US20220005930A1 - Apparatus with multidielectric spacers on conductive regions of stack structures, and related methods - Google Patents
Apparatus with multidielectric spacers on conductive regions of stack structures, and related methods Download PDFInfo
- Publication number
- US20220005930A1 US20220005930A1 US17/448,080 US202117448080A US2022005930A1 US 20220005930 A1 US20220005930 A1 US 20220005930A1 US 202117448080 A US202117448080 A US 202117448080A US 2022005930 A1 US2022005930 A1 US 2022005930A1
- Authority
- US
- United States
- Prior art keywords
- dielectric material
- region
- forming
- conductive
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 125000006850 spacer group Chemical group 0.000 title claims abstract description 71
- 238000000034 method Methods 0.000 title claims abstract description 61
- 239000003989 dielectric material Substances 0.000 claims abstract description 233
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 19
- 239000010703 silicon Substances 0.000 claims abstract description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000012811 non-conductive material Substances 0.000 claims abstract description 15
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 239000000463 material Substances 0.000 claims description 114
- 239000003112 inhibitor Substances 0.000 claims description 45
- 239000002243 precursor Substances 0.000 claims description 34
- 239000004020 conductor Substances 0.000 claims description 19
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 18
- 238000000231 atomic layer deposition Methods 0.000 claims description 16
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 15
- 239000007789 gas Substances 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 13
- 229910052799 carbon Inorganic materials 0.000 claims description 13
- 229910052731 fluorine Inorganic materials 0.000 claims description 13
- 239000011737 fluorine Substances 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 12
- 229910000077 silane Inorganic materials 0.000 claims description 11
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 10
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 229910021529 ammonia Inorganic materials 0.000 claims description 4
- 238000000059 patterning Methods 0.000 claims description 4
- AIFMYMZGQVTROK-UHFFFAOYSA-N silicon tetrabromide Chemical compound Br[Si](Br)(Br)Br AIFMYMZGQVTROK-UHFFFAOYSA-N 0.000 claims description 4
- CFTHARXEQHJSEH-UHFFFAOYSA-N silicon tetraiodide Chemical compound I[Si](I)(I)I CFTHARXEQHJSEH-UHFFFAOYSA-N 0.000 claims description 4
- 150000004756 silanes Chemical class 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 239000000109 continuous material Substances 0.000 claims 2
- 239000004065 semiconductor Substances 0.000 abstract description 44
- 230000015572 biosynthetic process Effects 0.000 description 34
- 239000000203 mixture Substances 0.000 description 25
- 239000000758 substrate Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 13
- 238000012545 processing Methods 0.000 description 13
- -1 ThF3) Chemical compound 0.000 description 9
- 238000010292 electrical insulation Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- WZJUBBHODHNQPW-UHFFFAOYSA-N 2,4,6,8-tetramethyl-1,3,5,7,2$l^{3},4$l^{3},6$l^{3},8$l^{3}-tetraoxatetrasilocane Chemical compound C[Si]1O[Si](C)O[Si](C)O[Si](C)O1 WZJUBBHODHNQPW-UHFFFAOYSA-N 0.000 description 6
- 239000003570 air Substances 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 5
- HMMGMWAXVFQUOA-UHFFFAOYSA-N octamethylcyclotetrasiloxane Chemical compound C[Si]1(C)O[Si](C)(C)O[Si](C)(C)O[Si](C)(C)O1 HMMGMWAXVFQUOA-UHFFFAOYSA-N 0.000 description 5
- PYJJCSYBSYXGQQ-UHFFFAOYSA-N trichloro(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](Cl)(Cl)Cl PYJJCSYBSYXGQQ-UHFFFAOYSA-N 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 3
- 238000000859 sublimation Methods 0.000 description 3
- 230000008022 sublimation Effects 0.000 description 3
- ANZPUCVQARFCDW-UHFFFAOYSA-N 2,2,4,4,6,6-hexamethyl-1,3,5,7,2,4,6,8-tetraoxatetrasilocane Chemical compound C[Si]1(C)O[SiH2]O[Si](C)(C)O[Si](C)(C)O1 ANZPUCVQARFCDW-UHFFFAOYSA-N 0.000 description 2
- 229910010084 LiAlH4 Inorganic materials 0.000 description 2
- 229910018503 SF6 Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000013626 chemical specie Substances 0.000 description 2
- AZFVLHQDIIJLJG-UHFFFAOYSA-N chloromethylsilane Chemical class [SiH3]CCl AZFVLHQDIIJLJG-UHFFFAOYSA-N 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- YLJJAVFOBDSYAN-UHFFFAOYSA-N dichloro-ethenyl-methylsilane Chemical compound C[Si](Cl)(Cl)C=C YLJJAVFOBDSYAN-UHFFFAOYSA-N 0.000 description 2
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000012280 lithium aluminium hydride Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 2
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 150000001282 organosilanes Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 229920000673 poly(carbodihydridosilane) Polymers 0.000 description 2
- 229920000555 poly(dimethylsilanediyl) polymer Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920003257 polycarbosilane Polymers 0.000 description 2
- 229920000128 polypyrrole Polymers 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000002094 self assembled monolayer Substances 0.000 description 2
- 239000013545 self-assembled monolayer Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 2
- GYIODRUWWNNGPI-UHFFFAOYSA-N trimethyl(trimethylsilylmethyl)silane Chemical compound C[Si](C)(C)C[Si](C)(C)C GYIODRUWWNNGPI-UHFFFAOYSA-N 0.000 description 2
- 125000002348 vinylic group Chemical group 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 239000005046 Chlorosilane Substances 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229910018540 Si C Inorganic materials 0.000 description 1
- 229910006990 Si1-xGex Inorganic materials 0.000 description 1
- 229910007020 Si1−xGex Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- 229910004364 ThF3 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000001668 ameliorated effect Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- OSIVBHBGRFWHOS-UHFFFAOYSA-N dicarboxycarbamic acid Chemical compound OC(=O)N(C(O)=O)C(O)=O OSIVBHBGRFWHOS-UHFFFAOYSA-N 0.000 description 1
- GNEPOXWQWFSSOU-UHFFFAOYSA-N dichloro-methyl-phenylsilane Chemical compound C[Si](Cl)(Cl)C1=CC=CC=C1 GNEPOXWQWFSSOU-UHFFFAOYSA-N 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- WRQGPGZATPOHHX-UHFFFAOYSA-N ethyl 2-oxohexanoate Chemical compound CCCCC(=O)C(=O)OCC WRQGPGZATPOHHX-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000002454 metastable transfer emission spectrometry Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000004375 physisorption Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- MZQZQKZKTGRQCG-UHFFFAOYSA-J thorium tetrafluoride Chemical compound F[Th](F)(F)F MZQZQKZKTGRQCG-UHFFFAOYSA-J 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- PQDJYEQOELDLCP-UHFFFAOYSA-N trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42372—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
- H01L29/42376—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76834—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76829—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
- H01L21/76832—Multiple layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76885—By forming conductive members before deposition of protective insulating material, e.g. pillars, studs
Definitions
- the disclosure in various embodiments, relates generally to apparatus (e.g., semiconductor devices) with conductive regions. More particularly, this disclosure relates to apparatus (e.g., comprising semiconductor devices) having high aspect ratio “stack” structures that include conductive regions insulated from neighboring conductive regions by dielectric spacers.
- spacer material's dielectric constant e.g., a factor in the electrical insulation capabilities of the spacer
- conformality e.g., the ability to form the spacer conformally over previous materials
- mechanical strength e.g., a factor in the spacer's ability to maintain its physical structure during subsequent processing
- etch resistance e.g., the spacer material's ability to avoid degradation during subsequent material-removal processes
- a spacer material with sufficient electrical insulation properties may complicate efforts to form that material into a conformal, uniform, vertical spacer region on the underlying stack structure, particularly if, e.g., the spacer material more readily forms on nonconductive materials than on conductive materials.
- a spacer material with a sufficient dielectric constant may be prone to degradation during subsequent etch processes, degrading the spacer formed of such material, and leaving the conductive regions of the stack structure without adequate electrical insulation.
- FIGS. 1, 2, and 3 schematically illustrate challenges that may be encountered using conventional spacer materials and fabrication processes.
- a stack structure 102 may include a conductive region 104 , a hard mask region 106 , and semiconductor material 108 .
- Conventional spacer material, used to form a spacer 110 according to conventional methods may be less prone to nucleate or otherwise form on the conductive region 104 than on the non-conductive material of the hard mask region 106 and of the semiconductor material 108 .
- the spacer 110 may be thinner—and therefore less electrically insulative—along the conductive region 104 than along the hard mask region 106 .
- FIG. 1 the spacer 110 may be thinner—and therefore less electrically insulative—along the conductive region 104 than along the hard mask region 106 .
- FIG. 1 FIG.
- FIG. 2 illustrates a stack structure 202 in which previous fabrication stages (e.g., etching) formed defects in the stack's sidewall, such as undercuts 207 between a first conductive region 204 and another conductive region 205 and different transverse widths of the conductive regions 204 , 205 . These defects may translate to corresponding narrower portions and recesses 209 in a spacer 210 , if formed with conventional materials and according to conventional methods.
- FIG. 3 illustrates a stack structure 302 having an undesirable concave sidewall 307 along a conductive region 304 , which concavity may have resulted from an etching stage to form the stack structure 302 .
- a corresponding concave portion 309 in a spacer 310 may result, if forming the spacer 310 by conventional methods and with conventional materials.
- a sidewall of the spacer e.g., sidewall 112 of spacer 110 ( FIG. 1 ), sidewall 212 of spacer 210 ( FIG. 2 ), sidewall 312 of spacer 310 ( FIG. 3 ) deviates from an ideal, consistent, vertical surface, represented by the dashed line P.
- FIG. 1 is a cross-sectional, elevational, schematic illustration of a semiconductor device structure with a conductive region and a spacer, the spacer having been formed using conventional materials and methods.
- FIG. 2 is a cross-sectional, elevational, schematic illustration of a semiconductor device structure with conductive regions and a spacer, the spacer having been formed using conventional materials and methods.
- FIG. 3 is a cross-sectional, elevational, schematic illustration of a semiconductor device structure with a conductive region and a spacer, the spacer having been formed using conventional materials and methods.
- FIG. 4 is a flow chart of a method for forming a multidielectric spacer on arrayed semiconductor devices with at least one conductive region, according to an embodiment of the disclosure.
- FIG. 5 is a flow chart of a method for forming a multidielectric spacer on arrayed semiconductor devices with at least one conductive region, according to an embodiment of the disclosure, wherein forming a first dielectric material may be preceded by either or both of a pretreatment stage and an inhibitor-formation stage.
- FIGS. 6 through 10 are cross-sectional, elevational, schematic illustrations during various stages of processing to fabricate arrayed semiconductor devices with conductive regions electrically insulated by a multidielectric spacer defining substantially straight, vertical, outer sidewalls, according to an embodiment of the disclosure.
- FIG. 9B illustrates an alternative stage to that of FIG. 9
- FIG. 10B illustrates an elaboration of the stage of that of FIG. 10 according to an embodiment of the disclosure.
- FIGS. 11 through 13 are cross-sectional, elevational, schematic illustrations during various stages of processing to fabricate arrayed semiconductor devices with conductive regions electrically insulated by a multidielectric spacer defining substantially vertical sidewalls, according to an embodiment of the disclosure.
- FIGS. 14 and 15 are cross-sectional, elevational, schematic illustrations during various stages of processing to fabricate arrayed semiconductor devices with conductive regions electrically insulated by a multidielectric spacer defining substantially vertical sidewalls, according to an embodiment of the disclosure.
- FIG. 16 is a cross-sectional, elevational, schematic illustration during a stage of processing to fabricate arrayed semiconductor devices with conductive regions electrically insulated by a multidielectric spacer defining substantially vertical sidewalls, according to an embodiment of the disclosure.
- FIG. 17 is a simplified block diagram of a semiconductor device structure including an array of memory or logic devices including multidielectric spacers formed or structured in accordance with any of the embodiments of the disclosure.
- Methods of the disclosure enable forming spacers with substantially vertical sidewalls, or otherwise sufficient coverage adjacent (e.g., on) conductive regions, despite underlying stack structures having both conductive and nonconductive regions and even if the underlying stack structures have defects along their sidewalls.
- the disclosed spacers are formed of multiple dielectric materials, including a first dielectric material and a second dielectric material.
- the first dielectric material is formulated and formed so as to form selectively on the conductive regions of the underlying stack structure, ensuring adequate electrical insulation along the region most needing electrical insulation.
- the second dielectric material is formulated and formed so that the multidielectric spacer defines a substantially straight, vertical, outer sidewall and exhibits etch resistance to ensure the multidielectric spacer maintains its integrity during subsequent processing.
- multidielectric spacer means and includes a region of more than one dielectric material spacing (e.g., separating) an adjacent conductive region of one semiconductor structure (e.g., a stack structure (e.g., of an array)) from a neighboring conductive region of another semiconductor structure (e.g., another stack structure (e.g., of the array)).
- stack structure means and includes a structure comprising material regions overlaying one another. Sidewalls of each region may align with one another.
- the term “arrayed” when describing structures means and includes structures of an arrangement defining a nonrandom order.
- apparatus may include, for example and without limitation, semiconductor devices (e.g., memory devices (e.g., DRAM memory devices, flash memory devices), logic devices) and semiconductor structures (e.g., structures within semiconductor devices).
- semiconductor devices e.g., memory devices (e.g., DRAM memory devices, flash memory devices), logic devices
- semiconductor structures e.g., structures within semiconductor devices.
- the terms “longitudinal” or “vertical” mean and include a direction that is perpendicular to a primary surface or plane over which a referenced material or structure is located.
- the height of a respective region or material may be defined as a dimension in a vertical plane.
- vertical sidewall or “vertical surface” mean and refer to a sidewall or surface extending in a substantially vertical direction relative to a primary surface or plane on which the structure with the sidewall or surface is disposed.
- lateral or “horizontal” mean and include a direction that is parallel to a primary surface or plane over which the referenced material or structure is located.
- the width and length of a respective region or material may be defined as dimensions in a horizontal plane.
- the term “substantially,” when referring to a parameter, property, or condition, means and includes the parameter, property, or condition being equal to or within a degree of variance from a given value such that one of ordinary skill in the art would understand such given value to be acceptably met, such as within acceptable manufacturing tolerances.
- the parameter, property, or condition may be “substantially” a given value when the value is at least 90.0% met, at least 95.0% met, at least 99.0% met, or even at least 99.9% met.
- substantially straight when referring to a sidewall or surface, means and includes a sidewall or surface defining an outer profile that does not deviate from a straight line or that deviates from the straight light by no more than 10.0%, no more than 5.0%, no more than 1.0%, or even no more than 0.1%, such percentage being relative to a dimension at the sidewall or surface along one side of the feature that has such sidewall or surface, rather than, e.g., the percentage being relative to the critical dimension of the feature that has such sidewall or surface.
- the term “substrate” means and includes a base material or other construction upon which components, such as those within semiconductor memory devices or semiconductor logic devices, may be formed.
- the substrate may be a semiconductor substrate, a base semiconductor material on a supporting structure, a metal electrode, or a semiconductor substrate having one or more materials, structures, or regions formed thereon.
- the substrate may be a conventional silicon substrate or other bulk substrate including a semiconductive material.
- the term “bulk substrate” means and includes not only silicon wafers, but also silicon-on-insulator (“SOT”) substrates, such as silicon-on-sapphire (“SOS”) substrates or silicon-on-glass (“SOG”) substrates, epitaxial layers of silicon on a base semiconductor foundation, or other semiconductor or optoelectronic materials, such as silicon-germanium (Si 1-x Ge x , where x is, for example, a mole fraction between 0.2 and 0.8), germanium (Ge), gallium arsenide (GaAs), gallium nitride (GaN), or indium phosphide (InP), among others.
- SOT silicon-on-insulator
- SOS silicon-on-sapphire
- SOG silicon-on-glass
- epitaxial layers of silicon on a base semiconductor foundation or other semiconductor or optoelectronic materials, such as silicon-germanium (Si 1-x Ge x , where x is, for example, a mole
- the terms “thickness,” “thinness,” or “height” mean and include a dimension in a straight-line direction that is normal to a plane of the closest surface of an immediately adjacent material or region of different composition, unless otherwise indicated.
- the term “between” is a spatially relative term used to describe the relative disposition of one material, region, or sub-region relative to at least two other materials, regions, or sub-regions.
- the term “between” may encompass both a disposition of one material, region, or sub-region directly adjacent to the other materials, regions, or sub-regions and a disposition of one material, region, or sub-region indirectly adjacent to the other materials, regions, or sub-regions.
- proximate is a spatially relative term used to describe disposition of one material, region, or sub-region near to another material, region, or sub-region.
- proximate includes dispositions of indirectly adjacent to, directly adjacent to, and internal to.
- neighbored when referring to a material or region, means and refers to a next, most proximate material or region of an identified composition or characteristic. Materials or regions of other compositions or characteristics than the identified composition or characteristic may be disposed between one material or region and its “neighboring” material or region of the identified composition or characteristic.
- a conductive region “neighboring” another conductive region is the conductive region, e.g., of a plurality of conductive regions, that is next most proximate to the particular aforementioned conductive region.
- the “neighboring” material or region may be directly or indirectly proximate the region or material of the identified composition or characteristic.
- the terms “about” and “approximately,” when either is used in reference to a numerical value for a particular parameter, are inclusive of the numerical value and a degree of variance from the numerical value that one of ordinary skill in the art would understand is within acceptable tolerances for the particular parameter.
- “about” or “approximately,” in reference to a numerical value may include additional numerical values within a range of from 90.0 percent to 110.0 percent of the numerical value, such as within a range of from 95.0 percent to 105.0 percent of the numerical value, within a range of from 97.5 percent to 102.5 percent of the numerical value, within a range of from 99.0 percent to 101.0 percent of the numerical value, within a range of from 99.5 percent to 100.5 percent of the numerical value, or within a range of from 99.9 percent to 100.1 percent of the numerical value.
- reference to an element as being “on” or “over” another element means and includes the element being directly on top of, adjacent to (e.g., laterally adjacent to, vertically adjacent to), underneath, or in direct contact with the other element. It also includes the element being indirectly on top of, adjacent to (e.g., laterally adjacent to, vertically adjacent to), underneath, or near the other element, with other elements present therebetween. In contrast, when an element is referred to as being “directly on” or “directly adjacent to” another element, there are no intervening elements present.
- spatially relative terms such as “below,” “lower,” “bottom,” “above,” “upper,” “top,” and the like, may be used for ease of description to describe one element's or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Unless otherwise specified, the spatially relative terms are intended to encompass different orientations of the materials in addition to the orientation as depicted in the figures. For example, if materials in the figures are inverted, elements described as “below” or “under” or “on bottom of” other elements or features would then be oriented “above” or “on top of” the other elements or features.
- the term “below” may encompass both an orientation of above and below, depending on the context in which the term is used, which will be evident to one of ordinary skill in the art.
- the materials may be otherwise oriented (rotated ninety degrees, inverted, etc.) and the spatially relative descriptors used herein interpreted accordingly.
- the terms “comprises,” “comprising,” “includes,” and/or “including” specify the presence of stated features, regions, stages, operations, elements, materials, components, and/or groups, but do not preclude the presence or addition of one or more other features, regions, stages, operations, elements, materials, components, and/or groups thereof.
- the terms “configured” and “configuration” mean and refer to a size, shape, material composition, orientation, and arrangement of a referenced material, region, structure, assembly, or apparatus so as to facilitate a referenced operation or property of the referenced material, region, structure, assembly, or apparatus in a predetermined way.
- the materials described herein may be formed by any suitable technique including, but not limited to, spin coating, blanket coating, chemical vapor deposition (“CVD”), atomic layer deposition (“ALD”), plasma enhanced ALD, physical vapor deposition (“PVD”) (e.g., sputtering), or epitaxial growth.
- CVD chemical vapor deposition
- ALD atomic layer deposition
- PVD physical vapor deposition
- epitaxial growth e.g., sputtering
- the technique for depositing or growing the material may be selected by a person of ordinary skill in the art.
- etching e.g., dry etching, wet etching, vapor etching
- ion milling e.g., ion milling, abrasive planarization, or other known methods.
- FIG. 4 charts a method 400 for forming a multidielectric spacer according to an embodiment of the disclosure.
- a first dielectric material is formed on at least conductive regions of the stack structures (stage 410 ).
- the first dielectric material is formulated, and the method is tailored, to form the first dielectric material with selectivity on the conductive materials of the conductive region(s).
- a second dielectric material is formed on the first dielectric material (stage 420 ).
- the second dielectric material having silicon-carbon bonds, is formulated to be etch resistant, enabling it and the first dielectric material it covers to be resistant to subsequent processing.
- the method for forming the second dielectric material may be tailored to achieve a substantially straight, vertical, outer sidewall for the multidielectric spacer, even if underlying surfaces of the stack structure or the first dielectric material are not substantially straight, vertical surfaces.
- the processes for stages 410 and 420 are discussed in more detail, below, in association with FIGS. 9 through 16 .
- the method 400 of FIG. 4 may be preceded by either, both, or neither of a pretreatment (stage 502 ) and formation of an “inhibitor” material (stage 504 ).
- stages 502 and 504 may modify exposed surfaces of, e.g., conductive materials prior to forming the first dielectric material. The surface modification enhances the selectivity of the first dielectric material for forming on the conductive materials.
- the processes for stages 502 and 504 are discussed in more detail, below, in association with FIGS. 6 through 8 .
- a precursor structure 600 of stack structures 602 may be formed, e.g., by sequentially forming the materials of the stack structures and then patterning the materials to form the stack structures 602 (e.g., in the array). Neighboring stack structures 602 may be separated by openings 603 defined by sidewalls 607 of the stack structures 602 .
- the stack structures 602 include at least one conductive region (e.g., a conductive region 604 and another conductive region 605 ) over a semiconductor material 608 (e.g., material of a semiconductor substrate) with a hard mask region 606 above the conductive regions 604 , 605 .
- the at least one conductive region may comprise, consist essentially of, or consist of a metal, a metal alloy, or other conductive material.
- the materials of the conductive regions 604 , 605 may be one or more of tungsten (W), tungsten silicide (WSi x ), titanium (Ti), titanium nitride (TiN), and conductively-doped silicon (Si).
- Forming the precursor structure 600 may include forming the material of the other conductive region 605 on the semiconductor material 608 (e.g., a semiconductor substrate), forming the material of the conductive region 604 on the other conductive region 605 , forming the material of the hard mask region 606 on the conductive region 604 , and then patterning the formed materials to define the precursor structure 600 with the openings 603 between the stack structures 602 (e.g., of an array).
- the semiconductor material 608 e.g., a semiconductor substrate
- Forming the precursor structure 600 may include forming the material of the other conductive region 605 on the semiconductor material 608 (e.g., a semiconductor substrate), forming the material of the conductive region 604 on the other conductive region 605 , forming the material of the hard mask region 606 on the conductive region 604 , and then patterning the formed materials to define the precursor structure 600 with the openings 603 between the stack structures 602 (e.g., of an array).
- Each stack structure 602 may define a high aspect ratio (e.g., a height-to-width ratio of at least 15:1).
- the openings 603 may likewise exhibit such a high-aspect ratio. With such high-aspect ratio structures and openings, using conventional methods may make it challenging to form consistent and effective electrical insulation on the stack structures 602 , in the openings 603 .
- the precursor structure 600 may, optionally, be subjected to a pretreatment (stage 502 of FIG. 5 ) to remove unwanted chemical species from or to change undesirable bond terminations on (collectively referred to herein, generally, as “debris”) surfaces (e.g., the sidewalls 607 ) of the precursor structure 600 .
- a pretreatment stage 502 of FIG. 5
- debris undesirable bond terminations on (collectively referred to herein, generally, as “debris”) surfaces (e.g., the sidewalls 607 ) of the precursor structure 600 .
- prior processing stages may have left debris 613 along the sidewalls 607 , such as along the sidewalls 607 of the conductive regions 604 , 605 .
- the debris 613 may include residual etchant species (e.g., residual fluorine (F)), hydrogen-terminated bonds (H—), hydroxyl-terminated bonds (OH—), or other undesirable species or bond terminations that might interfere with subsequent formation of the materials of the multidielectric spacer.
- residual etchant species e.g., residual fluorine (F)
- H— hydrogen-terminated bonds
- OH— hydroxyl-terminated bonds
- the debris 613 if not removed or ameliorated, may detrimentally impact (e.g., interfere with adhesion, formation, or bonding of) the later conformal formation of the first dielectric material on at least the conductive regions 604 , 605 .
- the precursor structure 600 may be subjected to the pretreatment (stage 502 of FIG. 5 ), which may be otherwise equally characterized as a “surface modification” treatment.
- a gas mixture may be introduced, at high pressure (e.g., about 5 torr (about 0.7 kPa) to about 100 torr (about 13.3 kPa); about 5 torr (about 0.7 kPa) to about 20 torr (about 2.7 kPa)) in the presence of a plasma, to the precursor structure 600 while the precursor structure 600 is at a reduced temperature to form, at least on exposed surfaces of the conductive regions 604 , 605 along the sidewall 607 , sublimatable compounds including fluorine (“fluorine-containing compounds”) and the debris 613 .
- the term “reduced temperature” refers to a temperature below the sublimation temperature of the fluorine-containing compounds.
- the gas mixture comprises ammonia (NH 3 ) and at least one fluorine-containing gas (e.g., NH 3 , HF).
- the gas mixture may, optionally, also include an inert diluent gas (e.g., one or more of nitrogen (N 2 ) or helium (He)).
- the gas mixture may also comprise one or more gases formulated as chemical reduction agents (e.g., hydrogen (H 2 )).
- the gas mixture may be formulated to ensure the formed fluorine-containing compounds will sublime (transition from solid to gaseous form) when the precursor structure 600 is exposed to raised temperatures.
- the reduced temperature at which the gas mixture is introduced to the precursor structure 600 may be tailored to be at least below the sublimation temperature of the expected fluorine-containing compounds.
- the precursor structure 600 may then be exposed to increased temperatures (e.g., temperatures above the sublimation temperature), to sublimate the fluorine-containing compounds, as illustrated in FIG. 7 .
- Sublimated compounds 713 being in gaseous form, may then be purged from the system, leaving a precursor structure 700 with modified surfaces, e.g., along the portion of the sidewalls 607 occupied by the conductive regions 604 , 605 .
- removing the debris 613 by the pretreatment may not significantly alter the dimensions of the precursor structure 700 or of the stack structures 602 , relative to the precursor structure 600 and stack structures 602 prior to the pretreatment.
- the modified surfaces may include differently-terminated chemical bonds 715 and/or different chemical compositions as compared to the surfaces (e.g., the sidewalls 607 along the conductive regions 604 , 605 ) prior to the pretreatment (stage 502 ( FIG. 5 )).
- the modified surfaces may exhibit improved chemisorption, physisorption, Van Der Waals forces, or the like to enable improved adsorption, adherence, or nucleation of materials during subsequent formation of the first dielectric material on the sidewalls 607 along at least the conductive regions 604 .
- composition of the gas mixture and the pressures and temperatures used during the pretreatment may be tailored and selected, through routine experimentation, to achieve the desired surface modification along the sidewalls 607 of at least the conductive regions 604 , 605 .
- an inhibitor 813 may be applied to at least the sidewalls 607 of non-conductive materials of the precursor structure 700 ( FIG. 7 ).
- the inhibitor 813 may be formulated, and the inhibitor formation stage may be tailored, to form the inhibitor 813 selectively on the hard mask region 606 (stage 504 ( FIG. 5 )), providing a precursor structure 800 illustrated in FIG. 8 , without forming the inhibitor 813 on the sidewall 607 portion of the conductive regions 604 , 605 .
- the inhibitor 813 may be selective for non-conductive material, relative to conductive material.
- Applying the inhibitor 813 may inhibit—during subsequent formation of a first dielectric material of the multidielectric spacer—the formation of the first dielectric material on the sidewall 607 portion of the inhibitor 813 -covered hard mask region 606 , while the first dielectric material forms selectively on the conductive regions 604 , 605 .
- the inhibitor 813 may comprise, consist essentially of, or consist of one or more silane or silane-containing materials (e.g., organosilanes, alkoxysilanes), one or more self-assembled monolayer (SAM) materials, one or more fluoride-containing materials (e.g., thorium fluoride (e.g., ThF 3 ), sulfur hexafluoride (SF 6 )), or any combination thereof.
- SAM self-assembled monolayer
- fluoride-containing materials e.g., thorium fluoride (e.g., ThF 3 ), sulfur hexafluoride (SF 6 )
- the composition of the inhibitor 813 may be selected and tailored to enable the inhibitor 813 to remain in place on the hard mask region 606 during the formation of the first dielectric material on the conductive regions 604 , 605 .
- the differently-terminated chemical bonds 715 of the surface-modified portion of the sidewall 607 may be incompatible with forming the inhibitor 813 .
- the pretreatment stage 502 ( FIG. 5 )
- the non-conductive materials e.g., the hard mask region 606
- a first dielectric material 910 may be formed (stage 410 ( FIGS. 4 and 5 )). In embodiments in which no pretreatment or inhibitor application have been performed (method 400 ( FIG. 4 )), the first dielectric material 910 may be formed over the precursor structure 600 of FIG. 6 . In embodiments in which the pretreatment (stage 502 ( FIG. 5 ) and the application of the inhibitor 813 (stage 504 of FIG. 5 )—or, in some embodiments, without performing either of the pretreatment (stage 502 ( FIG. 5 )) or the inhibitor application (stage 504 ( FIG. 5 ))—a first dielectric material 910 may be formed (stage 410 ( FIGS. 4 and 5 )). In embodiments in which no pretreatment or inhibitor application have been performed (method 400 ( FIG. 4 )), the first dielectric material 910 may be formed over the precursor structure 600 of FIG. 6 . In embodiments in which the pretreatment (stage 502 ( FIG.
- the first dielectric material 910 may be formed over the precursor structure 700 of FIG. 7 .
- the first dielectric material 910 may be formed over the precursor structure 800 of FIG. 8 .
- the first dielectric material 910 may be thin, defining a thickness along at least the sidewalls 607 of the conductive regions 604 , 605 of from about 1 nm to about 3 nm.
- the first dielectric material 910 having more selectivity for the conductive regions 604 , 605 than for the non-conductive regions (e.g., the hard mask region 606 ) covered by the inhibitor 813 —may form more thickly on the conductive regions 604 , 605 than on the hard mask region 606 .
- the first dielectric material 910 may form a thin layer over the hard mask region 606 (e.g., directly on the inhibitor 813 on the hard mask region 606 ).
- the inhibitor 813 may cause no detectable amount of the first dielectric material 910 to form on the hard mask region 606 (e.g., on the inhibitor 813 on the hard mask region 606 ), as illustrated in the alternative embodiment of FIG. 9B .
- the first dielectric material 910 may be formed by ALD, e.g., pure thermal ALD (meaning an ALD process without added sources of energy of the likes of plasma, microwaves, electronics, or solar radiation), plasma-enhanced ALD (PE-ALD), pulsed-plasma-enhanced ALD.
- ALD atomic layer deposition
- PE-ALD plasma-enhanced ALD
- pulsed-plasma-enhanced ALD e.g., pulsed-plasma-enhanced ALD.
- the first dielectric material 910 may be formed by CVD.
- the first dielectric material 910 may comprise, consist essentially of, or consist of a dielectric material (e.g., a nitride (e.g., silicon nitride, silicon carbon nitride (SiCN)), an oxynitride (e.g., a silicon oxynitride, a silicon carboxy nitride (SiCON))).
- a dielectric material e.g., a nitride (e.g., silicon nitride, silicon carbon nitride (SiCN)
- an oxynitride e.g., a silicon oxynitride, a silicon carboxy nitride (SiCON)
- ALD precursors for forming the first dielectric material 910 may be selected from the group consisting of silicon bromide, silicon iodide, SiH 4 , CH 4 , and silanes (e.g., organosilanes, high-order silanes (e.g., trisilylaminesilane, chlorosilane), polycarbosilanes (e.g., SiH 2 CH 2 , bis-dichloro disilapentane, tetra-dichloro disilapentane), polydimethylsilanes, dimethyldichlorosilane, phenylmethyldichlorosilane, vinylic and chloromethyl silanes (e.g., vinylmethyldichlorosilane), hydridopolycarbosilane (e.g., using LiAlH 4 catalyst), hexamethylcyclotetrasiloxane (HMCTS), octamethylcyclotetrasilox
- One or more such precursors may be used, and the selected precursors may be tailored according to the composition of the first dielectric material 910 to be formed.
- the silicon bromide or silicon iodide may be used as the precursors.
- the SiH 4 , CH 4 , or silane-based precursors may be selected and used.
- plasma may be used during, after, or both during and after the ALD formation process to tailor characteristics of the first dielectric material 910 .
- other mix gases e.g., nitrogen (N 2 ), helium (He), hydrogen (H 2 )
- N 2 nitrogen
- He helium
- H 2 hydrogen
- Such tailorable characteristics may include the conformality, selectivity (e.g., for the conductive regions 604 , 605 relative to the non-conductive regions (e.g., the hard mask region 606 )), etch resistance, the effective resistance of the conductive regions 604 , 605 , and the effective k value of the first dielectric material 910 .
- an embodiment of forming the first dielectric material 910 of one or more of silicon nitride and silicon oxynitride may include using a silicon bromide or a silicon iodide precursor and an ammonia reagent in a pure-thermal ALD process at temperatures below 400° C. (e.g., between about 150° C. to about 250° C.).
- the first dielectric material 910 having a composition as described herein and formed according to a method described herein, may be tailored to selectively form along the sidewalls 607 at the conductive regions 604 , 605 .
- the first dielectric material 910 as formed, may be tailored, in some embodiments, to define a greater thickness adjacent the conductive regions 604 , 605 , than adjacent other portions of the stack structures 602 .
- the thickness of the first dielectric material 910 along, for example, the hard mask region 606 may be less than about 1 nm (e.g., FIG. 9 ).
- the first dielectric material 910 may be formulated, and the formation stage may be tailored, to selectively form on the conductive material of the conductive regions 604 , 605 , enabling electrical insulation along the most pertinent section of the stack structures 602 .
- the first dielectric material 910 may define a sidewall 912 (e.g., an outer sidewall) that is not substantially straight and vertical along the whole of the sidewalls 607 of the stack structures 602 .
- an “air break” (e.g., exposure of the precursor structure 800 of FIG. 8 to ambient air) may be included after forming the first dielectric material 910 .
- exposing the precursor structure 800 to air may incorporate additional oxygen within the first dielectric material 910 .
- the first dielectric material 910 of the precursor structure 800 of FIG. 8 may comprise silicon nitride, and the first dielectric material 910 may be at least partially or completely converted to silicon oxynitride or may be at least partially or completely converted to silicon dioxide by the exposure to air.
- a second dielectric material 1010 may be formed over the first dielectric material 910 (stage 420 ( FIGS. 4 and 5 )), as illustrated in FIG. 10 .
- the first dielectric material 910 may define an outer sidewall (e.g., the sidewall 912 ( FIG. 9 )) that is not a substantially straight, vertical sidewall
- the multidielectric spacer may nonetheless be formed to exhibit a substantially straight, vertical sidewall along its outer vertical surface, which may be defined by an outer sidewall of another dielectric material of the multidielectric spacer (e.g., along a second dielectric material 1010 ( FIGS. 10 and 10B )).
- the second dielectric material 1010 may be formed, conformally, over a whole of the first dielectric material 910 .
- the first dielectric material 910 may be subjected to an additional treatment, prior to forming the second dielectric material 1010 , to tailor the selectivity of the second dielectric material 1010 so that it will form with more selectivity (e.g., at a greater thickness) on the thinner portions of the first dielectric material 910 (e.g., adjacent the hard mask region 606 ), relative to its formation on thicker portions of the first dielectric material 910 (e.g., adjacent the conductive regions 604 , 605 ).
- a selectivity-enhancing material 1013 may be formed on only the thinner portions of the first dielectric material 910 (e.g., adjacent the hard mask region 606 ), without forming on the thicker portions of the first dielectric material 910 (e.g., adjacent the conductive regions 604 , 605 ), to increase the rate of forming the second dielectric material 1010 along the thinner portions of the first dielectric material 910 .
- Forming the selectivity-enhancing material 1013 with selectivity on the thinner portions of the first dielectric material 910 may be enabled by a difference in surface energy of the first dielectric material 910 along its thinner portions than along its thicker portions.
- the different surface energies may result from the previous formation of the first dielectric material 910 , as described above.
- the different surface energies may then influence how subsequent material (e.g., the selectivity-enhancing material 1013 ) physisorbs or chemisorbs to the first dielectric material 910 , promoting the selective formation of the selectivity-enhancing material 1013 on the thinner portions of the first dielectric material 910 relative to the thicker portions of the first dielectric material 910 . Therefore, the composition of the selectivity-enhancing material 1013 may be tailored to exhibit the selectivity for forming on the thinner portions of the first dielectric material 910 , given the different surface energy along the thinner portions.
- the selectivity-enhancing material 1013 may comprise alkoxysilane, which may have been formed by exposing polysiloxane networks to light energy from, e.g., plasma.
- the alkoxysilane may form with selectivity on the thinner portions of the first dielectric material 910 due to the aforementioned difference in surface energies (e.g., a difference in the density of bond terminations along the surface).
- the presence of the alkoxysilane of the selectivity-enhancing material 1013 on the thinner portions of the first dielectric material 910 may enhance nucleation of the second dielectric material 1010 on the selectivity-enhancing material 1013 so that the second dielectric material 1010 forms more thickly adjacent the thinner portions of the first dielectric material 910 on which the alkoxysilane-comprising material was formed.
- the selectivity-enhancing material 1013 may comprise, consist of, or consist essentially of a polypyrrole, a polyaniline, or both.
- the polypyrrole and the polyaniline may, therefore, be used to enhance the ability to tune the relative selectivity for forming the second dielectric material 1010 on the first dielectric material 910 .
- another inhibitor may be applied on only the thicker portions of the first dielectric material 910 (e.g., adjacent the conductive regions 604 , 605 ), without forming on the thinner portions of the first dielectric material 910 (e.g., adjacent the hard mask region 606 ), to decrease the rate of forming the second dielectric material 1010 along the thicker portions of the first dielectric material 910 .
- Forming such other inhibitor may again may enabled by a difference in surface energy of the first dielectric material 910 along its thinner portions than along its thicker portions.
- the different surface energies may promote the selective formation of the other inhibitor on the thicker portions of the first dielectric material 910 relative to the thinner portions of the first dielectric material 910 . Therefore, the composition of the other inhibitor may be tailored to exhibit the selectivity for forming on the thicker portions of the first dielectric material 910 , given different surface energy along the thicker portions.
- the other inhibitor may consist of, consist essentially of, or comprise octadecyltrichlorosilane (ODTS).
- ODTS octadecyltrichlorosilane
- the ODTS may be formed on the thicker portions of the first dielectric material 910 with covalent silicon-oxygen (Si—O) bonding between the molecules of the ODTS and the surface (e.g., the sidewall 912 ) of the thicker portions of the first dielectric material 910 .
- Si—O covalent silicon-oxygen
- the other inhibitor may comprise, consist essentially of, or consist of one or more poly(phenylene-vinylene) compound, e.g., poly(phenylene-vinylene), poly(p-phenylenevinylene), poly(1,4-phenylenevinylene), or combinations thereof.
- poly(phenylene-vinylene) compound e.g., poly(phenylene-vinylene), poly(p-phenylenevinylene), poly(1,4-phenylenevinylene), or combinations thereof.
- the presence of such other inhibitor material on the thicker portions of the first dielectric material 910 may inhibit subsequent formation of the second dielectric material 1010 on those portions.
- the formation of the selectivity-enhancing material 1013 on the thinner portions of the first dielectric material 910 , the formation of the other inhibitor on the thicker portions of the first dielectric material 910 , or both may be more of a surface-modification treatment than formation of a new material or layer over the respective portions of the first dielectric material 910 . Nonetheless, the surface-modification treatment may enable the selective formation of the second dielectric material 1010 at a greater thickness over the thinner portions of the first dielectric material 910 than over the thicker portions of the first dielectric material 910 . For example, the structure of FIG.
- H-bonding hydrogen-bonding
- OH-bonding hydroxyl-bonding
- both the selectivity-enhancing material 1013 may be formed along the thinner portions of the first dielectric material 910 and the other inhibitor may be formed along the thicker portions of the first dielectric material 910 before the second dielectric material 1010 is formed more thickly over the selectivity-enhancing material 1013 (e.g., adjacent the hard mask region 606 ) and more thinly over the other-inhibitor (e.g., adjacent the conductive regions 604 , 605 ).
- the resulting second dielectric material defines, as illustrated in FIGS. 10 and 10B , a greater thickness (e.g., between about 1 nm thickness to about 3 nm thickness) along the hard mask region 606 than along the conductive regions 604 , 605 (e.g., at a thickness of less than about 1 nm).
- a sidewall 1012 of the second dielectric material 1010 may be formed to define a substantially straight, vertical, outer sidewall for a multidielectric spacer 1050 .
- the second dielectric material 1010 is formulated to comprise a detectable amount of carbon, namely carbon bonded to silicon (e.g., Si—C bonds).
- the second dielectric material 1010 may include at least about 5 at. % carbon.
- the second dielectric material 1010 comprises carbon while the first dielectric material 910 is substantially free of (e.g., does not comprise) carbon.
- the second dielectric material 1010 may be formed by, for example, ALD (e.g., pure thermal ALD, PE-ALD, pulsed-plasma-enhanced ALD), CVD (e.g., CVD without plasma, plasma-enhanced CVD (PE-CVD)), using one or more precursors.
- ALD e.g., pure thermal ALD, PE-ALD, pulsed-plasma-enhanced ALD
- CVD e.g., CVD without plasma, plasma-enhanced CVD (PE-CVD)
- PE-CVD plasma-enhanced CVD
- the precursors for forming the second dielectric material 1010 may be selected from the group consisting of silane (SiH 4 ), methane (CH 4 ), octamethylcyclotetrasiloxane (OMCTS) with an O 2 oxidant, trimethylsilane (3MS), tetramethylsilane (4MS), bis-trimethylsilylmethane (BTMSM), tetramethylcyclotetrasiloxane (TMCTS), bis-trimethylsilylmethane (BTMSM, C 7 H 20 Si 2 ), methyltriethoxysilane (MTES, C 7 H 18 O 3 Si), methyltrimethoxysilane (MTMS), mexamethylcyclotetrasiloxane (HMCTS), polycarbosilanes (e.g., SiH 2 CH 2 , bis- or tetra-dichloro-disilapentane), polydimethylsilanes, dimethyldichlorosi
- Temperatures for forming the second dielectric material 1010 may be in the range of from about 250° C. to about 450° C.
- the second dielectric material 1010 may comprise silicon, carbon, oxygen, and hydrogen (e.g., a SiOCH material).
- the second dielectric material 1010 may be free of the class of SiOCH materials known in the art as “porous low-k” materials.
- the second dielectric material 1010 may comprise a SiOCH material with Si—O—Si, Si—, Si—H, O—H, C—H, and Si—CH 3 bond structures.
- the second dielectric material 1010 may comprise, consist essentially of, or consist of (SiOC 2 H 6 ) 4 (otherwise known in the art as [(CH 3 ) 2 SiO] 4 ).
- the second dielectric material 1010 may be formulated to be etch resistant. That is, subsequent exposure of the second dielectric material 1010 to etchants, e.g., fluorine-based etchants (e.g., HF gas), may result in removal of no more than one monolayer of the second dielectric material 1010 , e.g., less than about 2 angstroms (less than about 2 ⁇ (less than about 0.2 nm)).
- etchants e.g., fluorine-based etchants (e.g., HF gas
- the second dielectric material 1010 provides etch resistance to the multidielectric spacer 1050 .
- the resulting multidielectric spacer 1050 may exhibit the desired conformality, structure (e.g., substantially straight, vertical, outer sidewalls 1012 ), and properties (e.g., electrical resistance and etch resistance) without having to sacrifice one desirable property for another.
- an apparatus comprising at least one stack structure.
- the at least one stack structure comprises at least one conductive region between nonconductive materials.
- a multidielectric spacer is adjacent the at least one conductive region.
- the multidielectric spacer comprises a first dielectric material and a second dielectric material.
- the first dielectric material is adjacent the at least one conductive region.
- the first dielectric material comprises silicon and nitrogen.
- the second dielectric material is directly adjacent the first dielectric material.
- the second dielectric material comprises silicon-carbon bonds.
- the second dielectric material comprises carbon at least five atomic percent.
- the multidielectric spacer defines a substantially straight, vertical, outer sidewall.
- either or both of the first dielectric material 910 formation stage (stage 410 ( FIGS. 4 and 5 )) and the second dielectric material 1010 formation stage (stage 420 ( FIGS. 4 and 5 )) may further include use of a plasma-enhanced chamber with exposure to a gas comprising helium, nitrogen (N 2 ), a carbon source, or other bond-modifying gas to further tailor the characteristics of one or both of the first dielectric material 910 and the second dielectric material 1010 .
- a plasma-enhanced chamber with exposure to a gas comprising helium, nitrogen (N 2 ), a carbon source, or other bond-modifying gas to further tailor the characteristics of one or both of the first dielectric material 910 and the second dielectric material 1010 .
- the method comprises forming a first dielectric material on stack structures.
- the stack structures comprise at least one conductive region and at least one nonconductive region.
- the first dielectric material is formulated to form selectively on the at least one conductive region, relative to the at least one nonconductive region.
- a second dielectric material is formed on the first dielectric material.
- the second dielectric material comprises silicon-carbon bonds.
- the second dielectric material defines a substantially straight, vertical, outer sidewall.
- prior processing stages may have left a stack structure 1102 with a recess portion 1109 ( FIG. 11 ) of the sidewall 1107 along, e.g., conductive regions (e.g., conductive region 1104 , and another conductive region 1105 ).
- the first dielectric material 910 may be formed to substantially or completely fill the recess portion 1109 , defining a substantially straight, vertical, outer sidewall.
- the first dielectric material 910 may be formed directly on the hard mask region 606 and exposed portions of the sidewall 1107 along the conductive regions 1104 , 1105 , defining a greater thickness along the conductive regions 1104 , 1105 .
- This greater thickness along the conductive regions 1104 , 1105 is achieved because the first dielectric material 910 is formulated and may be formed—e.g., optionally after the pretreatment (e.g., FIGS.
- the second dielectric material 1010 may then be formed, using any of the compositions and formation methods discussed above, to form a multidielectric spacer 1350 with the substantially straight, vertical, outer sidewall 1012 . Because the first dielectric material 910 already defines a substantially straight, vertical, outer sidewall 1212 , the second dielectric material 1010 may be conformally formed to a consistent thickness, not substantially varying along the height of the stack structure 1102 , on the first dielectric material 910 , as illustrated in FIG. 13 .
- the inhibitor 813 may be applied—with or without first performing the pretreatment (stage 502 ( FIG. 5 ), FIGS. 6 and 7 )—on the hard mask region 606 , as illustrated in FIG. 14 .
- the first dielectric material 910 may be formed only adjacent the conductive regions 1104 , 1105 , as also illustrated in FIG. 14 . This may be achieved by the formation-inhibiting effects of the inhibitor 813 present on the nonconductive material (e.g., the hard mask region 606 , and, in some embodiments, also on the semiconductor material 608 (not shown)).
- the first dielectric material 910 may, therefore, define a substantially straight, vertical, outer sidewall 1412 that is aligned with (e.g., coplanar with) the sidewall 1107 portions defined by, e.g., the hard mask region 606 .
- the second dielectric material 1010 may then be formed, using any of the compositions and formation methods discussed above, to form a multidielectric spacer 1550 with a substantially straight, vertical, outer sidewall 1512 .
- a stack structure 1602 may be patterned in such a manner that a conductive region 1604 defines (e.g., undesirably) a narrower width than the other conductive region 1105 .
- the pretreatment stage stage 502 ( FIG. 5 ), FIGS. 6 and 7
- the formation of the first dielectric material 910 e.g., tailoring the selection of the precursors or other formation conditions
- the first dielectric material 910 may be formed to define a greater thickness along the narrower of the conductive regions, i.e., along the conductive region 1604 compared to how the first dielectric material 910 forms along the other conductive region 1105 .
- the first dielectric material 910 may be formed to define the substantially straight, vertical, outer sidewall 1412 extending only along the conductive regions 1104 , 1105 and aligning with (e.g., coplanar with) the sidewall 1107 ( FIG. 14 ) portion of the nonconductive regions (e.g., the hard mask region 606 and the semiconductor material 608 ).
- the second dielectric material 1010 may then be formed, using any of the compositions and formation methods discussed above, to form a multidielectric spacer 1650 with a substantially straight, vertical, outer sidewall 1512 .
- the fabrication process may be completed to form the remainder of the materials and regions of the semiconductor devices that comprise the stack structures and spacers.
- the subsequent processing stages may include formation of additional insulative material, air gaps, or both between the stack structures (e.g., stack structures 602 (any of FIGS. 6 through 8 ), 1102 ( FIG. 11 ), 1602 ( FIG. 16 )).
- Formation of air gaps may include exhuming all, or portions, of the first dielectric material 910 , the second dielectric material 1010 , or both that were originally formed laterally adjacent the conductive regions (e.g., conductive regions 604 , 605 ( FIG. 10 ), 1104 , 1105 ( FIGS. 13 and 15 ), 1604 , 1105 ( FIG. 16 )). Nonetheless, remaining portions of the multidielectric spacer (e.g., multidielectric spacers 1050 ( FIG. 10 ), 1350 ( FIG. 13 ), 1550 ( FIG. 15 ), 1650 ( FIG. 16 )) may define (e.g., along the hard mask region 606 ) the substantially straight, vertical, outer sidewall (e.g., 1012 ( FIGS.
- the etch resistance of the second dielectric material 1010 may protect the multidielectric spacer (e.g., multidielectric spacers 1050 ( FIG. 10 ), 1350 ( FIG. 13 ), 1550 ( FIG. 15 ), 1650 ( FIG. 16 )), including the first dielectric material 910 covered by the second dielectric material 1010 .
- the multidielectric spacer e.g., multidielectric spacers 1050 ( FIG. 10 ), 1350 ( FIG. 13 ), 1550 ( FIG. 15 ), 1650 ( FIG. 16 )
- the method comprises forming at least one conductive material adjacent a nonconductive material and patterning the at least one conductive material and the nonconductive material to define a precursor structure comprising stack structures.
- the stack structures comprise at least one conductive region of the at least one conductive material.
- the method also comprises selectively forming a first dielectric material adjacent an exposed surface of the at least one conductive material.
- the first dielectric material comprises silicon and nitrogen.
- a second dielectric material is formed adjacent the first dielectric material.
- the second dielectric material comprises silicon-carbon bonds.
- the second dielectric material also comprises at least five atomic percent carbon.
- the second dielectric material defines a substantially straight, vertical, outer sidewall.
- the semiconductor device 1700 includes an array 1702 of stack structures (e.g., stack structures 602 (any of FIGS. 6 through 8 ), 1102 ( FIG. 11 ), 1602 ( FIG. 16 )) that include at least one conductive region.
- the semiconductor device 1700 also includes a control logic component 1704 .
- the array 1702 also includes multidielectric spacers (e.g., multidielectric spacers 1050 ( FIG. 10 ), 1350 ( FIG. 13 ), 1550 ( FIG. 15 ), 1650 ( FIG. 16 )) formed according to any of the embodiments discussed above.
- the control logic component 1704 may be configured to interact with the array 1702 so as to read from or write to any or all semiconductor devices within the array 1702 .
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Memories (AREA)
Abstract
Description
- This application is a continuation of U.S. patent application Ser. No. 16/251,063, filed Jan. 17, 2019, the disclosure of which is hereby incorporated in its entirety herein by this reference.
- The disclosure, in various embodiments, relates generally to apparatus (e.g., semiconductor devices) with conductive regions. More particularly, this disclosure relates to apparatus (e.g., comprising semiconductor devices) having high aspect ratio “stack” structures that include conductive regions insulated from neighboring conductive regions by dielectric spacers.
- In the design and fabrication of semiconductor devices, such as memory devices (e.g., DRAM memory devices, flash memory devices) and logic devices, designers are challenged to increase device density (e.g., increased proximity of features). As density increases, ensuring conductive materials (e.g., of conductor lines (e.g., digit lines, access lines, word lines, bit lines)) of neighboring structures remain electrically insulated from one another becomes challenging. Efforts have been made to electrically insulate neighboring conductive regions by forming electrically insulating material regions (e.g., “spacers”) on the “stack” structures comprising the regions. However, forming these spacers often requires tradeoffs, such as between the spacer material's dielectric constant (e.g., a factor in the electrical insulation capabilities of the spacer), conformality (e.g., the ability to form the spacer conformally over previous materials), mechanical strength (e.g., a factor in the spacer's ability to maintain its physical structure during subsequent processing), and etch resistance (e.g., the spacer material's ability to avoid degradation during subsequent material-removal processes). For example, selecting a spacer material with sufficient electrical insulation properties (e.g., a sufficient dielectric constant) may complicate efforts to form that material into a conformal, uniform, vertical spacer region on the underlying stack structure, particularly if, e.g., the spacer material more readily forms on nonconductive materials than on conductive materials. As another example, a spacer material with a sufficient dielectric constant may be prone to degradation during subsequent etch processes, degrading the spacer formed of such material, and leaving the conductive regions of the stack structure without adequate electrical insulation.
-
FIGS. 1, 2, and 3 schematically illustrate challenges that may be encountered using conventional spacer materials and fabrication processes. Astack structure 102 may include aconductive region 104, ahard mask region 106, andsemiconductor material 108. Conventional spacer material, used to form aspacer 110 according to conventional methods, may be less prone to nucleate or otherwise form on theconductive region 104 than on the non-conductive material of thehard mask region 106 and of thesemiconductor material 108. Thus, as illustrated inFIG. 1 , thespacer 110 may be thinner—and therefore less electrically insulative—along theconductive region 104 than along thehard mask region 106. As another example,FIG. 2 illustrates astack structure 202 in which previous fabrication stages (e.g., etching) formed defects in the stack's sidewall, such as undercuts 207 between a firstconductive region 204 and anotherconductive region 205 and different transverse widths of theconductive regions recesses 209 in aspacer 210, if formed with conventional materials and according to conventional methods. As another example,FIG. 3 illustrates astack structure 302 having an undesirableconcave sidewall 307 along aconductive region 304, which concavity may have resulted from an etching stage to form thestack structure 302. A correspondingconcave portion 309 in aspacer 310 may result, if forming thespacer 310 by conventional methods and with conventional materials. In each of the examples, a sidewall of the spacer (e.g.,sidewall 112 of spacer 110 (FIG. 1 ),sidewall 212 of spacer 210 (FIG. 2 ),sidewall 312 of spacer 310 (FIG. 3 )) deviates from an ideal, consistent, vertical surface, represented by the dashed line P. - The aforementioned challenges may present even greater difficulties as stack structure arrays become more densely packed, with narrower spaces between neighboring structures. Thus, the realities of the inconsistencies and defects in underlying stack structures and the tradeoffs between desirable properties of spacer structures and materials continues to present challenges in forming semiconductor devices, having both conductive and nonconductive regions, with sufficient, consistent electrical insulation between.
-
FIG. 1 is a cross-sectional, elevational, schematic illustration of a semiconductor device structure with a conductive region and a spacer, the spacer having been formed using conventional materials and methods. -
FIG. 2 is a cross-sectional, elevational, schematic illustration of a semiconductor device structure with conductive regions and a spacer, the spacer having been formed using conventional materials and methods. -
FIG. 3 is a cross-sectional, elevational, schematic illustration of a semiconductor device structure with a conductive region and a spacer, the spacer having been formed using conventional materials and methods. -
FIG. 4 is a flow chart of a method for forming a multidielectric spacer on arrayed semiconductor devices with at least one conductive region, according to an embodiment of the disclosure. -
FIG. 5 is a flow chart of a method for forming a multidielectric spacer on arrayed semiconductor devices with at least one conductive region, according to an embodiment of the disclosure, wherein forming a first dielectric material may be preceded by either or both of a pretreatment stage and an inhibitor-formation stage. -
FIGS. 6 through 10 are cross-sectional, elevational, schematic illustrations during various stages of processing to fabricate arrayed semiconductor devices with conductive regions electrically insulated by a multidielectric spacer defining substantially straight, vertical, outer sidewalls, according to an embodiment of the disclosure. WithinFIGS. 6 through 10 ,FIG. 9B illustrates an alternative stage to that ofFIG. 9 , andFIG. 10B illustrates an elaboration of the stage of that ofFIG. 10 according to an embodiment of the disclosure. -
FIGS. 11 through 13 are cross-sectional, elevational, schematic illustrations during various stages of processing to fabricate arrayed semiconductor devices with conductive regions electrically insulated by a multidielectric spacer defining substantially vertical sidewalls, according to an embodiment of the disclosure. -
FIGS. 14 and 15 , in conjunction withFIG. 11 , are cross-sectional, elevational, schematic illustrations during various stages of processing to fabricate arrayed semiconductor devices with conductive regions electrically insulated by a multidielectric spacer defining substantially vertical sidewalls, according to an embodiment of the disclosure. -
FIG. 16 is a cross-sectional, elevational, schematic illustration during a stage of processing to fabricate arrayed semiconductor devices with conductive regions electrically insulated by a multidielectric spacer defining substantially vertical sidewalls, according to an embodiment of the disclosure. -
FIG. 17 is a simplified block diagram of a semiconductor device structure including an array of memory or logic devices including multidielectric spacers formed or structured in accordance with any of the embodiments of the disclosure. - Methods of the disclosure enable forming spacers with substantially vertical sidewalls, or otherwise sufficient coverage adjacent (e.g., on) conductive regions, despite underlying stack structures having both conductive and nonconductive regions and even if the underlying stack structures have defects along their sidewalls. The disclosed spacers are formed of multiple dielectric materials, including a first dielectric material and a second dielectric material. The first dielectric material is formulated and formed so as to form selectively on the conductive regions of the underlying stack structure, ensuring adequate electrical insulation along the region most needing electrical insulation. The second dielectric material is formulated and formed so that the multidielectric spacer defines a substantially straight, vertical, outer sidewall and exhibits etch resistance to ensure the multidielectric spacer maintains its integrity during subsequent processing.
- As used herein, the term “multidielectric spacer” means and includes a region of more than one dielectric material spacing (e.g., separating) an adjacent conductive region of one semiconductor structure (e.g., a stack structure (e.g., of an array)) from a neighboring conductive region of another semiconductor structure (e.g., another stack structure (e.g., of the array)).
- As used herein, the term “stack structure” means and includes a structure comprising material regions overlaying one another. Sidewalls of each region may align with one another.
- As used herein, the term “arrayed” when describing structures, means and includes structures of an arrangement defining a nonrandom order.
- As used herein, the term “apparatus” may include, for example and without limitation, semiconductor devices (e.g., memory devices (e.g., DRAM memory devices, flash memory devices), logic devices) and semiconductor structures (e.g., structures within semiconductor devices).
- As used herein, the terms “longitudinal” or “vertical” mean and include a direction that is perpendicular to a primary surface or plane over which a referenced material or structure is located. The height of a respective region or material may be defined as a dimension in a vertical plane.
- As used herein, the terms “vertical sidewall” or “vertical surface” mean and refer to a sidewall or surface extending in a substantially vertical direction relative to a primary surface or plane on which the structure with the sidewall or surface is disposed.
- As used herein, the terms “lateral” or “horizontal” mean and include a direction that is parallel to a primary surface or plane over which the referenced material or structure is located. The width and length of a respective region or material may be defined as dimensions in a horizontal plane.
- As used herein, the term “substantially,” when referring to a parameter, property, or condition, means and includes the parameter, property, or condition being equal to or within a degree of variance from a given value such that one of ordinary skill in the art would understand such given value to be acceptably met, such as within acceptable manufacturing tolerances. By way of example, depending on the particular parameter, property, or condition that is substantially met, the parameter, property, or condition may be “substantially” a given value when the value is at least 90.0% met, at least 95.0% met, at least 99.0% met, or even at least 99.9% met.
- As used herein, the terms “substantially straight,” when referring to a sidewall or surface, means and includes a sidewall or surface defining an outer profile that does not deviate from a straight line or that deviates from the straight light by no more than 10.0%, no more than 5.0%, no more than 1.0%, or even no more than 0.1%, such percentage being relative to a dimension at the sidewall or surface along one side of the feature that has such sidewall or surface, rather than, e.g., the percentage being relative to the critical dimension of the feature that has such sidewall or surface.
- As used herein, the term “substrate” means and includes a base material or other construction upon which components, such as those within semiconductor memory devices or semiconductor logic devices, may be formed. The substrate may be a semiconductor substrate, a base semiconductor material on a supporting structure, a metal electrode, or a semiconductor substrate having one or more materials, structures, or regions formed thereon. The substrate may be a conventional silicon substrate or other bulk substrate including a semiconductive material. As used herein, the term “bulk substrate” means and includes not only silicon wafers, but also silicon-on-insulator (“SOT”) substrates, such as silicon-on-sapphire (“SOS”) substrates or silicon-on-glass (“SOG”) substrates, epitaxial layers of silicon on a base semiconductor foundation, or other semiconductor or optoelectronic materials, such as silicon-germanium (Si1-xGex, where x is, for example, a mole fraction between 0.2 and 0.8), germanium (Ge), gallium arsenide (GaAs), gallium nitride (GaN), or indium phosphide (InP), among others. Furthermore, when reference is made to a “substrate” in the following description, previous process stages may have been utilized to form materials, regions, or junctions on or in the base semiconductor structure or foundation.
- As used herein, the terms “thickness,” “thinness,” or “height” mean and include a dimension in a straight-line direction that is normal to a plane of the closest surface of an immediately adjacent material or region of different composition, unless otherwise indicated.
- As used herein, the term “between” is a spatially relative term used to describe the relative disposition of one material, region, or sub-region relative to at least two other materials, regions, or sub-regions. The term “between” may encompass both a disposition of one material, region, or sub-region directly adjacent to the other materials, regions, or sub-regions and a disposition of one material, region, or sub-region indirectly adjacent to the other materials, regions, or sub-regions.
- As used herein, the term “proximate” is a spatially relative term used to describe disposition of one material, region, or sub-region near to another material, region, or sub-region. The term “proximate” includes dispositions of indirectly adjacent to, directly adjacent to, and internal to.
- As used herein, the term “neighboring,” when referring to a material or region, means and refers to a next, most proximate material or region of an identified composition or characteristic. Materials or regions of other compositions or characteristics than the identified composition or characteristic may be disposed between one material or region and its “neighboring” material or region of the identified composition or characteristic. For example, a conductive region “neighboring” another conductive region is the conductive region, e.g., of a plurality of conductive regions, that is next most proximate to the particular aforementioned conductive region. The “neighboring” material or region may be directly or indirectly proximate the region or material of the identified composition or characteristic.
- As used herein, the terms “about” and “approximately,” when either is used in reference to a numerical value for a particular parameter, are inclusive of the numerical value and a degree of variance from the numerical value that one of ordinary skill in the art would understand is within acceptable tolerances for the particular parameter. For example, “about” or “approximately,” in reference to a numerical value, may include additional numerical values within a range of from 90.0 percent to 110.0 percent of the numerical value, such as within a range of from 95.0 percent to 105.0 percent of the numerical value, within a range of from 97.5 percent to 102.5 percent of the numerical value, within a range of from 99.0 percent to 101.0 percent of the numerical value, within a range of from 99.5 percent to 100.5 percent of the numerical value, or within a range of from 99.9 percent to 100.1 percent of the numerical value.
- As used herein, reference to an element as being “on” or “over” another element means and includes the element being directly on top of, adjacent to (e.g., laterally adjacent to, vertically adjacent to), underneath, or in direct contact with the other element. It also includes the element being indirectly on top of, adjacent to (e.g., laterally adjacent to, vertically adjacent to), underneath, or near the other element, with other elements present therebetween. In contrast, when an element is referred to as being “directly on” or “directly adjacent to” another element, there are no intervening elements present.
- As used herein, other spatially relative terms, such as “below,” “lower,” “bottom,” “above,” “upper,” “top,” and the like, may be used for ease of description to describe one element's or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Unless otherwise specified, the spatially relative terms are intended to encompass different orientations of the materials in addition to the orientation as depicted in the figures. For example, if materials in the figures are inverted, elements described as “below” or “under” or “on bottom of” other elements or features would then be oriented “above” or “on top of” the other elements or features. Thus, the term “below” may encompass both an orientation of above and below, depending on the context in which the term is used, which will be evident to one of ordinary skill in the art. The materials may be otherwise oriented (rotated ninety degrees, inverted, etc.) and the spatially relative descriptors used herein interpreted accordingly.
- As used herein, the terms “comprises,” “comprising,” “includes,” and/or “including” specify the presence of stated features, regions, stages, operations, elements, materials, components, and/or groups, but do not preclude the presence or addition of one or more other features, regions, stages, operations, elements, materials, components, and/or groups thereof.
- As used herein, “and/or” includes any and all combinations of one or more of the associated listed items.
- As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
- As used herein, the terms “configured” and “configuration” mean and refer to a size, shape, material composition, orientation, and arrangement of a referenced material, region, structure, assembly, or apparatus so as to facilitate a referenced operation or property of the referenced material, region, structure, assembly, or apparatus in a predetermined way.
- The illustrations presented herein are not meant to be actual views of any particular structure, region, material, component, device, apparatus, or method stage, but are merely idealized representations that are employed to describe embodiments of the disclosure.
- The following description provides specific details—such as material types, material thicknesses, and processing conditions—in order to provide a thorough description of embodiments of the disclosed structures and methods. However, a person of ordinary skill in the art will understand that the embodiments of the structures and methods may be practiced without employing these specific details. Indeed, the embodiments of the structures and methods may be practiced in conjunction with conventional semiconductor fabrication techniques employed in the industry.
- The fabrication processes described herein do not form a complete process flow for processing semiconductor devices. The remainder of the process flow (including stages preceding those illustrated and stages following those illustrated) is known to those of ordinary skill in the art. Accordingly, only the methods, materials, and structures necessary to understand embodiments of the present devices, structures, systems, and methods are described herein.
- Unless the context indicates otherwise, the materials described herein may be formed by any suitable technique including, but not limited to, spin coating, blanket coating, chemical vapor deposition (“CVD”), atomic layer deposition (“ALD”), plasma enhanced ALD, physical vapor deposition (“PVD”) (e.g., sputtering), or epitaxial growth. Depending on the specific material to be formed, the technique for depositing or growing the material may be selected by a person of ordinary skill in the art.
- Unless the context indicates otherwise, the removal of materials described herein may be accomplished by any suitable technique including, but not limited to, etching (e.g., dry etching, wet etching, vapor etching), ion milling, abrasive planarization, or other known methods.
- Reference will now be made to the drawings, where like numerals refer to like components throughout. The drawings are not necessarily drawn to scale.
-
FIG. 4 charts amethod 400 for forming a multidielectric spacer according to an embodiment of the disclosure. After materials and regions of stack structures have been formed and patterned, a first dielectric material is formed on at least conductive regions of the stack structures (stage 410). The first dielectric material is formulated, and the method is tailored, to form the first dielectric material with selectivity on the conductive materials of the conductive region(s). After forming the first dielectric material, a second dielectric material is formed on the first dielectric material (stage 420). The second dielectric material, having silicon-carbon bonds, is formulated to be etch resistant, enabling it and the first dielectric material it covers to be resistant to subsequent processing. In addition, the method for forming the second dielectric material may be tailored to achieve a substantially straight, vertical, outer sidewall for the multidielectric spacer, even if underlying surfaces of the stack structure or the first dielectric material are not substantially straight, vertical surfaces. The processes forstages FIGS. 9 through 16 . - With reference to
FIG. 5 , in some embodiments, themethod 400 ofFIG. 4 may be preceded by either, both, or neither of a pretreatment (stage 502) and formation of an “inhibitor” material (stage 504). These optional stages of amethod 500 for forming a multidielectric spacer may modify exposed surfaces of, e.g., conductive materials prior to forming the first dielectric material. The surface modification enhances the selectivity of the first dielectric material for forming on the conductive materials. The processes forstages FIGS. 6 through 8 . - With reference to
FIG. 6 , aprecursor structure 600 of stack structures 602 (e.g., an array of the stack structures 602) may be formed, e.g., by sequentially forming the materials of the stack structures and then patterning the materials to form the stack structures 602 (e.g., in the array). Neighboringstack structures 602 may be separated byopenings 603 defined by sidewalls 607 of thestack structures 602. Thestack structures 602 include at least one conductive region (e.g., aconductive region 604 and another conductive region 605) over a semiconductor material 608 (e.g., material of a semiconductor substrate) with ahard mask region 606 above theconductive regions conductive region 604 and the other conductive region 605) may comprise, consist essentially of, or consist of a metal, a metal alloy, or other conductive material. For example, the materials of theconductive regions - Forming the
precursor structure 600 may include forming the material of the otherconductive region 605 on the semiconductor material 608 (e.g., a semiconductor substrate), forming the material of theconductive region 604 on the otherconductive region 605, forming the material of thehard mask region 606 on theconductive region 604, and then patterning the formed materials to define theprecursor structure 600 with theopenings 603 between the stack structures 602 (e.g., of an array). - Each
stack structure 602 may define a high aspect ratio (e.g., a height-to-width ratio of at least 15:1). Theopenings 603 may likewise exhibit such a high-aspect ratio. With such high-aspect ratio structures and openings, using conventional methods may make it challenging to form consistent and effective electrical insulation on thestack structures 602, in theopenings 603. - To form a multidielectric spacer, according to embodiments of the disclosure, the
precursor structure 600 may, optionally, be subjected to a pretreatment (stage 502 ofFIG. 5 ) to remove unwanted chemical species from or to change undesirable bond terminations on (collectively referred to herein, generally, as “debris”) surfaces (e.g., the sidewalls 607) of theprecursor structure 600. - With reference to enlarged circle A of
FIG. 6 , it is contemplated that prior processing stages (e.g., etching) may have leftdebris 613 along thesidewalls 607, such as along thesidewalls 607 of theconductive regions debris 613 may include residual etchant species (e.g., residual fluorine (F)), hydrogen-terminated bonds (H—), hydroxyl-terminated bonds (OH—), or other undesirable species or bond terminations that might interfere with subsequent formation of the materials of the multidielectric spacer. Therefore, thedebris 613, if not removed or ameliorated, may detrimentally impact (e.g., interfere with adhesion, formation, or bonding of) the later conformal formation of the first dielectric material on at least theconductive regions - To remove, or otherwise ameliorate, the
debris 613, theprecursor structure 600 may be subjected to the pretreatment (stage 502 ofFIG. 5 ), which may be otherwise equally characterized as a “surface modification” treatment. In the pretreatment, a gas mixture may be introduced, at high pressure (e.g., about 5 torr (about 0.7 kPa) to about 100 torr (about 13.3 kPa); about 5 torr (about 0.7 kPa) to about 20 torr (about 2.7 kPa)) in the presence of a plasma, to theprecursor structure 600 while theprecursor structure 600 is at a reduced temperature to form, at least on exposed surfaces of theconductive regions sidewall 607, sublimatable compounds including fluorine (“fluorine-containing compounds”) and thedebris 613. As used in this context, the term “reduced temperature” refers to a temperature below the sublimation temperature of the fluorine-containing compounds. - The gas mixture comprises ammonia (NH3) and at least one fluorine-containing gas (e.g., NH3, HF). The gas mixture may, optionally, also include an inert diluent gas (e.g., one or more of nitrogen (N2) or helium (He)). In some embodiments, the gas mixture may also comprise one or more gases formulated as chemical reduction agents (e.g., hydrogen (H2)).
- The gas mixture may be formulated to ensure the formed fluorine-containing compounds will sublime (transition from solid to gaseous form) when the
precursor structure 600 is exposed to raised temperatures. Thus, the reduced temperature at which the gas mixture is introduced to theprecursor structure 600 may be tailored to be at least below the sublimation temperature of the expected fluorine-containing compounds. Theprecursor structure 600 may then be exposed to increased temperatures (e.g., temperatures above the sublimation temperature), to sublimate the fluorine-containing compounds, as illustrated inFIG. 7 . Sublimated compounds 713, being in gaseous form, may then be purged from the system, leaving a precursor structure 700 with modified surfaces, e.g., along the portion of thesidewalls 607 occupied by theconductive regions - Because the removal of the
debris 613 is contemplated to remove only atoms- or molecules-worth of chemical species or compounds, removing thedebris 613 by the pretreatment may not significantly alter the dimensions of the precursor structure 700 or of thestack structures 602, relative to theprecursor structure 600 and stackstructures 602 prior to the pretreatment. - The modified surfaces, such as the
sidewalls 607 along theconductive regions chemical bonds 715 and/or different chemical compositions as compared to the surfaces (e.g., thesidewalls 607 along theconductive regions 604, 605) prior to the pretreatment (stage 502 (FIG. 5 )). The modified surfaces may exhibit improved chemisorption, physisorption, Van Der Waals forces, or the like to enable improved adsorption, adherence, or nucleation of materials during subsequent formation of the first dielectric material on thesidewalls 607 along at least theconductive regions 604. - It is contemplated that the composition of the gas mixture and the pressures and temperatures used during the pretreatment (stage 502 (
FIG. 5 )) may be tailored and selected, through routine experimentation, to achieve the desired surface modification along thesidewalls 607 of at least theconductive regions - Instead of, before, or following, the pretreatment stage (stage 502 (
FIG. 5 )), aninhibitor 813 may be applied to at least thesidewalls 607 of non-conductive materials of the precursor structure 700 (FIG. 7 ). For example, theinhibitor 813 may be formulated, and the inhibitor formation stage may be tailored, to form theinhibitor 813 selectively on the hard mask region 606 (stage 504 (FIG. 5 )), providing aprecursor structure 800 illustrated inFIG. 8 , without forming theinhibitor 813 on thesidewall 607 portion of theconductive regions inhibitor 813 may be selective for non-conductive material, relative to conductive material. Applying theinhibitor 813 may inhibit—during subsequent formation of a first dielectric material of the multidielectric spacer—the formation of the first dielectric material on thesidewall 607 portion of the inhibitor 813-coveredhard mask region 606, while the first dielectric material forms selectively on theconductive regions - The
inhibitor 813 may comprise, consist essentially of, or consist of one or more silane or silane-containing materials (e.g., organosilanes, alkoxysilanes), one or more self-assembled monolayer (SAM) materials, one or more fluoride-containing materials (e.g., thorium fluoride (e.g., ThF3), sulfur hexafluoride (SF6)), or any combination thereof. The composition of theinhibitor 813 may be selected and tailored to enable theinhibitor 813 to remain in place on thehard mask region 606 during the formation of the first dielectric material on theconductive regions - In embodiments in which the application of the
inhibitor 813 is preceded by a surface-modifying pretreatment (e.g.,FIGS. 6 and 7 ) forming differently-terminated chemical bonds 715 (FIG. 7 ) along at least theconductive regions chemical bonds 715 of the surface-modified portion of the sidewall 607 (e.g., along theconductive regions 604, 605) may be incompatible with forming theinhibitor 813. Thus, the pretreatment (stage 502 (FIG. 5 )) may enable or improve the results of thesubsequent inhibitor 813 application on the non-conductive materials (e.g., the hard mask region 606) (stage 504 (FIG. 5 )). - The presence of the
inhibitor 813 on thesidewalls 607 of at least thehard mask region 606, but not on theconductive regions sidewalls 607. Therefore, theinhibitor 813 may be formulated and tailored to decrease the selectivity of the first dielectric material for the portion of thesidewalls 607 covered with theinhibitor 813. - With reference to
FIG. 9 , after either or both of the pretreatment (stage 502 ofFIG. 5 ) and the application of the inhibitor 813 (stage 504 ofFIG. 5 )—or, in some embodiments, without performing either of the pretreatment (stage 502 (FIG. 5 )) or the inhibitor application (stage 504 (FIG. 5 ))—a firstdielectric material 910 may be formed (stage 410 (FIGS. 4 and 5 )). In embodiments in which no pretreatment or inhibitor application have been performed (method 400 (FIG. 4 )), the firstdielectric material 910 may be formed over theprecursor structure 600 ofFIG. 6 . In embodiments in which the pretreatment (stage 502 (FIG. 5 )) has been performed, but theinhibitor 813 has not been applied, the firstdielectric material 910 may be formed over the precursor structure 700 ofFIG. 7 . Otherwise, in embodiments in which both the pretreatment (stage 502 (FIG. 5 )) and the inhibitor application (stage 504 (FIG. 5 )) have been performed (e.g., by themethod 500 ofFIG. 5 ), the firstdielectric material 910 may be formed over theprecursor structure 800 ofFIG. 8 . - The first
dielectric material 910 may be thin, defining a thickness along at least thesidewalls 607 of theconductive regions inhibitor 813 was applied, e.g., on thehard mask region 606, the firstdielectric material 910—having more selectivity for theconductive regions inhibitor 813—may form more thickly on theconductive regions hard mask region 606. In some embodiments, the firstdielectric material 910 may form a thin layer over the hard mask region 606 (e.g., directly on theinhibitor 813 on the hard mask region 606). In other embodiments, theinhibitor 813 may cause no detectable amount of the firstdielectric material 910 to form on the hard mask region 606 (e.g., on theinhibitor 813 on the hard mask region 606), as illustrated in the alternative embodiment ofFIG. 9B . - In some embodiments, the first
dielectric material 910 may be formed by ALD, e.g., pure thermal ALD (meaning an ALD process without added sources of energy of the likes of plasma, microwaves, electronics, or solar radiation), plasma-enhanced ALD (PE-ALD), pulsed-plasma-enhanced ALD. In other embodiments, the firstdielectric material 910 may be formed by CVD. - The first
dielectric material 910 may comprise, consist essentially of, or consist of a dielectric material (e.g., a nitride (e.g., silicon nitride, silicon carbon nitride (SiCN)), an oxynitride (e.g., a silicon oxynitride, a silicon carboxy nitride (SiCON))). - ALD precursors for forming the first
dielectric material 910 may be selected from the group consisting of silicon bromide, silicon iodide, SiH4, CH4, and silanes (e.g., organosilanes, high-order silanes (e.g., trisilylaminesilane, chlorosilane), polycarbosilanes (e.g., SiH2CH2, bis-dichloro disilapentane, tetra-dichloro disilapentane), polydimethylsilanes, dimethyldichlorosilane, phenylmethyldichlorosilane, vinylic and chloromethyl silanes (e.g., vinylmethyldichlorosilane), hydridopolycarbosilane (e.g., using LiAlH4 catalyst), hexamethylcyclotetrasiloxane (HMCTS), octamethylcyclotetrasiloxane (OMCTS), tetramethylcyclotetrasiloxane (TMCTS), tetramethyldisilizane (TMDZ), hexamethyldisilizane (HMDZ)). One or more such precursors may be used, and the selected precursors may be tailored according to the composition of the firstdielectric material 910 to be formed. For example, to form the firstdielectric material 910 as a silicon nitride or silicon oxynitride, the silicon bromide or silicon iodide may be used as the precursors. As another example, to form the firstdielectric material 910 as a silicon nitride or silicon carbide, one or more of the SiH4, CH4, or silane-based precursors may be selected and used. - In some embodiments, plasma may be used during, after, or both during and after the ALD formation process to tailor characteristics of the first
dielectric material 910. Additionally or alternatively, other mix gases (e.g., nitrogen (N2), helium (He), hydrogen (H2)) may be introduced during the formation to further tailor the characteristics of the firstdielectric material 910. Such tailorable characteristics may include the conformality, selectivity (e.g., for theconductive regions conductive regions dielectric material 910. - For example, an embodiment of forming the first
dielectric material 910 of one or more of silicon nitride and silicon oxynitride may include using a silicon bromide or a silicon iodide precursor and an ammonia reagent in a pure-thermal ALD process at temperatures below 400° C. (e.g., between about 150° C. to about 250° C.). - The first
dielectric material 910, having a composition as described herein and formed according to a method described herein, may be tailored to selectively form along thesidewalls 607 at theconductive regions FIGS. 9 and 9B , the firstdielectric material 910, as formed, may be tailored, in some embodiments, to define a greater thickness adjacent theconductive regions stack structures 602. In some such embodiments, the thickness of the firstdielectric material 910 along, for example, thehard mask region 606 may be less than about 1 nm (e.g.,FIG. 9 ). In other such embodiments, none of the firstdielectric material 910, or an undetectable amount of the firstdielectric material 910, may form on the hard mask region 606 (e.g.,FIG. 9B ). Accordingly, the firstdielectric material 910 may be formulated, and the formation stage may be tailored, to selectively form on the conductive material of theconductive regions stack structures 602. In such embodiments, the firstdielectric material 910 may define a sidewall 912 (e.g., an outer sidewall) that is not substantially straight and vertical along the whole of thesidewalls 607 of thestack structures 602. - In some embodiments, an “air break” (e.g., exposure of the
precursor structure 800 ofFIG. 8 to ambient air) may be included after forming the firstdielectric material 910. In such embodiments, exposing theprecursor structure 800 to air may incorporate additional oxygen within the firstdielectric material 910. In some such embodiments, for example, the firstdielectric material 910 of theprecursor structure 800 ofFIG. 8 may comprise silicon nitride, and the firstdielectric material 910 may be at least partially or completely converted to silicon oxynitride or may be at least partially or completely converted to silicon dioxide by the exposure to air. - After forming the first
dielectric material 910 with the desired selectivity for at least theconductive regions second dielectric material 1010 may be formed over the first dielectric material 910 (stage 420 (FIGS. 4 and 5 )), as illustrated inFIG. 10 . - Though the first
dielectric material 910 may define an outer sidewall (e.g., the sidewall 912 (FIG. 9 )) that is not a substantially straight, vertical sidewall, the multidielectric spacer may nonetheless be formed to exhibit a substantially straight, vertical sidewall along its outer vertical surface, which may be defined by an outer sidewall of another dielectric material of the multidielectric spacer (e.g., along a second dielectric material 1010 (FIGS. 10 and 10B )). - The
second dielectric material 1010 may be formed, conformally, over a whole of the firstdielectric material 910. In some embodiments, such as that illustrated inFIGS. 10 and 10B , the firstdielectric material 910 may be subjected to an additional treatment, prior to forming thesecond dielectric material 1010, to tailor the selectivity of thesecond dielectric material 1010 so that it will form with more selectivity (e.g., at a greater thickness) on the thinner portions of the first dielectric material 910 (e.g., adjacent the hard mask region 606), relative to its formation on thicker portions of the first dielectric material 910 (e.g., adjacent theconductive regions 604, 605). - For example, as illustrated in
FIG. 10B , in some embodiments a selectivity-enhancingmaterial 1013 may be formed on only the thinner portions of the first dielectric material 910 (e.g., adjacent the hard mask region 606), without forming on the thicker portions of the first dielectric material 910 (e.g., adjacent theconductive regions 604, 605), to increase the rate of forming thesecond dielectric material 1010 along the thinner portions of the firstdielectric material 910. Forming the selectivity-enhancingmaterial 1013 with selectivity on the thinner portions of the firstdielectric material 910 may be enabled by a difference in surface energy of the firstdielectric material 910 along its thinner portions than along its thicker portions. The different surface energies may result from the previous formation of the firstdielectric material 910, as described above. The different surface energies may then influence how subsequent material (e.g., the selectivity-enhancing material 1013) physisorbs or chemisorbs to the firstdielectric material 910, promoting the selective formation of the selectivity-enhancingmaterial 1013 on the thinner portions of the firstdielectric material 910 relative to the thicker portions of the firstdielectric material 910. Therefore, the composition of the selectivity-enhancingmaterial 1013 may be tailored to exhibit the selectivity for forming on the thinner portions of the firstdielectric material 910, given the different surface energy along the thinner portions. - In an embodiment in which the selectivity-enhancing
material 1013 is formed on the thinner portions of the firstdielectric material 910, the selectivity-enhancingmaterial 1013 may comprise alkoxysilane, which may have been formed by exposing polysiloxane networks to light energy from, e.g., plasma. The alkoxysilane may form with selectivity on the thinner portions of the firstdielectric material 910 due to the aforementioned difference in surface energies (e.g., a difference in the density of bond terminations along the surface). The presence of the alkoxysilane of the selectivity-enhancingmaterial 1013 on the thinner portions of the firstdielectric material 910 may enhance nucleation of thesecond dielectric material 1010 on the selectivity-enhancingmaterial 1013 so that thesecond dielectric material 1010 forms more thickly adjacent the thinner portions of the firstdielectric material 910 on which the alkoxysilane-comprising material was formed. - In other embodiments in which the selectivity-enhancing
material 1013 is formed on the thinner portions of the firstdielectric material 910, the selectivity-enhancingmaterial 1013 may comprise, consist of, or consist essentially of a polypyrrole, a polyaniline, or both. The polypyrrole and the polyaniline may, therefore, be used to enhance the ability to tune the relative selectivity for forming thesecond dielectric material 1010 on the firstdielectric material 910. - In some embodiments, rather than applying the selectivity-enhancing
material 1013 on the thinner portions of the firstdielectric material 910, another inhibitor may be applied on only the thicker portions of the first dielectric material 910 (e.g., adjacent theconductive regions 604, 605), without forming on the thinner portions of the first dielectric material 910 (e.g., adjacent the hard mask region 606), to decrease the rate of forming thesecond dielectric material 1010 along the thicker portions of the firstdielectric material 910. Forming such other inhibitor may again may enabled by a difference in surface energy of the firstdielectric material 910 along its thinner portions than along its thicker portions. However, in this embodiment, the different surface energies may promote the selective formation of the other inhibitor on the thicker portions of the firstdielectric material 910 relative to the thinner portions of the firstdielectric material 910. Therefore, the composition of the other inhibitor may be tailored to exhibit the selectivity for forming on the thicker portions of the firstdielectric material 910, given different surface energy along the thicker portions. - In an embodiment in which the other inhibitor is formed, the other inhibitor may consist of, consist essentially of, or comprise octadecyltrichlorosilane (ODTS). The ODTS may be formed on the thicker portions of the first
dielectric material 910 with covalent silicon-oxygen (Si—O) bonding between the molecules of the ODTS and the surface (e.g., the sidewall 912) of the thicker portions of the firstdielectric material 910. The presence of the ODTS on the thicker portions of the firstdielectric material 910 may inhibit subsequent formation of thesecond dielectric material 1010 on those portions. - In other embodiments, the other inhibitor may comprise, consist essentially of, or consist of one or more poly(phenylene-vinylene) compound, e.g., poly(phenylene-vinylene), poly(p-phenylenevinylene), poly(1,4-phenylenevinylene), or combinations thereof. The presence of such other inhibitor material on the thicker portions of the first
dielectric material 910 may inhibit subsequent formation of thesecond dielectric material 1010 on those portions. - In some embodiments, the formation of the selectivity-enhancing
material 1013 on the thinner portions of the firstdielectric material 910, the formation of the other inhibitor on the thicker portions of the firstdielectric material 910, or both may be more of a surface-modification treatment than formation of a new material or layer over the respective portions of the firstdielectric material 910. Nonetheless, the surface-modification treatment may enable the selective formation of thesecond dielectric material 1010 at a greater thickness over the thinner portions of the firstdielectric material 910 than over the thicker portions of the firstdielectric material 910. For example, the structure ofFIG. 9 may be subjected to a treatment that exposes the outer surface of the firstdielectric material 910 to vapor phase ammonia with a hydrofluorosilicic acid source, which may replace hydrogen-bonding terminations along the surface of the thinner portions of the firstdielectric material 910 with hydroxyl-bonding terminations along that surface. The replacement of hydrogen-bonding (H-bonding) with hydroxyl-bonding (OH-bonding) at the surface alters the hydrophilic or hydrophobic nature of the surface, promoting selective formation of thesecond dielectric material 1010 on the modified surface. - In still another example, both the selectivity-enhancing
material 1013 may be formed along the thinner portions of the firstdielectric material 910 and the other inhibitor may be formed along the thicker portions of the firstdielectric material 910 before thesecond dielectric material 1010 is formed more thickly over the selectivity-enhancing material 1013 (e.g., adjacent the hard mask region 606) and more thinly over the other-inhibitor (e.g., adjacent theconductive regions 604, 605). - Regardless as to whether the
second dielectric material 1010 forms at different thicknesses in different areas due to the selectivity-enhancingmaterial 1013 adjacent thehard mask region 606, due to the other inhibitor adjacent theconductive regions FIGS. 10 and 10B , a greater thickness (e.g., between about 1 nm thickness to about 3 nm thickness) along thehard mask region 606 than along theconductive regions 604, 605 (e.g., at a thickness of less than about 1 nm). By tailoring the relative selectivity of the second dielectric material in these regions of the sidewall 607 (FIG. 9 ), asidewall 1012 of thesecond dielectric material 1010 may be formed to define a substantially straight, vertical, outer sidewall for amultidielectric spacer 1050. - The
second dielectric material 1010 is formulated to comprise a detectable amount of carbon, namely carbon bonded to silicon (e.g., Si—C bonds). Thesecond dielectric material 1010 may include at least about 5 at. % carbon. In some embodiments, thesecond dielectric material 1010 comprises carbon while the firstdielectric material 910 is substantially free of (e.g., does not comprise) carbon. - The
second dielectric material 1010 may be formed by, for example, ALD (e.g., pure thermal ALD, PE-ALD, pulsed-plasma-enhanced ALD), CVD (e.g., CVD without plasma, plasma-enhanced CVD (PE-CVD)), using one or more precursors. The precursors for forming thesecond dielectric material 1010 may be selected from the group consisting of silane (SiH4), methane (CH4), octamethylcyclotetrasiloxane (OMCTS) with an O2 oxidant, trimethylsilane (3MS), tetramethylsilane (4MS), bis-trimethylsilylmethane (BTMSM), tetramethylcyclotetrasiloxane (TMCTS), bis-trimethylsilylmethane (BTMSM, C7H20Si2), methyltriethoxysilane (MTES, C7H18O3Si), methyltrimethoxysilane (MTMS), mexamethylcyclotetrasiloxane (HMCTS), polycarbosilanes (e.g., SiH2CH2, bis- or tetra-dichloro-disilapentane), polydimethylsilanes, dimethyldichlorosilane, phenylmethyldicholorosilane, vinylic and chloromethyl silanes (e.g., vinylmethyldichlorosilane), hydridopolycarbosilane using a LiAlH4 catalyst, hexamethylcyclotetrasiloxane (HMCTS), oxtamethylcyclotetrasiloxane (OMCTS), tetramethylcyclotetrasiloxane (TMCTS), tetramethyldisilizane (TMDZ), hexamethyldisilizane (HMDZ). - Temperatures for forming the
second dielectric material 1010 may be in the range of from about 250° C. to about 450° C. - In some embodiments, the
second dielectric material 1010 may comprise silicon, carbon, oxygen, and hydrogen (e.g., a SiOCH material). However, it is contemplated that thesecond dielectric material 1010, as well as the firstdielectric material 910, may be free of the class of SiOCH materials known in the art as “porous low-k” materials. Rather, thesecond dielectric material 1010 may comprise a SiOCH material with Si—O—Si, Si—, Si—H, O—H, C—H, and Si—CH3 bond structures. For example, thesecond dielectric material 1010 may comprise, consist essentially of, or consist of (SiOC2H6)4 (otherwise known in the art as [(CH3)2SiO]4). - With the carbon of the silicon-carbon bonds present in the
second dielectric material 1010, thesecond dielectric material 1010 may be formulated to be etch resistant. That is, subsequent exposure of thesecond dielectric material 1010 to etchants, e.g., fluorine-based etchants (e.g., HF gas), may result in removal of no more than one monolayer of thesecond dielectric material 1010, e.g., less than about 2 angstroms (less than about 2 Å (less than about 0.2 nm)). Accordingly, while the firstdielectric material 910 enables improved formation (e.g., greater thickness and conformality) on theconductive regions stack structures 602, thesecond dielectric material 1010 provides etch resistance to themultidielectric spacer 1050. Thus, the resultingmultidielectric spacer 1050 may exhibit the desired conformality, structure (e.g., substantially straight, vertical, outer sidewalls 1012), and properties (e.g., electrical resistance and etch resistance) without having to sacrifice one desirable property for another. - Accordingly, disclosed is an apparatus comprising at least one stack structure. The at least one stack structure comprises at least one conductive region between nonconductive materials. A multidielectric spacer is adjacent the at least one conductive region. The multidielectric spacer comprises a first dielectric material and a second dielectric material. The first dielectric material is adjacent the at least one conductive region. The first dielectric material comprises silicon and nitrogen. The second dielectric material is directly adjacent the first dielectric material. The second dielectric material comprises silicon-carbon bonds. The second dielectric material comprises carbon at least five atomic percent. The multidielectric spacer defines a substantially straight, vertical, outer sidewall.
- In some embodiments, either or both of the first
dielectric material 910 formation stage (stage 410 (FIGS. 4 and 5 )) and thesecond dielectric material 1010 formation stage (stage 420 (FIGS. 4 and 5 )) may further include use of a plasma-enhanced chamber with exposure to a gas comprising helium, nitrogen (N2), a carbon source, or other bond-modifying gas to further tailor the characteristics of one or both of the firstdielectric material 910 and thesecond dielectric material 1010. - Accordingly, disclosed is a method of forming an apparatus comprising insulated conductive regions. The method comprises forming a first dielectric material on stack structures. The stack structures comprise at least one conductive region and at least one nonconductive region. The first dielectric material is formulated to form selectively on the at least one conductive region, relative to the at least one nonconductive region. A second dielectric material is formed on the first dielectric material. The second dielectric material comprises silicon-carbon bonds. The second dielectric material defines a substantially straight, vertical, outer sidewall.
- While the
stack structures 602 of the embodiment ofFIGS. 6 through 10 exhibited substantially straight, vertical sidewalls (e.g., sidewall 607 (FIGS. 6 through 8 )), in other embodiments, such as those illustrated inFIGS. 11 through 16 , prior processing stages may have left astack structure 1102 with a recess portion 1109 (FIG. 11 ) of thesidewall 1107 along, e.g., conductive regions (e.g.,conductive region 1104, and another conductive region 1105). The firstdielectric material 910 may be formed to substantially or completely fill therecess portion 1109, defining a substantially straight, vertical, outer sidewall. - For example, with reference to
FIG. 12 , in some embodiments in which no inhibitor has been formed on thehard mask region 606—and either after or without performing the pretreatment (stage 502 (FIG. 5 ),FIGS. 6 and 7 )—the firstdielectric material 910 may be formed directly on thehard mask region 606 and exposed portions of thesidewall 1107 along theconductive regions conductive regions conductive regions dielectric material 910 is formulated and may be formed—e.g., optionally after the pretreatment (e.g.,FIGS. 6 and 7 )—to exhibit greater selectivity for theconductive regions hard mask region 606 and the semiconductor material 608). With reference toFIG. 13 , thesecond dielectric material 1010 may then be formed, using any of the compositions and formation methods discussed above, to form amultidielectric spacer 1350 with the substantially straight, vertical,outer sidewall 1012. Because the firstdielectric material 910 already defines a substantially straight, vertical,outer sidewall 1212, thesecond dielectric material 1010 may be conformally formed to a consistent thickness, not substantially varying along the height of thestack structure 1102, on the firstdielectric material 910, as illustrated inFIG. 13 . - Returning to
FIG. 11 and embodiments in which theinitial stack structure 1102 defines therecess portion 1109 along theconductive regions inhibitor 813 may be applied—with or without first performing the pretreatment (stage 502 (FIG. 5 ),FIGS. 6 and 7 )—on thehard mask region 606, as illustrated inFIG. 14 . In some such embodiments, the firstdielectric material 910 may be formed only adjacent theconductive regions FIG. 14 . This may be achieved by the formation-inhibiting effects of theinhibitor 813 present on the nonconductive material (e.g., thehard mask region 606, and, in some embodiments, also on the semiconductor material 608 (not shown)). The firstdielectric material 910 may, therefore, define a substantially straight, vertical,outer sidewall 1412 that is aligned with (e.g., coplanar with) thesidewall 1107 portions defined by, e.g., thehard mask region 606. With reference toFIG. 15 , thesecond dielectric material 1010 may then be formed, using any of the compositions and formation methods discussed above, to form amultidielectric spacer 1550 with a substantially straight, vertical,outer sidewall 1512. - In still other embodiments, such as that illustrated in
FIG. 16 , astack structure 1602 may be patterned in such a manner that aconductive region 1604 defines (e.g., undesirably) a narrower width than the otherconductive region 1105. By tailoring, e.g., the pretreatment stage (stage 502 (FIG. 5 ),FIGS. 6 and 7 ), by tailoring the formation of the first dielectric material 910 (e.g., tailoring the selection of the precursors or other formation conditions), the firstdielectric material 910 may be formed to define a greater thickness along the narrower of the conductive regions, i.e., along theconductive region 1604 compared to how the firstdielectric material 910 forms along the otherconductive region 1105. Thus, as with the embodiment illustrated inFIG. 14 , the firstdielectric material 910 may be formed to define the substantially straight, vertical,outer sidewall 1412 extending only along theconductive regions FIG. 14 ) portion of the nonconductive regions (e.g., thehard mask region 606 and the semiconductor material 608). Thesecond dielectric material 1010 may then be formed, using any of the compositions and formation methods discussed above, to form amultidielectric spacer 1650 with a substantially straight, vertical,outer sidewall 1512. - After forming the multidielectric spacer (e.g., 1050 (
FIG. 10 ), 1350 (FIG. 13 ), 1550 (FIG. 15 ), 1650 (FIG. 16 )) the fabrication process may be completed to form the remainder of the materials and regions of the semiconductor devices that comprise the stack structures and spacers. In some embodiments, the subsequent processing stages may include formation of additional insulative material, air gaps, or both between the stack structures (e.g., stack structures 602 (any ofFIGS. 6 through 8 ), 1102 (FIG. 11 ), 1602 (FIG. 16 )). Formation of air gaps may include exhuming all, or portions, of the firstdielectric material 910, thesecond dielectric material 1010, or both that were originally formed laterally adjacent the conductive regions (e.g.,conductive regions 604, 605 (FIG. 10 ), 1104, 1105 (FIGS. 13 and 15 ), 1604, 1105 (FIG. 16 )). Nonetheless, remaining portions of the multidielectric spacer (e.g., multidielectric spacers 1050 (FIG. 10 ), 1350 (FIG. 13 ), 1550 (FIG. 15 ), 1650 (FIG. 16 )) may define (e.g., along the hard mask region 606) the substantially straight, vertical, outer sidewall (e.g., 1012 (FIGS. 10, 10B, and 13 ), 1512 (FIGS. 15 and 16 )). And, during such subsequent processing stages (e.g., exhumations, etching stages), the etch resistance of thesecond dielectric material 1010 may protect the multidielectric spacer (e.g., multidielectric spacers 1050 (FIG. 10 ), 1350 (FIG. 13 ), 1550 (FIG. 15 ), 1650 (FIG. 16 )), including the firstdielectric material 910 covered by thesecond dielectric material 1010. - Accordingly, disclosed is a method of forming an apparatus with electrically insulating conductive regions. The method comprises forming at least one conductive material adjacent a nonconductive material and patterning the at least one conductive material and the nonconductive material to define a precursor structure comprising stack structures. The stack structures comprise at least one conductive region of the at least one conductive material. The method also comprises selectively forming a first dielectric material adjacent an exposed surface of the at least one conductive material. The first dielectric material comprises silicon and nitrogen. A second dielectric material is formed adjacent the first dielectric material. The second dielectric material comprises silicon-carbon bonds. The second dielectric material also comprises at least five atomic percent carbon. The second dielectric material defines a substantially straight, vertical, outer sidewall.
- With reference to
FIG. 17 , illustrated is a simplified block diagram of asemiconductor device 1700 implemented according to one or more embodiments described herein. Thesemiconductor device 1700 includes anarray 1702 of stack structures (e.g., stack structures 602 (any ofFIGS. 6 through 8 ), 1102 (FIG. 11 ), 1602 (FIG. 16 )) that include at least one conductive region. Thesemiconductor device 1700 also includes acontrol logic component 1704. Thearray 1702 also includes multidielectric spacers (e.g., multidielectric spacers 1050 (FIG. 10 ), 1350 (FIG. 13 ), 1550 (FIG. 15 ), 1650 (FIG. 16 )) formed according to any of the embodiments discussed above. Thecontrol logic component 1704 may be configured to interact with thearray 1702 so as to read from or write to any or all semiconductor devices within thearray 1702. - While the disclosed structures and methods are susceptible to various modifications and alternative forms in implementation thereof, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, the disclosure is not intended to be limited to the particular forms disclosed. Rather, the disclosure encompasses all modifications, combinations, equivalents, variations, and alternatives falling within the scope of the disclosure as defined by the following appended claims and their legal equivalents.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/448,080 US20220005930A1 (en) | 2019-01-17 | 2021-09-20 | Apparatus with multidielectric spacers on conductive regions of stack structures, and related methods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/251,063 US11127830B2 (en) | 2019-01-17 | 2019-01-17 | Apparatus with multidielectric spacers on conductive regions of stack structures, and related methods |
US17/448,080 US20220005930A1 (en) | 2019-01-17 | 2021-09-20 | Apparatus with multidielectric spacers on conductive regions of stack structures, and related methods |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/251,063 Continuation US11127830B2 (en) | 2019-01-17 | 2019-01-17 | Apparatus with multidielectric spacers on conductive regions of stack structures, and related methods |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220005930A1 true US20220005930A1 (en) | 2022-01-06 |
Family
ID=71608432
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/251,063 Active US11127830B2 (en) | 2019-01-17 | 2019-01-17 | Apparatus with multidielectric spacers on conductive regions of stack structures, and related methods |
US17/448,080 Abandoned US20220005930A1 (en) | 2019-01-17 | 2021-09-20 | Apparatus with multidielectric spacers on conductive regions of stack structures, and related methods |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/251,063 Active US11127830B2 (en) | 2019-01-17 | 2019-01-17 | Apparatus with multidielectric spacers on conductive regions of stack structures, and related methods |
Country Status (1)
Country | Link |
---|---|
US (2) | US11127830B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11948848B2 (en) * | 2019-02-12 | 2024-04-02 | Intel Corporation | Subtractive etch resolution implementing a functional thin metal resist |
TWI834919B (en) * | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | Method of topology-selective film formation of silicon oxide |
US20230386829A1 (en) * | 2022-05-27 | 2023-11-30 | Applied Materials, Inc. | Low temperature silicon oxide gap fill |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060094230A1 (en) * | 2004-11-04 | 2006-05-04 | International Business Machines Corporation | Multiple Layer Resist Scheme Implementing Etch Recipe Particular to Each Layer |
US20090224307A1 (en) * | 2008-03-10 | 2009-09-10 | Hynix Semiconductor Inc. | Semiconductor Device and Method of Fabricating the Same |
US20090289296A1 (en) * | 2008-05-26 | 2009-11-26 | Hynix Semiconductor Inc. | Semiconductor Device and Method of Fabricating the same |
US20110312173A1 (en) * | 2008-05-26 | 2011-12-22 | Hynix Semiconductor Inc. | Method of Fabricating a Semiconductor Device |
US20160240385A1 (en) * | 2015-02-16 | 2016-08-18 | Applied Materials, Inc. | Gate electrode material residual removal process |
US20190164743A1 (en) * | 2017-11-30 | 2019-05-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Varying Temperature Anneal for Film and Structures Formed Thereby |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7426067B1 (en) | 2001-12-17 | 2008-09-16 | Regents Of The University Of Colorado | Atomic layer deposition on micro-mechanical devices |
US7417290B2 (en) | 2006-01-09 | 2008-08-26 | International Business Machines Corporation | Air break for improved silicide formation with composite caps |
US8129289B2 (en) | 2006-10-05 | 2012-03-06 | Micron Technology, Inc. | Method to deposit conformal low temperature SiO2 |
US7737039B2 (en) | 2007-11-01 | 2010-06-15 | Micron Technology, Inc. | Spacer process for on pitch contacts and related structures |
US20100062592A1 (en) * | 2008-09-09 | 2010-03-11 | Tokyo Electron Limited | Method for forming gate spacers for semiconductor devices |
US7855123B2 (en) | 2009-03-31 | 2010-12-21 | Tokyo Electron Limited | Method of integrating an air gap structure with a substrate |
US8288268B2 (en) | 2010-04-29 | 2012-10-16 | International Business Machines Corporation | Microelectronic structure including air gap |
JP2012204511A (en) * | 2011-03-24 | 2012-10-22 | Toshiba Corp | Semiconductor device and manufacturing method of the same |
US20140159132A1 (en) | 2012-12-06 | 2014-06-12 | Micron Technology, Inc. | Memory arrays with air gaps between conductors and the formation thereof |
US9396989B2 (en) | 2014-01-27 | 2016-07-19 | Applied Materials, Inc. | Air gaps between copper lines |
US9385028B2 (en) | 2014-02-03 | 2016-07-05 | Applied Materials, Inc. | Air gap process |
KR102168172B1 (en) | 2014-05-23 | 2020-10-20 | 삼성전자주식회사 | Method of manufacturing semiconductor device |
US9679852B2 (en) | 2014-07-01 | 2017-06-13 | Micron Technology, Inc. | Semiconductor constructions |
KR20190071833A (en) * | 2016-11-13 | 2019-06-24 | 어플라이드 머티어리얼스, 인코포레이티드 | Surface treatment for EUV lithography |
-
2019
- 2019-01-17 US US16/251,063 patent/US11127830B2/en active Active
-
2021
- 2021-09-20 US US17/448,080 patent/US20220005930A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060094230A1 (en) * | 2004-11-04 | 2006-05-04 | International Business Machines Corporation | Multiple Layer Resist Scheme Implementing Etch Recipe Particular to Each Layer |
US20090224307A1 (en) * | 2008-03-10 | 2009-09-10 | Hynix Semiconductor Inc. | Semiconductor Device and Method of Fabricating the Same |
US20090289296A1 (en) * | 2008-05-26 | 2009-11-26 | Hynix Semiconductor Inc. | Semiconductor Device and Method of Fabricating the same |
US20110312173A1 (en) * | 2008-05-26 | 2011-12-22 | Hynix Semiconductor Inc. | Method of Fabricating a Semiconductor Device |
US20160240385A1 (en) * | 2015-02-16 | 2016-08-18 | Applied Materials, Inc. | Gate electrode material residual removal process |
US20190164743A1 (en) * | 2017-11-30 | 2019-05-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Varying Temperature Anneal for Film and Structures Formed Thereby |
Also Published As
Publication number | Publication date |
---|---|
US11127830B2 (en) | 2021-09-21 |
US20200235005A1 (en) | 2020-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220005930A1 (en) | Apparatus with multidielectric spacers on conductive regions of stack structures, and related methods | |
CN108475640B (en) | Mixed carbon hard die for lateral hard die groove reduction | |
US7811926B2 (en) | Multilayer hardmask scheme for damage-free dual damascene processing of SiCOH dielectrics | |
JP5730471B2 (en) | Air gap formation and integration using a patterned cap | |
KR101027216B1 (en) | Method for forming an air gap in multilevel interconnect structure | |
US7851384B2 (en) | Method to mitigate impact of UV and E-beam exposure on semiconductor device film properties by use of a bilayer film | |
US6800940B2 (en) | Low k dielectric composite layer for integrated circuit structure which provides void-free low k dielectric material between metal lines while mitigating via poisoning | |
TWI763324B (en) | Integrated circuit device and method of forming the same | |
JP7242631B2 (en) | Pretreatment Techniques for Improving Continuity of Ultrathin Amorphous Silicon Films on Silicon Oxide | |
CN110648961B (en) | Semiconductor structure and forming method thereof | |
JP7194116B2 (en) | A Processing Approach to Improve Film Roughness Through Silicon Oxide Nucleation/Enhancement of Adhesion | |
KR19980079282A (en) | Semiconductor device and manufacturing method thereof | |
US12021009B2 (en) | Semiconductor device with plug structure | |
CN114068402A (en) | Metal hardmask for reducing wire bowing | |
CN112750767A (en) | Non-conformal capping layer and method of forming the same | |
KR20060058583A (en) | Conductive structure, method of manufacturing the conductive structure, semiconductor device including the conductive structure and method of manufacturing the semiconductor device | |
US11823984B2 (en) | Method for fabricating semiconductor device with plug structure | |
KR20060074976A (en) | Method for fabricating semiconductor device | |
KR100548846B1 (en) | Method for fabricating capacitor with improved doping uniformity | |
KR20220116268A (en) | Cryogenic ALD to form high quality Si-containing films | |
KR101204664B1 (en) | Method for fabricating interlayer dielectric in semiconductor device | |
KR20060062400A (en) | Method for forming a metal wiring of semiconductor device | |
US20060292859A1 (en) | Damascene process using dielectic layer containing fluorine and nitrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: ADVISORY ACTION MAILED |