US20210355568A1 - Silicon Alloy Steel - Google Patents

Silicon Alloy Steel Download PDF

Info

Publication number
US20210355568A1
US20210355568A1 US16/876,359 US202016876359A US2021355568A1 US 20210355568 A1 US20210355568 A1 US 20210355568A1 US 202016876359 A US202016876359 A US 202016876359A US 2021355568 A1 US2021355568 A1 US 2021355568A1
Authority
US
United States
Prior art keywords
silicon
boron
percent
alloys
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/876,359
Inventor
Melvin Keith Carter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CARTER TECHNOLOGIES
Original Assignee
CARTER TECHNOLOGIES
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CARTER TECHNOLOGIES filed Critical CARTER TECHNOLOGIES
Priority to US16/876,359 priority Critical patent/US20210355568A1/en
Publication of US20210355568A1 publication Critical patent/US20210355568A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • K L Luthra Iridium silicon alloy having a very high resistance to oxidation contains 30 to 75 atom percent silicon. 5,049,357 Sep. 17, 1991 H Matsuno, T Takaoka, Method for manufacturing iron-boron-silicon alloy. Y Kikuchi, Y Kawai, T Nishi
  • Common construction steel like A36 carbon steel is more than 95 percent iron, the other constituents being ⁇ 2.1% carbon, ⁇ 1.65% manganese, ⁇ 0.4% copper and ⁇ 0.6% silicon. These carbon steels have a density of 7.8 g/cm 3 , a yield strength of 36,000 psi (250 MPa) and an ultimate tensile strength of 58,000-80,000 psi (400-550 MPa).
  • A500 cold-formed steel is produced by reducing the carbon content to 0.26% and maintaining minimums for phosphorous and sulfur. Iron melts at 1,538° C. and low carbon steel alloys generally corrode readily. A number of other dense, strong steel and stainless steel alloys have been produced for industry, all based on iron.
  • Construction aluminum like alloy 6061, is more than 96 percent aluminum, the other constituents being 0.6% silicon, 0.5% iron, 0.25% copper, 0.1% manganese, 0.2% chromium, 0.15% zinc, 0.1% titanium and other elements ⁇ 0.15% total.
  • These aluminum alloys have a density of 2.7 g/cm 3 , a yield strength of 8,000 psi (55 MPa), elongates 25 to 30% and has an ultimate tensile strength of 18,000 psi (125 MPa).
  • Aluminum alloys suffer from brittle fracture and aluminum melts at 660° C. producing reduced strength at elevated temperature.
  • Silicon is a common element, a brittle non-metallic material thus few alloys are in wide spread use. Its advantages are a low density near 2.33 g/cm 3 , a high melting temperature of 1,410° C. and it is not easily corroded.
  • the present application discloses formation of certain silicon alloys prepared with 2 to 6 percent boron or beryllium creating materials that are tough, strong and not brittle as is elemental silicon.
  • hypoeutectic aluminum silicon casting alloy that includes 10 to 11.5% by weight silicon, 0.10 to 0.70% by weight magnesium and also contains 0.05 to 0.07% by weight strontium.
  • a specialty iron-silicon alloy product exhibiting improved resistance to hydrogen embrittlement is described in U.S. Pat. No. 6,149,862, issued Nov. 21, 2000.
  • the present application discloses formation of certain silicon alloys that are quite different from aluminum and iron based steel alloys, take advantage of silicon's relatively low density and high melting temperature of 1,410° C. These alloys as prepared with 2 to 6 percent boron or beryllium are tough, strong and resist corrosion.
  • Pure silicon is brittle and not suitable for use as a construction material.
  • Boron silicon alloys can be prepared by a number of methods, the simplest being from finely divided pure elements melted under an inert atmosphere. Blending a selected concentration comprising 2 to 6 percent finely divided elemental boron with a majority of finely divided elemental silicon, loading into a clean alumina crucible, moving into a furnace, carefully degassing and purging with an inert atmosphere during the entire heating process produces the desired alloy upon cooling.
  • a silicon steel alloy is formed by heating a uniform mixture containing 4.5 percent of finely divided 99% pure elemental boron and 95.5 percent of finely divided 99.5% pure elemental silicon, contained in a suitable crucible in an inert atmosphere, at 1,470° C. until completely molten. Upon cooling a strong, malleable steel alloy is evident.
  • Beryllium silicon alloys can be prepared by blending a selected concentration comprising 2 to 6 percent finely divided elemental beryllium with a majority of finely divided elemental silicon, loading into a clean alumina crucible, moving into a furnace, carefully degassing and purging with an inert gas atmosphere during the entire heating process produces the desired alloy upon cooling.
  • a uniform mixture containing 4.5 percent of finely divided 99% pure elemental beryllium and 95.5 percent of finely divided 99.5% pure elemental silicon, contained in a suitable crucible is heated in an inert atmosphere at 1,350° C. until completely molten. Upon cooling a strong, malleable steel alloy is formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

Pure silicon is a brittle insulator and, with addition of doping elements, performs as a semiconductor. It has found widespread use in computer integrated circuits as well as other semiconducting devices used in communication, electrical switching and power control. Silicon has also been used in solar collectors as active photovoltaic devices. The present application discloses formation and use of certain silicon alloys that take advantage of silicon's relatively low density near 2.33 grams per cubic centimeter and high melting temperature of 1,410° C. Alloys prepared with two to six percent boron, beryllium or mixtures thereof are strong and tough. Silicon steel containing near 2 percent alloying boron is hard while silicon alloys containing near 6 percent boron are tough and more flexible.

Description

    REFERENCES CITED
  • U.S. Patent Documents
  • Pat. No. Issue Date Author Comments
    7,321,140 Jan. 22, 2008 Y Li, J J Chen, Magnetron sputtered metallization of a nickel silicon alloy,
    L Yang especially useful as solder bump barrier where the alloy
    contains at least 2 wt % silicon and preferably less than
    20 wt %. Commercially available NiSi.sub.4.5% sputter
    targets have provided a superior under-bump metallization.
    6,923,935 Aug. 2, 2005 R J Donahue, A hypoeutectic aluminum silicon casting alloy includes
    T M Cleary, 10 to 11.5% by weight silicon, 0.10 to 0.70% by weight
    K R Anderson magnesium and also contains 0.05 to 0.07% by weight
    strontium.
    6,149,862 Nov. 21, 2000 N I Gliklad, Iron-silicon alloy product, exhibiting improved resistance
    A B Kuslitskiy, to hydrogen embrittlement and method of making the
    L A Kuslitskiy same. It has 1.38% to 1.63% weight Si, 0.10% to 0.25%
    weight C and 0.10% weight of at least one element from
    Be, Mg, Al, Ca, Sc, Ti, V, Cr, Mm, Co, Ni, Cu, Zn, W,
    Mo, Ge, Se, Rb, Zr, Nb, Ru, Ag, Cd, La, Ce, Pr, Nd, Gd,
    Tb, Dy, Er, Re, Os, Pb, Bi, U, N and other REM.
    5,080,862 Jan. 14, 1992 K L Luthra Iridium silicon alloy having a very high resistance to
    oxidation contains 30 to 75 atom percent silicon.
    5,049,357 Sep. 17, 1991 H Matsuno, T Takaoka, Method for manufacturing iron-boron-silicon alloy.
    Y Kikuchi, Y Kawai,
    T Nishi
  • BACKGROUND Field of Invention
  • Common construction steel like A36 carbon steel is more than 95 percent iron, the other constituents being <2.1% carbon, <1.65% manganese, <0.4% copper and <0.6% silicon. These carbon steels have a density of 7.8 g/cm3, a yield strength of 36,000 psi (250 MPa) and an ultimate tensile strength of 58,000-80,000 psi (400-550 MPa). A500 cold-formed steel is produced by reducing the carbon content to 0.26% and maintaining minimums for phosphorous and sulfur. Iron melts at 1,538° C. and low carbon steel alloys generally corrode readily. A number of other dense, strong steel and stainless steel alloys have been produced for industry, all based on iron. Construction aluminum, like alloy 6061, is more than 96 percent aluminum, the other constituents being 0.6% silicon, 0.5% iron, 0.25% copper, 0.1% manganese, 0.2% chromium, 0.15% zinc, 0.1% titanium and other elements <0.15% total. These aluminum alloys have a density of 2.7 g/cm3, a yield strength of 8,000 psi (55 MPa), elongates 25 to 30% and has an ultimate tensile strength of 18,000 psi (125 MPa). Aluminum alloys suffer from brittle fracture and aluminum melts at 660° C. producing reduced strength at elevated temperature.
  • Silicon is a common element, a brittle non-metallic material thus few alloys are in wide spread use. Its advantages are a low density near 2.33 g/cm3, a high melting temperature of 1,410° C. and it is not easily corroded. The present application discloses formation of certain silicon alloys prepared with 2 to 6 percent boron or beryllium creating materials that are tough, strong and not brittle as is elemental silicon.
  • Description of Prior Art
  • Energy demands of the transportation and construction industries favor low cost, strong, light weight materials that do not degrade over time. Silicon alloys, as disclosed in this application, are needed to fill these requirements. A number of specialty materials have been described that employ silicon. U.S. Pat. No. 7,321,140, issued Jan. 22, 2008, disclose use of nickel silicon alloy for use in interconnect solder bumps. Magnetron sputtered metallization of a nickel silicon alloy was especially useful as solder bump barrier where the alloy contains at least 2% silicon and preferably less than 20%. Commercially available NiSi4.5 sputter targets have provided a superior under-bump metallization. U.S. Pat. No. 6,923,935, issued Aug. 2, 2005, describe a hypoeutectic aluminum silicon casting alloy that includes 10 to 11.5% by weight silicon, 0.10 to 0.70% by weight magnesium and also contains 0.05 to 0.07% by weight strontium. A specialty iron-silicon alloy product exhibiting improved resistance to hydrogen embrittlement is described in U.S. Pat. No. 6,149,862, issued Nov. 21, 2000. It has 1.38% to 1.63% weight silicon, 0.10% to 0.25% weight carbon and 0.10% weight of at least one element from the list Be, Mg, Al, Ca, Sc, Ti, V, Cr, Mm, Co, Ni, Cu, Zn, W, Mo, Ge, Se, Rb, Zr, Nb, Ru, Ag, Cd, La, Ce, Pr, Nd, Gd, Tb, Dy, Er, Re, Os, Pb, Bi, U or N. U.S. Pat. No. 5,080,862, issued Jan. 14, 1992, teaches use of an exotic iridium silicon alloy having a very high resistance to oxidation contains 30 to 75 atom percent silicon. U.S. Pat. No. 5,049,357, issued Sep. 17, 1991, describes a method for economically manufacturing an iron-boron-silicon alloy through simple steps, which comprises the steps of: adding a boron raw material and a carbonaceous reducing agent to a molten iron received in a vessel; blowing oxygen gas into the molten iron to reduce the boron raw material in the molten iron by means of the carbonaceous reducing agent to prepare a boron-containing molten iron; continuing the blowing of oxygen gas to decarburize the boron-containing molten iron until the carbon content in the boron-containing molten iron decreases to 0.2 wt. %; and adding at least one of silicon and ferrosilicon to the boron-containing molten iron while stirring the boron-containing molten iron, thereby manufacturing an iron-boron-silicon alloy.
  • None of this prior art describes production or use of silicon alloys comprising a majority of silicon with 2 to 6 percent boron or beryllium added to produce structural alloys.
  • SUMMARY OF THE INVENTION
  • The present application discloses formation of certain silicon alloys that are quite different from aluminum and iron based steel alloys, take advantage of silicon's relatively low density and high melting temperature of 1,410° C. These alloys as prepared with 2 to 6 percent boron or beryllium are tough, strong and resist corrosion.
  • It is an object of this invention, therefore, to disclose boron and beryllium silicon alloys that are tough and strong with a reduced tendency toward corrosion. Other objects of this invention will be apparent from the detailed description thereof which follows, and from the claims.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Pure silicon is brittle and not suitable for use as a construction material. Addition of additives comprising boron and beryllium, in a concentration range comprising 2 to 6 percent, to pure silicon form alloys with surprisingly good mechanical characteristics. These alloys are light weight in that they have densities of less than 2.7 grams per cubic centimeter. Once produced, they can be cut and formed like rigid steel.
  • Boron silicon alloys can be prepared by a number of methods, the simplest being from finely divided pure elements melted under an inert atmosphere. Blending a selected concentration comprising 2 to 6 percent finely divided elemental boron with a majority of finely divided elemental silicon, loading into a clean alumina crucible, moving into a furnace, carefully degassing and purging with an inert atmosphere during the entire heating process produces the desired alloy upon cooling. For example, a silicon steel alloy is formed by heating a uniform mixture containing 4.5 percent of finely divided 99% pure elemental boron and 95.5 percent of finely divided 99.5% pure elemental silicon, contained in a suitable crucible in an inert atmosphere, at 1,470° C. until completely molten. Upon cooling a strong, malleable steel alloy is evident.
  • Beryllium silicon alloys can be prepared by blending a selected concentration comprising 2 to 6 percent finely divided elemental beryllium with a majority of finely divided elemental silicon, loading into a clean alumina crucible, moving into a furnace, carefully degassing and purging with an inert gas atmosphere during the entire heating process produces the desired alloy upon cooling. For example, a uniform mixture containing 4.5 percent of finely divided 99% pure elemental beryllium and 95.5 percent of finely divided 99.5% pure elemental silicon, contained in a suitable crucible, is heated in an inert atmosphere at 1,350° C. until completely molten. Upon cooling a strong, malleable steel alloy is formed.
  • EXAMPLES OF CHEMICAL CONVERSION
  • Specific examples of boron or beryllium silicon alloy compositions are disclosed.
  • Example A: Boron Silicon Alloy Steel
  • A uniform mixture containing 1.125 grams of finely divided 99% pure elemental boron and 23.875 grams of finely divided 99.5% pure elemental silicon, contained in a suitable crucible, was heated in an inert atmosphere at 1,470° C. until completely molten. Upon cooling a silver-gray colored steel alloy was found to be strong and malleable but not brittle. Its density was 2.69 grams/cubic centimeter.
  • Example B: Beryllium Silicon Alloy Steel
  • A uniform mixture containing 1.075 grams of finely divided 99% pure elemental beryllium and 23.925 grams of finely divided 99.5% pure elemental silicon, contained in a suitable crucible, was heated in an inert atmosphere at 1,350° C. until completely molten. Upon cooling the steel alloy was found to be strong and malleable but not brittle.

Claims (3)

What is claimed:
1. A process for formation of silicon steel alloy comprising melting together silicon with selected 2 to 6 percent boron in the temperature range comprising 1,400° C. to 1,800° C. in a suitable crucible in an inert atmosphere.
2. A process for formation of silicon steel alloy comprising melting together silicon with selected 2 to 6 percent beryllium in the temperature range comprising 1,200° C. to 1,600° C. in a suitable crucible in an inert atmosphere.
3. A process for formation of silicon steel alloy comprising melting together silicon with selected 2 to 6 percent boron, up to 2 percent of manganese for toughness and up to 0.5 percent sulfur for corrosion resistance in the temperature range comprising 1,400° C. to 1,800° C. in a suitable crucible in an inert atmosphere.
US16/876,359 2020-05-18 2020-05-18 Silicon Alloy Steel Abandoned US20210355568A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/876,359 US20210355568A1 (en) 2020-05-18 2020-05-18 Silicon Alloy Steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16/876,359 US20210355568A1 (en) 2020-05-18 2020-05-18 Silicon Alloy Steel

Publications (1)

Publication Number Publication Date
US20210355568A1 true US20210355568A1 (en) 2021-11-18

Family

ID=78513079

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/876,359 Abandoned US20210355568A1 (en) 2020-05-18 2020-05-18 Silicon Alloy Steel

Country Status (1)

Country Link
US (1) US20210355568A1 (en)

Similar Documents

Publication Publication Date Title
CN108103381B (en) High-strength FeCoNiCrMn high-entropy alloy and preparation method thereof
CN101417375B (en) Leadless welding alloy for welding electronic elements
EP3441497A1 (en) Lightweight steel and steel sheet with enhanced elastic modulus, and manufacturing method thereof
US20140227128A1 (en) Copper alloy with high strength and high electrical conductivity
CN114807718A (en) Excellent thermal stability coherent nanophase reinforced medium entropy alloy and preparation method thereof
CN103060645A (en) High-performance aluminum alloy material for manganese carbonyl complex deterioration and preparation method of material
CN114525429B (en) High-strength titanium alloy and additive preparation method thereof
CN114657439A (en) Refractory high-entropy alloy with good room-temperature plasticity and preparation method thereof
US20210355568A1 (en) Silicon Alloy Steel
CN110273114B (en) Wear-resistant iron-silicon-chromium alloy and preparation method thereof
US20120282130A1 (en) Method for producing permanent magnet materials and resulting materials
CN111593244A (en) Novel multi-element corrosion-resistant magnesium alloy and preparation method thereof
US4370299A (en) Molybdenum-based alloy
CN102031441B (en) Complex additive for spheroidizing and dispersing sulfides in steel and use method thereof
CN112853150B (en) Copper-steel solid-liquid composite bimetallic material for chemical industry and preparation method thereof
CN110923482B (en) High-quality high-tungsten high-cobalt-nickel alloy material and preparation method thereof
US3723076A (en) Sintered tungsten-boron alloy
CN110964972A (en) Rare earth silicon-nitrogen-vanadium alloy and preparation method and application thereof
CN111485154A (en) Low-sintering-temperature tungsten-nickel-iron alloy for shielding material
CN109022986A (en) The high-performance magnesium-alloy of controllable reaction and its manufacturing method of component occur with water
CN114855007B (en) Preparation method of high-strength rapid-dissolution magnesium alloy material
CN113234947B (en) Nano copper-titanium alloy and preparation method thereof
CN114799155B (en) Preparation method of ceramic particle reinforced refractory high-entropy alloy
CN112877600B (en) Copper-steel solid-liquid composite bimetallic material for electronic power and preparation method thereof
CN101407878B (en) Tough magnesium alloy and preparation thereof

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION COUNTED, NOT YET MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION