US20210210865A1 - Slotted substrate integrated air waveguide antenna array - Google Patents

Slotted substrate integrated air waveguide antenna array Download PDF

Info

Publication number
US20210210865A1
US20210210865A1 US17/092,836 US202017092836A US2021210865A1 US 20210210865 A1 US20210210865 A1 US 20210210865A1 US 202017092836 A US202017092836 A US 202017092836A US 2021210865 A1 US2021210865 A1 US 2021210865A1
Authority
US
United States
Prior art keywords
slotted
conductive
aperture
antenna array
waveguide structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/092,836
Other versions
US11735827B2 (en
Inventor
Linfeng Li
Stephen Yan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Alabama UA
Original Assignee
University of Alabama UA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Alabama UA filed Critical University of Alabama UA
Priority to US17/092,836 priority Critical patent/US11735827B2/en
Publication of US20210210865A1 publication Critical patent/US20210210865A1/en
Assigned to THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ALABAMA reassignment THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ALABAMA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Yan, Stephen, LI, Linfeng
Application granted granted Critical
Publication of US11735827B2 publication Critical patent/US11735827B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • H01Q21/005Slotted waveguides arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/121Hollow waveguides integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/26Surface waveguide constituted by a single conductor, e.g. strip conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/107Hollow-waveguide/strip-line transitions

Definitions

  • SIW slotted Substrate Integrated Waveguide
  • PCB printed circuit board
  • the slotted antenna array structure is directly milled on top of the SIW.
  • the vias of SIW are particularly difficult to manufacture for high frequency operation, especially at the millimeter wave (mm-Wave) spectrum. Wave leakage through the vias is generally more noticeable at higher frequency operation. Also, the dielectric material within the SIW often exhibits substantial dielectric loss at the high frequency range. Thus, the high-performance operation of slotted SIW antenna array often relies on high-cost fabrication and very expensive dielectric materials.
  • the exemplified systems and methods provide a slotted Substrate Integrated Air Waveguide (slotted SIAW) antenna array having a design that can be more readily fabricated as compared to a slotted SIW antenna array of comparable performance.
  • the exemplified systems is configured for millimeter wave application without use of exotic low dielectric loss material.
  • an antenna array comprising a ground plane having a reflective planar surface formed of a conductive material; an air waveguide structure fixably attached to, or formed onto, the reflective surface of the ground plane, the air waveguide structure defined by a waveguide width W and waveguide length L, the air waveguide structure having a slotted aperture (e.g., a centrally located aperture) defined, in part, by two conductive side walls that terminates at a conductive end wall, wherein a portion of the conductive side walls and a portion of the conductive end wall collectively define an aperture-facing radiative conductive surface (e.g., copper plated edges) of the slotted aperture, and wherein the aperture-facing radiative conductive surface of the slotted aperture electrically couples with a conductive antenna feedline of the antenna array; and a slotted cover plate fixably attached to, or formed onto, the slotted-waveguide structure, wherein the slotted cover plate has an area that fully covers the slotted aperture, wherein the slotted cover plate has two or more radiating slot
  • the slotted cover plate comprises a first material selected from the group consisting of copper, aluminum, zinc, nickel, silver, gold, and a combination thereof, and having a first electrical conductivity property
  • the conductive side walls and end wall of the air waveguide structure can be plated with a second material selected from the group consisting of copper, aluminum, zinc, nickel, silver, gold, and a combination thereof, and having a second electrical conductivity property, wherein the second electrical conductivity property is higher than the first electrical conductivity property.
  • the two conductive side walls and the conductive end wall form a continuous surface.
  • the slotted aperture is generally rectangular.
  • the slotted cover plate has a number of radiating slotted apertures selected from the group consisting of 2 slots, 3 slots, 4 slots, 5, slots, 6, slots, 7 slots, and 8 slots.
  • the slotted aperture has four side walls, and wherein the two conductive side walls and the conductive end wall wholly spans three of the four side walls.
  • the antenna array has an antenna efficiency greater than 90 percent.
  • the air waveguide structure comprises a substrate that is cut to form the slotted aperture.
  • the aperture-facing radiative conductive surface comprises a material or alloy selected from the group consisting of copper, aluminum, nickel, iron, and a combination thereof.
  • the aperture-facing radiative conductive surface comprises a material or alloy selected from the group consisting of copper, aluminum, nickel, iron, zinc, and a combination thereof.
  • the slotted cover plate comprises a copper zinc alloy (e.g., brass).
  • a substrate of the slotted-waveguide structure comprises a dielectric material (e.g., Rogers RO4350B or Rogers RO5880).
  • the slotted-waveguide structure is configured for an operating frequency having a center frequency around 28 GHz or more.
  • a method of fabricating an antenna array, the method comprising providing a ground plane having a reflective planar surface formed of a conductive material; attaching a slotted-waveguide structure to the ground plane, the air-waveguide structure defined by a waveguide width W and waveguide length L, the air-waveguide structure having a slotted aperture (e.g., a centrally located aperture) defined, in part, by two conductive side walls that terminates at a conductive end wall, wherein a portion of the conductive side walls and a portion of the conductive end wall collectively define an aperture-facing radiative conductive surface (e.g., copper plated edges) of the slotted aperture, and wherein the aperture-facing radiative conductive surface of the slotted aperture electrically couples with a conductive antenna feedline of the antenna array; and attaching a slotted cover plate to the air-waveguide structure, wherein the slotted cover plate has an area that fully covers the slotted aperture, wherein the slotted cover plate has two or more radiating slotted
  • the step of attaching the air-waveguide structure comprises cutting (e.g., via laser cutting) the slotted aperture in a stock material comprising a plate to form a waveguide substrate of the air-waveguide structure; plating the cut stock material to form the two conductive side walls and two conductive end walls; and milling the plated waveguide substrate at one of the two conductive end walls to provide the slotted aperture with only the two conductive side walls that terminates at the conductive end wall.
  • the step of attaching the slotted cover plate onto the air-waveguide structure comprises cutting the two or more radiating slotted apertures in a second stock material comprising a plate to form the slotted cover plate; and attaching the slotted cover plate to the air-waveguide structure.
  • the slotted cover plate is attached to the air-waveguide structure by a plurality of fasteners, chemical bonding (e.g., conductive adhesives), thermal bonding, laser bonding, welding, soldering, or a combination thereof.
  • chemical bonding e.g., conductive adhesives
  • thermal bonding e.g., laser bonding, welding, soldering, or a combination thereof.
  • the slotted cover plate is attached to the air-waveguide structure by aligning and connecting the slotted cover plate to the air-waveguide structure using the plurality of fasteners; and soldering conduction portion of the slotted cover plate to conduction portion of the air-waveguide structure.
  • a system comprising a ground plane having a reflective planar surface formed of a conductive material; an air-waveguide structure fixably attached to, or formed onto, the reflective surface of the ground plane, the air-waveguide structure defined by a waveguide width W and waveguide length L, the air-waveguide structure having an air slotted aperture (e.g., a centrally located aperture) defined, in part, by two conductive side walls that terminates at a conductive end wall, wherein a portion of the conductive side walls and a portion of the conductive end wall collectively define an aperture-facing radiative conductive surface (e.g., copper plated edges) of the air slotted aperture, and wherein the aperture-facing radiative conductive surface of the air slotted aperture electrically couples with a conductive antenna feedline of the antenna array; and a slotted cover plate fixably attached to, or formed onto, the air-waveguide structure, wherein the slotted cover plate has an area that fully covers the air slotted aperture, wherein the slotted cover plate has two or
  • the system further includes an integrated circuit electrically coupled to the air-waveguide structure.
  • FIG. 1 shows a diagram of an exemplary slotted Substrate Integrated Air Waveguide (slotted SIAW) antenna array in accordance with an illustrative embodiment.
  • slotted SIAW Substrate Integrated Air Waveguide
  • FIG. 2 shows another exemplary slotted Substrate Integrated Air Waveguide (slotted SIAW) antenna array in accordance with an illustrative embodiment.
  • slotted SIAW Substrate Integrated Air Waveguide
  • FIG. 3 shows a front/top view of the slotted substrate-integrated-air waveguide antenna array of FIG. 2 (when fully assembly) in accordance with an illustrative embodiment.
  • FIGS. 4A, 4B, and 4C respectively, show the front/top view of the air-waveguide structure, the slotted-array cover plate, and the ground plane of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 2 .
  • slotted SIAW slotted substrate-integrated-air waveguide
  • FIG. 5 shows the examplary slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 1 in accordance with an illustrative embodiment.
  • FIG. 6 shows another examplary slotted substrate-integrated-air waveguide antenna array of FIG. 1 and FIG. 2 in accordance with another illustrative embodiment.
  • FIG. 7 shows a model of a waveguide.
  • FIGS. 8A, 8B, 8C, and 8D show example dimensions of an examplary slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 2 in accordance with another illustrative embodiment.
  • slotted SIAW substrate-integrated-air waveguide
  • FIG. 9 is a diagram of an examplary method of fabrication of the exemplary slotted substrate-integrated-waveguide antenna array or the slotted substrate-integrated-air waveguide antenna array in accordance with an illustrative embodiment.
  • FIGS. 10A, 10B, 10C, and 10D show examplary intermediate components of the slotted substrate-integrated-air waveguide antenna array in accordance with an illustrative embodiment.
  • FIG. 11 shows a prototyped slotted substrate-integrated-air waveguide (slotted SIAW) antenna array according to specification discussed in relation to FIGS. 8A-8D in accordance with an illustrative embodiment.
  • slotted SIAW slotted substrate-integrated-air waveguide
  • FIG. 12 shows simulated and measured reflection coefficient of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 11 in millimeter wave operations having frequency ranges centered around 28 GHz in accordance with an illustrative embodiment.
  • slotted SIAW slotted substrate-integrated-air waveguide
  • FIG. 13 shows simulated reflection coefficient of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 11 in higher millimeter wave operations having frequency ranges centered around 77 GHz in accordance with an illustrative embodiment.
  • slotted SIAW slotted substrate-integrated-air waveguide
  • FIGS. 14A and 14B show simulated and measured H-plane and E-plane radiation patterns of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 11 in millimeter wave operation having frequency ranges centered around 28 GHz in accordance with an illustrative embodiment.
  • slotted SIAW slotted substrate-integrated-air waveguide
  • FIG. 15 shows simulated H-plane and E-plane radiation patterns of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 11 in millimeter wave operation having frequency ranges centered around 77 GHz in accordance with an illustrative embodiment.
  • slotted SIAW slotted substrate-integrated-air waveguide
  • FIG. 16 shows simulated wave leakage performance of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 11 in accordance with an illustrative embodiment.
  • FIG. 17 shows simulated wave leakage performance of a conventional substrate-integrated-waveguide (SIW) antenna array for comparison to the performance of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array.
  • SIW substrate-integrated-waveguide
  • FIG. 18 shows a diagram of a conventional substrate-integrated-waveguide (SIW) antenna array.
  • SIW substrate-integrated-waveguide
  • FIGS. 19 and 20 respectively show simulated H-plane and E-plane radiation patterns of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 and of the substrate-integrated-waveguide (SIW) antenna array of FIG. 17 .
  • slotted SIAW slotted substrate-integrated-air waveguide
  • SIW substrate-integrated-waveguide
  • FIGS. 21 and 22 respectively show simulated efficiency performance of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 11 and the substrate-integrated-waveguide (SIW) antenna array of FIG. 17 in which the same substrate material were used in each of simulation of the antenna arrays.
  • slotted SIAW slotted substrate-integrated-air waveguide
  • SIW substrate-integrated-waveguide
  • FIGS. 23 and 24 also respectively show simulated efficiency performance of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 11 and the substrate-integrated-waveguide (SIW) antenna array of FIG. 17 in which lower costing substrate material was used in the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array.
  • slotted SIAW slotted substrate-integrated-air waveguide
  • SIW substrate-integrated-waveguide
  • FIG. 1 shows a diagram of an exemplary slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 100 in accordance with an illustrative embodiment.
  • the slotted substrate-integrated-air waveguide (SIAW) antenna array 100 includes an air-waveguide structure 102 (also referred to herein as a slotted waveguide structure 102 ), a slotted-array cover plate 104 (also referred to herein as a slotted cover plate 104 ), and a ground plane 106 .
  • the slotted-waveguide structure 102 has a slotted aperture 108 (e.g., a centrally located aperture) that is defined, in part, by two conductive side walls 110 (shown as 110 a and 110 b ) that terminates at a conductive end wall (shown as 110 c ).
  • a portion, or all surfaces, of the conductive side walls 110 a , 110 b , and 110 c collectively defines an aperture-facing radiative conductive surface (e.g., conductive material plated edges) of the slotted aperture 108 .
  • the slotted aperture has four side walls in which the three conductive side walls extend away from the feedline 112 of the antenna array 100 .
  • the three-sided wall may form a continuous conductive surface.
  • the three-sided may have discontinuous or pattern in the conductive surface.
  • the slotted-waveguide structure 102 in the slotted aperture 104 , may be an air- or a dielectric-filled waveguide and is defined by a waveguide width W and waveguide length L.
  • the slotted aperture 108 in some embodiments, is generally rectangular in shape. In other embodiments, slotted aperture 108 may form other polygonal shapes.
  • the slotted-waveguide structure 102 particularly, at least the conductive side walls 110 a , 110 b , and 110 c , are made of a conductive material including, for example, but not limited to copper, aluminum, nickel, iron, or a combination thereof.
  • the slotted-waveguide structure 102 may additionally include dielectric material, e.g., as a substrate, to form a composite structure.
  • the slotted-waveguide structure 102 is fixably attached to, or formed onto, at its backside 114 , the ground plane 106 .
  • the ground plane 106 is formed partially or completely made of a conductive material and has a conductive reflective surface 116 that faces the slotted-waveguide structure 102 .
  • the ground plane 106 includes one more intermediate layers that are situated between the conductive reflective surface 116 and the air waveguide structure 102 (e.g., Pre-reg 1080 layer).
  • the ground plane 106 may be made of a conductive material such as copper or copper alloy, or the like (e.g., having nickel, aluminum, zinc, nickel, etc.).
  • the ground plane 106 has an area that fully covers the slotted aperture 108 .
  • the ground plane 106 has an area that spans the radiating portion 118 of the slotted-waveguide structure 102 . In some embodiments, the ground plane 106 has an area that spans the entire substrate (e.g., defined by length L and width W) of the slotted-waveguide structure 102 . In some embodiments, the slotted-waveguide structure 102 is fixably attached to the ground plane 106 via fasteners. In other embodiments, chemical bonding (e.g., conductive adhesives), thermal bonding, laser bonding, welding, soldering, or a combination thereof may be used.
  • the slotted-waveguide structure 102 is fixably attached, or formed onto, at its front side 118 , the slotted cover plate 104 .
  • the slotted cover plate 104 in some embodiments, has an area that fully covers the slotted aperture 104 .
  • the slotted cover plate 104 has two or more radiating slotted apertures 122 (shown as 122 a , 122 b , 122 c , and 122 d ) that coincides, or is coincident to, the slotted aperture 104 .
  • the slotted cover plate 104 is formed partially or completely made of a conductive material that has lower conductivity than that of the slotted-waveguide structure 102 .
  • the slotted cover plate 104 may have an area spans the radiating portion 118 of the slotted-waveguide structure 102 .
  • the slotted cover plate 104 has an area that spans the entire substrate (e.g., defined by length L and width W) of the slotted-waveguide structure 102 , or a substantial portion thereof.
  • the slotted-waveguide structure 102 is fixably attached to the slotted cover plate 104 via fasteners.
  • chemical bonding e.g., conductive adhesives
  • thermal bonding e.g., laser bonding, welding, soldering, or a combination thereof may be used.
  • the slotted cover plate 104 is made of a low conductivity copper-based alloy, such as a brass (e.g., alloy of copper and zinc). Other materials may be used such as tin, lead, iron, nickel, aluminum, or a combination thereof.
  • the slotted cover plate 104 may have other numbers of radiating slotted apertures 122 including, for example, but not limited to, 2 slots, 3 slots, 4 slots, 5, slots, 6, slots, 7 slots, and 8 slots. In some embodiments, the slotted cover plate 104 has greater than 8 slots.
  • the slotted-waveguide structure 102 and corresponding antenna 100 , may be configured for an operating frequency having a center frequency around 28 GHz.
  • the antenna 100 may be suitably use for millimeter wave application or spectrum (also referred to herein as “mmWave”).
  • the operating frequency may have a center frequency greater than 28 GHz
  • the exemplary slotted SIW antenna array 100 may be considered to include two main components, namely, the waveguide portion (e.g., 102 , 102 a ) and the slot antenna array design (e.g., 104 , 104 a ).
  • the waveguide portion (e.g., 102 , 102 a ) may share similar principle of operation and design as traditional metallic waveguide. With proper selection of the width and height of the waveguide, electromagnetic wave above a certain frequency can propagate through the waveguide. The frequency is often called the “TE10” mode cut-off frequency (f c ). The equation of calculating f c is provided in Equation 1.
  • Equation 1 C is the speed of light in free space, a is the width of the waveguide, and ⁇ r is the dielectric constant of the material in the slot of the waveguide, as shown in FIG. 7 .
  • the width of the waveguide b may not affect the cut-off frequency but may affect the impedance of the waveguide.
  • f c should at least be smaller than the lowest frequency supported by the antenna.
  • the operating frequency may be set between 26.8 GHz and 29.6 GHz.
  • the width of air waveguide may be configured to be around 7.4 mm to provide a cut-off frequency of around 20 GHz.
  • the length of the waveguide may be around 33.35 mm, which may be determined by the total number of slot antenna elements.
  • Example dimensions of the waveguide and corresponding antenna structure for this frequency operation is provided in FIGS. 8A, 8B, and 8C .
  • FIG. 8D shows example dimensions for feedline 112 comprising a microstrip line to air waveguide transition.
  • the thickness of the slotted cover plate 104 is selected based on radiating efficiency and mechanical stability.
  • the plate may have the thinnest thickness (to provide higher efficiency) while still providing sufficient mechanical stability for the application of interest.
  • the length of the antenna e.g., plate cover 104 , 104 a and the corresponding waveguide 102 , 102 a ) are selected to be about a quarter wavelength at the center frequency.
  • the distance between the center of two adjacent slots is less than one wavelength at the highest frequency (e.g., to avoid or minimize grating lobes).
  • An example set of dimensions of the slotted cover plate 104 e.g., slotted brass cover plate
  • the center of slots should always have an offset from the center of waveguide. The offset is chosen to be 0.52 mm in the design.
  • the width of the slots may be adjusted. More slot antenna element may also be added based on the gain and beam width requirement.
  • FIG. 2 shows the exemplary slotted substrate-integrated-waveguide (slotted SIW) antenna array 100 of FIG. 1 configured as a slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 in accordance with an illustrative embodiment.
  • the slotted aperture 108 (shown as 108 a ) of the slotted-waveguide structure 102 (shown as 102 a ) is hollow to form an open space (i.e., air-filled).
  • the slotted-waveguide structure 102 a , the slotted cover plate 104 (shown as 104 a ), and the ground plane 106 (shown as 106 a ) of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 are configured to assembled via fasteners.
  • the structures 102 a , 104 a , 106 a includes a set of alignment holes 202 .
  • the alignment holes may also be used during the fabrication of the antenna 200 ) to align the various apertures or components of the antenna array 200 in addition to fastening the structures 102 a , 104 a , and 106 a together (fasteners are not shown).
  • Example of fasteners includes threaded or non-treaded fasteners (e.g., bolts, screws, setscrews, nails, anchors, studs).
  • the slotted cover plate 104 a includes a set of soldering slots 204 .
  • the soldering slots 204 provides a space for further coupling between the slotted-waveguide structure (e.g., 102 , 102 a ) and the slotted cover plate (e.g., 104 , 104 a ).
  • the slotted-waveguide structure 102 a is shown to include a set of mounting holes to connect to a connector 206 that electrically couples to the feedline 112 .
  • the exemplary slotted substrate-integrated-waveguide antenna array 100 of FIG. 1 and the slotted substrate-integrated-air waveguide antenna array 200 of FIG. 2 improve on slotted substrate integrated waveguide (SIW) antenna array at mmWave operation, which is understood to have substantial losses caused by both wave leakage through gaps between copper plated through holes and lossy dielectric materials. Also, low loss dielectric materials associated with substrate integrated waveguide (SIW) antenna array are usually expensive.
  • the exemplary slotted SIW 100 or slotted SIAW 200 combines the advantages of the SIW and air-filled metallic waveguide by removing the dielectric materials within the SIW, replacing through holes with plated edges (e.g., copper plated edges) and covering the waveguide with slotted plate (e.g., slotted brass plate). Indeed, the mmWave slotted SIW antenna array or mmWave slotted SIAW antenna array is more economical to manufacture while having high performance (e.g., low dielectric loss, no wave leakage, high power handling features, etc.).
  • FIG. 3 shows a front/top view of the slotted substrate-integrated-air waveguide antenna array 200 of FIG. 2 (when fully assembly) in accordance with an illustrative embodiment.
  • FIGS. 4A, 4B, and 4C respectively, show the front/top view of the slotted-waveguide structure 102 a , the slotted cover plate 104 a , and the ground plane 106 a of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 2 .
  • slotted SIAW slotted substrate-integrated-air waveguide
  • FIG. 5 shows the examplary slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 in accordance with an illustrative embodiment.
  • the air waveguide structure e.g., 102 , 102 a
  • the air waveguide structure is shown comprising a substrate 502 made of a dielectric material (shown as “Rogers 4350B (20 mi 1 )”) with a layer 504 of 0.5-oz thickness of copper (collectively shown as 506 ).
  • the ground plane (e.g., 106 , 106 a ) is shown also comprising a substrate 508 made of a dielectric material (shown as “Rogers 4350B (20 mi 1 )”) with a layer 510 of 0.5-oz thickness of copper (collectively shown as 512 ).
  • the slotted cover plate (e.g., 104 , 104 a ) is shown comprising a brass plate 514 having a thickness of about 5 mils (0.005 inches ⁇ 5%).
  • FIG. 6 shows another examplary slotted substrate-integrated-waveguide antenna array 100 of FIG. 1 or the slotted substrate-integrated-air waveguide antenna array 200 of FIG. 2 in accordance with another illustrative embodiment.
  • the slotted substrate-integrated-waveguide antenna array 100 or the slotted substrate-integrated-air waveguide antenna array 200 may include printed-board base material 602 (shown as “Iteq IT180A Prereq 1080” (Processed: 2.83 mil).
  • FIG. 9 is a diagram of an examplary method 900 of fabrication of the exemplary slotted substrate-integrated-waveguide antenna array 100 or the slotted substrate-integrated-air waveguide antenna array 200 in accordance with an illustrative embodiment.
  • FIGS. 10A, 10B, 10C, and 10D show examplary intermediate components of the exemplary slotted substrate-integrated-waveguide antenna array 100 or the slotted substrate-integrated-air waveguide antenna array 200 in accordance with an illustrative embodiment.
  • the fabrication may be performed entirely using laser cutting, milling and edge plating, though other processing techniques may be used in combination or substitution therewith.
  • the method 900 includes providing 902 a ground plane (e.g., 106 , 106 a ) having a reflective planar surface formed of a conductive material.
  • a suitable RF ground material made of metal or any circuit board substrate material is cut from, say, a continuous metal plate.
  • the method 900 further includes attaching ( 904 ) a slotted-waveguide structure (e.g., 102 , 102 a ) to the ground plane (e.g., 106 , 106 a ).
  • the process of fabricating the slotted-waveguide structure (e.g., 102 , 102 a ) for use in step 902 includes forming an aperture 1002 (generally corresponding to the slotted aperture 108 , 108 a ) in the waveguide material and then plating the cut structure with a conductive layer.
  • a polygonal aperture e.g., with 5 edges is cut into a 20-mil RO4350B substrate, for example, as shown in FIG. 10B .
  • the waveguide is then plated with conductive layer, including over the 5 edges (shown as 1004 a , 1004 b , 1004 c , 1004 d , and 1004 e ).
  • a triangle shape region 1006 in the polygonal shape may be cut from the slotted-waveguide structure (e.g., 102 , 102 a ) to form the slotted aperture comprising 4 walls in which 3 are precisely plated of pre-defined thickness and the fourth having non-conductive substrate material (or low conductivity substrate material).
  • the polygonal aperture facilitates the coating of the three walls of the slotted aperture 108 , 108 a with a conductive material while also allowing the fourth wall to remain bare, e.g., with the non-conductive substrate material (or low conductivity substrate material).
  • the plated substrate may be cut using a laser cutter.
  • the feeding line structure e.g., 112
  • the method 900 further includes attaching ( 906 ) a slotted cover plate onto the slotted-waveguide structure.
  • the process of creating the slotted cover plate (e.g., 104 , 104 a ) for use in step 904 includes cutting (e.g., laser cutting) radiating slots (antenna array) and alignment holes in a stock plate (e.g., 5 -mil brass).
  • a stock plate e.g., 5 -mil brass
  • Example of the created slotted cover plate is shown in FIG. 10A .
  • the slotted-waveguide structure e.g., 102 , 102 a
  • the ground layer e.g., 106 , 106 b
  • the ground layer may be concurrently fastened to the structure (e.g., of waveguide).
  • slotted cover plate 104 is soldered to the slotted-waveguide structure through the soldering slots (e.g., 204 ).
  • the disclosed method provide care om the selective three-edge-plating of the waveguide (e.g., 102 , 102 a ) and the accurate layer-bonding of slotted brass plate and air waveguide.
  • FIG. 11 shows a prototyped slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 (shown as 1100 ) according to specification discussed in relation to FIGS. 8A-8D in accordance with an illustrative embodiment.
  • slotted SIAW slotted substrate-integrated-air waveguide
  • both antenna arrays were configured with the same center frequency. Additional, stimulations were performed for the two antenna arrays when configured with same substrate material (i.e., 20-mil Rogers RO4350B). The study evaluated the propagation of the electromagnetic wave from the two antenna arrays.
  • FIG. 12 shows simulated ( 1202 ) and measured ( 1204 ) reflection coefficient (shown as “S 11 (dB)”) of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 in millimeter wave frequency ranges centered around 28 GHz in accordance with an illustrative embodiment.
  • FIG. 13 shows simulated ( 1302 ) reflection coefficient of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 in higher millimeter wave frequency ranges centered around 77 GHz in accordance with an illustrative embodiment.
  • slotted substrate-integrated-air waveguide slotted SIAW
  • slotted substrate-integrated waveguide slotted SIAW
  • FIGS. 14A and 14B show, respectively, simulated and measured E- and H-plane radiation patterns of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 in millimeter wave operation having a frequency range centered around 28 GHz in accordance with an illustrative embodiment.
  • the H-plane simulated ( 1402 ) and measured ( 1404 ) results are shown.
  • the E-plane simulated ( 1406 ) and measured ( 1408 ) results are shown.
  • FIG. 15 shows simulated H-plane ( 1502 ) and E-plane ( 1504 ) radiation patterns of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 in millimeter wave frequency ranges centered around 77 GHz in accordance with an illustrative embodiment.
  • slotted substrate-integrated-air waveguide slotted SIAW
  • FIG. 16 shows simulated wave leakage performance of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 in accordance with an illustrative embodiment.
  • FIG. 17 shows simulated wave leakage performance of a conventional substrate-integrated-waveguide (SIW) antenna array.
  • SIW substrate-integrated-waveguide
  • FIGS. 19 and 20 respectively shows simulated H-plane and E-plane radiation patterns of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 and of the substrate-integrated-waveguide (SIW) antenna array of FIG. 17 .
  • the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 was simulated at a center frequency of 28 GHz.
  • the SIW antenna array of FIG. 17 was simulated at a center frequency of 26 GHz.
  • the slotted SIAW antenna array 200 is shown to have a realized gain of about 10.3 dBi and a beamwidth of 20° while the SIW antenna array has a realized gain of 6.8 dBi with a beamwidth of 40°.
  • FIGS. 21 and 22 respectively shows simulated efficiency performance of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 and the substrate-integrated-waveguide (SIW) antenna array of FIG. 17 , including the radiation efficiency (2002), the antenna efficiency (2004), and the reflection coefficient “S11” (2006).
  • FIGS. 23 and 24 also respectively shows simulated efficiency performance of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 and the substrate-integrated-waveguide (SIW) antenna array of FIG. 17 , including the radiation efficiency (2002), the antenna efficiency (2004), and the reflection coefficient “S11” (2006).
  • the two antenna arrays used for the simulations were configured with same substrate material (i.e., 20-mil Rogers RO4350B). It was observed that the antenna efficiency of the slotted SIAW antenna array 200 is about 20% higher than a comparable SIW array. It was observed that the antenna efficiency of the slotted SIAW antenna array 200 is about 20% higher than a comparable SIW array.
  • the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 was configured with 20-mil Rogers RO4350B as the substrate material, and substrate-integrated-waveguide (SIW) antenna array was configured with 20-mil Rogers RO5880 as the substrate material. It was observed that the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 was configured with 20-mil Rogers RO4350B had similar antenna efficiency compared to a substrate-integrated-waveguide (SIW) antenna array configured with 20-mil Rogers RO5880. It is noted that the cost of 20-mil Rogers RO5880 is about four times higher than 20-mil Rogers RO4350B. It is also noted that 20-mil Rogers RO4350B provides a rigid structure as compared to 20-mil Rogers RO5880. Thus, it was observed that similar antenna performance may be achieved using lower costing substrate material while also having a more rigid antenna structure.
  • the slotted substrate-integrated waveguide (slotted SIW) and slotted substrate-integrated-air waveguide (slotted SIAW) antenna array may be used for millimeter wave antennas, automotive radar antenna arrays, and 5G base station antenna arrays.

Abstract

A slotted Substrate Integrated Air Waveguide (slotted SIAW) antenna array comprising a ground plane having a reflective planar surface formed of a conductive material; an air waveguide structure fixably attached to, or formed onto, the reflective surface of the ground plane and having a slotted aperture defined, in part, by two conductive side walls that terminates at a conductive end wall, where a portion of the conductive side walls and a portion of the conductive end wall define an aperture-facing radiative conductive surface of the aperture and electrically couples with a conductive antenna feedline; and a slotted cover plate fixably attached to, or formed onto, the slotted-waveguide structure and having an area that fully covers the slotted aperture and has two or more radiating slotted apertures coincident to the slotted aperture and to the reflective planar surface of the ground plane.

Description

    RELATED APPLICATION
  • This application claims priority to, and the benefit of, U.S. Provisional Patent Application no. 62/957,983, filed Jan. 7, 2020, entitled “SLOTTED SUBSTRATE INTEGRATED WAVEGUIDE ANTENNA ARRAY,” which is incorporated by reference herein in its entirety.
  • GOVERNMENT LICENSED RIGHTS
  • This invention was made with government support under Grant No. 26548 awarded by the National Oceanic and Atmospheric Administration (NOAA). The government has certain rights in the invention.
  • BACKGROUND
  • Conventional slotted Substrate Integrated Waveguide (slotted SIW) antenna array is well-known for its simplicity and high integration capability with communication circuits. SIW generally comprises a dielectric filled rectangular waveguide formed within a double-sided printed circuit board (PCB), and the structure is caged with rows of plated tightly spaced vias that run through the guide. The vias are coated with a conductive material. The slotted antenna array structure is directly milled on top of the SIW.
  • The vias of SIW are particularly difficult to manufacture for high frequency operation, especially at the millimeter wave (mm-Wave) spectrum. Wave leakage through the vias is generally more noticeable at higher frequency operation. Also, the dielectric material within the SIW often exhibits substantial dielectric loss at the high frequency range. Thus, the high-performance operation of slotted SIW antenna array often relies on high-cost fabrication and very expensive dielectric materials.
  • There is a benefit to have improved slotted SIW antenna array design.
  • SUMMARY
  • The exemplified systems and methods provide a slotted Substrate Integrated Air Waveguide (slotted SIAW) antenna array having a design that can be more readily fabricated as compared to a slotted SIW antenna array of comparable performance. In addition, the exemplified systems is configured for millimeter wave application without use of exotic low dielectric loss material.
  • In an aspect, an antenna array disclosed comprising a ground plane having a reflective planar surface formed of a conductive material; an air waveguide structure fixably attached to, or formed onto, the reflective surface of the ground plane, the air waveguide structure defined by a waveguide width W and waveguide length L, the air waveguide structure having a slotted aperture (e.g., a centrally located aperture) defined, in part, by two conductive side walls that terminates at a conductive end wall, wherein a portion of the conductive side walls and a portion of the conductive end wall collectively define an aperture-facing radiative conductive surface (e.g., copper plated edges) of the slotted aperture, and wherein the aperture-facing radiative conductive surface of the slotted aperture electrically couples with a conductive antenna feedline of the antenna array; and a slotted cover plate fixably attached to, or formed onto, the slotted-waveguide structure, wherein the slotted cover plate has an area that fully covers the slotted aperture, wherein the slotted cover plate has two or more radiating slotted apertures coincident to the slotted aperture of the slotted-waveguide structure and to the reflective planar surface of the ground plane.
  • In some embodiments, the slotted cover plate comprises a first material selected from the group consisting of copper, aluminum, zinc, nickel, silver, gold, and a combination thereof, and having a first electrical conductivity property, and wherein the conductive side walls and end wall of the air waveguide structure can be plated with a second material selected from the group consisting of copper, aluminum, zinc, nickel, silver, gold, and a combination thereof, and having a second electrical conductivity property, wherein the second electrical conductivity property is higher than the first electrical conductivity property.
  • In some embodiments, the two conductive side walls and the conductive end wall form a continuous surface.
  • In some embodiments, the slotted aperture is generally rectangular.
  • In some embodiments, the slotted cover plate has a number of radiating slotted apertures selected from the group consisting of 2 slots, 3 slots, 4 slots, 5, slots, 6, slots, 7 slots, and 8 slots.
  • In some embodiments, the slotted aperture has four side walls, and wherein the two conductive side walls and the conductive end wall wholly spans three of the four side walls.
  • In some embodiments, the antenna array has an antenna efficiency greater than 90 percent.
  • In some embodiments, the air waveguide structure comprises a substrate that is cut to form the slotted aperture.
  • In some embodiments, the aperture-facing radiative conductive surface comprises a material or alloy selected from the group consisting of copper, aluminum, nickel, iron, and a combination thereof.
  • In some embodiments, the aperture-facing radiative conductive surface comprises a material or alloy selected from the group consisting of copper, aluminum, nickel, iron, zinc, and a combination thereof.
  • In some embodiments, the slotted cover plate comprises a copper zinc alloy (e.g., brass).
  • In some embodiments, a substrate of the slotted-waveguide structure comprises a dielectric material (e.g., Rogers RO4350B or Rogers RO5880).
  • In some embodiments, the slotted-waveguide structure is configured for an operating frequency having a center frequency around 28 GHz or more.
  • In another aspect, a method is disclosed of fabricating an antenna array, the method comprising providing a ground plane having a reflective planar surface formed of a conductive material; attaching a slotted-waveguide structure to the ground plane, the air-waveguide structure defined by a waveguide width W and waveguide length L, the air-waveguide structure having a slotted aperture (e.g., a centrally located aperture) defined, in part, by two conductive side walls that terminates at a conductive end wall, wherein a portion of the conductive side walls and a portion of the conductive end wall collectively define an aperture-facing radiative conductive surface (e.g., copper plated edges) of the slotted aperture, and wherein the aperture-facing radiative conductive surface of the slotted aperture electrically couples with a conductive antenna feedline of the antenna array; and attaching a slotted cover plate to the air-waveguide structure, wherein the slotted cover plate has an area that fully covers the slotted aperture, wherein the slotted cover plate has two or more radiating slotted apertures coincident to the slotted aperture of the air-waveguide structure.
  • In some embodiments, the step of attaching the air-waveguide structure comprises cutting (e.g., via laser cutting) the slotted aperture in a stock material comprising a plate to form a waveguide substrate of the air-waveguide structure; plating the cut stock material to form the two conductive side walls and two conductive end walls; and milling the plated waveguide substrate at one of the two conductive end walls to provide the slotted aperture with only the two conductive side walls that terminates at the conductive end wall.
  • In some embodiments, the step of attaching the slotted cover plate onto the air-waveguide structure comprises cutting the two or more radiating slotted apertures in a second stock material comprising a plate to form the slotted cover plate; and attaching the slotted cover plate to the air-waveguide structure.
  • In some embodiments, the slotted cover plate is attached to the air-waveguide structure by a plurality of fasteners, chemical bonding (e.g., conductive adhesives), thermal bonding, laser bonding, welding, soldering, or a combination thereof.
  • In some embodiments, the slotted cover plate is attached to the air-waveguide structure by aligning and connecting the slotted cover plate to the air-waveguide structure using the plurality of fasteners; and soldering conduction portion of the slotted cover plate to conduction portion of the air-waveguide structure.
  • In another a system is disclosed comprising a ground plane having a reflective planar surface formed of a conductive material; an air-waveguide structure fixably attached to, or formed onto, the reflective surface of the ground plane, the air-waveguide structure defined by a waveguide width W and waveguide length L, the air-waveguide structure having an air slotted aperture (e.g., a centrally located aperture) defined, in part, by two conductive side walls that terminates at a conductive end wall, wherein a portion of the conductive side walls and a portion of the conductive end wall collectively define an aperture-facing radiative conductive surface (e.g., copper plated edges) of the air slotted aperture, and wherein the aperture-facing radiative conductive surface of the air slotted aperture electrically couples with a conductive antenna feedline of the antenna array; and a slotted cover plate fixably attached to, or formed onto, the air-waveguide structure, wherein the slotted cover plate has an area that fully covers the air slotted aperture, wherein the slotted cover plate has two or more radiating slotted apertures coincident to the slotted aperture of the air-waveguide structure and to the reflective planar surface of the ground plane.
  • In some embodiments, the system further includes an integrated circuit electrically coupled to the air-waveguide structure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments and together with the description, serve to explain the principles of the methods and systems. The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
  • The components in the drawings are not necessarily to scale relative to each other and like reference numerals designate corresponding parts throughout the several views:
  • FIG. 1 shows a diagram of an exemplary slotted Substrate Integrated Air Waveguide (slotted SIAW) antenna array in accordance with an illustrative embodiment.
  • FIG. 2 shows another exemplary slotted Substrate Integrated Air Waveguide (slotted SIAW) antenna array in accordance with an illustrative embodiment.
  • FIG. 3 shows a front/top view of the slotted substrate-integrated-air waveguide antenna array of FIG. 2 (when fully assembly) in accordance with an illustrative embodiment.
  • FIGS. 4A, 4B, and 4C, respectively, show the front/top view of the air-waveguide structure, the slotted-array cover plate, and the ground plane of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 2.
  • FIG. 5 shows the examplary slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 1 in accordance with an illustrative embodiment.
  • FIG. 6 shows another examplary slotted substrate-integrated-air waveguide antenna array of FIG. 1 and FIG. 2 in accordance with another illustrative embodiment.
  • FIG. 7 shows a model of a waveguide.
  • FIGS. 8A, 8B, 8C, and 8D show example dimensions of an examplary slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 2 in accordance with another illustrative embodiment.
  • FIG. 9 is a diagram of an examplary method of fabrication of the exemplary slotted substrate-integrated-waveguide antenna array or the slotted substrate-integrated-air waveguide antenna array in accordance with an illustrative embodiment.
  • FIGS. 10A, 10B, 10C, and 10D show examplary intermediate components of the slotted substrate-integrated-air waveguide antenna array in accordance with an illustrative embodiment.
  • FIG. 11 shows a prototyped slotted substrate-integrated-air waveguide (slotted SIAW) antenna array according to specification discussed in relation to FIGS. 8A-8D in accordance with an illustrative embodiment.
  • FIG. 12 shows simulated and measured reflection coefficient of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 11 in millimeter wave operations having frequency ranges centered around 28 GHz in accordance with an illustrative embodiment.
  • FIG. 13 shows simulated reflection coefficient of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 11 in higher millimeter wave operations having frequency ranges centered around 77 GHz in accordance with an illustrative embodiment.
  • FIGS. 14A and 14B show simulated and measured H-plane and E-plane radiation patterns of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 11 in millimeter wave operation having frequency ranges centered around 28 GHz in accordance with an illustrative embodiment.
  • FIG. 15 shows simulated H-plane and E-plane radiation patterns of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 11 in millimeter wave operation having frequency ranges centered around 77 GHz in accordance with an illustrative embodiment.
  • FIG. 16 shows simulated wave leakage performance of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 11 in accordance with an illustrative embodiment.
  • FIG. 17 shows simulated wave leakage performance of a conventional substrate-integrated-waveguide (SIW) antenna array for comparison to the performance of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array.
  • FIG. 18 shows a diagram of a conventional substrate-integrated-waveguide (SIW) antenna array.
  • FIGS. 19 and 20 respectively show simulated H-plane and E-plane radiation patterns of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 and of the substrate-integrated-waveguide (SIW) antenna array of FIG. 17.
  • FIGS. 21 and 22 respectively show simulated efficiency performance of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 11 and the substrate-integrated-waveguide (SIW) antenna array of FIG. 17 in which the same substrate material were used in each of simulation of the antenna arrays.
  • FIGS. 23 and 24 also respectively show simulated efficiency performance of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array of FIG. 11 and the substrate-integrated-waveguide (SIW) antenna array of FIG. 17 in which lower costing substrate material was used in the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array.
  • DETAILED SPECIFICATION
  • Each and every feature described herein, and each and every combination of two or more of such features, is included within the scope of the present invention provided that the features included in such a combination are not mutually inconsistent.
  • FIG. 1 shows a diagram of an exemplary slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 100 in accordance with an illustrative embodiment. The slotted substrate-integrated-air waveguide (SIAW) antenna array 100 includes an air-waveguide structure 102 (also referred to herein as a slotted waveguide structure 102), a slotted-array cover plate 104 (also referred to herein as a slotted cover plate 104), and a ground plane 106.
  • The slotted-waveguide structure 102 has a slotted aperture 108 (e.g., a centrally located aperture) that is defined, in part, by two conductive side walls 110 (shown as 110 a and 110 b) that terminates at a conductive end wall (shown as 110 c). A portion, or all surfaces, of the conductive side walls 110 a, 110 b, and 110 c collectively defines an aperture-facing radiative conductive surface (e.g., conductive material plated edges) of the slotted aperture 108. In FIG. 1, the slotted aperture has four side walls in which the three conductive side walls extend away from the feedline 112 of the antenna array 100. The three-sided wall may form a continuous conductive surface. In other embodiments, the three-sided may have discontinuous or pattern in the conductive surface. The slotted-waveguide structure 102, in the slotted aperture 104, may be an air- or a dielectric-filled waveguide and is defined by a waveguide width W and waveguide length L. The slotted aperture 108, in some embodiments, is generally rectangular in shape. In other embodiments, slotted aperture 108 may form other polygonal shapes. The slotted-waveguide structure 102, particularly, at least the conductive side walls 110 a, 110 b, and 110 c, are made of a conductive material including, for example, but not limited to copper, aluminum, nickel, iron, or a combination thereof. The slotted-waveguide structure 102 may additionally include dielectric material, e.g., as a substrate, to form a composite structure.
  • Referring to FIG. 1, the slotted-waveguide structure 102 is fixably attached to, or formed onto, at its backside 114, the ground plane 106. The ground plane 106 is formed partially or completely made of a conductive material and has a conductive reflective surface 116 that faces the slotted-waveguide structure 102. In some embodiments, the ground plane 106 includes one more intermediate layers that are situated between the conductive reflective surface 116 and the air waveguide structure 102 (e.g., Pre-reg 1080 layer). The ground plane 106 may be made of a conductive material such as copper or copper alloy, or the like (e.g., having nickel, aluminum, zinc, nickel, etc.). The ground plane 106 has an area that fully covers the slotted aperture 108. In some embodiments, the ground plane 106 has an area that spans the radiating portion 118 of the slotted-waveguide structure 102. In some embodiments, the ground plane 106 has an area that spans the entire substrate (e.g., defined by length L and width W) of the slotted-waveguide structure 102. In some embodiments, the slotted-waveguide structure 102 is fixably attached to the ground plane 106 via fasteners. In other embodiments, chemical bonding (e.g., conductive adhesives), thermal bonding, laser bonding, welding, soldering, or a combination thereof may be used.
  • Referring to FIG. 1, the slotted-waveguide structure 102 is fixably attached, or formed onto, at its front side 118, the slotted cover plate 104. The slotted cover plate 104, in some embodiments, has an area that fully covers the slotted aperture 104. The slotted cover plate 104 has two or more radiating slotted apertures 122 (shown as 122 a, 122 b, 122 c, and 122 d) that coincides, or is coincident to, the slotted aperture 104. The slotted cover plate 104 is formed partially or completely made of a conductive material that has lower conductivity than that of the slotted-waveguide structure 102. To this end, the slotted cover plate 104 may have an area spans the radiating portion 118 of the slotted-waveguide structure 102. In some embodiments, the slotted cover plate 104 has an area that spans the entire substrate (e.g., defined by length L and width W) of the slotted-waveguide structure 102, or a substantial portion thereof.
  • In some embodiments, the slotted-waveguide structure 102 is fixably attached to the slotted cover plate 104via fasteners. In other embodiments, chemical bonding (e.g., conductive adhesives), thermal bonding, laser bonding, welding, soldering, or a combination thereof may be used.
  • In some embodiments, the slotted cover plate 104 is made of a low conductivity copper-based alloy, such as a brass (e.g., alloy of copper and zinc). Other materials may be used such as tin, lead, iron, nickel, aluminum, or a combination thereof.
  • Although shown with 4 slots (122 a-122 d), the slotted cover plate 104 may have other numbers of radiating slotted apertures 122 including, for example, but not limited to, 2 slots, 3 slots, 4 slots, 5, slots, 6, slots, 7 slots, and 8 slots. In some embodiments, the slotted cover plate 104 has greater than 8 slots.
  • The slotted-waveguide structure 102, and corresponding antenna 100, may be configured for an operating frequency having a center frequency around 28 GHz. The antenna 100 may be suitably use for millimeter wave application or spectrum (also referred to herein as “mmWave”). In some embodiments, the operating frequency may have a center frequency greater than 28 GHz
  • The exemplary slotted SIW antenna array 100 may be considered to include two main components, namely, the waveguide portion (e.g., 102, 102 a) and the slot antenna array design (e.g., 104, 104 a).
  • The waveguide portion (e.g., 102, 102 a) may share similar principle of operation and design as traditional metallic waveguide. With proper selection of the width and height of the waveguide, electromagnetic wave above a certain frequency can propagate through the waveguide. The frequency is often called the “TE10” mode cut-off frequency (fc). The equation of calculating fc is provided in Equation 1.
  • f c = C 2 a × ɛ r ( Equation 1 )
  • In Equation 1, C is the speed of light in free space, a is the width of the waveguide, and εr is the dielectric constant of the material in the slot of the waveguide, as shown in FIG. 7.
  • The width of the waveguide b may not affect the cut-off frequency but may affect the impedance of the waveguide. To design the waveguide for the slotted antenna array, fc should at least be smaller than the lowest frequency supported by the antenna. In an exemplary 28-GHz slotted SIAW antenna array embodiment, the operating frequency may be set between 26.8 GHz and 29.6 GHz. For this embodiment, the width of air waveguide may be configured to be around 7.4 mm to provide a cut-off frequency of around 20 GHz. The length of the waveguide may be around 33.35 mm, which may be determined by the total number of slot antenna elements. Example dimensions of the waveguide and corresponding antenna structure for this frequency operation is provided in FIGS. 8A, 8B, and 8C. FIG. 8D shows example dimensions for feedline 112 comprising a microstrip line to air waveguide transition.
  • To provide the desired gain and bandwidth, in some embodiments, the thickness of the slotted cover plate 104 (e.g., brass cover plate) is selected based on radiating efficiency and mechanical stability. In some embodiments, the plate may have the thinnest thickness (to provide higher efficiency) while still providing sufficient mechanical stability for the application of interest. In some embodiments, the length of the antenna (e.g., plate cover 104, 104 a and the corresponding waveguide 102, 102 a) are selected to be about a quarter wavelength at the center frequency.
  • In some embodiments, the distance between the center of two adjacent slots (e.g., 122) is less than one wavelength at the highest frequency (e.g., to avoid or minimize grating lobes). An example set of dimensions of the slotted cover plate 104 (e.g., slotted brass cover plate) are provided in FIG. 8B. In some embodiments, to match the impedance, the center of slots should always have an offset from the center of waveguide. The offset is chosen to be 0.52 mm in the design. To optimize the bandwidth, the width of the slots (e.g., 122) may be adjusted. More slot antenna element may also be added based on the gain and beam width requirement.
  • FIG. 2 shows the exemplary slotted substrate-integrated-waveguide (slotted SIW) antenna array 100 of FIG. 1 configured as a slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 in accordance with an illustrative embodiment. Notably, the slotted aperture 108 (shown as 108 a) of the slotted-waveguide structure 102 (shown as 102 a) is hollow to form an open space (i.e., air-filled).
  • Further, in FIG. 2, the slotted-waveguide structure 102 a, the slotted cover plate 104 (shown as 104 a), and the ground plane 106 (shown as 106 a) of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 are configured to assembled via fasteners. In FIG. 2, the structures 102 a, 104 a, 106 a includes a set of alignment holes 202. The alignment holes may also be used during the fabrication of the antenna 200) to align the various apertures or components of the antenna array 200 in addition to fastening the structures 102 a, 104 a, and 106 a together (fasteners are not shown). Example of fasteners includes threaded or non-treaded fasteners (e.g., bolts, screws, setscrews, nails, anchors, studs).
  • Further, in FIG. 2, the slotted cover plate 104 a includes a set of soldering slots 204. The soldering slots 204 provides a space for further coupling between the slotted-waveguide structure (e.g., 102, 102 a) and the slotted cover plate (e.g., 104, 104 a).
  • Further, in FIG. 2, the slotted-waveguide structure 102 a is shown to include a set of mounting holes to connect to a connector 206 that electrically couples to the feedline 112.
  • The exemplary slotted substrate-integrated-waveguide antenna array 100 of FIG. 1 and the slotted substrate-integrated-air waveguide antenna array 200 of FIG. 2 improve on slotted substrate integrated waveguide (SIW) antenna array at mmWave operation, which is understood to have substantial losses caused by both wave leakage through gaps between copper plated through holes and lossy dielectric materials. Also, low loss dielectric materials associated with substrate integrated waveguide (SIW) antenna array are usually expensive. The exemplary slotted SIW 100 or slotted SIAW 200 combines the advantages of the SIW and air-filled metallic waveguide by removing the dielectric materials within the SIW, replacing through holes with plated edges (e.g., copper plated edges) and covering the waveguide with slotted plate (e.g., slotted brass plate). Indeed, the mmWave slotted SIW antenna array or mmWave slotted SIAW antenna array is more economical to manufacture while having high performance (e.g., low dielectric loss, no wave leakage, high power handling features, etc.).
  • FIG. 3 shows a front/top view of the slotted substrate-integrated-air waveguide antenna array 200 of FIG. 2 (when fully assembly) in accordance with an illustrative embodiment. FIGS. 4A, 4B, and 4C, respectively, show the front/top view of the slotted-waveguide structure 102 a, the slotted cover plate 104 a, and the ground plane 106 a of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 2.
  • FIG. 5 shows the examplary slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 in accordance with an illustrative embodiment. In FIG. 5, the air waveguide structure (e.g., 102, 102 a) is shown comprising a substrate 502 made of a dielectric material (shown as “Rogers 4350B (20 mi1)”) with a layer 504 of 0.5-oz thickness of copper (collectively shown as 506). The ground plane (e.g., 106, 106 a) is shown also comprising a substrate 508 made of a dielectric material (shown as “Rogers 4350B (20 mi1)”) with a layer 510 of 0.5-oz thickness of copper (collectively shown as 512). The slotted cover plate (e.g., 104, 104 a) is shown comprising a brass plate 514 having a thickness of about 5 mils (0.005 inches ±5%).
  • FIG. 6 shows another examplary slotted substrate-integrated-waveguide antenna array 100 of FIG. 1 or the slotted substrate-integrated-air waveguide antenna array 200 of FIG. 2 in accordance with another illustrative embodiment. In addition to the structures shown in FIG. 5 (e.g., 502, 504, 508, 510, 514), in FIG. 6, the slotted substrate-integrated-waveguide antenna array 100 or the slotted substrate-integrated-air waveguide antenna array 200 may include printed-board base material 602 (shown as “Iteq IT180A Prereq 1080” (Processed: 2.83 mil).
  • Example Method of Fabrication
  • As noted above, the exemplified systems and methods provides a slotted substrate integrated waveguide (SIW) antenna array having a design that can be more readily fabricated as compared to comparable performing substrate integrated waveguides. FIG. 9 is a diagram of an examplary method 900 of fabrication of the exemplary slotted substrate-integrated-waveguide antenna array 100 or the slotted substrate-integrated-air waveguide antenna array 200 in accordance with an illustrative embodiment. FIGS. 10A, 10B, 10C, and 10D show examplary intermediate components of the exemplary slotted substrate-integrated-waveguide antenna array 100 or the slotted substrate-integrated-air waveguide antenna array 200 in accordance with an illustrative embodiment. In some embodiments, the fabrication may be performed entirely using laser cutting, milling and edge plating, though other processing techniques may be used in combination or substitution therewith.
  • In FIG. 9, the method 900 includes providing 902 a ground plane (e.g., 106, 106 a) having a reflective planar surface formed of a conductive material. In some embodiments, a suitable RF ground material made of metal or any circuit board substrate material is cut from, say, a continuous metal plate.
  • The method 900 further includes attaching (904) a slotted-waveguide structure (e.g., 102, 102 a) to the ground plane (e.g., 106, 106 a). In some embodiments, the process of fabricating the slotted-waveguide structure (e.g., 102, 102 a) for use in step 902 includes forming an aperture 1002 (generally corresponding to the slotted aperture 108, 108 a) in the waveguide material and then plating the cut structure with a conductive layer. In some embodiments, a polygonal aperture, e.g., with 5 edges is cut into a 20-mil RO4350B substrate, for example, as shown in FIG. 10B. The waveguide is then plated with conductive layer, including over the 5 edges (shown as 1004 a, 1004 b, 1004 c, 1004 d, and 1004 e). Subsequently, a triangle shape region 1006 in the polygonal shape may be cut from the slotted-waveguide structure (e.g., 102, 102 a) to form the slotted aperture comprising 4 walls in which 3 are precisely plated of pre-defined thickness and the fourth having non-conductive substrate material (or low conductivity substrate material). Indeed, the polygonal aperture, e.g., with 5 edges, facilitates the coating of the three walls of the slotted aperture 108, 108 a with a conductive material while also allowing the fourth wall to remain bare, e.g., with the non-conductive substrate material (or low conductivity substrate material). Of course, other geometric shapes may be employed to provide access to the three walls (1004 a, 1004 b, 1004 c) for plating. In some embodiments, the plated substrate may be cut using a laser cutter. Subsequently, the feeding line structure (e.g., 112) may be milled, e.g., via a milling machine, onto the plated slotted-waveguide structure.
  • The method 900 further includes attaching (906) a slotted cover plate onto the slotted-waveguide structure. In some embodiments, the process of creating the slotted cover plate (e.g., 104, 104 a) for use in step 904 includes cutting (e.g., laser cutting) radiating slots (antenna array) and alignment holes in a stock plate (e.g., 5-mil brass). Example of the created slotted cover plate is shown in FIG. 10A. The slotted-waveguide structure (e.g., 102, 102 a) may then be fastened to the slotted cover plate 104 via use of the alignment holes (e.g., 202). Similarly, the ground layer (e.g., 106, 106 b) may be concurrently fastened to the structure (e.g., of waveguide). In some embodiments, slotted cover plate 104 is soldered to the slotted-waveguide structure through the soldering slots (e.g., 204).
  • Indeed, the disclosed method provide care om the selective three-edge-plating of the waveguide (e.g., 102, 102 a) and the accurate layer-bonding of slotted brass plate and air waveguide.
  • FIG. 11 shows a prototyped slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 (shown as 1100) according to specification discussed in relation to FIGS. 8A-8D in accordance with an illustrative embodiment.
  • Experimental Results
  • To assess the performance of exemplary slotted substrate-integrated waveguide antenna array and the slotted substrate-integrated-air waveguide antenna array, a study was conducted to simulate and measure performance characteristics of the antenna arrays (e.g., 100, 20). The study also evaluated comparable slotted SIW array for a comparison.
  • In a simulation, both antenna arrays were configured with the same center frequency. Additional, stimulations were performed for the two antenna arrays when configured with same substrate material (i.e., 20-mil Rogers RO4350B). The study evaluated the propagation of the electromagnetic wave from the two antenna arrays.
  • FIG. 12 shows simulated (1202) and measured (1204) reflection coefficient (shown as “S11 (dB)”) of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 in millimeter wave frequency ranges centered around 28 GHz in accordance with an illustrative embodiment. FIG. 13 shows simulated (1302) reflection coefficient of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 in higher millimeter wave frequency ranges centered around 77 GHz in accordance with an illustrative embodiment. Indeed, the measured and simulation results shows that the slotted substrate-integrated-air waveguide (slotted SIAW) antenna and, thus, the slotted substrate-integrated waveguide (slotted SIAW) antenna are suitable for millimeter wave operation at 28 GHz and 77 GHz, among others.
  • FIGS. 14A and 14B show, respectively, simulated and measured E- and H-plane radiation patterns of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 in millimeter wave operation having a frequency range centered around 28 GHz in accordance with an illustrative embodiment. In FIG. 14A, the H-plane simulated (1402) and measured (1404) results are shown. In FIG. 14B, the E-plane simulated (1406) and measured (1408) results are shown.
  • FIG. 15 shows simulated H-plane (1502) and E-plane (1504) radiation patterns of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 in millimeter wave frequency ranges centered around 77 GHz in accordance with an illustrative embodiment.
  • FIG. 16 shows simulated wave leakage performance of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 in accordance with an illustrative embodiment. For comparison, FIG. 17 shows simulated wave leakage performance of a conventional substrate-integrated-waveguide (SIW) antenna array. A diagram of the conventional substrate-integrated-waveguide (SIW) antenna array is shown in FIG. 18. Further description of the SIW antenna array can be found in Chen, X. P., Wu, K., Han, L., & He, F., “Low-cost high gain planar antenna array for 60-GHz band applications,” IEEE Transactions on Antennas and Propagation, 58(6), 2126-2129 (2010), which is incorporated by reference herein in its entirety.
  • From the study, FIGS. 19 and 20 respectively shows simulated H-plane and E-plane radiation patterns of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 and of the substrate-integrated-waveguide (SIW) antenna array of FIG. 17. The slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 was simulated at a center frequency of 28 GHz. The SIW antenna array of FIG. 17 was simulated at a center frequency of 26 GHz. The slotted SIAW antenna array 200 is shown to have a realized gain of about 10.3 dBi and a beamwidth of 20° while the SIW antenna array has a realized gain of 6.8 dBi with a beamwidth of 40°.
  • FIGS. 21 and 22 respectively shows simulated efficiency performance of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 and the substrate-integrated-waveguide (SIW) antenna array of FIG. 17, including the radiation efficiency (2002), the antenna efficiency (2004), and the reflection coefficient “S11” (2006). FIGS. 23 and 24 also respectively shows simulated efficiency performance of the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 of FIG. 11 and the substrate-integrated-waveguide (SIW) antenna array of FIG. 17, including the radiation efficiency (2002), the antenna efficiency (2004), and the reflection coefficient “S11” (2006).
  • In FIGS. 21 and 22, the two antenna arrays used for the simulations were configured with same substrate material (i.e., 20-mil Rogers RO4350B). It was observed that the antenna efficiency of the slotted SIAW antenna array 200 is about 20% higher than a comparable SIW array. It was observed that the antenna efficiency of the slotted SIAW antenna array 200 is about 20% higher than a comparable SIW array.
  • In FIGS. 23 and 24, the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 was configured with 20-mil Rogers RO4350B as the substrate material, and substrate-integrated-waveguide (SIW) antenna array was configured with 20-mil Rogers RO5880 as the substrate material. It was observed that the slotted substrate-integrated-air waveguide (slotted SIAW) antenna array 200 was configured with 20-mil Rogers RO4350B had similar antenna efficiency compared to a substrate-integrated-waveguide (SIW) antenna array configured with 20-mil Rogers RO5880. It is noted that the cost of 20-mil Rogers RO5880 is about four times higher than 20-mil Rogers RO4350B. It is also noted that 20-mil Rogers RO4350B provides a rigid structure as compared to 20-mil Rogers RO5880. Thus, it was observed that similar antenna performance may be achieved using lower costing substrate material while also having a more rigid antenna structure.
  • Having thus described several embodiments of the claimed invention, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Many advantages for non-invasive method and system for location of an abnormality in a heart have been discussed herein. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. Any alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and the scope of the claimed invention. Additionally, the recited order of the processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes to any order except as may be specified in the claims. Accordingly, the claimed invention is limited only by the following claims and equivalents thereto.
  • In some embodiments, the slotted substrate-integrated waveguide (slotted SIW) and slotted substrate-integrated-air waveguide (slotted SIAW) antenna array may be used for millimeter wave antennas, automotive radar antenna arrays, and 5G base station antenna arrays.

Claims (20)

What is claimed:
1. An antenna array comprising:
a ground plane having a reflective planar surface formed of a conductive material;
an air slotted-waveguide structure fixably attached to, or formed onto, the ground plane, the slotted-waveguide structure defined by a waveguide width W and waveguide length L, the slotted-waveguide structure having a slotted aperture defined, in part, by two conductive side walls that terminates at a conductive end wall, wherein a portion of the conductive side walls and a portion of the conductive end wall collectively define an aperture-facing radiative conductive surface of the slotted aperture, and wherein the aperture-facing radiative conductive surface of the slotted aperture electrically couples with a conductive antenna feedline of the antenna array; and
a slotted cover plate fixably attached to, or formed onto, the slotted-waveguide structure, wherein the slotted cover plate has an area that fully covers the slotted aperture, wherein the slotted cover plate has two or more radiating slotted apertures coincident to the slotted aperture of the slotted-waveguide structure and to the reflective planar surface of the ground plane.
2. The antenna array of claim 1,
wherein the slotted cover plate comprises a first material selected from the group consisting of copper, aluminum, zinc, nickel, silver, gold, and a combination thereof, and having a first electrical conductivity property, and
wherein the conductive side walls of the air-waveguide structure comprises a second material selected from the group consisting of copper, aluminum, zinc, nickel, silver, gold, and a combination thereof, and having a second electrical conductivity property, wherein the second electrical conductivity property is higher than the first electrical conductivity property.
3. The antenna array of claim 1, wherein the two conductive side walls and the conductive end wall form a continuous surface.
4. The antenna array of claim 1, wherein the slotted aperture is generally rectangular.
5. The antenna array of claim 1, the slotted cover plate has a number of radiating slotted apertures selected from the group consisting of 2 slots, 3 slots, 4 slots, 5, slots, 6, slots, 7 slots, and 8 slots.
6. The antenna array of claim 1, wherein the slotted aperture has four side walls, and wherein the two conductive side walls and the conductive end wall wholly spans three of the four side walls.
7. The antenna array of claim 1, wherein the antenna array has an antenna efficiency greater than 90 percent.
8. The antenna array of claim 1, wherein the air-waveguide structure comprises a substrate that is encapsulated in part by a conductive material to form a conductive surface.
9. The antenna array of claim 1, wherein the aperture-facing radiative conductive surface comprises a material or alloy selected from the group consisting of copper, aluminum, nickel, iron, and a combination thereof.
10. The antenna array of claim 1, wherein the aperture-facing radiative conductive surface comprises a material or alloy selected from the group consisting of copper, aluminum, nickel, iron, zinc, and a combination thereof.
11. The antenna array of claim 1, wherein the slotted cover plate comprises a copper zinc alloy.
12. The antenna array of claim 1, wherein a substrate of the air-waveguide structure comprises a dielectric material.
13. The antenna array of claim 1, wherein the air-waveguide structure is configured for an operating frequency having a center frequency around 28 GHz or more.
14. A method of fabricating an antenna array, the method comprising:
providing a ground plane having a reflective planar surface formed of a conductive material;
attaching an air-waveguide structure to the ground plane, the air-waveguide structure defined by a waveguide width W and waveguide length L, the air-waveguide structure having a slotted aperture defined, in part, by two conductive side walls that terminates at a conductive end wall, wherein a portion of the conductive side walls and a portion of the conductive end wall collectively define an aperture-facing radiative conductive surface of the slotted aperture, and wherein the aperture-facing radiative conductive surface of the slotted aperture electrically couples with a conductive antenna feedline of the antenna array; and
attaching a slotted cover plate onto the air-waveguide structure, wherein the slotted cover plate has an area that fully covers the slotted aperture, wherein the slotted cover plate has two or more radiating slotted apertures coincident to the slotted aperture of the slotted-waveguide structure.
15. The method of claim 14, wherein the step of attaching the slotted-waveguide structure comprises:
cutting the slotted aperture in a stock material comprising a plate to form a waveguide substrate of the slotted-waveguide structure;
plating the cut stock material to form the two conductive side walls and two conductive end walls; and
milling the plated waveguide substrate at one of the two conductive end walls to provide the slotted aperture with only the two conductive side walls that terminates at the conductive end wall.
16. The method of claim 14, wherein the step of attaching the slotted cover plate onto the slotted-waveguide structure comprises:
cutting the two or more radiating slotted apertures in a second stock material comprising a plate to form the slotted cover plate; and
attaching the slotted cover plate to the slotted-waveguide structure.
17. The method of claim 16, wherein the slotted cover plate is attached to the slotted-waveguide structure by a plurality of fasteners, chemical bonding, thermal bonding, laser bonding, welding, soldering, or a combination thereof.
18. The method of claim 17, wherein the slotted cover plate is attached to the slotted-waveguide structure by:
aligning and connecting the slotted cover plate to the slotted-waveguide structure using the plurality of fasteners; and
soldering conduction portion of the slotted cover plate to conduction portion of the slotted-waveguide structure.
19. A system comprising:
a ground plane having a reflective planar surface formed of a conductive material;
a slotted-waveguide structure fixably attached to, or formed onto, the reflective surface of the ground plane, the slotted-waveguide structure defined by a waveguide width W and waveguide length L, the slotted-waveguide structure having an air slotted aperture defined, in part, by two conductive side walls that terminates at a conductive end wall, wherein a portion of the conductive side walls and a portion of the conductive end wall collectively define an aperture-facing radiative conductive surface of the air slotted aperture, and wherein the aperture-facing radiative conductive surface of the air slotted aperture electrically couples with a conductive antenna feedline of the antenna array; and
a slotted cover plate fixably attached to, or formed onto, the slotted-waveguide structure, wherein the slotted cover plate has an area that fully covers the slotted aperture, wherein the slotted cover plate has two or more radiating slotted apertures coincident to the air slotted aperture of the slotted-waveguide structure.
20. The system of claim 19, further comprising an integrated circuit electrically coupled to the slotted-waveguide structure.
US17/092,836 2020-01-07 2020-11-09 Slotted substrate integrated air waveguide antenna array Active 2041-01-30 US11735827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/092,836 US11735827B2 (en) 2020-01-07 2020-11-09 Slotted substrate integrated air waveguide antenna array

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062957983P 2020-01-07 2020-01-07
US17/092,836 US11735827B2 (en) 2020-01-07 2020-11-09 Slotted substrate integrated air waveguide antenna array

Publications (2)

Publication Number Publication Date
US20210210865A1 true US20210210865A1 (en) 2021-07-08
US11735827B2 US11735827B2 (en) 2023-08-22

Family

ID=76654718

Family Applications (1)

Application Number Title Priority Date Filing Date
US17/092,836 Active 2041-01-30 US11735827B2 (en) 2020-01-07 2020-11-09 Slotted substrate integrated air waveguide antenna array

Country Status (1)

Country Link
US (1) US11735827B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114126204A (en) * 2021-11-19 2022-03-01 中国电子科技集团公司第二十九研究所 Microwave digital hybrid assembly based on metal matrix composite substrate
CN114188698A (en) * 2021-12-02 2022-03-15 西南交通大学 End-fire antenna
CN116387799A (en) * 2023-05-08 2023-07-04 盛合晶微半导体(江阴)有限公司 Dual-polarized air coupling antenna packaging structure and preparation method
WO2023183204A1 (en) * 2022-03-24 2023-09-28 Veoneer Us, Llc Pcb tuning for waveguide antennae

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323574A (en) * 2018-03-30 2019-10-11 北京木牛领航科技有限公司 Waveguide antenna configurations and method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1331688A1 (en) 2002-01-29 2003-07-30 Era Patents Limited Waveguide
US7411472B1 (en) 2006-02-01 2008-08-12 Rockwell Collins, Inc. Low-loss integrated waveguide feed for wafer-scale heterogeneous layered active electronically scanned array
US9806431B1 (en) * 2013-04-02 2017-10-31 Waymo Llc Slotted waveguide array antenna using printed waveguide transmission lines
CN106384876B (en) * 2016-11-28 2023-06-23 中国电子科技集团公司第十三研究所 Broadband air medium antenna unit
CN109346851B (en) 2018-09-28 2021-01-19 厦门大学 Hollow pole wall waveguide slot array antenna based on 3D printing and metal coating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323574A (en) * 2018-03-30 2019-10-11 北京木牛领航科技有限公司 Waveguide antenna configurations and method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Khan et al, "Empty Substrate Integrated Waveguide Slot Antenna Array for 5G Applications", 2018, IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), pp. 1-3 (Year: 2018) *
Parment et al, "Millimetre-wave air-filled substrate integrated waveguide slot array antenna", May 2017, Electronics Letters, Vol. 53, No. 11, pp. 704-706 (Year: 2017) *
Qi et al, "Low-Cost Empty Substrate Integrated Waveguide Slot Arrays for Millimeter-Wave Applications", 2019, IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 5, pp. 1021-1025 (Year: 2019) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114126204A (en) * 2021-11-19 2022-03-01 中国电子科技集团公司第二十九研究所 Microwave digital hybrid assembly based on metal matrix composite substrate
CN114188698A (en) * 2021-12-02 2022-03-15 西南交通大学 End-fire antenna
WO2023183204A1 (en) * 2022-03-24 2023-09-28 Veoneer Us, Llc Pcb tuning for waveguide antennae
CN116387799A (en) * 2023-05-08 2023-07-04 盛合晶微半导体(江阴)有限公司 Dual-polarized air coupling antenna packaging structure and preparation method

Also Published As

Publication number Publication date
US11735827B2 (en) 2023-08-22

Similar Documents

Publication Publication Date Title
US11735827B2 (en) Slotted substrate integrated air waveguide antenna array
Tekkouk et al. Multibeam SIW slotted waveguide antenna system fed by a compact dual-layer Rotman lens
US6317094B1 (en) Feed structures for tapered slot antennas
Zhang et al. An E-band partially corporate feed uniform slot array with laminated quasi double-layer waveguide and virtual PMC terminations
EP2917963B1 (en) Dual polarization current loop radiator with integrated balun
US7675466B2 (en) Antenna array feed line structures for millimeter wave applications
Cheng et al. Millimeter-wave low temperature co-fired ceramic leaky-wave antenna and array based on the substrate integrated image guide technology
US20040027291A1 (en) Planar antenna and array antenna
CN111052504A (en) Millimeter wave antenna array element, array antenna and communication product
Cao et al. W-band high-gain circularly polarized aperture-coupled magneto-electric dipole antenna array with gap waveguide feed network
KR19990007464A (en) Broadband printing for microwave and millimeter wave applications
JP2020088863A (en) Method of producing waveguide-to-coaxial adapter array, method of producing antenna array, and method of producing waveguiding device
Li et al. 60 GHz dual-polarized high-gain planar aperture antenna array based on LTCC
Vosoogh et al. Zero-gap waveguide: A parallel plate waveguide with flexible mechanical assembly for mm-wave antenna applications
US20130044037A1 (en) Circuitry-isolated mems antennas: devices and enabling technology
Arakawa et al. Suppression of E-Plane Sidelobes Using a Double Slit Layer in a Corporate-Feed Waveguide Slot Array Antenna Consisting of $2\times2 $-Element Radiating Units
Irie et al. Perpendicular-corporate feed in three-layered parallel-plate radiating-slot array
JP2020099051A (en) Waveguide device, antenna device, and communication device
Kacar et al. 3D printed wideband multilayered dual-polarized stacked patch antenna with integrated MMIC switch
Sano et al. A hollow rectangular coaxial line for slot array applications fabricated by diffusion bonding of laminated thin metal plates
KR20230048359A (en) antenna array
WO2021021017A1 (en) A dipole antenna, an antenna array, and a method of fabricating the dipole antenna and the antenna array
US6219001B1 (en) Tapered slot antenna having a corrugated structure
Ashraf et al. Substrate integrated waveguide antennas/array for 60 GHz wireless communication systems
JP5429459B2 (en) Mm-wave antenna

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ALABAMA, ALABAMA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LI, LINFENG;YAN, STEPHEN;SIGNING DATES FROM 20201008 TO 20201012;REEL/FRAME:063974/0774

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE