US20220065140A1 - Control valve assembly of a variable cam timing phaser - Google Patents

Control valve assembly of a variable cam timing phaser Download PDF

Info

Publication number
US20220065140A1
US20220065140A1 US17/002,257 US202017002257A US2022065140A1 US 20220065140 A1 US20220065140 A1 US 20220065140A1 US 202017002257 A US202017002257 A US 202017002257A US 2022065140 A1 US2022065140 A1 US 2022065140A1
Authority
US
United States
Prior art keywords
valve housing
cam timing
variable cam
cap
threaded portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/002,257
Other versions
US11261765B1 (en
Inventor
Joshua D. PLUMEAU
Anand Barve
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BorgWarner Inc
Original Assignee
BorgWarner Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BorgWarner Inc filed Critical BorgWarner Inc
Priority to US17/002,257 priority Critical patent/US11261765B1/en
Assigned to BORGWARNER INC. reassignment BORGWARNER INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BARVE, ANAND, Plumeau, Joshua D.
Priority to DE102021118243.3A priority patent/DE102021118243A1/en
Priority to CN202110823023.2A priority patent/CN114109554A/en
Application granted granted Critical
Publication of US11261765B1 publication Critical patent/US11261765B1/en
Publication of US20220065140A1 publication Critical patent/US20220065140A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/3443Solenoid driven oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • F01L2001/34433Location oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • F01L2303/01Tools for producing, mounting or adjusting, e.g. some part of the distribution

Definitions

  • the present invention generally relates to a control valve assembly and, more specifically, to a control valve assembly of a variable cam timing phaser of a variable cam timing system.
  • variable cam timing systems include a camshaft and a variable cam timing phaser, with the variable cam timing phaser including a housing having an arcuate outer wall disposed about an axis and defining a housing interior, a rotor at least partially disposed within the housing interior and moveable with respect to the housing, and a control valve assembly.
  • Conventional control valve assemblies include a valve housing having a threaded portion engageable with the camshaft to fix the valve housing to the camshaft or to fix a variable cam timing phaser to the camshaft, and a piston disposed within the valve housing to control a flow of hydraulic fluid to cause rotation of the rotor with respect to the housing to adjust timing of the camshaft.
  • valve housing is specifically designed for each different variable cam timing system such that a tool engages the valve housing to secure the variable cam timing assembly to the camshaft through engagement of the threaded portion of the valve housing to the camshaft.
  • a control valve assembly of a variable cam timing system with the variable cam timing system including a camshaft, includes a valve housing extending along an axis.
  • the valve housing includes a threaded portion adapted to engage the camshaft to fix the valve housing to the camshaft, and a body portion spaced axially from the threaded portion along the axis.
  • the body portion is disposed about the axis and defines a body interior.
  • the control valve assembly also includes a piston disposed in the body interior and moveable along the axis between a first position adjacent the threaded portion and a second position spaced axially from the first position away from the threaded portion.
  • the control valve assembly further includes a cap removably coupled to the body portion of the valve housing.
  • the cap includes a torque driving element configured to be received by a tool for transmitting torque from the tool for fixing the cap to the body portion.
  • control valve assembly including a cap removably coupled to a body portion of a valve housing offers several advantages.
  • Third, having the cap removably coupled to the body portion of the valve housing allows different configurations and sizes of the cap to be used in the control valve assembly while optionally keeping the same valve housing design.
  • the torque driving element of the cap may be configured based on the tool design used for fixing the cap to the body portion.
  • a control valve assembly of a variable cam timing system with the variable cam timing system including a camshaft, includes a valve housing extending along an axis.
  • the valve housing includes a threaded portion adapted to engage the camshaft to fix the valve housing to the camshaft, and a body portion spaced axially from the threaded portion along the axis.
  • the body portion is disposed about the axis and defines a body interior.
  • the valve housing further includes a cap integral with the body portion and configured to be received by a tool for transmitting torque from the tool for fixing said valve housing to the camshaft.
  • the control valve assembly also includes a piston disposed in the body interior and moveable along the axis between a first position adjacent the threaded portion and a second position spaced axially from the first position away from the threaded portion.
  • the threaded portion of the valve housing is removably coupled to the body portion of the valve housing.
  • control valve assembly including the threaded portion of the valve housing removably coupled to the body portion of the valve housing offers several advantages.
  • having the threaded portion removably coupled to the body portion of the valve housing allows different configurations and sizes of the threaded portion to be used in the control valve assembly while optionally keeping the same valve housing design. For example, the threaded portion of the body portion may be customized based on the design of the camshaft.
  • FIG. 1 is a cross-sectional view of a control valve assembly of a variable cam timing phaser of a variably cam timing system, with the variable cam timing system including a camshaft and the variable cam timing phaser, with the variable cam timing phaser including a housing, a rotor, and a control valve assembly, and with the control valve assembly including a valve housing including a body portion and a threaded portion, a piston disposed in a body interior of the body portion, and a cap removably coupled to the body portion of the valve housing;
  • FIG. 2 is a perspective view of the control valve assembly of FIG. 1 ;
  • FIG. 3 is a cross-sectional view of the control valve assembly of FIG. 1 ;
  • FIG. 4 is a perspective view of another embodiment of the control valve assembly
  • FIG. 5 is a cross-sectional view of the control valve assembly of FIG. 4 ;
  • FIG. 6 is a cross-sectional view of another embodiment of the control valve assembly, with the threaded portion of valve housing being removably coupled to the body portion of the valve housing;
  • FIG. 7 is a cross-sectional view of the variable cam timing system and the variable cam timing phaser including the control valve assembly of FIG. 6 ;
  • FIG. 8 is a cross-sectional view of another embodiment of the control valve assembly, with the cap and the valve body being integral with one another, and with the threaded portion of the valve housing removably coupled to the body portion of the valve housing;
  • FIG. 9 is a cross-sectional view of the variable cam timing phaser including the control valve of FIG. 8 .
  • variable cam timing phaser 22 includes a housing 26 and a rotor 28 .
  • the variable cam timing system 24 includes a camshaft 30 .
  • the control valve assembly 20 includes a valve housing 32 extending along an axis A.
  • the valve housing 32 includes a threaded portion 36 adapted to engage the camshaft 30 to fix the valve housing 32 to the camshaft 30 .
  • the valve housing 32 including the threaded portion 36 adapted to engage the camshaft 30 to fix the valve housing 32 to the camshaft 30 may also be, or alternatively be, adapted to fix a variable cam timing phaser to the camshaft 30 , as described in further detail below.
  • the valve housing 32 also includes a body portion 38 spaced axially from the threaded portion 36 along the axis A. The body portion 38 is disposed about the axis A and defines a body interior 40 .
  • the threaded portion 36 and the body portion 38 collectively define the body interior 40 .
  • the control valve assembly 20 further includes a piston 42 disposed in the body interior 40 and moveable along the axis A between a first position adjacent the threaded portion 36 and a second position spaced axially from the first position away from the threaded portion 36 .
  • the threaded portion 36 may include a stop surface 44 facing the piston 42 to prevent axial movement of the piston 42 beyond the first position away from the second position.
  • the threaded portion 36 may be formed on an outer body surface 46 , which shortens the overall length of the valve housing 32 .
  • the control valve assembly 20 also includes a cap 48 removably coupled to the body portion 38 of the valve housing 32 .
  • the cap 48 and the body portion 38 collectively define the body interior 40 .
  • the cap 48 , the body portion 38 , and the threaded portion 36 collectively define the body interior 40 , as shown in FIGS. 1, 3, and 5-7 .
  • the cap 48 captures the internal components of the control valve assembly 20 , such as the piston 42 .
  • cap 48 removably coupled to the body portion 38 of the valve housing 32 allows insertion of various components of the control valve assembly 20 , such as the piston 42 , to be inserted into the body interior 40 . Additionally, if components of the control valve assembly 20 need to be accessed, the cap 48 may be removed (i.e., decoupled) from the body portion 38 of the valve housing 32 . Furthermore, having the cap 48 removably coupled to the body portion 38 of the valve housing 32 allows different configurations and sizes of the cap 48 to be used in the control valve assembly 20 while optionally keeping the same valve housing 32 design.
  • the cap 48 includes a torque driving element 50 configured to be received by a tool for transmitting torque from the tool for fixing the cap 48 to the body portion 38 .
  • the torque driving element 50 transmitting torque from the tool drives the valve housing 32 into engagement with the camshaft 30 . Fixing the cap 48 to the body portion 38 ultimately fixes the valve housing 32 to the camshaft 30 and/or the variable cam timing phaser 22 to the camshaft 30 . In other words, the cap 48 drives the valve housing 32 into engagement with camshaft 30 .
  • the torque driving element 50 of the cap 48 may be configured based on the tool design used for fixing the cap 48 to the body portion 38 .
  • the torque driving element 50 may be specifically designed based on the tool being used for fixing the cap 48 to the body portion 38 .
  • the cap 48 is threadingly coupled to the body portion 38 of the valve housing 32 .
  • the cap 48 may be splined to the body portion 38 of the valve housing 32 .
  • the torque driving element 50 may extend away from the body portion 38 and the threaded portion 36 with respect to the axis A. Having the torque driving element 50 extending away from the body portion 38 and the threaded portion 36 with respect to the axis A provides the tool easier access to the torque driving element 50 . It is to be appreciated that the torque driving element 50 may be recessed within the cap 48 and configured to receive a tool for transmitting torque from the tool for fixing the cap 48 to the body portion 38 .
  • the torque driving element 50 has a hexagonal configuration, as is commonly referred to as a hex nut.
  • the torque driving element 50 configured to be received by a tool that also has a hexagonal configuration to fix the cap 48 to the body portion 38 .
  • having the cap 48 being removably coupled to the body portion 38 of the valve housing 32 allows different configurations and sizes of the cap 48 to be used in the control valve assembly 20 . This is advantageous because the cap 48 may be designed based on design parameters of the tool, and the design of the remaining control valve assembly components, and in particular the valve housing 32 , do not need to be redesigned for different applications of the control valve assembly 20 .
  • the cap 48 may include a cap retention flange 52 extending toward the axis A to retain the piston 42 within the body interior 40 .
  • the piston 42 may be engageable with the cap retention flange 52 when in the second position to prevent axial movement of the piston 42 beyond the second position away from the first position. Because the cap retention flange 52 is engageable by the piston 42 , the cap 48 may set the stroke length of the piston 42 .
  • the piston 42 may include a piston flange 54 extending away from the axis A and configured to engage the cap retention flange 52 when the piston 42 is in the second position.
  • the control valve assembly 20 is free of a snap ring for preventing axial movement of the piston beyond the second position. Having the cap retention flange 52 is more robust than having a traditional snap ring because the cap 48 is coupled to the body portion 38 , such as through a threaded engagement, which is robust to handle repeated engagement from the piston 42 .
  • the cap retention flange 52 defines a cap cavity 56 and the piston 42 includes a piston protrusion 58 extendable into the cap cavity 56 when the piston 42 is in the second position.
  • the cap cavity 56 may be further defined as a cap hole 60 such that the piston protrusion 58 of the piston protrusion 58 extends beyond the cap 48 when in the second position.
  • the cap hole 60 when present, allows a variable force solenoid (not shown, but may be included in the variable cam timing phaser 22 ) to engage the piston 42 for moving the piston 42 between the first and second positions.
  • the valve housing 32 may include an outer body flange 62 extending away from the axis A, as shown in FIGS. 1-3 .
  • the body portion 38 of the valve housing 32 may include the outer body flange 62 extending away from the axis A.
  • the outer body flange 62 is adapted to engage the rotor 28 or another component, such as a center plate or sensor wheel, connected to the rotor 28 for axially securing the valve housing 32 to the camshaft 30 and/or the variable cam timing phaser 22 to the camshaft 30 .
  • the cap 48 may include an outer cap flange 66 extending away from the axis A.
  • the outer cap flange 66 is adapted to engage the rotor 28 or a component connected to the rotor 28 for axially securing the valve housing 32 to the camshaft 30 and/or the variable cam timing phaser 22 to the camshaft. 30 .
  • the outer cap flange 66 may be specifically designed based on the rotor 28 design. In other words, the cap 48 and the outer cap flange 66 provide modularity of the control valve assembly 20 as the cap 48 and the outer cap flange 66 design may be changed based on the requirements of the variable cam timing phaser 22 , rather than redesigning the entire valve housing 32 .
  • the torque driving element 50 may extend away from the outer cap flange 66 and the threaded portion 36 with respect to the axis A. It is to be appreciated that the cap 48 shown in FIGS. 1-3 may also be used in the control valve assembly 20 shown in FIGS. 6 and 7 .
  • the cap 48 may include a cap threaded portion 64 to engage the body portion 38 of the valve housing 32 to fix the cap 48 to the body portion 38 .
  • the cap threaded portion 64 is on an inner diameter of the cap 48 facing the axis A.
  • the cap threaded portion 64 may be on an outer diameter of the cap 48 .
  • the threaded portion 36 and the body portion 38 may be integral with one another, i.e., one-piece.
  • the valve housing 32 may be further defined as a centerbolt. Having the threaded portion 36 and the body portion 38 integral with one another allows for easier installation as the body portion 38 and the threaded portion 36 can be coupled to the camshaft 30 at the same time.
  • the threaded portion 36 of the valve housing 32 is removably coupled to the body portion 38 of the valve housing 32 .
  • Having the threaded portion 36 of the valve housing 32 removably coupled to the body portion 38 of the valve housing 32 offers several advantages.
  • the same body portion 38 of the valve housing 32 may be used for different camshaft 30 designs.
  • the threaded portion 36 may be designed for each specific camshaft 30 , rather than having to redesign the entire valve housing 32 .
  • the same body portion 38 of the valve housing 32 may be used because the dimensions of the threaded portion 36 (i.e., thread pitch, diameter, etc.) may be changed to allow the threaded portion to be coupled to the body portion 38 and the camshaft 30 .
  • the threaded portion 36 may fluidly separate the body interior 40 from a camshaft interior 68 defined by the camshaft 30 .
  • the threaded portion 36 collectively defines the body interior 40 and the camshaft interior 68 .
  • having the threaded portion 36 removably coupled to the body portion 38 of the valve housing 32 allows insertion of various components of the control valve assembly 20 from the threaded portion side of the valve housing 32 , such as the piston 42 , to be inserted into the body interior 40 . Additionally, if components of the control valve assembly 20 need to be accessed, the threaded portion 36 may be removed (i.e., decoupled) from the body portion 38 of the valve housing 32 .
  • cap 48 and the threaded portion 36 removably coupled to the body portion 38 provides even greater modularity because the body portion 38 of the valve housing 32 may remain the same design, and only the cap 48 and the threaded portion 36 need to be redesigned based on the configuration of the tool and the camshaft 30 , respectively.
  • the threaded portion 36 of the valve housing 32 may include a neck down portion 70 with respect to the axis A. Having the neck down portion 70 allows the threaded portion 36 of the valve housing 32 to control the amount of axial stretching of the threaded portion 36 to be robust against various noise factors during operation of the control valve assembly 20 as a result of various conditions, such as changing temperature, differing thermal expansion coefficients encountered by different components of the variable cam timing system 24 , embedment loss over time for the clamped components, such as a rotor, sensor wheel, center plate, etc., of the variable cam timing system 24 , etc.
  • the neck down portion 70 may be concave with respect to the axis A or a different shape that reduces the cross section of the threaded portion 36 , as shown in FIGS. 6 and 7 .
  • the threaded portion 36 of the valve housing 32 may include a first engagement portion 72 adapted to engage the camshaft 30 to fix the valve housing 32 to the camshaft 30 , and a second engagement portion 74 configured to engage the body portion 38 to fix the threaded portion 36 to the body portion 38 .
  • the first engagement portion 72 includes threads to threadingly engage the camshaft 30 to fix the threaded portion 36 to the camshaft 30 and the second engagement portion 74 typically includes threads to threadingly engage the body portion 38 of the valve housing 32 .
  • the first engagement portion 72 may have a different thread pitch and size than the second engagement portion.
  • the first engagement portion 72 may have a smaller thread size and a different pitch than the second engagement portion 74 .
  • the second engagement portion 74 may engage the body portion 38 through other suitable structures, such as locking tabs, to axially retain the threaded portion 36 with respect to the body portion 38 .
  • the cap 48 may have a cap material and the valve housing 32 may have a housing material different from the cap material.
  • the cap material may be a grade of steel that has higher toughness and impact resistance as compared to the housing material because the tool contacts the cap 48 .
  • the housing material may also be steel and, as mentioned above, may be a grade of steel that has a lower toughness and impact resistance compared to the cap material.
  • the threaded portion 36 of the valve housing 32 may have a threaded material and the body portion 38 may have a body material different from the threaded material.
  • the threaded material may be a grade of steel with higher ductility as compared to the housing material because the threaded material may stretch during operation of the variable cam timing system 24 .
  • the housing material may also be steel and, as mentioned above, and may be a grade of steel that has a lower ductility compared to the threaded material.
  • each of the threaded portion 36 and the body portion 38 may be designed specifically to meet the technical requirements of each of the threaded portion 36 portion and the body portion 38 . Therefore, rather than having the threaded material and the body material being the same, the materials for the threaded portion 36 and the body portion 38 may reduce costs of the control valve assembly 20 all while meeting the technical requirements of each component.
  • the control valve assembly 20 may include a check valve 76 .
  • the check valve 76 is disposed within the threaded portion 36 of the valve housing 32 , as shown in FIGS. 6 and 7 . Having the check valve 76 disposed within the threaded portion 36 of the valve housing 32 , in particular when the threaded portion 36 is removably coupled to the body portion 38 , allows further flexibility in packaging internal components and passages whereby the check valve 76 may be sub-assembled as part of the threaded portion 36 . Additionally, the threaded portion 36 may be customized depending on the design requirements of each variable cam timing system.
  • the control valve assembly 20 may include other components within the threaded portion 36 , such as a filter.
  • the valve housing 32 includes the threaded portion 36 adapted to engage the camshaft 30 to fix the valve housing 32 to the camshaft 30 .
  • the valve housing 32 also includes the body portion 38 spaced axially from the threaded portion 36 along the axis A.
  • the body portion 38 disposed about the axis A and defining the body interior 40 .
  • the valve housing 32 further includes the cap 48 integral with the body portion 38 , i.e., one piece, and configured to be received by the tool for transmitting torque from the tool for fixing the valve housing 32 to the camshaft 30 .
  • the control valve assembly 20 includes the piston 42 disposed in the body interior 40 and moveable along the axis A between a first position adjacent the threaded portion 36 and a second position spaced axially from the first position away from the threaded portion 36 .
  • the threaded portion 36 of the valve housing 32 is removably coupled to the body portion 38 of the valve housing 32 .
  • the first engagement portion 72 is adapted to engage the camshaft 30 to fix the valve housing 32 to the camshaft 30
  • the second engagement portion 74 is configured to engage the body portion 38 to fix the threaded portion 36 to the body portion 38 .
  • the control valve assembly 20 may include a check valve 76 disposed within the threaded portion 36 of the valve housing 32 . Having the check valve 76 disposed within the threaded portion 36 of the valve housing 32 allows further flexibility in packaging internal components and passages whereby the check valve 76 may be sub-assembled as part of the threaded portion 36 . Additionally, the threaded portion 36 may be customized depending on the design requirements of each variable cam timing system.
  • the control valve assembly 20 may include other components within the threaded portion 36 , such as a filter.
  • the threaded portion 36 of the valve housing 32 may include a neck down portion 70 with respect to the axis A.
  • having the neck down portion 70 allows the threaded portion 36 of the valve housing 32 to control the amount of axial stretching of the threaded portion 36 to be robust against various noise factors during operation of the control valve assembly 20 as a result of various conditions, such as changing temperature, differing thermal expansion coefficients encountered by different components of the variable cam timing system 24 , embedment loss over time for the clamped components, such as a rotor, sensor wheel, center plate, etc., of the variable cam timing system 24 , etc.
  • the neck down portion 70 may be concave with respect to the axis A or a different shape that reduces the cross section of the threaded portion 36 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

A control valve assembly of a variable cam timing phaser of a variable cam timing system, with the variable cam timing phaser including a housing and a rotor, and with the variable cam timing system including a camshaft, includes a valve housing extending along an axis. The valve housing includes a threaded portion adapted to engage the camshaft, and a body portion spaced axially from the threaded portion. The body portion defines a body interior. The control valve assembly also includes a piston disposed in the body interior and moveable along the axis between a first position and a second position. The control valve assembly further includes a cap removably coupled to the body portion of the valve housing. The cap includes a torque driving element configured to be received by a tool for transmitting torque from the tool for fixing the cap to the body portion.

Description

    BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention generally relates to a control valve assembly and, more specifically, to a control valve assembly of a variable cam timing phaser of a variable cam timing system.
  • 2. Description of the Related Art
  • Conventional variable cam timing systems include a camshaft and a variable cam timing phaser, with the variable cam timing phaser including a housing having an arcuate outer wall disposed about an axis and defining a housing interior, a rotor at least partially disposed within the housing interior and moveable with respect to the housing, and a control valve assembly. Conventional control valve assemblies include a valve housing having a threaded portion engageable with the camshaft to fix the valve housing to the camshaft or to fix a variable cam timing phaser to the camshaft, and a piston disposed within the valve housing to control a flow of hydraulic fluid to cause rotation of the rotor with respect to the housing to adjust timing of the camshaft.
  • However, conventional control valve assemblies are limited in that they are only usable with a single variable cam timing system design. In other words, for each different variable cam timing system application, conventional control valve assemblies need to undergo a design change, in particular the valve housing and the threaded portion, such that the valve housing and threaded portion are engageable with the camshaft of the variable cam timing system. Even further, to ultimately secure the variable cam timing phaser to the camshaft, the valve housing is specifically designed for each different variable cam timing system such that a tool engages the valve housing to secure the variable cam timing assembly to the camshaft through engagement of the threaded portion of the valve housing to the camshaft.
  • As such, there remains a need to provide an improved control valve assembly of a variable cam timing phaser of a variable cam timing system.
  • SUMMARY OF THE INVENTION AND ADVANTAGES
  • A control valve assembly of a variable cam timing system, with the variable cam timing system including a camshaft, includes a valve housing extending along an axis. The valve housing includes a threaded portion adapted to engage the camshaft to fix the valve housing to the camshaft, and a body portion spaced axially from the threaded portion along the axis. The body portion is disposed about the axis and defines a body interior. The control valve assembly also includes a piston disposed in the body interior and moveable along the axis between a first position adjacent the threaded portion and a second position spaced axially from the first position away from the threaded portion. The control valve assembly further includes a cap removably coupled to the body portion of the valve housing. The cap includes a torque driving element configured to be received by a tool for transmitting torque from the tool for fixing the cap to the body portion.
  • Accordingly, the control valve assembly including a cap removably coupled to a body portion of a valve housing offers several advantages. First, having the cap removably coupled to the body portion of the valve housing allows insertion of various components of the control valve assembly, such as the piston, to be inserted into the body interior. Second, if components of the control valve assembly need to be accessed, the cap may be removed from the body portion of the valve housing. Third, having the cap removably coupled to the body portion of the valve housing allows different configurations and sizes of the cap to be used in the control valve assembly while optionally keeping the same valve housing design. Fourth, the torque driving element of the cap may be configured based on the tool design used for fixing the cap to the body portion.
  • A control valve assembly of a variable cam timing system, with the variable cam timing system including a camshaft, includes a valve housing extending along an axis. The valve housing includes a threaded portion adapted to engage the camshaft to fix the valve housing to the camshaft, and a body portion spaced axially from the threaded portion along the axis. The body portion is disposed about the axis and defines a body interior. The valve housing further includes a cap integral with the body portion and configured to be received by a tool for transmitting torque from the tool for fixing said valve housing to the camshaft. The control valve assembly also includes a piston disposed in the body interior and moveable along the axis between a first position adjacent the threaded portion and a second position spaced axially from the first position away from the threaded portion. The threaded portion of the valve housing is removably coupled to the body portion of the valve housing.
  • Accordingly, the control valve assembly including the threaded portion of the valve housing removably coupled to the body portion of the valve housing offers several advantages. First, having the threaded portion removably coupled to the body portion of the valve housing allows insertion of various components of the control valve assembly, such as the piston, to be inserted into the body interior. Second, if components of the control valve assembly need to be accessed, the threaded portion may be removed from the body portion of the valve housing. Third, having the threaded portion removably coupled to the body portion of the valve housing allows different configurations and sizes of the threaded portion to be used in the control valve assembly while optionally keeping the same valve housing design. For example, the threaded portion of the body portion may be customized based on the design of the camshaft.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other advantages of the present invention will be readily appreciated, as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
  • FIG. 1 is a cross-sectional view of a control valve assembly of a variable cam timing phaser of a variably cam timing system, with the variable cam timing system including a camshaft and the variable cam timing phaser, with the variable cam timing phaser including a housing, a rotor, and a control valve assembly, and with the control valve assembly including a valve housing including a body portion and a threaded portion, a piston disposed in a body interior of the body portion, and a cap removably coupled to the body portion of the valve housing;
  • FIG. 2 is a perspective view of the control valve assembly of FIG. 1;
  • FIG. 3 is a cross-sectional view of the control valve assembly of FIG. 1;
  • FIG. 4 is a perspective view of another embodiment of the control valve assembly;
  • FIG. 5 is a cross-sectional view of the control valve assembly of FIG. 4;
  • FIG. 6 is a cross-sectional view of another embodiment of the control valve assembly, with the threaded portion of valve housing being removably coupled to the body portion of the valve housing;
  • FIG. 7 is a cross-sectional view of the variable cam timing system and the variable cam timing phaser including the control valve assembly of FIG. 6;
  • FIG. 8 is a cross-sectional view of another embodiment of the control valve assembly, with the cap and the valve body being integral with one another, and with the threaded portion of the valve housing removably coupled to the body portion of the valve housing;
  • FIG. 9 is a cross-sectional view of the variable cam timing phaser including the control valve of FIG. 8.
  • DETAILED DESCRIPTION OF THE INVENTION
  • With reference to the Figures, wherein like numerals indicate like parts throughout the several views, a control valve assembly 20 of a variable cam timing phaser 22 of a variable cam timing system 24 is shown in FIG. 1. The variable cam timing phaser 22 includes a housing 26 and a rotor 28. The variable cam timing system 24 includes a camshaft 30.
  • The control valve assembly 20 includes a valve housing 32 extending along an axis A. The valve housing 32 includes a threaded portion 36 adapted to engage the camshaft 30 to fix the valve housing 32 to the camshaft 30. It is to be appreciated that the valve housing 32 including the threaded portion 36 adapted to engage the camshaft 30 to fix the valve housing 32 to the camshaft 30 may also be, or alternatively be, adapted to fix a variable cam timing phaser to the camshaft 30, as described in further detail below. The valve housing 32 also includes a body portion 38 spaced axially from the threaded portion 36 along the axis A. The body portion 38 is disposed about the axis A and defines a body interior 40. In some embodiments, the threaded portion 36 and the body portion 38 collectively define the body interior 40. The control valve assembly 20 further includes a piston 42 disposed in the body interior 40 and moveable along the axis A between a first position adjacent the threaded portion 36 and a second position spaced axially from the first position away from the threaded portion 36. The threaded portion 36 may include a stop surface 44 facing the piston 42 to prevent axial movement of the piston 42 beyond the first position away from the second position. Although not shown in the FIGS., the threaded portion 36 may be formed on an outer body surface 46, which shortens the overall length of the valve housing 32.
  • The control valve assembly 20 also includes a cap 48 removably coupled to the body portion 38 of the valve housing 32. Typically, the cap 48 and the body portion 38 collectively define the body interior 40. In some embodiments, the cap 48, the body portion 38, and the threaded portion 36 collectively define the body interior 40, as shown in FIGS. 1, 3, and 5-7. The cap 48 captures the internal components of the control valve assembly 20, such as the piston 42.
  • Having the cap 48 removably coupled to the body portion 38 of the valve housing 32 allows insertion of various components of the control valve assembly 20, such as the piston 42, to be inserted into the body interior 40. Additionally, if components of the control valve assembly 20 need to be accessed, the cap 48 may be removed (i.e., decoupled) from the body portion 38 of the valve housing 32. Furthermore, having the cap 48 removably coupled to the body portion 38 of the valve housing 32 allows different configurations and sizes of the cap 48 to be used in the control valve assembly 20 while optionally keeping the same valve housing 32 design.
  • As shown in FIGS. 1-7, the cap 48 includes a torque driving element 50 configured to be received by a tool for transmitting torque from the tool for fixing the cap 48 to the body portion 38. The torque driving element 50 transmitting torque from the tool drives the valve housing 32 into engagement with the camshaft 30. Fixing the cap 48 to the body portion 38 ultimately fixes the valve housing 32 to the camshaft 30 and/or the variable cam timing phaser 22 to the camshaft 30. In other words, the cap 48 drives the valve housing 32 into engagement with camshaft 30. The torque driving element 50 of the cap 48 may be configured based on the tool design used for fixing the cap 48 to the body portion 38. In other words, because the cap 48 is removably coupled to the body portion 38 of the valve housing 32, the torque driving element 50 may be specifically designed based on the tool being used for fixing the cap 48 to the body portion 38. In essence, only the cap 48 and, specifically, the torque driving element 50 needs to be designed based on the tool used for fixing the cap 48 to the body portion 38 of the valve housing 32, rather than redesigning the valve housing 32 when the valve housing 32 has a torque driving element, which gives greater modularity of the control valve assembly 20. In one embodiment, the cap 48 is threadingly coupled to the body portion 38 of the valve housing 32. In other embodiments, the cap 48 may be splined to the body portion 38 of the valve housing 32.
  • The torque driving element 50 may extend away from the body portion 38 and the threaded portion 36 with respect to the axis A. Having the torque driving element 50 extending away from the body portion 38 and the threaded portion 36 with respect to the axis A provides the tool easier access to the torque driving element 50. It is to be appreciated that the torque driving element 50 may be recessed within the cap 48 and configured to receive a tool for transmitting torque from the tool for fixing the cap 48 to the body portion 38.
  • In one embodiment, the torque driving element 50 has a hexagonal configuration, as is commonly referred to as a hex nut. When the torque driving element 50 has a hexagonal configuration, the torque driving element 50 configured to be received by a tool that also has a hexagonal configuration to fix the cap 48 to the body portion 38. As described above, having the cap 48 being removably coupled to the body portion 38 of the valve housing 32 allows different configurations and sizes of the cap 48 to be used in the control valve assembly 20. This is advantageous because the cap 48 may be designed based on design parameters of the tool, and the design of the remaining control valve assembly components, and in particular the valve housing 32, do not need to be redesigned for different applications of the control valve assembly 20.
  • As shown in FIGS. 1, 3, and 5-7, the cap 48 may include a cap retention flange 52 extending toward the axis A to retain the piston 42 within the body interior 40. For example, the piston 42 may be engageable with the cap retention flange 52 when in the second position to prevent axial movement of the piston 42 beyond the second position away from the first position. Because the cap retention flange 52 is engageable by the piston 42, the cap 48 may set the stroke length of the piston 42. The piston 42 may include a piston flange 54 extending away from the axis A and configured to engage the cap retention flange 52 when the piston 42 is in the second position. When the cap 48 includes the cap retention flange 52, the control valve assembly 20 is free of a snap ring for preventing axial movement of the piston beyond the second position. Having the cap retention flange 52 is more robust than having a traditional snap ring because the cap 48 is coupled to the body portion 38, such as through a threaded engagement, which is robust to handle repeated engagement from the piston 42.
  • With continued reference to FIGS. 1, 3, and 5-7, in one embodiment, the cap retention flange 52 defines a cap cavity 56 and the piston 42 includes a piston protrusion 58 extendable into the cap cavity 56 when the piston 42 is in the second position. The cap cavity 56 may be further defined as a cap hole 60 such that the piston protrusion 58 of the piston protrusion 58 extends beyond the cap 48 when in the second position. The cap hole 60, when present, allows a variable force solenoid (not shown, but may be included in the variable cam timing phaser 22) to engage the piston 42 for moving the piston 42 between the first and second positions.
  • The valve housing 32 may include an outer body flange 62 extending away from the axis A, as shown in FIGS. 1-3. Specifically, the body portion 38 of the valve housing 32 may include the outer body flange 62 extending away from the axis A. When present, the outer body flange 62 is adapted to engage the rotor 28 or another component, such as a center plate or sensor wheel, connected to the rotor 28 for axially securing the valve housing 32 to the camshaft 30 and/or the variable cam timing phaser 22 to the camshaft 30. Alternatively, as shown FIGS. 4-7, the cap 48 may include an outer cap flange 66 extending away from the axis A. When present, the outer cap flange 66 is adapted to engage the rotor 28 or a component connected to the rotor 28 for axially securing the valve housing 32 to the camshaft 30 and/or the variable cam timing phaser 22 to the camshaft. 30. When the cap 48 includes the outer cap flange 66, the outer cap flange 66 may be specifically designed based on the rotor 28 design. In other words, the cap 48 and the outer cap flange 66 provide modularity of the control valve assembly 20 as the cap 48 and the outer cap flange 66 design may be changed based on the requirements of the variable cam timing phaser 22, rather than redesigning the entire valve housing 32. The torque driving element 50 may extend away from the outer cap flange 66 and the threaded portion 36 with respect to the axis A. It is to be appreciated that the cap 48 shown in FIGS. 1-3 may also be used in the control valve assembly 20 shown in FIGS. 6 and 7.
  • The cap 48 may include a cap threaded portion 64 to engage the body portion 38 of the valve housing 32 to fix the cap 48 to the body portion 38. As shown in FIGS. 1, 3, and 5-7, the cap threaded portion 64 is on an inner diameter of the cap 48 facing the axis A. However, it is to be appreciated that the cap threaded portion 64 may be on an outer diameter of the cap 48.
  • The threaded portion 36 and the body portion 38 may be integral with one another, i.e., one-piece. In such embodiments, the valve housing 32 may be further defined as a centerbolt. Having the threaded portion 36 and the body portion 38 integral with one another allows for easier installation as the body portion 38 and the threaded portion 36 can be coupled to the camshaft 30 at the same time.
  • In one embodiment, as shown in FIGS. 6 and 7, the threaded portion 36 of the valve housing 32 is removably coupled to the body portion 38 of the valve housing 32. Having the threaded portion 36 of the valve housing 32 removably coupled to the body portion 38 of the valve housing 32 offers several advantages. First, the same body portion 38 of the valve housing 32 may be used for different camshaft 30 designs. For example, when the threaded portion 36 is removably coupled to the body portion 38, the threaded portion 36 may be designed for each specific camshaft 30, rather than having to redesign the entire valve housing 32. Even with different camshaft 30 designs, the same body portion 38 of the valve housing 32 may be used because the dimensions of the threaded portion 36 (i.e., thread pitch, diameter, etc.) may be changed to allow the threaded portion to be coupled to the body portion 38 and the camshaft 30. Second, the threaded portion 36 may fluidly separate the body interior 40 from a camshaft interior 68 defined by the camshaft 30. In other words, the threaded portion 36 collectively defines the body interior 40 and the camshaft interior 68. Third, having the threaded portion 36 removably coupled to the body portion 38 of the valve housing 32 allows insertion of various components of the control valve assembly 20 from the threaded portion side of the valve housing 32, such as the piston 42, to be inserted into the body interior 40. Additionally, if components of the control valve assembly 20 need to be accessed, the threaded portion 36 may be removed (i.e., decoupled) from the body portion 38 of the valve housing 32. Fourth, having the threaded portion 36 removably coupled to the body portion 38 of the valve housing 32 gives greater modularity of the control valve assembly 20 as a whole, because when the design of the camshaft changes, only the threaded portion 36 needs to be redesigned to fix the variable cam timing phaser 22 to the camshaft 30. In embodiments where both the cap 48 and the threaded portion 36 are removably coupled to the body portion 38, various components of the control valve assembly 20, such as the piston 42, may be inserted from either side of the body portion 38, which allows a greater design flexibility. Furthermore, having the cap 48 and the threaded portion 36 removably coupled to the body portion 38 provides even greater modularity because the body portion 38 of the valve housing 32 may remain the same design, and only the cap 48 and the threaded portion 36 need to be redesigned based on the configuration of the tool and the camshaft 30, respectively.
  • With continued reference to FIGS. 6 and 7, the threaded portion 36 of the valve housing 32 may include a neck down portion 70 with respect to the axis A. Having the neck down portion 70 allows the threaded portion 36 of the valve housing 32 to control the amount of axial stretching of the threaded portion 36 to be robust against various noise factors during operation of the control valve assembly 20 as a result of various conditions, such as changing temperature, differing thermal expansion coefficients encountered by different components of the variable cam timing system 24, embedment loss over time for the clamped components, such as a rotor, sensor wheel, center plate, etc., of the variable cam timing system 24, etc. The neck down portion 70 may be concave with respect to the axis A or a different shape that reduces the cross section of the threaded portion 36, as shown in FIGS. 6 and 7.
  • The threaded portion 36 of the valve housing 32 may include a first engagement portion 72 adapted to engage the camshaft 30 to fix the valve housing 32 to the camshaft 30, and a second engagement portion 74 configured to engage the body portion 38 to fix the threaded portion 36 to the body portion 38. Typically, the first engagement portion 72 includes threads to threadingly engage the camshaft 30 to fix the threaded portion 36 to the camshaft 30 and the second engagement portion 74 typically includes threads to threadingly engage the body portion 38 of the valve housing 32. In such embodiments, the first engagement portion 72 may have a different thread pitch and size than the second engagement portion. For example, the first engagement portion 72 may have a smaller thread size and a different pitch than the second engagement portion 74. It is to be appreciated that the second engagement portion 74 may engage the body portion 38 through other suitable structures, such as locking tabs, to axially retain the threaded portion 36 with respect to the body portion 38.
  • The cap 48 may have a cap material and the valve housing 32 may have a housing material different from the cap material. For example, the cap material may be a grade of steel that has higher toughness and impact resistance as compared to the housing material because the tool contacts the cap 48. The housing material may also be steel and, as mentioned above, may be a grade of steel that has a lower toughness and impact resistance compared to the cap material.
  • In embodiments where the threaded portion 36 of the valve housing 32 is removably coupled to the body portion 38 of the valve housing 32, the threaded portion 36 of the valve housing 32 may have a threaded material and the body portion 38 may have a body material different from the threaded material. For example, the threaded material, for example, may be a grade of steel with higher ductility as compared to the housing material because the threaded material may stretch during operation of the variable cam timing system 24. The housing material may also be steel and, as mentioned above, and may be a grade of steel that has a lower ductility compared to the threaded material. Having the threaded material and the body material being different allows each of the threaded portion 36 and the body portion 38 to be designed specifically to meet the technical requirements of each of the threaded portion 36 portion and the body portion 38. Therefore, rather than having the threaded material and the body material being the same, the materials for the threaded portion 36 and the body portion 38 may reduce costs of the control valve assembly 20 all while meeting the technical requirements of each component.
  • The control valve assembly 20 may include a check valve 76. In one embodiment, the check valve 76 is disposed within the threaded portion 36 of the valve housing 32, as shown in FIGS. 6 and 7. Having the check valve 76 disposed within the threaded portion 36 of the valve housing 32, in particular when the threaded portion 36 is removably coupled to the body portion 38, allows further flexibility in packaging internal components and passages whereby the check valve 76 may be sub-assembled as part of the threaded portion 36. Additionally, the threaded portion 36 may be customized depending on the design requirements of each variable cam timing system. The control valve assembly 20 may include other components within the threaded portion 36, such as a filter.
  • As shown in FIGS. 8 and 9, the valve housing 32 includes the threaded portion 36 adapted to engage the camshaft 30 to fix the valve housing 32 to the camshaft 30. The valve housing 32 also includes the body portion 38 spaced axially from the threaded portion 36 along the axis A. The body portion 38 disposed about the axis A and defining the body interior 40. The valve housing 32 further includes the cap 48 integral with the body portion 38, i.e., one piece, and configured to be received by the tool for transmitting torque from the tool for fixing the valve housing 32 to the camshaft 30. The control valve assembly 20 includes the piston 42 disposed in the body interior 40 and moveable along the axis A between a first position adjacent the threaded portion 36 and a second position spaced axially from the first position away from the threaded portion 36. The threaded portion 36 of the valve housing 32 is removably coupled to the body portion 38 of the valve housing 32.
  • With continued reference to FIGS. 8 and 9, the first engagement portion 72 is adapted to engage the camshaft 30 to fix the valve housing 32 to the camshaft 30, and the second engagement portion 74 is configured to engage the body portion 38 to fix the threaded portion 36 to the body portion 38.
  • With continued reference to FIGS. 8 and 9, the control valve assembly 20 may include a check valve 76 disposed within the threaded portion 36 of the valve housing 32. Having the check valve 76 disposed within the threaded portion 36 of the valve housing 32 allows further flexibility in packaging internal components and passages whereby the check valve 76 may be sub-assembled as part of the threaded portion 36. Additionally, the threaded portion 36 may be customized depending on the design requirements of each variable cam timing system. The control valve assembly 20 may include other components within the threaded portion 36, such as a filter.
  • With continued reference to FIGS. 8 and 9, the threaded portion 36 of the valve housing 32 may include a neck down portion 70 with respect to the axis A. As described above, having the neck down portion 70 allows the threaded portion 36 of the valve housing 32 to control the amount of axial stretching of the threaded portion 36 to be robust against various noise factors during operation of the control valve assembly 20 as a result of various conditions, such as changing temperature, differing thermal expansion coefficients encountered by different components of the variable cam timing system 24, embedment loss over time for the clamped components, such as a rotor, sensor wheel, center plate, etc., of the variable cam timing system 24, etc. The neck down portion 70 may be concave with respect to the axis A or a different shape that reduces the cross section of the threaded portion 36.
  • The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present invention are possible in light of the above teachings, and the invention may be practiced otherwise than as specifically described.

Claims (24)

1-14. (canceled)
15. A variable cam timing phaser of a variable cam timing system, with the variable cam timing system including a camshaft, said variable cam timing phaser comprising:
a housing having an arcuate outer wall disposed about an axis and defining a housing interior;
a rotor at least partially disposed within said housing interior and moveable with respect to said housing, with said rotor having a hub and a plurality of vanes extending from said hub away from said axis toward said arcuate outer wall; and
a control valve assembly comprising,
a valve housing extending along said axis, with said valve housing comprising,
a threaded portion adapted to engage the camshaft for fixing said valve housing to the camshaft, and
a body portion spaced axially from said threaded portion along said axis, and with said body portion disposed about said axis and defining a body interior;
a piston disposed in said body interior and moveable along said axis between a first position adjacent said threaded portion and a second position spaced axially from said first position away from said threaded portion, and
a cap removably coupled to said body portion of said valve housing;
wherein said cap comprises a torque driving element configured to be received by a tool for transmitting torque from the tool for fixing said cap to said body portion; and
wherein said cap is configured to drive said valve housing into engagement with the camshaft for fixing said valve housing, said rotor, and said housing to the camshaft.
16. The variable cam timing phaser as set forth in claim 15,
wherein said body portion of said valve housing comprises an outer body flange extending away from said axis, wherein said outer body flange is engageable with said rotor or a component connected to said rotor for axially securing said valve housing with respect to said axis.
17. The variable cam timing phaser as set forth in claim 15, wherein said cap comprises an outer cap flange extending away from said axis, wherein said outer cap flange is engageable with said rotor or a component connected to said rotor for axially securing said valve housing with respect to said axis.
18. A variable cam timing system comprising said variable cam timing phaser as set forth in claim 15, wherein said variable cam timing system further comprises a camshaft.
19. A variable cam timing phaser of a variable cam timing system, with the variable cam timing system including a camshaft, said variable cam timing phaser comprising:
a housing having an arcuate outer wall disposed about an axis and defining a housing interior;
a rotor at least partially disposed within said housing interior and moveable with respect to said housing, with said rotor having a hub and a plurality of vanes extending from said hub away from said axis toward said arcuate outer wall; and
a control valve assembly comprising,
a valve housing extending along said axis, with said valve housing comprising,
a threaded portion adapted to engage the camshaft for fixing said valve housing to the camshaft,
a body portion spaced axially from said threaded portion along said axis, and with said body portion disposed about said axis and defining a body interior, and
a cap integral with said body portion and configured to be received by a tool for transmitting torque from the tool for fixing said valve housing to the camshaft, and
a piston disposed in said body interior and moveable along said axis between a first position adjacent said threaded portion and a second position spaced axially from said first position away from said threaded portion;
wherein said threaded portion of said valve housing is removably coupled to said body portion of said valve housing;
wherein said threaded portion of said valve housing comprises a first engagement portion adapted to engage the camshaft for fixing said valve housing to the camshaft, and a second engagement portion configured to engage said body portion for fixing said threaded portion to said body portion; and
wherein said second engagement portion includes threads to threadingly engage the body portion of the valve housing.
20. (canceled)
21. The variable cam timing phaser as set forth in claim 19, further comprising a check valve disposed within said threaded portion of said valve housing.
22. The variable cam timing phaser as set forth in claim 19, wherein said threaded portion of said valve housing comprises a neck down portion with respect to said axis.
23. (canceled)
24. The variable cam timing phaser as set forth in claim 15, wherein said body portion of said valve housing has an outer body surface facing away from said axis, wherein said cap has an inner cap surface facing said outer body surface, and wherein said inner cap surface is engaged with said outer body surface when said cap is fixed to said body portion.
25. The variable cam timing phaser as set forth in claim 15, wherein said torque driving element extends away from said body portion and said threaded portion with respect to said axis
26. The variable cam timing phaser as set forth in claim 15, wherein said torque driving element has a hexagonal configuration.
27. The variable cam timing phaser as set forth in claim 15, wherein said cap comprises a cap retention flange extending toward said axis to retain said piston in said body interior.
28. The variable cam timing phaser as set forth in claim 15, wherein said threaded portion and said body portion are integral with one another.
29. The variable cam timing phaser as set forth in claim 28, wherein said valve housing is further defined as a centerbolt.
30. The variable cam timing phaser as set forth in claim 15, wherein said threaded portion of said valve housing is removably coupled to said body portion of said valve housing.
31. The variable cam timing phaser as set forth in claim 30, wherein said threaded portion of said valve housing comprises a first engagement portion adapted to engage the camshaft for fixing said valve housing to the camshaft, and a second engagement portion configured to engage said body portion for fixing said threaded portion to said body portion
32. The variable cam timing phaser as set forth in claim 30, further comprising a check valve disposed within said threaded portion of said valve housing.
33. The variable cam timing phaser as set forth in claim 15, wherein said cap comprises a cap material and said valve housing comprises a housing material different from said cap material.
34. The variable cam timing phaser as set forth in claim 15, wherein said threaded portion of said valve housing is removably coupled to said body portion of said valve housing, and wherein said threaded portion of said valve housing comprises a threaded material and said body portion comprises a body material different from said threaded material.
35. The variable cam timing phaser as set forth in claim 15, wherein said threaded portion of said valve housing is removably coupled to said body portion of said valve housing, and wherein said threaded portion of said valve housing comprises a neck down portion with respect to said axis.
36. The variable cam timing phaser as set forth in claim 19, wherein said valve housing is further defined as a centerbolt.
37. A variable cam timing system comprising said variable cam timing phaser as set forth in claim 19, wherein said variable cam timing system further comprises a camshaft.
US17/002,257 2020-08-25 2020-08-25 Control valve assembly of a variable cam timing phaser Active US11261765B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/002,257 US11261765B1 (en) 2020-08-25 2020-08-25 Control valve assembly of a variable cam timing phaser
DE102021118243.3A DE102021118243A1 (en) 2020-08-25 2021-07-14 CONTROL VALVE ASSEMBLY OF A VARIABLE CAM TIMING MODULE
CN202110823023.2A CN114109554A (en) 2020-08-25 2021-07-21 Control valve assembly for variable cam timing phaser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US17/002,257 US11261765B1 (en) 2020-08-25 2020-08-25 Control valve assembly of a variable cam timing phaser

Publications (2)

Publication Number Publication Date
US11261765B1 US11261765B1 (en) 2022-03-01
US20220065140A1 true US20220065140A1 (en) 2022-03-03

Family

ID=80221644

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/002,257 Active US11261765B1 (en) 2020-08-25 2020-08-25 Control valve assembly of a variable cam timing phaser

Country Status (3)

Country Link
US (1) US11261765B1 (en)
CN (1) CN114109554A (en)
DE (1) DE102021118243A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2673062A (en) * 1951-07-16 1954-03-23 Richard T Cornelius Check valve
US5592972A (en) * 1994-02-10 1997-01-14 Hydraulik-Ring Antriebs- Und Steuerungstechnik Gmbh Electroproportional solenoid valve unit
US6289921B1 (en) * 1997-06-26 2001-09-18 Hydraulik-Ring Gmbh Hydraulic valve, especially for controlling a camshaft movement in a motor vehicle
US6481401B1 (en) * 2000-04-22 2002-11-19 Ina Walzlager Schaeffler Ohg Device for independent hydraulic actuation of the phase and axial position of a camshaft
US7013854B1 (en) * 2005-05-18 2006-03-21 Ina-Schaeffler Kg Device for the hydraulic adjustment of the angle of rotation of a camshaft in relation to a crankshaft of an internal combustion engine
US20090145386A1 (en) * 2007-12-05 2009-06-11 Denso Corporation Valve timing adjusting apparatus
US20100084019A1 (en) * 2008-10-08 2010-04-08 Schaeffler Kg Central spool valve
US20110114047A1 (en) * 2009-11-13 2011-05-19 Hydraulik-Ring Gmbh Camshaft insert
US20120145100A1 (en) * 2010-12-08 2012-06-14 Schwabische Huttenwerke Automotive Gmbh Device for adjusting the rotational angular position of a cam shaft
DE102011080264A1 (en) * 2011-08-02 2013-02-07 Schaeffler Technologies AG & Co. KG Screw nut for mounting camshaft adjuster on camshaft for camshaft adjusting system, has supporting surface for axial thrust bearing of camshaft adjuster and thread for screwing camshaft
DE102013203951A1 (en) * 2012-05-25 2013-11-28 Schaeffler Technologies AG & Co. KG Control valve of a camshaft adjuster
DE102012214762A1 (en) * 2012-08-20 2014-02-20 Schaeffler Technologies AG & Co. KG Mounting arrangement for connecting camshaft adjusting device with cam shaft in combustion engine, has clamping element engaging in receptacle, so that degree of freedom of hub element to camshaft in axial direction is disabled
US8893676B2 (en) * 2009-07-04 2014-11-25 Schaeffler Technologies AG & Co. KG Central valve of a camshaft adjuster of an internal combustion engine
US8899198B2 (en) * 2009-10-29 2014-12-02 Schaeffler Technologies Gmbh & Co. Kg Fastening assembly of a camshaft adjuster

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4552311A (en) 1983-09-23 1985-11-12 Allied Corporation Low cost unitized fuel injection system
JPH0812684B2 (en) 1991-08-05 1996-02-07 科学技術庁長官官房会計課長 Pattern recognizer
DE10322394A1 (en) 2003-05-12 2004-12-02 Hydraulik-Ring Gmbh Camshaft adjuster for internal combustion engines of motor vehicles
EP1617116B1 (en) 2004-07-14 2007-11-07 Jtekt Corporation Solenoid-operated valve
DE102007023617B4 (en) 2007-05-18 2020-06-04 Herbert Naumann Camshaft adjuster
EP2809976B1 (en) 2012-01-30 2017-02-22 BorgWarner Inc. Solenoid valve having a core monolythically formed of a flux-tube and casing
US9016663B2 (en) 2012-02-22 2015-04-28 Delphi Technologies, Inc. Solenoid-actuated pressure control valve
JP2017044109A (en) 2015-08-25 2017-03-02 トヨタ自動車株式会社 Variable valve mechanism
US9695716B2 (en) 2015-08-31 2017-07-04 Borgwarner Inc. Multi-mode variable cam timing phaser
US10151222B2 (en) 2016-09-28 2018-12-11 Schaeffler Technologies AG & Co. KG Electric cam phasing system including an activatable lock
DE102016220767A1 (en) 2016-10-21 2018-04-26 Robert Bosch Gmbh Electromagnetic actuator
JP6494892B2 (en) 2017-01-05 2019-04-03 三菱電機株式会社 Variable valve timing device and method of assembling variable valve timing device
JP2019157853A (en) 2018-03-07 2019-09-19 ボーグワーナー インコーポレーテッド Zero pressure unlocking system for phaser
JP6918241B2 (en) 2018-07-06 2021-08-11 三菱電機株式会社 Check valve, oil control valve, and valve timing adjuster
DE112019003926T5 (en) 2018-09-13 2021-05-20 Borgwarner Inc. HYBRID PHASE ADJUSTER WITH HYDRAULIC LOCKING IN AN INTERMEDIATE POSITION
DE102018130999A1 (en) 2018-09-28 2020-04-02 Schaeffler Technologies AG & Co. KG Assembly centering screw, magnetic carrier kit and assembly process
WO2020084763A1 (en) 2018-10-26 2020-04-30 三菱電機株式会社 Valve timing adjustment device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2673062A (en) * 1951-07-16 1954-03-23 Richard T Cornelius Check valve
US5592972A (en) * 1994-02-10 1997-01-14 Hydraulik-Ring Antriebs- Und Steuerungstechnik Gmbh Electroproportional solenoid valve unit
US6289921B1 (en) * 1997-06-26 2001-09-18 Hydraulik-Ring Gmbh Hydraulic valve, especially for controlling a camshaft movement in a motor vehicle
US6481401B1 (en) * 2000-04-22 2002-11-19 Ina Walzlager Schaeffler Ohg Device for independent hydraulic actuation of the phase and axial position of a camshaft
US7013854B1 (en) * 2005-05-18 2006-03-21 Ina-Schaeffler Kg Device for the hydraulic adjustment of the angle of rotation of a camshaft in relation to a crankshaft of an internal combustion engine
US20090145386A1 (en) * 2007-12-05 2009-06-11 Denso Corporation Valve timing adjusting apparatus
US20100084019A1 (en) * 2008-10-08 2010-04-08 Schaeffler Kg Central spool valve
US8893676B2 (en) * 2009-07-04 2014-11-25 Schaeffler Technologies AG & Co. KG Central valve of a camshaft adjuster of an internal combustion engine
US8899198B2 (en) * 2009-10-29 2014-12-02 Schaeffler Technologies Gmbh & Co. Kg Fastening assembly of a camshaft adjuster
US20110114047A1 (en) * 2009-11-13 2011-05-19 Hydraulik-Ring Gmbh Camshaft insert
US20120145100A1 (en) * 2010-12-08 2012-06-14 Schwabische Huttenwerke Automotive Gmbh Device for adjusting the rotational angular position of a cam shaft
DE102011080264A1 (en) * 2011-08-02 2013-02-07 Schaeffler Technologies AG & Co. KG Screw nut for mounting camshaft adjuster on camshaft for camshaft adjusting system, has supporting surface for axial thrust bearing of camshaft adjuster and thread for screwing camshaft
DE102013203951A1 (en) * 2012-05-25 2013-11-28 Schaeffler Technologies AG & Co. KG Control valve of a camshaft adjuster
DE102012214762A1 (en) * 2012-08-20 2014-02-20 Schaeffler Technologies AG & Co. KG Mounting arrangement for connecting camshaft adjusting device with cam shaft in combustion engine, has clamping element engaging in receptacle, so that degree of freedom of hub element to camshaft in axial direction is disabled

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DE-102013203951 English Language Machine Translation, 11-2013 *

Also Published As

Publication number Publication date
US11261765B1 (en) 2022-03-01
CN114109554A (en) 2022-03-01
DE102021118243A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
KR101223994B1 (en) Device for adjusting the camshaft of an internal combustion engine and a mounting tool
US7775921B2 (en) Chain tensioner
US7303495B2 (en) Continuously variable transmission case cover
US20090017920A1 (en) Front cover for a vane-type cam phaser
US9074497B2 (en) Camshaft phaser having a spring attached to the pin of a screw
US8997704B2 (en) Apparatus for the variable setting of the control times of gas exchange valves of an internal combustion engine
EP2539552B1 (en) Device for variably adjusting the control times of gas exchange valves of an internal combustion engine
EP2444600A1 (en) Camshaft device, engine with same, and method for manufacturing camshaft device
CN103256083A (en) Central valve for camshaft adjuster
US20030116110A1 (en) Internal combustion engine adjusting the rotation angle of a camshaft with respect to a crankshaft
US8302573B2 (en) Hydraulic camshaft adjuster having an axial screw plug
US20060116229A1 (en) Chain tensioner
EP2267335B1 (en) Chain tensioner
US8881877B2 (en) Vibration damper
US11261765B1 (en) Control valve assembly of a variable cam timing phaser
CN110645385B (en) Check valve for a connecting rod of an internal combustion engine with variable compression ratio and connecting rod with a check valve
EP3569893B1 (en) Chain tensioner
CN108884914B (en) Chain tensioner
DE112009000471B4 (en) Chain tensioner
EP2280190B1 (en) Chain tensioner
DE102004062070B4 (en) Camshaft adjuster for an internal combustion engine
EP1600661A1 (en) Structure of piston for hydraulic shock absorber
US10132213B2 (en) Valve opening and closing timing control apparatus
US11118486B2 (en) Rotor timing feature for camshaft phaser
US20220186639A1 (en) Variable cam timing phaser

Legal Events

Date Code Title Description
AS Assignment

Owner name: BORGWARNER INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PLUMEAU, JOSHUA D.;BARVE, ANAND;SIGNING DATES FROM 20200814 TO 20200824;REEL/FRAME:053591/0791

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE