US20220102630A1 - Resistive memory cell - Google Patents

Resistive memory cell Download PDF

Info

Publication number
US20220102630A1
US20220102630A1 US17/548,894 US202117548894A US2022102630A1 US 20220102630 A1 US20220102630 A1 US 20220102630A1 US 202117548894 A US202117548894 A US 202117548894A US 2022102630 A1 US2022102630 A1 US 2022102630A1
Authority
US
United States
Prior art keywords
dielectric
memory cell
resistive memory
dielectric region
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/548,894
Inventor
Matthew N. Rocklein
D.V. Nirmal Ramaswamy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Micron Technology Inc
Original Assignee
Micron Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Micron Technology Inc filed Critical Micron Technology Inc
Priority to US17/548,894 priority Critical patent/US20220102630A1/en
Assigned to MICRON TECHNOLOGY, INC. reassignment MICRON TECHNOLOGY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RAMASWAMY, D.V. NIRMAL, ROCKLEIN, MATTHEW N.
Publication of US20220102630A1 publication Critical patent/US20220102630A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • H01L45/146
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • H01L27/2463
    • H01L45/06
    • H01L45/08
    • H01L45/1233
    • H01L45/147
    • H01L45/1608
    • H01L45/1616
    • H01L45/1675
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/023Formation of switching materials, e.g. deposition of layers by chemical vapor deposition, e.g. MOCVD, ALD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8836Complex metal oxides, e.g. perovskites, spinels

Definitions

  • the present disclosure relates generally to semiconductor memory devices and methods, and more particularly, to resistive memory devices, cell structures and methods.
  • RAM random-access memory
  • ROM read only memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • resistive memory and flash memory, among others.
  • resistive memory include programmable conductor memory, and resistive random access memory (RRAM), among others.
  • Non-volatile memory are utilized as non-volatile memory for a wide range of electronic applications in need of high memory densities, high reliability, and data retention without power.
  • Non-volatile memory may be used in, for example, personal computers, portable memory sticks, solid state drives (SSDs), digital cameras, cellular telephones, portable music players such as MP3 players, movie players, and other electronic devices.
  • RRAM devices include resistive memory cells that store data based on the resistance level of a storage element.
  • the cells can be programmed to a desired state, e.g., corresponding to a particular resistance level, such as by applying sources of energy, such as positive or negative voltages to the cells for a particular duration.
  • Some RRAM cells can be programmed to multiple states such that they can represent, e.g., store, two or more bits of data.
  • the programmed state of a resistive memory cell may be determined, e.g., read, for example, by sensing current through the selected resistive memory cell responsive to an applied interrogation voltage.
  • the sensed current which varies based on the resistance level of the memory cell, can indicate the programmed state of the resistive memory cell.
  • a two-state resistive memory cell can have a low resistance state and a high resistance state. Each respective resistance state can correspond with a logic state, e.g., “0” or “1.” According to a previous resistive memory cells approach, the low resistance state can occur due to a non-volatile formation of one or more conductive filaments in a dielectric between electrodes, and the high resistance state can occur due to a non-volatile dissolution of the conductive filament(s) in the dielectric. Ions in the dielectric and/or electrode(s) can be re-located by the application of electrical energy to form or dissolve a conductive filament. A relatively smaller application of electrical energy can be used to ascertain the resistive state.
  • FIG. 1 is a block diagram of a portion of an array of resistive memory cells in accordance with one or more embodiments of the present disclosure.
  • FIG. 2 illustrates a cross-sectional view of a portion of multi-state resistive memory cells in accordance with one or more embodiments of the present disclosure.
  • FIGS. 3A-3B illustrate cross-sectional views of a portion of a resistive memory cell having dielectric and barrier dielectric materials formed horizontally in accordance with one or more embodiments of the present disclosure.
  • FIGS. 4A-4B illustrate cross-sectional views of a portion of a resistive memory cell having dielectric and barrier dielectric materials formed vertically in accordance with one or more embodiments of the present disclosure.
  • One example method of a resistive memory cell can include a number of dielectric regions formed between two electrodes, and a barrier dielectric region formed between each of the dielectric regions.
  • the barrier dielectric region serves to reduce an oxygen diffusion rate associated with the dielectric regions.
  • Embodiments of the present disclosure can provide benefits such as resistive memory cells having multiple states and/or improved switching characteristics as compared to previous resistive memory cells, among other benefits.
  • forming a slow oxygen diffusion barrier and/or grain boundary disruptor between dielectric portions of a resistive memory cell can have various benefits, such as multiple states and/or improved switching characteristics.
  • the dielectric and/or barrier dielectric regions can be formed, for example, via an atomic layer deposition (ALD) process, which is well-suited to deposit dielectric materials with sub-nanometer thickness control.
  • ALD atomic layer deposition
  • the present disclosure provides dielectric laminates and alloys that support one or more of the following benefits: 1) controlled oxygen diffusion barriers, 2) grain-boundary disruption, 3) crystalline or amorphous control, and 4) reduced dielectric roughness by control of grain size, among other benefits.
  • FIG. 1 is a block diagram of a portion of an array 100 of memory cells 106 in accordance with one or more embodiments of the present disclosure.
  • Memory devices may include a number of memory cells 106 arranged in a matrix, e.g., array, 100 .
  • a memory cell may include a storage element coupled to a select device, e.g., an access device.
  • the storage element can include a programmable portion that may have a variable resistance, for example.
  • the access device can be a diode, field effect transistor (FET), or bipolar junction transistor (BJT), among others.
  • the array 100 is an array including a first number of access conductive lines 102 - 0 , 102 - 1 , . . .
  • word lines 102 - 0 , 102 - 1 , . . . , 102 -N are substantially parallel to each other and are substantially orthogonal to the bit lines 104 - 0 , 104 - 1 , . . . , 104 -M, which are substantially parallel to each other; however, embodiments are not so limited.
  • substantially intends that the modified characteristic need not be absolute, but is close enough so as to achieve the advantages of the characteristic.
  • substantially parallel is not limited to absolute parallelism, and can include structure orientations that are non-intersecting for a given application and at least closer to a parallel orientation than a perpendicular orientation.
  • a memory cell 106 is located at each of the intersections of the word lines 102 - 0 , 102 - 1 , . . . , 102 -N and bit lines 104 - 0 , 104 - 1 , . . . , 104 -M.
  • the memory cells 106 can function in a two-terminal architecture e.g., with a particular word line 102 - 0 , 102 - 1 , . . . , 102 -N and bit line 104 - 0 , 104 - 1 , . . . , 104 -M serving as a bottom and top electrode.
  • a memory cell may be coupled to a word line forming a “row” of the array.
  • Each memory cell may be coupled to a bit line forming a “column” of the array.
  • the memory cells 106 of array 100 can be resistive memory cells such as those described in connection with FIGS. 2, 3A, 3B, 4A and 4B . More particularly, the memory cells 106 of array 100 can be configured as a resistive random access memory (RRAM).
  • RRAM resistive random access memory
  • the storage element can include a programmable portion.
  • the programmable portion may be programmable to a number of different logic states.
  • the programmable portion of a storage element can be programmed to particular levels corresponding to particular logic states responsive to applied programming voltage and/or current pulses.
  • the programmable portion of a storage element can include, for example, one or more materials such as a transition metal oxide material or a perovskite including two or more metals, e.g., transition metals, alkaline earth metals, and/or rare earth metals.
  • Embodiments are not limited to a particular material or materials associated with the programmable portion of a storage element of the memory cells 106 .
  • the programmable portion of a storage element can be formed of various doped or undoped materials.
  • Other examples of materials that can be used to form the programmable portion of a storage element include binary metal oxide materials, colossal magnetoresistive materials, and/or various polymer-based resistive variable materials, among others.
  • the memory cells 106 of array 100 can be programmed by applying a voltage, e.g., a write voltage, across the memory cells 106 via selected word lines 102 - 0 , 102 - 1 , . . . , 102 -N and bit lines 104 - 0 , 104 - 1 , . . . , 104 -M.
  • the width and/or magnitude of the voltage pulses across the memory cells 106 can be adjusted, e.g., varied, in order to program the memory cells 106 to particular logic states, e.g., by adjusting a resistance level of the storage element.
  • a sensing, e.g., read, operation can be used to determine the logic state of a memory cell 106 by a magnitude of sensing current, for example, on a bit line 104 - 0 , 104 - 1 , . . . , 104 -M corresponding to the respective memory cell 106 responsive to a particular voltage applied to the selected word line 102 - 0 , 102 - 1 , . . . , 102 -N to which the respective cell 106 is coupled.
  • Sensing operations can also include biasing unselected word lines and bit lines at particular voltages in order to sense the logic state of a selected cell 106 .
  • FIG. 2 illustrates a cross-sectional view of a portion of a resistive memory cell including a dielectric and barrier dielectric in accordance with one or more embodiments of the present disclosure.
  • one or more thin, discrete barrier dielectric materials can create local changes in ion diffusion rates, e.g., oxygen ion diffusion rates, through a bulk dielectric so that a conductive filament extending from cathode to anode can be avoided for certain programming energies.
  • Discrete barrier dielectric materials within bulk dielectric materials can result in discrete regions of stoichiometric oxides and sub-oxides being created under programming, next to a highly oxygen-deficient and oxygen-loving electrode.
  • the resistive memory cell structure illustrated in FIG. 2 can provide improved controllability and/or multiple write states over the art. Multiple write states in a resistive memory device can increase bit densities in memory devices such as RRAM. Additionally, for crystalline dielectrics, benefits can also be achieved by the discrete barrier dielectric materials causing grain-boundary disruption with respect to the bulk dielectric materials. Certain problems of resistive memory device performance, for example within an RRAM, such as cycling and/or bit-to-bit reproducibility, may arise if the switching mechanism is “filamentary” in nature. Crystalline grain-boundaries are often both leakage paths and oxygen diffusion paths.
  • the pathways can be broken between electrodes such that filamentary switching will be prevented, or at least reduced and moderated, which can provide improved cell-to-cell performance consistency.
  • cell-to-cell performance can be based on the average of many filamentary switching events, e.g., within a greater number of discrete dielectric material regions, rather than that of a single filamentary switching event, e.g., from cathode to anode.
  • FIG. 2 illustrates a cross-sectional view of a portion of multi-state resistive memory cells in accordance with one or more embodiments of the present disclosure.
  • a two-state resistive memory cell can have a low resistance state and a high resistance state, each respective resistance state being associated with a corresponding logic state, e.g., “0” and “1.”
  • a multi-state resistive memory cell can have a number of intermediate resistance states between the lowest resistance state and the highest resistance state.
  • a respective intermediate resistance state can be associated with a corresponding logic state.
  • FIG. 2 shows a cross-sectional view of a portion of a resistive memory cell 230 .
  • Resistive memory cell 230 can include a thin film comprising a number of solid laminate dielectric materials 235 between electrodes, e.g., a cathode and an anode, as shown in FIG. 2 .
  • the laminate dielectric materials 235 can include alternating dielectric 236 regions and barrier dielectric 238 regions, e.g., layers.
  • the laminate dielectric materials 235 can further include an optional buffer dielectric region 240 between the dielectric region 236 closest to electrode 232 and electrode 232 .
  • the laminate dielectric materials 235 can also include an additional barrier dielectric 242 region between the dielectric region 236 furthest away from an electrode 232 , and the electrode 234 .
  • the electrode 232 can be a metal alloy anode, and an electrode 234 can be a metal cathode.
  • the electrode 232 , 234 can be coupled to a word line or bit line of a memory array, such as is shown in FIG. 1 .
  • a control transistor can also be associated with each resistive memory cell 230 for selection thereof.
  • the electrodes 232 and 234 can be comprised of the same or different materials and can have the same or different physical sizes and/or shapes.
  • the resistive memory cell 230 can be symmetric or asymmetric.
  • Example electrode materials include a metal or metal alloy, such as titanium, tungsten, and platinum, or combinations thereof, although embodiments are not limited to particular electrode materials. More particularly, one electrode 232 can be comprised of material that is relatively inert, e.g., titanium nitride (TiN) or platinum. Another electrode 234 can be a material that is electrochemically active, e.g., titanium. However, embodiments of the present disclosure are not so limited, and the electrode 234 may be nickel, strontium, hafnium, zirconium, tantalum, aluminum, and/or tungsten, among other metals and/or combinations thereof.
  • the number of laminate dielectric materials 235 can include alternating dielectric regions 236 and barrier dielectric regions 238 , e.g., alternating layers of dielectric materials and barrier dielectric materials.
  • An optional buffer dielectric material 240 may be located adjacent the electrode 232 , e.g., between the electrode 232 and a nearest dielectric region 236 .
  • An optional barrier dielectric material 242 may be located adjacent electrode 234 , e.g., between electrode 234 and a nearest dielectric region 236 .
  • a resistive memory cell 230 includes at least two dielectric regions 236 having a barrier dielectric region 238 therebetween.
  • a resistive memory cell 230 includes a plurality of barrier dielectric materials 238 , each barrier dielectric region 238 being located between dielectric regions 236 , such that the barrier dielectric materials 238 and dielectric regions 236 alternate.
  • a dielectric region 236 is formed on an electrode 232 , and a barrier dielectric region 238 is formed on the dielectric region 236 .
  • Another dielectric region 236 is formed on the barrier dielectric region 238 , and then electrode 234 is formed on the another dielectric region 236 .
  • the barrier dielectric region 238 is a material having a slower oxygen diffusion rate and/or serves as a grain-boundary disruptor relative to the dielectric regions 236 .
  • an optional buffer dielectric material 240 can be formed on electrode 232 .
  • One or more instances of a dielectric region 236 and a barrier dielectric region 238 are formed on the optional buffer dielectric material 240 , with a dielectric region 236 being adjacent the optional buffer dielectric material 240 .
  • Another dielectric region 236 is formed on the one or more instances of the dielectric region 236 and the barrier dielectric region 238 , such that it is located adjacent a barrier dielectric region 238 and furthest away from the electrode 232 .
  • An optional barrier dielectric material 242 can be formed on the dielectric region 236 located furthest away from electrode 232 , and electrode 234 can be formed on the optional barrier dielectric material 242 (if present). If the optional buffer dielectric 240 is not formed, the one or more instances of a dielectric region 236 and a barrier dielectric region 238 can be formed directly on electrode 232 . Also, if the optional barrier dielectric material 242 is not included in the resistive memory cell, electrode 234 can be formed directly on the dielectric region 236 located furthest away from electrode 232 .
  • the resistive memory cell 230 can be an oxide based RRAM cell, for example.
  • An oxide based resistive memory cell 230 can refer to a cell that includes a resistive oxide material, e.g., an oxygen source as the dielectric region 236 and/or barrier dielectric region 238 between the two electrodes 232 and 234 .
  • Some oxide based memory cells can include one or more additional oxide materials and/or second electrodes along with the oxide material(s) between the two electrodes.
  • Examples of metal oxides (MO X ) that can be included in the dielectric region 236 include a near-stoichiometric, stoichiometric, and/or sub-stoichiometric metal oxide material.
  • a near-stoichiometric oxide can be an oxide that has an oxygen percentage at or approximately at a stoichiometric ratio for the oxide.
  • a sub-stoichiometric oxide can be an oxide that has an oxygen percentage below a stoichiometric ratio for the oxide.
  • the dielectric region 236 can include titanium dioxide (TiO 2 ).
  • the dielectric region 236 can include other metal oxides such as lanthanum oxide (La 2 O 3 ), lanthanum aluminate (LaAlO 3 ), gallium oxide (Ga 2 O 3 ), zirconium oxide (ZrO 2 ),), zirconium silicon oxide (Zr X Si Y O Z ), zirconium titanium oxide (Zr X Ti Y O Z ), hafnium oxide (HfO 2 ), hafnium titanium oxide (Hf X Ti Y O Z ), strontium titanate (SrTiO 3 ), lanthanum calcium manganese oxide (LCMO), magnesium oxide (MgO), aluminum oxide (Al X O Y ) such as Al 2 O 3 , tin dioxide (SnO 2 ), zinc peroxide (ZnO 2 ), titanium silicon oxide (Ti X Si Y O Z ),
  • other metal oxides such as lanthan
  • dielectric region 236 including metal oxides
  • the dielectric region 236 can be formed using other resistive metal alloys.
  • the dielectric regions 236 can be formed to be amorphous, crystalline, or combinations thereof.
  • one dielectric region 236 can be amorphous and another one dielectric region 236 can be crystalline.
  • the barrier dielectric region 238 is a slow oxygen diffusion barrier and/or grain-boundary disruptor material with respect to the dielectric regions 236 .
  • the resistive state of the resistive memory cell 230 can change depending on the location of the oxygen ions within the laminate dielectric materials 235 between the two electrodes.
  • the inclusion of barrier dielectric region 238 between instances of the bulk dielectric region 236 is intended to disrupt the formation of continuous filaments between the cathode and anode.
  • the barrier dielectric region 238 can have a bulk anion, e.g., oxygen, diffusion rate that differs from that of the dielectric region 236 alone.
  • barrier dielectric region 238 examples include zirconium oxide (ZrO 2 ), silicon dioxide (SiO 2 ), and aluminum oxide (Al X O Y ) such as Al 2 O 3 , among others.
  • Barrier dielectric region 238 can be formed to be amorphous or crystalline. Where multiple barrier dielectric regions 238 are formed, some may be amorphous and others may be crystalline. Also, a barrier dielectric region 238 may be amorphous adjacent an amorphous or crystalline dielectric region 236 , or may be crystalline adjacent an amorphous or crystalline dielectric region 236 .
  • the dielectric material anion e.g., oxygen
  • the barrier dielectric region 238 can serve to disrupt the grain boundaries of the dielectric region 236 , thereby helping to moderate the diffusion paths and reduce filamentary properties, for instance.
  • one or more portions of the dielectric region 236 may be formed from a different material than another portion of the dielectric region 236 . That is, the various dielectric regions 236 may be, but need not be, formed from a same, e.g., metal oxide, material. According to one or more embodiments, one or more portions of the barrier dielectric region 238 may be formed from a different material than another portion of the barrier dielectric region 238 .
  • the dielectric and/or barrier dielectric regions can be discrete regions with well-defined boundaries.
  • embodiments of the present disclosure are not so limited, and the dielectric and/or barrier dielectric regions can be formed having less than discrete boundaries.
  • regions can be defined by a gradual transition from one material to another, e.g., a gradient, such as between dielectric and barrier dielectric materials rather than an abrupt and distinct transition.
  • the dielectric and/or barrier dielectric regions can be formed, for example, via an atomic layer deposition (ALD) process, which is well-suited to deposit dielectric materials with sub-nanometer thickness control.
  • ALD atomic layer deposition
  • a single bulk film of metal oxide e.g., Zr X Si Y O Z , Hf X Si Y O Z , Ti X Si Y O Z .
  • ALD atomic layer deposition
  • an initial quantity of metal oxide material is deposited, after which the metal oxide is appropriately doped and/or augmented by a barrier dielectric material for some intermediate quantity of material deposition, after which another quantity of metal oxide material is deposited.
  • the dielectric/barrier dielectric/dielectric structure can exist within a single bulk film.
  • the barrier dielectric region can be a region intermediate to the surrounding metal oxide regions. As such, the barrier dielectric region can be a mixture including the metal oxide and/or having a gradient from metal oxide to doped/augmented metal oxide and/or barrier dielectric material, and back to metal oxide.
  • the optional buffer dielectric material 240 located between the electrode 232 and the dielectric region 236 located closest to the electrode 232 may have non-reactive stable electrical properties.
  • the optional buffer dielectric material 240 can have a lower dielectric constant (i.e., k) value, and thus a greater resistance, than the dielectric regions 236 , e.g., the dielectric region 236 located closest to electrode 232 .
  • the optional buffer dielectric material 240 can have a greater dielectric constant (i.e., k) value, and thus a lesser resistance, than the dielectric regions 236 , e.g., the dielectric region 236 located closest to electrode 232 .
  • the optional buffer dielectric material 240 can have a higher resistance than the dielectric regions 236 in order to function as a current limiting material in the resistive memory cell, e.g., especially when the resistive memory cell is in a low resistance state. Accordingly, the optional buffer dielectric material 240 can serve as a tunable material for the resistive memory cell with respect to the resistive and dielectric properties thereof.
  • the optional buffer dielectric material 240 can be a material having an appropriate resistance to limit current to a desired magnitude with respect to a particular memory cell structure.
  • the optional buffer dielectric material 240 can also be selected, in part, to have appropriate adhesion properties with respect to the electrode 232 . That is, the optional buffer dielectric material 240 can provide an adhesion interface between electrode 232 and a dielectric region 236 located closest to electrode 232 . According to some embodiments, the optional buffer dielectric material 240 doesn't deplete an anion element. The optional buffer dielectric material 240 can prevent or mitigate switching of the resistive memory cell from switching at electrode 232 . According to various embodiments, the optional barrier dielectric 242 can be formed as any other barrier dielectric region 238 , and include similar materials.
  • the dielectric region 236 , barrier dielectric region 238 , optional buffer dielectric material 240 , and optional barrier dielectric 242 can be formed, e.g., deposited, via an atomic layer deposition (ALD) process or other suitable deposition process.
  • ALD atomic layer deposition
  • the dielectric region 236 and barrier dielectric region 238 are formed with sub-nanometer thickness control, to which ALD is well-suited.
  • embodiments are not limited to a particular deposition process.
  • the dielectric region 236 can have a thickness of from about 10 to about 100 Angstroms
  • the barrier dielectric region 238 can have a thickness of less than about 20 Angstroms, e.g., from about 2 to about 20 Angstroms
  • the thin film comprising a number of laminate dielectric materials 235 can have a thickness of less than about 1000 Angstroms, e.g., from about 50 to about 1000 Angstroms.
  • embodiments are not limited to a particular thickness of dielectric region 236 , barrier dielectric region 238 , or the thin film comprising a number of laminate dielectric materials 235 .
  • the electrodes 232 and/or 234 can be formed via an ALD process, in situ using a CVD process, or other suitable deposition process. Additional materials, e.g., materials other than a metal associated with electrode 234 , such as additional materials associated with the metal precursor source, e.g., titanium chloride, titanium tetrachloride (TiCl 4 ), chlorine, as well as other precursor materials and/or reactants, e.g., hydrogen, argon, etc., associated with an in situ CVD process can react with previously formed dielectric region 236 , e.g., titanium oxide, or optional barrier dielectric material 242 and contribute to the formation of the electrodes.
  • additional materials associated with the metal precursor source e.g., titanium chloride, titanium tetrachloride (TiCl 4 ), chlorine
  • other precursor materials and/or reactants e.g., hydrogen, argon, etc.
  • precursor materials include, but are not limited to, hydrogen, argon, e.g., argon plasma, and/or a titanium chloride material such as titanium tetrachloride, titanium trichloride, or titanium dichloride, for example.
  • the formation of electrode 234 onto a dielectric region 236 can result in a reaction that can create a “reacted” metal oxide (not shown in FIG. 2 ) at the interface between electrode 234 and a deposited metal oxide material 236 .
  • the reacted metal oxide can include materials such as aluminum oxide (Al X O Y ), aluminum titanium oxide (Al X Ti Y O Z ), aluminum hafnium oxide (Al X Hf Y O Z ), silicon oxide (Si X O Y ), silicon oxynitride (Si X O Y N Z ), hafnium silicon oxide (Hf X Si Y O Z ), zirconium silicon oxide (Zr X Si Y O Z ), zirconium silicon oxynitride (Zr X Si X O Y N Z ), hafnium oxide (Hf X O Y ), zirconium oxide (Zr X Si Y O Z ), zirconium silicon oxynitride
  • the resistivity of the metal oxide portion of the resistive memory cell 230 can be dependent on the location of oxygen ions and can change as the location of the oxygen ions change, either in dielectric regions 236 or the reacted metal oxide portion.
  • dielectric region 236 located furthest away from electrode 232 is titanium dioxide (TiO 2 )
  • electrode 234 is titanium
  • PECVD plasma CVD
  • the metal oxide portion can be a sub-stoichiometric titanium oxide (TiO 2-x ).
  • embodiments of the resistive memory cell of the present disclosure are not limited to those materials shown in FIG. 2 , and may include other materials formed during the formation of the materials shown in FIG. 2 .
  • the resistance (and therefore the logic state) of the resistive memory cell 230 can change depending on the location of the ions, e.g., oxygen. However, the presence of the barrier dielectric region 238 between dielectric regions 236 interferes with the formation of a conductive filament extending from the cathode to the anode.
  • a resistive memory cell in which a conductive filament extending from the cathode to the anode in a continuous dielectric typically has only two resistive (and logic) states, a high resistance state (i.e., conductive filament present) and a low resistance state (i.e., conductive filament not present).
  • the state of resistive memory cell 230 can be read by applying a read voltage across the resistive memory cell 230 via electrodes 232 , 234 .
  • the state of resistive memory cell 230 can be programmed by applying a programming voltage across the resistive memory cell 230 via electrodes 232 , 234 sufficient to cause ion, e.g., oxygen ion for metal oxide materials, vacancy movement.
  • ion e.g., oxygen ion for metal oxide materials
  • vacancy movement When an electric field is applied, the ion vacancies drift, which is reversible by changing the direction of the current through the resistive memory cell.
  • the migration of ion vacancies in resistive memory cell can occur due to application of pulsed voltages and/or voltages of different magnitudes.
  • the resistance, and corresponding logic state, of resistive memory cell 230 can be set to a desired value by applying an appropriate voltage pulse/magnitude.
  • a resistive memory cell 230 formed having at least one instance of barrier dielectric region 238 between dielectric regions 236 can be operated to have more than two resistance (logic) states. Resistance of resistive memory cell 230 does not switch from a highest resistance state to a lowest resistance state (or from a lowest resistance state to a highest resistance state) all at once, thereby providing one or more stable, non-volatile resistive states (and corresponding logic states) in between the lowest and highest resistance states, as well as improved switching control.
  • resistive memory cell 230 Rather than switching rapidly to/from a highest resistive state directly to a lowest resistive state, conductivity of resistive memory cell 230 increases (i.e., resistance decreases) to a greater extent in those dielectric regions 236 located closest to electrode 234 for a given applied programming voltage. That is, as a result of an applied programming voltage the two dielectric regions 236 shown in FIG. 2 located closest to the second electrode may be most conductive, the dielectric region 236 located next closest to electrode 234 may be somewhat conductive, and the dielectric region 236 located closest to electrode 232 may be mostly insulative, resulting in a cumulative resistance between electrode 232 and electrode 234 intermediate between a low resistance state and a high resistance state.
  • an increased number of dielectric regions 236 can be controlled to be conducive, the level of conductivity for each particular dielectric region decreases based on distance from electrode 234 towards electrode 232 .
  • a plurality of programming voltage magnitude/durations can correspond to a plurality of discreet total resistance levels for the resistive memory cell.
  • an increased number of dielectric regions 236 can be controlled to be more insulative based on distance from electrode 232 towards electrode 234 .
  • the resistive switching characteristics can vary depending on factors such as the particular dielectric and barrier dielectric materials involved, the number and arrangement of instances of a dielectric region 236 and a barrier dielectric region 238 , use of the optional buffer dielectric material 240 and/or optional barrier dielectric material 242 , among other factors.
  • Increasing the number of instances of dielectric 236 /barrier dielectric 238 regions can provide an increasing quantity of stable resistance states (and corresponding logic states).
  • an increasing number of instances of dielectric 236 /barrier dielectric 238 regions can provide increasing granularity of resistance control, and thus generally improving switching characteristics.
  • FIGS. 3A-3B illustrate cross-sectional views of a portion of a resistive memory cell having dielectric and barrier dielectric regions formed horizontally in accordance with one or more embodiments of the present disclosure.
  • FIG. 3A shows a resistive memory cell 350 comprising a number of laminate dielectric regions 355 between two electrodes 352 and 354 .
  • the number of laminate dielectric regions 355 comprise alternating instances of dielectric regions 356 and barrier dielectric regions 358 , with dielectric regions 356 being located adjacent each electrode.
  • the resistive memory cell 350 is fabricated using horizontal laminates. That is, each successive material is deposited on previously deposited materials such that the materials are “grown” from the bottom-up, as indicated in FIG. 3A at 357 .
  • FIG. 3A shows that the instances of dielectric regions 356 and barrier dielectric regions 358 are formed substantially parallel to the electrode 352 .
  • a dielectric region 356 is formed on an electrode 352 , and a barrier dielectric region 358 is formed on the dielectric region 356 . Additional instances of alternating dielectric region 356 and barrier dielectric region 358 are formed until electrode 354 is formed on last dielectric region 356 , e.g., located furthest away from the electrode 352 .
  • the barrier dielectric region 358 is a slow oxygen diffusion barrier and/or grain-boundary disruptor material with respect to the dielectric regions 356 .
  • the resistive memory cell 360 can also fabricated using horizontal laminates. That is, each successive material can be deposited on previously deposited materials such that the materials are “grown” from the bottom-up, as indicated in FIG. 3B at 367 .
  • each of the dielectric regions 356 and barrier dielectric regions 358 are formed to be amorphous, such that the boundary between the dielectric regions 356 and barrier dielectric regions 358 are an amorphous/amorphous boundary. That is, resistive memory cell 350 includes amorphous/amorphous laminates.
  • FIG. 3B shows a resistive memory cell 360 having a thin film comprising a number of solid laminate dielectric regions 365 between two electrodes 362 and 364 .
  • the number of laminate dielectric regions 365 comprise alternating instances of dielectric regions 366 and barrier dielectric regions 368 , with dielectric regions 366 being located adjacent each electrode.
  • the resistive memory cell 360 is fabricated using horizontal formation of the various materials, as described with respect to the resistive memory cell illustrated in FIGS. 3 and 4A .
  • FIG. 3B shows that the instances of dielectric regions 366 and barrier dielectric regions 368 are formed substantially parallel to the electrode 362 .
  • each of the barrier dielectric regions 368 of resistive memory cell 360 are formed to be amorphous; however, each of the dielectric regions 366 of resistive memory cell 360 are formed to be crystalline, as may be achieved by annealing, for example. Therefore, the boundary between the dielectric regions 366 and barrier dielectric regions 368 are a crystalline/amorphous boundary. That is, resistive memory cell 360 includes crystalline/amorphous laminates.
  • FIGS. 4A-4B illustrate cross-sectional views of a portion of a resistive memory cell having dielectric and barrier dielectric regions formed vertically in accordance with one or more embodiments of the present disclosure.
  • FIG. 4A shows a resistive memory cell 470 comprising a number laminate dielectric regions 475 between two electrodes 472 and 474 .
  • the number of laminate dielectric regions 475 comprise alternating instances of dielectric regions 476 and barrier dielectric regions 478 .
  • the instances of dielectric regions 476 and barrier dielectric regions 478 are formed using vertical laminates. That is, the instances of dielectric regions 476 and barrier dielectric regions 478 are formed substantially perpendicular to the electrode 472 .
  • the term “substantially” intends that the modified characteristic need not be absolute, but is close enough to the characteristic so as to achieve the advantages of the characteristic.
  • “substantially perpendicular” is not limited to absolute perpendicularity, and can include structure orientations that are oriented sufficiently close to being at a right angle to one another so as to achieve the advantages associated with a perpendicular orientation.
  • “substantially perpendicular” intends at least being closer to an orthogonal orientation than to a parallel orientation.
  • electrode 472 is formed.
  • Bulk dielectric material 476 is formed, e.g., deposited, on the electrode 472 .
  • the bulk dielectric material 476 is patterned, etched, and filled with barrier dielectric material 478 .
  • Chemical mechanical polishing (CMP), or other suitable processing may be used to remove barrier dielectric material 478 outside the etched trenches, e.g., from the portions of the dielectric material 476 and barrier dielectric material 478 , on which electrode 474 is to be formed.
  • Electrode 474 can be formed on the instances of dielectric materials 476 and barrier dielectric materials 478 , oriented as shown in FIG. 4A , e.g., parallel to electrode 472 and perpendicular to the instances of dielectric materials 476 and barrier dielectric materials 478 .
  • the barrier dielectric material 478 has a slower oxygen diffusion rate and/or is a grain-boundary disruptor with respect to the dielectric materials 476 .
  • the electric field between the electrodes 472 and 474 is oriented parallel to the boundaries between the dielectric materials 476 and barrier dielectric materials 478 .
  • the instances of barrier dielectric materials 478 do not interrupt the formation of continuous filaments in the dielectric materials 476 , as is the case for a lateral construction, e.g., FIGS. 2, 3A, and 3B , where barrier dielectric materials are formed to be perpendicular to the electric field between the electrodes, e.g., anode and cathode.
  • electrode 472 is formed.
  • a vertical instance of dielectric region 476 is formed, e.g., deposited, on the electrode 472 such that the dielectric region 476 is perpendicular to the electrode 472 .
  • Additional alternating instances of barrier dielectric region 478 and dielectric region 476 can be formed using sidewall deposition techniques and a contact punch, for instance. The direction of growth using sidewall deposition techniques can be as shown in FIG. 4A using vertical laminates.
  • the barrier dielectric region 478 for this configuration of a resistive memory cell 470 is a slow oxygen diffusion barrier and/or grain-boundary disruptor material with respect to the dielectric regions 476 .
  • CMP CMP, or other suitable processing, may be used to remove dielectric region 476 and barrier dielectric region 478 from the build-up of dielectric region 476 and barrier dielectric region 478 on which electrode 474 is to be formed.
  • electrode 474 can be formed on the instances of dielectric regions 476 and barrier dielectric regions 478 , oriented as shown in FIG. 4A , e.g., parallel to electrode 472 and perpendicular to the instances of dielectric regions 476 and barrier dielectric regions 478 .
  • vertically oriented laminates can still provide some unique switching control as the number of channels (and channel width) within which conductive filaments can form can be precisely controlled, which may be beneficial for oxygen diffusion moderation mechanisms.
  • Controlling the number of channels (and channel width), such as by limiting the number and geometry of discrete filamentary electrical paths available, can limit radial and/or control lateral, e.g., from cathode to anode, growth of conductive filaments.
  • vertically-oriented barrier dielectric regions 478 located between vertically-oriented dielectric regions 476 can maintain amorphous dielectric regions 476 , e.g., TiO 2 , as-deposited by reducing the volume of individual dielectric regions 476 , particularly with respect to the horizontal thickness thereof.
  • Thick dielectric regions 476 e.g., TiO 2
  • the barrier dielectric regions 478 can provide a large decrease in as-deposited roughness. Roughness is generally unwanted as it tends to concentrate electric fields near an electrode interface, thereby degrading resistive memory cell performance due to enhanced filament formation.
  • each of the dielectric regions 476 and barrier dielectric regions 478 shown in FIG. 4A can be formed to be amorphous, such that the boundary between the dielectric regions 476 and barrier dielectric regions 478 are amorphous/amorphous boundaries. That is, resistive memory cell 470 can be fabricated to include amorphous/amorphous laminates.
  • Al 2 O 3 -TiO 2 laminates e.g., instances of barrier dielectric regions 478 and dielectric regions 476 respectively, can become crystalline.
  • FWHM full-width at half-maximum
  • a resistive memory cell can be configured to have one or multiple SrTiO 3 -LaAlO 3 interfaces that can be activated/deactivated under one or more auxiliary electric fields.
  • the one or more auxiliary electric fields can be provided from field-effects at small feature size for the two-electrode system shown in FIG. 4A , for example, or can be associated with a third electrode, e.g., auxiliary electrode, positioned parallel to the vertically oriented laminates and acting as a control gate, for instance.
  • FIG. 4B shows a resistive memory cell 480 comprising a number of laminate dielectric regions 485 between two electrodes 482 and 484 .
  • the number of laminate dielectric regions 485 comprise alternating instances of dielectric regions 486 and barrier dielectric regions 488 .
  • the instances of dielectric regions 486 and barrier dielectric regions 488 are formed using vertically-oriented laminates. That is, the instances of dielectric regions 486 and barrier dielectric regions 488 are formed substantially perpendicular to the electrode 482 .
  • Resistive memory cell 480 can be fabricated in accordance with the deposition techniques described above with respect to FIG. 4A , resulting in a lateral growth direction for the laminates.
  • FIG. 4B depicts dielectric regions 486 formed to be crystalline, as may be achieved by annealing, for example. Therefore, the boundaries between the dielectric regions 486 and barrier dielectric regions 488 are crystalline/crystalline boundaries. That is, resistive memory cell 480 can be fabricated to include crystalline/crystalline vertical laminates.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

Semiconductor memory devices, resistive memory devices, memory cell structures, and methods of forming a resistive memory cell are provided. One example method of a resistive memory cell can include a number of dielectric regions formed between two electrodes, and a barrier dielectric region formed between each of the dielectric regions. The barrier dielectric region serves to reduce an oxygen diffusion rate associated with the dielectric regions.

Description

    PRIORITY INFORMATION
  • This application is a Continuation of U.S. application Ser. No. 16/812,914, filed Mar. 9, 2020, which is a Continuation of U.S. application Ser. No. 15/662,974, filed Jul. 28, 2017, which issued as U.S. Pat. No. 10,586,923 on Mar. 10, 2020, which is a Divisional of U.S. application Ser. No. 14/849,715, filed Sep. 10, 2015, now abandoned, which is a Continuation of U.S. application Ser. No. 14/473,400, filed Aug. 29, 2014, now U.S. Pat. No. 9,159,921, which is a Divisional of U.S. application Ser. No. 13/109,052 filed May 17, 2011, now U.S. Pat. No. 8,847,196, the specifications of which are incorporated herein by reference.
  • TECHNICAL FIELD
  • The present disclosure relates generally to semiconductor memory devices and methods, and more particularly, to resistive memory devices, cell structures and methods.
  • BACKGROUND
  • Memory devices are typically provided as internal, semiconductor, integrated circuits in computers or other electronic devices. There are many different types of memory, including random-access memory (RAM), read only memory (ROM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), resistive memory, and flash memory, among others. Types of resistive memory include programmable conductor memory, and resistive random access memory (RRAM), among others.
  • Memory devices are utilized as non-volatile memory for a wide range of electronic applications in need of high memory densities, high reliability, and data retention without power. Non-volatile memory may be used in, for example, personal computers, portable memory sticks, solid state drives (SSDs), digital cameras, cellular telephones, portable music players such as MP3 players, movie players, and other electronic devices.
  • RRAM devices include resistive memory cells that store data based on the resistance level of a storage element. The cells can be programmed to a desired state, e.g., corresponding to a particular resistance level, such as by applying sources of energy, such as positive or negative voltages to the cells for a particular duration. Some RRAM cells can be programmed to multiple states such that they can represent, e.g., store, two or more bits of data.
  • The programmed state of a resistive memory cell may be determined, e.g., read, for example, by sensing current through the selected resistive memory cell responsive to an applied interrogation voltage. The sensed current, which varies based on the resistance level of the memory cell, can indicate the programmed state of the resistive memory cell.
  • A two-state resistive memory cell can have a low resistance state and a high resistance state. Each respective resistance state can correspond with a logic state, e.g., “0” or “1.” According to a previous resistive memory cells approach, the low resistance state can occur due to a non-volatile formation of one or more conductive filaments in a dielectric between electrodes, and the high resistance state can occur due to a non-volatile dissolution of the conductive filament(s) in the dielectric. Ions in the dielectric and/or electrode(s) can be re-located by the application of electrical energy to form or dissolve a conductive filament. A relatively smaller application of electrical energy can be used to ascertain the resistive state.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of a portion of an array of resistive memory cells in accordance with one or more embodiments of the present disclosure.
  • FIG. 2 illustrates a cross-sectional view of a portion of multi-state resistive memory cells in accordance with one or more embodiments of the present disclosure.
  • FIGS. 3A-3B illustrate cross-sectional views of a portion of a resistive memory cell having dielectric and barrier dielectric materials formed horizontally in accordance with one or more embodiments of the present disclosure.
  • FIGS. 4A-4B illustrate cross-sectional views of a portion of a resistive memory cell having dielectric and barrier dielectric materials formed vertically in accordance with one or more embodiments of the present disclosure.
  • DETAILED DESCRIPTION
  • Semiconductor memory devices, resistive memory devices, memory cell structures, and methods of forming a resistive memory cell are provided. One example method of a resistive memory cell can include a number of dielectric regions formed between two electrodes, and a barrier dielectric region formed between each of the dielectric regions. The barrier dielectric region serves to reduce an oxygen diffusion rate associated with the dielectric regions.
  • Embodiments of the present disclosure can provide benefits such as resistive memory cells having multiple states and/or improved switching characteristics as compared to previous resistive memory cells, among other benefits. As described further herein, forming a slow oxygen diffusion barrier and/or grain boundary disruptor between dielectric portions of a resistive memory cell can have various benefits, such as multiple states and/or improved switching characteristics. The dielectric and/or barrier dielectric regions can be formed, for example, via an atomic layer deposition (ALD) process, which is well-suited to deposit dielectric materials with sub-nanometer thickness control. The present disclosure provides dielectric laminates and alloys that support one or more of the following benefits: 1) controlled oxygen diffusion barriers, 2) grain-boundary disruption, 3) crystalline or amorphous control, and 4) reduced dielectric roughness by control of grain size, among other benefits.
  • In the following detailed description of the present disclosure, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration how one or more embodiments of the disclosure may be practiced. These embodiments are described in sufficient detail to enable those of ordinary skill in the art to practice the embodiments of this disclosure, and it is to be understood that other embodiments may be utilized and that process, electrical, and/or structural changes may be made without departing from the scope of the present disclosure.
  • The figures herein follow a numbering convention in which the first digit or digits correspond to the drawing figure number and the remaining digits identify an element or component in the drawing. Similar elements or components between different figures may be identified by the use of similar digits. As will be appreciated, elements shown in the various embodiments herein can be added, exchanged, and/or eliminated so as to provide a number of additional embodiments of the present disclosure. In addition, the proportion and the relative scale of the elements provided in the figures are intended to illustrate various embodiments of the present disclosure and are not to be used in a limiting sense.
  • FIG. 1 is a block diagram of a portion of an array 100 of memory cells 106 in accordance with one or more embodiments of the present disclosure. Memory devices may include a number of memory cells 106 arranged in a matrix, e.g., array, 100. A memory cell may include a storage element coupled to a select device, e.g., an access device. The storage element can include a programmable portion that may have a variable resistance, for example. The access device can be a diode, field effect transistor (FET), or bipolar junction transistor (BJT), among others. In the example illustrated in FIG. 1, the array 100 is an array including a first number of access conductive lines 102-0, 102-1, . . . 1, 02-N, e.g., access lines, which may be referred to herein as word lines, and a second number of data/sense conductive lines 104-0, 104-1, . . . , 104-M, e.g., data lines, which may be referred to herein as bit lines. As illustrated, the word lines 102-0, 102-1, . . . , 102-N are substantially parallel to each other and are substantially orthogonal to the bit lines 104-0, 104-1, . . . , 104-M, which are substantially parallel to each other; however, embodiments are not so limited.
  • As used herein, the term “substantially” intends that the modified characteristic need not be absolute, but is close enough so as to achieve the advantages of the characteristic. For example, “substantially parallel” is not limited to absolute parallelism, and can include structure orientations that are non-intersecting for a given application and at least closer to a parallel orientation than a perpendicular orientation.
  • In this example, a memory cell 106 is located at each of the intersections of the word lines 102-0, 102-1, . . . , 102-N and bit lines 104-0, 104-1, . . . , 104-M. The memory cells 106 can function in a two-terminal architecture e.g., with a particular word line 102-0, 102-1, . . . , 102-N and bit line 104-0, 104-1, . . . , 104-M serving as a bottom and top electrode. A memory cell may be coupled to a word line forming a “row” of the array. Each memory cell may be coupled to a bit line forming a “column” of the array.
  • According to one or more embodiments, the memory cells 106 of array 100 can be resistive memory cells such as those described in connection with FIGS. 2, 3A, 3B, 4A and 4B. More particularly, the memory cells 106 of array 100 can be configured as a resistive random access memory (RRAM).
  • As previously mentioned, the storage element can include a programmable portion. The programmable portion may be programmable to a number of different logic states. For instance, the programmable portion of a storage element can be programmed to particular levels corresponding to particular logic states responsive to applied programming voltage and/or current pulses. The programmable portion of a storage element can include, for example, one or more materials such as a transition metal oxide material or a perovskite including two or more metals, e.g., transition metals, alkaline earth metals, and/or rare earth metals. Embodiments are not limited to a particular material or materials associated with the programmable portion of a storage element of the memory cells 106. For instance, the programmable portion of a storage element can be formed of various doped or undoped materials. Other examples of materials that can be used to form the programmable portion of a storage element include binary metal oxide materials, colossal magnetoresistive materials, and/or various polymer-based resistive variable materials, among others.
  • In operation, the memory cells 106 of array 100 can be programmed by applying a voltage, e.g., a write voltage, across the memory cells 106 via selected word lines 102-0, 102-1, . . . , 102-N and bit lines 104-0, 104-1, . . . , 104-M. The width and/or magnitude of the voltage pulses across the memory cells 106 can be adjusted, e.g., varied, in order to program the memory cells 106 to particular logic states, e.g., by adjusting a resistance level of the storage element.
  • A sensing, e.g., read, operation can be used to determine the logic state of a memory cell 106 by a magnitude of sensing current, for example, on a bit line 104-0, 104-1, . . . , 104-M corresponding to the respective memory cell 106 responsive to a particular voltage applied to the selected word line 102-0, 102-1, . . . , 102-N to which the respective cell 106 is coupled. Sensing operations can also include biasing unselected word lines and bit lines at particular voltages in order to sense the logic state of a selected cell 106.
  • FIG. 2 illustrates a cross-sectional view of a portion of a resistive memory cell including a dielectric and barrier dielectric in accordance with one or more embodiments of the present disclosure. According to one or more embodiments of the present disclosure, one or more thin, discrete barrier dielectric materials can create local changes in ion diffusion rates, e.g., oxygen ion diffusion rates, through a bulk dielectric so that a conductive filament extending from cathode to anode can be avoided for certain programming energies. Discrete barrier dielectric materials within bulk dielectric materials can result in discrete regions of stoichiometric oxides and sub-oxides being created under programming, next to a highly oxygen-deficient and oxygen-loving electrode.
  • The resistive memory cell structure illustrated in FIG. 2, for example, can provide improved controllability and/or multiple write states over the art. Multiple write states in a resistive memory device can increase bit densities in memory devices such as RRAM. Additionally, for crystalline dielectrics, benefits can also be achieved by the discrete barrier dielectric materials causing grain-boundary disruption with respect to the bulk dielectric materials. Certain problems of resistive memory device performance, for example within an RRAM, such as cycling and/or bit-to-bit reproducibility, may arise if the switching mechanism is “filamentary” in nature. Crystalline grain-boundaries are often both leakage paths and oxygen diffusion paths. By disrupting the grains with one or more grain-boundaries, e.g., created at an interface of a barrier dielectric material and dielectric material, the pathways can be broken between electrodes such that filamentary switching will be prevented, or at least reduced and moderated, which can provide improved cell-to-cell performance consistency. For instance, cell-to-cell performance can be based on the average of many filamentary switching events, e.g., within a greater number of discrete dielectric material regions, rather than that of a single filamentary switching event, e.g., from cathode to anode.
  • FIG. 2 illustrates a cross-sectional view of a portion of multi-state resistive memory cells in accordance with one or more embodiments of the present disclosure. As described above with respect to a prior art resistive memory cell, a two-state resistive memory cell can have a low resistance state and a high resistance state, each respective resistance state being associated with a corresponding logic state, e.g., “0” and “1.” A multi-state resistive memory cell can have a number of intermediate resistance states between the lowest resistance state and the highest resistance state. A respective intermediate resistance state can be associated with a corresponding logic state.
  • FIG. 2 shows a cross-sectional view of a portion of a resistive memory cell 230. Resistive memory cell 230 can include a thin film comprising a number of solid laminate dielectric materials 235 between electrodes, e.g., a cathode and an anode, as shown in FIG. 2. The laminate dielectric materials 235 can include alternating dielectric 236 regions and barrier dielectric 238 regions, e.g., layers. The laminate dielectric materials 235 can further include an optional buffer dielectric region 240 between the dielectric region 236 closest to electrode 232 and electrode 232. The laminate dielectric materials 235 can also include an additional barrier dielectric 242 region between the dielectric region 236 furthest away from an electrode 232, and the electrode 234. The electrode 232 can be a metal alloy anode, and an electrode 234 can be a metal cathode.
  • Although not shown in FIG. 2, the electrode 232, 234 can be coupled to a word line or bit line of a memory array, such as is shown in FIG. 1. A control transistor can also be associated with each resistive memory cell 230 for selection thereof. The electrodes 232 and 234 can be comprised of the same or different materials and can have the same or different physical sizes and/or shapes. The resistive memory cell 230 can be symmetric or asymmetric.
  • Example electrode materials include a metal or metal alloy, such as titanium, tungsten, and platinum, or combinations thereof, although embodiments are not limited to particular electrode materials. More particularly, one electrode 232 can be comprised of material that is relatively inert, e.g., titanium nitride (TiN) or platinum. Another electrode 234 can be a material that is electrochemically active, e.g., titanium. However, embodiments of the present disclosure are not so limited, and the electrode 234 may be nickel, strontium, hafnium, zirconium, tantalum, aluminum, and/or tungsten, among other metals and/or combinations thereof.
  • The number of laminate dielectric materials 235 can include alternating dielectric regions 236 and barrier dielectric regions 238, e.g., alternating layers of dielectric materials and barrier dielectric materials. An optional buffer dielectric material 240 may be located adjacent the electrode 232, e.g., between the electrode 232 and a nearest dielectric region 236. An optional barrier dielectric material 242 may be located adjacent electrode 234, e.g., between electrode 234 and a nearest dielectric region 236. According to one or more embodiments, a resistive memory cell 230 includes at least two dielectric regions 236 having a barrier dielectric region 238 therebetween. According to one or more embodiments, a resistive memory cell 230 includes a plurality of barrier dielectric materials 238, each barrier dielectric region 238 being located between dielectric regions 236, such that the barrier dielectric materials 238 and dielectric regions 236 alternate.
  • According to an example method of forming a resistive memory cell in accordance with one or more embodiments of the present disclosure, a dielectric region 236 is formed on an electrode 232, and a barrier dielectric region 238 is formed on the dielectric region 236. Another dielectric region 236 is formed on the barrier dielectric region 238, and then electrode 234 is formed on the another dielectric region 236. The barrier dielectric region 238 is a material having a slower oxygen diffusion rate and/or serves as a grain-boundary disruptor relative to the dielectric regions 236.
  • According to another example method of forming a resistive memory cell in accordance with one or more embodiments of the present disclosure, an optional buffer dielectric material 240 can be formed on electrode 232. One or more instances of a dielectric region 236 and a barrier dielectric region 238 are formed on the optional buffer dielectric material 240, with a dielectric region 236 being adjacent the optional buffer dielectric material 240. Another dielectric region 236 is formed on the one or more instances of the dielectric region 236 and the barrier dielectric region 238, such that it is located adjacent a barrier dielectric region 238 and furthest away from the electrode 232.
  • An optional barrier dielectric material 242 can be formed on the dielectric region 236 located furthest away from electrode 232, and electrode 234 can be formed on the optional barrier dielectric material 242 (if present). If the optional buffer dielectric 240 is not formed, the one or more instances of a dielectric region 236 and a barrier dielectric region 238 can be formed directly on electrode 232. Also, if the optional barrier dielectric material 242 is not included in the resistive memory cell, electrode 234 can be formed directly on the dielectric region 236 located furthest away from electrode 232.
  • The resistive memory cell 230 can be an oxide based RRAM cell, for example. An oxide based resistive memory cell 230 can refer to a cell that includes a resistive oxide material, e.g., an oxygen source as the dielectric region 236 and/or barrier dielectric region 238 between the two electrodes 232 and 234. Some oxide based memory cells can include one or more additional oxide materials and/or second electrodes along with the oxide material(s) between the two electrodes.
  • Examples of metal oxides (MOX) that can be included in the dielectric region 236 include a near-stoichiometric, stoichiometric, and/or sub-stoichiometric metal oxide material. A near-stoichiometric oxide can be an oxide that has an oxygen percentage at or approximately at a stoichiometric ratio for the oxide. A sub-stoichiometric oxide can be an oxide that has an oxygen percentage below a stoichiometric ratio for the oxide.
  • According to one or more embodiments, the dielectric region 236 can include titanium dioxide (TiO2). According to some embodiments, the dielectric region 236 can include other metal oxides such as lanthanum oxide (La2O3), lanthanum aluminate (LaAlO3), gallium oxide (Ga2O3), zirconium oxide (ZrO2),), zirconium silicon oxide (ZrXSiYOZ), zirconium titanium oxide (ZrXTiYOZ), hafnium oxide (HfO2), hafnium titanium oxide (HfXTiYOZ), strontium titanate (SrTiO3), lanthanum calcium manganese oxide (LCMO), magnesium oxide (MgO), aluminum oxide (AlXOY) such as Al2O3, tin dioxide (SnO2), zinc peroxide (ZnO2), titanium silicon oxide (TiXSiYOZ), and/or a hafnium silicon oxide (HfXSiYOZ), among other metal oxide materials that are suitable oxygen sources. However, embodiments are not limited to the dielectric region 236 including metal oxides, and the dielectric region 236 can be formed using other resistive metal alloys. The dielectric regions 236 can be formed to be amorphous, crystalline, or combinations thereof. For example, one dielectric region 236 can be amorphous and another one dielectric region 236 can be crystalline.
  • The barrier dielectric region 238 is a slow oxygen diffusion barrier and/or grain-boundary disruptor material with respect to the dielectric regions 236. The resistive state of the resistive memory cell 230, fabricated in accordance with the present disclosure, can change depending on the location of the oxygen ions within the laminate dielectric materials 235 between the two electrodes. The inclusion of barrier dielectric region 238 between instances of the bulk dielectric region 236 is intended to disrupt the formation of continuous filaments between the cathode and anode. As such, the barrier dielectric region 238 can have a bulk anion, e.g., oxygen, diffusion rate that differs from that of the dielectric region 236 alone.
  • Examples of materials that can be included in the barrier dielectric region 238 include zirconium oxide (ZrO2), silicon dioxide (SiO2), and aluminum oxide (AlXOY) such as Al2O3, among others. Barrier dielectric region 238 can be formed to be amorphous or crystalline. Where multiple barrier dielectric regions 238 are formed, some may be amorphous and others may be crystalline. Also, a barrier dielectric region 238 may be amorphous adjacent an amorphous or crystalline dielectric region 236, or may be crystalline adjacent an amorphous or crystalline dielectric region 236.
  • Where the dielectric region 236, e.g., TiO2, is formed to have a crystalline structure, the dielectric material anion, e.g., oxygen, can diffuse out more rapidly along boundaries of the dielectric region 236. The barrier dielectric region 238 can serve to disrupt the grain boundaries of the dielectric region 236, thereby helping to moderate the diffusion paths and reduce filamentary properties, for instance.
  • According to one or more embodiments, one or more portions of the dielectric region 236 may be formed from a different material than another portion of the dielectric region 236. That is, the various dielectric regions 236 may be, but need not be, formed from a same, e.g., metal oxide, material. According to one or more embodiments, one or more portions of the barrier dielectric region 238 may be formed from a different material than another portion of the barrier dielectric region 238.
  • According to one or more embodiments, the dielectric and/or barrier dielectric regions can be discrete regions with well-defined boundaries. However, embodiments of the present disclosure are not so limited, and the dielectric and/or barrier dielectric regions can be formed having less than discrete boundaries. For example, regions can be defined by a gradual transition from one material to another, e.g., a gradient, such as between dielectric and barrier dielectric materials rather than an abrupt and distinct transition. As previously mentioned, the dielectric and/or barrier dielectric regions can be formed, for example, via an atomic layer deposition (ALD) process, which is well-suited to deposit dielectric materials with sub-nanometer thickness control.
  • According to various embodiments of forming a resistive memory cell, a single bulk film of metal oxide, e.g., ZrXSiYOZ, HfXSiYOZ, TiXSiYOZ, is formed by ALD. During the ALD, an initial quantity of metal oxide material is deposited, after which the metal oxide is appropriately doped and/or augmented by a barrier dielectric material for some intermediate quantity of material deposition, after which another quantity of metal oxide material is deposited. The dielectric/barrier dielectric/dielectric structure can exist within a single bulk film. The barrier dielectric region can be a region intermediate to the surrounding metal oxide regions. As such, the barrier dielectric region can be a mixture including the metal oxide and/or having a gradient from metal oxide to doped/augmented metal oxide and/or barrier dielectric material, and back to metal oxide.
  • According to various embodiments, the optional buffer dielectric material 240, located between the electrode 232 and the dielectric region 236 located closest to the electrode 232 may have non-reactive stable electrical properties. According to some embodiments, the optional buffer dielectric material 240 can have a lower dielectric constant (i.e., k) value, and thus a greater resistance, than the dielectric regions 236, e.g., the dielectric region 236 located closest to electrode 232. According to some embodiments, the optional buffer dielectric material 240 can have a greater dielectric constant (i.e., k) value, and thus a lesser resistance, than the dielectric regions 236, e.g., the dielectric region 236 located closest to electrode 232. The optional buffer dielectric material 240 can have a higher resistance than the dielectric regions 236 in order to function as a current limiting material in the resistive memory cell, e.g., especially when the resistive memory cell is in a low resistance state. Accordingly, the optional buffer dielectric material 240 can serve as a tunable material for the resistive memory cell with respect to the resistive and dielectric properties thereof. For example, the optional buffer dielectric material 240 can be a material having an appropriate resistance to limit current to a desired magnitude with respect to a particular memory cell structure.
  • The optional buffer dielectric material 240 can also be selected, in part, to have appropriate adhesion properties with respect to the electrode 232. That is, the optional buffer dielectric material 240 can provide an adhesion interface between electrode 232 and a dielectric region 236 located closest to electrode 232. According to some embodiments, the optional buffer dielectric material 240 doesn't deplete an anion element. The optional buffer dielectric material 240 can prevent or mitigate switching of the resistive memory cell from switching at electrode 232. According to various embodiments, the optional barrier dielectric 242 can be formed as any other barrier dielectric region 238, and include similar materials.
  • The dielectric region 236, barrier dielectric region 238, optional buffer dielectric material 240, and optional barrier dielectric 242 can be formed, e.g., deposited, via an atomic layer deposition (ALD) process or other suitable deposition process. According to one or more embodiments, the dielectric region 236 and barrier dielectric region 238 are formed with sub-nanometer thickness control, to which ALD is well-suited. However, embodiments are not limited to a particular deposition process. In some embodiments, the dielectric region 236 can have a thickness of from about 10 to about 100 Angstroms, the barrier dielectric region 238 can have a thickness of less than about 20 Angstroms, e.g., from about 2 to about 20 Angstroms, and the thin film comprising a number of laminate dielectric materials 235 can have a thickness of less than about 1000 Angstroms, e.g., from about 50 to about 1000 Angstroms. However, embodiments are not limited to a particular thickness of dielectric region 236, barrier dielectric region 238, or the thin film comprising a number of laminate dielectric materials 235.
  • The electrodes 232 and/or 234 can be formed via an ALD process, in situ using a CVD process, or other suitable deposition process. Additional materials, e.g., materials other than a metal associated with electrode 234, such as additional materials associated with the metal precursor source, e.g., titanium chloride, titanium tetrachloride (TiCl4), chlorine, as well as other precursor materials and/or reactants, e.g., hydrogen, argon, etc., associated with an in situ CVD process can react with previously formed dielectric region 236, e.g., titanium oxide, or optional barrier dielectric material 242 and contribute to the formation of the electrodes. Some examples of precursor materials include, but are not limited to, hydrogen, argon, e.g., argon plasma, and/or a titanium chloride material such as titanium tetrachloride, titanium trichloride, or titanium dichloride, for example.
  • The formation of electrode 234 onto a dielectric region 236 can result in a reaction that can create a “reacted” metal oxide (not shown in FIG. 2) at the interface between electrode 234 and a deposited metal oxide material 236. The reacted metal oxide can include materials such as aluminum oxide (AlXOY), aluminum titanium oxide (AlXTiYOZ), aluminum hafnium oxide (AlXHfYOZ), silicon oxide (SiXOY), silicon oxynitride (SiXOYNZ), hafnium silicon oxide (HfXSiYOZ), zirconium silicon oxide (ZrXSiYOZ), zirconium silicon oxynitride (ZrXSiXOYNZ), hafnium oxide (HfXOY), zirconium oxide (ZrXOY), titanium oxide (TiXOY), hafnium zirconium oxide (HfXZrYOZ), hafnium titanium oxide (HfXTiYOZ), zirconium titanium oxide (ZrXTiYOZ), and/or strontium oxide (SrXOY), among other materials.
  • The resistivity of the metal oxide portion of the resistive memory cell 230 can be dependent on the location of oxygen ions and can change as the location of the oxygen ions change, either in dielectric regions 236 or the reacted metal oxide portion. For example, where dielectric region 236 located furthest away from electrode 232 is titanium dioxide (TiO2), electrode 234 is titanium, and a plasma CVD (PECVD) process used to deposit materials includes a titanium tetrachloride (TiCl4) metal precursor source along with hydrogen (H2) and an argon plasma component, the metal oxide portion can be a sub-stoichiometric titanium oxide (TiO2-x). Regardless, embodiments of the resistive memory cell of the present disclosure are not limited to those materials shown in FIG. 2, and may include other materials formed during the formation of the materials shown in FIG. 2.
  • The resistance (and therefore the logic state) of the resistive memory cell 230 can change depending on the location of the ions, e.g., oxygen. However, the presence of the barrier dielectric region 238 between dielectric regions 236 interferes with the formation of a conductive filament extending from the cathode to the anode. A resistive memory cell in which a conductive filament extending from the cathode to the anode in a continuous dielectric typically has only two resistive (and logic) states, a high resistance state (i.e., conductive filament present) and a low resistance state (i.e., conductive filament not present).
  • The state of resistive memory cell 230 can be read by applying a read voltage across the resistive memory cell 230 via electrodes 232, 234. The state of resistive memory cell 230 can be programmed by applying a programming voltage across the resistive memory cell 230 via electrodes 232, 234 sufficient to cause ion, e.g., oxygen ion for metal oxide materials, vacancy movement. When an electric field is applied, the ion vacancies drift, which is reversible by changing the direction of the current through the resistive memory cell. The migration of ion vacancies in resistive memory cell can occur due to application of pulsed voltages and/or voltages of different magnitudes. The resistance, and corresponding logic state, of resistive memory cell 230 can be set to a desired value by applying an appropriate voltage pulse/magnitude.
  • According to one or more embodiments of the present disclosure, a resistive memory cell 230 formed having at least one instance of barrier dielectric region 238 between dielectric regions 236 can be operated to have more than two resistance (logic) states. Resistance of resistive memory cell 230 does not switch from a highest resistance state to a lowest resistance state (or from a lowest resistance state to a highest resistance state) all at once, thereby providing one or more stable, non-volatile resistive states (and corresponding logic states) in between the lowest and highest resistance states, as well as improved switching control. Rather than switching rapidly to/from a highest resistive state directly to a lowest resistive state, conductivity of resistive memory cell 230 increases (i.e., resistance decreases) to a greater extent in those dielectric regions 236 located closest to electrode 234 for a given applied programming voltage. That is, as a result of an applied programming voltage the two dielectric regions 236 shown in FIG. 2 located closest to the second electrode may be most conductive, the dielectric region 236 located next closest to electrode 234 may be somewhat conductive, and the dielectric region 236 located closest to electrode 232 may be mostly insulative, resulting in a cumulative resistance between electrode 232 and electrode 234 intermediate between a low resistance state and a high resistance state.
  • With appropriate application of programming voltage in excess of a threshold voltage/duration for a given resistance state, an increased number of dielectric regions 236 can be controlled to be conducive, the level of conductivity for each particular dielectric region decreases based on distance from electrode 234 towards electrode 232. A plurality of programming voltage magnitude/durations can correspond to a plurality of discreet total resistance levels for the resistive memory cell. Conversely, with appropriate application of a reverse polarity of programming voltage, an increased number of dielectric regions 236 can be controlled to be more insulative based on distance from electrode 232 towards electrode 234.
  • The resistive switching characteristics can vary depending on factors such as the particular dielectric and barrier dielectric materials involved, the number and arrangement of instances of a dielectric region 236 and a barrier dielectric region 238, use of the optional buffer dielectric material 240 and/or optional barrier dielectric material 242, among other factors. Increasing the number of instances of dielectric 236/barrier dielectric 238 regions can provide an increasing quantity of stable resistance states (and corresponding logic states). Additionally, an increasing number of instances of dielectric 236/barrier dielectric 238 regions can provide increasing granularity of resistance control, and thus generally improving switching characteristics.
  • FIGS. 3A-3B illustrate cross-sectional views of a portion of a resistive memory cell having dielectric and barrier dielectric regions formed horizontally in accordance with one or more embodiments of the present disclosure. FIG. 3A shows a resistive memory cell 350 comprising a number of laminate dielectric regions 355 between two electrodes 352 and 354. The number of laminate dielectric regions 355 comprise alternating instances of dielectric regions 356 and barrier dielectric regions 358, with dielectric regions 356 being located adjacent each electrode. The resistive memory cell 350 is fabricated using horizontal laminates. That is, each successive material is deposited on previously deposited materials such that the materials are “grown” from the bottom-up, as indicated in FIG. 3A at 357. FIG. 3A shows that the instances of dielectric regions 356 and barrier dielectric regions 358 are formed substantially parallel to the electrode 352.
  • According to an example method of forming a resistive memory cell 350 in accordance with one or more embodiments of the present disclosure, a dielectric region 356 is formed on an electrode 352, and a barrier dielectric region 358 is formed on the dielectric region 356. Additional instances of alternating dielectric region 356 and barrier dielectric region 358 are formed until electrode 354 is formed on last dielectric region 356, e.g., located furthest away from the electrode 352. The barrier dielectric region 358 is a slow oxygen diffusion barrier and/or grain-boundary disruptor material with respect to the dielectric regions 356.
  • The resistive memory cell 360 can also fabricated using horizontal laminates. That is, each successive material can be deposited on previously deposited materials such that the materials are “grown” from the bottom-up, as indicated in FIG. 3B at 367.
  • According to one or more embodiments, each of the dielectric regions 356 and barrier dielectric regions 358 are formed to be amorphous, such that the boundary between the dielectric regions 356 and barrier dielectric regions 358 are an amorphous/amorphous boundary. That is, resistive memory cell 350 includes amorphous/amorphous laminates.
  • FIG. 3B shows a resistive memory cell 360 having a thin film comprising a number of solid laminate dielectric regions 365 between two electrodes 362 and 364. The number of laminate dielectric regions 365 comprise alternating instances of dielectric regions 366 and barrier dielectric regions 368, with dielectric regions 366 being located adjacent each electrode. The resistive memory cell 360 is fabricated using horizontal formation of the various materials, as described with respect to the resistive memory cell illustrated in FIGS. 3 and 4A. FIG. 3B shows that the instances of dielectric regions 366 and barrier dielectric regions 368 are formed substantially parallel to the electrode 362.
  • According to one or more embodiments, each of the barrier dielectric regions 368 of resistive memory cell 360 are formed to be amorphous; however, each of the dielectric regions 366 of resistive memory cell 360 are formed to be crystalline, as may be achieved by annealing, for example. Therefore, the boundary between the dielectric regions 366 and barrier dielectric regions 368 are a crystalline/amorphous boundary. That is, resistive memory cell 360 includes crystalline/amorphous laminates.
  • FIGS. 4A-4B illustrate cross-sectional views of a portion of a resistive memory cell having dielectric and barrier dielectric regions formed vertically in accordance with one or more embodiments of the present disclosure. FIG. 4A shows a resistive memory cell 470 comprising a number laminate dielectric regions 475 between two electrodes 472 and 474. The number of laminate dielectric regions 475 comprise alternating instances of dielectric regions 476 and barrier dielectric regions 478. However, the instances of dielectric regions 476 and barrier dielectric regions 478 are formed using vertical laminates. That is, the instances of dielectric regions 476 and barrier dielectric regions 478 are formed substantially perpendicular to the electrode 472.
  • As used herein, the term “substantially” intends that the modified characteristic need not be absolute, but is close enough to the characteristic so as to achieve the advantages of the characteristic. For example, “substantially perpendicular” is not limited to absolute perpendicularity, and can include structure orientations that are oriented sufficiently close to being at a right angle to one another so as to achieve the advantages associated with a perpendicular orientation. For example, “substantially perpendicular” intends at least being closer to an orthogonal orientation than to a parallel orientation.
  • According to an example method of forming a resistive memory cell 470 in accordance with one or more embodiments of the present disclosure, electrode 472 is formed. Bulk dielectric material 476 is formed, e.g., deposited, on the electrode 472. The bulk dielectric material 476 is patterned, etched, and filled with barrier dielectric material 478. Chemical mechanical polishing (CMP), or other suitable processing, may be used to remove barrier dielectric material 478 outside the etched trenches, e.g., from the portions of the dielectric material 476 and barrier dielectric material 478, on which electrode 474 is to be formed. Electrode 474 can be formed on the instances of dielectric materials 476 and barrier dielectric materials 478, oriented as shown in FIG. 4A, e.g., parallel to electrode 472 and perpendicular to the instances of dielectric materials 476 and barrier dielectric materials 478.
  • The barrier dielectric material 478 has a slower oxygen diffusion rate and/or is a grain-boundary disruptor with respect to the dielectric materials 476. However, as will be appreciated, the electric field between the electrodes 472 and 474 is oriented parallel to the boundaries between the dielectric materials 476 and barrier dielectric materials 478. As such, the instances of barrier dielectric materials 478 do not interrupt the formation of continuous filaments in the dielectric materials 476, as is the case for a lateral construction, e.g., FIGS. 2, 3A, and 3B, where barrier dielectric materials are formed to be perpendicular to the electric field between the electrodes, e.g., anode and cathode.
  • According to another example method of forming a resistive memory cell 470 in accordance with one or more embodiments of the present disclosure, electrode 472 is formed. A vertical instance of dielectric region 476 is formed, e.g., deposited, on the electrode 472 such that the dielectric region 476 is perpendicular to the electrode 472. Additional alternating instances of barrier dielectric region 478 and dielectric region 476 can be formed using sidewall deposition techniques and a contact punch, for instance. The direction of growth using sidewall deposition techniques can be as shown in FIG. 4A using vertical laminates. The barrier dielectric region 478 for this configuration of a resistive memory cell 470 is a slow oxygen diffusion barrier and/or grain-boundary disruptor material with respect to the dielectric regions 476.
  • Once the intended number of instances of dielectric regions 476 and barrier dielectric regions 478 are deposited and appropriately formed, CMP, or other suitable processing, may be used to remove dielectric region 476 and barrier dielectric region 478 from the build-up of dielectric region 476 and barrier dielectric region 478 on which electrode 474 is to be formed. Subsequently, electrode 474 can be formed on the instances of dielectric regions 476 and barrier dielectric regions 478, oriented as shown in FIG. 4A, e.g., parallel to electrode 472 and perpendicular to the instances of dielectric regions 476 and barrier dielectric regions 478.
  • Despite barrier dielectric region 478 not being located across a path for conductive filaments, vertically oriented laminates can still provide some unique switching control as the number of channels (and channel width) within which conductive filaments can form can be precisely controlled, which may be beneficial for oxygen diffusion moderation mechanisms. Controlling the number of channels (and channel width), such as by limiting the number and geometry of discrete filamentary electrical paths available, can limit radial and/or control lateral, e.g., from cathode to anode, growth of conductive filaments.
  • For example, vertically-oriented barrier dielectric regions 478, e.g., Al2O3, located between vertically-oriented dielectric regions 476 can maintain amorphous dielectric regions 476, e.g., TiO2, as-deposited by reducing the volume of individual dielectric regions 476, particularly with respect to the horizontal thickness thereof. Thick dielectric regions 476, e.g., TiO2, can crystallize as-deposited by ALD. The barrier dielectric regions 478 can provide a large decrease in as-deposited roughness. Roughness is generally unwanted as it tends to concentrate electric fields near an electrode interface, thereby degrading resistive memory cell performance due to enhanced filament formation.
  • According to one or more embodiments, each of the dielectric regions 476 and barrier dielectric regions 478 shown in FIG. 4A can be formed to be amorphous, such that the boundary between the dielectric regions 476 and barrier dielectric regions 478 are amorphous/amorphous boundaries. That is, resistive memory cell 470 can be fabricated to include amorphous/amorphous laminates.
  • After annealing, Al2O3-TiO2 laminates, e.g., instances of barrier dielectric regions 478 and dielectric regions 476 respectively, can become crystalline. However, the full-width at half-maximum (FWHM) of a peak intensity for a diffraction measurement, e.g., plotted with respect to the diffraction angle, theta, is larger than for ZrO2-TiO2 laminates, indicating the grain size is smaller for Al2O3-TiO2 laminates due to disruption.
  • According to one or more example embodiments of the present disclosure, a resistive memory cell can be configured to have one or multiple SrTiO3-LaAlO3 interfaces that can be activated/deactivated under one or more auxiliary electric fields. For example, the one or more auxiliary electric fields can be provided from field-effects at small feature size for the two-electrode system shown in FIG. 4A, for example, or can be associated with a third electrode, e.g., auxiliary electrode, positioned parallel to the vertically oriented laminates and acting as a control gate, for instance.
  • FIG. 4B shows a resistive memory cell 480 comprising a number of laminate dielectric regions 485 between two electrodes 482 and 484. The number of laminate dielectric regions 485 comprise alternating instances of dielectric regions 486 and barrier dielectric regions 488. As described above with respect to FIG. 4A, the instances of dielectric regions 486 and barrier dielectric regions 488 are formed using vertically-oriented laminates. That is, the instances of dielectric regions 486 and barrier dielectric regions 488 are formed substantially perpendicular to the electrode 482. Resistive memory cell 480 can be fabricated in accordance with the deposition techniques described above with respect to FIG. 4A, resulting in a lateral growth direction for the laminates.
  • In contrast to FIG. 4A, FIG. 4B depicts dielectric regions 486 formed to be crystalline, as may be achieved by annealing, for example. Therefore, the boundaries between the dielectric regions 486 and barrier dielectric regions 488 are crystalline/crystalline boundaries. That is, resistive memory cell 480 can be fabricated to include crystalline/crystalline vertical laminates.
  • Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art will appreciate that an arrangement calculated to achieve the same results can be substituted for the specific embodiments shown. This disclosure is intended to cover adaptations or variations of various embodiments of the present disclosure. It is to be understood that the above description has been made in an illustrative fashion, and not a restrictive one. Combination of the above embodiments, and other embodiments not specifically described herein will be apparent to those of skill in the art upon reviewing the above description. The scope of the various embodiments of the present disclosure includes other applications in which the above structures and methods are used. Therefore, the scope of various embodiments of the present disclosure should be determined with reference to the appended claims, along with the full range of Equivalents to which such claims are entitled.
  • In the foregoing Detailed Description, various features are grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the disclosed embodiments of the present disclosure have to use more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separate embodiment.

Claims (20)

What is claimed is:
1. A resistive memory cell, comprising:
a plurality of dielectric regions formed between a first electrode and a second electrode; and
a barrier dielectric region formed between each dielectric region of the plurality of dielectric regions; and
wherein the barrier dielectric region serves to reduce an oxygen diffusion rate associated with the plurality of dielectric regions.
2. The resistive memory cell of claim 1, wherein the resistive memory cell is configured to have more than two non-volatile resistive states.
3. The resistive memory cell of claim 1, wherein the plurality of dielectric regions is at least three dielectric regions.
4. The resistive memory cell of claim 1, wherein the barrier dielectric region comprises silicon dioxide.
5. The resistive memory cell of claim 4, wherein the barrier dielectric region has a thickness of 20 Angstroms or less.
6. The resistive memory cell of claim 1, wherein the barrier dielectric region is a grain-boundary disruptor with respect to the plurality of dielectric regions.
7. The resistive memory cell of claim 1, wherein the plurality of dielectric regions are amorphous regions, and wherein the barrier dielectric region is an amorphous region.
8. The resistive memory cell of claim 1, wherein the plurality of dielectric regions are crystalline regions, and wherein the barrier dielectric region is an amorphous region.
9. The resistive memory cell of claim 1, wherein the plurality of dielectric regions and the barrier dielectric region are horizontal laminates.
10. A resistive memory cell, comprising:
a first electrode;
a first dielectric region formed on the electrode;
a first barrier dielectric region formed on the first dielectric region, the first barrier dielectric region having a slower oxygen diffusion rate and/or being a grain-boundary disruptor relative to the first dielectric region;
a second dielectric region formed on the first barrier dielectric region; and
a second electrode formed on the second dielectric region.
11. The resistive memory cell of claim 10, further comprising a second barrier dielectric region formed between the second dielectric region and a third dielectric region.
12. The resistive memory cell of claim 11, wherein the first, second, and third dielectric regions each have a thickness of between 10 Angstroms and 100 Angstroms.
13. The resistive memory cell of claim 10, wherein the first dielectric region, the second dielectric region, and the first barrier dielectric region are amorphous.
14. The resistive memory cell of claim 10, further comprising a buffer dielectric region between the first electrode and the first dielectric region, the buffer dielectric region having a lower k value and higher resistance than the first dielectric region.
15. The resistive memory cell of claim 10, wherein the first dielectric region is in contact with the first electrode and the second dielectric region is in contact with the second electrode.
16. The resistive memory cell of claim 10, wherein the first barrier dielectric region comprises at least one of: silicon dioxide (SiO2); aluminum oxide (Al2O3); zirconium oxide (ZrO2); and amorphous doped silicon.
17. A resistive memory cell, comprising:
a plurality of dielectric regions formed between a first electrode and a second electrode; and
a plurality of barrier dielectric regions, wherein each one of the plurality of barrier dielectric regions is formed between alternating instances of the plurality of dielectric regions; and
wherein the plurality of barrier dielectric region serve as a grain-boundary disruptors with respect to the plurality of dielectric regions.
18. The resistive memory cell of claim 17, wherein the plurality of dielectric regions include a metal oxide material.
19. The resistive memory cell of claim 17, wherein one of the plurality of dielectric regions is formed on the first electrode, and wherein the second electrode is formed on a different one of the plurality of dielectric regions.
20. The resistive memory cell of claim 17, wherein the thickness of the resistive memory cell materials excluding the first electrode and the second electrode is less than 1000 Angstroms.
US17/548,894 2011-05-17 2021-12-13 Resistive memory cell Pending US20220102630A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/548,894 US20220102630A1 (en) 2011-05-17 2021-12-13 Resistive memory cell

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US13/109,052 US8847196B2 (en) 2011-05-17 2011-05-17 Resistive memory cell
US14/473,400 US9159921B2 (en) 2011-05-17 2014-08-29 Resistive memory cell
US14/849,715 US20150380646A1 (en) 2011-05-17 2015-09-10 Resistive memory cell
US15/662,974 US10586923B2 (en) 2011-05-17 2017-07-28 Resistive memory cell
US16/812,914 US11201286B2 (en) 2011-05-17 2020-03-09 Resistive memory cell
US17/548,894 US20220102630A1 (en) 2011-05-17 2021-12-13 Resistive memory cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/812,914 Continuation US11201286B2 (en) 2011-05-17 2020-03-09 Resistive memory cell

Publications (1)

Publication Number Publication Date
US20220102630A1 true US20220102630A1 (en) 2022-03-31

Family

ID=47174262

Family Applications (6)

Application Number Title Priority Date Filing Date
US13/109,052 Active 2032-04-02 US8847196B2 (en) 2011-05-17 2011-05-17 Resistive memory cell
US14/473,400 Active US9159921B2 (en) 2011-05-17 2014-08-29 Resistive memory cell
US14/849,715 Abandoned US20150380646A1 (en) 2011-05-17 2015-09-10 Resistive memory cell
US15/662,974 Active US10586923B2 (en) 2011-05-17 2017-07-28 Resistive memory cell
US16/812,914 Active US11201286B2 (en) 2011-05-17 2020-03-09 Resistive memory cell
US17/548,894 Pending US20220102630A1 (en) 2011-05-17 2021-12-13 Resistive memory cell

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US13/109,052 Active 2032-04-02 US8847196B2 (en) 2011-05-17 2011-05-17 Resistive memory cell
US14/473,400 Active US9159921B2 (en) 2011-05-17 2014-08-29 Resistive memory cell
US14/849,715 Abandoned US20150380646A1 (en) 2011-05-17 2015-09-10 Resistive memory cell
US15/662,974 Active US10586923B2 (en) 2011-05-17 2017-07-28 Resistive memory cell
US16/812,914 Active US11201286B2 (en) 2011-05-17 2020-03-09 Resistive memory cell

Country Status (3)

Country Link
US (6) US8847196B2 (en)
TW (1) TWI502780B (en)
WO (1) WO2012158424A2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853099B2 (en) * 2011-12-16 2014-10-07 Intermolecular, Inc. Nonvolatile resistive memory element with a metal nitride containing switching layer
US20130264680A1 (en) * 2012-04-05 2013-10-10 Uchicago Argonne Llc NANOLAMINATES OF Al2O3/TiO2 WITH GIANT DIELECTRIC CONSTANT LOW-LEAKAGE-LOW LOSS-EXTENDED FREQUENCY OPERATION FOR NEW-GENERATION NANOELECTRONICS AND ENERGY STORAGE DEVICES
US9224945B2 (en) 2012-08-30 2015-12-29 Micron Technology, Inc. Resistive memory devices
US8766234B1 (en) * 2012-12-27 2014-07-01 Intermolecular, Inc. Current selector for non-volatile memory in a cross bar array based on defect and band engineering metal-dielectric-metal stacks
EP2814073B1 (en) * 2013-06-14 2017-02-15 IMEC vzw Self-rectifying RRAM element
CN104347799A (en) * 2013-07-30 2015-02-11 华邦电子股份有限公司 Resistive memory and manufacturing method thereof
US9337210B2 (en) 2013-08-12 2016-05-10 Micron Technology, Inc. Vertical ferroelectric field effect transistor constructions, constructions comprising a pair of vertical ferroelectric field effect transistors, vertical strings of ferroelectric field effect transistors, and vertical strings of laterally opposing pairs of vertical ferroelectric field effect transistors
US20150188044A1 (en) * 2013-12-26 2015-07-02 Intermolecular Inc. Embedded Resistors for Resistive Random Access Memory Cells
US9263577B2 (en) 2014-04-24 2016-02-16 Micron Technology, Inc. Ferroelectric field effect transistors, pluralities of ferroelectric field effect transistors arrayed in row lines and column lines, and methods of forming a plurality of ferroelectric field effect transistors
US9501350B2 (en) * 2014-09-22 2016-11-22 Empire Technology Development Llc Detecting unidirectional resistance drift errors in a multilevel cell of a phase change memory
US20160099409A1 (en) * 2014-10-07 2016-04-07 The Trustees Of The University Of Pennsylvania Ultrathin film resistive memory devices
US10224481B2 (en) 2014-10-07 2019-03-05 The Trustees Of The University Of Pennsylvania Mechanical forming of resistive memory devices
US9159829B1 (en) 2014-10-07 2015-10-13 Micron Technology, Inc. Recessed transistors containing ferroelectric material
KR101522819B1 (en) * 2014-10-17 2015-05-27 한양대학교 에리카산학협력단 Electronic device comprising two-dimensional electron gas, and method of fabricating the same
US9305929B1 (en) 2015-02-17 2016-04-05 Micron Technology, Inc. Memory cells
CN104725857B (en) * 2015-03-05 2017-11-03 广东生益科技股份有限公司 A kind of resin combination and use its prepreg and laminate
KR101675582B1 (en) * 2015-03-12 2016-11-14 서울대학교 산학협력단 Resistive random access memory
JP2016181312A (en) * 2015-03-23 2016-10-13 ルネサスエレクトロニクス株式会社 Semiconductor device and operation method thereof
US9853211B2 (en) * 2015-07-24 2017-12-26 Micron Technology, Inc. Array of cross point memory cells individually comprising a select device and a programmable device
US10134982B2 (en) 2015-07-24 2018-11-20 Micron Technology, Inc. Array of cross point memory cells
US9899450B2 (en) 2015-09-15 2018-02-20 The Regents Of The University Of California Memristors and method for fabricating memristors
KR20170045872A (en) 2015-10-20 2017-04-28 에스케이하이닉스 주식회사 Synapse and neuromorphic device including the same
US9953697B2 (en) * 2016-04-25 2018-04-24 Sandisk Technologies Llc Volatile memory device employing a resistive memory element
US9716223B1 (en) * 2016-07-07 2017-07-25 Winbond Electronics Corp. RRAM device and method for manufacturing the same
US10396145B2 (en) 2017-01-12 2019-08-27 Micron Technology, Inc. Memory cells comprising ferroelectric material and including current leakage paths having different total resistances
JP2019054171A (en) * 2017-09-15 2019-04-04 東芝メモリ株式会社 Storage device
JP2019057571A (en) * 2017-09-20 2019-04-11 東芝メモリ株式会社 Storage device
US10658581B2 (en) * 2017-11-17 2020-05-19 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device structure with multiple resistance variable layers
US11170834B2 (en) 2019-07-10 2021-11-09 Micron Technology, Inc. Memory cells and methods of forming a capacitor including current leakage paths having different total resistances
WO2022055248A1 (en) 2020-09-08 2022-03-17 한양대학교에리카산학협력단 Thermoelectric composite, preparation method therefor, and thermoelectric device and semiconductor device each comprising thermoelectric composite
US20220223788A1 (en) * 2021-01-08 2022-07-14 Taiwan Semiconductor Manufacturing Company Limited Resistive memory cell using an interfacial transition metal compound layer and method of forming the same
US11862666B2 (en) 2021-10-28 2024-01-02 Fujian Jinhua Integrated Circuit Co., Ltd. Capacitor structure and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040256697A1 (en) * 2003-06-03 2004-12-23 Wen-Yueh Jang [resistance random access memory and method for fabricating the same]
US7465952B2 (en) * 2004-10-01 2008-12-16 International Business Machines Corporation Programmable non-volatile resistance switching device
US8207520B2 (en) * 2010-04-02 2012-06-26 Hewlett-Packard Development Company, L.P. Programmable crosspoint device with an integral diode

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450503A3 (en) * 1990-04-02 1992-05-20 National Semiconductor Corporation Semiconductor devices with borosilicate glass sidewall spacers and method of fabrication
US5618383A (en) * 1994-03-30 1997-04-08 Texas Instruments Incorporated Narrow lateral dimensioned microelectronic structures and method of forming the same
US5665997A (en) * 1994-03-31 1997-09-09 Texas Instruments Incorporated Grated landing area to eliminate sticking of micro-mechanical devices
JP4158066B2 (en) * 1998-02-06 2008-10-01 ソニー株式会社 Optical element manufacturing method
US6660660B2 (en) * 2000-10-10 2003-12-09 Asm International, Nv. Methods for making a dielectric stack in an integrated circuit
US6794705B2 (en) 2000-12-28 2004-09-21 Infineon Technologies Ag Multi-layer Pt electrode for DRAM and FRAM with high K dielectric materials
AU2002367181A1 (en) * 2001-12-27 2003-07-15 National Institute Of Advanced Industrial Science And Technology Lithium polymer cell and manufacturing method thereof
JP3986859B2 (en) * 2002-03-25 2007-10-03 富士通株式会社 Thin film capacitor and manufacturing method thereof
US6965137B2 (en) * 2002-08-02 2005-11-15 Unity Semiconductor Corporation Multi-layer conductive memory device
TWI250342B (en) * 2002-09-30 2006-03-01 Seiko Epson Corp Electro-optic device and electronic apparatus
US7400522B2 (en) * 2003-03-18 2008-07-15 Kabushiki Kaisha Toshiba Resistance change memory device having a variable resistance element formed of a first and second composite compound for storing a cation
JP3822229B2 (en) * 2004-05-27 2006-09-13 松下電器産業株式会社 Method for forming fine particle array on substrate
KR100639206B1 (en) * 2004-06-30 2006-10-30 주식회사 하이닉스반도체 Phase-change memory device and method for manufacturing the same
US7791141B2 (en) * 2004-07-09 2010-09-07 International Business Machines Corporation Field-enhanced programmable resistance memory cell
JP4681560B2 (en) * 2004-09-07 2011-05-11 黒崎播磨株式会社 Reaction medium used for hydrogen production by water decomposition and method for producing the same
US7313013B2 (en) * 2004-11-18 2007-12-25 International Business Machines Corporation Spin-current switchable magnetic memory element and method of fabricating the memory element
US7662614B2 (en) * 2005-01-14 2010-02-16 Samsung Electronics Co., Ltd. Biochip platform including dielectric particle layer and optical assay apparatus using the same
US7498247B2 (en) * 2005-02-23 2009-03-03 Micron Technology, Inc. Atomic layer deposition of Hf3N4/HfO2 films as gate dielectrics
US20130082232A1 (en) * 2011-09-30 2013-04-04 Unity Semiconductor Corporation Multi Layered Conductive Metal Oxide Structures And Methods For Facilitating Enhanced Performance Characteristics Of Two Terminal Memory Cells
KR100669854B1 (en) * 2005-07-05 2007-01-16 삼성전자주식회사 Unit cell structure and method of forming the unit cell structure, and non-volatile memory device having the unit cell structure and method of manufacturing the non-volatile memory device
US7544596B2 (en) 2005-08-30 2009-06-09 Micron Technology, Inc. Atomic layer deposition of GdScO3 films as gate dielectrics
JP2007234726A (en) * 2006-02-28 2007-09-13 Sony Corp Semiconductor device and its fabrication process
WO2007116749A1 (en) * 2006-03-30 2007-10-18 Matsushita Electric Industrial Co., Ltd. Nonvolatile memory element and its manufacturing method
JP4105760B2 (en) * 2006-08-25 2008-06-25 松下電器産業株式会社 Storage element, memory device, and semiconductor integrated circuit
KR100753020B1 (en) 2006-08-30 2007-08-30 한국화학연구원 Preparation of nanolaminates by atomic layer deposition for non-volatile floating gate memory devices
JP5010891B2 (en) * 2006-10-16 2012-08-29 富士通株式会社 Variable resistance element
KR100913395B1 (en) 2006-12-04 2009-08-21 한국전자통신연구원 Memory devices and method for fabricating the same
US20080173975A1 (en) * 2007-01-22 2008-07-24 International Business Machines Corporation Programmable resistor, switch or vertical memory cell
KR20080095683A (en) * 2007-04-25 2008-10-29 삼성전자주식회사 Phase change memory devices and method for forming thereof
EP2063467B1 (en) * 2007-06-05 2011-05-04 Panasonic Corporation Nonvolatile storage element, its manufacturing method, and nonvolatile semiconductor device using the nonvolatile storage element
US7995371B2 (en) * 2007-07-26 2011-08-09 Unity Semiconductor Corporation Threshold device for a memory array
US8154003B2 (en) 2007-08-09 2012-04-10 Taiwan Semiconductor Manufacturing Company, Ltd. Resistive non-volatile memory device
JP2009164580A (en) 2007-11-07 2009-07-23 Interuniv Micro Electronica Centrum Vzw METHOD FOR MANUFACTURING MEMORY ELEMENT COMPRISING RESISTIVITY-SWITCHING NiO LAYER AND DEVICES OBTAINED THEREOF
JP2009224610A (en) 2008-03-17 2009-10-01 Toshiba Corp Semiconductor memory device
US8519376B2 (en) * 2008-10-27 2013-08-27 Seagate Technology Llc Nonvolatile resistive memory devices
KR101526926B1 (en) 2008-12-30 2015-06-10 삼성전자주식회사 Resist RAM and method of manufacturing the same
KR101046725B1 (en) 2009-03-16 2011-07-07 한양대학교 산학협력단 Resistive memory devices
JP2010287683A (en) * 2009-06-10 2010-12-24 Toshiba Corp Nonvolatile memory device and method of manufacturing the same
US8227783B2 (en) 2009-07-13 2012-07-24 Seagate Technology Llc Non-volatile resistive sense memory with praseodymium calcium manganese oxide
DE102009038730B4 (en) * 2009-08-27 2014-03-13 Vacuumschmelze Gmbh & Co. Kg Laminated core made of soft magnetic single sheets, electromagnetic actuator and method for their production and use of a soft magnetic laminated core
KR101096203B1 (en) * 2010-04-08 2011-12-22 주식회사 하이닉스반도체 Semiconductor device and method for manufacturing the same
US8558212B2 (en) 2010-09-29 2013-10-15 Crossbar, Inc. Conductive path in switching material in a resistive random access memory device and control
US10333064B2 (en) * 2011-04-13 2019-06-25 Micron Technology, Inc. Vertical memory cell for high-density memory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040256697A1 (en) * 2003-06-03 2004-12-23 Wen-Yueh Jang [resistance random access memory and method for fabricating the same]
US7465952B2 (en) * 2004-10-01 2008-12-16 International Business Machines Corporation Programmable non-volatile resistance switching device
US8207520B2 (en) * 2010-04-02 2012-06-26 Hewlett-Packard Development Company, L.P. Programmable crosspoint device with an integral diode

Also Published As

Publication number Publication date
US20170346007A1 (en) 2017-11-30
US8847196B2 (en) 2014-09-30
TWI502780B (en) 2015-10-01
US20150044850A1 (en) 2015-02-12
WO2012158424A3 (en) 2013-03-21
US20150380646A1 (en) 2015-12-31
WO2012158424A2 (en) 2012-11-22
US20200212299A1 (en) 2020-07-02
US11201286B2 (en) 2021-12-14
TW201312817A (en) 2013-03-16
US20120292584A1 (en) 2012-11-22
US9159921B2 (en) 2015-10-13
US10586923B2 (en) 2020-03-10

Similar Documents

Publication Publication Date Title
US11201286B2 (en) Resistive memory cell
US11856790B2 (en) Ferroelectric capacitors
US11037987B2 (en) Multi-layered conductive metal oxide structures and methods for facilitating enhanced performance characteristics of two-terminal memory cells
US9053801B2 (en) Memory cells having ferroelectric materials
US9853212B2 (en) Resistive switching in memory cells
US20170345831A1 (en) Ferroelectric Devices and Methods of Forming Ferroelectric Devices
US10950384B2 (en) Method used in forming an electronic device comprising conductive material and ferroelectric material
US10102905B2 (en) Memory cells having a plurality of resistance variable materials
US8787066B2 (en) Method for forming resistive switching memory elements with improved switching behavior
US9012879B2 (en) Morphology control of ultra-thin MeOx layer
US20190288195A1 (en) Non-volatile memory structure with positioned doping
US9349949B2 (en) Horizontally oriented and vertically stacked memory cells
CN114975771A (en) Resistive random access memory device and preparation method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICRON TECHNOLOGY, INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ROCKLEIN, MATTHEW N.;RAMASWAMY, D.V. NIRMAL;REEL/FRAME:058370/0676

Effective date: 20110506

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED