US20220040864A1 - Handling Method and Apparatus for Stacked Box - Google Patents

Handling Method and Apparatus for Stacked Box Download PDF

Info

Publication number
US20220040864A1
US20220040864A1 US17/367,492 US202117367492A US2022040864A1 US 20220040864 A1 US20220040864 A1 US 20220040864A1 US 202117367492 A US202117367492 A US 202117367492A US 2022040864 A1 US2022040864 A1 US 2022040864A1
Authority
US
United States
Prior art keywords
box
stacked
handling apparatus
wedge member
handling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/367,492
Other versions
US11969883B2 (en
Inventor
Shoji Nishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryoei Co Ltd
Original Assignee
Ryoei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryoei Co Ltd filed Critical Ryoei Co Ltd
Assigned to RYOEI CO., LTD. reassignment RYOEI CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NISHIKAWA, SHOJI
Publication of US20220040864A1 publication Critical patent/US20220040864A1/en
Application granted granted Critical
Publication of US11969883B2 publication Critical patent/US11969883B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G59/00De-stacking of articles
    • B65G59/02De-stacking from the top of the stack
    • B65G59/023De-stacking from the top of the stack by means insertable between the stacked articles or layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0014Gripping heads and other end effectors having fork, comb or plate shaped means for engaging the lower surface on a object to be transported
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0028Gripping heads and other end effectors with movable, e.g. pivoting gripping jaw surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0052Gripping heads and other end effectors multiple gripper units or multiple end effectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0052Gripping heads and other end effectors multiple gripper units or multiple end effectors
    • B25J15/0061Gripping heads and other end effectors multiple gripper units or multiple end effectors mounted on a modular gripping structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • B25J15/0253Gripping heads and other end effectors servo-actuated comprising parallel grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • B65G47/904Devices for picking-up and depositing articles or materials provided with rotary movements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G47/00Article or material-handling devices associated with conveyors; Methods employing such devices
    • B65G47/74Feeding, transfer, or discharging devices of particular kinds or types
    • B65G47/90Devices for picking-up and depositing articles or materials
    • B65G47/905Control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/041Camera

Definitions

  • the present invention relates to a handling method and apparatus for a stacked box, for moving a stacked box having an open top surface by using a robot arm.
  • a handling apparatus that suctions a top surface of the box by using a robot arm is widely used as shown in Japanese Patent JP2014-176926A, incorporated herein by reference.
  • a resin box which is often used as a returnable box for parts and the like in factories, is a box with an open top surface, the top surface cannot be suctioned. For this reason, manual handling is performed in many cases. However, when a weight is heavy and boxes are stacked in multiple stages, manual handling is not easy.
  • Japanese Patent JPH6-206634A which is incorporated herein by reference, discloses a handling device that hooks a claw on a downward bending piece of an upper flange on one side of a box, pulls outward to form a space between with an adjacent box, and uses that space to hook the claw on an opposite side of the box to lift.
  • this device can only be used for boxes having the upper flange with the downward bending piece, and cannot be applied to many boxes having a flange that extends only in a horizontal direction.
  • this device can only be used when boxes of the same height are lined up. However, even when boxes of different sizes are stacked as shown in FIG. 13 , by tilting an upper small box in either direction as shown in FIG. 13 , the box will no longer fall into a lower box. This is because a protrusion for stage stacking (for stacking) is formed on a bottom surface of the box. A direction for tilting the box can be selected from an X direction or a Y direction as shown in FIG. 14 . However, depending on a position of a box to be a target, tilting may not be possible.
  • an object of the present invention is to provide a handling method and a handling apparatus for a stacked box, which are capable of pulling vertically upward and taking out a stacked box with an open top surface.
  • a handling method for a stacked box made to solve the above problems includes a box handling method for gripping and moving a stacked box having an open top surface, with a handling apparatus attached to a robot arm.
  • the handling method includes: moving the handling apparatus to above a stacked box on an uppermost stage; inserting a wedge member having a flat plate shape along an outer surface of the box on the uppermost stage; rotating a claw provided to the wedge member in a direction approaching the box, to be engaged with a lower surface of an outer flange of the box; lifting the box vertically upward and then driving a fall prevention hanger on a lower side of the box to cause the handling apparatus to grip the box; and then causing the robot arm to move.
  • a handling apparatus for a stacked box made to solve the above problems is a stacked box handling apparatus that is attached to a robot arm to grip and move a stacked box having an open top surface.
  • the stacked box handling apparatus includes: a pressing pad that presses upper end surfaces of two opposite edges of a box on an uppermost stage; a wedge member that has a flat plate shape and is inserted along outer surfaces of the two opposite edges of the box of the uppermost stage; a claw that is provided to the wedge member, and is rotated in a direction approaching the box to be engaged with a lower surface of an outer flange of the box; and a fall prevention hanger that is driven on a lower side of the box hooked on the claw and lifted.
  • the fall prevention hanger and the wedge member having a flat plate shape and including the above-mentioned claw, are individually mounted on a pair of sliders, and the pair of sliders are made slidable in accordance with a size of the box.
  • the two opposite edges of the box are pressed by the pressing pad, the wedge member having a flat plate shape is inserted along the outer surface of the box, the claw provided to the wedge member is rotated in a direction approaching the box to be engaged with the lower surface of the outer flange of the box, and the box is lifted vertically upward.
  • the targeted box can be easily taken out.
  • the outer flange of the box does not have a downward bending piece, it is possible to handle without any trouble, which provides an advantage of excellent versatility.
  • FIG. 1 is an overall conceptual view of a nonlimiting embodiment of the invention as shown in its environment of use;
  • FIG. 2 is a conceptual view showing image capturing with a camera
  • FIG. 3 is a perspective view of a box to be handled by the invention.
  • FIG. 4 is a front view of a handling apparatus of a nonlimiting embodiment of the invention shown in proximity to the box;
  • FIG. 5 is an explanatory view of the handling apparatus of FIG. 4 showing a state where a slider is moved in accordance with a size of the box;
  • FIG. 6 is a perspective view of a main part of the handling apparatus of FIG. 4 ;
  • FIG. 7 is a conceptual view showing a claw rotation mechanism of the handling apparatus of FIG. 4 ;
  • FIG. 8 is an explanatory view showing a state where a pressing pad of the handling apparatus of FIG. 4 presses an upper end portion of the box;
  • FIG. 9 is an explanatory view showing a state where a wedge member of the handling apparatus of FIG. 4 is driven.
  • FIG. 10 is an explanatory view showing a state where a fall prevention hanger of the handling apparatus of FIG. 4 is driven;
  • FIG. 11 is an enlarged view of a main part of the handling apparatus of FIG. 4 , showing steps of a handling operation method of a nonlimiting embodiment of the invention
  • FIG. 12 is an overall view of the handling apparatus of FIG. 4 showing steps of a handling operation method of a nonlimiting embodiment of the invention
  • FIG. 13 is an explanatory view showing a conventional technique
  • FIG. 14 is an explanatory view showing a conventional technique
  • FIG. 15 is an explanatory view showing a problem in a conventional technique.
  • FIG. 16 is an explanatory view showing a problem in a conventional technique.
  • FIG. 1 is an overall conceptual view of a nonlimiting embodiment of the invention in which each box 10 in a stack of boxes includes an open top surface and is stacked on a pallet.
  • a handling apparatus 12 of the present invention is attached to a distal end of an arm of a robot 11 arranged in the vicinity of the box 10 .
  • a camera 13 is attached to a support column 14 for scanning the boxes. As shown in FIG. 2 , more than one camera 13 is arranged so as to be able to capture an image of the stacked boxes from a plurality of directions. Then, coordinates of an uppermost box 10 are calculated, and the handling apparatus 12 is moved to a position directly above the targeted box 10 .
  • a box is defined as a rectangle formed by three or more corners.
  • a center point of each side is obtained, two centers of opposite edges of the box are calculated, and three-dimensional position coordinates are calculated.
  • the coordinates of the uppermost box 10 can be calculated from each camera image.
  • FIG. 3 shows the box 10 to be a handling target, according to the present embodiment.
  • This box 10 is made of resin and has an open top surface, and an outer flange 15 is provided around the top surface.
  • the outer flange 15 does not have a downward bending piece, but projects only in a horizontal direction.
  • An amount of the projection is generally about 10 to 20 mm. Note that, even a box having a downward bending piece on an outer flange can be handled without any trouble.
  • FIG. 4 shows the entire handling apparatus 12 of the nonlimiting embodiment of the invention in proximity to the box 10 .
  • Reference numeral 20 is a main body attached to a distal end of a robot arm (not shown), and reference numeral 21 is a horizontal rail provided on the main body 20 .
  • a pair of sliders 22 are supported so as to be able to travel along the horizontal rail 21 .
  • a hydraulic cylinder can be used as a traveling actuator
  • an appropriate actuator such as a mechanism to travel by a motor along the horizontal rail 21 or a moving mechanism with a ball screw can be adopted.
  • the pair of sliders 22 are expanded and contracted in accordance with a size of the box 10 .
  • FIG. 5 shows the expanded state.
  • a drive box 23 is provided at a lower part of each slider 22 .
  • a pair of pressing pads 26 are provided downward.
  • the pair of pressing pads 26 have an inverted L-shape provided with a hanging piece 27 , and the slider 22 is expanded and contracted so that the hanging piece 27 enters inside an upper end surface of the targeted uppermost box 10 .
  • pressing two opposite edges of the box 10 with these pressing pads 26 makes it easy to tilt or shift the box 10 , and can form a slight gap between with an adjacent box.
  • a wedge member 28 having a substantially flat plate shape is provided so as to be able to be lifted and lowered by a lifting and lowering means 29 .
  • the wedge member 28 has a sharp lower end and a hollow upper portion, and accommodates a pair of claws 30 inside, as shown in FIG. 7 .
  • Each of the claws 30 is rotated around a vertical shaft 31 by a link mechanism, and can protrude on a back surface (a surface on the box 10 side) of the wedge member 28 .
  • Reference numeral 24 is a drive source of the link mechanism.
  • FIG. 6 at positions on both sides of the wedge member 28 of the drive box 23 , a fall prevention hanger 33 that rotates approximately 180 degrees around a horizontal shaft 32 is provided. Between the shaft 32 and a drive shaft 34 , an intermediate shaft 35 is provided, and a belt 36 rotates the fall prevention hanger 33 .
  • FIG. 4 shows a state where the fall prevention hanger 33 is in an upper position
  • FIG. 10 shows a state where the fall prevention hanger 33 is swung down. A distal end of the fall prevention hanger 33 is bent in an L-shape so as to reliably support a lower surface of the outer flange 15 of the box 10 .
  • the handling apparatus 12 is moved by the robot arm to above the targeted uppermost box 10 among the stacked boxes having an open top surface. As shown in FIG. 1 , adjacent boxes are usually stacked in a substantially close contact state.
  • the slider 22 is moved along the horizontal rail 21 in accordance with a size of the box 10 as shown in FIG. 5 . Note that the position and the size of the targeted box 10 are calculated in advance on the basis of images of the plurality of cameras 13 . Further, while there are two sets of two opposite edges of the box 10 on a long side and on a short side, it is calculated in advance which opposite edges are to be held, and an orientation of the handling apparatus 12 is adjusted.
  • the handling apparatus 12 is lowered toward the box 10 by a robot hand, and the pair of pressing pads 26 are brought into close contact with an upper end surface of the box 10 .
  • the box 10 is laterally shifted by the robot hand so as to form a slight gap of about 3 to 10 mm between with the adjacent box 10 .
  • the wedge member 28 is driven into this slight gap as shown in FIG. 9 .
  • This operation is performed on one side of the box 10 , and then performed on an opposite side.
  • the adjacent boxes 10 are substantially in close contact with each other, it is possible to forcibly shift by a small distance by the robot hand.
  • This shift is for allowing the sharp lower end of the wedge member 28 to cut in, and does not need to be performed on a side with no adjacent box 10 .
  • the above operation is illustrated in progressive detail in (A), (B), and (C) of FIG. 11 and (A), (B), and (C) of FIG. 12 .
  • the claw 30 When the wedge member 28 is driven, the claw 30 is accommodated inside the wedge member 28 so as not to interfere with the driving. After the wedge members 28 is driven on both sides of the box 10 , as shown in (C) of FIG. 11 , the claw 30 rotates around the vertical shaft 31 and protrudes on the back surface side of the wedge member 28 . An amount of the protrusion of the claw 30 is, for example, about 10 mm. The protruding claw 30 is located below the outer flange 15 of the box 10 .
  • the claw 30 is hooked on the outer flange 15 on the upper end surface as shown in (C) and (D) of FIG. 9 .
  • some boxes are formed with the outer flange 15 not only on the upper end surface but also therebelow. In that case, the claw 30 is to engage with a lowermost outer flange 15 .
  • the fall prevention hanger 33 which has been in an upper position until then, is swung downward to support the lower surface of the outer flange 15 of the box 10 .
  • the fall prevention hanger 33 is swung about 3 mm on a lower side of the claw 30 .
  • the fall prevention hangers 33 are swung downward on both sides of the box 10 to reliably hold the outer flange 15 of the box 10 on both sides, and the robot arm moves the box 10 to a target position. Since the two opposite edges of the box 10 are reliably restrained by the fall prevention hanger 33 , the box 10 does not fall during movement. Note that, in FIG.
  • the targeted box 10 can be easily pulled out vertically upward and taken out even when adjacent boxes 10 are stacked exactly on top of each other. Therefore, the adjacent box 10 is not affected as in the past. Further, even when the outer flange of the box does not have a downward bending piece, it is possible to handle without any trouble, which provides excellent versatility. Further, the box is not dropped during conveyance, and there is an advantage of excellent safety.

Abstract

A handling method and apparatus for a stacked box can pull vertically upward and take out a stacked box having an open top surface. The handling method and apparatus gripes and moves the stacked box having an open top surface with the handling apparatus attached to a robot arm. The handling apparatus is moved to above a stacked uppermost box, a wedge member having a flat plate shape is inserted along outer surfaces of two opposite edges of an upper box, a claw provided to the wedge member is projected in a direction approaching the box and engaged with a lower surface of an outer flange of the box, and the box is lifted vertically upward and then a fall prevention hanger is driven on a lower side of the box to cause the box to be gripped by the handling apparatus and then moved by the robot arm.

Description

    TECHNICAL FIELD
  • The present invention relates to a handling method and apparatus for a stacked box, for moving a stacked box having an open top surface by using a robot arm.
  • BACKGROUND
  • In order to handle a box with a closed top surface, such as a cardboard box, a handling apparatus that suctions a top surface of the box by using a robot arm is widely used as shown in Japanese Patent JP2014-176926A, incorporated herein by reference. However, since a resin box, which is often used as a returnable box for parts and the like in factories, is a box with an open top surface, the top surface cannot be suctioned. For this reason, manual handling is performed in many cases. However, when a weight is heavy and boxes are stacked in multiple stages, manual handling is not easy.
  • In such a case, there is a method of lifting and moving by inserting a fork of a forklift on a lower surface of a box. However, this method can only be used when there is a large open space beside the stacked boxes. Further, even for an uppermost box, when it is desired to move a box located inside, a box in front needs to be removed first.
  • Further, Japanese Patent JPH6-206634A, which is incorporated herein by reference, discloses a handling device that hooks a claw on a downward bending piece of an upper flange on one side of a box, pulls outward to form a space between with an adjacent box, and uses that space to hook the claw on an opposite side of the box to lift. However, this device can only be used for boxes having the upper flange with the downward bending piece, and cannot be applied to many boxes having a flange that extends only in a horizontal direction.
  • Further, this device can only be used when boxes of the same height are lined up. However, even when boxes of different sizes are stacked as shown in FIG. 13, by tilting an upper small box in either direction as shown in FIG. 13, the box will no longer fall into a lower box. This is because a protrusion for stage stacking (for stacking) is formed on a bottom surface of the box. A direction for tilting the box can be selected from an X direction or a Y direction as shown in FIG. 14. However, depending on a position of a box to be a target, tilting may not be possible.
  • In addition, when a tall box is mixed as shown in FIG. 15, there is a possibility that adjacent boxes fall when the tall box is shifted obliquely. Furthermore, when boxes of different sizes are intricately combined and stacked as shown in FIG. 16, boxes A, B, C, D, and E interfere with each other. Therefore, it may not be possible to directly shift, pull, or tilt a targeted box.
  • SUMMARY
  • Therefore, an object of the present invention is to provide a handling method and a handling apparatus for a stacked box, which are capable of pulling vertically upward and taking out a stacked box with an open top surface.
  • A handling method for a stacked box according to the present invention made to solve the above problems includes a box handling method for gripping and moving a stacked box having an open top surface, with a handling apparatus attached to a robot arm. In a nonlimiting embodiment, the handling method includes: moving the handling apparatus to above a stacked box on an uppermost stage; inserting a wedge member having a flat plate shape along an outer surface of the box on the uppermost stage; rotating a claw provided to the wedge member in a direction approaching the box, to be engaged with a lower surface of an outer flange of the box; lifting the box vertically upward and then driving a fall prevention hanger on a lower side of the box to cause the handling apparatus to grip the box; and then causing the robot arm to move.
  • Meanwhile, in a nonlimiting embodiment it is preferable to press two opposite edges of the box with a pressing pad to make it easy to tilt or shift the box, form a slight gap between an adjacent box, and then insert the wedge member having a flat plate shape.
  • Further, in a nonlimiting embodiment a handling apparatus for a stacked box according to the present invention made to solve the above problems is a stacked box handling apparatus that is attached to a robot arm to grip and move a stacked box having an open top surface. The stacked box handling apparatus includes: a pressing pad that presses upper end surfaces of two opposite edges of a box on an uppermost stage; a wedge member that has a flat plate shape and is inserted along outer surfaces of the two opposite edges of the box of the uppermost stage; a claw that is provided to the wedge member, and is rotated in a direction approaching the box to be engaged with a lower surface of an outer flange of the box; and a fall prevention hanger that is driven on a lower side of the box hooked on the claw and lifted.
  • Meanwhile, in a nonlimiting embodiment it is preferable to have a structure in which the fall prevention hanger, and the wedge member having a flat plate shape and including the above-mentioned claw, are individually mounted on a pair of sliders, and the pair of sliders are made slidable in accordance with a size of the box.
  • There are advantages of the invention. According to the present invention, the two opposite edges of the box are pressed by the pressing pad, the wedge member having a flat plate shape is inserted along the outer surface of the box, the claw provided to the wedge member is rotated in a direction approaching the box to be engaged with the lower surface of the outer flange of the box, and the box is lifted vertically upward. Thus, there is no need to significantly shift the box laterally for inserting a griper as in the past. Therefore, the targeted box can be easily taken out. Further, even when the outer flange of the box does not have a downward bending piece, it is possible to handle without any trouble, which provides an advantage of excellent versatility.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Referring now to the drawings, exemplary nonlimiting embodiments are shown. Although the drawings represent nonlimiting embodiments, the drawings are not necessarily to scale and certain features may be exaggerated to better illustrate and explain an aspect of the invention. Further, the exemplary embodiments described herein are not intended to be exhaustive or otherwise limiting or restricted to the precise form and configuration shown in the drawings and disclosed in the following detailed description and claims. Exemplary embodiments of the invention are described in reference to the drawings as follows:
  • FIG. 1 is an overall conceptual view of a nonlimiting embodiment of the invention as shown in its environment of use;
  • FIG. 2 is a conceptual view showing image capturing with a camera;
  • FIG. 3 is a perspective view of a box to be handled by the invention;
  • FIG. 4 is a front view of a handling apparatus of a nonlimiting embodiment of the invention shown in proximity to the box;
  • FIG. 5 is an explanatory view of the handling apparatus of FIG. 4 showing a state where a slider is moved in accordance with a size of the box;
  • FIG. 6 is a perspective view of a main part of the handling apparatus of FIG. 4;
  • FIG. 7 is a conceptual view showing a claw rotation mechanism of the handling apparatus of FIG. 4;
  • FIG. 8 is an explanatory view showing a state where a pressing pad of the handling apparatus of FIG. 4 presses an upper end portion of the box;
  • FIG. 9 is an explanatory view showing a state where a wedge member of the handling apparatus of FIG. 4 is driven;
  • FIG. 10 is an explanatory view showing a state where a fall prevention hanger of the handling apparatus of FIG. 4 is driven;
  • FIG. 11 is an enlarged view of a main part of the handling apparatus of FIG. 4, showing steps of a handling operation method of a nonlimiting embodiment of the invention;
  • FIG. 12 is an overall view of the handling apparatus of FIG. 4 showing steps of a handling operation method of a nonlimiting embodiment of the invention;
  • FIG. 13 is an explanatory view showing a conventional technique;
  • FIG. 14 is an explanatory view showing a conventional technique;
  • FIG. 15 is an explanatory view showing a problem in a conventional technique; and
  • FIG. 16 is an explanatory view showing a problem in a conventional technique.
  • DETAILED DESCRIPTION
  • Hereinafter, nonlimiting embodiments of the present invention will be described with reference to the figures. FIG. 1 is an overall conceptual view of a nonlimiting embodiment of the invention in which each box 10 in a stack of boxes includes an open top surface and is stacked on a pallet. A handling apparatus 12 of the present invention is attached to a distal end of an arm of a robot 11 arranged in the vicinity of the box 10. A camera 13 is attached to a support column 14 for scanning the boxes. As shown in FIG. 2, more than one camera 13 is arranged so as to be able to capture an image of the stacked boxes from a plurality of directions. Then, coordinates of an uppermost box 10 are calculated, and the handling apparatus 12 is moved to a position directly above the targeted box 10. For this purpose, by recognizing a rectangular shape of the uppermost box from images of the individual camera 13, and then finding a corner of the box, a box is defined as a rectangle formed by three or more corners. Next, a center point of each side is obtained, two centers of opposite edges of the box are calculated, and three-dimensional position coordinates are calculated. In this way, the coordinates of the uppermost box 10 can be calculated from each camera image. This technique is already known to those skilled in the art as a robot control technique using an image and is not a novel or nonobvious part of the present invention, and thus the description thereof will be omitted.
  • FIG. 3 shows the box 10 to be a handling target, according to the present embodiment. This box 10 is made of resin and has an open top surface, and an outer flange 15 is provided around the top surface. The outer flange 15 does not have a downward bending piece, but projects only in a horizontal direction. An amount of the projection is generally about 10 to 20 mm. Note that, even a box having a downward bending piece on an outer flange can be handled without any trouble.
  • FIG. 4 shows the entire handling apparatus 12 of the nonlimiting embodiment of the invention in proximity to the box 10. Reference numeral 20 is a main body attached to a distal end of a robot arm (not shown), and reference numeral 21 is a horizontal rail provided on the main body 20. At a lower part of the horizontal rail 21, a pair of sliders 22 are supported so as to be able to travel along the horizontal rail 21. For example, while a hydraulic cylinder can be used as a traveling actuator, an appropriate actuator such as a mechanism to travel by a motor along the horizontal rail 21 or a moving mechanism with a ball screw can be adopted. The pair of sliders 22 are expanded and contracted in accordance with a size of the box 10. FIG. 5 shows the expanded state.
  • As shown in FIGS. 5 and 6, a drive box 23 is provided at a lower part of each slider 22. On a bottom surface of the drive box 23, a pair of pressing pads 26 are provided downward. The pair of pressing pads 26 have an inverted L-shape provided with a hanging piece 27, and the slider 22 is expanded and contracted so that the hanging piece 27 enters inside an upper end surface of the targeted uppermost box 10. As will be described later, pressing two opposite edges of the box 10 with these pressing pads 26 makes it easy to tilt or shift the box 10, and can form a slight gap between with an adjacent box.
  • On an outer surface of the drive box 23, a wedge member 28 having a substantially flat plate shape is provided so as to be able to be lifted and lowered by a lifting and lowering means 29. As shown in FIG. 6, the wedge member 28 has a sharp lower end and a hollow upper portion, and accommodates a pair of claws 30 inside, as shown in FIG. 7. Each of the claws 30 is rotated around a vertical shaft 31 by a link mechanism, and can protrude on a back surface (a surface on the box 10 side) of the wedge member 28. Reference numeral 24 is a drive source of the link mechanism.
  • Further, as shown in FIG. 6, at positions on both sides of the wedge member 28 of the drive box 23, a fall prevention hanger 33 that rotates approximately 180 degrees around a horizontal shaft 32 is provided. Between the shaft 32 and a drive shaft 34, an intermediate shaft 35 is provided, and a belt 36 rotates the fall prevention hanger 33. FIG. 4 shows a state where the fall prevention hanger 33 is in an upper position, and FIG. 10 shows a state where the fall prevention hanger 33 is swung down. A distal end of the fall prevention hanger 33 is bent in an L-shape so as to reliably support a lower surface of the outer flange 15 of the box 10.
  • Hereinafter, a handling method using the handling apparatus of the present invention will be described step by step.
  • First, as described above, the handling apparatus 12 is moved by the robot arm to above the targeted uppermost box 10 among the stacked boxes having an open top surface. As shown in FIG. 1, adjacent boxes are usually stacked in a substantially close contact state. After the handling apparatus is positioned above a center of the box 10 as shown in FIG. 4, the slider 22 is moved along the horizontal rail 21 in accordance with a size of the box 10 as shown in FIG. 5. Note that the position and the size of the targeted box 10 are calculated in advance on the basis of images of the plurality of cameras 13. Further, while there are two sets of two opposite edges of the box 10 on a long side and on a short side, it is calculated in advance which opposite edges are to be held, and an orientation of the handling apparatus 12 is adjusted.
  • Next, as shown in FIG. 8, the handling apparatus 12 is lowered toward the box 10 by a robot hand, and the pair of pressing pads 26 are brought into close contact with an upper end surface of the box 10. Then, the box 10 is laterally shifted by the robot hand so as to form a slight gap of about 3 to 10 mm between with the adjacent box 10. Then, the wedge member 28 is driven into this slight gap as shown in FIG. 9. This operation is performed on one side of the box 10, and then performed on an opposite side. Although the adjacent boxes 10 are substantially in close contact with each other, it is possible to forcibly shift by a small distance by the robot hand. This shift is for allowing the sharp lower end of the wedge member 28 to cut in, and does not need to be performed on a side with no adjacent box 10. The above operation is illustrated in progressive detail in (A), (B), and (C) of FIG. 11 and (A), (B), and (C) of FIG. 12.
  • When the wedge member 28 is driven, the claw 30 is accommodated inside the wedge member 28 so as not to interfere with the driving. After the wedge members 28 is driven on both sides of the box 10, as shown in (C) of FIG. 11, the claw 30 rotates around the vertical shaft 31 and protrudes on the back surface side of the wedge member 28. An amount of the protrusion of the claw 30 is, for example, about 10 mm. The protruding claw 30 is located below the outer flange 15 of the box 10. Then, when the entire handling apparatus is lifted directly upward by the robot arm, a top surface of the protruding claw 30 engages with the lower surface of the outer flange 15 of the box 10, and the box 10 is pulled vertically upward by the claws 30 on both sides as shown in FIG. 11 (D). At this time, a side plate of the box 10 is held from inside by the pressing pad 26, and outside is restrained by the wedge member 28. Therefore, even if the amount of the protrusion of the claw 30 is small, the claw 30 does not come off from the outer flange 15 of the box 10.
  • Meanwhile, since the outer flange 15 of the box 10 shown in FIG. 3 exists only on the upper end surface, the claw 30 is hooked on the outer flange 15 on the upper end surface as shown in (C) and (D) of FIG. 9. However, some boxes are formed with the outer flange 15 not only on the upper end surface but also therebelow. In that case, the claw 30 is to engage with a lowermost outer flange 15.
  • In this way, after the uppermost box 10 is lifted vertically upward, as shown in (E) of FIG. 11, the fall prevention hanger 33, which has been in an upper position until then, is swung downward to support the lower surface of the outer flange 15 of the box 10. The fall prevention hanger 33 is swung about 3 mm on a lower side of the claw 30. In this way, the fall prevention hangers 33 are swung downward on both sides of the box 10 to reliably hold the outer flange 15 of the box 10 on both sides, and the robot arm moves the box 10 to a target position. Since the two opposite edges of the box 10 are reliably restrained by the fall prevention hanger 33, the box 10 does not fall during movement. Note that, in FIG. 12(C), only a right side of the fall prevention hanger 33 is swung down, but a left side with the adjacent box 10 is not swung down. As shown in FIG. 12(D), the left side is swung down after a space for swinging down the fall prevention hanger 33 is formed. When the box 10 is conveyed to the target position and the fall prevention hanger 33 is released, the claw 30 is retracted.
  • As described above, according to the handling method and apparatus for a stacked box according to the present invention, the targeted box 10 can be easily pulled out vertically upward and taken out even when adjacent boxes 10 are stacked exactly on top of each other. Therefore, the adjacent box 10 is not affected as in the past. Further, even when the outer flange of the box does not have a downward bending piece, it is possible to handle without any trouble, which provides excellent versatility. Further, the box is not dropped during conveyance, and there is an advantage of excellent safety.
  • Embodiments of the invention have been discussed in the foregoing description. However, the embodiments discussed herein are not intended to be exhaustive or limit the invention to any particular form. The terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations are possible in light of the above teachings and the invention may be practiced otherwise than as specifically described.
  • The following is a list of the reference numbers and associated elements:
  • 10 box
  • 11 robot
  • 12 handling apparatus
  • 13 camera
  • 14 support column
  • 15 outer flange
  • 20 main body
  • 21 horizontal rail
  • 22 slider
  • 23 drive box
  • 24 drive source of link mechanism
  • 26 pressing pad
  • 27 hanging piece
  • 28 wedge member
  • 29 lifting and lowering means
  • 30 claw
  • 31 vertical shaft
  • 32 shaft
  • 33 fall prevention hanger
  • 34 drive shaft
  • 35 intermediate shaft
  • 36 belt

Claims (15)

What is claimed is:
1. A handling method for a box for gripping and moving a stacked box having an open top surface, with a handling apparatus attached to a robot arm, the handling method comprising:
moving the handling apparatus to above a stacked box on an uppermost stage;
inserting a wedge member having a flat plate shape along an outer surface of the box on the uppermost stage;
rotating a claw provided to the wedge member in a direction approaching the box, to be engaged with a lower surface of an outer flange of the box;
lifting the box vertically upward and then driving a fall prevention hanger on a lower side of the box to cause the handling apparatus to grip the box; and
then causing the robot arm to move.
2. The handling method for a stacked box according to claim 1, wherein, after pressing of two opposite edges of the box with a pressing pad to make it easy to tilt or shift the box; and
forming a slight gap between with an adjacent box, the wedge member having a flat plate shape inserted.
3. A handling apparatus for a stacked box, the handling apparatus being attached to a robot arm to grip and move a stacked box having an open top surface, the handling apparatus comprising:
a pressing pad that presses upper end surfaces of two opposite edges of a box on an uppermost stage;
a wedge member that has a flat plate shape and is inserted along outer surfaces of the two opposite edges of the box of the uppermost stage;
a claw that is provided to the wedge member, and is rotated in a direction approaching the box to be engaged with a lower surface of an outer flange of the box; and
a fall prevention hanger that is driven on a lower side of the box hooked on the claw and lifted.
4. The handling apparatus for a stacked box according to claim 3, wherein the fall prevention hanger, and the wedge member having a flat plate shape and including the claw, are individually mounted on a pair of sliders, and the pair of sliders are made slidable in accordance with a size and an orientation of the box.
5. A handling apparatus for a stacked box, the handling apparatus being attached to a robot arm to grip and move a stacked box having an open top surface, the handling apparatus comprising:
a main body having at least one horizontal rail;
at least one slider assembly adapted to move along the horizontal rail;
a wedge member disposed in the slider assembly, wherein the wedge member has a pointed end portion and is adapted to vertically move up and down; and
at least one claw disposed in the wedge member, wherein the claw is adapted to be substantially flush with a side surface of the wedge member and rotatable outwardly from the side surface of the wedge member.
6. The handling apparatus for a stacked box according to claim 5, further comprising:
at one pressing pad disposed in the slider assembly, wherein the pressing pad is adapted to extend downwardly from the slider assembly in space apart parallel orientation with the wedge member.
7. The handling apparatus for a stacked box according to claim 6, wherein the pressing pad has an inverted L-shape.
8. The handling apparatus for a stacked box according to claim 5, wherein the main body is attached to a robotic arm.
9. The handling apparatus for a stacked box according to claim 5, wherein the handling apparatus is robotically controlled by a robotic control system.
10. The handling apparatus for a stacked box according to claim 9, wherein the robotic control system comprises at least one camera.
11. A handling method for a box for gripping and moving a stacked box having an open top surface, with a handling apparatus attached to a robot arm, the handling method comprising:
robotically identifying a box to be moved wherein the box is on an uppermost stage of a plurality of stacked boxes, wherein the box has a flange projecting outwardly at least partially around an outer surface of the box;
robotically moving the handling apparatus to above the box;
inserting a wedge member having an edge and a flat plate shape along the outer surface of the box;
rotating a claw disposed in the wedge member in a direction approaching the box, to be engaged with a lower surface of the flange of the box; and
robotically lifting the box vertically upward.
12. The handling method for a stacked box according to claim 11, further comprising:
prior to robotically lifting the box, on a side of the box not next to another one of the plurality of stacked boxes, driving a first fall prevention hanger on a lower side of the box to cause the handling apparatus to grip the box.
13. The handling method for a stacked box according to claim 12, further comprising:
after robotically lifting the box, on a side of the box next to another one of the plurality stacked boxes, driving a second fall prevention hanger on a lower side of the box to cause the handling apparatus to grip the box.
14. The handling method for a stacked box according to claim 11, wherein after pressing of two opposite edges of the box with a pressing pad to make it easy to tilt or shift the box; and
forming a slight gap between with an adjacent box, the wedge member having a flat plate shape inserted.
15. The handling method for a stacked box according to claim 11, wherein prior to inserting the wedge member along the outer surface of the box, forming a slight gap between an adjacent box, the wedge member having a flat plate shape insertable in the slight gap.
US17/367,492 2020-08-05 2021-07-05 Handling method and apparatus for stacked box Active 2042-02-09 US11969883B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020133079A JP7341431B2 (en) 2020-08-05 2020-08-05 Method and device for handling stacked boxes
JP2020-133079 2020-08-05

Publications (2)

Publication Number Publication Date
US20220040864A1 true US20220040864A1 (en) 2022-02-10
US11969883B2 US11969883B2 (en) 2024-04-30

Family

ID=

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911608A (en) * 1987-06-03 1990-03-27 B. A. T. Cigarettenfabriken Device for lifting at least one material stack
US6412844B1 (en) * 2000-01-14 2002-07-02 Lockheed Martin Corporation Robotic gripper mechanism
US6932557B2 (en) * 2001-02-26 2005-08-23 Irm, Llc Gripping mechanisms, apparatus, and methods
US20090097956A1 (en) * 2007-10-15 2009-04-16 Delaware Capital Formation, Inc. Articulating Package Palletizing System
US8733810B2 (en) * 2012-07-26 2014-05-27 Fanuc Corporation Taking out robot system using roller device
US20190126493A1 (en) * 2017-10-31 2019-05-02 Amazon Technologies, Inc. Finger Assembly Having A Talon and Barrel Cam Actuation
US10358241B2 (en) * 2014-12-17 2019-07-23 Thurne-Middleby Ltd Gripper device for picking up and releasing a group of food slices
US10440870B1 (en) * 2018-11-13 2019-10-08 Te Connectivity Corporation Locking gripper head
US10556338B1 (en) * 2017-07-31 2020-02-11 Amazon Technologies, Inc. Compliant finger tip for item manipulation
US10639800B2 (en) * 2018-07-11 2020-05-05 Amazon Technologies, Inc. Robotic-arm end effector configured to engage a plurality of storage containers, and method of using the same
US11642797B2 (en) * 2020-03-19 2023-05-09 Tata Consultancy Services Limited Gripper apparatus for grasping objects

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911608A (en) * 1987-06-03 1990-03-27 B. A. T. Cigarettenfabriken Device for lifting at least one material stack
US6412844B1 (en) * 2000-01-14 2002-07-02 Lockheed Martin Corporation Robotic gripper mechanism
US6932557B2 (en) * 2001-02-26 2005-08-23 Irm, Llc Gripping mechanisms, apparatus, and methods
US20090097956A1 (en) * 2007-10-15 2009-04-16 Delaware Capital Formation, Inc. Articulating Package Palletizing System
US8733810B2 (en) * 2012-07-26 2014-05-27 Fanuc Corporation Taking out robot system using roller device
US10358241B2 (en) * 2014-12-17 2019-07-23 Thurne-Middleby Ltd Gripper device for picking up and releasing a group of food slices
US10556338B1 (en) * 2017-07-31 2020-02-11 Amazon Technologies, Inc. Compliant finger tip for item manipulation
US20190126493A1 (en) * 2017-10-31 2019-05-02 Amazon Technologies, Inc. Finger Assembly Having A Talon and Barrel Cam Actuation
US10639800B2 (en) * 2018-07-11 2020-05-05 Amazon Technologies, Inc. Robotic-arm end effector configured to engage a plurality of storage containers, and method of using the same
US10440870B1 (en) * 2018-11-13 2019-10-08 Te Connectivity Corporation Locking gripper head
US11642797B2 (en) * 2020-03-19 2023-05-09 Tata Consultancy Services Limited Gripper apparatus for grasping objects

Also Published As

Publication number Publication date
JP7341431B2 (en) 2023-09-11
JP2022029663A (en) 2022-02-18

Similar Documents

Publication Publication Date Title
US11338997B2 (en) Transport vehicle and transport facility
JP6305213B2 (en) Extraction device and method
JP5945968B2 (en) Robot hand, robot system, and article depalletizing method
EP3141515B1 (en) Container raising/lowering conveyance apparatus
WO2016103993A1 (en) Raising/lowering conveyance apparatus for article conveying container
EP3133041B1 (en) Container raising/lowering conveyance apparatus
EP3133039B1 (en) Container raising/lowering conveyance apparatus
CA2949776C (en) Container raising/lowering conveyance apparatus
KR102351125B1 (en) Logistics transport system Using a Picking Robot
JP2023115274A (en) Extracting device
US11969883B2 (en) Handling method and apparatus for stacked box
US20220040864A1 (en) Handling Method and Apparatus for Stacked Box
JP6561896B2 (en) Work picking device
JP2006273533A (en) Crane for loading/unloading container
JP7311101B2 (en) METHOD AND APPARATUS FOR HANDING AND HANDLING HIGH-PACKED BOXES
KR102526985B1 (en) robot bending system for factory automation
KR100871458B1 (en) System for destacking
JP7312057B2 (en) Article transfer device and article transfer method
JP2022161054A (en) Method and device for handling lidded returnable case
JP6600026B2 (en) Extraction device and method
JP2002011685A (en) Cargo transfer device
JPH05246689A (en) Method and device for transporting thin plate
JPH11130266A (en) Method for detecting loaded condition of container by cargo handling device
JPH11116059A (en) Container placed condition detection method for cargo handling device
JP2002241078A (en) Landing target determining device for container crane

Legal Events

Date Code Title Description
AS Assignment

Owner name: RYOEI CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NISHIKAWA, SHOJI;REEL/FRAME:056753/0947

Effective date: 20210705

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

ZAAB Notice of allowance mailed

Free format text: ORIGINAL CODE: MN/=.

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE