US20210379827A1 - In-situ curing oven for additive manufacturing system - Google Patents

In-situ curing oven for additive manufacturing system Download PDF

Info

Publication number
US20210379827A1
US20210379827A1 US17/445,547 US202117445547A US2021379827A1 US 20210379827 A1 US20210379827 A1 US 20210379827A1 US 202117445547 A US202117445547 A US 202117445547A US 2021379827 A1 US2021379827 A1 US 2021379827A1
Authority
US
United States
Prior art keywords
cure
matrix
directing
head
oven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US17/445,547
Inventor
Ryan C. Stockett
Kenneth Lyle Tyler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continuous Composites Inc
Original Assignee
Continuous Composites Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continuous Composites Inc filed Critical Continuous Composites Inc
Priority to US17/445,547 priority Critical patent/US20210379827A1/en
Assigned to CONTINUOUS COMPOSITES INC. reassignment CONTINUOUS COMPOSITES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STOCKETT, RYAN C, TYLER, KENNETH LYLE
Publication of US20210379827A1 publication Critical patent/US20210379827A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/218Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/291Arrangements for irradiation for operating globally, e.g. together with selectively applied activators or inhibitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • B29C64/336Feeding of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/24Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in at least three directions forming a three dimensional structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/38Automated lay-up, e.g. using robots, laying filaments according to predetermined patterns
    • B29C70/382Automated fiber placement [AFP]
    • B29C70/384Fiber placement heads, e.g. component parts, details or accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/523Pultrusion, i.e. forming and compressing by continuously pulling through a die and impregnating the reinforcement in the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0833Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using actinic light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0838Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0855Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using microwave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • B29C2035/0877Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using electron radiation, e.g. beta-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0261Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using ultrasonic or sonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • F16L9/127Rigid pipes of plastics with or without reinforcement the walls consisting of a single layer
    • F16L9/128Reinforced pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates generally to an additive manufacturing system and, more particularly, to an additive manufacturing system having an oven for in-situ curing of a composite material.
  • Continuous fiber 3D printing involves the use of continuous fibers embedded within a matrix discharging from a moveable print head.
  • the matrix can be a traditional thermoplastic, a powdered metal, a liquid resin (e.g., a UV curable and/or two-part resin), or a combination of any of these and other known matrixes.
  • a head-mounted cure enhancer e.g., a UV light, an ultrasonic emitter, a heat source, a catalyst supply, etc.
  • a cure enhancer e.g., a UV light, an ultrasonic emitter, a heat source, a catalyst supply, etc.
  • CF3DTM provides for increased strength, compared to manufacturing processes that do not utilize continuous fiber reinforcement, some types of matrixes may require a more intense cure energy and/or a surrounding cure environment that may not be provided by the head-mounted cure enhancer alone.
  • the disclosed additive manufacturing system is uniquely configured to provide this additional care and/or to address other issues of the prior art.
  • the present disclosure is directed to a system for additively manufacturing a composite structure.
  • the system may include a head configured to discharge a continuous reinforcement that is at least partially coated with a matrix, and a housing trailing from the head and configured to at least partially enclose the continuous reinforcement after discharge.
  • the system may also include a heat source disposed at least partially inside the oven, and a support configured to move the head during discharging.
  • the present disclosure is directed to another system for additively manufacturing a composite structure.
  • This system may include a head configured to discharge a continuous reinforcement that is at least partially coated with a matrix, and a housing trailing from the head and configured to at least partially enclose the continuous reinforcement after discharge.
  • the system may also include an infrared lamp disposed at least partially inside the oven, and a UV light located between the head and the housing.
  • the system may also include a support configured to move the head during discharging, and a controller in communication with the infrared lamp, the support, and the UV light. The controller may be configured to selectively activate the infrared lamp, the support, and the UV light based on specifications for the composite structure.
  • the present disclosure is directed to a method of additively manufacturing a composite structure.
  • the method may include discharging from a head a continuous reinforcement that is at least partially coated with a matrix, and passing the matrix-coated continuous reinforcement through an oven trailing behind on the head.
  • the method may also include exposing the matrix-coated continuous reinforcement to heat inside the oven, and moving the head during discharging to create three-dimensional trajectory in the continuous reinforcement.
  • FIG. 1 is a diagrammatic illustration of an exemplary disclosed manufacturing system
  • FIG. 2 is a diagrammatic illustration of an exemplary disclosed oven that may be utilized in conjunction with the manufacturing system of FIG. 1 .
  • FIG. 1 illustrates an exemplary system 10 , which may be used to continuously manufacture a composite structure 12 having any desired cross-sectional shape (e.g., circular, ellipsoidal, polygonal, etc.).
  • System 10 may include at least a support 14 and a print head (“head”) 16 .
  • Head 16 may be coupled to and moved by support 14 .
  • support 14 is a robotic arm capable of moving head 16 in multiple directions during fabrication of structure 12 , such that a resulting longitudinal axis of structure 12 is three-dimensional. It is contemplated, however, that support 14 could alternatively be an overhead gantry or a hybrid gantry/arm also capable of moving head 16 in multiple directions during fabrication of structure 12 .
  • a drive may mechanically couple head 16 to support 14 and may include components that cooperate to move and/or supply power or materials to head 16 .
  • Head 16 may be configured to receive or otherwise contain a matrix.
  • the matrix may include any type of material (e.g., a liquid resin, such as a zero-volatile organic compound resin; a powdered metal; etc.) that is curable.
  • Exemplary matrixes include thermosets, single- or multi-part epoxy resins, polyester resins, cationic epoxies, acrylated epoxies, urethanes, esters, thermoplastics, photopolymers, polyepoxides, thiols, alkenes, thiol-enes, reversible resins (e.g., Triazolinedione, a covalent-adaptable network, a spatioselective reversible resin, etc.) and more.
  • Triazolinedione e.g., Triazolinedione, a covalent-adaptable network, a spatioselective reversible resin, etc.
  • the matrix inside head 16 may be pressurized, for example by an external device (e.g., an extruder or another type of pump—not shown) that is fluidly connected to head 16 via a corresponding conduit (not shown).
  • the matrix pressure may be generated completely inside of head 16 by a similar type of device.
  • the matrix may be gravity-fed through and/or mixed within head 16 .
  • the matrix inside head 16 may need to be kept cool and/or dark to inhibit premature curing; while in other instances, the matrix may need to be kept warm for similar reasons. In either situation, head 16 may be specially configured (e.g., insulated, chilled, and/or warmed) to provide for these needs.
  • the matrix may be used to coat, encase, or otherwise at least partially surround any number of continuous reinforcements (e.g., separate fibers, tows, rovings, ribbons, and/or sheets of material) and, together with the reinforcements, make up at least a portion (e.g., a wall) of composite structure 12 .
  • the reinforcements may be stored within (e.g., on separate internal spools—not shown) or otherwise passed through head 16 (e.g., fed from external spools).
  • the reinforcements may be of the same type and have the same diameter and cross-sectional shape (e.g., circular, square, flat, etc.), or of a different type with different diameters and/or cross-sectional shapes.
  • the reinforcements may include, for example, carbon fibers, vegetable fibers, wood fibers, mineral fibers, glass fibers, metallic wires, optical tubes, etc. It should be noted that the term “reinforcement” is meant to encompass both structural and non-structural types of continuous materials that can be at least partially encased in the matrix discharging from head 16 .
  • the reinforcements may be exposed to (e.g., coated with) the matrix while the reinforcements are inside head 16 , while the reinforcements are being passed to head 16 (e.g., as a prepreg material), and/or while the reinforcements are discharging from head 16 , as desired.
  • the matrix, dry reinforcements, and/or reinforcements that are already exposed to the matrix may be transported into head 16 in any manner apparent to one skilled in the art.
  • the matrix and reinforcement may be discharged from a nozzle 18 of head 16 via at least two different modes of operation.
  • a first mode of operation the matrix and reinforcement are extruded (e.g., pushed under pressure and/or mechanical force) from nozzle 18 , as head 16 is moved by support 14 to create the 3-dimensional shape of structure 12 .
  • a second mode of operation at least the reinforcement is pulled from nozzle 18 , such that a tensile stress is created in the reinforcement during discharge.
  • the matrix may cling to the reinforcement and thereby also be pulled from nozzle 18 along with the reinforcement, and/or the matrix may be discharged from nozzle 18 under pressure along with the pulled reinforcement.
  • the resulting tension in the reinforcement may increase a strength of structure 12 , while also allowing for a greater length of unsupported material to have a straighter trajectory (i.e., the tension may act against the force of gravity to provide free-standing support for structure 12 ).
  • the reinforcement may be pulled from nozzle 18 as a result of head 16 moving away from an anchor point 20 .
  • a length of matrix-impregnated reinforcement may be pulled and/or pushed from nozzle 18 , deposited onto a stationary anchor point 20 , and cured, such that the discharged material adheres to anchor point 20 .
  • head 16 may be moved away from anchor point 20 , and the relative movement may cause additional reinforcement to be pulled from nozzle 18 .
  • the movement of the reinforcement through head 16 could be assisted (e.g., via internal feed mechanisms), if desired.
  • the discharge rate of the reinforcement from nozzle 18 may primarily be the result of relative movement between head 16 and anchor point 20 , such that tension is created within the reinforcement.
  • Nozzle 18 may be fluidly connected to a matrix reservoir 22 .
  • matrix reservoir 22 is shown as being at least partially inside of head 16 , it should be noted that matrix reservoir 22 could alternatively be located separately upstream of head 16 .
  • nozzle 18 may be a generally cylindrical component having an upstream or base end in fluid communication with matrix reservoir 22 , a downstream or tip end, and one or more axially oriented passages that extend from the base end to the tip end.
  • any number of reinforcements may be passed axially through reservoir 22 where at least some matrix-wetting occurs (matrix represented as M in FIG. 2 ), and thereafter discharged from head 16 via nozzle 18 .
  • One or more orifices 24 may be located at the tip end of nozzle 18 to accommodate passage of the matrix-wetted reinforcements.
  • a single generally circular orifice 24 is shown. It is contemplated, however, that multiple circular orifices could be used.
  • orifices 24 of another shape e.g., a rectangular shape
  • the single orifice 24 is substantially aligned (e.g., aligned within engineering tolerances) with a central axis of nozzle 18 .
  • one or more cure enhancers e.g., one or more light sources, electron beam generators, ultrasonic emitters, lasers, heaters, catalyst dispensers, microwave generators, etc.
  • Cure enhancer 26 may be mounted on head 16 (e.g., at a trailing side of nozzle 18 ) and configured to enhance a cure rate and/or quality of the matrix as it is discharged from nozzle 18 .
  • Cure enhancer 26 may be controlled to selectively expose internal and/or external surfaces of structure 12 to energy (e.g., light energy, electromagnetic radiation, vibrations, heat, a chemical catalyst or hardener, etc.) during the formation of structure 12 .
  • the energy may increase a rate of chemical reaction occurring within the matrix, sinter the material, harden the material, or otherwise cause the material to cure as it discharges from nozzle 18 .
  • a controller 28 may be provided and communicatively coupled with support 14 , head 16 , and any number and type of cure enhancers 26 .
  • Controller 28 may embody a single processor or multiple processors that include a means for controlling an operation of system 10 .
  • Controller 28 may include one or more general- or special-purpose processors or microprocessors.
  • Controller 28 may further include or be associated with a memory for storing data such as, for example, design limits, performance characteristics, operational instructions, matrix characteristics, reinforcement characteristics, characteristics of structure 12 , and corresponding parameters of each component of system 10 .
  • Various other known circuits may be associated with controller 28 , including power supply circuitry, signal-conditioning circuitry, solenoid/motor driver circuitry, communication circuitry, and other appropriate circuitry.
  • controller 28 may be capable of communicating with other components of system 10 via wired and/or wireless transmission.
  • One or more maps may be stored in the memory of controller 28 and used during fabrication of structure 12 .
  • Each of these maps may include a collection of data in the form of models, lookup tables, graphs, and/or equations.
  • the maps are used by controller 28 to determine desired characteristics of cure enhancers 26 , the associated matrix, and/or the associated reinforcements at different locations within structure 12 .
  • the characteristics may include, among others, a type, quantity, and/or configuration of reinforcement and/or matrix to be discharged at a particular location within structure 12 , and/or an amount, intensity, shape, and/or location of desired curing.
  • Controller 28 may then correlate operation of support 14 (e.g., the location and/or orientation of head 16 ) and/or the discharge of material from head 16 (a type of material, desired performance of the material, cross-linking requirements of the material, a discharge rate, etc.) with the operation of cure enhancers 26 , such that structure 12 is produced in a desired manner.
  • support 14 e.g., the location and/or orientation of head 16
  • discharge of material from head 16 a type of material, desired performance of the material, cross-linking requirements of the material, a discharge rate, etc.
  • an in-situ or traveling oven 30 (shown only in FIG. 2 ) may be utilized.
  • Oven 30 may include, among other things, a housing 32 and one or more energy (e.g., temperature, pressure, and/or humidity) sources 34 disposed at least partially inside of housing 32 .
  • Housing 32 may be configured to at least partially enclose a portion of the matrix-wetted reinforcements discharging from nozzle 18 (e.g., on at least three sides), thereby creating the micro-environment in which temperature, pressure, and/or humidity can be controlled.
  • housing 32 may function as a die to shape the matrix-wetted reinforcements prior to complete curing.
  • housing 32 has a U-shaped cross-section, although other shapes are also contemplated.
  • housing 32 could be ring-like and completely surround the matrix-wetted reinforcement (e.g., when the matrix-wetted reinforcement is to be formed into a rod or a tube).
  • source 34 is an infrared lamp, a laser, and/or another heat source used to warm and/or melt particles (e.g., metallic particles) embedded with the matrix or otherwise stuck to the reinforcements.
  • energy source 34 may be selectively activated by controller 28 (referring to FIG. 1 ) to cause the particles to coalesce and thereby form a foam layer or shell around the reinforcements. It is contemplated that, in some instances, after formation of the foam layer or solid shell, the reinforcements may be removed (e.g., via the sintering process, via a rinsing process, or via another post-process), thereby leaving a hollow metallic tube having a three-dimensional trajectory.
  • Oven 30 may be operatively mounted to head 16 (e.g., at a trailing side of nozzle 18 ) by way of an arm 36 .
  • arm 36 is rigidly connected to head 16 , such that an angular orientation of oven 30 is fixed.
  • the angular orientation of oven 30 is adjustable.
  • a base end of arm 36 may be moveable within an annular channel 38 of head 16 (e.g., a channel that surrounds nozzle 18 ). With this configuration, oven 30 may be pivoted about an axis 40 of nozzle 18 (e.g., via energizing of a rotary actuator 42 ) to any desired angle.
  • oven 30 may be moveable with respect to arm 36 .
  • a plunger 44 may extend in the axial direction between oven 30 (e.g., between housing 32 ) and arm 36 .
  • Plunger 44 may be moveable (e.g., via energizing of an actuator 46 ) between a normal or stowed position (not shown) and any number of extended or engaged positions (shown in FIG. 2 ).
  • When plunger 44 is in the stowed position oven 30 may be deactivated and structure 12 discharging from head 16 may receive little if any energy from oven 30 .
  • energy from oven 30 may be directed toward and/or at least partially around structure 12 .
  • Multiple positions may be available, in some applications, such that a variable level of heat and/or other surrounding oven conditions (e.g., humidity and/or pressure) may be exerted on the discharging material.
  • Actuator 46 may be selectively operable to move plunger 44 between the stowed and engaged positions.
  • actuator 46 is an electric solenoid mounted to arm 36 (e.g., via bushing a 48 mounted to or within arm 36 ) and configured to internally receive or otherwise engage a base end of plunger 44 .
  • Windings 50 of actuator 46 may be selectively energized to generate a magnetic field that urges plunger 44 toward the engaged position.
  • a return spring 52 may return plunger 44 to the stowed position upon de-energizing of windings 50 .
  • an electric solenoid has been shown and discussed as an example of actuator 46 , other types of actuators (e.g., pneumatic cylinders, hydraulic lead screws, etc.) could be utilized, if desired.
  • the movement between the stowed and engaged position(s) is linear and oriented generally parallel with axis 40 of head 16 . It is contemplated, however, that other movements (e.g., rotary movements, pivoting movements, etc.) may be possible.
  • the linear movement may be facilitated via axial sliding of plunger 44 through bushing 48 .
  • a resilient member (e.g., a spring) 54 may be connected between arm 36 and housing 32 (e.g., around plunger 44 ) to bias housing 32 away from arm 36 and toward the path of (e.g., into engagement with the) discharging material.
  • a radial distance between oven 30 and nozzle 18 may also be adjustable. This adjustability may be provided in any number of ways.
  • bushing 48 may be operatively disposed within a slot or track 56 of arm 36 , and one or more mechanized devices (e.g., a motor-driven rack-and-pinion, a motor-driven lead screw, etc.) may be used to shift bushing 48 laterally within track 56 .
  • mechanized devices e.g., a motor-driven rack-and-pinion, a motor-driven lead screw, etc.
  • cure enhancer 26 is connected to a lower surface (i.e., a surface oriented toward structure 12 ) of arm 36 (e.g., between nozzle 18 and oven 30 ).
  • cure enhancer 26 , actuator 46 , and oven 30 may be cooperatively regulated by controller 28 during a manufacturing event.
  • the disclosed system and oven may be used to continuously manufacture composite structures having any desired cross-sectional size, shape, length, density, and/or strength.
  • the composite structures may include any number of different reinforcements of the same or different types, diameters, shapes, configurations, and consists, each coated with a common matrix.
  • the disclosed system and oven may allow for better curing and/or sintering of a greater range of materials (e.g., of high-temperature materials). Operation of system 10 will now be described in detail.
  • information regarding a desired structure 12 may be loaded into system 10 (e.g., into controller 28 that is responsible for regulating operations of support 14 and/or head 16 ).
  • This information may include, among other things, a size (e.g., diameter, wall thickness, length, etc.), a contour (e.g., a trajectory), surface features (e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.) and finishes, connection geometry (e.g., locations and sizes of couplings, tees, splices, etc.), location-specific matrix stipulations, location-specific reinforcement stipulations, cure/sinter specifications, etc.
  • a size e.g., diameter, wall thickness, length, etc.
  • a contour e.g., a trajectory
  • surface features e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.
  • connection geometry e.g., locations and sizes
  • this information may alternatively or additionally be loaded into system 10 at different times and/or continuously during the manufacturing event, if desired.
  • one or more different reinforcements and/or matrixes may be selectively installed and/or continuously supplied into system 10 .
  • Installation of the reinforcements may be performed by passing the reinforcements down through matrix reservoir 22 , and then threading the reinforcements through nozzle 18 .
  • Installation of the matrix may include filling reservoir 22 within head 16 and/or coupling of an extruder or external bath (not shown) to head 16 .
  • Head 16 may then be moved by support 14 under the regulation of controller 28 to cause matrix-coated reinforcements to be placed against or on a corresponding stationary anchor point 20 .
  • Cure enhancers 26 within head 16 may then be selectively activated to cause hardening of the matrix surrounding the reinforcements (e.g., of at least an outer surface of the matrix), thereby bonding the reinforcements to anchor point 20 .
  • the component information may then be used to control operation of system 10 .
  • the reinforcements may be pulled and/or pushed from nozzle 18 (along with the matrix), while support 14 selectively moves head 16 in a desired manner during exposure of the matrix-coated reinforcements to cure energy from enhancers 26 , such that an axis of the resulting structure 12 follows a desired trajectory (e.g., a free-space, unsupported, 3-D trajectory).
  • a desired trajectory e.g., a free-space, unsupported, 3-D trajectory
  • oven 30 may be selectively activated to produce a desired micro-environment that facilitates a greater depth of curing (e.g., curing of internal portions of the matrix), to facilitate a greater speed of curing, to cure with greater accuracy and control, and/or to facilitate sintering of high-temperature materials (e.g., metals).
  • This activation may include, among other things, selectively energizing of energy source(s) 34 and/or the axial or radial positioning of housing 32 relative to the discharging material.
  • the amount of curing produced by cure enhancers 26 is only surface deep or otherwise sufficient to only harden an outer shell of structure 12 (e.g., to thereby retain a desired shape), while leaving internal portions of structure 12 under-cured.
  • the internal portions of structure 12 may be more fully cured when exposed to the micro-environment (e.g., the elevated temperature, pressure, and/or humidity) inside of housing 32 .
  • cure enhancers 26 may produce enough energy to cure only the matrix material binding other particles (e.g., metallic particles) to the reinforcement, but not necessarily enough to cause a desired state change of the associated particles.
  • the energy from oven 30 may cause the particles to melt, coalesce, and/or sinter.
  • a dwell time of cure enhancers 26 may be too low.
  • oven 30 while not necessarily exposing structure 12 to a higher level of energy, may extend a time during which the structure is exposed to cure energy. This time may be at least partially dependent on a length of housing 32 and/or a number of energy sources 34 disposed inside of housing 32 .
  • the cure energy of cure enhancers 26 may be sufficiently high for a sufficient duration to cure the outer shell of structure 12 , but a specific cure recipe may be required to provide a desired hardness, desired shape, desired expansion rate, or other desired property within structure 12 .
  • oven 30 may be selectively activated at varying levels (e.g., increasing levels) and for varying durations in specific sequences to provide the desired properties within structure 12 .

Abstract

A system is disclosed for additively manufacturing a composite structure. The system may include a head configured to discharge a continuous reinforcement that is at least partially coated with a matrix, and a housing trailing from the head and configured to at least partially enclose the continuous reinforcement after discharge. The system may also include a heat source disposed at least partially inside the oven, and a support configured to move the head during discharging.

Description

    RELATED APPLICATIONS
  • This application is a divisional application of Ser. No. 15/995,022 that was filed on May 31, 2018, which is based on and claims the benefit of priority from U.S. Provisional Application No. 62/526,448 that was filed on Jun. 29, 2017, the contents of all of which are expressly incorporated herein by reference.
  • TECHNICAL FIELD
  • The present disclosure relates generally to an additive manufacturing system and, more particularly, to an additive manufacturing system having an oven for in-situ curing of a composite material.
  • BACKGROUND
  • Continuous fiber 3D printing (a.k.a., CF3D™) involves the use of continuous fibers embedded within a matrix discharging from a moveable print head. The matrix can be a traditional thermoplastic, a powdered metal, a liquid resin (e.g., a UV curable and/or two-part resin), or a combination of any of these and other known matrixes. Upon exiting the print head, a head-mounted cure enhancer (e.g., a UV light, an ultrasonic emitter, a heat source, a catalyst supply, etc.) is activated to initiate and/or complete curing of the matrix. This curing occurs almost immediately, allowing for unsupported structures to be fabricated in free space. When fibers, particularly continuous fibers, are embedded within the structure, a strength of the structure may be multiplied beyond the matrix-dependent strength. An example of this technology is disclosed in U.S. Pat. No. 9,511,543 that issued to Tyler on Dec. 6, 2016 (“the '543 patent”).
  • Although CF3D™ provides for increased strength, compared to manufacturing processes that do not utilize continuous fiber reinforcement, some types of matrixes may require a more intense cure energy and/or a surrounding cure environment that may not be provided by the head-mounted cure enhancer alone. The disclosed additive manufacturing system is uniquely configured to provide this additional care and/or to address other issues of the prior art.
  • SUMMARY
  • In one aspect, the present disclosure is directed to a system for additively manufacturing a composite structure. The system may include a head configured to discharge a continuous reinforcement that is at least partially coated with a matrix, and a housing trailing from the head and configured to at least partially enclose the continuous reinforcement after discharge. The system may also include a heat source disposed at least partially inside the oven, and a support configured to move the head during discharging.
  • In another aspect, the present disclosure is directed to another system for additively manufacturing a composite structure. This system may include a head configured to discharge a continuous reinforcement that is at least partially coated with a matrix, and a housing trailing from the head and configured to at least partially enclose the continuous reinforcement after discharge. The system may also include an infrared lamp disposed at least partially inside the oven, and a UV light located between the head and the housing. The system may also include a support configured to move the head during discharging, and a controller in communication with the infrared lamp, the support, and the UV light. The controller may be configured to selectively activate the infrared lamp, the support, and the UV light based on specifications for the composite structure.
  • In yet another aspect, the present disclosure is directed to a method of additively manufacturing a composite structure. The method may include discharging from a head a continuous reinforcement that is at least partially coated with a matrix, and passing the matrix-coated continuous reinforcement through an oven trailing behind on the head. The method may also include exposing the matrix-coated continuous reinforcement to heat inside the oven, and moving the head during discharging to create three-dimensional trajectory in the continuous reinforcement.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagrammatic illustration of an exemplary disclosed manufacturing system; and
  • FIG. 2 is a diagrammatic illustration of an exemplary disclosed oven that may be utilized in conjunction with the manufacturing system of FIG. 1.
  • DETAILED DESCRIPTION
  • FIG. 1 illustrates an exemplary system 10, which may be used to continuously manufacture a composite structure 12 having any desired cross-sectional shape (e.g., circular, ellipsoidal, polygonal, etc.). System 10 may include at least a support 14 and a print head (“head”) 16. Head 16 may be coupled to and moved by support 14. In the disclosed embodiment of FIG. 1, support 14 is a robotic arm capable of moving head 16 in multiple directions during fabrication of structure 12, such that a resulting longitudinal axis of structure 12 is three-dimensional. It is contemplated, however, that support 14 could alternatively be an overhead gantry or a hybrid gantry/arm also capable of moving head 16 in multiple directions during fabrication of structure 12. Although support 14 is shown as being capable of multi-axis movements, it is contemplated that any other type of support 14 capable of moving head 16 in the same or in a different manner could also be utilized, if desired. In some embodiments, a drive may mechanically couple head 16 to support 14 and may include components that cooperate to move and/or supply power or materials to head 16.
  • Head 16 may be configured to receive or otherwise contain a matrix. The matrix may include any type of material (e.g., a liquid resin, such as a zero-volatile organic compound resin; a powdered metal; etc.) that is curable. Exemplary matrixes include thermosets, single- or multi-part epoxy resins, polyester resins, cationic epoxies, acrylated epoxies, urethanes, esters, thermoplastics, photopolymers, polyepoxides, thiols, alkenes, thiol-enes, reversible resins (e.g., Triazolinedione, a covalent-adaptable network, a spatioselective reversible resin, etc.) and more. In one embodiment, the matrix inside head 16 may be pressurized, for example by an external device (e.g., an extruder or another type of pump—not shown) that is fluidly connected to head 16 via a corresponding conduit (not shown). In another embodiment, however, the matrix pressure may be generated completely inside of head 16 by a similar type of device. In yet other embodiments, the matrix may be gravity-fed through and/or mixed within head 16. In some instances, the matrix inside head 16 may need to be kept cool and/or dark to inhibit premature curing; while in other instances, the matrix may need to be kept warm for similar reasons. In either situation, head 16 may be specially configured (e.g., insulated, chilled, and/or warmed) to provide for these needs.
  • The matrix may be used to coat, encase, or otherwise at least partially surround any number of continuous reinforcements (e.g., separate fibers, tows, rovings, ribbons, and/or sheets of material) and, together with the reinforcements, make up at least a portion (e.g., a wall) of composite structure 12. The reinforcements may be stored within (e.g., on separate internal spools—not shown) or otherwise passed through head 16 (e.g., fed from external spools). When multiple reinforcements are simultaneously used, the reinforcements may be of the same type and have the same diameter and cross-sectional shape (e.g., circular, square, flat, etc.), or of a different type with different diameters and/or cross-sectional shapes. The reinforcements may include, for example, carbon fibers, vegetable fibers, wood fibers, mineral fibers, glass fibers, metallic wires, optical tubes, etc. It should be noted that the term “reinforcement” is meant to encompass both structural and non-structural types of continuous materials that can be at least partially encased in the matrix discharging from head 16.
  • The reinforcements may be exposed to (e.g., coated with) the matrix while the reinforcements are inside head 16, while the reinforcements are being passed to head 16 (e.g., as a prepreg material), and/or while the reinforcements are discharging from head 16, as desired. The matrix, dry reinforcements, and/or reinforcements that are already exposed to the matrix (e.g., wetted reinforcements) may be transported into head 16 in any manner apparent to one skilled in the art.
  • The matrix and reinforcement may be discharged from a nozzle 18 of head 16 via at least two different modes of operation. In a first mode of operation, the matrix and reinforcement are extruded (e.g., pushed under pressure and/or mechanical force) from nozzle 18, as head 16 is moved by support 14 to create the 3-dimensional shape of structure 12. In a second mode of operation, at least the reinforcement is pulled from nozzle 18, such that a tensile stress is created in the reinforcement during discharge. In this mode of operation, the matrix may cling to the reinforcement and thereby also be pulled from nozzle 18 along with the reinforcement, and/or the matrix may be discharged from nozzle 18 under pressure along with the pulled reinforcement. In the second mode of operation, where the matrix is being pulled from nozzle 18, the resulting tension in the reinforcement may increase a strength of structure 12, while also allowing for a greater length of unsupported material to have a straighter trajectory (i.e., the tension may act against the force of gravity to provide free-standing support for structure 12).
  • The reinforcement may be pulled from nozzle 18 as a result of head 16 moving away from an anchor point 20. In particular, at the start of structure-formation, a length of matrix-impregnated reinforcement may be pulled and/or pushed from nozzle 18, deposited onto a stationary anchor point 20, and cured, such that the discharged material adheres to anchor point 20. Thereafter, head 16 may be moved away from anchor point 20, and the relative movement may cause additional reinforcement to be pulled from nozzle 18. It should be noted that the movement of the reinforcement through head 16 could be assisted (e.g., via internal feed mechanisms), if desired. However, the discharge rate of the reinforcement from nozzle 18 may primarily be the result of relative movement between head 16 and anchor point 20, such that tension is created within the reinforcement.
  • Nozzle 18 may be fluidly connected to a matrix reservoir 22. Although matrix reservoir 22 is shown as being at least partially inside of head 16, it should be noted that matrix reservoir 22 could alternatively be located separately upstream of head 16. As shown in FIG. 2, nozzle 18 may be a generally cylindrical component having an upstream or base end in fluid communication with matrix reservoir 22, a downstream or tip end, and one or more axially oriented passages that extend from the base end to the tip end.
  • Any number of reinforcements (represented as R in FIG. 2) may be passed axially through reservoir 22 where at least some matrix-wetting occurs (matrix represented as M in FIG. 2), and thereafter discharged from head 16 via nozzle 18. One or more orifices 24 may be located at the tip end of nozzle 18 to accommodate passage of the matrix-wetted reinforcements. In the disclosed embodiment, a single generally circular orifice 24 is shown. It is contemplated, however, that multiple circular orifices could be used. In addition, orifices 24 of another shape (e.g., a rectangular shape) may allow for printing of ribbons and/or sheets. In the embodiment of FIG. 2, the single orifice 24 is substantially aligned (e.g., aligned within engineering tolerances) with a central axis of nozzle 18.
  • Returning to FIG. 1, one or more cure enhancers (e.g., one or more light sources, electron beam generators, ultrasonic emitters, lasers, heaters, catalyst dispensers, microwave generators, etc.) 26 may be mounted on head 16 (e.g., at a trailing side of nozzle 18) and configured to enhance a cure rate and/or quality of the matrix as it is discharged from nozzle 18. Cure enhancer 26 may be controlled to selectively expose internal and/or external surfaces of structure 12 to energy (e.g., light energy, electromagnetic radiation, vibrations, heat, a chemical catalyst or hardener, etc.) during the formation of structure 12. The energy may increase a rate of chemical reaction occurring within the matrix, sinter the material, harden the material, or otherwise cause the material to cure as it discharges from nozzle 18.
  • A controller 28 may be provided and communicatively coupled with support 14, head 16, and any number and type of cure enhancers 26. Controller 28 may embody a single processor or multiple processors that include a means for controlling an operation of system 10. Controller 28 may include one or more general- or special-purpose processors or microprocessors. Controller 28 may further include or be associated with a memory for storing data such as, for example, design limits, performance characteristics, operational instructions, matrix characteristics, reinforcement characteristics, characteristics of structure 12, and corresponding parameters of each component of system 10. Various other known circuits may be associated with controller 28, including power supply circuitry, signal-conditioning circuitry, solenoid/motor driver circuitry, communication circuitry, and other appropriate circuitry. Moreover, controller 28 may be capable of communicating with other components of system 10 via wired and/or wireless transmission.
  • One or more maps may be stored in the memory of controller 28 and used during fabrication of structure 12. Each of these maps may include a collection of data in the form of models, lookup tables, graphs, and/or equations. In the disclosed embodiment, the maps are used by controller 28 to determine desired characteristics of cure enhancers 26, the associated matrix, and/or the associated reinforcements at different locations within structure 12. The characteristics may include, among others, a type, quantity, and/or configuration of reinforcement and/or matrix to be discharged at a particular location within structure 12, and/or an amount, intensity, shape, and/or location of desired curing. Controller 28 may then correlate operation of support 14 (e.g., the location and/or orientation of head 16) and/or the discharge of material from head 16 (a type of material, desired performance of the material, cross-linking requirements of the material, a discharge rate, etc.) with the operation of cure enhancers 26, such that structure 12 is produced in a desired manner.
  • In some applications, during fabrication of structure 12, it may be beneficial to provide a controlled micro-environment at or around the discharging material, in order to obtain a greater depth of curing, to facilitate a greater speed of curing, to cure with greater accuracy and control, and/or to facilitate sintering of high-temperature materials (e.g., metals). In these applications, an in-situ or traveling oven 30 (shown only in FIG. 2) may be utilized.
  • Oven 30 may include, among other things, a housing 32 and one or more energy (e.g., temperature, pressure, and/or humidity) sources 34 disposed at least partially inside of housing 32. Housing 32 may be configured to at least partially enclose a portion of the matrix-wetted reinforcements discharging from nozzle 18 (e.g., on at least three sides), thereby creating the micro-environment in which temperature, pressure, and/or humidity can be controlled. In addition, in some embodiments, housing 32 may function as a die to shape the matrix-wetted reinforcements prior to complete curing. In the disclosed embodiment, housing 32 has a U-shaped cross-section, although other shapes are also contemplated. For example, housing 32 could be ring-like and completely surround the matrix-wetted reinforcement (e.g., when the matrix-wetted reinforcement is to be formed into a rod or a tube).
  • In one exemplary embodiment, source 34 is an infrared lamp, a laser, and/or another heat source used to warm and/or melt particles (e.g., metallic particles) embedded with the matrix or otherwise stuck to the reinforcements. In this embodiment, energy source 34 may be selectively activated by controller 28 (referring to FIG. 1) to cause the particles to coalesce and thereby form a foam layer or shell around the reinforcements. It is contemplated that, in some instances, after formation of the foam layer or solid shell, the reinforcements may be removed (e.g., via the sintering process, via a rinsing process, or via another post-process), thereby leaving a hollow metallic tube having a three-dimensional trajectory.
  • Oven 30 may be operatively mounted to head 16 (e.g., at a trailing side of nozzle 18) by way of an arm 36. In a first embodiment, arm 36 is rigidly connected to head 16, such that an angular orientation of oven 30 is fixed. In this embodiment, care should be taken to ensure that head 16 is properly oriented relative to a travel and/or material discharge direction during activation of oven 30, such that oven 30 is located at the trailing side of nozzle 18. In a second embodiment, the angular orientation of oven 30 is adjustable. For example, a base end of arm 36 may be moveable within an annular channel 38 of head 16 (e.g., a channel that surrounds nozzle 18). With this configuration, oven 30 may be pivoted about an axis 40 of nozzle 18 (e.g., via energizing of a rotary actuator 42) to any desired angle.
  • In some embodiments, oven 30 may be moveable with respect to arm 36. For example, a plunger 44 may extend in the axial direction between oven 30 (e.g., between housing 32) and arm 36. Plunger 44 may be moveable (e.g., via energizing of an actuator 46) between a normal or stowed position (not shown) and any number of extended or engaged positions (shown in FIG. 2). When plunger 44 is in the stowed position, oven 30 may be deactivated and structure 12 discharging from head 16 may receive little if any energy from oven 30. In contrast, when plunger 44 is one of the engaged positions, energy from oven 30 may be directed toward and/or at least partially around structure 12. Multiple positions may be available, in some applications, such that a variable level of heat and/or other surrounding oven conditions (e.g., humidity and/or pressure) may be exerted on the discharging material.
  • Actuator 46 may be selectively operable to move plunger 44 between the stowed and engaged positions. In the disclosed example, actuator 46 is an electric solenoid mounted to arm 36 (e.g., via bushing a 48 mounted to or within arm 36) and configured to internally receive or otherwise engage a base end of plunger 44. Windings 50 of actuator 46 may be selectively energized to generate a magnetic field that urges plunger 44 toward the engaged position. A return spring 52 may return plunger 44 to the stowed position upon de-energizing of windings 50. It should be noted that, although an electric solenoid has been shown and discussed as an example of actuator 46, other types of actuators (e.g., pneumatic cylinders, hydraulic lead screws, etc.) could be utilized, if desired.
  • In the disclosed embodiment, the movement between the stowed and engaged position(s) is linear and oriented generally parallel with axis 40 of head 16. It is contemplated, however, that other movements (e.g., rotary movements, pivoting movements, etc.) may be possible. The linear movement may be facilitated via axial sliding of plunger 44 through bushing 48. A resilient member (e.g., a spring) 54 may be connected between arm 36 and housing 32 (e.g., around plunger 44) to bias housing 32 away from arm 36 and toward the path of (e.g., into engagement with the) discharging material.
  • In one embodiment, a radial distance between oven 30 and nozzle 18 may also be adjustable. This adjustability may be provided in any number of ways. For example, bushing 48 may be operatively disposed within a slot or track 56 of arm 36, and one or more mechanized devices (e.g., a motor-driven rack-and-pinion, a motor-driven lead screw, etc.) may be used to shift bushing 48 laterally within track 56.
  • In one example, cure enhancer 26 is connected to a lower surface (i.e., a surface oriented toward structure 12) of arm 36 (e.g., between nozzle 18 and oven 30). As will be described in more detail below, cure enhancer 26, actuator 46, and oven 30 may be cooperatively regulated by controller 28 during a manufacturing event.
  • INDUSTRIAL APPLICABILITY
  • The disclosed system and oven may be used to continuously manufacture composite structures having any desired cross-sectional size, shape, length, density, and/or strength. The composite structures may include any number of different reinforcements of the same or different types, diameters, shapes, configurations, and consists, each coated with a common matrix. In addition, the disclosed system and oven may allow for better curing and/or sintering of a greater range of materials (e.g., of high-temperature materials). Operation of system 10 will now be described in detail.
  • At a start of a manufacturing event, information regarding a desired structure 12 may be loaded into system 10 (e.g., into controller 28 that is responsible for regulating operations of support 14 and/or head 16). This information may include, among other things, a size (e.g., diameter, wall thickness, length, etc.), a contour (e.g., a trajectory), surface features (e.g., ridge size, location, thickness, length; flange size, location, thickness, length; etc.) and finishes, connection geometry (e.g., locations and sizes of couplings, tees, splices, etc.), location-specific matrix stipulations, location-specific reinforcement stipulations, cure/sinter specifications, etc. It should be noted that this information may alternatively or additionally be loaded into system 10 at different times and/or continuously during the manufacturing event, if desired. Based on the component information, one or more different reinforcements and/or matrixes may be selectively installed and/or continuously supplied into system 10.
  • Installation of the reinforcements may be performed by passing the reinforcements down through matrix reservoir 22, and then threading the reinforcements through nozzle 18. Installation of the matrix may include filling reservoir 22 within head 16 and/or coupling of an extruder or external bath (not shown) to head 16. Head 16 may then be moved by support 14 under the regulation of controller 28 to cause matrix-coated reinforcements to be placed against or on a corresponding stationary anchor point 20. Cure enhancers 26 within head 16 may then be selectively activated to cause hardening of the matrix surrounding the reinforcements (e.g., of at least an outer surface of the matrix), thereby bonding the reinforcements to anchor point 20.
  • The component information may then be used to control operation of system 10. For example, the reinforcements may be pulled and/or pushed from nozzle 18 (along with the matrix), while support 14 selectively moves head 16 in a desired manner during exposure of the matrix-coated reinforcements to cure energy from enhancers 26, such that an axis of the resulting structure 12 follows a desired trajectory (e.g., a free-space, unsupported, 3-D trajectory).
  • In addition, oven 30 may be selectively activated to produce a desired micro-environment that facilitates a greater depth of curing (e.g., curing of internal portions of the matrix), to facilitate a greater speed of curing, to cure with greater accuracy and control, and/or to facilitate sintering of high-temperature materials (e.g., metals). This activation may include, among other things, selectively energizing of energy source(s) 34 and/or the axial or radial positioning of housing 32 relative to the discharging material.
  • In one example, the amount of curing produced by cure enhancers 26 is only surface deep or otherwise sufficient to only harden an outer shell of structure 12 (e.g., to thereby retain a desired shape), while leaving internal portions of structure 12 under-cured. In this example, as oven 30 thereafter passes over structure 12, the internal portions of structure 12 may be more fully cured when exposed to the micro-environment (e.g., the elevated temperature, pressure, and/or humidity) inside of housing 32.
  • In another example, cure enhancers 26 may produce enough energy to cure only the matrix material binding other particles (e.g., metallic particles) to the reinforcement, but not necessarily enough to cause a desired state change of the associated particles. In this example, as oven 30 thereafter passes over structure 12, the energy from oven 30 may cause the particles to melt, coalesce, and/or sinter.
  • In yet another example, while the cure energy of cure enhancers 26 may be sufficiently high to cure and/or sinter the materials of structure 12, a dwell time of cure enhancers 26 may be too low. In this situation, oven 30, while not necessarily exposing structure 12 to a higher level of energy, may extend a time during which the structure is exposed to cure energy. This time may be at least partially dependent on a length of housing 32 and/or a number of energy sources 34 disposed inside of housing 32.
  • In a final example, the cure energy of cure enhancers 26 may be sufficiently high for a sufficient duration to cure the outer shell of structure 12, but a specific cure recipe may be required to provide a desired hardness, desired shape, desired expansion rate, or other desired property within structure 12. In this situation, oven 30 may be selectively activated at varying levels (e.g., increasing levels) and for varying durations in specific sequences to provide the desired properties within structure 12.
  • It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed systems and oven. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the disclosed system and oven. For example, it is contemplated that a sensor could be integrated into oven 30 (e.g., mounted within housing 32), such that controller 28 may regulate operation of energy source(s) 34 based on feedback from the sensor. It is intended that the specification and examples be considered as exemplary only, with a true scope being indicated by the following claims and their equivalents.

Claims (20)

What is claimed is:
1. A method of additively manufacturing a composite structure, comprising:
discharging from a head a continuous reinforcement that is at least partially coated with a matrix;
passing the matrix-coated continuous reinforcement through an oven trailing behind on the head;
exposing the matrix-coated continuous reinforcement to heat inside the oven; and
moving the head during discharging to create three-dimensional trajectory in the continuous reinforcement.
2. The method of claim 1, further including exposing the matrix coating the continuous reinforcement to a cure energy prior to the continuous reinforcement passing into the oven.
3. The method of claim 2, wherein the cure energy is UV light.
4. The method of claim 3, wherein:
the UV light cures only an outer shell of the matrix; and
the heat inside the oven cures an inner portion of the matrix.
5. The method of claim 3, wherein:
the UV light cures only the matrix; and
the heat inside the oven cures particles suspended in the matrix.
6. A method of additively manufacturing a composite structure, comprising:
discharging a material from a print head;
moving the print head during discharging;
directing cure energy toward the material from a source connected to a trailing side of the print head; and
directing cure energy to the material from a cure enhancer.
7. The method of claim 6, wherein the cure energy directed from the source is a different type of energy than the cure energy directed from the cure enhancer.
8. The method of claim 6, wherein directing cure energy toward the material from the source includes directing heat toward the material.
9. The method of claim 8, wherein directing cure energy to the material from the cure enhancer includes directing UV light toward the material.
10. The method of claim 9, wherein directing UV light to the material includes directing the UV light to the material before directing the heat toward the material.
11. The method of claim 6, wherein an amount of the cure energy directed from the source is different than an amount of the cure energy directed from the cure enhancer.
12. The method of claim 11, wherein the amount of the cure energy directed from the cure enhancer is sufficient to only cure an outer shell of the material.
13. The method of claim 12, wherein the amount of the cure energy directed from the source is sufficient to cure an inner portion of the material.
14. A method of additively manufacturing a composite structure, comprising:
discharging a material from a print head;
moving the print head during discharging;
directing cure energy toward the material from a first location at a trailing side of the print head; and
directing cure energy toward the material from a second location.
15. The method of claim 14, wherein the cure energy directed from the first location is a different type of energy than the cure energy directed from the first location.
16. The method of claim 15, wherein directing the cure energy toward the material from the second location includes directing heat toward the material.
17. The method of claim 16, wherein directing the cure energy to the material from the first location includes directing UV light toward the material.
18. The method of claim 17, wherein directing UV light to the material includes directing the UV light to the material before directing the heat toward the material.
19. The method of claim 14, wherein an amount of the cure energy directed from the second location is different than an amount of the cure energy directed from the first location.
20. The method of claim 19, wherein:
the amount of cure energy directed from the first location is sufficient to only cure an outer shell of the material; and
the amount of cure energy directed from the second location is sufficient to cure an inner portion of the material.
US17/445,547 2017-06-29 2021-08-20 In-situ curing oven for additive manufacturing system Pending US20210379827A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/445,547 US20210379827A1 (en) 2017-06-29 2021-08-20 In-situ curing oven for additive manufacturing system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762526448P 2017-06-29 2017-06-29
US15/995,022 US11135769B2 (en) 2017-06-29 2018-05-31 In-situ curing oven for additive manufacturing system
US17/445,547 US20210379827A1 (en) 2017-06-29 2021-08-20 In-situ curing oven for additive manufacturing system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/995,022 Division US11135769B2 (en) 2017-06-29 2018-05-31 In-situ curing oven for additive manufacturing system

Publications (1)

Publication Number Publication Date
US20210379827A1 true US20210379827A1 (en) 2021-12-09

Family

ID=64734574

Family Applications (8)

Application Number Title Priority Date Filing Date
US15/961,084 Expired - Fee Related US10589463B2 (en) 2017-06-29 2018-04-24 Print head for additive manufacturing system
US15/961,039 Active 2039-04-17 US10906240B2 (en) 2017-06-29 2018-04-24 Print head for additive manufacturing system
US15/961,424 Abandoned US20190001563A1 (en) 2017-06-29 2018-04-24 Print head for additive manufacturing system
US15/980,652 Active 2039-05-07 US11052602B2 (en) 2017-06-29 2018-05-15 Print head for additively manufacturing composite tubes
US15/982,467 Abandoned US20190001565A1 (en) 2017-06-29 2018-05-17 Print head for additive manufacturing system
US15/992,282 Active 2040-01-28 US11130285B2 (en) 2017-06-29 2018-05-30 Print head and method for printing composite structure and temporary support
US15/995,022 Active 2040-01-04 US11135769B2 (en) 2017-06-29 2018-05-31 In-situ curing oven for additive manufacturing system
US17/445,547 Pending US20210379827A1 (en) 2017-06-29 2021-08-20 In-situ curing oven for additive manufacturing system

Family Applications Before (7)

Application Number Title Priority Date Filing Date
US15/961,084 Expired - Fee Related US10589463B2 (en) 2017-06-29 2018-04-24 Print head for additive manufacturing system
US15/961,039 Active 2039-04-17 US10906240B2 (en) 2017-06-29 2018-04-24 Print head for additive manufacturing system
US15/961,424 Abandoned US20190001563A1 (en) 2017-06-29 2018-04-24 Print head for additive manufacturing system
US15/980,652 Active 2039-05-07 US11052602B2 (en) 2017-06-29 2018-05-15 Print head for additively manufacturing composite tubes
US15/982,467 Abandoned US20190001565A1 (en) 2017-06-29 2018-05-17 Print head for additive manufacturing system
US15/992,282 Active 2040-01-28 US11130285B2 (en) 2017-06-29 2018-05-30 Print head and method for printing composite structure and temporary support
US15/995,022 Active 2040-01-04 US11135769B2 (en) 2017-06-29 2018-05-31 In-situ curing oven for additive manufacturing system

Country Status (2)

Country Link
US (8) US10589463B2 (en)
WO (4) WO2019005312A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023150453A1 (en) * 2022-02-01 2023-08-10 Divergent Technologies, Inc. Pressurized flexible hose for demolition of objects

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3427842A1 (en) * 2017-07-12 2019-01-16 Jotun A/S Nozzle apparatus for dispensing colorant
US11331854B2 (en) * 2018-03-26 2022-05-17 Arevo, Inc. System and method for dispensing composite filaments for additive manufacturing
EP3797956B1 (en) * 2018-06-05 2022-04-27 Toray Industries, Inc. Coating-liquid-impregnated fiber-reinforced fabric, sheet-shaped integrated object, prepreg, prepreg tape, and method for manufacturing fiber-reinforced composite material
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
US20200238603A1 (en) 2019-01-25 2020-07-30 Continuous Composites Inc. System for additively manufacturing composite structure
US20220314541A1 (en) * 2019-05-23 2022-10-06 General Electric Company Actuator assemblies for additive manufacturing apparatuses and methods for using the same
US11602896B2 (en) * 2019-08-14 2023-03-14 Mighty Buildings, Inc. 3D printing of a composite material via sequential dual-curing polymerization
US11465343B2 (en) * 2019-12-17 2022-10-11 Saudi Arabian Oil Company Manufacturing continuous fiber reinforced thermoplastic components with layers of unidirectional tape
US11794402B2 (en) 2019-12-18 2023-10-24 Saudi Arabian Oil Company Reducing manufacturing defects of a wound filament product
CN111216357A (en) * 2020-02-24 2020-06-02 南京鑫敬光电科技有限公司 Printing head for 3D printer, 3D printer and using method of 3D printer
CN112172147B (en) * 2020-08-28 2021-10-08 中科院广州电子技术有限公司 3D printing head of continuous fiber reinforced material and using method
IT202100006800A1 (en) * 2021-03-22 2022-09-22 Spherecube S R L METHOD AND SYSTEM OF THREE-DIMENSIONAL PRINTING OF COMPOSITE MATERIALS
CN112936859A (en) * 2021-03-29 2021-06-11 江苏浩宇电子科技有限公司 3D printing pen and using method thereof
US20230073014A1 (en) * 2021-09-04 2023-03-09 Continuous Composites Inc. Print head and method for additive manufacturing system
DE102022104240A1 (en) 2022-02-23 2023-08-24 Bayerische Motoren Werke Aktiengesellschaft Print head for a 3D printer and method for producing at least one component by 3D printing
US20230271251A1 (en) * 2022-02-28 2023-08-31 Xerox Corporation Metal drop ejecting three-dimensional (3d) object printer and method of operation for building support structures

Family Cites Families (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2820131A (en) 1951-08-01 1958-01-14 Sprague Electric Co Curing oven
US3286305A (en) 1964-09-03 1966-11-22 Rexall Drug Chemical Apparatus for continuous manufacture of hollow articles
BE791272A (en) 1971-11-13 1973-03-01 Castro Nunez Elem Huecos CONTINUOUS MANUFACTURING MACHINE FOR HOLLOW ELEMENTS
US3765325A (en) * 1972-01-19 1973-10-16 United States Steel Corp Apparatus for marking a moving elongated workpiece
US3956056A (en) * 1972-11-20 1976-05-11 Uniroyal Inc. Fabric coating by extrusion die-calendering apparatus and method
US3984271A (en) 1973-06-25 1976-10-05 Owens-Corning Fiberglas Corporation Method of manufacturing large diameter tubular structures
US3993726A (en) 1974-01-16 1976-11-23 Hercules Incorporated Methods of making continuous length reinforced plastic articles
DE3424269C2 (en) 1984-06-30 1994-01-27 Krupp Ag Device for producing reinforced profiles and reinforced hoses
US4643940A (en) 1984-08-06 1987-02-17 The Dow Chemical Company Low density fiber-reinforced plastic composites
FR2579130B1 (en) * 1985-03-25 1987-10-09 Aerospatiale METHOD AND DEVICE FOR PRODUCING A HOLLOW PART OF COMPLEX SHAPE BY FILAMENTARY WINDING IN CONTACT
US4851065A (en) 1986-01-17 1989-07-25 Tyee Aircraft, Inc. Construction of hollow, continuously wound filament load-bearing structure
DE3619981A1 (en) 1986-06-13 1987-12-17 Freudenberg Carl Fa METHOD AND DEVICE FOR PRODUCING A THREAD-REINFORCED HOSE FROM POLYMER MATERIAL
US5037691A (en) 1986-09-15 1991-08-06 Compositech, Ltd. Reinforced plastic laminates for use in the production of printed circuit boards and process for making such laminates and resulting products
DE3835575A1 (en) 1988-10-19 1990-04-26 Bayer Ag COMPOSITES
US5121329A (en) 1989-10-30 1992-06-09 Stratasys, Inc. Apparatus and method for creating three-dimensional objects
US5569349A (en) * 1990-10-04 1996-10-29 3D Systems, Inc. Thermal stereolithography
DE4102257A1 (en) 1991-01-23 1992-07-30 Artos Med Produkte Appts. for mfg. reinforced components in laser-cured polymer - has laser-curable polymer in bath, laser directed at polymer surface where fibres pass through polymer and are guided relative to laser beam angle
GB9127140D0 (en) 1991-12-20 1992-02-19 Insituform Group Ltd Improvements in or relating to the lining of passageways
US5296335A (en) 1993-02-22 1994-03-22 E-Systems, Inc. Method for manufacturing fiber-reinforced parts utilizing stereolithography tooling
US5593527A (en) * 1993-07-30 1997-01-14 Snap-Tite, Inc. Double jacketed fire hose and a method for making a double jacketed fire hose
US5746967A (en) 1995-06-26 1998-05-05 Fox Lite, Inc. Method of curing thermoset resin with visible light
US6305769B1 (en) 1995-09-27 2001-10-23 3D Systems, Inc. Selective deposition modeling system and method
US6144008A (en) 1996-11-22 2000-11-07 Rabinovich; Joshua E. Rapid manufacturing system for metal, metal matrix composite materials and ceramics
US5916509A (en) 1997-02-07 1999-06-29 Durhman; Paul P. Actinic irradiation and curing of plastic composites within a material forming die
US5866058A (en) 1997-05-29 1999-02-02 Stratasys Inc. Method for rapid prototyping of solid models
IL121458A0 (en) 1997-08-03 1998-02-08 Lipsker Daniel Rapid prototyping
US5936861A (en) 1997-08-15 1999-08-10 Nanotek Instruments, Inc. Apparatus and process for producing fiber reinforced composite objects
US6261675B1 (en) 1999-03-23 2001-07-17 Hexcel Corporation Core-crush resistant fabric and prepreg for fiber reinforced composite sandwich structures
US6153238A (en) * 1999-04-22 2000-11-28 Schreiber Foods, Inc. Packaged decorator cheese product with cap
JP4624626B2 (en) 1999-11-05 2011-02-02 ズィー コーポレイション Material system and three-dimensional printing method
US20050104241A1 (en) 2000-01-18 2005-05-19 Objet Geometried Ltd. Apparatus and method for three dimensional model printing
US6501554B1 (en) 2000-06-20 2002-12-31 Ppt Vision, Inc. 3D scanner and method for measuring heights and angles of manufactured parts
US6799081B1 (en) 2000-11-15 2004-09-28 Mcdonnell Douglas Corporation Fiber placement and fiber steering systems and corresponding software for composite structures
US6471800B2 (en) 2000-11-29 2002-10-29 Nanotek Instruments, Inc. Layer-additive method and apparatus for freeform fabrication of 3-D objects
US6797220B2 (en) 2000-12-04 2004-09-28 Advanced Ceramics Research, Inc. Methods for preparation of three-dimensional bodies
US6803003B2 (en) 2000-12-04 2004-10-12 Advanced Ceramics Research, Inc. Compositions and methods for preparing multiple-component composite materials
US20020113331A1 (en) 2000-12-20 2002-08-22 Tan Zhang Freeform fabrication method using extrusion of non-cross-linking reactive prepolymers
US6899777B2 (en) 2001-01-02 2005-05-31 Advanced Ceramics Research, Inc. Continuous fiber reinforced composites and methods, apparatuses, and compositions for making the same
US20030044539A1 (en) 2001-02-06 2003-03-06 Oswald Robert S. Process for producing photovoltaic devices
US7029621B2 (en) 2001-03-01 2006-04-18 Schroeder Ernest C Apparatus and method of fabricating fiber reinforced plastic parts
US6767619B2 (en) 2001-05-17 2004-07-27 Charles R. Owens Preform for manufacturing a material having a plurality of voids and method of making the same
US6866807B2 (en) 2001-09-21 2005-03-15 Stratasys, Inc. High-precision modeling filament
US6841116B2 (en) * 2001-10-03 2005-01-11 3D Systems, Inc. Selective deposition modeling with curable phase change materials
CA2369710C (en) 2002-01-30 2006-09-19 Anup Basu Method and apparatus for high resolution 3d scanning of objects having voids
US6799619B2 (en) * 2002-02-06 2004-10-05 The Boeing Company Composite material collation machine and associated method for high rate collation of composite materials
US6934600B2 (en) 2002-03-14 2005-08-23 Auburn University Nanotube fiber reinforced composite materials and method of producing fiber reinforced composites
US7229586B2 (en) 2002-05-07 2007-06-12 Dunlap Earl N Process for tempering rapid prototype parts
US7572403B2 (en) 2003-09-04 2009-08-11 Peihua Gu Multisource and multimaterial freeform fabrication
US7293590B2 (en) 2003-09-22 2007-11-13 Adc Acquisition Company Multiple tape laying apparatus and method
US7063118B2 (en) 2003-11-20 2006-06-20 Adc Acquisition Company Composite tape laying apparatus and method
US7039485B2 (en) 2004-03-12 2006-05-02 The Boeing Company Systems and methods enabling automated return to and/or repair of defects with a material placement machine
US7781512B2 (en) 2004-07-09 2010-08-24 Johns Manville Control of product in curing ovens for formaldehyde-free glass fiber products
US7824001B2 (en) 2004-09-21 2010-11-02 Z Corporation Apparatus and methods for servicing 3D printers
US7680555B2 (en) 2006-04-03 2010-03-16 Stratasys, Inc. Auto tip calibration in an extrusion apparatus
US7555404B2 (en) 2007-08-09 2009-06-30 The Boeing Company Methods and systems for automated ply boundary and orientation inspection
EP2203299A4 (en) 2007-10-16 2012-11-14 Ingersoll Machine Tools Inc Fiber placement machine platform system having interchangeable head and creel assemblies
US7717151B2 (en) * 2007-11-29 2010-05-18 Spirit Aerosystems, Inc. Material placement method and apparatus
DE102008022946B4 (en) 2008-05-09 2014-02-13 Fit Fruth Innovative Technologien Gmbh Apparatus and method for applying powders or pastes
KR100995983B1 (en) 2008-07-04 2010-11-23 재단법인서울대학교산학협력재단 Cross printing method and apparatus of circuit board
US20100200168A1 (en) * 2009-02-06 2010-08-12 Ingersoll Machine Tools, Inc. Fiber delivery apparatus and system having a creel and fiber placement head sans fiber redirect
MX2012002615A (en) 2009-09-04 2012-04-20 Bayer Materialscience Llc Automated processes for the production of polyurethane wind turbine blades.
US8221669B2 (en) 2009-09-30 2012-07-17 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments
DE102009052835A1 (en) 2009-11-13 2011-05-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for producing a component from a fiber-reinforced material
WO2011087724A2 (en) * 2009-12-22 2011-07-21 Tufts University Inflatable and rigidizable support element
US9086033B2 (en) 2010-09-13 2015-07-21 Experimental Propulsion Lab, Llc Additive manufactured propulsion system
US8920697B2 (en) 2010-09-17 2014-12-30 Stratasys, Inc. Method for building three-dimensional objects in extrusion-based additive manufacturing systems using core-shell consumable filaments
KR101172859B1 (en) 2010-10-04 2012-08-09 서울대학교산학협력단 Ultra precision machining apparatus using nano-scale three dimensional printing and method using the same
DE102011109369A1 (en) 2011-08-04 2013-02-07 Arburg Gmbh + Co Kg Method and device for producing a three-dimensional object with fiber feed
US9457521B2 (en) 2011-09-01 2016-10-04 The Boeing Company Method, apparatus and material mixture for direct digital manufacturing of fiber reinforced parts
EP2589481B1 (en) 2011-11-04 2016-01-20 Ralph Peter Hegler Device for continuously manufacturing a composite pipe with connection sleeve
US20130164498A1 (en) 2011-12-21 2013-06-27 Adc Acquisition Company Thermoplastic composite prepreg for automated fiber placement
US10518490B2 (en) 2013-03-14 2019-12-31 Board Of Regents, The University Of Texas System Methods and systems for embedding filaments in 3D structures, structural components, and structural electronic, electromagnetic and electromechanical components/devices
US9884318B2 (en) 2012-02-10 2018-02-06 Adam Perry Tow Multi-axis, multi-purpose robotics automation and quality adaptive additive manufacturing
US8919410B2 (en) 2012-03-08 2014-12-30 Fives Machining Systems, Inc. Small flat composite placement system
US9764378B2 (en) 2012-04-04 2017-09-19 Massachusetts Institute Of Technology Methods and apparatus for actuated fabricator
DE102012007439A1 (en) 2012-04-13 2013-10-17 Compositence Gmbh Laying head and apparatus and method for building a three-dimensional preform for a component made of a fiber composite material
GB201210850D0 (en) 2012-06-19 2012-08-01 Eads Uk Ltd Thermoplastic polymer powder
GB201210851D0 (en) 2012-06-19 2012-08-01 Eads Uk Ltd Extrusion-based additive manufacturing system
CA2879869C (en) 2012-07-20 2020-07-14 Mag Aerospace Industries, Llc Composite waste and water transport elements and methods of manufacture for use on aircraft
US9308690B2 (en) 2012-07-31 2016-04-12 Makerbot Industries, Llc Fabrication of objects with enhanced structural characteristics
US8962717B2 (en) 2012-08-20 2015-02-24 Basf Se Long-fiber-reinforced flame-retardant polyesters
US9511543B2 (en) 2012-08-29 2016-12-06 Cc3D Llc Method and apparatus for continuous composite three-dimensional printing
CN104870171A (en) * 2012-11-09 2015-08-26 赢创工业集团股份有限公司 Multicoloured extrusion-based 3d printing
US9233506B2 (en) 2012-12-07 2016-01-12 Stratasys, Inc. Liquefier assembly for use in additive manufacturing system
US20140232035A1 (en) 2013-02-19 2014-08-21 Hemant Bheda Reinforced fused-deposition modeling
EP2969538B1 (en) 2013-03-15 2019-10-30 Seriforge Inc. Method for producing composite preforms
US9815268B2 (en) 2013-03-22 2017-11-14 Markforged, Inc. Multiaxis fiber reinforcement for 3D printing
US9579851B2 (en) 2013-03-22 2017-02-28 Markforged, Inc. Apparatus for fiber reinforced additive manufacturing
US9149988B2 (en) 2013-03-22 2015-10-06 Markforged, Inc. Three dimensional printing
EP3725497A1 (en) 2013-03-22 2020-10-21 Mark, Gregory Thomas Three-dimensional printer
US9956725B2 (en) 2013-03-22 2018-05-01 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9126367B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Three dimensional printer for fiber reinforced composite filament fabrication
US9186846B1 (en) 2013-03-22 2015-11-17 Markforged, Inc. Methods for composite filament threading in three dimensional printing
US10259160B2 (en) 2013-03-22 2019-04-16 Markforged, Inc. Wear resistance in 3D printing of composites
US9539762B2 (en) 2013-03-22 2017-01-10 Markforged, Inc. 3D printing with kinematic coupling
US10682844B2 (en) 2013-03-22 2020-06-16 Markforged, Inc. Embedding 3D printed fiber reinforcement in molded articles
US9688028B2 (en) 2013-03-22 2017-06-27 Markforged, Inc. Multilayer fiber reinforcement design for 3D printing
US9186848B2 (en) 2013-03-22 2015-11-17 Markforged, Inc. Three dimensional printing of composite reinforced structures
US9694544B2 (en) 2013-03-22 2017-07-04 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US20170173868A1 (en) 2013-03-22 2017-06-22 Markforged, Inc. Continuous and random reinforcement in a 3d printed part
US9126365B1 (en) 2013-03-22 2015-09-08 Markforged, Inc. Methods for composite filament fabrication in three dimensional printing
US11237542B2 (en) 2013-03-22 2022-02-01 Markforged, Inc. Composite filament 3D printing using complementary reinforcement formations
US9156205B2 (en) 2013-03-22 2015-10-13 Markforged, Inc. Three dimensional printer with composite filament fabrication
WO2014193505A1 (en) 2013-05-31 2014-12-04 United Technologies Corporation Continuous fiber-reinforced component fabrication
CA2914512C (en) 2013-06-05 2020-10-20 Markforged, Inc. Methods for fiber reinforced additive manufacturing
US9751260B2 (en) 2013-07-24 2017-09-05 The Boeing Company Additive-manufacturing systems, apparatuses and methods
PL3063341T3 (en) 2013-10-30 2021-11-22 Branch Technology, Inc. Additive manufacturing of buildings and other structures
US10618217B2 (en) 2013-10-30 2020-04-14 Branch Technology, Inc. Cellular fabrication and apparatus for additive manufacturing
CN105765137B (en) 2013-10-30 2018-08-24 莱恩奥罗克澳大利亚私人有限公司 The method for making object
US20150136455A1 (en) 2013-11-15 2015-05-21 Robert J. Fleming Shape forming process and application thereof for creating structural elements and designed objects
US20160243762A1 (en) 2013-11-15 2016-08-25 Fleming Robert J Automated design, simulation, and shape forming process for creating structural elements and designed objects
EP3071396B1 (en) 2013-11-19 2021-10-06 Guill Tool & Engineering Coextruded, multilayered and multicomponent 3d printing inputs
EP3086914A2 (en) 2013-12-26 2016-11-02 Texas Tech University System Microwave-induced localized heating of cnt filled polymer composites for enhanced inter-bead diffusive bonding of fused filament fabricated parts
CA2937085C (en) 2014-01-17 2023-09-12 Graphene 3D Lab Inc. Fused filament fabrication using multi-segment filament
EP3102411A4 (en) 2014-02-04 2017-11-29 Samir Shah Device and method of manufacturing customizable three-dimensional objects
US20160346997A1 (en) * 2014-02-10 2016-12-01 President And Fellows Of Harvard College Three-dimensional (3d) printed composite structure and 3d printable composite ink formulation
JP6454977B2 (en) 2014-03-26 2019-01-23 セイコーエプソン株式会社 3D object manufacturing equipment
WO2015149054A1 (en) 2014-03-28 2015-10-01 Ez Print, Llc 3d print bed having permanent coating
WO2015164954A1 (en) 2014-04-30 2015-11-05 Magna International Inc. Apparatus and process for forming three-dimensional objects
WO2015182675A1 (en) 2014-05-27 2015-12-03 学校法人日本大学 Three-dimensional printing system, three-dimensional printing method, molding device, fiber-containing object, and production method therefor
US9796140B2 (en) * 2014-06-19 2017-10-24 Autodesk, Inc. Automated systems for composite part fabrication
US20150367418A1 (en) 2014-06-20 2015-12-24 Velo3D, Inc. Apparatuses, systems and methods for three-dimensional printing
US20160012935A1 (en) 2014-07-11 2016-01-14 Empire Technology Development Llc Feedstocks for additive manufacturing and methods for their preparation and use
US9808991B2 (en) 2014-07-29 2017-11-07 Cc3D Llc. Method and apparatus for additive mechanical growth of tubular structures
DE102014215935A1 (en) 2014-08-12 2016-02-18 Airbus Operations Gmbh Apparatus and method for manufacturing components from a fiber reinforced composite material
US10870268B2 (en) 2014-08-21 2020-12-22 Mosaic Manufacturing Ltd. Series enabled multi-material extrusion technology
US10118375B2 (en) 2014-09-18 2018-11-06 The Boeing Company Extruded deposition of polymers having continuous carbon nanotube reinforcements
US9931778B2 (en) 2014-09-18 2018-04-03 The Boeing Company Extruded deposition of fiber reinforced polymers
EP3209486A4 (en) * 2014-10-21 2018-07-25 Stratasys Ltd. Three-dimensional inkjet printing using ring-opening metathesis polymerization
WO2016077473A1 (en) 2014-11-14 2016-05-19 Nielsen-Cole Cole Additive manufacturing techniques and systems to form composite materials
US10173409B2 (en) 2014-12-01 2019-01-08 Sabic Global Technologies B.V. Rapid nozzle cooling for additive manufacturing
CN107000314A (en) 2014-12-01 2017-08-01 沙特基础工业全球技术有限公司 Increasing material manufacturing process automation system and method
US20170266876A1 (en) 2014-12-01 2017-09-21 Sabic Global Technologies B.V. Nozzle tool changing for material extrusion additive manufacturing
US10226103B2 (en) 2015-01-05 2019-03-12 Markforged, Inc. Footwear fabrication by composite filament 3D printing
FR3031471A1 (en) 2015-01-09 2016-07-15 Daher Aerospace PROCESS FOR THE PRODUCTION OF A COMPLEX COMPOSITE WORKPIECE, IN PARTICULAR A THERMOPLASTIC MATRIX AND PIECE OBTAINED BY SUCH A METHOD
EP3253545B1 (en) 2015-02-02 2023-07-19 Massivit 3D Printing Technologies Ltd. A curing system for printing of 3d objects
US9855733B2 (en) * 2015-03-02 2018-01-02 The Boeing Company Method for achieving low porosity in composite laminates
US20160263823A1 (en) 2015-03-09 2016-09-15 Frederick Matthew Espiau 3d printed radio frequency absorber
US20160271876A1 (en) 2015-03-22 2016-09-22 Robert Bruce Lower Apparatus and method of embedding cable in 3D printed objects
US11141901B2 (en) 2015-03-31 2021-10-12 Kyoraku Co., Ltd. Molded resin strand, method for modeling three-dimensional object, and method for manufacturing molded resin strand
WO2016196382A1 (en) 2015-06-01 2016-12-08 Velo3D, Inc. Three-dimensional printing and three-dimensional objects formed using the same
DE102015109855A1 (en) 2015-06-19 2016-12-22 Airbus Operations Gmbh Method for producing components, in particular elongated profiles from strip-shaped, pre-impregnated fibers (prepreg)
US11045282B2 (en) 2015-07-07 2021-06-29 Align Technology, Inc. Direct fabrication of aligners with interproximal force coupling
US10492888B2 (en) 2015-07-07 2019-12-03 Align Technology, Inc. Dental materials using thermoset polymers
US10363116B2 (en) 2015-07-07 2019-07-30 Align Technology, Inc. Direct fabrication of power arms
WO2017006178A1 (en) 2015-07-07 2017-01-12 Align Technology, Inc. Systems, apparatuses and methods for substance delivery from dental appliances and for ornamental designs on dental appliances
US11642194B2 (en) 2015-07-07 2023-05-09 Align Technology, Inc. Multi-material aligners
US10959810B2 (en) 2015-07-07 2021-03-30 Align Technology, Inc. Direct fabrication of aligners for palate expansion and other applications
US10201409B2 (en) 2015-07-07 2019-02-12 Align Technology, Inc. Dental appliance having ornamental design
US20180015668A1 (en) 2015-07-09 2018-01-18 Something3D Ltd. Method and apparatus for three dimensional printing
US20170015060A1 (en) 2015-07-17 2017-01-19 Lawrence Livermore National Security, Llc Additive manufacturing continuous filament carbon fiber epoxy composites
US9862140B2 (en) * 2015-07-17 2018-01-09 Lawrence Livermore National Security, Llc Additive manufacturing of short and mixed fibre-reinforced polymer
US9944016B2 (en) * 2015-07-17 2018-04-17 Lawrence Livermore National Security, Llc High performance, rapid thermal/UV curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites
US9926796B2 (en) 2015-07-28 2018-03-27 General Electric Company Ply, method for manufacturing ply, and method for manufacturing article with ply
US10201941B2 (en) 2015-07-31 2019-02-12 The Boeing Company Systems for additively manufacturing composite parts
US10343355B2 (en) 2015-07-31 2019-07-09 The Boeing Company Systems for additively manufacturing composite parts
US10131132B2 (en) 2015-07-31 2018-11-20 The Boeing Company Methods for additively manufacturing composite parts
US10232550B2 (en) 2015-07-31 2019-03-19 The Boeing Company Systems for additively manufacturing composite parts
US10232570B2 (en) 2015-07-31 2019-03-19 The Boeing Company Systems for additively manufacturing composite parts
US10195784B2 (en) 2015-07-31 2019-02-05 The Boeing Company Systems for additively manufacturing composite parts
US10343330B2 (en) 2015-07-31 2019-07-09 The Boeing Company Systems for additively manufacturing composite parts
US10582619B2 (en) 2015-08-24 2020-03-03 Board Of Regents, The University Of Texas System Apparatus for wire handling and embedding on and within 3D printed parts
WO2017035313A1 (en) 2015-08-25 2017-03-02 University Of South Carolina Integrated robotic 3d printing system for printing of fiber reinforced parts
US10464268B2 (en) 2015-08-25 2019-11-05 The Boeing Company Composite feedstock strips for additive manufacturing and methods of forming thereof
US10357924B2 (en) 2015-08-25 2019-07-23 The Boeing Company Composite feedstock strips for additive manufacturing and methods of forming thereof
US10336056B2 (en) 2015-08-31 2019-07-02 Colorado School Of Mines Hybrid additive manufacturing method
GB201516943D0 (en) 2015-09-24 2015-11-11 Victrex Mfg Ltd Polymeric materials
US10207426B2 (en) 2015-10-14 2019-02-19 Northrop Grumman Systems Corporation Continuous fiber filament for fused deposition modeling (FDM) additive manufactured (AM) structures
US11097440B2 (en) 2015-11-05 2021-08-24 United States Of America As Represented By The Administrator Of Nasa Cutting mechanism for carbon nanotube yarns, tapes, sheets and polymer composites thereof
US10513080B2 (en) 2015-11-06 2019-12-24 United States Of America As Represented By The Administrator Of Nasa Method for the free form fabrication of articles out of electrically conductive filaments using localized heating
US10500836B2 (en) 2015-11-06 2019-12-10 United States Of America As Represented By The Administrator Of Nasa Adhesion test station in an extrusion apparatus and methods for using the same
US9889606B2 (en) 2015-11-09 2018-02-13 Nike, Inc. Tack and drag printing
US10894353B2 (en) 2015-11-09 2021-01-19 United States Of America As Represented By The Administrator Of Nasa Devices and methods for additive manufacturing using flexible filaments
EP3168034A1 (en) 2015-11-12 2017-05-17 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Device for additive production of a component
MX2018005954A (en) 2015-11-13 2019-01-31 Paxis Llc Additive manufacturing apparatus, system, and method.
ITUB20155642A1 (en) 2015-11-17 2017-05-17 Milano Politecnico Equipment and method for three-dimensional printing of continuous fiber composite materials
CN108495740A (en) 2015-11-17 2018-09-04 泽菲罗斯公司 Increasing material manufacturing material system
US10150262B2 (en) 2015-11-20 2018-12-11 The Boeing Company System and method for cutting material in continuous fiber reinforced additive manufacturing
US20170151728A1 (en) 2015-11-30 2017-06-01 Ut-Battelle, Llc Machine and a Method for Additive Manufacturing with Continuous Fiber Reinforcements
US10625466B2 (en) 2015-12-08 2020-04-21 Xerox Corporation Extrusion printheads for three-dimensional object printers
US10456968B2 (en) 2015-12-08 2019-10-29 Xerox Corporation Three-dimensional object printer with multi-nozzle extruders and dispensers for multi-nozzle extruders and printheads
US10335991B2 (en) 2015-12-08 2019-07-02 Xerox Corporation System and method for operation of multi-nozzle extrusion printheads in three-dimensional object printers
US10173410B2 (en) 2015-12-08 2019-01-08 Northrop Grumman Systems Corporation Device and method for 3D printing with long-fiber reinforcement
EP3386734B1 (en) 2015-12-11 2021-11-10 Massachusetts Institute Of Technology Methods for deposition-based three-dimensional printing
US10843210B2 (en) * 2015-12-11 2020-11-24 Cobbler Technologies Ultra-variable advanced manufacturing techniques
US20170173877A1 (en) 2015-12-16 2017-06-22 Desktop Metal, Inc. Layer-forming nozzle exit for fused filament fabrication process
DE102015122647A1 (en) 2015-12-22 2017-06-22 Arburg Gmbh + Co. Kg Device and method for producing a three-dimensional object with a fiber feed device
US10369742B2 (en) 2015-12-28 2019-08-06 Southwest Research Institute Reinforcement system for additive manufacturing, devices and methods using the same
WO2017123726A1 (en) 2016-01-12 2017-07-20 Markforged, Inc. Embedding 3d printed fiber reinforcement in molded articles
KR101755015B1 (en) 2016-01-14 2017-07-06 주식회사 키스타 Transformer controlling movement of head unit and tension and temperature of plastic formable material
KR101826970B1 (en) 2016-01-14 2018-02-07 주식회사 키스타 Raw material feeding apparatus for feeding raw material made of plastic formable materials, and three-dimensional product manufacturing robot having the same
KR101785703B1 (en) 2016-01-14 2017-10-17 주식회사 키스타 Head unit and head supply unit for controlling discharge of raw material made of plastic formable materials
CN108712960A (en) 2016-01-15 2018-10-26 马克弗巨德有限公司 Continuous and random enhancing in 3D printing part
JP6602678B2 (en) 2016-01-22 2019-11-06 国立大学法人岐阜大学 Manufacturing method of three-dimensional structure
JP6251925B2 (en) 2016-01-22 2017-12-27 国立大学法人岐阜大学 Manufacturing method of three-dimensional structure and filament for 3D printer
MX2018009683A (en) 2016-02-11 2019-06-10 Kuster Martin Movable printing devices for three-dimensional printers.
WO2017142867A1 (en) 2016-02-15 2017-08-24 Georgia-Pacific Chemicals Llc Extrusion additive manufacturing of pellets or filaments of thermosetting resins
WO2017150186A1 (en) 2016-02-29 2017-09-08 学校法人日本大学 Three-dimensional printing apparatus and three-dimensional printing method
WO2017156348A1 (en) 2016-03-10 2017-09-14 Mantis Composites Inc. Additive manufacturing of composites
EP3219474B1 (en) 2016-03-16 2019-05-08 Airbus Operations GmbH Method and device for 3d-printing a fiber reinforced composite component by tape-laying
US10052813B2 (en) 2016-03-28 2018-08-21 Arevo, Inc. Method for additive manufacturing using filament shaping
US10234342B2 (en) 2016-04-04 2019-03-19 Xerox Corporation 3D printed conductive compositions anticipating or indicating structural compromise
US10232551B2 (en) * 2016-04-15 2019-03-19 Cc3D Llc Head and system for continuously manufacturing composite hollow structure
US10105910B2 (en) 2016-04-15 2018-10-23 Cc3D Llc Method for continuously manufacturing composite hollow structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023150453A1 (en) * 2022-02-01 2023-08-10 Divergent Technologies, Inc. Pressurized flexible hose for demolition of objects

Also Published As

Publication number Publication date
US20190001561A1 (en) 2019-01-03
US10906240B2 (en) 2021-02-02
US11130285B2 (en) 2021-09-28
US20190001564A1 (en) 2019-01-03
US20190001563A1 (en) 2019-01-03
US10589463B2 (en) 2020-03-17
WO2019005427A1 (en) 2019-01-03
US20190001571A1 (en) 2019-01-03
US11135769B2 (en) 2021-10-05
WO2019005314A1 (en) 2019-01-03
WO2019005312A1 (en) 2019-01-03
US20190001566A1 (en) 2019-01-03
US11052602B2 (en) 2021-07-06
WO2019005313A1 (en) 2019-01-03
US20190001562A1 (en) 2019-01-03
US20190001565A1 (en) 2019-01-03

Similar Documents

Publication Publication Date Title
US20210379827A1 (en) In-situ curing oven for additive manufacturing system
US10857726B2 (en) Additive manufacturing system implementing anchor curing
US10933584B2 (en) Additive manufacturing system having dynamically variable matrix supply
US10807303B2 (en) Additive manufacturing system implementing hardener pre-impregnation
US10932325B2 (en) Additive manufacturing system and method for discharging coated continuous composites
US20200238603A1 (en) System for additively manufacturing composite structure
US11325304B2 (en) System and method for additive manufacturing
US20200086565A1 (en) System and head for continuously manufacturing composite structure
WO2019199381A1 (en) System and print head for continuously manufacturing composite structure
US10759113B2 (en) Additive manufacturing system having trailing cure mechanism

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONTINUOUS COMPOSITES INC., IDAHO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STOCKETT, RYAN C;TYLER, KENNETH LYLE;REEL/FRAME:057392/0110

Effective date: 20210902

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER