US20220007930A1 - Device and method for placing a phoropter head in a horizontal position - Google Patents
Device and method for placing a phoropter head in a horizontal position Download PDFInfo
- Publication number
- US20220007930A1 US20220007930A1 US17/295,156 US201817295156A US2022007930A1 US 20220007930 A1 US20220007930 A1 US 20220007930A1 US 201817295156 A US201817295156 A US 201817295156A US 2022007930 A1 US2022007930 A1 US 2022007930A1
- Authority
- US
- United States
- Prior art keywords
- deviation
- angular deviation
- deviation range
- angular
- phoropter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 13
- 230000001953 sensory effect Effects 0.000 claims description 92
- 230000000007 visual effect Effects 0.000 claims description 24
- 230000003287 optical effect Effects 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 2
- 238000005259 measurement Methods 0.000 abstract description 24
- 230000004304 visual acuity Effects 0.000 abstract description 13
- 210000003128 head Anatomy 0.000 description 62
- 238000012937 correction Methods 0.000 description 9
- 208000029091 Refraction disease Diseases 0.000 description 2
- 230000004430 ametropia Effects 0.000 description 2
- 230000004397 blinking Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 208000014733 refractive error Diseases 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000004438 eyesight Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000001179 pupillary effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/02—Subjective types, i.e. testing apparatus requiring the active assistance of the patient
- A61B3/028—Subjective types, i.e. testing apparatus requiring the active assistance of the patient for testing visual acuity; for determination of refraction, e.g. phoropters
- A61B3/0285—Phoropters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0008—Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0016—Operational features thereof
- A61B3/0041—Operational features thereof characterised by display arrangements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0075—Apparatus for testing the eyes; Instruments for examining the eyes provided with adjusting devices, e.g. operated by control lever
Definitions
- the present invention relates to the field of optometry.
- It more particularly relates to a device for placing a phoropter head in a horizontal position in order to optimize the measurement of the visual acuity of a patient, and to a method for placing a phoropter head in a horizontal position.
- the necessary correction for compensating an individual's ametropia is generally determined by an optometrist or an ophthalmologist using a test known as “subjective refraction”, during which the individual looks through a refraction apparatus adapted to generate a variable correction.
- Such a refraction apparatus may be a phoropter.
- one important parameter for a precise measurement is the patient's position relative to the measurement device and/or to the optotype.
- the position adjustments that can be performed for optimizing determination of the necessary correction one can cite the position of the patient, in particular the position of the patient's eyes, relative to the measurement device, but also the position, in particular the horizontality, of the measurement device by itself. It is important, at the beginning of the measurement, to position the phoropter as horizontally as possible. It is then also important to maintain the phoropter as horizontal as possible and avoid its position drifts for the whole duration of the visual acuity measurement, to ensure a correct determination of the necessary correction.
- Some existing phoropters present functionality for adjusting their horizontality. However, this functionality is classically implemented with a device as simple as a spirit level. If such a device allows coarse identification of the horizontal position, it is however not appropriate for alerting if the position is not correct and only affords a coarse adjustment. There thus remains a need for devices allowing optimization of the horizontal position of the phoropter, in particular devices allowing a fine adjustment of its horizontality, and able to alert if the position is not correct.
- the present invention proposes a device and a method for placing a phoropter head in a horizontal position in order to optimize the measurement of the visual acuity of a patient.
- the first object of the invention is a device for placing a phoropter head in a horizontal position, comprising:
- An initial adjustment of the phoropter head with the highest level of precision is undeniably important in regard to the precision of the visual acuity measurement.
- the device may be in alert even if very small moves of the phoropter head are performed.
- defining two different angular deviation ranges simultaneously affords a highest precision initial adjustment of the phoropter head, and a higher tolerance of the alerting system. Once the initial adjustment is performed, the alerting system will be triggered only if the angular deviation drifts too much from the initially adjusted angular position.
- a further object of the invention is a method for placing a phoropter head in a horizontal position, comprising:
- Another advantageous and non-limiting feature of the invention is a method for placing a phoropter head in a horizontal position, comprising:
- FIG. 1 illustrates the use of a phoropter head for a visual acuity measurement.
- FIG. 2 illustrates the relative position of a phoropter head and an optotype during a visual acuity measurement.
- FIG. 3 illustrates a phoropter head comprising a device according to the invention.
- FIG. 4 illustrates the angular deviation to be measured between a main plane of the phoropter head and a reference horizontal plane according to the invention.
- FIG. 5 illustrates a method for placing a phoropter head in a horizontal position according to the invention.
- FIGS. 1 and 2 show the context for using a phoropter head 1 for determining refractive properties or refractive correction need of an eye of a subject who is a wearer of corrective eyeglasses or contact lenses whose correction needs are to be assessed.
- the phoropter head 1 is mounted on a holder 5 which is further linked to a hinged arm 16 .
- the hinged arm 16 is further attached to a stationary portion of the phoropter 17 .
- said patient is seated in a seat 15 , and the eyepieces 10 , 11 of the phoropter head 1 are placed in front of the patient's eyes.
- the patient's correction needs are evaluated based on the aptitude of the patient to identify the characters displayed on an optotype 18 when he looks through the optical systems arranged behind the eyepieces 10 , 11 .
- FIGS. 3 and 4 more precisely show the different parts and the position of the phoropter head 1 .
- This phoropter head 1 has a median plane of symmetry P 4 which, in use, is intended to be substantially vertical.
- the phoropter head 1 comprises an upper housing 2 carrying two lower barrels 3 , 4 configured to receive the gaze of both eyes of the subject under examination and thus forming a binocular vision assembly.
- the two lower barrels 3 , 4 are arranged symmetrically to each other in relation to the plane P 4 and each barrel 3 , 4 comprises an optical system (not shown) arranged behind an eyepiece 10 , 11 having a horizontal optical axis A 1 , A 2 respectively.
- Each optical system advantageously includes a tunable lens (not shown), such as disclosed in WO2015107303, to apply a variable focal power to the optical path observed by the corresponding eye.
- the pupillary distance between axes A 1 and A 2 is adjustable.
- the upper housing 2 of the phoropter head 1 is mounted on a holder 5 via a pivot linkage 6 allowing the housing 2 to pivot about a horizontal pivot axis A 3 parallel to the optical axes A 1 , A 2 of the eyepieces 10 , 11 .
- the linkage between the phoropter head 1 and the holder 5 further allows the phoropter head 1 to pivot about a vertical axis A 5 .
- the phoropter head 1 further comprises an adjustment device 7 for placing the head 1 of the phoropter in a predetermined horizontal position.
- the adjustment device 7 comprises a module 12 for determining an angular deviation ⁇ which is, as illustrated in FIG. 4 , the angle formed between the adjustment main plane P 2 of said phoropter head 1 and the reference horizontal plane P 3 .
- the adjustment device 7 further comprises a sensory indicator adapted to emit a sensory signal.
- this sensory indicator is a visual indicator adapted to emit a visual signal.
- the visual indicator comprises two light-emitting diodes 8 and 9 as sensory indicator elements each symmetrically located on both sides of the median vertical plane P 4 of the phoropter head 1 .
- Said visual signal can be the turning on or off of at least one light-emitting diode 8 , 9 , the blinking of at least one light-emitting diode 8 , 9 , the change in blink frequency of at least one light-emitting diode 8 , 9 , the change of intensity of at least one light-emitting diode 8 , 9 , and/or the color change of at least one light-emitting diode 8 , 9 .
- the sensory signal could be a haptic signal, such as the turning on or off of a vibration or a mechanical impulsion and/or an aural signal, such as the turning on or off of a sound or the change of intensity or frequency of a sound.
- a haptic signal such as the turning on or off of a vibration or a mechanical impulsion
- an aural signal such as the turning on or off of a sound or the change of intensity or frequency of a sound.
- the adjustment device 7 of FIG. 3 comprises two sensory indicator elements 8 and 9 .
- adjustment device 7 can comprise one single sensory indicator element or more than two sensory indicator elements.
- Each sensory indicator element can be a light source, such as a light-emitting diode, a sound source, and/or a vibration source.
- the phoropter head 1 further comprises a command unit 13 programmed to activate the sensory indicator elements 8 , 9 as a function of the angular deviation ⁇ determined by said module.
- the command unit 13 is programmed to activate the sensory indicator elements 8 , 9 in order to provide an adjustment sensory signal as long as said angular deviation ⁇ is outside a first deviation range.
- This first deviation range includes the deviation of zero value and has a width superior or equal to zero.
- the command unit 13 is further programmed to activate, after said angular deviation ⁇ has entered said first deviation range, the sensory indicator elements 8 , 9 in order to provide a second sensory signal as long as said angular deviation ⁇ remains within a second deviation range.
- This second deviation range encompasses said first deviation range.
- the first and second deviation ranges define two different ranges of acceptable values for the angular deviation ⁇ between the main plane P 2 of the phoropter head 1 and the reference horizontal plane P 3 during two different phases of the measurement of visual acuity.
- the first deviation range represents a range of acceptable values for the angular deviation ⁇ of the phoropter head 1 at the beginning of the measurement of visual acuity.
- the adjustment device 7 allows finely reaching a correct horizontal position of the main plane P 2 of the phoropter head 1 and alerting as long as said horizontal position is not reached.
- the first deviation range includes the deviation of zero value.
- the first deviation range has a width of zero, meaning that it comprises only the zero value. This means that the highest level of precision is first needed when adjusting the phoropter head 1 , subject to the angle measurement precision.
- the first deviation range is symmetrical about the zero value, meaning that the width of the range that is lower than zero is equal to the width of the range that is higher than zero. In other embodiments, the first deviation range is not symmetrical about the zero value.
- the first deviation range is comprised between ⁇ 0.1 and +0.1 degree, preferably between ⁇ 0.05 and +0.05 degree.
- the second deviation range represents a range of acceptable values for the angular deviation ⁇ of the phoropter head 1 during the measurement of visual acuity once the first deviation range has been reached.
- the adjustment device 7 allows monitoring the drift of the phoropter head 1 from the horizontal position that has been set in the first phase, and alerting if said drift is too important.
- the second deviation range includes the deviation of zero value.
- the second deviation range is wider than the first deviation range and encompasses said first deviation range.
- the second deviation range is symmetrical about the zero value. In other embodiments, the second deviation range is not symmetrical about the zero value.
- the second deviation range is comprised between ⁇ 0.2 and +0.2 degree.
- the adjustment sensory signal is advantageously representative of a position adjustment of the phoropter head 1 , in particular representative of the direction and/or angular value of the angular position adjustment of the phoropter head 1 needed in order to bring the angular deviation ⁇ closer to the first deviation range.
- a value is «inside» a range if the value is comprised between the minimum and maximum of the range, or equal to the minimum or the maximum of the range.
- a value is «outside» a range if it is not inside said range.
- Bringing a parameter «closer to» a range means reducing the absolute value of the difference between the parameter value and the minimum and/or the maximum of said range.
- Bringing a parameter «closer to» a range includes bringing the parameter value inside said range. The value of the parameter that is brought «closer to» a range is initially outside said range.
- Bringing the angular deviation ⁇ closer to a deviation range may be performed manually by the operator, for instance by manually tilting the phoropter head 1 about the horizontal pivot axis A 3 , or by the intermediate of a controlling device such as a motor, an actuator or a micrometer screw.
- the set point value may be communicated to the controlling device either directly by the operator, or automatically via an associated computer.
- the stop sensory signal indicates that no further position adjustment of the phoropter head 1 is needed.
- the adjustment sensory signal and the stop sensory signal emitted by the sensory indicator elements 8 and 9 are both visual signals.
- the adjustment sensory signal and the stop sensory signal can be of different types (visual, aural and/or haptic).
- the sensory indicator comprises two light sources 8 and 9 , each located on a different side of the median plane P 4 of the phoropter head 1 .
- the command unit 13 is programmed to make the light source 8 or 9 located on the side towards which the phoropter head 1 should be inclined in order to bring the angular deviation ⁇ closer to said first deviation range blink to provide said adjustment visual signal.
- the intensity and/or the blinking frequency of the visual signal emitted by the sensory indicator elements 8 , 9 is representative of the angular value of the position adjustment of the phoropter head 1 needed in order to bring the angular deviation ⁇ closer to the first deviation range. For instance, the further the angular deviation ⁇ is from the first deviation range, the lower the visual signal intensity is, or the lower the visual signal blink frequency is.
- the intensity and/or the frequency of the vibration can be similarly representative of the angular value of the position adjustment of the phoropter head 1 needed in order to bring the angular deviation ⁇ closer to the first deviation range.
- the intensity and/or the frequency of the sound can be similarly representative of the angular value of the position adjustment of the phoropter head 1 needed in order to bring the angular deviation ⁇ closer to the first deviation range.
- the command unit 13 is programmed to emit and when necessary to change the sensory signal as detailed above.
- the command unit 13 is advantageously programmed to turn on or off at least one of both light sources 8 and 9 to provide the stop visual signal, preferably to turn on both light sources 8 and 9 to provide the stop visual signal.
- the command unit can be programmed to change color of at least one of both light sources 8 and 9 to provide the stop visual signal.
- FIG. 5 shows the steps of a method for placing a phoropter head 1 in a horizontal position according to the invention.
- the method comprises a first step 101 of detecting a current value of the angular deviation ⁇ between the main plane P 2 of said phoropter head 1 and the reference horizontal plane P 3 .
- the first deviation range is provided in a step 102 .
- a comparison 200 between the measured angular deviation ⁇ and the first deviation range may lead to the conclusion that the angular deviation ⁇ is outside (O) or inside (I) the first deviation range.
- an adjustment sensory signal is provided in a step 201 if the current value of the angular deviation ⁇ is outside the first deviation range. In that case, the angular deviation ⁇ is brought inside the first deviation range in a step 202 . With guidance from the adjustment sensory signal, the angular deviation ⁇ is modified, manually or automatically with an inboard motorized actuator, to bring its current value closer to the first deviation range.
- Steps 101 , 200 , 201 , 202 are repeated until the current value of the angular deviation ⁇ is inside the first deviation range.
- the control of the angular deviation ⁇ continues.
- the goal is then to control if the angular deviation ⁇ is maintained inside the second deviation range which is broader than the first deviation range. Angular deviations inside the second deviation range are thus tolerated during the refraction measurement is performed.
- the second deviation range is provided in a step 400 .
- the current value of the angular deviation ⁇ is still determined and a comparison between the measured angular deviation ⁇ and the second deviation range is performed. Said comparison may lead to the conclusion that the angular deviation ⁇ is outside (O) or inside (I) the second deviation range.
- Bringing the angular deviation inside the first deviation range at step 202 can be performed by repeating the previous steps until the angular deviation ⁇ is inside the first deviation range and no more first adjustment signal is provided in step 300 .
- Bringing the angular deviation ⁇ inside the second deviation range at step 502 can be performed by repeating the steps following the determination of the second deviation range until the angular deviation ⁇ is inside the second deviation range and the second stop signal is provided in step 300 .
- Steps 500 to 600 are repeated as long as the phoropter head 1 needs remaining horizontal.
- a «current angular deviation value « or «current value» refers to a value of the angular deviation ⁇ at a specific moment.
- this «current value» may change as the method of the invention is being implemented.
- the current angular deviation value that is detected in step 500 may be different from the current angular deviation value that was detected in step 101 .
- the current angular deviation value that is detected when step 101 or 500 is repeated may be different from the current angular deviation value that was respectively detected in previous step 101 or 500 .
- the sensory indicator can emit an adjustment signal different from that emitted when the measured angular deviation ⁇ is outside the first deviation range.
- the sensory indicator can emit a stop signal different from that emitted when the measured angular deviation ⁇ is inside the second deviation range.
- steps 101 to 300 allows the initial placement of the phoropter head 1 as close as possible to the horizontal position so as to begin the acuity measurement with a correct position.
- Repetition of steps 500 to 600 allows avoiding the angular deviation ⁇ drifting much from the correct position reached in step 300 .
- Steps 500 to 600 are advantageously repeated for the whole duration of the visual acuity measurement.
- step 200 If the measured angular deviation value ⁇ is inside the first deviation range at step 200 , no modification of the angular deviation is necessary, steps 101 to 300 do not need to be repeated and step 300 is directly reached.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Ophthalmology & Optometry (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Eye Examination Apparatus (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB2018/001447 WO2020104827A1 (en) | 2018-11-20 | 2018-11-20 | Device and method for placing a phoropter head in a horizontal position |
Publications (2)
Publication Number | Publication Date |
---|---|
US20220007930A1 true US20220007930A1 (en) | 2022-01-13 |
US12089896B2 US12089896B2 (en) | 2024-09-17 |
Family
ID=64949345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/295,156 Active 2040-09-10 US12089896B2 (en) | 2018-11-20 | 2018-11-20 | Device and method for placing a phoropter head in a horizontal position |
Country Status (6)
Country | Link |
---|---|
US (1) | US12089896B2 (ja) |
EP (1) | EP3883451A1 (ja) |
JP (1) | JP7286767B2 (ja) |
KR (1) | KR102701134B1 (ja) |
CN (1) | CN113164035B (ja) |
WO (1) | WO2020104827A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080246922A1 (en) * | 1999-07-02 | 2008-10-09 | Blum Ronald D | Method and Apparatus for Correcting Vision Using an Electro-Active Phoropter |
US20100110379A1 (en) * | 2006-01-20 | 2010-05-06 | Clarity Medical Systems, Inc. | Optimizing vision correction procedures |
KR101128296B1 (ko) * | 2011-11-14 | 2012-03-23 | 유니코스주식회사 | 수평이 자동으로 조절되는 검안 호롭터 |
US20120287398A1 (en) * | 2011-03-25 | 2012-11-15 | Carl Zeiss Meditec Ag | Heads-up vision analyzer |
US20160270656A1 (en) * | 2015-03-16 | 2016-09-22 | Magic Leap, Inc. | Methods and systems for diagnosing and treating health ailments |
US20180136486A1 (en) * | 2016-07-25 | 2018-05-17 | Magic Leap, Inc. | Light field processor system |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4554026B2 (ja) * | 2000-03-31 | 2010-09-29 | 株式会社トプコン | 検眼装置 |
KR20020084865A (ko) | 2001-05-03 | 2002-11-13 | 엘지전자 주식회사 | 영상 디스플레이 장치의 시각 조절장치 및 방법 |
JP2007061380A (ja) * | 2005-08-31 | 2007-03-15 | Topcon Corp | 自覚式検眼装置 |
JP4937792B2 (ja) * | 2007-03-01 | 2012-05-23 | 株式会社ニデック | 眼底カメラ |
JP2008307104A (ja) | 2007-06-12 | 2008-12-25 | Right Manufacturing Co Ltd | 眼屈折力測定装置 |
EP2695578B1 (en) | 2012-08-07 | 2015-09-16 | Essilor Canada Ltee | A method for determining eye and head movements of an individual |
CN202981955U (zh) | 2012-12-17 | 2013-06-12 | 上海湖碧驰精密仪器有限公司 | 可提高验光准确度的视力检查仪 |
JP2015064700A (ja) * | 2013-09-24 | 2015-04-09 | ホヤ レンズ タイランド リミテッドHOYA Lens Thailand Ltd | 眼鏡装用パラメータ測定装置、眼鏡装用パラメータ測定プログラムおよび位置指定方法 |
FR3016705B1 (fr) | 2014-01-20 | 2017-06-16 | Essilor Int | Systeme de compensation visuelle et dispositif binoculaire d'optometrie |
KR101634102B1 (ko) * | 2014-09-29 | 2016-06-28 | 유니코스주식회사 | 거리와 수평이 자동 측정되는 호롭터 |
EP3075317B1 (en) | 2015-04-01 | 2017-09-20 | Agfa HealthCare N.V. | X-ray system and method for operating an x-ray system |
JP6779910B2 (ja) | 2015-05-05 | 2020-11-04 | ビジョニックス リミテッド | 正確さ改善物体フォロプタ |
US10206566B2 (en) * | 2016-10-17 | 2019-02-19 | EyeQue Corporation | Optical method to assess the refractive properties of an optical system |
CN106618580B (zh) | 2016-12-23 | 2020-09-15 | 北京大学第一医院 | 一种斜视与眼球震颤头位检测方法、装置及系统 |
CN108762148B (zh) | 2018-05-31 | 2019-12-10 | 杭州海灵智电科技有限公司 | 一种舵机模式切换及偏差调节的控制方法 |
-
2018
- 2018-11-20 EP EP18829978.8A patent/EP3883451A1/en active Pending
- 2018-11-20 CN CN201880099613.1A patent/CN113164035B/zh active Active
- 2018-11-20 WO PCT/IB2018/001447 patent/WO2020104827A1/en unknown
- 2018-11-20 KR KR1020217013994A patent/KR102701134B1/ko active IP Right Grant
- 2018-11-20 US US17/295,156 patent/US12089896B2/en active Active
- 2018-11-20 JP JP2021527951A patent/JP7286767B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080246922A1 (en) * | 1999-07-02 | 2008-10-09 | Blum Ronald D | Method and Apparatus for Correcting Vision Using an Electro-Active Phoropter |
US20100110379A1 (en) * | 2006-01-20 | 2010-05-06 | Clarity Medical Systems, Inc. | Optimizing vision correction procedures |
US20120287398A1 (en) * | 2011-03-25 | 2012-11-15 | Carl Zeiss Meditec Ag | Heads-up vision analyzer |
KR101128296B1 (ko) * | 2011-11-14 | 2012-03-23 | 유니코스주식회사 | 수평이 자동으로 조절되는 검안 호롭터 |
US20160270656A1 (en) * | 2015-03-16 | 2016-09-22 | Magic Leap, Inc. | Methods and systems for diagnosing and treating health ailments |
US20180136486A1 (en) * | 2016-07-25 | 2018-05-17 | Magic Leap, Inc. | Light field processor system |
Also Published As
Publication number | Publication date |
---|---|
JP2022518331A (ja) | 2022-03-15 |
JP7286767B2 (ja) | 2023-06-05 |
KR102701134B1 (ko) | 2024-09-02 |
KR20210093247A (ko) | 2021-07-27 |
EP3883451A1 (en) | 2021-09-29 |
CN113164035A (zh) | 2021-07-23 |
US12089896B2 (en) | 2024-09-17 |
WO2020104827A1 (en) | 2020-05-28 |
CN113164035B (zh) | 2024-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102148345B1 (ko) | 대물렌즈 안굴절도와 개인의 적어도 하나의 기하학적-형태 파라미터를 측정하기 위한 장치와 방법 | |
CN106963335B (zh) | 主观式检眼装置 | |
US11363948B2 (en) | Ophthalmologic device and method of operating ophthalmologic device | |
KR102614190B1 (ko) | 개선된 타각적 포롭터 | |
JP6422954B2 (ja) | 焦点距離の調節 | |
WO2016101204A1 (en) | Device for measuring phoria and method for measuring phoria using the device | |
JP2017086652A (ja) | 自覚式検眼装置 | |
WO2017002846A1 (ja) | 視機能測定装置、および視機能測定プログラム | |
EP2901918B1 (en) | Methods and devices for interactive adjustment of a parameter of a continuously variable optical lens | |
CN110786822B (zh) | 主觉式验光装置及主觉式验光程序 | |
US12089896B2 (en) | Device and method for placing a phoropter head in a horizontal position | |
KR101634102B1 (ko) | 거리와 수평이 자동 측정되는 호롭터 | |
CN111417893B (zh) | 用于检验眼科镜片在镜架中的安装的方法和组件 | |
KR101534842B1 (ko) | 양안용 시각 모의 실험 장치 | |
EP4382031A1 (en) | Apparatus and method for determining refraction error of at least an eye of a subject | |
JP7331530B2 (ja) | 眼科測定装置 | |
KR20150049857A (ko) | 양안용 시각 모의 실험 장치 | |
CA2963584C (en) | Method for precisely measuring optico-physiognomic parameters of a subject for the adjustment of eyeglass lenses to the subject in a near viewing situation | |
JP2024006535A (ja) | 検眼装置および検眼プログラム | |
JP2000023914A (ja) | 検眼装置 | |
JP2016013256A (ja) | 瞳孔間距離計 | |
JP2021053064A (ja) | 検眼装置及び検眼プログラム | |
JP2019177096A (ja) | 検眼装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ESSILOR INTERNATIONAL, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VELGHE, JULIEN;TEJEDOR DEL RIO, VINCENT;REEL/FRAME:056286/0420 Effective date: 20210416 |
|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |