,
    J = 2.1 Hz), 8.91 (1H, d, J = 2.1 Hz), 9.28 (1H, t, J = 5.9H)
    72 1.19 (3H, t J = 7.1 Hz), 2.06-2.16 (1H, m), 2.16-2.25 (1H, m), 3.19-3.27 (1H,
    m), 3.36-3.46 (2H, m), 3.51 (1H, dd, J = 6.2, 10.5 Hz), 3.60 (1H, dd, J = 7.9,
    10.5 Hz), 3.89 (2H, s), 4.09 (2H, q, J = 7.1 Hz), 4.61 (2H, d, J = 5.8 Hz), 6.42 (1H,
    d, J = 8.6 Hz), 6.71 (2H, s), 6.86 (1H, d, J = 5.8 Hz), 7.39 (2H, ddd, J = 2.1, 7.2,
    8.9 Hz), 7.56 (1H, d, J = 1.7 Hz), 7.76 (1H, d, J = 5.8 Hz), 8.00-8.09 (2H, m), 8.13
    (1H, d, J = 8.6 Hz), 8.63 (1H, d, J = 2.1 Hz), 8.91 (1H, d, J = 2.1 Hz), 9.28
    (1H, t, J = 5.9 Hz)
    73 1.07 (6H, d, J = 6.7 Hz), 2.74 (3H, s), 3.88 (2H, s), 4.62 (2H, d, J = 5.9 Hz), 4.78
    (1H, p, J = 6.7 Hz), 6.55 (1H, d, J = 8.8 Hz), 6.91 (1H, d, J = 6.0 Hz), 6.98 (2H, s),
    7.37 (1H, dd, J = 2.5, 8.8 Hz), 7.44 (1H, dd, J = 1.8, 8.7 Hz), 7.59 (1H, d, J =
    1.8 Hz), 7.74 (1H, d, J = 5.9 Hz), 8.01-8.09 (2H, m), 8.18 (1H, d, J = 8.6 Hz), 8.64
    (1H, d, J = 2.1 Hz), 8.91 (1H, d, J = 2.1 Hz), 9.30 (1H, t, J = 5.9 Hz)
    74 1.07 (6H, d, J = 3.3 Hz), 1.72 (2H, t, J = 7.1 Hz), 3.11 (1H, s), 3.21-3.27 (1H,
    m), 3.40 (2H, t, J = 7.0 Hz), 3.87 (2H, s), 4.61 (2H, d, J = 5.9 Hz), 6.34 (1H, d, J =
    8.6 Hz), 6.81 (2H, s), 6.88 (1H, d, J = 5.8 Hz), 7.35 (1H, dd, J = 2.5 & 8.6 Hz),
    7.42 (1H, dd, J = 1.8 & 8.6 Hz), 7.57 (1H, d, J = 1.7 Hz), 7.75 (1H, d, J = 5.9
    Hz), 7.98-8.09 (2H, m), 8.15 (1H, d, J = 8.6 Hz), 8.63 (1H, d, J = 2.1 Hz), 8.91
    (1H, d, J = 2.1 Hz), 9.29 (1H, t, J = 5.9 Hz).
    75 2.07-2.22 (2H, m), 3.11-3.18 (1H, m), 3.36-3.45 (2H, m), 3.48-3.59 (2H, m),
    3.89 (2H, s), 4.63 (2H, d, J = 5.8 Hz), 6.41 (1H, d, J = 8.6 Hz), 6.97 (1H, d, J =
    6.2 Hz), 7.29 (2H, s), 7.38 (1H, d, J = 10.9 Hz), 7.49 (1H, d, J = 8.4 Hz), 7.64
    (1H, s), 7.73 (1H, d, J = 6.1 Hz), 8.04 (2H, s), 8.23 (1H, d, J = 8.6 Hz), 8.64 (1H,
    d, J = 2.0 Hz), 8.91 (1H, d, J = 2.0 Hz), 9.31 (1H, t, J = 5.9 Hz), 12.46 (1H, s)
    76 1.96-2.07 (2H, m), 2.54 (2H, t, J = 8.0 Hz), 3.95 (2H, t, J = 7.1 Hz), 4.10 (2H, s),
    4.61 (2H, d, J = 5.8 Hz), 6.72 (2H, s), 6.87 (1H, d, J = 5.9 Hz), 7.05 (1H, dd, J =
    1.5, 5.2 Hz), 7.41 (1H, dd, J = 1.8, 8.6 Hz), 7.56 (1H, s), 7.76 (1H, d, J = 5.8 Hz),
    8.09 (1H, t, J = 2.2 Hz), 8.13 (1H, d, J = 8.6 Hz), 8.21 (1H, s), 8.29 (1H, ds, J =
    0.8, 5.1 Hz), 8.67 (1H, d, J = 2.1 Hz), 8.96 (1H, d, J = 2.1 Hz), 9.31 (1H, t, J = 5.9 Hz).
    78 1.45-1.64 (6H, m), 3.45-3.50 (4H, m), 3.93 (2H, s), 4.62 (2H, d, J = 5.8 Hz),
    6.46 (1H, dd, J = 1.2, 5.1 Hz), 6.71 (2H, s), 6.77 (1H, s), 6.86 (1H, d, J = 5.9 Hz),
    7.41 (1H, dd, J = 1.7, 8.6 Hz), 7.57 (1H, s), 7.76 (1H, d, J = 5.8 Hz), 7.97 (1H, d, J =
    5.1 Hz), 8.09-8.16 (2H, m), 8.68 (1H, d, J = 2.1 Hz), 8.94 (1H, d, J = 2.1 Hz),
    9.29 (1H, t, J = 5.9 Hz).
    79 1.11 (3H, d, J = 6.2 Hz), 1.57-1.69 (1H, m), 1.86-2.05 (3H, m), 3.16-3.26 (1H,
    m), 3.38-3.46 (1H, m), 3.93 (2H, s), 4.04-4.13 (1H, m), 4.62 (2H, d, J = 5.8 Hz),
    6.36 (1H, s), 6.40 (1H, dd, J = 5.2, 1.3 Hz), 6.74 (2H, s), 6.86 (1H, d, J = 5.8 Hz),
    7.41 (1H, dd, J = 8.7, 1.7 Hz), 7.57 (1H, d, J = 1.7 Hz), 7.76 (1H, d, J = 5.8 Hz),
    7.94 (1H, d, J = 5.1 Hz), 8.09-8.16 (2H, m), 8.68 (1H, d, J = 2.1 Hz), 8.94 (1H, d,
    J = 2.1 Hz), 9.30 (1H, t, J = 5.9 Hz)
    80 2.44-2.58 (2H, m), 3.58 (2H, t, J = 7.3 Hz), 3.80 (2H, t, J = 13.2 Hz), 3.96 (2H, s),
    4.62 (2H, d, J = 5.8 Hz), 6.52 (1H, s), 6.56 (1H, dd, J = 5.1, 1.3 Hz), 6.79 (2H, s),
    6.87 (1H, d, J = 5.8 Hz), 7.41 (1H, dd, J = 8.6, 1.7 Hz), 7.58 (1H, d, J = 1.7 Hz),
    7.75 (1H, d, J = 5.8 Hz), 8.00 (1H, d, J = 5.1 Hz), 8.11 (1H, t, J = 2.2 Hz), 8.15
    (1H, d, J = 8.6 Hz), 8.68 (1H, d, J = 2.1 Hz), 8.94 (1H, d, J = 2.1 Hz), 9.30
    (1H, t, J = 5.9 Hz).
    81 1.81-1.91 (1H, m), 1.93-2.05 (1H, m), 3.23-3.29 (1H, m), 3.37-3.48 (3H, m),
    3.93 (2H, s), 4.32-4.40 (1H, m), 4.62 (2H, d, J = 5.8 Hz), 4.91 (1H, d, J = 3.7 Hz),
    6.36 (1H, s), 6.41 (1H, dd, J = 5.2, 1.3 Hz), 6.91 (1H, d, J = 6.0 Hz), 7.02 (2H, s),
    7.45 (1H, dd, J = 8.6, 1.7 Hz), 7.61 (1H, d, J = 1.7 Hz), 7.74 (1H, d, J = 6.0 Hz),
    7.94 (1H, d, J = 5.1 Hz), 8.10 (1H, t, J = 2.1 Hz), 8.19 (1H, d, J = 8.6 Hz), 8.68
    (1H, d, J = 2.1 Hz), 8.94 (1H, d, J = 2.1 Hz), 9.31 (1H, t, J = 5.9 Hz)
    82 2.05-2.30 (2H, m), 3.35-3.44 (1H, m), 3.48-3.76 (3H, m), 3.96 (2H, s), 4.63
    (2H, d, J = 5.8 Hz), 5.43 (1H, d, J = 54.3 Hz), 6.45 (1H, s), 6.48 (1H, dd, J = 5.4,
    1.4 Hz), 6.79 (2H, s), 6.88 (1H, d, J = 6.0 Hz), 7.43 (1H, dd, J = 8.6, 1.7 Hz), 7.58
    (1H, d, J = 1.7 Hz), 7.76 (1H, d, J = 5.8 Hz), 7.98 (1H, d, J = 5.2 Hz), 8.12 (1H, t, J =
    2.2 Hz), 8.15 (1H, d, J = 8.6 Hz), 8.69 (1H, d, J = 2.1 Hz), 8.95 (1H, d, J =
    2.1 Hz), 9.31 (1H, t, J = 5.9 Hz)
    83 1.05 (3H, d, J = 6.6 Hz), 1.46-1.61 (1H, m), 2.00-2.11 (1H, m), 2.24-2.37 (1H,
    m), 2.87 (1H, dd, J = 10.1, 7.6 Hz), 3.26-3.33 (1H, m), 3.41-3.51 (1H, m), 3.54
    (1H, dd, J = 10.1, 7.2 Hz), 3.92 (2H, s), 4.62 (2H, d, J = 5.8 Hz), 6.34 (1H, s),
    6.40 (1H, dd, J = 5.2, 1.3 Hz), 6.82 (2H, s), 6.88 (1H, d, J = 6.0 Hz), 7.42 (1H, dd,
    J = 8.6, 1.8 Hz), 7.58 (1H, d, J = 1.7 Hz), 7.75 (1H, d, J = 5.9 Hz), 7.93 (1H, d, J =
    5.2 Hz), 8.10 (1H, t, J = 2.1 Hz), 8.15 (1H, d, J = 8.6 Hz), 8.67 (1H, d, J = 2.1 Hz),
    8.94 (1H, d, J = 2.1 Hz), 9.30 (1H, t, J = 5.9 Hz).
    84 1.44 (6H, s), 1.79-1.90 (4H, m), 3.30-3.34 (2H, m), 3.91 (2H, s), 4.62 (2H, d, J =
    5.8 Hz), 6.32 (1H, s), 6.38 (1H, dd, J = 5.1, 1.3 Hz), 6.82 (2H, s), 6.87 (1H, d, J =
    5.8 Hz), 7.42 (1H, dd, J = 8.6, 1.7 Hz), 7.58 (1H, s), 7.75 (1H, d, J = 5.9 Hz),
    7.93 (1H, d, J = 5.1 Hz), 8.12 (1H, t, J = 2.2 Hz), 8.15 (1H, d, J = 8.6 Hz), 8.68
    (1H, d, J = 2.1 Hz), 8.94 (1H, d, J = 2.1 Hz), 9.30 (1H, t, J = 5.9 Hz).
    85 3.38-3.45 (4H, m), 3.63-3.71 (4H, m), 3.96 (2H, s), 4.62 (2H, d, J = 5.8 Hz),
    6.57 (1H, dd, J = 5.1, 1.2 Hz), 6.77-6.93 (4H, m), 7.43 (1H, dd, J = 8.6, 1.7 Hz),
    7.58 (1H, s), 7.75 (1H, d, J = 5.8 Hz), 8.02 (1H, d, J = 5.1 Hz), 8.11 (1H, t, J =
    2.2 Hz), 8.16 (1H, d, J = 8.5 Hz), 8.68 (1H, d, J = 2.1 Hz), 8.94 (1H, d, J = 2.1 Hz),
    9.30 (1H, t, J = 5.9 Hz)
    86 2.23 (3H, s), 2.37-2.45 (4H, m), 3.41-3.52 (4H, m), 3.94 (2H, s), 4.62 (2H, d, J =
    5.8 Hz), 6.53 (1H, dd, J = 5.1, 1.2 Hz), 6.75 (2H, s), 6.80 (1H, s), 6.87 (1H, d, J =
    5.9 Hz), 7.41 (1H, dd, J = 8.6, 1.7 Hz), 7.57 (1H, s), 7.76 (1H, d, J = 5.8 Hz),
    8.00 (1H, d, J = 5.1 Hz), 8.11 (1H, t, J = 2.2 Hz), 8.14 (1H, d, J = 8.6 Hz), 8.68
    (1H, d, J = 2.1 Hz), 8.94 (1H, d, J = 2.1 Hz), 9.29 (1H, t, J = 5.9 Hz).
    87 1.06 (6H, t, J = 6.9 Hz), 3.45 (4H. q, J = 7.0 Hz), 3.92 (2H, s), 4.62 (2H, d, J =
    5.8 Hz), 6.37 (1H, dd, J = 5.1, 1.3 Hz), 6.50 (1H, s), 6.71 (2H, s), 6.86 (1H, d, J =
    5.9 Hz), 7.41 (1H, dd, J = 8.6, 1.8 Hz), 7.56 (1H, s), 7.76 (1H, d, J = 5.8 Hz), 7.93
    (1H, d, J = 5.0 Hz), 8.10-8.16 (2H, m), 8.68 (1H, d, J = 2.1 Hz), 8.94 (1H, d, J =
    2.1 Hz), 9.29 (1H, t, J = 5.9 Hz).
    88 1.98-2.07 (2H, m), 3.24 (3H, s), 3.28-3.47 (4H, m), 3.93 (2H, s), 4.01-4.08 (1H,
    m), 4.62 (2H, d, J = 5.8 Hz), 6.39 (1H, s), 6.43 (1H, dd, J = 5.2, 1.3 Hz), 6.84-
    7.03 (3H, m), 7.44 (1H, dd, J = 8.7, 1.7 Hz), 7.59 (1H, s), 7.75 (1H, d, J =
    5.9 Hz), 7.95 (1H, d, J = 5.1 Hz), 8.11 (1H, t, J = 2.2 Hz), 8.17 (1H, d, J = 8.6 Hz),
    8.68 (1H, d, J = 2.1 Hz), 8.94 (1H, d, J = 2.1 Hz), 9.30 (1H, t, J = 5.9 Hz).
    89 1.77-2.01 (4H, m), 3.11-3.29 (2H, m), 3.35-3.44 (1H, m), 3.50-3.59 (1H, m),
    3.93 (2H, s), 3.97-4.07 (1H, m), 4.62 (2H, d, J = 5.8 Hz), 4.90 (1H, t, J = 5.7 Hz),
    6.40-6.47 (2H, m), 6.71 (2H, s), 6.86 (1H, d, J = 5.8 Hz), 7.41 (1H, dd, J = 8.6,
    1.7 Hz), 7.57 (1H, s), 7.76 (1H, d, J = 5.8 Hz), 7.94 (1H, d, J = 5.9 Hz), 8.07-8.19
    (2H, m), 8.68 (1H, d, J = 2.1 Hz), 8.94 (1H, d, J = 2.1 Hz), 9.29 (1H, t, J = 5.9 Hz).
    90 1.75-1.88 (1H, m), 2.11-2.21 (1H, m), 2.27 (6H, s), 2.84-2.94 (1H, m), 3.09-
    3.16 (1H, m), 3.26-3.32 (1H, m), 3.50-3.58 (1H, m), 3.62-3.71 (1H, m), 3.93
    (2H, s), 4.62 (2H, d, J = 5.8 Hz), 6.39-6.47 (2H, m), 6.79 (2H, m), 6.87 (1H, d, J =
    5.9 Hz), 7.42 (1H, dd, J = 8.6, 1.7 Hz), 7.57 (1H, s), 7.76 (1H, d, J = 5.8 Hz),
    7.95 (1H, d, J = 5.1 Hz), 8.10 (1H, t, J = 2.2 Hz), 8.15 (1H, d, J = 8.6 Hz), 8.68
    (1H, d, J = 2.1 Hz), 8.94 (1H, d, J = 2.1 Hz), 9.29 (1H, t, J = 5.9 Hz).
    91 1.75-1.88 (1H, m), 2.11-2.21 (1H, m), 2.28 (6H, s), 2.84-2.94 (1H, m), 3.09-
    3.16 (1H, m), 3.26-3.32 (1H, m), 3.50-3.58 (1H, m), 3.62-3.71 (1H, m), 3.93
    (2H, s), 4.62 (2H, d, J = 5.8 Hz), 6.39-6.47 (2H, m), 6.79 (2H, m), 6.87 (1H, d, J =
    5.9 Hz), 7.42 (1H, dd, J = 8.6, 1.7 Hz), 7.57 (1H, s), 7.76 (1H, d, J = 5.8 Hz),
    7.95 (1H, d, J = 5.1 Hz), 8.10 (1H, t, J = 2.2 Hz), 8.15 (1H, d, J = 8.6 Hz), 8.68
    (1H, d, J = 2.1 Hz), 8.94 (1H, d, J = 2.1 Hz), 9.29 (1H, t, J = 5.9 Hz).
    92 1.65-1.76 (1H, m), 1.93-2.04 (1H, m), 2.34-2.43 (1H, m), 3.07-3.15 (1H, m),
    3.30-3.50 (5H, m), 3.93 (2H, s), 4.62 (2H, d, J = 5.9 Hz), 4.67 (1H, t, J = 5.2 Hz),
    6.36 (1H, s), 6.41 (1H, dd, J = 5.2, 1.4 Hz), 6.84-6.94 (3H, m), 7.44 (1H, dd, J =
    8.7, 1.8 Hz), 7.59 (1H, s), 7.75 (1H, d, J = 5.8 Hz), 7.94 (1H, d, J = 5.1 Hz), 8.10
    (1H, t, J = 2.2 Hz), 8.17 (1H, d, J = 8.6 Hz), 8.68 (1H, d, J = 2.1 Hz), 8.94 (1H, d, J =
    2.1 Hz), 9.30 (1H, t, J = 6.0 Hz).
    93 1.98 (3H, s), 2.30 (3H, s), 3.18 (2H, br s), 3.65 (2H, s), 4.00 (2H, s), 4.42 (2H, d,
    J = 5.6 Hz), 5.19 (2H, s), 7.02-7.19 (5H, m), 7.22 (2H, s), 7.24 (1H, s),
    7.52(1H, s), 8.04 (1H, d, J = 2.0 Hz), 8.62 (1H, d, J = 2.0 Hz), 8.88 (1H, d, J =
    2.0 Hz), 9.01 (1H, t, J = 5.5 Hz).
    94 2.04 (3H, s), 2.38 (6H, s), 3.24 (2H, br s), 3.70 (2H, s), 4.03 (2H, s), 4.50 (2H,
    d, J = 4.7 Hz), 5.24 (2H, s), 7.04 (2H, s), 7.18 (2H, d, J = 8.1 Hz), 7.26 (1H, s),
    7.28 (2H, s), 7.57 (1H, s), 8.05 (1H, t, J = 2.0 Hz), 8.63 (1H, d, J = 2.0 Hz), 8.66
    (1H, t, J = 4.6 Hz), 8.86 (1H, d, J = 2.0 Hz).
    95 1.98 (3H, s), 2.34 (6H, s), 3.62 (2H, s), 4.16 (2H, s), 4.51 (2H, d, J = 5.6 Hz),
    5.18 (2H, s), 6.98 (2H, s), 7.11 (2H, d, J = 8.0 Hz), 7.23 (1H, s), 7.27 (2H, d, J =
    8.1 Hz), 7.51 (1H, s), 8.48 (1H br.s), 8.76 (1H, s), 8.98 (1H, s).
    96 1.98 (3H, s), 2.70-3.20 (2H, br s), 3.72 (2H, s), 4.00 (2H, s), 4.44 (2H, d, J = 5.6
    Hz), 5.18 (2H, s), 7.04-7.14 (4H, m), 7.22-7.24 (3H, m), 7.41 (1H, dd, J = 8.0,
    8.0 Hz), 7.51 (1H, s), 8.03 (1H, s), 8.62 (1H, d, J = 2.0 Hz), 8.87 (1H, d, J = 2.0 Hz),
    9.19 (1H, t, J = 5.6 Hz).
  • Biological Methods
  • The ability of the compounds of formula (I) to inhibit plasma kallikrein may be determined using the following biological assays:
  • Determination of the IC50 for plasma kallikrein
  • Plasma kallikrein inhibitory activity in vitro was determined using standard published methods (see e.g. Johansen et al., Int. J. Tiss. Reac. 1986, 8, 185; Shori et al., Biochem. Pharmacol., 1992, 43, 1209; Sturzebecher et al., Biol. Chem. Hoppe-Seyler, 1992, 373, 1025). Human plasma kallikrein (Protogen) was incubated at 37° C. with the fluorogenic substrate H-DPro-Phe-Arg-AFC and various concentrations of the test compound. Residual enzyme activity (initial rate of reaction) was determined by measuring the change in optical absorbance at 410 nm and the IC50 value for the test compound was determined.
  • Data acquired from these assays are shown in Table 12 below. Generally, but not exclusively, preferred compounds demonstrate an IC50 of less than 200 nM.
  • TABLE 12
    Example No IC50 (human PKal) nM
    1 3.86
    2 216
    3 159
    4 6610
    5 24.7
    6 580
    7 35.3
    8 119
    9 30.8
    10 194
    11 82.3
    12 244
    13 923
    14 2670
    15 159
    16 179
    17 27.5
    18 702
    19 434
    20 621
    21 53.3
    22 104
    23 40000
    24 1710
    25 2640
    26 941
    27 1010
    28 1100
    29 20200
    30 302
    31 144
    32 237
    33 17.1
    34 1020
    35 3510
    36 6650
    37 1180
    38 107
    39 10000
    40 127
    41 2750
    42 1830
    43 11000
    44 6790
    45 33600
    46 7510
    47 40000
    48 21900
    49 6990
    50 10000
    51 8110
    52 10000
    53 200
    54 14600
    55 103
    56 313
    57 240
    58 153
    59 417
    60 137
    61 137
    62 255
    63 432
    64 610
    65 131
    66 52.7
    67 73.3
    68 375
    69 579
    70 1740
    71 306
    72 860
    73 51.1
    74 83.1
    75 6120
    76 242
    77 37.7
    78 164
    79 155
    80 88.5
    81 674
    82 67.8
    83 106
    84 683
    85 1670
    86 395
    87 358
    88 234
    89 104
    90 1550
    91 1710
    92 355
    93 14.4
    94 7.47
    95 53.6
    96 365
  • Selected compounds were further screened for inhibitory activity against the related enzyme KLK1. The ability of the compounds of formula (I) to inhibit KLK1 may be determined using the following biological assay:
  • Determination of the IC50 for KLK1
  • KLK1 inhibitory activity in vitro was determined using standard published methods (see e.g. Johansen et al., Int. J. Tiss. Reac. 1986, 8, 185; Shori et al., Biochem. Pharmacol., 1992, 43, 1209; Sturzebecher et al., Biol. Chem. Hoppe-Seyler, 1992, 373, 1025). Human KLK1 (Callbiochem) was incubated at 37° C. with the fluorogenic substrate H-DVal-Leu-Arg-AFC and various concentrations of the test compound. Residual enzyme activity (initial rate of reaction) was determined by measuring the change in optical absorbance at 410 nm and the IC50 value for the test compound was determined.
  • Data acquired from this assay are shown in Table 13 below:
  • TABLE 13
    Example No IC50 (human KLK1) nM
    1 >10,000
    2 >10,000
    3 >40,000
    4 >40,000
    5 28900
    6 27800
    7 8020
    8 28200
    9 5340
    10 3020
    11 37100
    12 14900
    13 236
    14 4160
    15 17600
    16 2060
    17 1120
    18 1740
    19 1210
    20 2490
    21 5990
    22 484
    23 32700
    24 4000
    25 6170
    26 >40,000
    27 12100
    28 5900
    29 7350
    30 2850
    31 4130
    32 9530
    33 17100
    34 >40,000
    35 29800
    36 23800
    37 29100
    38 8600
    39 >10,000
    40 4870
    41 37000
    42 24300
    43 17900
    44 28000
    45 26900
    46 29200
    47 >40,000
    48 >40,000
    49 >10,000
    50 >10,000
    51 >10,000
    52 >10,000
    53 3860
    54 10700
    55 4960
    56 >40,000
    57 >40,000
    58 6520
    59 6010
    60 8690
    61 6550
    62 8890
    63 >10,000
    64 5340
    65 >10,000
    66 5850
    67 5150
    68 3510
    69 2430
    70 >10,000
    71 3950
    72 3620
    73 6690
    74 >10,000
    75 >10,000
    76 3750
    77 4800
    78 6930
    79 7140
    80 7550
    81 9570
    82 4000
    83 2870
    84 10700
    85 8540
    86 4460
    87 4980
    88 9850
    89 4840
    90 3880
    91 2110
    92 7510
    93 >40,000
    94 >40,000
    95 >40,000
    96 >40,000

Claims (15)

What is claimed is:
1. A compound of formula I
Figure US20220153724A1-20220519-C00119
Wherein:
B is
Figure US20220153724A1-20220519-C00120
n is 0, 1 or 2;
W, X, Y and Z are, independently, C, C(R16)-C, C(R16)=C, C═N, N, O or S, such that the ring containing W, X, Y and Z is a six-membered aromatic heterocycle;
wherein,
R5, R6 and R7 are, independently, absent, or H, alkyl, alkoxy, halo, OH, aryl, heteroaryl, —NR8R9, CN, COOR8, CONR8R9, —NR8COR9, or CF3; and
R16 is H, alkyl, alkoxy, halo, OH, NR8R9, aryl, heteroaryl, or CF3;
A is aryl, heteroaryl, or a substituent group that is formula (A), (B), (C), or (D):
Figure US20220153724A1-20220519-C00121
wherein:
G is H, alkyl, cycloalkyl, CO-aryl, SO2-aryl, (CH2)m-aryl, or (CH2)m-heteroaryl;
m is 0 or 1;
p is 0, 1, 2 or 3;
R23 is aryl or heteroaryl;
R24 is aryl or heteroaryl;
L is a linker that is a covalent bond, —(CHR17)-, —(CH2)1-10—, —O—(CH2)2-10—, —(CH2)1-10—O—(CH2)1-10—, —(CH2)1-10—NH—(CH2)1-10—, —CONH—(CH2)1-10—, —CO—, or —SO2—;
U and V are, independently, C or N such that the aromatic ring containing U and V is phenyl, pyridine or pyrazine;
R1 is absent when U is N;
R2 is absent when V is N;
or, when present, R1 and R2 are, independently, H, alkyl, alkoxy, CN, halo, or CF3;
R3 is H, alkyl, alkoxy, CN, halo or CF3;
P is H and Q is —C(R18)(R19)NH2, or P is —C(R18)(R19)NH2 and Q is H;
R8 and R9 are, independently, H or alkyl;
R12 and R13 are, independently, H or alkyl, or together form a cycloalkyl ring;
R17 is alkyl or OH;
R18 and R19 are, independently, H or alkyl, or together form a cycloalkyl ring or a cyclic ether;
alkyl is a linear saturated hydrocarbon having up to 10 carbon atoms (C1-C10) or a branched saturated hydrocarbon of between 3 and 10 carbon atoms (C3-C10); wherein the alkyl is optionally substituted with 1 or 2 substituents that are, independently, (C1-C6)alkoxy, OH, CN, CF3, COOR10, CONR10R11, fluoro, phenyl, or NR10R11;
cycloalkyl is a monocyclic saturated hydrocarbon of between 3 and 7 carbon atoms;
a cyclic ether is a monocyclic saturated hydrocarbon of between 4 and 7 carbon atoms, wherein one of the ring carbons is replaced by an oxygen atom;
alkoxy is a linear O-linked hydrocarbon of between 1 and 6 carbon atoms (C1-C6) or a branched O-linked hydrocarbon of between 3 and 6 carbon atoms (C3-C6); wherein the alkoxy is optionally substituted with 1 or 2 substituents that are, independently, OH, OCH3, CN, CF3, COOR10, CONR10R11, fluoro or NR10R11;
aryl is phenyl, biphenyl or naphthyl; wherein the aryl is optionally substituted with 1, 2 or 3 substituents that are, independently, alkyl, alkoxy, methylenedioxy, ethylenedioxy, OH, halo, CN, morpholinyl, piperidinyl, heteroaryl, —(CH2)0-3—O-heteroaryl, arylb, —O-arylb, —(CH2)1-3-arylb, —(CH2)1-3-heteroaryl, —COOR10, —CONR10R11, —(CH2)1-3—NR14R15, CF3 or —NR10R11;
arylb is phenyl, biphenyl or naphthyl, which is optionally substituted with 1, 2 or 3 substituents that are, independently, alkyl, alkoxy, OH, halo, CN, morpholinyl, piperidinyl, —COOR10, —CONR10R11, CF3 or NR10R11;
heteroaryl is a 5, 6, 9 or 10 membered mono- or bi-cyclic aromatic ring, containing, where possible, 1, 2 or 3 ring members that are, independently, N, NR8, S or O; heteroaryl is optionally substituted with 1, 2 or 3 substituents that are, independently, alkyl, alkoxy, OH, halo, CN, aryl, morpholinyl, piperidinyl, —(CH2)1-3-aryl, heteroarylb, —COOR10, —CONR10R11, CF3 or —NR10R11;
heteroarylb is a 5, 6, 9 or 10 membered mono- or bi-cyclic aromatic ring, containing, where possible, 1, 2 or 3 ring members that are, independently, N, NR8, S or O; wherein heteroarylb is optionally substituted with 1, 2 or 3 substituents that are, independently, alkyl, alkoxy, OH, halo, CN, morpholinyl, piperidinyl, aryl, —(CH2)1-3-aryl, —COOR10, —CONR10R11, CF3 or NR10R11;
R10 and R11 are, independently, H or alkyl; or R10 and R11 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which is saturated or unsaturated with 1 or 2 double bonds and which is optionally mono- or di-substituted with substituents that are oxo, alkyl, alkoxy, COOR8, OH, F or CF3;
R14 and R15 are, independently, alkyl, arylb or heteroarylb; or R14 and R15 together with the nitrogen to which they are attached form a 4-, 5-, 6- or 7-membered heterocyclic ring which is saturated or unsaturated with 1 or 2 double bonds, and optionally is oxo substituted;
or a tautomer, isomer, stereoisomer, pharmaceutically acceptable salt, or pharmaceutically acceptable solvate thereof.
2. The compound according to claim 1, wherein
B is:
Figure US20220153724A1-20220519-C00122
wherein R1, R2 and R3 are, independently, H, alkyl, alkoxy, CN, halo or CF3.
3. The compound according to claim 1, wherein n is 1.
4. The compound according to claim 1, wherein B is:
Figure US20220153724A1-20220519-C00123
wherein
R1, R2 and R3 are, independently, H, alkyl or halo;
P is —CH2NH2.
5. The compound according to claim 1, wherein L is —(CH2)1-6— or —(CHOH)—.
6. The compound according to claim 1, wherein, L is —CH2—.
7. The compound according to claim 1, wherein W, X, Y and Z are, independently, C═N, C, C(R16)-C, C(R16)=C or N, such that the ring containing W, X, Y and Z is a six-membered aromatic heterocycle; wherein R16 is H, alkyl or OH.
8. The compound according to claim 1, wherein W, X, Y and Z form a six-membered aromatic heterocycle that is:
Figure US20220153724A1-20220519-C00124
9. The compound according to claim 1, wherein A is heteroaryl substituted by phenyl wherein phenyl is optionally substituted; or A is phenyl substituted by heteroaryl, —(CH2)1-3-heteroaryl or —(CH2)1-3—NR14R15.
10. The compound according to claim 1, wherein A is:
Figure US20220153724A1-20220519-C00125
11. The compound according to claim 1, that is:
N-{[4-(Aminomethyl)-2-methylphenyl]methyl}-5-({4-[(4-methylpyrazol-1-yl)methyl]phenyl}methyl)pyridine-3-carboxamide;
N-{[4-(Aminomethyl)-2,6-dimethylphenyl]methyl}-5-({4-[(4-methylpyrazol-1-yl)methyl]phenyl}methyl)pyridine-3-carboxamide;
N-{[4-(Aminomethyl)-2,6-dimethylphenyl]methyl}-6-({4-[(4-methylpyrazol-1-yl)methyl]phenyl}methyl)pyrazine-2-carboxamide; or
N-{[4-(Aminomethyl)-3-fluorophenyl]methyl}-5-({4-[(4-methylpyrazol-1-yl)methyl]phenyl}methyl)pyridine-3-carboxamide;
or a pharmaceutically acceptable salt or solvate thereof.
12. A pharmaceutical composition comprising a compound according to claim 1 and a pharmaceutically acceptable carrier, diluent or excipient.
13. A method of treating a disease or condition in which plasma kallikrein activity is implicated, comprising administered to a subject in need thereof a therapeutically effective amount of a compound of claim 1 to the subject.
14. The method of claim 13, wherein the disease or condition in which plasma kallikrein activity is implicated is impaired visual acuity, diabetic retinopathy, diabetic macular edema, hereditary angioedema, diabetes, pancreatitis, cerebral haemorrhage, nephropathy, cardiomyopathy, neuropathy, inflammatory bowel disease, arthritis, inflammation, septic shock, hypotension, cancer, adult respiratory distress syndrome, disseminated intravascular coagulation, cardiopulmonary bypass surgery, or bleeding from post operative surgery.
15. The method of claim 14, wherein the disease or condition in which plasma kallikrein activity is implicated is retinal vascular permeability associated with diabetic retinopathy or diabetic macular edema.
US17/666,213 2013-08-14 2022-02-07 Inhibitors Of Plasma Kallikrein Abandoned US20220153724A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/666,213 US20220153724A1 (en) 2013-08-14 2022-02-07 Inhibitors Of Plasma Kallikrein

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201361865756P 2013-08-14 2013-08-14
US201361865732P 2013-08-14 2013-08-14
PCT/GB2014/052510 WO2015022546A1 (en) 2013-08-14 2014-08-14 Inhibitors of plasma kallikrein
US201614907842A 2016-01-27 2016-01-27
US16/254,102 US11242333B2 (en) 2013-08-14 2019-01-22 Inhibitors of plasma kallikrein
US17/666,213 US20220153724A1 (en) 2013-08-14 2022-02-07 Inhibitors Of Plasma Kallikrein

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/254,102 Continuation US11242333B2 (en) 2013-08-14 2019-01-22 Inhibitors of plasma kallikrein

Publications (1)

Publication Number Publication Date
US20220153724A1 true US20220153724A1 (en) 2022-05-19

Family

ID=53019231

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/254,102 Active US11242333B2 (en) 2013-08-14 2019-01-22 Inhibitors of plasma kallikrein
US17/666,213 Abandoned US20220153724A1 (en) 2013-08-14 2022-02-07 Inhibitors Of Plasma Kallikrein

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/254,102 Active US11242333B2 (en) 2013-08-14 2019-01-22 Inhibitors of plasma kallikrein

Country Status (3)

Country Link
US (2) US11242333B2 (en)
BR (1) BR112016003039B8 (en)
TW (1) TWI636047B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201421088D0 (en) * 2014-11-27 2015-01-14 Kalvista Pharmaceuticals Ltd New enzyme inhibitors

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5187157A (en) 1987-06-05 1993-02-16 Du Pont Merck Pharmaceutical Company Peptide boronic acid inhibitors of trypsin-like proteases
GB9019558D0 (en) 1990-09-07 1990-10-24 Szelke Michael Enzyme inhibitors
SE9301911D0 (en) 1993-06-03 1993-06-03 Ab Astra NEW PEPTIDE DERIVATIVES
US5589467A (en) 1993-09-17 1996-12-31 Novo Nordisk A/S 2,5',N6-trisubstituted adenosine derivatives
US5786328A (en) 1995-06-05 1998-07-28 Genentech, Inc. Use of kunitz type plasma kallikrein inhibitors
US7101878B1 (en) 1998-08-20 2006-09-05 Agouron Pharmaceuticals, Inc. Non-peptide GNRH agents, methods and intermediates for their preparation
EP1169038B9 (en) 1999-04-15 2013-07-10 Bristol-Myers Squibb Company Cyclic protein tyrosine kinase inhibitors
AU2002334205B2 (en) 2001-10-26 2007-07-05 Istituto Di Ricerche Di Biologia Molecolara P. Angeletti Spa Dihydroxypyrimidine carboxamide inhibitors of HIV integrase
CA2465207C (en) 2001-11-01 2011-01-04 Icagen, Inc. Pyrazole-amides and -sulfonamides
GB0205527D0 (en) 2002-03-08 2002-04-24 Ferring Bv Inhibitors
PE20040600A1 (en) 2002-04-26 2004-09-15 Lilly Co Eli TRIAZOLE DERIVATIVES AS ANTAGONISTS OF THE TACHYCININ RECEPTOR
EP1426364A1 (en) 2002-12-04 2004-06-09 Aventis Pharma Deutschland GmbH Imidazole-derivatives as factor Xa inhibitors
DE10301300B4 (en) 2003-01-15 2009-07-16 Curacyte Chemistry Gmbh Use of acylated 4-amidino- and 4-guanidinobenzylamines for the inhibition of plasma kallikrein
CA2514940A1 (en) 2003-02-03 2004-08-19 Janssen Pharmaceutica N.V. Quinoline-derived amide modulators of vanilloid vr1 receptor
US7759472B2 (en) 2003-08-27 2010-07-20 Ophthotech Corporation Combination therapy for the treatment of ocular neovascular disorders
TW200526588A (en) 2003-11-17 2005-08-16 Smithkline Beecham Corp Chemical compounds
GB0403155D0 (en) 2004-02-12 2004-03-17 Vernalis Res Ltd Chemical compounds
EP1568698A1 (en) 2004-02-27 2005-08-31 Aventis Pharma Deutschland GmbH Pyrrole-derivatives as factor Xa inhibitors
US7429604B2 (en) 2004-06-15 2008-09-30 Bristol Myers Squibb Company Six-membered heterocycles useful as serine protease inhibitors
PT1784402E (en) 2004-09-03 2011-08-23 Yuhan Corp Pyrrolo[3,2-c]pyridine derivatives and processes for the preparation thereof
US8841259B2 (en) 2005-02-24 2014-09-23 Joslin Diabetes Center Compositions and methods for treating vascular permeability
GB0508472D0 (en) 2005-04-26 2005-06-01 Glaxo Group Ltd Compounds
KR101142363B1 (en) 2005-06-27 2012-05-21 주식회사유한양행 A composition for treating a cancer comprising pyrrolopyridine derivatives
CN101263121A (en) 2005-07-14 2008-09-10 塔克达圣地亚哥公司 Histone deacetylase inhibitors
US20070254894A1 (en) 2006-01-10 2007-11-01 Kane John L Jr Novel small molecules with selective cytotoxicity against human microvascular endothelial cell proliferation
GB0606876D0 (en) 2006-04-05 2006-05-17 Glaxo Group Ltd Compounds
US20070258976A1 (en) 2006-05-04 2007-11-08 Ward Keith W Combination Therapy for Diseases Involving Angiogenesis
DK2049478T3 (en) 2006-07-06 2012-07-09 Glaxo Group Ltd Substituted N-phenylmethyl-5-oxoproline-2-amides as P2X7 receptor antagonists and methods for their use
CN101495468A (en) * 2006-07-31 2009-07-29 艾克提弗赛特制药股份有限公司 Inhibitors of plasma kallikrein
CA2658523C (en) 2006-07-31 2012-06-12 Activesite Pharmaceuticals, Inc. Inhibitors of plasma kallikrein
DE102006050672A1 (en) 2006-10-24 2008-04-30 Curacyte Discovery Gmbh New glycylglycine derivatives with a benzylsulfonylamido group and an amidino-organylamido group at the opposite chain ends, used in drugs for reducing loss of blood, e.g. in operations
UY30850A1 (en) 2006-12-29 2008-07-31 Abbott Gmbh & Amp CARBOXAMIDE COMPOUNDS AND THEIR USES AS CALPAINA INHIBITORS
US20100119512A1 (en) 2007-01-25 2010-05-13 Joslin Diabetes Center Methods of diagnosing, treating, and preventing increased vascular permeability
WO2008109177A2 (en) 2007-03-07 2008-09-12 Alantos Pharmaceuticals Holding, Inc. Metalloprotease inhibitors containing a heterocyclic moiety
NZ579892A (en) 2007-03-30 2012-03-30 Sanofi Aventis Pyrimidine hydrazide compounds as prostaglandin D synthase inhibitors
KR20090127435A (en) 2007-04-03 2009-12-11 글락소 그룹 리미티드 Imidazolidine carboxamide derivatives as p2x7 modulators
US8324263B2 (en) 2007-07-26 2012-12-04 Syngenta Crop Protection, Llc Microbiocidally active carboxamides
BRPI0815668A2 (en) 2007-08-22 2017-05-23 Allergan Inc pyrrol compounds having sphingosine-1-phosphate receptor antagonist and agonist biological activity.
EP2219646A4 (en) 2007-12-21 2010-12-22 Univ Rochester Method for altering the lifespan of eukaryotic organisms
WO2009083553A1 (en) 2007-12-31 2009-07-09 Rheoscience A/S Azine compounds as glucokinase activators
US8658685B2 (en) 2008-01-31 2014-02-25 Activesite Pharmaceuticals, Inc. Methods for treatment of kallikrein-related disorders
WO2009106980A2 (en) 2008-02-29 2009-09-03 Pfizer Inc. Indazole derivatives
CN102026996B (en) 2008-03-13 2015-01-07 百时美施贵宝公司 Pyridazine derivatives as factor XIA inhibitors
SI2308838T1 (en) 2008-07-08 2016-09-30 Daiichi Sankyo Company, Limited Nitrogen-containing aromatic heterocyclyl compound
US8324385B2 (en) 2008-10-30 2012-12-04 Madrigal Pharmaceuticals, Inc. Diacylglycerol acyltransferase inhibitors
GB0910003D0 (en) 2009-06-11 2009-07-22 Univ Leuven Kath Novel compounds for the treatment of neurodegenerative diseases
AU2010330743A1 (en) 2009-12-18 2012-07-05 Activesite Pharmaceuticals, Inc. Prodrugs of inhibitors of plasma kallikrein
JP2011157349A (en) 2010-01-07 2011-08-18 Daiichi Sankyo Co Ltd Pharmaceutical composition containing nitrogen-containing aromatic heterocyclyl compound
BR112012019042A8 (en) 2010-01-28 2017-12-26 The Medicines Company Leipzig Gmbh trypsin-like serine protease inhibitor compounds, their use, and preparation processes
JP2013121919A (en) 2010-03-25 2013-06-20 Astellas Pharma Inc Plasma kallikrein inhibitor
US8921319B2 (en) 2010-07-07 2014-12-30 The Medicines Company (Leipzig) Gmbh Serine protease inhibitors
EP2595986A2 (en) 2010-07-14 2013-05-29 Addex Pharma SA Novel 2-amino-4-pyrazolyl-thiazole derivatives and their use as allosteric modulators of metabotropic glutamate receptors
US9290485B2 (en) 2010-08-04 2016-03-22 Novartis Ag N-((6-amino-pyridin-3-yl)methyl)-heteroaryl-carboxamides
EP2458315B1 (en) 2010-11-25 2017-01-04 Balcke-Dürr GmbH Regenerative heat exchanger with forced rotor seal
EP2697196A1 (en) 2011-04-13 2014-02-19 Activesite Pharmaceuticals, Inc. Prodrugs of inhibitors of plasma kallikrein
WO2012174362A1 (en) 2011-06-17 2012-12-20 Research Triangle Institute Pyrazole derivatives as cannabinoid receptor 1 antagonists
GB2494851A (en) 2011-07-07 2013-03-27 Kalvista Pharmaceuticals Ltd Plasma kallikrein inhibitors
US9249096B2 (en) 2011-09-27 2016-02-02 Bristol-Myers Squibb Company Pyrrolinone carboxamide compounds useful as endothelial lipase inhibitors
WO2013048982A1 (en) 2011-09-27 2013-04-04 Bristol-Myers Squibb Company Pyrrolinone carboxamide compounds useful as endothelial lipase inhibitors
US20140350034A1 (en) 2012-01-27 2014-11-27 Novartis Ag Aminopyridine derivatives as plasma kallikrein inhibitors
WO2013111108A1 (en) * 2012-01-27 2013-08-01 Novartis Ag 5-membered heteroarylcarboxamide derivatives as plasma kallikrein inhibitors
US9085583B2 (en) 2012-02-10 2015-07-21 Constellation—Pharmaceuticals, Inc. Modulators of methyl modifying enzymes, compositions and uses thereof
WO2013130603A1 (en) 2012-02-27 2013-09-06 Board Of Regents, The University Of Texas System Ganglioside gd2 as a marker and target on cancer stem cells
GB201212081D0 (en) 2012-07-06 2012-08-22 Kalvista Pharmaceuticals Ltd New polymorph
KR20150103285A (en) 2013-01-08 2015-09-09 사피라 파르마슈티칼즈 게엠베하 Pyrimidone derivatives and their use in the treatment, amelioration or prevention of a viral disease
GB201300304D0 (en) 2013-01-08 2013-02-20 Kalvista Pharmaceuticals Ltd Benzylamine derivatives
GB2510407A (en) 2013-02-04 2014-08-06 Kalvista Pharmaceuticals Ltd Aqueous suspensions of kallikrein inhibitors for parenteral administration
EP3456744B1 (en) 2013-01-20 2023-03-29 Takeda Pharmaceutical Company Limited Evaluation and treatment of bradykinin-mediated disorders
BR112015022340A2 (en) 2013-03-15 2017-07-18 Verseon Corp method for treating or preventing a kallikrein-related disease or disorder in a subject, compound, and pharmaceutical composition
JP6538028B2 (en) 2013-05-23 2019-07-03 カルビスタ・ファーマシューティカルズ・リミテッド Heterocyclic derivative
GB2517908A (en) 2013-08-14 2015-03-11 Kalvista Pharmaceuticals Ltd Bicyclic inhibitors
CA2920815C (en) 2013-08-14 2021-09-21 Kalvista Pharmaceuticals Limited Inhibitors of plasma kallikrein
US9611252B2 (en) 2013-12-30 2017-04-04 Lifesci Pharmaceuticals, Inc. Therapeutic inhibitory compounds
CA2935683A1 (en) 2013-12-30 2015-07-09 Lifesci Pharmaceuticals, Inc. Therapeutic inhibitory compounds
RS63763B1 (en) 2014-03-07 2022-12-30 Biocryst Pharm Inc Substituted pyrazoles as human plasma kallikrein inhibitors
WO2015171526A2 (en) 2014-05-05 2015-11-12 Global Blood Therapeutics, Inc. Tricyclic pyrazolopyridine compounds
US9695166B2 (en) 2014-05-05 2017-07-04 Global Blood Therapeutics, Inc. Pyrazolopyridine pyrazolopyrimidine and related compounds
CA2954814A1 (en) 2014-07-16 2016-01-21 Lifesci Pharmaceuticals, Inc. Isonicotinamide compounds and their use as plasma kallikrein inhibitors
EP3182962B1 (en) 2014-08-22 2023-06-07 Biocryst Pharmaceuticals, Inc. Compositions and uses of amidine derivatives
US10189810B2 (en) 2014-09-17 2019-01-29 Verseon Corporation Pyrazolyl-substituted pyridone compounds as serine protease inhibitors
GB201421088D0 (en) 2014-11-27 2015-01-14 Kalvista Pharmaceuticals Ltd New enzyme inhibitors
GB201421083D0 (en) 2014-11-27 2015-01-14 Kalvista Pharmaceuticals Ltd Enzyme inhibitors
GB201421085D0 (en) 2014-11-27 2015-01-14 Kalvista Pharmaceuticals Ltd New enzyme inhibitors
ES2931460T3 (en) 2015-02-27 2022-12-29 Verseon Int Corporation Substituted pyrazole compounds as serine protease inhibitors
CA2991174A1 (en) 2015-07-01 2017-01-05 Lifesci Pharmaceuticals, Inc. Therapeutic inhibitory compounds
EP3317259A4 (en) 2015-07-01 2019-06-12 Lifesci Pharmaceuticals, Inc. Therapeutic inhibitory compounds
EP3368524B1 (en) 2015-10-27 2021-08-18 Boehringer Ingelheim International GmbH Heteroarylcarboxamide derivatives as plasma kallikrein inhibitors
EP3368529B1 (en) 2015-10-27 2022-04-06 Boehringer Ingelheim International GmbH Heteroarylcarboxamide derivatives as plasma kallikrein inhibitors
SI3464271T1 (en) 2016-05-31 2020-10-30 Kalvista Pharmaceuticals Limited Pyrazole derivatives as plasma kallikrein inhibitors
GB201609519D0 (en) 2016-05-31 2016-07-13 Kalvista Pharmaceuticals Ltd Polymorphs of n-[(2,6-difluoro-3-methoxyphenyl)methyl]-3-(methoxymethyl)-1-({4-[(2-oxopyr idin-1-yl)methyl]phenyl}methyl)pyrazole-4-carboxamide
GB201609603D0 (en) 2016-06-01 2016-07-13 Kalvista Pharmaceuticals Ltd Polymorphs of N-[(6-cyano-2-fluoro-3-methoxyphenyl)Methyl]-3-(methoxymethyl)-1-({4-[(2-ox opyridin-1-YL)Methyl]phenyl}methyl)pyrazole-4-carboxamide
GB201609607D0 (en) 2016-06-01 2016-07-13 Kalvista Pharmaceuticals Ltd Polymorphs of N-(3-Fluoro-4-methoxypyridin-2-yl)methyl)-3-(methoxymethyl)-1-({4-((2-oxopy ridin-1-yl)methyl)phenyl}methyl)pyrazole-4-carboxamide and salts
CN110022875A (en) 2016-07-11 2019-07-16 莱福斯希医药公司 Therapeutic inhibiting compound
GB201719881D0 (en) 2017-11-29 2018-01-10 Kalvista Pharmaceuticals Ltd Solid forms of plasma kallikrein inhibitor and salts thereof
GB201719882D0 (en) 2017-11-29 2018-01-10 Kalvista Pharmaceuticals Ltd Solid forms of a plasma kallikrein inhibitor and salts thereof
WO2019106359A1 (en) 2017-11-29 2019-06-06 Kalvista Pharmaceuticals Limited Enzyme inhibitors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. G. Cannon, Chapter Nineteen in Burger's Medicinal Chemistry and Drug Discovery, Fifth Edition, Volume I: Principles and Practice, Wiley-Interscience 1995, pp. 783-802. (Year: 1995) *

Also Published As

Publication number Publication date
BR112016003039B1 (en) 2022-12-06
TW201506014A (en) 2015-02-16
US11242333B2 (en) 2022-02-08
BR112016003039A2 (en) 2017-08-01
US20190152950A1 (en) 2019-05-23
BR112016003039B8 (en) 2022-12-20
TWI636047B (en) 2018-09-21

Similar Documents

Publication Publication Date Title
US10221161B2 (en) Inhibitors of plasma kallikrein
US11084809B2 (en) N-((HET)arylmethyl)-heteroaryl-carboxamides compounds as kallikrein inhibitors
JP7109012B2 (en) Pyrazole derivatives as plasma kallikrein inhibitors
US9533987B2 (en) Heterocyclic derivates
US10781181B2 (en) N-((het) arylmethyl)-heteroaryl-carboxamides compounds as plasma kallikrein inhibitors
US9738641B2 (en) Bicyclic inhibitors
WO2021032934A1 (en) Enzyme inhibitors
US20220153724A1 (en) Inhibitors Of Plasma Kallikrein

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION