US20210285033A1 - Methods for variant detection - Google Patents
Methods for variant detection Download PDFInfo
- Publication number
- US20210285033A1 US20210285033A1 US17/084,797 US202017084797A US2021285033A1 US 20210285033 A1 US20210285033 A1 US 20210285033A1 US 202017084797 A US202017084797 A US 202017084797A US 2021285033 A1 US2021285033 A1 US 2021285033A1
- Authority
- US
- United States
- Prior art keywords
- dye
- allele
- allele specific
- primer
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000001514 detection method Methods 0.000 title description 24
- 239000013615 primer Substances 0.000 claims description 162
- 108700028369 Alleles Proteins 0.000 claims description 146
- 239000000523 sample Substances 0.000 claims description 58
- 238000006243 chemical reaction Methods 0.000 claims description 57
- 150000007523 nucleic acids Chemical class 0.000 claims description 42
- 102000006382 Ribonucleases Human genes 0.000 claims description 32
- 108010083644 Ribonucleases Proteins 0.000 claims description 32
- 108010006785 Taq Polymerase Proteins 0.000 claims description 29
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 26
- 102000039446 nucleic acids Human genes 0.000 claims description 24
- 108020004707 nucleic acids Proteins 0.000 claims description 24
- 108091034117 Oligonucleotide Proteins 0.000 claims description 23
- 239000000975 dye Substances 0.000 claims description 22
- 239000003155 DNA primer Substances 0.000 claims description 21
- 230000000295 complement effect Effects 0.000 claims description 20
- 102000004190 Enzymes Human genes 0.000 claims description 17
- 108090000790 Enzymes Proteins 0.000 claims description 17
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 17
- 230000003321 amplification Effects 0.000 claims description 15
- 238000003776 cleavage reaction Methods 0.000 claims description 15
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 15
- 230000007017 scission Effects 0.000 claims description 15
- 230000000903 blocking effect Effects 0.000 claims description 11
- 102100034343 Integrase Human genes 0.000 claims description 10
- 241001148023 Pyrococcus abyssi Species 0.000 claims description 10
- 239000007850 fluorescent dye Substances 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 9
- 239000011541 reaction mixture Substances 0.000 claims description 6
- 230000006820 DNA synthesis Effects 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 4
- 125000003835 nucleoside group Chemical group 0.000 claims description 4
- 230000003993 interaction Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 238000012800 visualization Methods 0.000 claims description 3
- 238000012986 modification Methods 0.000 claims description 2
- 230000004048 modification Effects 0.000 claims description 2
- 108091023037 Aptamer Proteins 0.000 claims 1
- 238000007837 multiplex assay Methods 0.000 abstract description 4
- 238000003556 assay Methods 0.000 description 77
- 108020004414 DNA Proteins 0.000 description 62
- 238000003205 genotyping method Methods 0.000 description 35
- 238000003752 polymerase chain reaction Methods 0.000 description 23
- 238000005516 engineering process Methods 0.000 description 22
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 20
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 20
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 18
- 239000000203 mixture Substances 0.000 description 17
- 239000000539 dimer Substances 0.000 description 16
- 238000013461 design Methods 0.000 description 15
- 238000007844 allele-specific PCR Methods 0.000 description 13
- 238000009396 hybridization Methods 0.000 description 13
- 102200055464 rs113488022 Human genes 0.000 description 13
- 230000001351 cycling effect Effects 0.000 description 12
- 230000027455 binding Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 10
- 102200026617 rs1135840 Human genes 0.000 description 10
- 108091033409 CRISPR Proteins 0.000 description 9
- 229910001629 magnesium chloride Inorganic materials 0.000 description 9
- 239000003381 stabilizer Substances 0.000 description 9
- BZTDTCNHAFUJOG-UHFFFAOYSA-N 6-carboxyfluorescein Chemical group C12=CC=C(O)C=C2OC2=CC(O)=CC=C2C11OC(=O)C2=CC=C(C(=O)O)C=C21 BZTDTCNHAFUJOG-UHFFFAOYSA-N 0.000 description 8
- 102000004167 Ribonuclease P Human genes 0.000 description 8
- 108090000621 Ribonuclease P Proteins 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 239000002773 nucleotide Substances 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 125000003729 nucleotide group Chemical group 0.000 description 7
- 102200143304 rs351855 Human genes 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000010432 diamond Substances 0.000 description 6
- 230000035772 mutation Effects 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 238000003753 real-time PCR Methods 0.000 description 6
- GUAHPAJOXVYFON-ZETCQYMHSA-N (8S)-8-amino-7-oxononanoic acid zwitterion Chemical compound C[C@H](N)C(=O)CCCCCC(O)=O GUAHPAJOXVYFON-ZETCQYMHSA-N 0.000 description 5
- 238000010354 CRISPR gene editing Methods 0.000 description 5
- 125000001921 locked nucleotide group Chemical group 0.000 description 5
- 238000007481 next generation sequencing Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 108091093088 Amplicon Proteins 0.000 description 4
- 102100021257 Beta-secretase 1 Human genes 0.000 description 4
- 101710150192 Beta-secretase 1 Proteins 0.000 description 4
- 102100021277 Beta-secretase 2 Human genes 0.000 description 4
- 101710150190 Beta-secretase 2 Proteins 0.000 description 4
- 108020001019 DNA Primers Proteins 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 101710163270 Nuclease Proteins 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 102000053602 DNA Human genes 0.000 description 3
- 101100381977 Homo sapiens BRAF gene Proteins 0.000 description 3
- 101710203526 Integrase Proteins 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000010362 genome editing Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 102000054765 polymorphisms of proteins Human genes 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 230000009946 DNA mutation Effects 0.000 description 2
- 101100310856 Drosophila melanogaster spri gene Proteins 0.000 description 2
- 108010042407 Endonucleases Proteins 0.000 description 2
- 102000004533 Endonucleases Human genes 0.000 description 2
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- DRAVOWXCEBXPTN-UHFFFAOYSA-N isoguanine Chemical compound NC1=NC(=O)NC2=C1NC=N2 DRAVOWXCEBXPTN-UHFFFAOYSA-N 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910001415 sodium ion Inorganic materials 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000001847 surface plasmon resonance imaging Methods 0.000 description 2
- 238000005382 thermal cycling Methods 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- XQCZBXHVTFVIFE-UHFFFAOYSA-N 2-amino-4-hydroxypyrimidine Chemical compound NC1=NC=CC(O)=N1 XQCZBXHVTFVIFE-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 101710149815 C-C chemokine receptor type 2 Proteins 0.000 description 1
- 101150083327 CCR2 gene Proteins 0.000 description 1
- 101150109801 CYP2C8 gene Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 108010000561 Cytochrome P-450 CYP2C8 Proteins 0.000 description 1
- 108010001237 Cytochrome P-450 CYP2D6 Proteins 0.000 description 1
- 102100029359 Cytochrome P450 2C8 Human genes 0.000 description 1
- 102100021704 Cytochrome P450 2D6 Human genes 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 108091092584 GDNA Proteins 0.000 description 1
- 108020005004 Guide RNA Proteins 0.000 description 1
- 101100329196 Homo sapiens CYP2D6 gene Proteins 0.000 description 1
- 101100334744 Homo sapiens FGFR4 gene Proteins 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 241000205160 Pyrococcus Species 0.000 description 1
- 241000522615 Pyrococcus horikoshii Species 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 241001235254 Thermococcus kodakarensis Species 0.000 description 1
- 241000205180 Thermococcus litoralis Species 0.000 description 1
- 241000589500 Thermus aquaticus Species 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 241000617156 archaeon Species 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- JWPGJSVJDAJRLW-UHFFFAOYSA-N debrisoquin Chemical compound C1=CC=C2CN(C(=N)N)CCC2=C1 JWPGJSVJDAJRLW-UHFFFAOYSA-N 0.000 description 1
- 229960004096 debrisoquine Drugs 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000036267 drug metabolism Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 1
- 238000003209 gene knockout Methods 0.000 description 1
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 1
- 239000001046 green dye Substances 0.000 description 1
- 238000012203 high throughput assay Methods 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000007124 immune defense Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- -1 nucleoside triphosphates Chemical class 0.000 description 1
- 238000012235 off-target genome editing Methods 0.000 description 1
- 230000005298 paramagnetic effect Effects 0.000 description 1
- XEBWQGVWTUSTLN-UHFFFAOYSA-M phenylmercury acetate Chemical compound CC(=O)O[Hg]C1=CC=CC=C1 XEBWQGVWTUSTLN-UHFFFAOYSA-M 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B20/00—ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
- G16B20/20—Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6827—Hybridisation assays for detection of mutation or polymorphism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6853—Nucleic acid amplification reactions using modified primers or templates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6858—Allele-specific amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/07—Nucleotidyltransferases (2.7.7)
- C12Y207/07007—DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/26—Endoribonucleases producing 5'-phosphomonoesters (3.1.26)
- C12Y301/26004—Ribonuclease H (3.1.26.4)
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16B—BIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
- G16B30/00—ICT specially adapted for sequence analysis involving nucleotides or amino acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/20—Fusion polypeptide containing a tag with affinity for a non-protein ligand
- C07K2319/21—Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1241—Nucleotidyltransferases (2.7.7)
- C12N9/1252—DNA-directed DNA polymerase (2.7.7.7), i.e. DNA replicase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2521/00—Reaction characterised by the enzymatic activity
- C12Q2521/30—Phosphoric diester hydrolysing, i.e. nuclease
- C12Q2521/327—RNAse, e.g. RNAseH
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2525/00—Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
- C12Q2525/10—Modifications characterised by
- C12Q2525/121—Modifications characterised by incorporating both deoxyribonucleotides and ribonucleotides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2525/00—Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
- C12Q2525/10—Modifications characterised by
- C12Q2525/155—Modifications characterised by incorporating/generating a new priming site
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2525/00—Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
- C12Q2525/10—Modifications characterised by
- C12Q2525/161—Modifications characterised by incorporating target specific and non-target specific sites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2525/00—Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
- C12Q2525/10—Modifications characterised by
- C12Q2525/185—Modifications characterised by incorporating bases where the precise position of the bases in the nucleic acid string is important
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2525/00—Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
- C12Q2525/10—Modifications characterised by
- C12Q2525/186—Modifications characterised by incorporating a non-extendable or blocking moiety
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2535/00—Reactions characterised by the assay type for determining the identity of a nucleotide base or a sequence of oligonucleotides
- C12Q2535/125—Allele specific primer extension
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Definitions
- the invention can be used to provide a more efficient and less error-prone method of detecting variants in DNA, such as single nucleotide polymorphisms (SNPs), multi-nucleotide polymorphisms (MNPs), and indels.
- SNPs single nucleotide polymorphisms
- MNPs multi-nucleotide polymorphisms
- the invention also provides a method for performing inexpensive multi-color assays, and provides methods for visualizing multiple allele results in a two-dimensional plot.
- RNase H2-dependent PCR (see U.S. Patent Application Publication No. US 2009/0325169 A1, incorporated by reference herein in its entirety) and standard allele-specific PCR (ASPCR) can both be utilized for mutation detection.
- ASPCR standard allele-specific PCR
- the DNA polymerase performs the mismatch discrimination by detection of a mismatch at or near the 3′ end of the primer. While ASPCR is sometimes successful in mismatch detection, the discrimination can be limited, due to the low mismatch detection ability of wild-type DNA polymerases.
- the mismatch sensitivity of the RNase H2 enzyme in rhPCR allows for both sensitive detection of DNA mutations, and elimination of primer-dimer artifacts from the reaction.
- placement of the mismatch within the primer is important. The nearer to the cleavable RNA the mismatch is located, the more discrimination is observed from the RNase H2 enzyme, and the greater the discrimination of the resulting rhPCR assay. Given the fact that most common wild-type DNA polymerases such as Taq often display low levels of mismatch detection, the polymerase cannot be solely relied upon to perform this discrimination after RNase H2 cleavage. Coupled with the repeated interrogation desired from every cycle of standard rhPCR, placing the mismatch anywhere other than immediately opposite the RNA is undesirable when utilizing these polymerases.
- the disclosure provides assays making use of high discrimination polymerase mutants or other high mismatch discrimination polymerases to create a new assay design that can utilize mismatches located 5′ of the RNA.
- the invention can be used to provide a more efficient and less error-prone method of detecting mutations in DNA, such as SNPs and indels.
- the invention also provides a method for performing inexpensive multi-color assays.
- FIG. 1 is a diagram showing two primer designs utilized in this invention.
- Part a) is a blocked-cleavable primer designed so that the SNP of interest is 5′ of the RNA base when hybridized to a template.
- the RNase H2 cleaves, leaving a 3′ interrogating base, which is determined to be either a match or a mismatch by the highly discriminative DNA polymerase. Thermal cycling allows for this process to continue.
- Part b) illustrates the RNase H2 cleavage and SNP detection are identical to a), but the primer also includes a 5′ “tail” domain that includes a binding site for a probe and a universal forward primer.
- the highly concentrated universal forward primer comes to dominate the amplification, degrading the probe when it amplifies. This cycle is repeated 25-50 ⁇ , generating the output signal.
- This primer design may be multiplexed, allowing for one-tube multi-color assay designs.
- FIGS. 2A and 2B are end-point fluorescence plots from the assay described in Example 1. FAM and HEX fluorescence values are plotted onto the X and Y axis.
- FIG. 2 A is a “Universal” SNP assay for rs351855 performed with WT Taq polymerase.
- FIG. 2B is a “Universal” SNP assay for rs351855 performed with mutant H784Q Taq polymerase, demonstrating greatly enhanced discrimination between each of the allelic variants as observed by the greater separation of the clusters in the mutant Taq case.
- the no template controls (NTCs) squares
- Allele 1 samples are shown as circles, allele 2 samples as diamonds, and heterozygotes as triangles. Each reaction was performed in triplicate.
- FIGS. 3A and 3B are allelic discrimination plots with genotyping calls for rs4655751.
- the reaction plate was cycled immediately after reaction setup (A) or held at room temperature on the benchtop for 48 hours prior to cycling (B).
- Genotypes are tightly clustered and have good angle separation, indicating excellent allelic specificity. Each sample was assigned the correct genotyping call, and no change in performance was observed over the 48 hour hold period.
- FIGS. 4A and 4B illustrate a side-by-side comparison of Allelic Discrimination Plots of gene CCR2, rs1799865 from a TaqMan based assay versus rhPCR.
- Diamonds no template controls (NTCs); squares: allele 1 samples; circles: allele 2 samples; triangles: heterozygotes.
- the rhPCR Genotyping Assay ( FIG. 4B ) achieved higher fluorescence signal compared to a traditional 5′-nuclease genotyping assay ( FIG. 4A ) while showing concordant results.
- FIGS. 5A and 5B are Allelic Discrimination plots of tri-allelic SNP, CYP2C8 (rs72558195), using an rhPCR genotyping single tube multiplex assay on the QuantStudioTM 7 Flex platform (Thermo Fisher).
- NTCs no template controls
- FIG. 5B diamonds: no template controls (NTCs); squares: allele G (allele 1) samples; circles: allele C (allele 3) samples; triangles: heterozygotes.
- FIG. 6 shows the Tri-allelic Allelic Discrimination 360plot of CYP2C8 rs72558195, using rhPCR genotyping assay with 3 allele-specific primers multiplexed in a single reaction.
- FIG. 7 is an allelic discrimination plot illustrating the ability of the rhPCR assay to perform quantitative genotyping.
- FIGS. 8A and 8B illustrate genotyping results and detection of allelic copy number variation that is possible with the present invention.
- gDNA samples were tested using varying copy numbers and varying reference genotypes.
- diamonds no template controls (NTCs); squares: allele G samples; circles: allele C samples; and triangles: heterozygotes. The resulting data correlates with the test input.
- FIG. 9 is a schematic representation of multiplex rhPCR.
- FIG. 10 is the resulting tape station image indicating the effectiveness of the multiplex rhPCR methods in reducing primer dimers and increasing desired amplicon yield.
- FIG. 11 graphically represents the effectiveness of the rhPrimers in the percent of mapped reads and on-target reads.
- the invention pertains to a methods of single-nucleotide polymorphism (SNP) discrimination utilizing blocked-cleavable rhPCR primers (see U.S. Patent Application Publication No. US 2009/0325169 A1, incorporated by reference herein in its entirety) and a DNA polymerase with high levels of mismatch discrimination.
- the mismatch is placed at a location other than opposite the RNA base. In these situations, the majority of the discrimination comes not from the RNase H2, but from the high discrimination polymerase.
- the use of blocked-cleavable primers with RNase H2 acts to reduce or eliminate primer-dimers and provide some increased amount of SNP or indel (insertion/deletion) discrimination ( FIG. 1 a ).
- high discrimination is defined as any amount of discrimination over the average discrimination of WT Thermus aquaticus (Taq) polymerase.
- Taq Thermus aquaticus
- examples include KlenTaq® DNA polymerase (Wayne Barnes), and mutant polymerases described in U.S. Patent Application Publication No. US 2015/0191707 (incorporated by reference herein in its entirety) such as H784M, H784S, H784A and H784Q mutants.
- a universal detection sequence(s) is added to the 5′-end of the blocked-cleavable primers.
- the detection sequence includes a binding site for a probe, and a binding site for a universal amplification primer.
- the primer binding site is positioned at or near the 5′-end of the final oligonucleotide and the probe binding site is positioned internally between the universal primer site and the SNP-detection primer domain.
- Use of more than one such chimeric probe in a detection reaction wherein distinct probe binding sites are employed allows primers to be multiplexed and further allows for multiple color detection of SNPs or other genomic features.
- Blocked-cleavable rhPCR primers reduce or eliminate primer-dimers.
- Primer-dimers are a major problem for use of “universal” primer designs in SNP detection assays, and that limits their utility ( FIG. 1 b ). Combining a universal amplification/detection domain with a SNP primer domain in blocked-cleavable primer format overcomes this difficulty.
- rhPCR SNP discrimination employed blocked-cleavable primers having the mismatch (SNP site) positioned opposite the single RNA base (cleavage site). While this works for many SNP targets, there are base match/mismatch pairings where sufficient discrimination is not obtained for robust base calling. Moreover, due to the high level of differential SNP discrimination observed with rhPCR, end-point detection can be difficult, especially with heterozygous target DNAs. In the proposed method, the RNA base is identical in both discriminating primers, eliminating this issue.
- the method involves the use of blocked-cleavable primers wherein the mismatch is placed 1-2 bases 5′ of the RNA. In a further embodiment, the method involves the use of blocked-cleavable primers with three or more DNA bases 3′ of an RNA residue, and the primers are designed such that the mismatch is placed immediately 5′ of the RNA.
- the remaining primer has a DNA residue positioned at the 3′-end exactly at the SNP site, effectively creating an ASPCR primer.
- a high-specificity DNA polymerase can discriminate between match and mismatch with the template strand ( FIGS. 1 a and b ).
- Native DNA polymerases such as Taq DNA polymerase, will show some level of discrimination in this primer configuration, and if the level of discrimination achieved is not sufficient for robust SNP calling in a high throughput assay format then the use of polymerases with improved template discrimination can be used.
- mutant DNA polymerases such as those disclosed in U.S. Patent Application Publication No.
- the invention may utilize a “tail” domain added to the 5′ end of the primer, containing a universal forward primer binding site sequence and optionally a universal probe sequence.
- This tail would not be complementary to the template of interest, and when a probe is used, the tail would allow for inexpensive fluorescent signal detection, which could be multiplexed to allow for multiple color signal detection in qPCR ( FIG. 1 b ).
- 1-10 cycles of initial cycling and discrimination occurs from both the RNase H2 and the DNA polymerase. After this initial pre-cycling, a highly concentrated and non-discriminatory universal forward primer comes to dominate the amplification, degrading the probe and generating the fluorescent signal when the DNA amplifies. This cycle is repeated 25-50 ⁇ , allowing for robust detection.
- This assay design is prone to issues with primer-dimers, and the presence of the blocked-cleavable domain in the primers will suppress or eliminate these issues.
- a forward primer is optionally used with a reverse primer, and a tail domain is added to the 5′ end of one or both of a forward and reverse primer set.
- the tail domain comprises a universal forward primer binding site.
- the primers can be used to hybridize and amplify a target such as a genomic sample of interest.
- the primers would add universal priming sites to the target, and further cycles of amplification can be performed using universal primers that contain adapter sequences that enable further processing of the sample, such as the addition of P5/P7 flow cell binding sites and associated index or barcoding sequences useful in adapters for next-generation sequencing (see FIG. 9 ).
- a high fidelity polymerase is used, which will further lower the rate of base misincorporation into the extended product and increase the accuracy of the methods of the invention.
- CRISPR/Cas9 is a revolutionary strategy in genome editing that enables generation of targeted, double-stranded breaks (DSBs) in genomic DNA.
- the endonuclease activity is followed by an endogenous repair process that leads to some frequency of insertions/deletions/substitutions in wild-type DNA at the target locus which gives the resultant genome editing.
- RNase H-cleavable primers have been designed to flank edited loci in order to 1) generate locus-specific amplicons with universal tails, and 2) be subsequently amplified with indexed P5/P7 universal primers for next-generation sequencing.
- this strategy resulted in reliable, locus-specific amplification which captures CRISPR/Cas9 editing events in a high-throughput and reproducible manner.
- the key finding is that the overall targeted editing by this NGS-based method was determined to be 95%; whereas, previous enzymatic strategies suggested overall editing from the same samples was approximately 55% at the intended target site.
- primers were designed to amplify off-target locations of genomic editing based on in silico predictions by internal bioinformatics tools.
- RNase H2 can cleave at positions containing one or more RNA bases, at 2′-modified nucleosides such as 2′-fluoronucleosides.
- the primers can also contain nuclease resistant linkages such as phosphorothioate, phosphorodithioate, or methylphosphonate.
- “Complement” or “complementary” as used herein means a nucleic acid, and can mean Watson-Crick (e.g., A-T/U and C-G) or Hoogsteen base pairing between nucleotides or nucleotide analogs of nucleic acid molecules.
- Fluorophore or “fluorescent label” refers to compounds with a fluorescent emission maximum between about 350 and 900 nm.
- Hybridization refers to the formation of a duplex structure by two single-stranded nucleic acids due to complementary base pairing. Hybridization can occur between fully complementary nucleic acid strands or between “substantially complementary” nucleic acid strands that contain minor regions of mismatch. “Identical” sequences refers to sequences of the exact same sequence or sequences similar enough to act in the same manner for the purpose of signal generation or hybridizing to complementary nucleic acid sequences. “Primer dimers” refers to the hybridization of two oligonucleotide primers. “Stringent hybridization conditions” as used herein means conditions under which hybridization of fully complementary nucleic acid strands is strongly preferred.
- a first nucleic acid sequence for example, a primer
- a second nucleic acid sequence for example, a target sequence
- Stringent conditions are sequence-dependent and will be different in different circumstances.
- Stringent conditions can be selected to be about 5-10° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength pH.
- Tm can be the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of an oligonucleotide complementary to a target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at Tm, 50% of the probes are occupied at equilibrium).
- Stringent conditions can be those in which the salt concentration is less than about 1.0 M sodium ion, such as about 0.01-1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes (e.g., about 10-50 nucleotides) and at least about 60° C. for long probes (e.g., greater than about 50 nucleotides). Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal can be at least 2 to 10 times background hybridization.
- Exemplary stringent hybridization conditions include the following: 50% formamide, 5 ⁇ SSC, and 1% SDS, incubating at 42° C., or, 5 ⁇ SSC, 1% SDS, incubating at 65° C., with wash in 0.2 ⁇ SSC, and 0.1% SDS at 65° C.
- nucleic acid refers to at least two nucleotides covalently linked together.
- the depiction of a single strand also defines the sequence of the complementary strand.
- a nucleic acid also encompasses the complementary strand of a depicted single strand.
- Many variants of a nucleic acid can be used for the same purpose as a given nucleic acid.
- a nucleic acid also encompasses substantially identical nucleic acids and complements thereof.
- a single strand provides a probe that can hybridize to a target sequence under stringent hybridization conditions.
- a nucleic acid also encompasses a probe that hybridizes under stringent hybridization conditions.
- Nucleic acids can be single stranded or double stranded, or can contain portions of both double stranded and single stranded sequences.
- the nucleic acid can be DNA, both genomic and cDNA, RNA, or a hybrid, where the nucleic acid can contain combinations of deoxyribo- and ribonucleotides, and combinations of bases including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine and isoguanine.
- Nucleic acids can be obtained by chemical synthesis methods or by recombinant methods.
- a particular nucleic acid sequence can encompass conservatively modified variants thereof (e.g., codon substitutions), alleles, orthologs, single nucleotide polymorphisms (SNPs), and complementary sequences as well as the sequence explicitly indicated.
- PCR Polymerase Chain Reaction
- the reaction typically involves the use of two synthetic oligonucleotide primers, which are complementary to nucleotide sequences in the substrate DNA which are separated by a short distance of a few hundred to a few thousand base pairs, and the use of a thermostable DNA polymerase.
- the chain reaction consists of a series of 10 to 40 cycles. In each cycle, the substrate DNA is first denatured at high temperature. After cooling down, synthetic primers which are present in vast excess, hybridize to the substrate DNA to form double-stranded structures along complementary nucleotide sequences.
- the primer-substrate DNA complexes will then serve as initiation sites for a DNA synthesis reaction catalyzed by a DNA polymerase, resulting in the synthesis of a new DNA strand complementary to the substrate DNA strand.
- the synthesis process is repeated with each additional cycle, creating an amplified product of the substrate DNA.
- Primer refers to an oligonucleotide capable of acting as a point of initiation for DNA synthesis under suitable conditions. Suitable conditions include those in which hybridization of the oligonucleotide to a template nucleic acid occurs, and synthesis or amplification of the target sequence occurs, in the presence of four different nucleoside triphosphates and an agent for extension (e.g., a DNA polymerase) in an appropriate buffer and at a suitable temperature.
- a DNA polymerase an agent for extension
- Probe and “fluorescent generation probe” are synonymous and refer to either a) a sequence-specific oligonucleotide having an attached fluorophore and/or a quencher, and optionally a minor groove binder or b) a DNA binding reagent, such as, but not limited to, SYBR® Green dye.
- Quencher refers to a molecule or part of a compound, which is capable of reducing the emission from a fluorescent donor when attached to or in proximity to the donor. Quenching may occur by any of several mechanisms including fluorescence resonance energy transfer, photo-induced electron transfer, paramagnetic enhancement of intersystem crossing, Dexter exchange coupling, and exciton coupling such as the formation of dark complexes.
- RNase H PCR refers to a PCR reaction which utilizes “blocked” oligonucleotide primers and an RNase H enzyme.
- “Blocked” primers contain at least one chemical moiety (such as, but not limited to, a ribonucleic acid residue) bound to the primer or other oligonucleotide, such that hybridization of the blocked primer to the template nucleic acid occurs, without amplification of the nucleic acid by the DNA polymerase.
- the blocked primer hybridizes to the template or target nucleic acid, the chemical moiety is removed by cleavage by an RNase H enzyme, which is activated at a high temperature (e.g., 50° C. or greater). Following RNase H cleavage, amplification of the target DNA can occur.
- the 3′ end of a blocked primer can comprise the moiety rDDDDMx, wherein relative to the target nucleic acid sequence, “r” is an RNA residue, “D” is a complementary DNA residue, “M” is a mismatched DNA residue, and “x” is a C3 spacer.
- a C3 spacer is a short 3-carbon chain attached to the terminal 3′ hydroxyl group of the oligonucleotide, which further inhibits the DNA polymerase from binding before cleavage of the RNA residue.
- RNase H-dependent PCR reactions are performed using an RNase H enzyme obtained or derived from the hyperthermophilic archaeon Pyrococcus abyssi ( P. a. ), such as RNase H2.
- the RNase H enzyme employed in the methods described herein desirably is obtained or derived from Pyrococcus abyssi , preferably an RNase H2 obtained or derived from Pyrococcus abyssi .
- the RNase H enzyme employed in the methods described herein can be obtained or derived from other species, for example, Pyrococcus furiosis, Pyrococcus horikoshii, Thermococcus kodakarensis , or Thermococcus litoralis.
- This example demonstrates an enhanced rhPCR assay that utilizes a highly discriminatory DNA polymerase and RNase H2 for discrimination
- rhPrimers and standard allele-specific primers were designed against rs113488022, the V600E mutation in the human BRAF gene. These primers were tested in PCR and rhPCR with WT or H784Q mutant Taq polymerase. Primers utilized in these assays were as shown in Table 1 (SEQ ID NOs: 1-7).
- ZEN internal ZEN TM quencher (IDT, Coralville, IA)
- FAM 6-carboxyfluorescein
- IBFQ Iowa Black ® FQ (fluorescence quencher, IDT, Coralville, IA)
- x C3 propanediol spacer block
- reaction volumes were used in these assays.
- 5 ⁇ L of 2 ⁇ Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix (containing dNTPs, H784Q mutant or WT Taq DNA polymerase, stabilizers, and MgCl 2 ) was combined with 200 nM (2 pmol) of either of the allelic primers.
- 200 nM (2 pmol) of the probe, as well as 200 nM (5 pmol) of the reverse primer were also added.
- RNase H2 and 1000 copies of synthetic gBlockTM (Integrated DNA Technologies, Coralville, Iowa) template 1000 copies Allele 1, 500 copies allele 1+500 copies allele 2 (heterozygote), or 1000 copies Allele 2 (for gBlockTM sequences, see Table 2, SEQ ID NOs: 8-9) were added to the reaction mix.
- the reaction was thermocycled on a Bio-RadTM CFX384TM Real-time system. Cycling conditions were as follows: 953:00-(950:10-650:30) ⁇ 65 cycles. Each reaction was performed in triplicate.
- the following example demonstrates an enhanced rhPCR assay that utilizes a highly discriminatory DNA polymerase and RNase H2 for discrimination.
- rhPrimers and standard allele-specific primers were designed against rs113488022, the V600E mutation in the human BRAF gene. These primers were tested in PCR and rhPCR with H784Q mutant Taq polymerase. Primers utilized in these assays were as shown in Table 4 (SEQ ID NOs: 1, 4 and 10-12).
- RNase H2 and 5e4 copies of synthetic gBlockTM (Integrated DNA Technologies, Coralville, Iowa) template (1e5 copies Allele 1, 5e4 copies allele 1+5e4 copies allele 2 (heterozygote), or 1e5 copies Allele 2 (for gBlockTM sequences, see Table 2, SEQ ID NOs: 8-9) were added to the reaction mix.
- the reaction was thermocycled on a Bio-RadTM CFX384TM Real-time system. Cycling conditions were as follows: 95 3:00 -(95 0:10 -65 0:30 ) ⁇ 65 cycles. Each reaction was performed in triplicate.
- the following example illustrates the heightened reliability of universal assays using a DNA polymerase with a high mismatch discrimination.
- FAM 6-carboxyfluorescein
- HEX 6-carboxy-2′,4,4′,5′,7,7′-hexachlorofluorescein
- IBFQ Iowa Black FQ (fluorescence quencher)
- x C3 propanediol spacer block.
- RNase H2 and 1000 copies of synthetic gBlockTM (Integrated DNA Technologies, Coralville, Iowa) template (1000 copies Allele 1, 500 copies allele 1+500 copies allele 2 (heterozygote), or 1000 copies Allele 2 (for gBlockTM sequences, see Table 7, SEQ ID NOs: 19-20) were added to the reaction mix.
- the reaction was thermocycled on a Bio-RadTM CFX384TM Real-time system. Cycling conditions were as follows: 95 3:00 -(95 0:10 -60 0:30 ) ⁇ 3 cycles-(95 0:10 -65 0:30 ) ⁇ 65 cycles. Each reaction was performed in triplicate. Fluorescence reads were taken after a total of 50 cycles were completed. Fluorescence values were plotted on the FAM and HEX axis, and results are shown in FIGS. 2 a and 2 b .
- reaction volumes were used in these assays.
- 5 ⁇ L of 2 ⁇ Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix (containing dNTPs, H784Q mutant or WT Taq DNA polymerase, stabilizers, and MgCl 2 ) was combined with 200 nM (2 pmol) of either of the allelic primers, or the non-discriminatory forward primer.
- 200 nM (2 pmol) of the probe, as well as 200 nM (5 pmol) of the reverse primer were also added.
- the reaction was thermocycled on a Bio-RadTM CFX384TM Real-time system. Cycling conditions were as follows: 95 3:00 -(95 0:10 -60 0:30 ) ⁇ 65 cycles. Each reaction was performed in triplicate.
- This example demonstrates successful allelic discrimination with the use of a universal rhPCR genotyping assay and Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix, and the robust stability of the reaction components.
- IDT Integrated DNA Technologies
- universal primers were designed against rs4657751, a SNP located on the human Chromosome 1 (See Table 11, SEQ ID NOs: 14, 21-25).
- rhPCR assay primers 150 nM of rs4657751 Allele Specific Primer 1 (SEQ ID NO: 23), 150 nM of rs4657751 Allele Specific Primer 2 (SEQ ID NO: 24), and 500 nM rs4657751 Locus Specific Primer (SEQ ID NO: 25).
- Reactions contained universal reporter oligos at the following concentrations: 250 nM of universal FAM probe (SEQ ID NO: 14), 450 nM of universal Yakima Yellow® (SEQ ID NO: 22) probe, and 1000 nM of universal forward primer (SEQ ID NO: 21), and 5 ⁇ L of 2 ⁇ Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix (containing dNTPs, a mutant H784Q Taq polymerase (see Behlke, et al. U.S. 2015/0191707), chemically modified Pyrococcus abyssi RNase H2 (See Walder et al. UA20130288245A1), stabilizers, and MgCl 2 ).
- IDTT Integrated DNA Technologies
- gBlocks® Gene Fragments (Integrated DNA Technologies, Inc., Coralville, Iowa) containing either allele of the rs4657751 SNP were utilized as the source of template DNA (See Table 12, SEQ ID NOs: 26 and 27).
- Each well contained template representing one of three possible genotypes: allele 1 homozygote (1000 copies rs4657751 Allele 1 gBlock® template (SEQ ID NO: 26)), allele 2 homozygote (1000 copies rs4657751 Allele 2 gBlock® template (SEQ ID NO: 27)), or heterozygote (mix of 500 copies of rs4657751 Allele 1 gBlock® template (SEQ ID NO: 26) and 500 copies of rs4657751 Allele 2 gBlock® template (SEQ ID NO: 27)).
- Template or water for the no template control (NTC) reactions were added into three replicate wells of two individual plates. The reactions underwent the following cycling protocol: 95° C. for 10 minutes,
- FAM 6-carboxyfluorescein
- Yak Yakima Yellow (3-(5,6,4′,7-tetrachloro-51-methyl-3′,6-dipivaloylfluorescein-2-yl))
- IBFQ Iowa Black FQ (fluorescence quencher)
- x C3 propanediol spacer block.
- the following example compares the performance of the genotyping methods of the present invention versus traditional 5′ nuclease genotyping assay methods (TaqmanTM).
- Thers1799865 SNP in the CCR2 gene was selected, and rhPCR genotyping primers as well as an rs17998655′ nuclease assay (Thermo-Fisher (Waltham, Mass.)), were designed and obtained. Sequences for the rs1799865 rhPCR genomic SNP assay are shown in Table 14 (SEQ ID NOs: 14, 21, 22, and 28-30). Thermo-Fisher 5′ nuclease primer/probe (TaqmanTM) sequences are not published, and therefore are not included in this document.
- Reactions were performed in 10 ⁇ L volumes, containing 10 ng Coriell genomic DNA (Camden, N.J.), 250 nM of universal FAM probe (SEQ ID NO: 14), 450 nM of universal Yakima Yellow® (SEQ ID NO: 22) probe, 1000 nM of universal forward primer (SEQ ID NO: 21), 150 nM of the two allele-specific forward primers (SEQ ID NOs: 28 and 29), 500 nM of the reverse primer (SEQ ID NO: 30), and 5 ⁇ L of 2 ⁇ Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix (containing dNTPs, a mutant H784Q Taq polymerase (see Behlke, et al. U.S. 2015/0191707), chemically modified Pyrococcus abyssi RNase H2 (See Walder et al. UA20130288245A1), stabilizers, and MgCl 2 ).
- IDTT
- PCR was performed on Life Technologies (Carlsbad, Calif.) QuantStudioTM 7 Flex real-time PCR instrument using the following cycling conditions: 10 mins at 95° C. followed by 50 cycles of 95° C. for 10 seconds and 60° C. for 45 seconds. End-point analysis of each of the plates was performed after 45 cycles with the QuantStudioTM Real-Time PCR Software v1.3 (Carlsbad, Calif.).
- FAM 6-carboxyfluorescein
- Yak Yakima Yellow (3-(5,6,4′,7′-tetrachloro-5′-methyl-3′,6′-dipivaloylfluorescein-2-yl))
- IBFQ Iowa Black FQ (fluorescence quencher)
- x C3 propanediol spacer block.
- FIGS. 4A and 4B show a side-by-side comparison of the resulting allelic discrimination plots.
- the rhPCR Genotyping Assay ( FIG. 4B ) achieved higher fluorescence signal compared to a traditional 5′-nuclease genotyping assay ( FIG. 4A ) while showing concordant results.
- the higher signal and minimal non-specific amplification from NTC in the rhPCR assay allow better cluster separation and accurate genotype calls.
- the following example illustrates the present methods allowing for detection and analysis of tri-allelic SNP.
- the rs72558195 SNP is present in the CYP2C8 gene, and has three potential genotypes. This SNP was selected for analysis with the rhPCR genotyping system.
- Reactions contained universal reporter oligos at the following concentrations: 250 nM of universal FAM probe (SEQ ID NO: 14), 450 nM of universal Yakima Yellow® (SEQ ID NO: 22) probe, and 1000 nM of universal forward primer (SEQ ID NO: 21), 50 nM ROX internal standard, and 5 ⁇ L of 2 ⁇ Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix (containing dNTPs, a mutant H784Q Taq polymerase (see Behlke, et al. U.S. 2015/0191707), chemically modified Pyrococcus abyssi RNase H2 (See Walder et al. UA20130288245A1), stabilizers, and MgCl 2 ).
- IDTT Integrated DNA Technologies
- LNA residues are designated with a +. Location of potential mismatch is underlined.
- FAM 6-carboxyfluorescein
- Yak Yakima Yellow (3-(5,6,4′,7′-tetrachloro-5′-methy1-3′,6′-dipivaloylfluorescein-2-yl))
- IBFQ Iowa Black FQ (fluorescence quencher)
- x C3 propanediol spacer block.
- gBlocks® Gene Fragments (Integrated DNA Technologies, Inc., Coralville, Iowa) containing alleles of the rs72558195 SNP were utilized as the source of template DNA (See Table 17, SEQ ID NOs: 35, 36 and 37).
- heterozygote (mix of 500 copies of rs72558195 Allele 1 gBlock® template (SEQ ID NO: 35) and 500 copies of rs72558195 Allele 3 gBlock® template (SEQ ID NO: 37)).
- Template or water for the no template control (NTC) reactions were added into three replicate wells of two individual plates. The reactions underwent the following cycling protocol: 95° C. for 10 minutes, then 45 cycles of 95° C. for 10 seconds and 60° C. for 45 seconds.
- a Tri-allelic AD 360plot was designed for illustrating allelic discrimination. Fluorescence signal ( ⁇ Rn) from the last PCR cycle of each dye was normalized across the three dyes from the same well. Angle and distance of data point from the origin is calculated using formula below:
- FIG. 5B shows the Tri-allelic Allelic Discrimination 360plot of rs72558195, using rhPCR genotyping assay with 3 allele-specific primers multiplexed in a single reaction.
- the distance of data points from origin indicated the signal strength of dyes and the wide angle separation between data clusters indicated specificity of multiplex assay.
- NTC in the center of the plot indicated no primer dimers or non-specific amplification.
- the specificity of multiplex assay is achieved by the selectivity of RNase H2 and the mutant Taq DNA polymerase as used in the previous examples. This AD 360plot will also enable auto-calling capability by genotyping software.
- a 360plot could be implemented for tetra-allelic, penta-allelic or hexa-allelic visualization. Therefore, visualization is possible for positions that could have multiple bases as well as potential deletions. The distance from origin remains unchanged for each calculation, and the angle formulas would be:
- the following example illustrates the capability of the methods of the present invention to provide quantitative SNP genotyping, allowing for determination of the copy numbers of different alleles.
- an assay was designed against rs1135840, a SNP in the human CYP2D6 gene. This gene can be present in multiple copies, and the number of copies with the rs1135840 SNP appears to affect drug metabolism (rapid metabolism of the drug Debrisoquine).
- Reactions were performed in 10 ⁇ L volumes, containing a total of 1500 copies of template at the ratios shown (10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9, and 0:10), 250 nM of universal FAM probe (SEQ ID NO: 14), 450 nM of universal Yakima Yellow® (SEQ ID NO: 22) probe, 1000 nM of universal forward primer (SEQ ID NO: 21), 150 nM of the two allele-specific forward primers, 500 nM of the reverse primer, and 5 ⁇ L of 2 ⁇ Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix (containing dNTPs, a mutant H784Q Taq polymerase (see Behlke, et al. U.S. 2015/0191707), chemically modified Pyrococcus abyssi RNase H2 (See Walder et al. UA20130288245A1)
- PCR was performed on Life Technologies (Carlsbad, Calif.) QuantStudioTM 7 Flex real-time PCR instrument using the following cycling conditions: 10 mins at 95° C. followed by 45 cycles of 95° C. for 10 seconds and 60° C. for 45 seconds. End-point analysis of each of the plates was performed after 45 cycles with software provided by the respective companies (Bio-Rad CFX Manager 3.1 software (Bio-Rad, Hercules, Calif.) and QuantStudioTM Real-Time PCR Software v1.3 (Carlsbad, Calif.)).
- FAM 6-carboxyfluorescein
- Yak Yakima Yellow (3-(5,6,4′,7-tetrachloro-51-methyl-3′,6′-dipivaloylfluorescein-2-yl))
- IBFQ Iowa Black FQ (fluorescence quencher)
- x C3 propanediol spacer block.
- the resulting data is illustrated in FIG. 7 .
- the spread of each of the sample mixes is sufficient for the determination of the number of copies of each template.
- Each individual assay also contained 50 nM ROX normalizer oligo, 250 nM of universal FAM probe (SEQ ID NO: 14), 450 nM of universal Yakima Yellow® (SEQ ID NO: 22) probe, 1000 nM of universal forward primer (SEQ ID NO: 21), 150 nM of the two allele-specific forward primers (SEQ ID NO: 38 and 39), 500 nM of the reverse primer (SEQ ID NO: 40), and 5 ⁇ L of 2 ⁇ Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix (containing dNTPs, a mutant H784Q Taq polymerase (see Behlke, et al. U.S.
- FAM 6-carboxyfluorescein
- Yak Yakima Yellow (3-(5,6,4′,7′-tetrachloro-5′-methyl-3′,6′-dipivaloylfluorescein-2-yl)
- IBFQ Iowa Black FQ (fluorescence quencher).
- Quantitative PCR was performed on Life Technologies (Carlsbad, Calif.) QuantStudioTM 7 Flex real-time PCR instrument using the following cycling conditions: 10 mins at 95° C. followed by 45 cycles of 95° C. for 10 seconds and 60° C. for 45 seconds. End-point analysis of each of the plates was performed after 45 cycles with the QuantStudioTM Real-Time PCR Software v1.3 (Carlsbad, Calif.) software provided by the company.
- Copy number was determined by the following method. For each sample shown to be a homozygote, ⁇ Cq (RNase P Cq—rs1135840 assay Cq) was calculated for each sample. For samples shown to be heterozygotes, ⁇ Cq was calculated for both alleles (RNase P Cq—rs1135840 assay 1 Cq and RNase P Cq—rs1135840 assay 2 Cq). Next, ⁇ Cq ( ⁇ Cq ⁇ mean ⁇ Cq for known 2 copy control DNA samples) was calculated for each allele. This correction allowed for normalization against amplification differences between the SNP assay and the RNase P assay. Finally, the following equation was used to calculate copy number for each allele:
- the resulting end-point data is shown in FIG. 8A and calculated copy numbers are shown in FIG. 8B .
- the genotypes determined in FIG. 8A (homozygotes allele 1, Homozygotes allele 2, or heterozygote) all matched the known genotypes, and allowed correct calculation of the copy number.
- the established reference copy number of the individual samples is shown under each result. In each case, the copy number determined by the assay correctly determined the genotype and copy number of the input DNA.
- the following example demonstrates that a variation of an rhPCR probe can be used for multiplexed rhPCR.
- the assay schematic is provided in FIG. 9 .
- 5′ tailed target-specific rhPrimers are used.
- the 5′ tails upon incorporation into the amplicon contain binding sites for a second round of PCR with different primers (blocked or unblocked) to add application specific sequences.
- this system can be used for amplification enrichment for next generation sequencing.
- 5′ tailed rhPCR primers contain read 1/read 2 primer sequences.
- the second round of PCR adds adapter sequences such as the P5/P7 series for Illumina® based sequencing platforms or other adaptors, including ones containing barcodes/unique molecular identifiers. This approach allows for adding any additional sequences onto the amplicon necessary for input into any NGS platform type.
- two primers sets including one containing a 96-plex set of 5′ tailed rhPrimers, and one containing 96 DNA “standard” 5′ tailed PCR primers were designed using an IDT algorithm.
- the two primer sets differed only in that the rhPrimers contained an internal cleavable RNA base and a blocking group on the 3′ end. Once the blocking group was removed by RNase H2 cleavage, the primer sequences become identical.
- the first round of PCR reactions contained the 96 plex at 10 nM of each blocked target specific primer, 10 ng of NA12878 human genomic DNA (Coriell Institute for Medical Research, Camden, N.J.), 200 mU of chemically modified Pyrococcus abyssi RNase H2 (See Walder et al. UA20130288245A1) (IDT, Coralville, Iowa) and 1 ⁇ KAPA 2G HotStart Fast Ready MixTM (Kapa Biosystems, Wilmington, Mass.).
- the thermal cycling profile was 10 mins at 95° C. followed by 8 cycles of 95° C. for 15 seconds and 60° C. for 4 minutes, and a final 99° C. finishing step for 15 minutes.
- Reactions were cleaned up with a 2 ⁇ AMPureTM XP beads (Beckman Coulter, Brea, Calif.). Briefly, 1004 AMPureTM SPRI beads were added to each PCR well, incubated for 5 minutes at room temperature and collected for 5 minutes at room temperature on plate magnet (DynaMagTM (Thermo-Fisher, (Watherham, Mass.) 96-well plate side-magnet). Beads were washed twice with 80% ethanol, and allowed to dry for 3 minutes at room temperature. Samples were eluted in 22 ⁇ L of TE at pH 8.0.
- the second round of PCR was set up using 204 of the cleaned up first round PCR products, universal PCR-50F and PCR-47R primers (See table 18, SEQ ID NOs: 44 and 45) at 2 uM and 1 ⁇ KAPA 2G HotStart Fast Ready MixTM (KAPA Biosystems, Wilmington, Mass.). Reactions were cycled for 45 seconds at 98° C. followed by 20 cycles of 98° C. for 15 seconds, 60° C. for 30 seconds, and 72° C. for 30 seconds. A final 1 minute 72° C. polishing step finished the reaction. Samples were cleaned up again with 0.8 ⁇ AMPureTM beads.
- 404 AMPureTM SPRI beads were added the second PCR wells, incubated for 5 minutes at room temperature and collected for 5 minutes at room temperature on plate magnet (DynaMagTM (Thermo-Fisher, (Watherham, Mass.) 96-well plate side-magnet). Beads were washed twice with 80% ethanol, and allowed to dry for 3 minutes at room temperature. Samples were eluted in 224 of TE at pH 8.0, and 204 was transferred to a new tube.
- DynaMagTM Thermo-Fisher, (Watherham, Mass.) 96-well plate side-magnet
- FIG. 10 shows the results from the Agilent® Tape Station.
- the primer dimer product was the most significant product produced using standard DNA primers in the presence of DNA template, with only a small amount of full length expected product. In the absence of template, the primer dimer product was the major component of the reaction. In the case of the blocked rhPCR primers, the vast majority of the material was the desired PCR products, with little primer dimer observed. In the absence of template, there is no primer dimer present, contrasting with the overwhelming abundance of primer dimer observed in the no template lane of the unblocked DNA primers. Quantitation of the product versus primer dimer bands show that mass ratio of product to primer dimer for the unblocked DNA primers was 0.6. The mass ratio for the rhPCR primers was 6.3.
- FIG. 11 summarizes two key sequencing metrics. The first is the percent of mapped reads from the sequencing data. The rhPCR reactions gave a percentage of reads mapped to the human genome at 85%, whereas the non-blocked DNA primers on give a mapped read percentage of less than 20. A second metric, the percentage of on-target reads, is almost 95% when using rhPCR primers, but less than 85% when the non-blocked primers are used in the multiplex. These results clearly demonstrate the utility of using rhPCR in multiplexing, where a large increase of the desired material is seen, and a vast reduction in undesired side products is observed. The differences mean less unwanted sequencing reads, and the depth of coverage of desired sequences is higher.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- Medical Informatics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Medicinal Chemistry (AREA)
- Plant Pathology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
- Pathology (AREA)
Abstract
The invention can be used to provide a more efficient and less error-prone method of detecting variants in DNA, such as SNPs and indels. The invention also provides a method for performing inexpensive multiplex assays.
Description
- This application claims the benefit of U.S. Provisional Application No. 62/339,317, filed May 20, 2016, and also claims the benefit of U.S. Provisional Application No. 62/259,913, filed Nov. 25, 2015, the disclosures of both of which are hereby incorporated by reference in their entireties.
- The invention can be used to provide a more efficient and less error-prone method of detecting variants in DNA, such as single nucleotide polymorphisms (SNPs), multi-nucleotide polymorphisms (MNPs), and indels. The invention also provides a method for performing inexpensive multi-color assays, and provides methods for visualizing multiple allele results in a two-dimensional plot.
- RNase H2-dependent PCR (rhPCR) (see U.S. Patent Application Publication No. US 2009/0325169 A1, incorporated by reference herein in its entirety) and standard allele-specific PCR (ASPCR) can both be utilized for mutation detection. In ASPCR, the DNA polymerase performs the mismatch discrimination by detection of a mismatch at or near the 3′ end of the primer. While ASPCR is sometimes successful in mismatch detection, the discrimination can be limited, due to the low mismatch detection ability of wild-type DNA polymerases.
- In contrast with ASPCR, the mismatch sensitivity of the RNase H2 enzyme in rhPCR allows for both sensitive detection of DNA mutations, and elimination of primer-dimer artifacts from the reaction. When attempting to detect DNA mutations with rhPCR, however, placement of the mismatch within the primer is important. The nearer to the cleavable RNA the mismatch is located, the more discrimination is observed from the RNase H2 enzyme, and the greater the discrimination of the resulting rhPCR assay. Given the fact that most common wild-type DNA polymerases such as Taq often display low levels of mismatch detection, the polymerase cannot be solely relied upon to perform this discrimination after RNase H2 cleavage. Coupled with the repeated interrogation desired from every cycle of standard rhPCR, placing the mismatch anywhere other than immediately opposite the RNA is undesirable when utilizing these polymerases.
- The disclosure provides assays making use of high discrimination polymerase mutants or other high mismatch discrimination polymerases to create a new assay design that can utilize mismatches located 5′ of the RNA.
- The invention can be used to provide a more efficient and less error-prone method of detecting mutations in DNA, such as SNPs and indels. The invention also provides a method for performing inexpensive multi-color assays.
- These and other advantages of the invention, as well as additional inventive features, will be apparent from the description of the invention provided herein.
-
FIG. 1 is a diagram showing two primer designs utilized in this invention. Part a) is a blocked-cleavable primer designed so that the SNP of interest is 5′ of the RNA base when hybridized to a template. The RNase H2 cleaves, leaving a 3′ interrogating base, which is determined to be either a match or a mismatch by the highly discriminative DNA polymerase. Thermal cycling allows for this process to continue. Part b) illustrates the RNase H2 cleavage and SNP detection are identical to a), but the primer also includes a 5′ “tail” domain that includes a binding site for a probe and a universal forward primer. After 1-10 cycles of discrimination with the RNase H2 and the polymerase, the highly concentrated universal forward primer comes to dominate the amplification, degrading the probe when it amplifies. This cycle is repeated 25-50×, generating the output signal. This primer design may be multiplexed, allowing for one-tube multi-color assay designs. -
FIGS. 2A and 2B are end-point fluorescence plots from the assay described in Example 1. FAM and HEX fluorescence values are plotted onto the X and Y axis. FIG. 2A is a “Universal” SNP assay for rs351855 performed with WT Taq polymerase.FIG. 2B is a “Universal” SNP assay for rs351855 performed with mutant H784Q Taq polymerase, demonstrating greatly enhanced discrimination between each of the allelic variants as observed by the greater separation of the clusters in the mutant Taq case. In both cases, the no template controls (NTCs) (squares) are near the (0,0) coordinates, as desired.Allele 1 samples are shown as circles,allele 2 samples as diamonds, and heterozygotes as triangles. Each reaction was performed in triplicate. -
FIGS. 3A and 3B are allelic discrimination plots with genotyping calls for rs4655751. The reaction plate was cycled immediately after reaction setup (A) or held at room temperature on the benchtop for 48 hours prior to cycling (B). Diamonds: no template controls (NTCs); squares:allele 1 samples; circles:allele 2 samples; triangles: heterozygotes. Genotypes are tightly clustered and have good angle separation, indicating excellent allelic specificity. Each sample was assigned the correct genotyping call, and no change in performance was observed over the 48 hour hold period. -
FIGS. 4A and 4B illustrate a side-by-side comparison of Allelic Discrimination Plots of gene CCR2, rs1799865 from a TaqMan based assay versus rhPCR. Diamonds: no template controls (NTCs); squares:allele 1 samples; circles:allele 2 samples; triangles: heterozygotes. The rhPCR Genotyping Assay (FIG. 4B ) achieved higher fluorescence signal compared to a traditional 5′-nuclease genotyping assay (FIG. 4A ) while showing concordant results. -
FIGS. 5A and 5B are Allelic Discrimination plots of tri-allelic SNP, CYP2C8 (rs72558195), using an rhPCR genotyping single tube multiplex assay on the QuantStudio™ 7 Flex platform (Thermo Fisher). InFIG. 5A , diamonds: no template controls (NTCs); squares: allele G (allele 1) samples; circles: allele A (allele 2) samples; triangles: heterozygotes. InFIG. 5B , diamonds: no template controls (NTCs); squares: allele G (allele 1) samples; circles: allele C (allele 3) samples; triangles: heterozygotes. -
FIG. 6 shows the Tri-allelic Allelic Discrimination 360plot of CYP2C8 rs72558195, using rhPCR genotyping assay with 3 allele-specific primers multiplexed in a single reaction. -
FIG. 7 is an allelic discrimination plot illustrating the ability of the rhPCR assay to perform quantitative genotyping. -
FIGS. 8A and 8B illustrate genotyping results and detection of allelic copy number variation that is possible with the present invention. gDNA samples were tested using varying copy numbers and varying reference genotypes. InFIG. 8A , diamonds: no template controls (NTCs); squares: allele G samples; circles: allele C samples; and triangles: heterozygotes. The resulting data correlates with the test input. -
FIG. 9 is a schematic representation of multiplex rhPCR. -
FIG. 10 is the resulting tape station image indicating the effectiveness of the multiplex rhPCR methods in reducing primer dimers and increasing desired amplicon yield. -
FIG. 11 graphically represents the effectiveness of the rhPrimers in the percent of mapped reads and on-target reads. - The invention pertains to a methods of single-nucleotide polymorphism (SNP) discrimination utilizing blocked-cleavable rhPCR primers (see U.S. Patent Application Publication No. US 2009/0325169 A1, incorporated by reference herein in its entirety) and a DNA polymerase with high levels of mismatch discrimination. In one embodiment, the mismatch is placed at a location other than opposite the RNA base. In these situations, the majority of the discrimination comes not from the RNase H2, but from the high discrimination polymerase. The use of blocked-cleavable primers with RNase H2 acts to reduce or eliminate primer-dimers and provide some increased amount of SNP or indel (insertion/deletion) discrimination (
FIG. 1a ). - For the purposes of this invention, high discrimination is defined as any amount of discrimination over the average discrimination of WT Thermus aquaticus (Taq) polymerase. Examples include KlenTaq® DNA polymerase (Wayne Barnes), and mutant polymerases described in U.S. Patent Application Publication No. US 2015/0191707 (incorporated by reference herein in its entirety) such as H784M, H784S, H784A and H784Q mutants.
- In a further embodiment a universal detection sequence(s) is added to the 5′-end of the blocked-cleavable primers. The detection sequence includes a binding site for a probe, and a binding site for a universal amplification primer. The primer binding site is positioned at or near the 5′-end of the final oligonucleotide and the probe binding site is positioned internally between the universal primer site and the SNP-detection primer domain. Use of more than one such chimeric probe in a detection reaction wherein distinct probe binding sites are employed allows primers to be multiplexed and further allows for multiple color detection of SNPs or other genomic features. Blocked-cleavable rhPCR primers reduce or eliminate primer-dimers. Primer-dimers are a major problem for use of “universal” primer designs in SNP detection assays, and that limits their utility (
FIG. 1b ). Combining a universal amplification/detection domain with a SNP primer domain in blocked-cleavable primer format overcomes this difficulty. - Previously, the best preferred embodiment for rhPCR SNP discrimination employed blocked-cleavable primers having the mismatch (SNP site) positioned opposite the single RNA base (cleavage site). While this works for many SNP targets, there are base match/mismatch pairings where sufficient discrimination is not obtained for robust base calling. Moreover, due to the high level of differential SNP discrimination observed with rhPCR, end-point detection can be difficult, especially with heterozygous target DNAs. In the proposed method, the RNA base is identical in both discriminating primers, eliminating this issue.
- In one embodiment of the invention, the method involves the use of blocked-cleavable primers wherein the mismatch is placed 1-2
bases 5′ of the RNA. In a further embodiment, the method involves the use of blocked-cleavable primers with three ormore DNA bases 3′ of an RNA residue, and the primers are designed such that the mismatch is placed immediately 5′ of the RNA. - Following cleavage by RNase H2, the remaining primer has a DNA residue positioned at the 3′-end exactly at the SNP site, effectively creating an ASPCR primer. In this configuration, a high-specificity DNA polymerase can discriminate between match and mismatch with the template strand (
FIGS. 1a and b ). Native DNA polymerases, such as Taq DNA polymerase, will show some level of discrimination in this primer configuration, and if the level of discrimination achieved is not sufficient for robust SNP calling in a high throughput assay format then the use of polymerases with improved template discrimination can be used. In one embodiment, mutant DNA polymerases, such as those disclosed in U.S. Patent Application Publication No. US 2015/0191707 (incorporated by reference herein in its entirety) or any other polymerase designed or optimized to improve template discrimination can be used. When using polymerases with increased mismatch discrimination, the final level of match/mismatch discrimination achieved will be additive with contributions from both the ASPCR primer polymerase interaction and from the rhPCR primer/RNaseH2 interaction. Further, the use of blocked-cleavable primers reduces risk of primer-dimer formation, which produces false-positive signals, making the overall reaction more robust and having higher sensitivity and higher specificity. The relative contributions of each component of the assay may vary with use of different polymerases, different blocking groups on the 3′-end of the primer and different RNase H2 enzymes. - In another embodiment, the invention may utilize a “tail” domain added to the 5′ end of the primer, containing a universal forward primer binding site sequence and optionally a universal probe sequence. This tail would not be complementary to the template of interest, and when a probe is used, the tail would allow for inexpensive fluorescent signal detection, which could be multiplexed to allow for multiple color signal detection in qPCR (
FIG. 1b ). In one embodiment, 1-10 cycles of initial cycling and discrimination occurs from both the RNase H2 and the DNA polymerase. After this initial pre-cycling, a highly concentrated and non-discriminatory universal forward primer comes to dominate the amplification, degrading the probe and generating the fluorescent signal when the DNA amplifies. This cycle is repeated 25-50×, allowing for robust detection. This assay design is prone to issues with primer-dimers, and the presence of the blocked-cleavable domain in the primers will suppress or eliminate these issues. - In another embodiment, a forward primer is optionally used with a reverse primer, and a tail domain is added to the 5′ end of one or both of a forward and reverse primer set. The tail domain comprises a universal forward primer binding site. The primers can be used to hybridize and amplify a target such as a genomic sample of interest. The primers would add universal priming sites to the target, and further cycles of amplification can be performed using universal primers that contain adapter sequences that enable further processing of the sample, such as the addition of P5/P7 flow cell binding sites and associated index or barcoding sequences useful in adapters for next-generation sequencing (see
FIG. 9 ). In a further embodiment a high fidelity polymerase is used, which will further lower the rate of base misincorporation into the extended product and increase the accuracy of the methods of the invention. - In a further embodiment, the tailed primers detailed above could be used to detect editing events for genome editing technology. For example, CRISPR/Cas9 is a revolutionary strategy in genome editing that enables generation of targeted, double-stranded breaks (DSBs) in genomic DNA. Methods to achieve DSBs by CRISPR/Cas9—which is a bacterial immune defense system comprised of an endonuclease that is targeted to double-stranded DNA by a guide RNA—are being widely used in gene disruption, gene knockout, gene insertion, etc. In mammalian cells, the endonuclease activity is followed by an endogenous repair process that leads to some frequency of insertions/deletions/substitutions in wild-type DNA at the target locus which gives the resultant genome editing.
- RNase H-cleavable primers have been designed to flank edited loci in order to 1) generate locus-specific amplicons with universal tails, and 2) be subsequently amplified with indexed P5/P7 universal primers for next-generation sequencing. In pilot experiments, this strategy resulted in reliable, locus-specific amplification which captures CRISPR/Cas9 editing events in a high-throughput and reproducible manner. The key finding is that the overall targeted editing by this NGS-based method was determined to be 95%; whereas, previous enzymatic strategies suggested overall editing from the same samples was approximately 55% at the intended target site. Further, primers were designed to amplify off-target locations of genomic editing based on in silico predictions by internal bioinformatics tools.
- These assays would be pooled for amplification of a single genomic DNA sample in order to capture the on-target as well as >100 potential sites for off-target genome editing mediated by sequence homology to the guide RNA. The results from this experiment would allow for 1) identification of CRISPR/Cas9 off-target sites and provide an assay for comparing strategies to reduce those effects, 2) improved design of the CRISPR/Cas9 off-target prediction algorithm, and 3) improved design of primer sets.
- As noted in U.S. Patent Application Publication No. US 2009/0325169 (incorporated by reference herein in its entirety), RNase H2 can cleave at positions containing one or more RNA bases, at 2′-modified nucleosides such as 2′-fluoronucleosides. The primers can also contain nuclease resistant linkages such as phosphorothioate, phosphorodithioate, or methylphosphonate.
- Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. In case of conflict, the present document, including definitions, will control. Preferred methods and materials are described below, although methods and materials similar or equivalent to those described herein can be used in practice or testing of the present invention.
- “Complement” or “complementary” as used herein means a nucleic acid, and can mean Watson-Crick (e.g., A-T/U and C-G) or Hoogsteen base pairing between nucleotides or nucleotide analogs of nucleic acid molecules.
- “Fluorophore” or “fluorescent label” refers to compounds with a fluorescent emission maximum between about 350 and 900 nm.
- “Hybridization” as used herein, refers to the formation of a duplex structure by two single-stranded nucleic acids due to complementary base pairing. Hybridization can occur between fully complementary nucleic acid strands or between “substantially complementary” nucleic acid strands that contain minor regions of mismatch. “Identical” sequences refers to sequences of the exact same sequence or sequences similar enough to act in the same manner for the purpose of signal generation or hybridizing to complementary nucleic acid sequences. “Primer dimers” refers to the hybridization of two oligonucleotide primers. “Stringent hybridization conditions” as used herein means conditions under which hybridization of fully complementary nucleic acid strands is strongly preferred. Under stringent hybridization conditions, a first nucleic acid sequence (for example, a primer) will hybridize to a second nucleic acid sequence (for example, a target sequence), such as in a complex mixture of nucleic acids. Stringent conditions are sequence-dependent and will be different in different circumstances. Stringent conditions can be selected to be about 5-10° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength pH. The Tm can be the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of an oligonucleotide complementary to a target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at Tm, 50% of the probes are occupied at equilibrium). Stringent conditions can be those in which the salt concentration is less than about 1.0 M sodium ion, such as about 0.01-1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C. for short probes (e.g., about 10-50 nucleotides) and at least about 60° C. for long probes (e.g., greater than about 50 nucleotides). Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal can be at least 2 to 10 times background hybridization. Exemplary stringent hybridization conditions include the following: 50% formamide, 5×SSC, and 1% SDS, incubating at 42° C., or, 5×SSC, 1% SDS, incubating at 65° C., with wash in 0.2×SSC, and 0.1% SDS at 65° C.
- The terms “nucleic acid,” “oligonucleotide,” or “polynucleotide,” as used herein, refer to at least two nucleotides covalently linked together. The depiction of a single strand also defines the sequence of the complementary strand. Thus, a nucleic acid also encompasses the complementary strand of a depicted single strand. Many variants of a nucleic acid can be used for the same purpose as a given nucleic acid. Thus, a nucleic acid also encompasses substantially identical nucleic acids and complements thereof. A single strand provides a probe that can hybridize to a target sequence under stringent hybridization conditions. Thus, a nucleic acid also encompasses a probe that hybridizes under stringent hybridization conditions.
- Nucleic acids can be single stranded or double stranded, or can contain portions of both double stranded and single stranded sequences. The nucleic acid can be DNA, both genomic and cDNA, RNA, or a hybrid, where the nucleic acid can contain combinations of deoxyribo- and ribonucleotides, and combinations of bases including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine and isoguanine. Nucleic acids can be obtained by chemical synthesis methods or by recombinant methods. A particular nucleic acid sequence can encompass conservatively modified variants thereof (e.g., codon substitutions), alleles, orthologs, single nucleotide polymorphisms (SNPs), and complementary sequences as well as the sequence explicitly indicated.
- “Polymerase Chain Reaction (PCR)” refers to the enzymatic reaction in which DNA fragments are synthesized and amplified from a substrate DNA in vitro. The reaction typically involves the use of two synthetic oligonucleotide primers, which are complementary to nucleotide sequences in the substrate DNA which are separated by a short distance of a few hundred to a few thousand base pairs, and the use of a thermostable DNA polymerase. The chain reaction consists of a series of 10 to 40 cycles. In each cycle, the substrate DNA is first denatured at high temperature. After cooling down, synthetic primers which are present in vast excess, hybridize to the substrate DNA to form double-stranded structures along complementary nucleotide sequences. The primer-substrate DNA complexes will then serve as initiation sites for a DNA synthesis reaction catalyzed by a DNA polymerase, resulting in the synthesis of a new DNA strand complementary to the substrate DNA strand. The synthesis process is repeated with each additional cycle, creating an amplified product of the substrate DNA.
- “Primer,” as used herein, refers to an oligonucleotide capable of acting as a point of initiation for DNA synthesis under suitable conditions. Suitable conditions include those in which hybridization of the oligonucleotide to a template nucleic acid occurs, and synthesis or amplification of the target sequence occurs, in the presence of four different nucleoside triphosphates and an agent for extension (e.g., a DNA polymerase) in an appropriate buffer and at a suitable temperature.
- “Probe” and “fluorescent generation probe” are synonymous and refer to either a) a sequence-specific oligonucleotide having an attached fluorophore and/or a quencher, and optionally a minor groove binder or b) a DNA binding reagent, such as, but not limited to, SYBR® Green dye.
- “Quencher” refers to a molecule or part of a compound, which is capable of reducing the emission from a fluorescent donor when attached to or in proximity to the donor. Quenching may occur by any of several mechanisms including fluorescence resonance energy transfer, photo-induced electron transfer, paramagnetic enhancement of intersystem crossing, Dexter exchange coupling, and exciton coupling such as the formation of dark complexes.
- The term “RNase H PCR (rhPCR)” refers to a PCR reaction which utilizes “blocked” oligonucleotide primers and an RNase H enzyme. “Blocked” primers contain at least one chemical moiety (such as, but not limited to, a ribonucleic acid residue) bound to the primer or other oligonucleotide, such that hybridization of the blocked primer to the template nucleic acid occurs, without amplification of the nucleic acid by the DNA polymerase. Once the blocked primer hybridizes to the template or target nucleic acid, the chemical moiety is removed by cleavage by an RNase H enzyme, which is activated at a high temperature (e.g., 50° C. or greater). Following RNase H cleavage, amplification of the target DNA can occur.
- In one embodiment, the 3′ end of a blocked primer can comprise the moiety rDDDDMx, wherein relative to the target nucleic acid sequence, “r” is an RNA residue, “D” is a complementary DNA residue, “M” is a mismatched DNA residue, and “x” is a C3 spacer. A C3 spacer is a short 3-carbon chain attached to the
terminal 3′ hydroxyl group of the oligonucleotide, which further inhibits the DNA polymerase from binding before cleavage of the RNA residue. - The methods described herein can be performed using any suitable RNase H enzyme that is derived or obtained from any organism. Typically, RNase H-dependent PCR reactions are performed using an RNase H enzyme obtained or derived from the hyperthermophilic archaeon Pyrococcus abyssi (P. a.), such as RNase H2. Thus, in one embodiment, the RNase H enzyme employed in the methods described herein desirably is obtained or derived from Pyrococcus abyssi, preferably an RNase H2 obtained or derived from Pyrococcus abyssi. In other embodiments, the RNase H enzyme employed in the methods described herein can be obtained or derived from other species, for example, Pyrococcus furiosis, Pyrococcus horikoshii, Thermococcus kodakarensis, or Thermococcus litoralis.
- The following examples further illustrate the invention but should not be construed as in any way limiting its scope.
- This example demonstrates an enhanced rhPCR assay that utilizes a highly discriminatory DNA polymerase and RNase H2 for discrimination
- To demonstrate the utility of these new assay designs, rhPrimers and standard allele-specific primers were designed against rs113488022, the V600E mutation in the human BRAF gene. These primers were tested in PCR and rhPCR with WT or H784Q mutant Taq polymerase. Primers utilized in these assays were as shown in Table 1 (SEQ ID NOs: 1-7).
-
TABLE 1 Sequence of oligonucleotides employed in SNP discrimination assay described in Example 1. Name Sequence SEQ ID NO. Forward non- GCTGTGATTTTGGTCTAGCTACAG SEQ ID NO. 1 discriminating primer Forward Allele GCTGTGATTTTGGTCTAGCTACAGT SEQ ID NO. 2 1 ASP1 ASPCR primer Forward Allele GCTGTGATTTTGGTCTAGCTACAGA SEQ ID NO. 3 2 ASP2 ASPCR primer Probe FAM-TCCCATCAG-ZEN- SEQ ID NO. 4 TTTGAACAGTTGTCTGGA-IBFQ rs113488022 GCTGTGATTTTGGTCTAGCTACAGTgAA SEQ ID NO. 5 Allele 1ATG-x Forward ASP1 rhPrimer rs113488022 GCTGTGATTTTGGTCTAGCTACAGAgAA SEQ ID NO. 6 Allele 2ATG-x Forward ASP2 rhPrimer Reverse GCCCTCAATTCTTACCATCCACAAAaTGG SEQ ID NO. 7 rhPrimer AA-x Nucleic acid sequences are shown 5′-3′. DNA is uppercase, RNA is lowercase. Location of potential mismatch is underlined. ZEN = internal ZEN ™ quencher (IDT, Coralville, IA), FAM = 6-carboxyfluorescein, IBFQ = Iowa Black ® FQ (fluorescence quencher, IDT, Coralville, IA), and x = C3 propanediol spacer block - 10 μL reaction volumes were used in these assays. To perform the reaction, 5 μL of 2× Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix (containing dNTPs, H784Q mutant or WT Taq DNA polymerase, stabilizers, and MgCl2) was combined with 200 nM (2 pmol) of either of the allelic primers. 200 nM (2 pmol) of the probe, as well as 200 nM (5 pmol) of the reverse primer were also added. Additionally, 2.5 mU (5.25 fmol/0.53 nM) of P. a. RNase H2 and 1000 copies of synthetic gBlock™ (Integrated DNA Technologies, Coralville, Iowa) template (1000 copies Allele 1, 500
copies allele 1+500 copies allele 2 (heterozygote), or 1000 copies Allele 2 (for gBlock™ sequences, see Table 2, SEQ ID NOs: 8-9) were added to the reaction mix. The reaction was thermocycled on a Bio-Rad™ CFX384™ Real-time system. Cycling conditions were as follows: 953:00-(950:10-650:30)×65 cycles. Each reaction was performed in triplicate. -
TABLE 2 Synthetic gBlock templates for Example 1 assay Name Sequence SEQ ID NO. rs113488022 AAAAAATAAGAACACTGATTTTTGTGAAT SEQ ID NO. 8 gBlock ACTGGGAACTATGAAAATACTATAGTTGA Template 1 GACCTTCAATGACTTTCTAGTAACTCAGCA GCATCTCAGGGCCAAAAATTTAATCAGTG GAAAAATAGCCTCAATTCTTACCATCCACA AAATGGATCCAGACAACTGTTCAAACTGA TGGGACCCACTCCATCGAGATTTC A CTGTA GCTAGACCAAAATCACCTATTTTTACTGTG AGGTCTTCATGAAGAAATATATCTGAGGT GTAGTAAGTAAAGGAAAACAGTAGATCTC ATTTTCCTATCAGAGCAAGCATTATGAAGA GTTTAGGTAAGAGATCTAATTTCTATAATT CTGTAATATAATATTCTTTAAAACATAGTA CTTCATCTTTCCTCTTA rs113488022 AAAAAATAAGAACACTGATTTTTGTGAAT SEQ ID NO. 9 gBlock ACTGGGAACTATGAAAATACTATAGTTGA Template 2 GACCTTCAATGACTTTCTAGTAACTCAGCA GCATCTCAGGGCCAAAAATTTAATCAGTG GAAAAATAGCCTCAATTCTTACCATCCACA AAATGGATCCAGACAACTGTTCAAACTGA TGGGACCCACTCCATCGAGATTTC T CTGTA GCTAGACCAAAATCACCTATTTTTACTGTG AGGTCTTCATGAAGAAATATATCTGAGGT GTAGTAAGTAAAGGAAAACAGTAGATCTC ATTTTCCTATCAGAGCAAGCATTATGAAGA GTTTAGGTAAGAGATCTAATTTCTATAATT CTGTAATATAATATTCTTTAAAACATAGTA CTTCATCTTTCCTCTTA Nucleic acid sequences are shown 5′-3′. Location of SNPs are shown bold and underlined. - Cq Results of the experiment are shown in Table 3. This data shows that the mismatch discrimination of the assay system increases with rhPCR over ASPCR with WT Taq polymerase, and that the discrimination is enhanced by the use of the H784Q Taq polymerase.
-
TABLE 3 Resulting Cq values WT Taq H784Q Allele 1 Het Allele 2 NTC Allele 1 Het Allele 2 NTC Non discrmin 29.3 29.3 29.4 >65 30.6 30.6 30.8 >65 ASP1 ASPCR 30.2 30.2 31.4 >65 29.2 32.5 40.3 >65 ASP2 ASPCR 36.7 30.5 29.4 >65 44.2 31.7 30.8 >65 ASP1 rhPCR 30.9 32.1 38.2 >65 31.9 31.4 49.2 >65 ASP2 rhPCR 39.3 31.0 30.8 >65 43.4 33.9 32.5 >65 All numbers in this table represent Cq values obtained from the CFX384 ™ instrument (Bio-Rad ™, Hercules, CA). - The following example demonstrates an enhanced rhPCR assay that utilizes a highly discriminatory DNA polymerase and RNase H2 for discrimination.
- In order to demonstrate that this new assay design could function, rhPrimers and standard allele-specific primers were designed against rs113488022, the V600E mutation in the human BRAF gene. These primers were tested in PCR and rhPCR with H784Q mutant Taq polymerase. Primers utilized in these assays were as shown in Table 4 (SEQ ID NOs: 1, 4 and 10-12).
-
TABLE 4 Sequence of oligonucleotides employed in SNP discrimination assay described in Example 2 Name Sequence SEQ ID NO. Forward non- GCTGTGATTTTGGTCTAGCTACAG SEQ ID NO. 1 discrimin primer Probe FAM-TCCCATCAG-ZEN- SEQ ID NO. 4 TTTGAACAGTTGTCTGGA-IBFQ rs113488022 GCTGTGATTTTGGTCTAGCTACAGTg SEQ ID NO. 10 Allele 1 ForwardAxxTG dxxd rhPrimer rs113488022 GCTGTGATTTTGGTCTAGCTACAGAg SEQ ID NO. 11 Allele 2 ForwardAxxTG dxxd rhPrimer Reverse rhPrimer GCCCTCAATTCTTACCATCCACAAAa SEQ ID NO. 12 TGGAA-x Nucleic acid sequences are shown 5′-3′. DNA is uppercase, RNA is lowercase. Location of potential mismatch is underlined. ZEN = internal Zen ™ fluorescent quencher (IDT, Coralville, IA). FAM = 6-carboxyfluorescein, IBFQ = Iowa Black FQ (fluorescence quencher), and x = C3 propanediol spacer. - 10 μL reaction volumes were used in these assays. To perform the reaction, 5 μL of 2× Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix (containing dNTPs, H784Q mutant DNA polymerase, stabilizers, and MgCl2) was combined with 200 nM (2 pmol) of either of the allelic primers. 200 nM (2 pmol) of the probe, as well as 200 nM (5 pmol) of the reverse primer were also added. Additionally, 7.5 mU (15.75 fmol/1.58 nM), 50 mU (105 fmol/10.5 nM) or 200 mU (420 fmol/42 nM) of P. a. RNase H2 and 5e4 copies of synthetic gBlock™ (Integrated DNA Technologies, Coralville, Iowa) template (1e5 copies Allele 1, 5e4 copies allele 1+5e4 copies allele 2 (heterozygote), or 1e5 copies Allele 2 (for gBlock™ sequences, see Table 2, SEQ ID NOs: 8-9) were added to the reaction mix. The reaction was thermocycled on a Bio-Rad™ CFX384™ Real-time system. Cycling conditions were as follows: 953:00-(950:10-650:30)×65 cycles. Each reaction was performed in triplicate.
- Cq Results of the experiment are shown in Table 5. This data shows that the mismatch discrimination of the assay system increases with rhPCR over ASPCR with WT Taq polymerase, and that the discrimination is enhanced by the use of the H784Q Taq polymerase.
-
TABLE 5 Resulting Cq values Averages Allele 1 Het Allele 2 NTC ΔCq Unblocked 7.5 mU 21.9 22.3 22.1 >75 50 mU 22.7 22.5 22.7 >75 200 mU 21.8 21.8 21.9 >75 AgAxxTG 7.5 mU 43.7 25.6 24.6 >75 19.1 50 mU 50.3 24.5 23.5 >75 26.8 200 mU 48.5 25.2 24.1 >75 24.4 TgAxxTG 7.5 mU 25.1 26.3 42.5 >75 17.4 50 mU 24.2 25.4 41.0 >75 16.9 200 mU 22.9 23.8 37.2 >75 14.3 All numbers in this table represent Cq values obtained from the CFX384 ™ instrument (Bio-Rad ™, Hercules, CA). - The delta Cq values were significantly higher than the ones obtained with the
Gen 1 versions of these primers, indicating that there is an advantage to this primer design, as seen before in rhPCR. - The following example illustrates the heightened reliability of universal assays using a DNA polymerase with a high mismatch discrimination.
- To demonstrate that the disclosed assays can function in a universal format and that they are significantly improved with a polymerase with high mismatch discrimination, “universal” assay primers were designed against rs351855, the G338R mutation in the human FGFR4 gene. This “universal” assay design has numerous advantages, including the ability to multiplex the allele-specific rhPrimers and obtain multiple-color readouts. Primers utilized in this assay were as shown in Table 6 (SEQ ID NOs: 13-18).
-
TABLE 6 Sequences of oligonucleotides employed in ″universal″ SNP discrimination assay Name Sequence SEQ ID NO. Universal CGCCGCGTATAGTCCCGCGTAAA SEQ ID NO. 13 Forward primer Probe 1 FAM-C+CATC+A+C+CGTG+CT-IBFQ SEQ ID NO. 14 (FAM) Probe 2HEX-CAATC+C+C+CGAG+CT-IBFQ SEQ ID NO. 15 (HEX) rs351855 GCCCATGTCCCAGCGAACCATCACCGTGCTAGCC SEQ ID NO. 16 Allele 1CTCGATACAGCCCgGCCAC-x Forward primer rs351855 GCCCATGTCCCAGCGAACAATCCCCGAGCTGCCC SEQ ID NO. 17 Allele 2TCGATACAGCCTgGCCAC-x Forward primer Reverse primer GCGGCCAGGTATACGGACATcATCCA-x SEQ ID NO. 18 Nucleic acid sequences are shown 5′-3′. DNA is uppercase, RNA is lowercase. Location of potential mismatch is underlined. LNA residues are designated with a +. FAM = 6-carboxyfluorescein, HEX = 6-carboxy-2′,4,4′,5′,7,7′-hexachlorofluorescein, IBFQ = Iowa Black FQ (fluorescence quencher), and x = C3 propanediol spacer block. - 10 μL reaction volumes were used in these assays. To perform the reaction, 5 μL of 2× Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix (containing dNTPs, mutant or WT Taq DNA polymerase, stabilizers, and MgCl2) was combined with 50 nM (500 fmol) of each of the two allelic primers. 250 nM (2.5 pmol) of each of the two probes, as well as 500 nM (5 pmol) of the Universal Forward primer and 500 nM (5 pmol) of the reverse primer were also added. Additionally, 2.5 mU (5.25 fmol/0.53 nM) of P. a. RNase H2 and 1000 copies of synthetic gBlock™ (Integrated DNA Technologies, Coralville, Iowa) template (1000 copies Allele 1, 500
copies allele 1+500 copies allele 2 (heterozygote), or 1000 copies Allele 2 (for gBlock™ sequences, see Table 7, SEQ ID NOs: 19-20) were added to the reaction mix. The reaction was thermocycled on a Bio-Rad™ CFX384™ Real-time system. Cycling conditions were as follows: 953:00-(950:10-600:30)×3 cycles-(950:10-650:30)×65 cycles. Each reaction was performed in triplicate. Fluorescence reads were taken after a total of 50 cycles were completed. Fluorescence values were plotted on the FAM and HEX axis, and results are shown inFIGS. 2a and 2b . -
TABLE 7 Synthetic gBlock templates for Example 3 Name Sequence SEQ ID NO. rs351855 GTTGGGAGCTGGGAGGGACTGAGTTAGGG SEQ ID NO. 19 gBlock TGCACGGGGCGGCCAGTCTCACCACTGAC Template 1 CAGTTTGTCTGTCTGTGTGTGTCCATGTGC GAGGGCAGAGGAGGACCCCACATGGACCG CAGCAGCGCCCGAGGCCAGGTATACGGAC ATCATCCTGTACGCGTCGGGCTCCCTGGCC TTGGCTGTGCTCCTGCTGCTGGCC G GGCTG TATCGAGGGCAGGCGCTCCACGGCCGGCA CCCCCGCCCGCCCGCCACTGTGCAGAAGCT CTCCCGCTTCCCTCTGGCCCGACAGGTACT GGGCGCATCCCCCACCTCACATGTGACAG CCTGACTCCAGCAGGCAGAACCAAGTCTC CCACTTTGCAGTTCTCCCTGGAGTCAGGCT CTTCCGGCAAGTCAAGCT rs351855 GTTGGGAGCTGGGAGGGACTGAGTTAGGG SEQ ID NO. 20 gBlock TGCACGGGGCGGCCAGTCTCACCACTGAC Template 2 CAGTTTGTCTGTCTGTGTGTGTCCATGTGC GAGGGCAGAGGAGGACCCCACATGGACCG CAGCAGCGCCCGAGGCCAGGTATACGGAC ATCATCCTGTACGCGTCGGGCTCCCTGGCC TTGGCTGTGCTCCTGCTGCTGGCC A GGCTG TATCGAGGGCAGGCGCTCCACGGCCGGCA CCCCCGCCCGCCCGCCACTGTGCAGAAGCT CTCCCGCTTCCCTCTGGCCCGACAGGTACT GGGCGCATCCCCCACCTCACATGTGACAG CCTGACTCCAGCAGGCAGAACCAAGTCTC CCACTTTGCAGTTCTCCCTGGAGTCAGGCT CTTCCGGCAAGTCAAGCT Nucleic acid sequences are shown 5′-3′. Location of SNPs are shown bold and underlined. - The results illustrate that the mismatch discrimination between homozygotes is sufficient with both polymerases, although the resulting data using the WT Taq demonstrate that it is more difficult to make an allelic call. Importantly, however, the WT Taq polymerase cannot efficiently discriminate heterozygotes from homozygotes, and places them too close to the
allele FIG. 2a ). In contrast, the signal from the heterozygotes in the assays utilizing the mutant Taq polymerase are easily distinguishable from the homozygotes (FIG. 2b ). - The importance of the mutant Taq can be further understood when examining the Cq values from this example (Table 8). The data show that not only does the H784Q Taq mutant increase mismatch discrimination dramatically, but the Cqs of the NTCs decrease from the low-to-mid 50s, to greater than the number tested in the assay (>65). From this experiment, it is shown that allele identity can be determined from Cq values as well as end-point fluorescence.
-
TABLE 8 Cq and delta Cq data for the experiment described in Example 3 WT Taq H784Q Template FAM HEX Delta Cq FAM HEX Delta Cq Allele 1 32.9 31.3 −1.6 37.5 56.8 19.3 Allele 1 31.9 31.1 −0.8 36.2 51.4 15.2 Allele 1 31.8 31.0 −0.9 36.6 54.3 17.8 Heterozygote 33.0 29.4 −3.5 38.7 37.8 −0.9 Heterozygote 32.8 29.7 −3.1 38.7 38.2 −0.5 Heterozygote 33.2 30.0 −3.3 39.9 39.1 −0.8 Allele 235.1 29.1 6.0 50.6 36.5 14.1 Allele 2 34.7 29.3 5.4 52.1 36.6 15.5 Allele 2 34.5 29.0 5.5 50.7 36.1 14.6 NTC 51.8 56.1 — >65 >65 — NTC 52.8 56.1 — >65 >65 — NTC 52.1 50.7 — >65 >65 — All numbers in this table represent Cq and delta Cq values values obtained from the CFX384 instrument (Bio-Rad ™, Hercules, CA). - The following example illustrates the detection of rare allelic variants with the assay designs of the present invention. To demonstrate the utility of these new assay designs to detect rare allelic variants, previously described second generation rhPrimers (rdxxdm) were utilized against rs113488022, the V600E mutation in the human BRAF gene (see Table 4; SEQ ID NOs: 1,4 and 10-12).
- 10 μL reaction volumes were used in these assays. To perform the reaction, 5 μL of 2× Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix (containing dNTPs, H784Q mutant or WT Taq DNA polymerase, stabilizers, and MgCl2) was combined with 200 nM (2 pmol) of either of the allelic primers, or the non-discriminatory forward primer. 200 nM (2 pmol) of the probe, as well as 200 nM (5 pmol) of the reverse primer were also added. Additionally, 50 mU (105 fmol/10.5 nM) of P. a. RNase H2 and 50,000 copies of synthetic gBlock™ (Integrated DNA Technologies, Coralville, Iowa) match template, was combined with either 0, 50, or 500 copies of the opposite allele (for gBlock™ sequences, see Table 6, SEQ ID NOs: 16-17) were added to the reaction mix. The reaction was thermocycled on a Bio-Rad™ CFX384™ Real-time system. Cycling conditions were as follows: 953:00-(950:10-600:30)×65 cycles. Each reaction was performed in triplicate.
- Data for the WT polymerase is shown in Table 9, and for the H784Q mutant Taq polymerase in Table 10. One of the advantages of this system for rare allele detection over “conventional” rhPCR is the ability to utilize a single amount of RNase H2 for both alleles. This advantage halves the potential requirement for determining the enzyme amount required for cleavage.
-
TABLE 9 Average Cq and delta Cq values for the rare allele experiment with the WT Taq polymerase described in Example 4. Back-ground 50,000 50,000 50,000 0 0 0 Target 500 50 0 500 50 0 SEQ ID Non- 22.9 23.1 22.8 30.4 34.2 >65 No. 1 discrimin SEQ ID . . . TgAxxTG 31.6 34.5 36.1 31.6 36.0 >65 NO. 10 SEQ ID . . . AgAxxTG 29.1 29.1 29.9 30.8 34.4 >65 NO. 11 All numbers in this table represent Cq and delta Cq values values obtained from the CFX384 instrument (Bio-Rad ™, Hercules, CA). DNA is uppercase, RNA is lowercase. Location of potential mismatch is underlined. x = internal C3 propanediol spacer block. -
TABLE 10 Average Cq and delta Cq values for the rare allele experiment with the H784Q mutant Taq polymerase described in Example 4. Back-ground 50,000 50,000 50,000 0 0 0 Target 500 50 0 500 50 0 SEQ ID Non- 22.7 23.2 23.2 31.5 34.2 >65 No. 1 discrimin SEQ ID . . . TgAxxTG 33.8 36.6 47.3 33.1 36.4 >65 NO. 10 SEQ ID . . . AgAxxTG 32.1 35.2 38.8 32.0 35.5 >65 NO. 11 All numbers in this table represent Cq and delta Cq values obtained from the CFX384 instrument (Bio-Rad ™, Hercules, CA). DNA is uppercase, RNA is lowercase. Location of potential mismatch is underlined. x = internal C3 propanediol spacer block. - The data clearly shows that the H784Q DNA polymerase allows for detection of 50 copies of target in a 50,000 copies of background DNA (a 1:1000 discrimination level) for the mutant A allele of rs113488022, with a delta Cq of over 11 cycles. While only slightly more than 3 cycles was observed for the T allele in this assay, this was a significant improvement over the WT Taq polymerase, which did not show any discrimination for the T allele, and only a delta of 3 cycles for the A allele.
- This example demonstrates successful allelic discrimination with the use of a universal rhPCR genotyping assay and Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix, and the robust stability of the reaction components. To demonstrate the robust nature of the assay design and mixture components, universal primers were designed against rs4657751, a SNP located on the human Chromosome 1 (See Table 11, SEQ ID NOs: 14, 21-25).
- Identical universal rhPCR genotyping reactions were set up in two white Hard-Shell® 384-well skirted PCR plates (Bio-Rad, Hercules, Calif.) on the Bio-Rad CFX384 Touch™ Real-Time PCR Detection System with 10 μL final volume. Each well contained the rhPCR assay primers (150 nM of rs4657751 Allele Specific Primer 1 (SEQ ID NO: 23), 150 nM of rs4657751 Allele Specific Primer 2 (SEQ ID NO: 24), and 500 nM rs4657751 Locus Specific Primer (SEQ ID NO: 25). Reactions contained universal reporter oligos at the following concentrations: 250 nM of universal FAM probe (SEQ ID NO: 14), 450 nM of universal Yakima Yellow® (SEQ ID NO: 22) probe, and 1000 nM of universal forward primer (SEQ ID NO: 21), and 5 μL of 2× Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix (containing dNTPs, a mutant H784Q Taq polymerase (see Behlke, et al. U.S. 2015/0191707), chemically modified Pyrococcus abyssi RNase H2 (See Walder et al. UA20130288245A1), stabilizers, and MgCl2).
- gBlocks® Gene Fragments (Integrated DNA Technologies, Inc., Coralville, Iowa) containing either allele of the rs4657751 SNP were utilized as the source of template DNA (See Table 12, SEQ ID NOs: 26 and 27). Each well contained template representing one of three possible genotypes:
allele 1 homozygote (1000 copies rs4657751Allele 1 gBlock® template (SEQ ID NO: 26)),allele 2 homozygote (1000 copies rs4657751Allele 2 gBlock® template (SEQ ID NO: 27)), or heterozygote (mix of 500 copies ofrs4657751 Allele 1 gBlock® template (SEQ ID NO: 26) and 500 copies ofrs4657751 Allele 2 gBlock® template (SEQ ID NO: 27)). Template or water for the no template control (NTC) reactions were added into three replicate wells of two individual plates. The reactions underwent the following cycling protocol: 95° C. for 10 minutes, then 45 cycles of 95° C. for 10 seconds and 60° C. for 45 seconds. -
TABLE 11 Sequences of oligonucleotides used in Example 5 Name Sequence SEQ ID NO. Universal CGGCCCATGTCCCAGCGAA SEQ ID NO. 21 Forward primer Probe 1 FAM-C+CATC+A+C+CGTG+CT-IBFQ SEQ ID NO. 14 (FAM) Probe 2Yak-CAATC+C+C+CGAG+CT-IBFQ SEQ ID NO. 22 (Yakima Yellow) rs4657751 GCCCATGTCCCAGCGAACCATCACCGTGCT SEQ ID NO. 23 Allele 1ACTTCCCACACCCTCATATCuTGTTA-x Forward primer rs4657751 GCCCATGTCCCAGCGAACAATCCCCGAGC SEQ ID NO. 24 Allele 2TCTTACTTCCCACACCCTCATATAuTGTTA- Forward x primer rs4657751 GCGCTAAGTAAACATTCCTGATTGCAaCTT SEQ ID NO. 25 Reverse AT-x primer Nucleic acid sequences are shown 5′-3′. DNA is uppercase, RNA is lowercase. Location of potential mismatch is underlined. LNA residues are designated with a +. FAM = 6-carboxyfluorescein, Yak = Yakima Yellow (3-(5,6,4′,7-tetrachloro-51-methyl-3′,6-dipivaloylfluorescein-2-yl)), IBFQ = Iowa Black FQ (fluorescence quencher), and x = C3 propanediol spacer block. -
TABLE 12 Synthetic gBlock-templates used in Example 5. Name Sequence SEQ ID NO. rs4657751 GATTTTTTTTTTTTGGCATTTCTTCTTAGAT SEQ ID NO. 26 Allele 1TTCTATCTCCTAACATAGGATCACTTATTT gBlock GTGAAATTATTTGTATACCTTTTTTATGGA template GTGATGATGTGATACAAATTCTATCCTTAA GGATATAAGAACATCTTTTCTTTATATTAG GATTTTTCTGGACCCATGAGTTACATGCTT ACTTCCCACACCCTCATATCTTGTTTAAAT TTGTAGAATTAAATTCATAGGTAATTATTT CTGAAACTTCTTCCCTGTGTGAGCAATCTA AATAATTATTACAATGCCTTAAGTTGCAAT CAGGAATGTTTACTTAGCACAGACTTTTTT CCCCACTACTGCACTCAAAGGATAACAGA TATATGGCAAATCTAACCATATTCTTTGTC CTTTGTCCATGTTGCGGAGGGAAGCTCATC AGTGGGGCCACGAGCTGAGTGCGTCCTGT CACTCCACTCCCATGTCCCTTGGGAAGGTC TGAGACTAGGG rs4657751 GATTTTTTTTTTTTGGCATTTCTTCTTAGAT SEQ ID NO. 27 Allele 2TTCTATCTCCTAACATAGGATCACTTATTT gBlock GTGAAATTATTTGTATACCTTTTTTATGGA template GTGATGATGTGATACAAATTCTATCCTTAA GGATATAAGAACATCTTTTCTTTATATTAG GATTTTTCTGGACCCATGAGTTACATGCTT ACTTCCCACACCCTCATATATTGTTTAAAT TTGTAGAATTAAATTCATAGGTAATTATTT CTGAAACTTCTTCCCTGTGTGAGCAATCTA AATAATTATTACAATGCCTTAAGTTGCAAT CAGGAATGTTTACTTAGCACAGACTTTTTT CCCCACTACTGCACTCAAAGGATAACAGA TATATGGCAAATCTAACCATATTCTTTGTC CTTTGTCCATGTTGCGGAGGGAAGCTCATC AGTGGGGCCACGAGCTGAGTGCGTCCTGT CACTCCACTCCCATGTCCCTTGGGAAGGTC TGAGACTAGGG Nucleic acid sequences are shown 5′-3′. DNA is uppercase. The location of the SNP is underlined. - One reaction plate was cycled immediately (0 hr benchtop hold) and one reaction plate was held at room temperature for 2 days (48 hr benchtop hold) to demonstrate reaction stability over time. Allelic discrimination analysis was performed using Bio-Rad CFX Manager 3.1 software (Bio-Rad, Hercules, Calif.). FAM and Yakima Yellow fluorophores were detected in each well. For both fluorophores the baseline cycles were set to begin at
cycle 10 and end atcycle 25. Fluorescence signal (RFU) in each well at the end of 45 cycles was used to generate an allelic discrimination plot and genotypes were determined with auto-call features of the analysis software. Identical performance was obtained with the immediate run (FIG. 3A ) and 48 hour hold plate (FIG. 3B ), demonstrating robust stability of the reaction components. Each sample is assigned the correct genotyping call and samples of the same genotype are tightly clustered together. The heterozygote cluster is separated from both of the homozygous clusters by an approximate 45 degree angle, indicating excellent allelic specificity of the universal rhPCR genotyping assays and master mix. - The following example compares the performance of the genotyping methods of the present invention versus traditional 5′ nuclease genotyping assay methods (Taqman™).
- The rs1799865 SNP in the CCR2 gene was selected, and rhPCR genotyping primers as well as an rs17998655′ nuclease assay (Thermo-Fisher (Waltham, Mass.)), were designed and obtained. Sequences for the rs1799865 rhPCR genomic SNP assay are shown in Table 14 (SEQ ID NOs: 14, 21, 22, and 28-30). Thermo-
Fisher 5′ nuclease primer/probe (Taqman™) sequences are not published, and therefore are not included in this document. - Reactions were performed in 10 μL volumes, containing 10 ng Coriell genomic DNA (Camden, N.J.), 250 nM of universal FAM probe (SEQ ID NO: 14), 450 nM of universal Yakima Yellow® (SEQ ID NO: 22) probe, 1000 nM of universal forward primer (SEQ ID NO: 21), 150 nM of the two allele-specific forward primers (SEQ ID NOs: 28 and 29), 500 nM of the reverse primer (SEQ ID NO: 30), and 5 μL of 2× Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix (containing dNTPs, a mutant H784Q Taq polymerase (see Behlke, et al. U.S. 2015/0191707), chemically modified Pyrococcus abyssi RNase H2 (See Walder et al. UA20130288245A1), stabilizers, and MgCl2).
- PCR was performed on Life Technologies (Carlsbad, Calif.)
QuantStudio™ 7 Flex real-time PCR instrument using the following cycling conditions: 10 mins at 95° C. followed by 50 cycles of 95° C. for 10 seconds and 60° C. for 45 seconds. End-point analysis of each of the plates was performed after 45 cycles with the QuantStudio™ Real-Time PCR Software v1.3 (Carlsbad, Calif.). -
TABLE 14 Sequences of oligonucleotides used for the rs1799865 genotyping assay in Example 6. Name Sequence SEQ ID NO. Universal CGGCCCATGTCCCAGCGAA SEQ ID NO. 21 Forward primer Probe 1 FAM-C+CATC+A+C+CGTG+CT-IBFQ SEQ ID NO. 14 (FAM) Probe 2Yak-CAATC+C+C+CGAG+CT-IBFQ SEQ ID NO. 22 (Yakima Yellow) rs1799865 GCCCATGTCCCAGCGAACCATCACCGT SEQ ID NO. 28 Allele 1GCTTTCTCTTCTGGACTCCCTATAATaTT Forward GTG-x primer rs1799865 GCCCATGTCCCAGCGAACAATCCCCGA SEQ ID NO. 29 Allele 2GCTTTCTCTTCTGGACTCCCTATAACaTT Forward GTG-x primer rs1799865 GCGGATTGATGCAGCAGTGAgTCATG-x SEQ ID NO. 30 Reverse primer Nucleic acid sequences are shown 5′-3′. DNA is uppercase, RNA is lowercase. LNA residues are designated with a +. Location of potential mismatch is underlined. FAM = 6-carboxyfluorescein, Yak = Yakima Yellow (3-(5,6,4′,7′-tetrachloro-5′-methyl-3′,6′-dipivaloylfluorescein-2-yl)), IBFQ = Iowa Black FQ (fluorescence quencher), and x = C3 propanediol spacer block. -
FIGS. 4A and 4B show a side-by-side comparison of the resulting allelic discrimination plots. The rhPCR Genotyping Assay (FIG. 4B ) achieved higher fluorescence signal compared to a traditional 5′-nuclease genotyping assay (FIG. 4A ) while showing concordant results. The higher signal and minimal non-specific amplification from NTC in the rhPCR assay allow better cluster separation and accurate genotype calls. - The following example illustrates the present methods allowing for detection and analysis of tri-allelic SNP. The rs72558195 SNP is present in the CYP2C8 gene, and has three potential genotypes. This SNP was selected for analysis with the rhPCR genotyping system.
- Conventional workflow of interrogating tri-allelic SNP, as illustrated in
FIGS. 5A and 5B , involves running a pair of assays using the same samples, manual calling, and comparing the paired assay result to obtain the true genotype of samples. - To demonstrate that such a system can function with the universal rhPCR genotyping system, reactions were set up in a white Hard-Shell® 384-well skirted PCR plates (Bio-Rad, Hercules, Calif.) on the Life Technologies (Carlsbad, Calif.)
QuantStudio™ 7 Flex real-time PCR with 10 μL final volume. Each well contained the rhPCR assay primers (See Table 16, SEQ ID NOs: 14, 21, 22, 31-33). Specifically, 150 nM of rs72558195 G:A Allele Specific Primer 1 (SEQ ID NO: 31) and 150 nM of rs72558195 G:A Allele Specific Primer 2 (SEQ ID NO: 32), or 150 nM of rs72558195 G:A Allele Specific Primer 1 (SEQ ID NO: 31) and 150 nM of rs72558195 G:C Allele Specific Primer 3 (SEQ ID NO: 33) as well as 500 nM rs72558195 Locus Specific Primer (SEQ ID NO: 34) were included in the reactions. - Reactions contained universal reporter oligos at the following concentrations: 250 nM of universal FAM probe (SEQ ID NO: 14), 450 nM of universal Yakima Yellow® (SEQ ID NO: 22) probe, and 1000 nM of universal forward primer (SEQ ID NO: 21), 50 nM ROX internal standard, and 5 μL of 2× Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix (containing dNTPs, a mutant H784Q Taq polymerase (see Behlke, et al. U.S. 2015/0191707), chemically modified Pyrococcus abyssi RNase H2 (See Walder et al. UA20130288245A1), stabilizers, and MgCl2).
-
TABLE 16 Sequences of oligonucleotides used for the rs72558195 genotyping assay in Example 7. Name Sequence SEQ ID NO. Universal CGGCCCATGTCCCAGCGAA SEQ ID NO. 21 Forward primer Probe 1 FAM-C+CATC+A+C+CGTG+CT-IBFQ SEQ ID NO. 14 (FAM) Probe 2Yak-CAATC+C+C+CGAG+CT-IBFQ SEQ ID NO. 22 (Yakima Yellow) rs72558195: GCCCATGTCCCAGCGAACCATCACCGTGCTCTCC SEQ ID NO. 31 G:A Allele 1GTTGTTTTCCAGAAACgATTTC-x Forward primer rs72558195: GCCCATGTCCCAGCGAACAATCCCCGAGCTCTCC SEQ ID NO. 32 G:A Allele 2GTTGTTTTCCAGAAATgATTTC-x Forward primer rs72558195: GCCCATGTCCCAGCGAACAATCCCCGAGCTCTCC SEQ ID NO. 33 G: C Allele 3GTTGTTTTCCAGAAAGgATTTC-x Forward primer rs1135840 GCAACCAAGTCTTCCCTACAACcTTGAT-x SEQ ID NO. 34 Reverse primer Nucleic acid sequences are shown 5′-3′. DNA is uppercase, RNA is lowercase. LNA residues are designated with a +. Location of potential mismatch is underlined. FAM = 6-carboxyfluorescein, Yak = Yakima Yellow (3-(5,6,4′,7′-tetrachloro-5′-methy1-3′,6′-dipivaloylfluorescein-2-yl)), IBFQ = Iowa Black FQ (fluorescence quencher), and x = C3 propanediol spacer block. - gBlocks® Gene Fragments (Integrated DNA Technologies, Inc., Coralville, Iowa) containing alleles of the rs72558195 SNP were utilized as the source of template DNA (See Table 17, SEQ ID NOs: 35, 36 and 37). Each well contained template representing one of six possible genotypes:
allele 1 homozygote (1000 copies rs72558195Allele 1 gBlock® template (SEQ ID NO: 35)),allele 2 homozygote (1000 copies rs72558195Allele 2 gBlock® template (SEQ ID NO: 36)),allele 3 homozygote (1000 copies rs72558195Allele 2 gBlock® template (SEQ ID NO: 37)), heterozygote (mix of 500 copies ofrs72558195 Allele 1 gBlock® template (SEQ ID NO: 35) and 500 copies ofrs72558195 Allele 2 gBlock® template (SEQ ID NO: 36). heterozygote (mix of 500 copies ofrs72558195 Allele 1 gBlock® template (SEQ ID NO: 35) and 500 copies ofrs72558195 Allele 3 gBlock® template (SEQ ID NO: 37)). Template or water for the no template control (NTC) reactions were added into three replicate wells of two individual plates. The reactions underwent the following cycling protocol: 95° C. for 10 minutes, then 45 cycles of 95° C. for 10 seconds and 60° C. for 45 seconds. -
TABLE 17 gBlock-sequences used in Example 7 Name Sequence SEQ ID NO. rs72558195 ACATCATTTTTATTGTATAAAAGCATTTTA SEQ ID NO. 35 Allele 1GTATCAATTTTCTCATTTTTAAACCAAGTC gBlock TTCCCTACAACCTTGAATAAATGGTTTCC template AAGGAAAATAAAATCTTGGCCTTACCTGG ATCCATGGGGAGTTCAGAATCCTGAAGTT TTCATTGAATCTTTTCATCAGGGTGAGAA AATTCTGATCTTTATAATCAAATCGTTTCT GGAAAACAACGGAGCAGATCACATTGCA GGGAGCACAGCCCAGGATGAAAGTGGGA TCACAGGGTGAAGCTAAAGATTTAAAAAT TTTTAAAAAAATTATTAAAAAATAAATAT TTAAAAGATTTGCATTTGTTAAGACATAA AGGAAATTTAGAAATTTTAAACAATATCT TACAAATTCCCCATGTGTCCAAA rs72558195 ACATCATTTTTATTGTATAAAAGCATTTTA SEQ ID NO. 36 Allele 2GTATCAATTTTCTCATTTTTAAACCAAGTC gBlock TTCCCTACAACCTTGAATAAATGGTTTCC template AAGGAAAATAAAATCTTGGCCTTACCTGG ATCCATGGGGAGTTCAGAATCCTGAAGTT TTCATTGAATCTTTTCATCAGGGTGAGAA AATTCTGATCTTTATAATCAAATCATTTCT GGAAAACAACGGAGCAGATCACATTGCA GGGAGCACAGCCCAGGATGAAAGTGGGA TCACAGGGTGAAGCTAAAGATTTAAAAAT TTTTAAAAAAATTATTAAAAAATAAATAT TTAAAAGATTTGCATTTGTTAAGACATAA AGGAAATTTAGAAATTTTAAACAATATCT TACAAATTCCCCATGTGTCCAAA rs72558195 ACATCATTTTTATTGTATAAAAGCATTTTA SEQ ID NO. 37 Allele 3GTATCAATTTTCTCATTTTTAAACCAAGTC gBlock TTCCCTACAACCTTGAATAAATGGTTTCC template AAGGAAAATAAAATCTTGGCCTTACCTGG ATCCATGGGGAGTTCAGAATCCTGAAGTT TTCATTGAATCTTTTCATCAGGGTGAGAA AATTCTGATCTTTATAATCAAATCCTTTCT GGAAAACAACGGAGCAGATCACATTGCA GGGAGCACAGCCCAGGATGAAAGTGGGA TCACAGGGTGAAGCTAAAGATTTAAAAAT TTTTAAAAAAATTATTAAAAAATAAATAT TTAAAAGATTTGCATTTGTTAAGACATAA AGGAAATTTAGAAATTTTAAACAATATCT TACAAATTCCCCATGTGTCCAAA Nucleic acid sequences are shown 5′-3′. DNA is uppercase. The location of the SNP is underlined. - The results are shown in
FIGS. 5A and 5B . From this, it is clear that the universal rhPCR genotyping system can be used to characterize multi-allelic genotypes. - A Tri-allelic AD 360plot was designed for illustrating allelic discrimination. Fluorescence signal (ΔRn) from the last PCR cycle of each dye was normalized across the three dyes from the same well. Angle and distance of data point from the origin is calculated using formula below:
-
-
FIG. 5B shows the Tri-allelic Allelic Discrimination 360plot of rs72558195, using rhPCR genotyping assay with 3 allele-specific primers multiplexed in a single reaction. By collecting fluorescence signal from all assays, six genotypes could be detected in a single reaction. The distance of data points from origin indicated the signal strength of dyes and the wide angle separation between data clusters indicated specificity of multiplex assay. NTC in the center of the plot indicated no primer dimers or non-specific amplification. The specificity of multiplex assay is achieved by the selectivity of RNase H2 and the mutant Taq DNA polymerase as used in the previous examples. This AD 360plot will also enable auto-calling capability by genotyping software. - A 360plot could be implemented for tetra-allelic, penta-allelic or hexa-allelic visualization. Therefore, visualization is possible for positions that could have multiple bases as well as potential deletions. The distance from origin remains unchanged for each calculation, and the angle formulas would be:
-
- The following example illustrates the capability of the methods of the present invention to provide quantitative SNP genotyping, allowing for determination of the copy numbers of different alleles. To demonstrate this, an assay was designed against rs1135840, a SNP in the human CYP2D6 gene. This gene can be present in multiple copies, and the number of copies with the rs1135840 SNP appears to affect drug metabolism (rapid metabolism of the drug Debrisoquine).
- To demonstrate that the assay system can detect small differences in allele rations, a standard curve for analysis was created. Two gBlock™ (IDT, Coralville, Iowa) gene fragments were synthesized (
Allele 1 andAllele 2, representing the two allelic variants (G>C) of the rs1135840 SNP) and then mixed at different ratios. Reactions were performed in 10 μL volumes, containing a total of 1500 copies of template at the ratios shown (10:0, 9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, 1:9, and 0:10), 250 nM of universal FAM probe (SEQ ID NO: 14), 450 nM of universal Yakima Yellow® (SEQ ID NO: 22) probe, 1000 nM of universal forward primer (SEQ ID NO: 21), 150 nM of the two allele-specific forward primers, 500 nM of the reverse primer, and 5 μL of 2× Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix (containing dNTPs, a mutant H784Q Taq polymerase (see Behlke, et al. U.S. 2015/0191707), chemically modified Pyrococcus abyssi RNase H2 (See Walder et al. UA20130288245A1), stabilizers, and MgCl2). - PCR was performed on Life Technologies (Carlsbad, Calif.)
QuantStudio™ 7 Flex real-time PCR instrument using the following cycling conditions: 10 mins at 95° C. followed by 45 cycles of 95° C. for 10 seconds and 60° C. for 45 seconds. End-point analysis of each of the plates was performed after 45 cycles with software provided by the respective companies (Bio-Rad CFX Manager 3.1 software (Bio-Rad, Hercules, Calif.) and QuantStudio™ Real-Time PCR Software v1.3 (Carlsbad, Calif.)). -
TABLE 16 Oligonucleotide sequences used in Example 8. Name Sequence SEQ ID NO. Universal CGGCCCATGTCCCAGCGAA SEQ ID NO. 21 Forward primer Probe 1 FAM-C+CATC+A+C+CGTG+CT-IBFQ SEQ ID NO. 14 (FAM) Probe 2Yak-CAATC+C+C+CGAG+CT-IBFQ SEQ ID NO. 22 (Yakima Yellow) rs1135840 GCCCATGTCCCAGCGAACCATCACCGTGC SEQ ID NO. 38 Allele 1TGTCTTTGCTTTCCTGGTGAGcCCATG-x Forward primer rs1135840 GCCCATGTCCCAGCGAACAATCCCCGAGC SEQ ID NO. 39 Allele 2TGTCTTTGCTTTCCTGGTGAcCCATG-x Forward primer rs1135840 GCGTTGGAACTACCACATTGCTTTATuGTA SEQ ID NO. 40 Reverse CT-x primer Nucleic acid sequences are shown 5′-3′. DNA is uppercase, RNA is lowercase. LNA residues are designated with a +. Location of potential mismatch is underlined. FAM = 6-carboxyfluorescein, Yak = Yakima Yellow (3-(5,6,4′,7-tetrachloro-51-methyl-3′,6′-dipivaloylfluorescein-2-yl)), IBFQ = Iowa Black FQ (fluorescence quencher), and x = C3 propanediol spacer block. - The resulting data is illustrated in
FIG. 7 . The spread of each of the sample mixes is sufficient for the determination of the number of copies of each template. - After demonstration of the required amount of separation of allelic quantities, it is possible to determine the number of copies present of each allele in an experimental sample. To test this, the previously described assay designed against rs1135840, was utilized to test thirteen Coriell genomic DNA (Camden, N.J.) samples with varying CYP2D6 copy numbers with varying rs1135840 genotypes. These samples have known defined copy numbers and rs1135840 genotypes which could be verified after testing with the universal rhPCR genotyping mix. From this, these samples can also be categorized as being homozygotes for either allele, or heterozygotes.
- To calculate the copy number from the data, two duplex reactions were run for each sample. Reactions were performed in 10 μL volumes, containing 3 ng of one of the following genomic DNAs: NA17123, NA17131, NA17132, NA17149, NA17104, NA17113, NA17144, NA17213, NA17221, NA17114, NA17235, or NA17241. Each individual assay also contained 50 nM ROX normalizer oligo, 250 nM of universal FAM probe (SEQ ID NO: 14), 450 nM of universal Yakima Yellow® (SEQ ID NO: 22) probe, 1000 nM of universal forward primer (SEQ ID NO: 21), 150 nM of the two allele-specific forward primers (SEQ ID NO: 38 and 39), 500 nM of the reverse primer (SEQ ID NO: 40), and 5 μL of 2× Integrated DNA Technologies (IDT) (Coralville, Iowa) rhPCR genotyping master mix (containing dNTPs, a mutant H784Q Taq polymerase (see Behlke, et al. U.S. 2015/0191707), chemically modified Pyrococcus abyssi RNase H2 (See Walder et al. UA20130288245A1), stabilizers, and MgCl2). Assays also contained a separate RNase P assay (See table 17, SEQ ID NOs: 41-43)) for normalization of the template concentration.
-
TABLE 17 RNase P assay sequences used in Example 8. Name Sequence SEQ ID NO. RNase P GCGGAGGGAAGCTCATCAG SEQ ID Forward NO. 41 primer RNase P CCCTAGTCTCAGACCTTCCCAA SEQ ID Reverse NO. 42 primer Probe 2 Yak-CCACGAGCTGAGTGCGTCCTGTCA- SEQ ID (Yakima IBFQ NO. 43 Yellow) Nucleic acid sequences are shown 5′-3′. DNA is uppercase. FAM = 6-carboxyfluorescein Yak = Yakima Yellow (3-(5,6,4′,7′-tetrachloro-5′-methyl-3′,6′-dipivaloylfluorescein-2-yl)), IBFQ = Iowa Black FQ (fluorescence quencher). - Quantitative PCR was performed on Life Technologies (Carlsbad, Calif.)
QuantStudio™ 7 Flex real-time PCR instrument using the following cycling conditions: 10 mins at 95° C. followed by 45 cycles of 95° C. for 10 seconds and 60° C. for 45 seconds. End-point analysis of each of the plates was performed after 45 cycles with the QuantStudio™ Real-Time PCR Software v1.3 (Carlsbad, Calif.) software provided by the company. - Copy number was determined by the following method. For each sample shown to be a homozygote, ΔCq (RNase P Cq—rs1135840 assay Cq) was calculated for each sample. For samples shown to be heterozygotes, ΔCq was calculated for both alleles (RNase P Cq—
rs1135840 assay 1 Cq and RNase P Cq—rs1135840 assay 2 Cq). Next, ΔΔCq (ΔCq−mean ΔCq for known 2 copy control DNA samples) was calculated for each allele. This correction allowed for normalization against amplification differences between the SNP assay and the RNase P assay. Finally, the following equation was used to calculate copy number for each allele: -
Copy number of allele=2*(2{circumflex over ( )}(ΔΔCq)) - The resulting end-point data is shown in
FIG. 8A and calculated copy numbers are shown inFIG. 8B . The genotypes determined inFIG. 8A (homozygotes allele 1,Homozygotes allele 2, or heterozygote) all matched the known genotypes, and allowed correct calculation of the copy number. The established reference copy number of the individual samples is shown under each result. In each case, the copy number determined by the assay correctly determined the genotype and copy number of the input DNA. - The following example demonstrates that a variation of an rhPCR probe can be used for multiplexed rhPCR.
- The assay schematic is provided in
FIG. 9 . In the first round of PCR, 5′ tailed target-specific rhPrimers are used. The 5′ tails upon incorporation into the amplicon contain binding sites for a second round of PCR with different primers (blocked or unblocked) to add application specific sequences. For example, as depicted inFIG. 9 , this system can be used for amplification enrichment for next generation sequencing. In this case, 5′ tailed rhPCR primers contain read 1/read 2 primer sequences. The second round of PCR adds adapter sequences such as the P5/P7 series for Illumina® based sequencing platforms or other adaptors, including ones containing barcodes/unique molecular identifiers. This approach allows for adding any additional sequences onto the amplicon necessary for input into any NGS platform type. - As illustrated in
FIG. 10 , two primers sets, including one containing a 96-plex set of 5′ tailed rhPrimers, and one containing 96 DNA “standard” 5′ tailed PCR primers were designed using an IDT algorithm. The two primer sets differed only in that the rhPrimers contained an internal cleavable RNA base and a blocking group on the 3′ end. Once the blocking group was removed by RNase H2 cleavage, the primer sequences become identical. - The first round of PCR reactions contained the 96 plex at 10 nM of each blocked target specific primer, 10 ng of NA12878 human genomic DNA (Coriell Institute for Medical Research, Camden, N.J.), 200 mU of chemically modified Pyrococcus abyssi RNase H2 (See Walder et al. UA20130288245A1) (IDT, Coralville, Iowa) and 1×KAPA 2G HotStart Fast Ready Mix™ (Kapa Biosystems, Wilmington, Mass.). The thermal cycling profile was 10 mins at 95° C. followed by 8 cycles of 95° C. for 15 seconds and 60° C. for 4 minutes, and a final 99° C. finishing step for 15 minutes. Reactions were cleaned up with a 2×AMPure™ XP beads (Beckman Coulter, Brea, Calif.). Briefly, 1004 AMPure™ SPRI beads were added to each PCR well, incubated for 5 minutes at room temperature and collected for 5 minutes at room temperature on plate magnet (DynaMag™ (Thermo-Fisher, (Watherham, Mass.) 96-well plate side-magnet). Beads were washed twice with 80% ethanol, and allowed to dry for 3 minutes at room temperature. Samples were eluted in 22 μL of TE at pH 8.0.
- The second round of PCR was set up using 204 of the cleaned up first round PCR products, universal PCR-50F and PCR-47R primers (See table 18, SEQ ID NOs: 44 and 45) at 2 uM and 1×KAPA 2G HotStart Fast Ready Mix™ (KAPA Biosystems, Wilmington, Mass.). Reactions were cycled for 45 seconds at 98° C. followed by 20 cycles of 98° C. for 15 seconds, 60° C. for 30 seconds, and 72° C. for 30 seconds. A final 1 minute 72° C. polishing step finished the reaction. Samples were cleaned up again with 0.8×AMPure™ beads. Briefly, 404 AMPure™ SPRI beads were added the second PCR wells, incubated for 5 minutes at room temperature and collected for 5 minutes at room temperature on plate magnet (DynaMag™ (Thermo-Fisher, (Watherham, Mass.) 96-well plate side-magnet). Beads were washed twice with 80% ethanol, and allowed to dry for 3 minutes at room temperature. Samples were eluted in 224 of TE at pH 8.0, and 204 was transferred to a new tube.
- 2 μL of the samples were analyzed using the Agilent® High Sensitivity D1000™ Screen Tape™ on the Agilent® 2200 Tape Station™ (Agilent Technologies®, Santa Clara, Calif.). Quantification was performed using the KAPA Library Quantification Kit (KAPA Biosystems, Wilmington, Mass.) for Illumina® Platforms, according to the manufacturer's protocol. Replicate samples were pooled to a final concentration of 10 pM, and 1% PhiX bacteriophage sequencing control was added. Samples were run with a V2300 cycle MiSeq™ kit on an Illumina® (San Diego, Calif.) MiSeq™ platform, using standard protocols from the manufacturer.
-
TABLE 18 Universal assay sequences used in Example 9. Name Sequence SEQ ID NO. Universal AATGATACGGCGACCACCGAGATCTACAC SEQ ID NO. 44 PCR-50F TCTTTCCCTACACGACGCTCT Universal CAAGCAGAAGACGGCATACGAGATGGACC SEQ ID NO. 45 PCR-47R TATGTGACTGGAGTTCAGACGTGTGC Nucleic acid sequences are shown 5′-3′. DNA is uppercase. -
FIG. 10 shows the results from the Agilent® Tape Station. The primer dimer product was the most significant product produced using standard DNA primers in the presence of DNA template, with only a small amount of full length expected product. In the absence of template, the primer dimer product was the major component of the reaction. In the case of the blocked rhPCR primers, the vast majority of the material was the desired PCR products, with little primer dimer observed. In the absence of template, there is no primer dimer present, contrasting with the overwhelming abundance of primer dimer observed in the no template lane of the unblocked DNA primers. Quantitation of the product versus primer dimer bands show that mass ratio of product to primer dimer for the unblocked DNA primers was 0.6. The mass ratio for the rhPCR primers was 6.3. -
FIG. 11 summarizes two key sequencing metrics. The first is the percent of mapped reads from the sequencing data. The rhPCR reactions gave a percentage of reads mapped to the human genome at 85%, whereas the non-blocked DNA primers on give a mapped read percentage of less than 20. A second metric, the percentage of on-target reads, is almost 95% when using rhPCR primers, but less than 85% when the non-blocked primers are used in the multiplex. These results clearly demonstrate the utility of using rhPCR in multiplexing, where a large increase of the desired material is seen, and a vast reduction in undesired side products is observed. The differences mean less unwanted sequencing reads, and the depth of coverage of desired sequences is higher. - All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
- The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
- Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
Claims (15)
1. A method of detecting one or more variations in a target DNA sequence, the method comprising:
(a) providing a first reaction mixture comprising:
(i) a first allele specific oligonucleotide primer and a second allele specific oligonucleotide primer, both having a cleavage domain positioned 5′ of a blocking group and 3′ of a position of variation, the blocking group linked at or near the end of the 3′-end of the oligonucleotide primer, wherein the blocking group prevents primer extension and/or inhibits the first and second allele specific oligonucleotide primers from serving as a template for DNA synthesis,
(ii) a nucleic acid sample that may or may not have the target DNA sequence, wherein the target DNA sequence may or may not have the variation,
(iii) a cleaving enzyme, and
(iv) a polymerase, wherein the polymerase is a high-discrimination mutant H784Q Taq polymerase;
(b) hybridizing the first and second allele specific oligonucleotide primers to the target DNA sequence, if present in the sample, to form a double-stranded substrate;
(c) cleaving the first and second allele specific oligonucleotide primers hybridized to the target DNA sequence, if the first and second allele specific oligonucleotide primers are complementary at the variation, with the cleaving enzyme at a point within or adjacent to the cleavage domain to remove the blocking group from the first and second allele specific oligonucleotide primers; and
(d) extending the first and second allele specific oligonucleotide primers with the high-discrimination mutant H784Q Taq polymerase; and
(e) providing a second reaction mixture comprising:
(i) the first allele specific oligonucleotide primer and a third allele specific oligonucleotide primer, both having a cleavage domain positioned 5′ of a blocking group and 3′ of a position of variation, the blocking group linked at or near the end of the 3′-end of the first and second allele specific oligonucleotide primers, wherein the blocking group prevents primer extension and/or inhibits the first and third allele specific oligonucleotide primers from serving as a template for DNA synthesis,
(ii) a nucleic acid sample that may or may not have the target DNA sequence, wherein the target DNA sequence may or may not have the variation,
(iii) a cleaving enzyme, and
(iv) a polymerase, wherein the polymerase is a high-discrimination mutant H784Q Taq polymerase;
(f) hybridizing the first and third allele specific oligonucleotide primers to the target DNA sequence, if present in the sample, to form a double-stranded substrate;
(g) cleaving the first and third oligonucleotide primers hybridized to the target DNA sequence, if the first and third allele specific oligonucleotide primers are complementary at the variation, with the cleaving enzyme at a point within or adjacent to the cleavage domain to remove the blocking group from the first and third allele specific oligonucleotide primers; and
(h) extending the first and third allele specific oligonucleotide primers with the high-discrimination mutant H784Q Taq polymerase.
2. The method of claim 1 , wherein the first, second, and third allele specific oligonucleotide primers contain:
(a) a 5′ tail sequence that comprises a universal primer sequence and a reporter probe sequence that corresponds to an allele specific oligonucleotide primer, wherein the 5′ tail sequence is non-complementary to the target DNA sequence;
(b) a region complementary to the target DNA sequence; and
(c) an allele specific domain.
3. The method of claim 2 , wherein the allele specific domain is capable of being cleaved by an RNase H enzyme when hybridized to the target DNA sequence.
4. The method of claim 1 , wherein the cleavage domain is comprised of at least one RNA base, and the cleaving enzyme cleaves between the position complementary to the variation and the RNA base.
5. The method of claim 1 , wherein the cleavage domain is comprised of one or more 2′-modified nucleosides, and the cleaving enzyme cleaves between the position complementary to the variation and the one or more 2′-modified nucleosides.
6. The method of claim 5 , wherein the one or more 2′-modified nucleosides are 2′-fluoronucleosides.
7. The method of claim 1 , wherein the cleaving enzyme is a hot start cleaving enzyme that is reversibly inactivated through interaction with an antibody at lower temperatures.
8. The method of claim 1 , wherein the cleaving enzyme is a hot start cleaving enzyme that is thermostable and has reduced activity at lower temperatures.
9. The method of claim 1 , wherein the cleaving enzyme is a chemically modified hot start cleaving enzyme that is thermostable and has reduced activity at lower temperatures.
10. The method of claim 9 , wherein the chemically modified hot start cleaving enzyme is a chemically modified Pyrococcus abyssi RNase H2.
11. The method of claim 1 , wherein the high-discrimination mutant H784Q Taq polymerase is reversibly inactivated via chemical, aptamer, or antibody modification.
12. A method of visualization of multiple different fluorescent signals from allelic amplification plots, the method comprising:
(a) using three fluorescent signals from multiple fluorescent dye signals in a single reaction well, subtracting a lowest fluorescence Dye3 from fluorescence signals from Dye1 and Dye2;
(b) calculating the distance of data from an origin and an angle from one of the axis with an equation
(c) plotting on a circle plot with three axes, one for each dye or allele, the resulting distance.
13. The method of claim 12 , the method comprising:
(a) using four fluorescent signals from multiple fluorescent dye signals in a single reaction well, subtracting a lowest fluorescence Dye4 from fluorescence signals from Dye1, Dye2, and Dye3;
(b) calculating the distance of data from an origin and an angle from one of the axes with an equation:
Distance from origin=√{square root over ((ΔRn Dye1)2+(ΔRn Dye2)2)}
Angle=tan−1(ΔRnDye1 ÷ΔRnDye2); and
Distance from origin=√{square root over ((ΔRn Dye1)2+(ΔRn Dye2)2)}
Angle=tan−1(ΔRnDye1 ÷ΔRnDye2); and
(c) plotting on a circle plot with four axes, one for each dye or allele, the resulting distance.
14. The method of claim 12 , the method comprising:
(a) using five fluorescent signals from multiple fluorescent dye signals in a single reaction well, subtracting a lowest fluorescence Dye5 from fluorescence signals from Dye1, Dye2, Dye3, and Dye4;
(b) calculating the distance of data from an origin and an angle from one of the axes with an equation:
(c) plotting on a circle plot with five axes, one for each dye or allele, the resulting distance.
15. The method of claim 12 , the method comprising:
(a) using six fluorescent signals from multiple fluorescent dye signals in a single reaction well, subtracting a lowest fluorescence Dye6 from fluorescence signals from Dye1, Dye2, Dye3, Dye4, and Dye5
(b) calculating the distance of data from an origin and an angle from one of the axes with an equation:
(c) plotting on a circle plot with five axes, one for each dye or allele, the resulting distance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/084,797 US20210285033A1 (en) | 2015-11-25 | 2020-10-30 | Methods for variant detection |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562259913P | 2015-11-25 | 2015-11-25 | |
US201662339317P | 2016-05-20 | 2016-05-20 | |
US15/361,280 US20170145486A1 (en) | 2015-11-25 | 2016-11-25 | Methods for variant detection |
US17/084,797 US20210285033A1 (en) | 2015-11-25 | 2020-10-30 | Methods for variant detection |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/361,280 Continuation US20170145486A1 (en) | 2015-11-25 | 2016-11-25 | Methods for variant detection |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210285033A1 true US20210285033A1 (en) | 2021-09-16 |
Family
ID=57590833
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/361,280 Abandoned US20170145486A1 (en) | 2015-11-25 | 2016-11-25 | Methods for variant detection |
US15/487,401 Active 2037-06-13 US10886006B2 (en) | 2015-11-25 | 2017-04-13 | Methods for variant detection |
US15/604,204 Abandoned US20170260583A1 (en) | 2015-11-25 | 2017-05-24 | Methods for variant detection |
US16/374,752 Abandoned US20190218611A1 (en) | 2015-11-25 | 2019-04-04 | Methods for variant detection |
US16/374,751 Abandoned US20190221290A1 (en) | 2015-11-25 | 2019-04-04 | Methods for variant detection |
US17/084,797 Pending US20210285033A1 (en) | 2015-11-25 | 2020-10-30 | Methods for variant detection |
US17/140,640 Active 2037-01-08 US11926866B2 (en) | 2015-11-25 | 2021-01-04 | Method for detecting on-target and predicted off-target genome editing events |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/361,280 Abandoned US20170145486A1 (en) | 2015-11-25 | 2016-11-25 | Methods for variant detection |
US15/487,401 Active 2037-06-13 US10886006B2 (en) | 2015-11-25 | 2017-04-13 | Methods for variant detection |
US15/604,204 Abandoned US20170260583A1 (en) | 2015-11-25 | 2017-05-24 | Methods for variant detection |
US16/374,752 Abandoned US20190218611A1 (en) | 2015-11-25 | 2019-04-04 | Methods for variant detection |
US16/374,751 Abandoned US20190221290A1 (en) | 2015-11-25 | 2019-04-04 | Methods for variant detection |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/140,640 Active 2037-01-08 US11926866B2 (en) | 2015-11-25 | 2021-01-04 | Method for detecting on-target and predicted off-target genome editing events |
Country Status (5)
Country | Link |
---|---|
US (7) | US20170145486A1 (en) |
EP (1) | EP3380635A2 (en) |
JP (3) | JP6744917B2 (en) |
CN (3) | CN116064747A (en) |
WO (1) | WO2017091811A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11926866B2 (en) | 2015-11-25 | 2024-03-12 | Integrated Dna Technologies, Inc. | Method for detecting on-target and predicted off-target genome editing events |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210395799A1 (en) * | 2015-11-25 | 2021-12-23 | Integrated Dna Technologies, Inc. | Methods for variant detection |
CN108563922A (en) * | 2018-04-04 | 2018-09-21 | 中南大学 | Predict method, system and the storage medium of protein RNA conjugate hot spots |
CN108342472A (en) * | 2018-04-13 | 2018-07-31 | 东华大学 | A kind of coronary heart disease tumor susceptibility gene detection and genotyping kit |
KR20210059694A (en) * | 2018-07-12 | 2021-05-25 | 트윈스트랜드 바이오사이언시스, 인코포레이티드 | Methods and reagents for identifying genome editing, clonal expansion, and related fields |
CN109234368A (en) * | 2018-08-13 | 2019-01-18 | 武汉千麦医学检验所有限公司 | A method of for hepatitis B virus YMDD motif area medicament-resistant mutation |
CN109234367A (en) * | 2018-08-13 | 2019-01-18 | 武汉千麦医学检验所有限公司 | A kind of kit for hepatitis B virus YMDD motif area medicament-resistant mutation |
CN109234375A (en) * | 2018-08-13 | 2019-01-18 | 武汉千麦医学检验所有限公司 | A method of Genotyping is carried out for folic acid metabolism gene |
WO2020046809A1 (en) * | 2018-08-27 | 2020-03-05 | The Regents Of The University Of California | Reporter nucleic acids for type v crispr-mediated detection |
CN109652538A (en) * | 2018-11-13 | 2019-04-19 | 武汉千麦医学检验所有限公司 | A kind of kit for the detection of Braf V600E site mutation |
CN109652539A (en) * | 2018-11-13 | 2019-04-19 | 武汉千麦医学检验所有限公司 | A kind of kit detected for EGFR T790M site mutation |
CN109486917A (en) * | 2018-11-13 | 2019-03-19 | 武汉千麦医学检验所有限公司 | A kind of kit for KRAS gene mutation detection |
CN109680044B (en) * | 2019-01-21 | 2021-04-30 | 北京大学 | Gene mutation detection method based on selective elimination of wild chain background interference |
CN111647646B (en) * | 2019-03-04 | 2022-01-11 | 浙江大学 | CRISPR nucleic acid detection method with anti-pollution capacity |
CN110592215A (en) * | 2019-09-27 | 2019-12-20 | 迈克生物股份有限公司 | Composition for detecting nucleic acid sequence and detection method |
CN110628882B (en) * | 2019-10-18 | 2020-09-01 | 纳昂达(南京)生物科技有限公司 | Primer and kit for PCR amplification, method for detecting MSI state and application |
CN110797085B (en) * | 2019-10-25 | 2022-07-08 | 浪潮(北京)电子信息产业有限公司 | Method, system, equipment and storage medium for inquiring gene data |
CN110846426A (en) * | 2019-12-13 | 2020-02-28 | 华南农业大学 | Fluorescent PCR (polymerase chain reaction) primer group and kit for rapidly detecting salmonella pullorum |
US11369936B2 (en) | 2020-03-05 | 2022-06-28 | The Trustees Of Columbia University In The City Of New York | Versatile method for the detection of marker-free precision genome editing and genetic variation |
CN114645077A (en) * | 2020-12-17 | 2022-06-21 | 厦门大学 | Method and kit for detecting existence or proportion of donor in receptor sample |
EP4402284A2 (en) * | 2021-09-16 | 2024-07-24 | Cepheid | Echo amplification: a comprehensive system of chemistry and methods for amplification and detection of specific nucleic acid sequences |
CN113981069B (en) * | 2021-11-10 | 2023-08-15 | 郑州华沃生物科技有限公司 | Primer and kit for detecting ADRB1 gene G1165C polymorphism, and detection method and application thereof |
CN114182003B (en) * | 2022-01-11 | 2024-06-25 | 杭州百迈生物股份有限公司 | Kit for CYP3A5 polymorphic locus genotyping detection and detection method thereof |
WO2024033895A2 (en) * | 2022-08-12 | 2024-02-15 | Biorchestra Co., Ltd. | Oligonucleotides targeting indoleamine 2,3-dioxygenase and uses thereof |
CN115948388A (en) * | 2022-12-30 | 2023-04-11 | 纳昂达(南京)生物科技有限公司 | Specific capture primer, targeted capture probe composition, targeted capture library construction method and application |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6618679B2 (en) | 2000-01-28 | 2003-09-09 | Althea Technologies, Inc. | Methods for analysis of gene expression |
CA2949315A1 (en) * | 2008-04-30 | 2009-11-05 | Integrated Dna Technologies, Inc. | Rnase h-based assays utilizing modified rna monomers |
US8911948B2 (en) | 2008-04-30 | 2014-12-16 | Integrated Dna Technologies, Inc. | RNase H-based assays utilizing modified RNA monomers |
WO2014143228A1 (en) * | 2013-03-15 | 2014-09-18 | Integrated Dna Technologies, Inc. | Rnase h-based assays utilizing modified rna monomers |
JP5539325B2 (en) | 2008-04-30 | 2014-07-02 | インテグレイテツド・デイー・エヌ・エイ・テクノロジーズ・インコーポレイテツド | RNase H based assay using modified RNA monomers |
US20140255925A9 (en) | 2008-04-30 | 2014-09-11 | Integrated Dna Technologies | Modified rnase h enzymes and their uses |
WO2010051434A1 (en) * | 2008-10-31 | 2010-05-06 | Helicos Biosciences Corporation | Polymerases and methods of use thereof |
JP5805064B2 (en) * | 2009-03-27 | 2015-11-04 | ライフ テクノロジーズ コーポレーション | Methods, compositions, and kits for detecting allelic variants |
AU2012236896A1 (en) | 2011-03-25 | 2013-05-16 | Integrated Dna Technologies, Inc. | RNase H-based assays utilizing modified RNA monomers |
WO2013142364A1 (en) | 2012-03-19 | 2013-09-26 | Integrated Dna Technologies, Inc. | Modified rnase h enzymes and their uses |
SG11201504523UA (en) * | 2012-12-12 | 2015-07-30 | Broad Inst Inc | Delivery, engineering and optimization of systems, methods and compositions for sequence manipulation and therapeutic applications |
AU2014205110A1 (en) | 2013-01-13 | 2015-08-27 | Unitaq Bio | Methods and compositions for PCR using blocked and universal primers |
AU2014348323B2 (en) * | 2013-11-14 | 2020-09-24 | Integrated Dna Technologies, Inc. | DNA polymerase mutants having enhanced template discrimination activity |
US20210395799A1 (en) | 2015-11-25 | 2021-12-23 | Integrated Dna Technologies, Inc. | Methods for variant detection |
WO2017091811A2 (en) | 2015-11-25 | 2017-06-01 | Integrated Dna Technologies, Inc. | Methods for variant detection |
-
2016
- 2016-11-25 WO PCT/US2016/063771 patent/WO2017091811A2/en active Application Filing
- 2016-11-25 US US15/361,280 patent/US20170145486A1/en not_active Abandoned
- 2016-11-25 CN CN202211184973.6A patent/CN116064747A/en active Pending
- 2016-11-25 CN CN201680068500.6A patent/CN108291253A/en active Pending
- 2016-11-25 EP EP16816497.8A patent/EP3380635A2/en not_active Ceased
- 2016-11-25 CN CN202211191706.1A patent/CN116064748A/en active Pending
- 2016-11-25 JP JP2018526848A patent/JP6744917B2/en active Active
-
2017
- 2017-04-13 US US15/487,401 patent/US10886006B2/en active Active
- 2017-05-24 US US15/604,204 patent/US20170260583A1/en not_active Abandoned
-
2019
- 2019-04-04 US US16/374,752 patent/US20190218611A1/en not_active Abandoned
- 2019-04-04 US US16/374,751 patent/US20190221290A1/en not_active Abandoned
-
2020
- 2020-07-30 JP JP2020128783A patent/JP7112456B2/en active Active
- 2020-10-30 US US17/084,797 patent/US20210285033A1/en active Pending
-
2021
- 2021-01-04 US US17/140,640 patent/US11926866B2/en active Active
-
2022
- 2022-07-21 JP JP2022116142A patent/JP7318072B2/en active Active
Non-Patent Citations (3)
Title |
---|
Morita et al. Genotyping of triallelic SNPs using TaqMan PCR. Molecular and Cellular Probes 2007; 21: 171-176 (Year: 2007). * |
Myakishev et al. High-Throughput SNP Genotyping by Allele-Specific PCR with Universal Energy-Transfer-Labeled Primers. Genome Research 2001; 11: 163-169 (Year: 2001). * |
Rickert et al. Refinement of single-nucleotide polymorphism genotyping methods on human genomic DNA: amplifluor allele-specific polymerase chain reaction versus ligation detection reaction-TaqMan . Analytical Biochemistry 2004; 330: 288-297 (Year: 2004). * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11926866B2 (en) | 2015-11-25 | 2024-03-12 | Integrated Dna Technologies, Inc. | Method for detecting on-target and predicted off-target genome editing events |
Also Published As
Publication number | Publication date |
---|---|
CN108291253A (en) | 2018-07-17 |
US20210202034A1 (en) | 2021-07-01 |
US10886006B2 (en) | 2021-01-05 |
US20170260583A1 (en) | 2017-09-14 |
WO2017091811A2 (en) | 2017-06-01 |
EP3380635A2 (en) | 2018-10-03 |
JP6744917B2 (en) | 2020-08-19 |
JP2018536412A (en) | 2018-12-13 |
US20170253925A1 (en) | 2017-09-07 |
US11926866B2 (en) | 2024-03-12 |
JP2020182493A (en) | 2020-11-12 |
CN116064748A (en) | 2023-05-05 |
JP7112456B2 (en) | 2022-08-03 |
US20190221290A1 (en) | 2019-07-18 |
WO2017091811A3 (en) | 2017-07-13 |
JP2022141858A (en) | 2022-09-29 |
US20190218611A1 (en) | 2019-07-18 |
JP7318072B2 (en) | 2023-07-31 |
US20170145486A1 (en) | 2017-05-25 |
CN116064747A (en) | 2023-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210285033A1 (en) | Methods for variant detection | |
US20230295701A1 (en) | Polynucleotide enrichment and amplification using crispr-cas or argonaute systems | |
CA2781984C (en) | Allele-specific amplification of nucleic acids | |
CN110777195A (en) | Human identity recognition using a set of SNPs | |
US20100112556A1 (en) | Method for sample analysis using q probes | |
US20200032310A1 (en) | Mispriming prevention reagents | |
EP2931917A1 (en) | Primers with modified phosphate and base in allele-specific pcr | |
US20210395799A1 (en) | Methods for variant detection | |
US20180237853A1 (en) | Methods, Compositions and Kits for Detection of Mutant Variants of Target Genes | |
CN106068329B (en) | Method for detecting mutant gene by real-time polymerase chain reaction | |
van Pelt-Verkuil et al. | Principles of PCR | |
EP3610030B1 (en) | Methods for variant detection | |
Sailey et al. | Molecular Genetic Testing in the Genomic Era |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |