US20210188940A1 - RAGE Fusion Proteins with Improved Stability and Ligand Binding Affinity and Uses Thereof - Google Patents

RAGE Fusion Proteins with Improved Stability and Ligand Binding Affinity and Uses Thereof Download PDF

Info

Publication number
US20210188940A1
US20210188940A1 US17/127,659 US202017127659A US2021188940A1 US 20210188940 A1 US20210188940 A1 US 20210188940A1 US 202017127659 A US202017127659 A US 202017127659A US 2021188940 A1 US2021188940 A1 US 2021188940A1
Authority
US
United States
Prior art keywords
polypeptide
seq
rage
construct
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/127,659
Inventor
Robert Hughes
William Strohl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bioage Labs Inc
Original Assignee
Bioage Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioage Labs Inc filed Critical Bioage Labs Inc
Priority to US17/127,659 priority Critical patent/US20210188940A1/en
Publication of US20210188940A1 publication Critical patent/US20210188940A1/en
Priority to US17/478,592 priority patent/US11535661B2/en
Priority to US18/146,223 priority patent/US20230212252A1/en
Assigned to BioAge Labs, Inc. reassignment BioAge Labs, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUGHES, ROBERT, STROHL, WILLIAM
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/30Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto

Definitions

  • the genes encoding both the bovine and human forms of receptor for advanced glycation end-products were reported in 1992.
  • the open reading frame (ORF) consisted of 404 amino acid residues organized into (from N to C terminus) a projected signal sequence of 22 amino acid residues, an N-terminal exodomain of ⁇ 321 residues, a transmembrane domain of 19 residues, and an intracellular domain of 41 residues.
  • the exodomain was shown to have three immunoglobulin (Ig)-like domains, including a variable domain and two constant regions.
  • the signal sequence is thought to be residues 1-22, followed by the variable domain at residues 23-116, followed by a very short intervening sequence of about 6-8 residues leading to the Cl domain at residues 124-221.
  • the C1 and C2 domains are separated by a longer ⁇ 18 residue linker.
  • C2 spans residues 239-304, followed by a highly flexible stem of ⁇ 38 residues that allows for significant range of motion of the receptor on the surface of the cell.
  • the transmembrane domain is ca. 19 residues and the C-terminal intracellular portion of the protein spans residues 264-404, with a serine phosphorylation site at S391.
  • RAGE receptors may interact and form clusters, which may aid in the binding of certain ligands, such as advanced glycation end products (AGEs), and result in intracellular signaling. Binding of a RAGE ligand to cell bound RAGE can trigger a series of downstream signaling events. Specific signaling profiles can differ, depending on the nature of ligand interaction, RAGE density, and other factors. Signaling may involve phosphorylation of RAGE at amino acid residue 5391 by protein kinase C-zeta (PKC ⁇ ).
  • PDC ⁇ protein kinase C-zeta
  • AGEs advanced glycation endproducts
  • RAGE binds multiple ligands including amyloid-beta, S100B, S100A1, S100A2, S100A7 (psoriasin), S100A11, S100A12, HMGB1 (amphoterin), lipopolysaccharide (LPS), oxidized low-density lipoprotein (oxLDL), CD11b (MAC1), phosphatidyl serine, C3a, S100P, S100G, S100Z, carbonylated proteins, malondialdehyde (MDA), laminin, type I Collagen, type IV Collagen, CAPZA1, CAPZA2, DDOST, LGALS3, MAPK1, MAPK3, PRKCSH, S100A4, S100A5, S100A6, S100A8, S100A9, S100P, and SAA1.
  • amyloid-beta S100B, S100A1, S100A2, S100A7 (psoriasin), S100A11, S100A12, HMGB
  • AGEs and other RAGE ligands have been implicated in aging as well in a number of other diseases, including neurodegenerative disease, diabetic complications, ischemia-reperfusion injury in multiple organs, renal disease, etc.
  • Soluble forms of RAGE that include the extracellular ligand binding domain but lack the transmembrane and cytoplasmic domains of the endogenous protein may be useful for binding RAGE ligands, thereby impeding RAGE activation and downstream signaling cascades.
  • the present disclosure provides biologically active therapeutic proteins based on RAGE having improved manufacturability properties capable of efficient production as well as enhanced ligand binding properties and enhanced stability in vivo.
  • compositions comprising RAGE fusion and methods of use thereof. Accordingly, one embodiment of the disclosure is an isolated polypeptide comprising a first domain and a second domain. In some embodiments the first domain is at least 97% identical to the sequence of SEQ ID NO: 74. In some embodiments the second domain comprises an Fc region of an immunoglobulin. In some embodiments the carboxy terminus of the first domain is coupled to the amino terminus of the second domain by a peptide linkage.
  • the polypeptide is resistant to cleavage by a disintegrin and metalloproteinase 10 (ADAM 10). In some embodiments the polypeptide is at least 15% more resistant to cleavage by at least one of ADAM10, matrix metalloproteinase 9 (MMP9), and trypsin as compared to a polypeptide comprising the sequence set forth in SEQ ID NO: 5. In some embodiments the percent resistance equals the difference between the fraction of polypeptide that remains full length following incubation with at least one of ADAM10, MMP9, and trypsin for a defined time period compared to a control polypeptide treated for the same time and under the same conditions.
  • ADAM 10 disintegrin and metalloproteinase 10
  • the polypeptide is resistant to degradation in human serum. In some embodiments the polypeptide is at least 15% more resistant to degradation in human serum as compared to a polypeptide comprising the sequence set forth in SEQ ID NO: 5. In some embodiments the percent resistance equals the difference between the fraction of polypeptide that remains full length following incubation in human serum for a defined time period as compared to a control polypeptide treated for the same time and under the same conditions.
  • the polypeptide has improved resistance to thermal denaturation.
  • the polypeptide has a higher onset of thermal denaturation (T agg ) of at least 5° C. as compared to a polypeptide comprising the sequence set forth in SEQ ID NO: 5.
  • the change in onset of thermal denaturation (T agg ) equals the temperature at which the polypeptide transitions from a compact folded monomeric state to an unfolded state as analyzed in a defined temperature gradient as compared to a control polypeptide treated in the same temperature gradient and under the same conditions.
  • the polypeptide specifically binds at least one of: an advanced glycation endproduct (AGE), CML-HSA (carboxymethylated human serum albumin), HMGB1 (amphoterin), amyloid-beta, S100A1, S100A2, S100A4 (metastasin), S100A5, S100A6, S100A7 (psoriasin), S100A8/9, S100A11, S100A12, S100B, S 100P, lipopolysaccharide (LPS), oxidized low-density lipoprotein (oxLDL), CD11b (MAC1), phosphatidyl serine, C3 a, S100P, S100G, S100Z, carbonylated proteins, malondialdehyde (MDA), laminin, type I Collagen, type IV Collagen, CAPZA1, CAPZA2, DDOST, LGALS3, MAPK1, MAPK3, PRKCSH, S100A4, S100A5, S100A6,
  • the polypeptide comprises a polypeptide dimer.
  • the first domain comprises at least one asparagine residue linked to a glycan.
  • the first domain an amino acid substitution at one or more of amino acid residues 3 or 59, wherein said amino acid residues 3 or 59 correspond to an amino acid at position 3 or 59 of said first domain.
  • the amino acid at position 3 of the domain is substituted with glutamic acid or glutamine.
  • the amino acid at position 59 of the first domain is substituted with alanine, glutamic acid, or glutamine.
  • the amino acid residue at position 60 of the first domain is substituted with serine.
  • the first domain comprises the sequence set forth in SEQ ID NO: 74.
  • the heavy chain of the polypeptide comprises CH2 and CH3 domains of a human IgG.
  • the CH2 and CH3 domains comprise the amino acid sequence set forth in SEQ ID NO: 4.
  • the immunoglobulin Fc of the polypeptide comprises one or more amino acid substitutions at one or more of amino acid residues 252, 254, or 256, numbered according to the EU numbering.
  • amino acid residue 252 is substituted with tyrosine.
  • amino acid residue 254 is substituted with threonine.
  • amino acid residue 256 is substituted with glutamine or glutamic acid.
  • the polypeptide may comprise a Fc region of an IgG1, IgG2, or IgG4 immunoglobulin.
  • the polypeptide may comprise a peptide linkage that comprises at least a portion of an immunoglobulin hinge region.
  • the peptide linkage may comprise at least a portion of the hinge region of IgG1, IgG2, or IgG4.
  • the peptide linkage may comprise an amino acid sequence having at least 95% sequence identity to the sequence set forth in SEQ ID NO: 11, SEQ ID NO: 10, or SEQ ID NO: 8.
  • the carboxy terminal lysine of the IgG4 CH2-CH3 immunoglobulin domain is deleted comprising the sequences set forth in SEQ ID NO: 54 and SEQ ID NO: 55.
  • the polypeptide has a higher apparent binding affinity to a receptor for advanced glycation endproducts (RAGE) ligand compared to a polypeptide comprising the sequence of SEQ ID NO: 5.
  • RAGE advanced glycation endproducts
  • the apparent equilibrium dissociation constant (Kd) of the interaction between the polypeptide and its ligand may be 20 nanomolar (nM) or less.
  • Exemplary embodiments include a polypeptide that is expressed a greater amount in CHO-3E7 cells than a polypeptide comprising the sequence set forth in SEQ ID NO: 5 when CHO-3E7 cells are transfected under otherwise identical defined conditions with nucleic acid plasmid encoding either polypeptide.
  • the greater amount is at least 5%.
  • the nucleic acid plasmid comprises the nucleic acid vector pTT5.
  • One embodiment of the disclosure is an isolated polypeptide comprising a RAGE polypeptide coupled to an Fc region of an immunoglobulin.
  • the carboxy terminus of the RAGE polypeptide is coupled to the amino terminus of the immunoglobulin Fc region by a peptide linkage.
  • the peptide linkages comprise novel stem and hinge regions.
  • the RAGE polypeptide comprises the amino acid sequence set forth in SEQ ID NO: 2.
  • polypeptide has the amino acid sequence of SEQ ID NO: 53. In some embodiments the polypeptide has the amino acid sequence of SEQ ID NO: 12. In some embodiments the polypeptide has the amino acid sequence of SEQ ID NO: 15. In some embodiments the polypeptide has the amino acid sequence of SEQ ID NO: 16.
  • Some embodiments of the disclosure comprise an isolated nucleic acid molecule comprising a polynucleotide encoding a polypeptide comprising a RAGE polypeptide coupled to a heavy chain fragment of an Fc region of an immunoglobulin.
  • the polynucleotide encodes a polypeptide comprising a first amino acid sequence and a second amino acid sequence.
  • the sequence of the first domain is at least 97% identical to the sequence set forth in SEQ ID NO: 74.
  • the second amino acid sequence comprises an Fc region of an immunoglobulin.
  • the carboxy terminus of the first amino acid sequence is coupled to the amino terminus of the second amino acid sequence by a peptide linkage.
  • the polynucleotide is operably linked to a transcriptional or translational regulatory sequence.
  • a further embodiment comprises a vector comprising an isolated nucleic acid molecule comprising a polynucleotide encoding a polypeptide comprising a RAGE polypeptide coupled to a heavy chain fragment of an Fc region of an immunoglobulin.
  • Some embodiments of the present disclosure comprise a host cell comprising a vector comprising an isolated nucleic acid molecule comprising a polynucleotide encoding a polypeptide comprising a RAGE polypeptide coupled to a heavy chain fragment of an Fc region of an immunoglobulin.
  • the host cell is a mammalian cell.
  • An embodiment of the present disclosure comprises a therapeutic composition for treating a RAGE-mediated disorder wherein the composition comprises a first amino acid sequence and a second amino acid sequence.
  • the first domain is at least 97% identical to the sequence set forth in SEQ ID NO: 74.
  • the second amino acid sequence comprises a heavy chain fragment of an Fc region of an immunoglobulin.
  • the carboxy terminus of the first amino acid sequence is coupled to the amino terminus of the second amino acid sequence by a peptide linkage.
  • the peptide linkage linking the first amino acid sequence and the second amino acid sequence comprises a stem derived from a soluble splice variant and a silent antibody hinge region.
  • FIG. 1 is a schematic of a dimerized esRAGE-Fc fusion protein.
  • the RAGE polypeptide comprises V, C1, C2, and the stem domains.
  • the Fc polypeptide comprises the CH2 and CH3 domains. The linker between the two polypeptides is identified as the hinge.
  • FIGS. 2A-2L show expression of RAGE-Fc fusion protein constructs assessed by Western blot: Construct #1 ( FIG. 2A ); Construct #9 ( FIG. 2B ); Construct #10 ( FIG. 2C ); Construct #11 ( FIG. 2D ); Construct #12 ( FIG. 2E ); Construct #13 ( FIG. 2F ); Construct #14 ( FIG. 2G ); Construct #15 ( FIG. 2H ); Construct #16 ( FIG. 2I ); Construct #17 ( FIG. 2J ); Construct #18 ( FIG. 2K ); and Construct #19 ( FIG. 2L ).
  • FIGS. 3A-3J show expression of RAGE-Fc fusion protein constructs assessed by Western blot: Construct #20 ( FIG. 3A ); Construct #21 ( FIG. 3B ); Construct #22 ( FIG. 3C ); Construct #23 ( FIG. 3D ); Construct #24 ( FIG. 3E ); Construct #25 ( FIG. 3F ); Construct #26 ( FIG. 3G ); Construct #27 ( FIG. 3H ); Construct #28 ( FIG. 3I ); and Construct #29 ( FIG. 3J ).
  • FIGS. 4A-4I show expression of RAGE-Fc fusion protein constructs assessed by Western blot: Construct #30 ( FIG. 4A ); Construct #31 ( FIG. 4B ); Construct #32 ( FIG. 4C ); Construct #33 ( FIG. 4D ); Construct #34 ( FIG. 4E ); Construct #35 ( FIG. 4F ); Construct #36 ( FIG. 4G ); Construct #16 ⁇ K ( FIG. 4H ); Construct #12 ⁇ K ( FIG. 4I ).
  • FIGS. 5A-5F show scaled-up expression of RAGE-Fc fusion protein constructs assessed by Western blot: Construct #1 ( FIG. 5A ); Construct #9 ( FIG. 5B ); Construct #10 ( FIG. 5C ); Construct #11 ( FIG. 5D ); Construct #12 ( FIG. 5E ); Construct #6 ( FIG. 5F ).
  • FIGS. 6A-6D show the concentration response curves generated by ELISA assays performed to assess ligand binding activities of RAGE-Fc fusion proteins: CML-HSA ( FIG. 6A ); HMGB1 ( FIG. 6B ); S100A9 ( FIG. 6C ); S100A12 ( FIG. 6D ).
  • FIGS. 7A-7G show SDS-PAGE results of RAGE-Fc fusion proteins incubated with buffer alone for 0 and 24 hours ( FIG. 7A ); MMP9 for 0 and 24 hours ( FIG. 7B ); MMP9 for 15 and 24 hours ( FIG. 7C ); ADAM10 for 0 and 2 hours ( FIG. 7D ); ADAM10 for 15 and 24 hours ( FIG. 7E ); trypsin for 0 and 2 hours ( FIG. 7F ); and trypsin for 15 and 24 hours ( FIG. 7G ).
  • FIGS. 8A-8D show time course proteolysis data for fusion proteins incubated in the absence of protease ( FIG. 8A ); or in the presence of MMP9 ( FIG. 8B ); ADAM10 ( FIG. 8C ); or trypsin ( FIG. 8D ).
  • FIGS. 9A-9D show SDS-PAGE results of RAGE-Fc fusion proteins incubated with human serum for 0 hours ( FIG. 9A ); 17 hours ( FIG. 9B ); 49 hours ( FIG. 9C ); and 138 hours ( FIG. 9D ).
  • FIG. 10 shows time course proteolysis data for fusion proteins incubated in human serum over 138 hours.
  • FIGS. 11A-11D show thermal denaturation curves of RAGE-Fc fusion proteins as measured by dynamic light scattering: Construct #1 ( FIG. 11A ); Construct #10 ( FIG. 11B ); Construct #12 ( FIG. 11C ); and Construct #16 ( FIG. 11D ).
  • the present disclosure describes fusion proteins comprising extracellular RAGE joined via a peptide linkage at the carboxyl terminus with an immunoglobulin Fc.
  • the fusion proteins of the disclosure are characterized by their ability to bind to at least one RAGE ligand (e.g., advanced glycation end-product (AGE), HMGB1 (amphoterin), S100A11, S100A12) with high affinity, thereby disrupting endogenous RAGE-mediated signaling.
  • RAGE ligand e.g., advanced glycation end-product (AGE), HMGB1 (amphoterin), S100A11, S100A12
  • the RAGE fusion proteins of the present disclosure are further characterized by enhanced stability, extended half-life, and improved manufacturability compared to other soluble RAGE proteins.
  • the stabilized RAGE-Fc fusion proteins are characterized by a RAGE protein that is different from the extracellular domain of the full-length RAGE polypeptide by the addition of 16 amino acids at the carboxyl terminus.
  • the carboxyl terminus of the RAGE protein is joined to the amino terminus of a human immunoglobulin Fc via a peptide linkage comprised of at least part of an immunoglobulin hinge.
  • a short peptide linker may be inserted between the RAGE protein and the immunoglobulin hinge.
  • ameliorating refers to any therapeutically beneficial result in the treatment of a disease state (e.g., a RAGE-mediated disease).
  • isolated refers to a protein or polypeptide molecule purified to some degree from endogenous material.
  • RAGE refers to the polypeptide sequence encoding Receptor for Advanced Glycation Endproduct (RAGE) or any variation thereof, including, but not limited to, isoforms that lack all or part of the N-terminal V-type immunoglobulin domain (N-truncated), isoforms that lack all or part of the transmembrane domain (C-truncated), and isoforms that comprise 1, 2, 3, 4 or more than 4 amino acid substitutions compared to wild-type RAGE.
  • sRAGE refers to soluble RAGE or RAGE lacking a transmembrane domain (C-truncated). As used herein, sRAGE refers to soluble RAGE that is generated as a result of protease cleavage that removes the transmembrane domain.
  • esRAGE endogenous soluble RAGE
  • esRAGE refers to soluble RAGE generated by an alternative splice site that results in a modified C-terminus comprising the following sequence at positions 332 to 347: EGFDKVREAEDSPQHM (the C-terminal portion of the V1 stem) (SEQ ID NO: 52).
  • esRAGE may comprise one or more amino acid substitutions, including point mutations within amino acid positions 332 to 347.
  • percent “identity,” in the context of two or more nucleic acid or polypeptide sequences, refer to two or more sequences or subsequences that have a specified percentage of nucleotides or amino acid residues that are identical, when compared and aligned for maximum correspondence using BLASTP and BLASTN algorithms, using the default parameters as publicly available through the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov/).
  • the percent “identity” can exist over a region of the sequence being compared, e.g., over a functional domain, or, alternatively, exist over the full length of the two sequences to be compared.
  • Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection (see generally Ausubel et al.).
  • treatment refers to administering an agent, or carrying out a procedure for the purposes of obtaining an effect.
  • the effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of effecting a partial or complete cure for a disease and/or symptoms of the disease.
  • Treatment covers any treatment of any pathological state in a mammal, particularly in a human, and includes: (a) inhibiting the disease, i.e., arresting its development; (b) relieving the disease, i.e., causing regression of the disease; (c) delaying onset of the disease; (d) decreasing the duration of the disease; (e) relieving or reducing the severity of any symptom of the disease; or (f) decreasing the risk or severity of any complication of the disease.
  • Treating may refer to any indicia of success in the treatment or amelioration or prevention of a pathologic state, including any objective or subjective parameter such as abatement; remission; diminishing of symptoms or making the disease condition more tolerable to the patient; slowing in the rate of degeneration or decline; or making the final point of degeneration less debilitating.
  • the treatment or amelioration of symptoms can be based on objective or subjective parameters, including the results of an examination by a physician.
  • treating includes the administration of the compounds or agents of the present invention to delay, to alleviate, or to arrest or inhibit development of the symptoms or conditions associated with the pathologic state.
  • therapeutic effect refers to the reduction, elimination, prevention, delayed onset, or accelerated resolution of the disease, symptoms of the disease, or side effects of the disease in the subject.
  • prevent refers to avoiding or averting the onset of a symptom or symptoms characteristic of one or more disease states.
  • prophylaxis refers to therapy given to prevent or ameliorate symptoms of one or more disease states.
  • “In combination with”, “combination therapy” and “combination products” refer, in certain embodiments, to the concurrent administration to a patient of a first therapeutic and the compounds as used herein.
  • each component can be administered at the same time or sequentially in any order at different points in time.
  • each component can be administered separately but sufficiently closely in time so as to provide the desired therapeutic effect.
  • subject refers to any animal, such as mammals, including humans.
  • sufficient amount means an amount sufficient to produce a desired effect, e.g., an amount sufficient to modulate protein aggregation in a cell.
  • therapeutically effective amount is an amount that is effective to ameliorate a symptom of a disease.
  • a therapeutically effective amount can be a “prophylactically effective amount” as prophylaxis can be considered therapy.
  • percent resistant refers to the percent resistance equal to the difference between the fraction of peptide that remains full length following incubation with at least one of ADAM10, MMP9, and trypsin for a defined time period compared to a control peptide treated for the same time and under the same conditions.
  • increased thermal stability refers to the highest temperature which a polypeptide remains in a folded state following incubation in temperature gradient for a defined time period as compared to a control polypeptide treated with the same temperature gradient and under the same conditions.
  • specific binding refers to an affinity between a receptor and its ligand in which the K d value is below 10 ⁇ 6 M, 10 ⁇ 7 M, 10 ⁇ 8 M, 10 ⁇ 9 M, or 10 ⁇ 10 M.
  • AGE Advanced Glycation Endproduct
  • RAGE Receptor for Advanced Glycation Endproduct
  • sRAGE soluble RAGE
  • esRAGE endogenous secretory RAGE
  • Ig immunoglobulin
  • the present disclosure provides RAGE fusion proteins, and methods of making and using such fusion proteins.
  • isolated polypeptides are provided.
  • Embodiments of the isolated polypeptides are fusion proteins comprising four modules: an amino-terminus derived from a RAGE exodomain, a stem derived from a soluble splice variant (esRAGE) or a shortened portion of its stem region (lacking the C-terminal 13 amino acid residues of the stem containing the proteolytic cleavage site), a silent antibody hinge region, and an antibody Fc region.
  • the fusion protein comprises an esRAGE polypeptide.
  • the esRAGE polypeptide may be at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO: 74.
  • the isolated polypeptides comprise a first domain wherein said first domain has an amino acid sequence at least 97% identical to the sequence of SEQ ID NO:74; and a second domain comprising a fragment of a Fc region of an immunoglobulin, wherein the carboxy terminus of said first domain is coupled to the amino terminus of said second domain by a peptide linkage.
  • SEQ ID NO: 1 provides the sequence of esRAGE (including the N-terminal leader sequence) and SEQ ID NO:74 provides the sequence of mature esRAGE (lacking the N-terminal leader sequence).
  • esRAGE is an endogenous soluble form of RAGE generated by an alternative splice site which results in the extracellular domain of full RAGE, modified at the carboxyl terminus by an additional 16 amino acids beginning at position 332 (SEQ ID NO: 1) or position 310 (SEQ ID NO: 74).
  • the first domain has a sequence that differs from SEQ ID NO: 1 by 1, 2, 3, 4, 5, 6, 7, or more than 7 amino acids.
  • the first domain has a substitution of the asparagine at position 25 of SEQ ID NO: 1 (position 3 of SEQ ID NO: 74), wherein the substitution is a glutamic acid or glutamine.
  • the first domain has the asparagine at position 81 of SEQ ID NO: 1 (position 59 of SEQ ID NO: 74) substituted with alanine.
  • the first domain has the glycine at position 82 of SEQ ID NO: 1 (position 60 of SEQ ID NO: 74) substituted with serine.
  • the first domain has an amino acid inserted, deleted, or substituted in the amino acid sequence corresponding to positions 332-347 of SEQ ID NO: 1 (positions 310-325 of SEQ ID NO: 74).
  • the fusion protein comprises a full-length RAGE polypeptide.
  • the fusion protein comprises a RAGE polypeptide with a shortened stern region lacking the C-terminal 13 amino acid residues.
  • the shortened stem RAGE polypeptide may be at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO: 74.
  • the amino-terminus module may comprise a signal sequence.
  • the signal sequence may comprise the amino acid residues at positions 1-22 of the amino acid sequence set forth in SEQ ID NO: 1.
  • the signal sequence may be at least 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence at positions 1-22 of the sequence set forth in SEQ ID NO: 1.
  • the amino-terminus module may comprise any signal sequence useful for expressing RAGE fusion proteins.
  • the amino-terminus module comprising a RAGE polypeptide of the present disclosure may be glycosylated on at least one of the asparagine residues at positions 25 and 81 (SEQ ID NO: 1) or positions 3 and 59 (SEQ ID NO: 74). In some embodiments glycosylation at either position may be required for optimal ligand binding. In some embodiments glycosylation of the asparagine residues at both position 25 and 81 (SEQ ID NO: 1) or position 3 and 59 (SEQ ID NO: 74) may impair ligand binding.
  • the RAGE polypeptide may dimerize. In some embodiments the RAGE polypeptide may dimerize upon binding a RAGE ligand. In some cases the V domains of RAGE polypeptides may interact to form homodimers. In some cases dimerization may be mediated by the C1 or C2 domains.
  • the RAGE polypeptide may be linked to a polypeptide comprising an immunoglobulin domain or a portion (e.g., a fragment thereof) of an immunoglobulin domain.
  • the polypeptide comprising an immunoglobulin domain or a portion of an immunoglobulin domain may comprise a human IgG Fc region or a portion thereof.
  • the human IgG Fc region comprises at least a portion of the CH2 and CH3 domains of a human IgG Fc region.
  • the human IgG Fc region may be derived from any of the known IgG subtypes: IgG1, IgG2, IgG3, or IgG4.
  • the RAGE fusion protein may comprise the CH2 and CH3 domains of human IgG4.
  • the fusion protein may comprise the sequence set forth in SEQ ID NO: 7.
  • the fusion protein may comprise a polypeptide having at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity to SEQ ID NO: 7.
  • the Fc polypeptide of the fusion protein may be proinflammatory in vivo.
  • the Fc polypeptide may be silenced (e.g. comprise a peptide sequence that prevents formation of immune complexes that otherwise would form through productive engagement (i.e. engagement that results in an inflammatory response) of the Fc polypeptide to an Fc receptor) in vivo.
  • the Fc polypeptide may be silenced with respect to binding Fc-gamma receptors by the nature of specific AA sequences in the hinge region.
  • the Fc polypeptide of the RAGE fusion protein may increase the stability of the fusion protein.
  • the Fc polypeptide of the fusion protein may contribute to stabilizing the RAGE fusion protein, thereby increasing the half-life of the RAGE fusion protein.
  • the Fc polypeptide may significantly increase the serum half-life.
  • the RAGE fusion protein of the present disclosure may be more stable than RAGE fusion proteins in the prior art because the RAGE fusion protein of the disclosure lacks protease cleavage sites of RAGE fusion proteins of the prior art. For example, removal of the additional 16 amino acids in the esRAGE splice variant may result in the elimination of one or more protease cleavage sites.
  • the RAGE fusion protein lacks the C-terminal 13 amino acids of the RAGE stem and thereby lacks a protease cleavage site of the prior art.
  • the Fc polypeptide of the present disclosure may include fewer protease cleavage sites than the prior art.
  • the peptide linkage may include fewer protease cleavage sites than that in the prior art.
  • Protease cleavage sites are amino acid sequences recognized and cleaved by protease enzymes, resulting in a truncated polypeptide.
  • Protease enzymes may include but are not limited to a disintegrin and metalloproteinase 10 (ADAM10), matrix metalloproteinase 9 (MMP9), and trypsin.
  • the RAGE fusion protein of the present disclosure comprises an Fc polypeptide optimized to increase the in vivo serum half-life of the fusion protein.
  • the Fc polypeptide is optimized by generating mutations (e.g., amino acid substitutions) that increase the half-life of the fusion protein.
  • the Fc polypeptide comprises mutations comprising amino acid substitutions at residue positions 252, 254, and 256 (numbered according to the EU index as in Kabat).
  • the residue at position 252 is substituted with tyrosine
  • the residue at position 254 is substituted with threonine
  • the residue at position 256 is substituted with glutamic acid (glutamate).
  • the serum half-life of the fusion protein is increased by 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, or 200% as compared to a polypeptide comprising the sequence set forth in SEQ ID NO: 5.
  • the RAGE fusion protein of the present disclosure further comprises a peptide linkage (linker).
  • Linkers serve primarily as a spacer between a polypeptide and a second heterologous polypeptide or other type of fusion.
  • the linker is made up of amino acids linked together by peptide bonds, preferably from 1 to 20 amino acids linked by peptide bonds, wherein the amino acids are selected from the 20 naturally occurring amino acids.
  • a linker is made up of a majority of amino acids that are sterically unhindered (e.g., glycine, alanine).
  • the linker may comprise the amino acid sequence of an IgG hinge region or partial IgG hinge region, as exemplified in SEQ ID NO: 8.
  • RAGE fusion proteins of the present disclosure may be produced using a variety of expression-host systems. These systems include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; and insect cell systems infected with virus expression vectors (e.g., baculovirus); and mammalian systems.
  • microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors
  • yeast transformed with yeast expression vectors yeast transformed with yeast expression vectors
  • insect cell systems infected with virus expression vectors e.g., baculovirus
  • mammalian systems e.g., baculovirus
  • Mammalian cells useful in recombinant protein production include but are not limited to VERO cells, HeLa cells, Chinese hamster ovary (CHO) cells (e.g., CHO-3E7 cells), COS cells, W138, BHK, HepG2, 3T3, RIN, MDCK, A549, PC12, K562, L cells, C127 cells, HEK 293, epidermal A431 cells, human Colo205 cells, HL-60, U937, HaK, and Jurkat cells. Mammalian expression allows for the production of secreted or soluble polypeptides which may be recovered from the growth medium.
  • Recombinant expression of a RAGE fusion protein of the present disclosure may require construction of a plasmid comprising a polynucleotide that encodes the fusion protein.
  • the plasmid may be generated by sub-cloning the polynucleotide into an expression vector (e.g. pTT5, pcDNA3.1) using standard recombinant techniques, wherein the expression vector comprises regulatory signals for transcription and translation in mammalian systems.
  • an expression vector e.g. pTT5, pcDNA3.1
  • a recombinant plasmid comprising a polynucleotide that encodes the fusion protein may be introduced into CHO cells by transfection such that the cells express the fusion protein.
  • cells expressing the fusion protein may be selected and cloned to generate cell lines that stably express the fusion protein.
  • cells expressing the recombinant construct may be selected for plasmid-encoded neomycin resistance by applying the antibiotic G418 to transfected cells.
  • Individual clones may be selected and clones expressing high levels of the fusion protein as detected by Western Blot analysis of the cell supernatant may be expanded.
  • the RAGE fusion proteins of the present disclosure may be purified according to protein purification techniques known to those of skill in the art. For example, supernatant from a system which secretes recombinant protein into culture may be concentrated using a commercially available protein concentration filter. In one embodiment the supernatant may be applied directly to a suitable affinity purification matrix.
  • a suitable affinity purification matrix may comprise a molecule (e.g. Protein A, AGE) bound to a support.
  • the supernatant may be applied to an anion exchange resin, for example, a matrix having pendant diethylaminoethyl (DEAE) groups.
  • the supernatant may be applied to a cation exchange matrix.
  • the matrices may include but are not limited to, acrylamide, agarose, dextran, and cellulose. After washing and eluting from the purification matrix, eluted fractions may be concentrated. In some embodiments the elution may be subjected to aqueous ion exchange or size exclusion chromatography. In some embodiments the elution may be subjected to high performance liquid chromatography (HPLC) for final purification.
  • HPLC high performance liquid chromatography
  • compositions can comprise, in addition to one or more of the esRAGE-Fc fusion proteins, a pharmaceutically acceptable excipient, carrier, buffer, stabilizer, or other materials well known to those skilled in the art. Such materials should be non-toxic and should not interfere with the efficacy of the active ingredient.
  • the precise nature of the carrier or other material can depend on the route of administration, e.g. intravenous, cutaneous or subcutaneous, nasal, intramuscular, intraperitoneal routes.
  • the active ingredient will be in the form of a parenterally acceptable aqueous solution which is pyrogen-free and has suitable pH, isotonicity and stability.
  • a parenterally acceptable aqueous solution which is pyrogen-free and has suitable pH, isotonicity and stability.
  • isotonic vehicles such as Sodium Chloride Injection, Ringer's Injection, Lactated Ringer's Injection.
  • Preservatives, stabilizers, buffers, antioxidants and/or other additives can be included, as required.
  • Administration of the pharmaceutically useful fusion protein of the present invention is preferably in a “therapeutically effective amount” or “prophylactically effective amount” (as the case can be, although prophylaxis can be considered therapy), this being sufficient to show benefit to the individual.
  • a “therapeutically effective amount” or “prophylactically effective amount” as the case can be, although prophylaxis can be considered therapy
  • the actual amount administered, and rate and time-course of administration, will depend on the nature and severity of disease being treated. Prescription of treatment, e.g. decisions on dosage etc, is within the responsibility of general practitioners and other medical doctors, and typically takes account of the disorder to be treated, the condition of the individual patient, the site of delivery, the method of administration and other factors known to practitioners. Examples of the techniques and protocols mentioned above can be found in Remington's Pharmaceutical Sciences, 16th edition, Osol, A. (ed), 1980.
  • a composition can be administered alone or in combination with other treatments, either simultaneously or sequentially dependent upon the condition to be treated.
  • the present disclosure provides methods and pharmaceutical compositions for binding RAGE ligands with high affinity, thereby inhibiting or reducing RAGE activation and thus RAGE-mediated signaling.
  • the present disclosure provides methods and reagents for treating RAGE-mediated disorders (e.g., inflammation, nephropathy, arteriosclerosis, retinopathy, and other complications resulting from diabetes) in a subject in need thereof by administering a therapeutically effective amount of the fusion proteins of the disclosure to the subject.
  • the fusion proteins of the present disclosure may bind one or more RAGE ligands in a subject and thereby decrease or inhibit RAGE-mediated signaling cascades. In some embodiments the fusion proteins may thereby reduce or inhibit an inflammatory response.
  • RAGE-Fc protein comprising the amino acid sequence set forth in SEQ ID NO: 16.
  • Polynucleotides encoding esRAGE (SEQ ID NO: 1) were fused to polynucleotides encoding the human IgG4 Fc (amino acid residues 359-590 of the amino acid sequence set forth in SEQ ID NO: 17) via polynucleotides encoding a linker sequence derived from the IgG2 hinge (SEQ ID NO: 9) by PCR overlap extension.
  • Primers used for PCR contained the mutation resulting in the amino acid substitutions of methionine to tyrosine at position 252, serine to threonine at position 254, and threonine to glutamic acid (glutamate) at position 256 of the Fc polypeptide wherein the numbering is according to the EU index as in Kabat.
  • the full polynucleotide sequence is SEQ ID NO: 43 for the RAGE-Fc fusion protein having the amino acid sequence set forth in SEQ ID NO:16. Double stranded DNA fragments were subcloned into pTT5 vector.
  • the RAGE-Fc polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 16 was transiently expressed in CHO-3E7 cells grown in serum-free FreeStyleTM CHO Expression Medium (Thermo Fisher Scientific). The cells were maintained in Erlenmeyer Flasks (Corning Inc.) at 37° C. with 5% CO 2 on an orbital shaker (VWR Scientific). One day before transfection the cells were seeded at an appropriate density in Corning Erlenmeyer Flasks. On the day of transfection, DNA containing a polynucleotide encoding the esRAGE-Fc polypeptide and transfection reagent were mixed at an optimal ratio and then added into the flask containing cells previously seeded for transfection.
  • the recombinant plasmid DNA encoding the esRAGE-Fc polypeptide was transiently transfected into suspension CHO-3E7 cell cultures.
  • the cell culture supernatant collected on post-transfection day 6 was used for purification.
  • the cell culture broth was centrifuged and the resulting supernatant was loaded onto a Monofinity A Resin prepacked affinity purification column at an appropriate flow rate. After washing and elution with appropriate buffer, the eluted fractions were pooled and buffer exchanged to final formulation buffer.
  • FIGS. 2A-4I Results of Western blots of the fusion proteins are shown in FIGS. 2A-4I : Construct #1 ( FIG. 2A ); Construct #9 ( FIG. 2B ); Construct #10 ( FIG. 2C ); Construct #11 ( FIG. 2D ); Construct #12 ( FIG. 2E ); Construct #13 ( FIG. 2F ); Construct #14 ( FIG. 2G ); Construct #15 ( FIG. 2H ); Construct #16 ( FIG. 2I ); Construct #17 ( FIG. 2J ); Construct #18 ( FIG. 2K ); Construct #19 ( FIG. 2L ); Construct #20 ( FIG.
  • FIG. 5 Results of Western blots of the fusion proteins are shown in FIG. 5 : Construct #1 ( FIG. 5A ); Construct #9 ( FIG. 5B ); Construct #10 ( FIG. 5C ); Construct #11 ( FIG. 5D ); Construct #12 ( FIG. 5E ); Construct #6 ( FIG. 5F )
  • FIGS. 2A-2L , FIGS. 3A-3J , FIGS. 4A-4I , and FIGS. 5A-5F are labeled according to the contents of each as follows: M 2 , protein marker (GenScript, Cat. No. M00521); P, Human IgG1, Kappa (as positive control) (Sigma, Cat. No. 15154); 1, RAGE-Fc fusion protein under reducing conditions (with DTT); 2, RAGE-Fc fusion protein under non-reducing conditions (no DTT).
  • the primary antibody used for all blots was Goat Anti-Human IgG-HRP (GenScript, Cat. No. A00166).
  • the concentration of the purified protein was determined by Bradford assay using bovine serum albumin (BSA) as a standard. Quantified expression data is shown in Tables 9, 10 and 11.
  • RAGE ligands CML-HSA, HMGB1, S100A9 and S100A12 were separately coated onto a coated plate (MaxiSorpTM) at a concentration of 50 nanomolar (nM), 100 microliters ( ⁇ L) per well.
  • RAGE ligand CML-HSA was separately coated onto a coated plate (MaxiSorpTM) at a concentration of 100 nanograms (ng), 100 ⁇ L per well. The plates were then incubated overnight at 4° C. to allow the protein to bind to the plate coating.
  • the plates were washed once with 150 ⁇ L of wash solution (2.67 mM potassium chloride, 1.47 potassium phosphate monobasic, 136.9 mM sodium chloride, 8.10 mM sodium phosphate dibasic, 0.05% Tween-20).
  • the plate was then aspirated and blocked for 90 minutes at 4° C. with 130 ⁇ L of a solution of 1% BSA (1 g/L) in DPBS (pH 7.4) with 0.03% sodium azide to prevent background binding to unfilled regions of the plate wells while blocking with a protein that does not interact with soluble RAGE constructs.
  • two washes were performed with the wash solution.
  • the RAGE-Fc fusion protein was then incubated on the wells in log10 dilution with each separate ligand for 120 minutes at 37° C. while shaking. After the RAGE-Fc binding step, three washes were performed with the wash solution. Binding of the RAGE-Fc fusion to CIVIL-HSA, HMGB1, S100A9, and S100A12 was detected with a horseradish peroxidase (HRP) conjugated antibody with antigen specificity to IgG Fc (Abcam, Cat. No. ab99759). 100 ⁇ L of antibody diluted 1:5000 in DBPS was added to the assay wells, followed by 60 minutes of incubation at 37° C. while shaking.
  • HRP horseradish peroxidase
  • FIGS. 6A-6D Results of the ELISA assays ( FIGS. 6A-6D ) show that the RAGE-Fc fusion proteins of the disclosure (Constructs #9, 10, 12, 16) bind to the RAGE ligands CML-HSA ( FIG. 6A ), HMGB1 ( FIG. 6B ), S100A9 ( FIG. 6C ) and S100A12 ( FIG. 6D ) with greater apparent affinity than the RAGE-Fc fusion in the prior art (Construct #1). Apparent Kd values were calculated for each fusion protein-ligand interaction and are shown in Tables 1, 2, 3, and 4.
  • ADAM10 a disintegrin and metalloproteinase 10
  • MMP9 matrix metalloproteinase 9
  • ADAM10 a disintegrin and metalloproteinase 10
  • MMP9 matrix metalloproteinase 9
  • the enzymes were used to assess the vulnerability of RAGE-Fc fusion proteins to proteolytic cleavage by biologically relevant enzymes.
  • trypsin was used as a non-specific enzyme to assess the general protease resistance of each fusion protein.
  • the esRAGE-Fc fusion proteins of the present disclosure were tested against a purified version identical to commercially available RAGE-Fc construct.
  • Each enzyme was verified to be functional under set assay conditions by demonstrating cleavage of a known peptide substrate.
  • 0.06 ⁇ M of ADAM10 or 0.01 ⁇ M of MMP9 was incubated with 5 ⁇ M of fluorogenic peptide substrate [Mca-KPLGL-Dpa-AR-NH2 (SEQ ID NO: 75)].
  • the fluorescence was measured kinetically at 320 nm excitation and 405 nm emission via an automated fluorescence microplate reader. Trypsin at 0.002 ⁇ M was incubated with 766 M of chromogenic substrate [N ⁇ -Benzoyl-DL-arginine 4-nitroanilide hydrochloride].
  • the absorbance was measured kinetically at 405 nm via an automated microplate spectrophotometer. All the enzymes demonstrated proteolytic activity (data not shown).
  • the enzymatic reaction was stopped by adding an anionic detergent 1% lithium dodecyl sulfate (LDS), at the following time points: 0, 2, 15, 24 hours.
  • LDS lithium dodecyl sulfate
  • the RAGE-Fc fusion proteins were incubated without enzyme to ensure that they were stable over the 24-hour time course of the experiment.
  • the samples were then run on SDS-PAGE using SYPRO Ruby protein gel stain. Each sample was run under reducing (0.1 M DTT) conditions.
  • the gels were imaged on Bio-Rad Molecular Imager and the bands were analyzed using Image Lab Software.
  • FIGS. 7A-7G Examples of quantification data of the SDS-PAGE results at a specific time point are shown in Table 5. Data is presented as percent of full-length RAGE-Fc fusion protein (FL) remaining after the indicated treatment. The full-length proteins were quantified by fluorescent image intensities on the SDS-PAGE gel. Percentages are expressed as of function of the time zero band intensity for each condition.
  • FIGS. 8A-8D show time course proteolysis data for the fusion proteins. Data shown is quantified from fluorescent bands of SDS-PAGE gels run under reducing conditions. Percent change is expressed as percent of the full length RAGE-Fc construct present at the indicated time point. Table 6 identifies the SEQ ID NO. of each construct tested.
  • the RAGE-Fc fusion proteins were assessed for their vulnerability to cleavage by enzymes found in normal human serum.
  • the esRAGE-Fc fusion proteins of the present disclosure were tested against a purified version identical to commercially available RAGE-Fc construct.
  • the serum was verified to contain active enzymes under set assay conditions by demonstrating cleavage of a fluorogenic peptide substrate.
  • the serum was incubated with 10 ⁇ M of fluorogenic peptide substrate [Mca-KPLGL-Dpa-AR-NH2 (SEQ ID NO: 75)].
  • the fluorescence was measured kinetically at 320 nm excitation and 405 nm emission via an automated fluorescence microplate reader.
  • the serum demonstrated proteolytic activity (data not shown).
  • the serum was incubated at 37° C. with the various RAGE-Fc fusion proteins for up to 138 hours.
  • 75% (v/v) of serum was incubated with 25% (v/v) of 2 ⁇ M of RAGE-Fc fusion protein in PBS.
  • the enzymatic reaction was stopped by adding an anionic detergent 1% lithium dodecyl sulfate (LDS), at the following time points: 0, 17, 49, 138 hours.
  • LDS lithium dodecyl sulfate
  • the serum was tested without RAGE-Fc fusion protein to ensure no endogenous soluble RAGE was detected in the serum.
  • the serum samples were tested with Western Blot to detect the presence of the constructs.
  • the samples were run on SDS-PAGE under reducing conditions (0.1 M DTT), then transferred to PVDF membrane and stained with Ponceau to ensure the transfer was successful.
  • the PVDF membrane was then blocked with 5% BSA in TBS-Tween for 1 hour at room temperature, then incubated with the primary antibody diluted 1:500 in TBS-Tween containing 5% BSA (Invitrogen, Cat. No. 701316) overnight at 4° C.
  • the membrane was then washed five times with TBS-Tween for 5 min per wash and then incubated with the secondary antibody diluted 1:5000 in TBS-Tween containing 5% BSA (GenTex, Cat No. GTX213110-01) for 1 hour at room temperature.
  • the membrane was again washed five times with TBS-Tween for 5 min per wash, and then detected using (ECL) chemiluminescence.
  • the gels were imaged on Bio-Rad Molecular Imager and the bands were analyzed using Image Lab Software.
  • results of the serum stability experiments are shown in FIGS. 9A-9D , FIG. 10 , and Table 7.
  • the results show that Constructs #9, 12, and 16 were more resistant to proteolytic cleavage by enzymes found in serum as compared to Constructs #1 and #10.
  • All serum stability experiments were conducted under non-reducing conditions to preserve disulfide bonds in the Fc polypeptide during the stability time course. Reaction products were run on SDS-PAGE under reducing conditions in order to observe the reduced monomeric products as seen on the Western Blots ( FIGS. 9A-9D ).
  • Quantification data of the Western Blot results are shown in Table 7. Data is presented as percent of full-length RAGE-Fc fusion protein (FL) remaining after the indicated time point.
  • FIGS. 8A-8D show time course proteolysis data for the fusion proteins. Data shown is quantified from intensity bands of the Western Blot membranes run under reducing conditions. Percent change is expressed as percent of the full length RAGE-Fc construct present at the indicated time point. Table 4 identifies the SEQ ID NO. of each construct tested.
  • DLS Dynamic light scattering
  • FIGS. 2A-2L , FIGS. 3A-3J , FIGS. 4A-4I , and FIGS. 5A-5F comparing bands in lane 1 (reducing condition) with bands in lane 2 (non-reducing conditions)).
  • esRAGE-Fc fusion proteins were constructed using at least a portion of the hinge region of alternative human IgG polypeptides as a linker between the C-terminus of esRAGE and the amino terminus of the Fc polypeptide of the fusion protein.
  • a RAGE-Fc fusion protein was also constructed using a RAGE polypeptide with a shortened stern region lacking the C-terminal 13 amino acid residues, with a portion of the hinge region of alternative human IgG polypeptides as a linker between the C-terminus of RAGE and the amino terminus of the Fc polypeptide of the fusion protein.
  • Additional modified fusion proteins were generated by introducing amino acid substitutions into the esRAGE polypeptide, and/or the Fc polypeptide of the fusion protein. Fusion proteins comprising alternative linkers and amino acid substitutions were generated using overlap PCR mutagenesis according to known methods.
  • polynucleotides encoding esRAGE-Fc fusion proteins comprising amino substitutions M252Y, S254T, and T256E in the Fc polypeptide were also expressed in CHO-3E7 cells as described in Example 1. The cultures were grown for six days following transfection; on day 6 the cell culture supernatant was collected and used for purification as described in Example 1. Purified protein was analyzed by SDS-PAGE under reducing and non-reducing conditions and by Western blot using a primary Goat Anti-Human IgG-HRP antibody (GenScript, Cat. No. A00166). Protein concentration was determined by Bradford assay using BSA as a protein standard. Tables 5 and 6 show the concentration, purity, and total purified protein yield for each fusion protein.
  • the esRAGE-Fc fusion protein encoded by the amino acid sequence set forth in SEQ ID NO: 12 differs from the fusion protein encoded by the amino acid sequence set forth in SEQ ID NO 15 (nucleotide sequence set forth in SEQ ID NO: 41) only by the IgG hinge from which the linker is derived.
  • the esRAGE-Fc fusion protein encoded by the amino acid sequence set forth in SEQ ID NO: 16 differs from the fusion protein encoded by the amino acid sequence set forth in SEQ ID NO: 15 (nucleotide sequence set forth in SEQ ID NO: 41) only by the amino acid substitutions at positions 252, 254, and 256 (EU numbering) of the Fc polypeptide.
  • the results shown in Table 9 demonstrate that the purity and yield, and thus the manufacturability of the fusion protein may be improved by replacing a linker from the IgG4 hinge with a linker from the IgG2 hinge.
  • the results shown in Table 9 demonstrate that manufacturability of the fusion protein is improved by incorporating amino acid substitutions M252Y, S254T, and T256E (EU numbering) in the Fc polypeptide of the fusion protein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Diabetes (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Emergency Medicine (AREA)
  • Obesity (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Endocrinology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention provides soluble RAGE-Fc fusion proteins with increased stability and extended half-life capable of binding endogenous RAGE ligands with high apparent affinity. The present invention also provides methods of making and using stable, soluble RAGE-Fc fusion proteins. These soluble RAGE-Fc fusion proteins are useful as therapeutics based on their ability to bind endogenous RAGE ligands.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of co-pending U.S. application Ser. No. 16/571,011, filed Sep. 13, 2019, which claims priority to U.S. Provisional Application No. 62/731,663, filed Sep. 14, 2018, which are hereby incorporated by reference in their entirety.
  • SEQUENCE LISTING
  • The instant application contains a Sequence Listing which has been submitted via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Oct. 11, 2019, is named 44263US_CRF_sequencelisting.txt and is 228,990 bytes in size.
  • BACKGROUND
  • The genes encoding both the bovine and human forms of receptor for advanced glycation end-products (RAGE) were reported in 1992. The open reading frame (ORF) consisted of 404 amino acid residues organized into (from N to C terminus) a projected signal sequence of 22 amino acid residues, an N-terminal exodomain of ˜321 residues, a transmembrane domain of 19 residues, and an intracellular domain of 41 residues. The exodomain was shown to have three immunoglobulin (Ig)-like domains, including a variable domain and two constant regions. The signal sequence is thought to be residues 1-22, followed by the variable domain at residues 23-116, followed by a very short intervening sequence of about 6-8 residues leading to the Cl domain at residues 124-221. The C1 and C2 domains are separated by a longer ˜18 residue linker. C2 spans residues 239-304, followed by a highly flexible stem of ˜38 residues that allows for significant range of motion of the receptor on the surface of the cell. The transmembrane domain is ca. 19 residues and the C-terminal intracellular portion of the protein spans residues 264-404, with a serine phosphorylation site at S391.
  • Multiple RAGE receptors may interact and form clusters, which may aid in the binding of certain ligands, such as advanced glycation end products (AGEs), and result in intracellular signaling. Binding of a RAGE ligand to cell bound RAGE can trigger a series of downstream signaling events. Specific signaling profiles can differ, depending on the nature of ligand interaction, RAGE density, and other factors. Signaling may involve phosphorylation of RAGE at amino acid residue 5391 by protein kinase C-zeta (PKCζ).
  • Nonenzymatic glycation and oxidation of proteins, lipids, and nucleic acids generates advanced glycation endproducts (AGEs), which are canonical RAGE ligands.
  • In addition to AGE, RAGE binds multiple ligands including amyloid-beta, S100B, S100A1, S100A2, S100A7 (psoriasin), S100A11, S100A12, HMGB1 (amphoterin), lipopolysaccharide (LPS), oxidized low-density lipoprotein (oxLDL), CD11b (MAC1), phosphatidyl serine, C3a, S100P, S100G, S100Z, carbonylated proteins, malondialdehyde (MDA), laminin, type I Collagen, type IV Collagen, CAPZA1, CAPZA2, DDOST, LGALS3, MAPK1, MAPK3, PRKCSH, S100A4, S100A5, S100A6, S100A8, S100A9, S100P, and SAA1.
  • Accumulation of AGE leading to activation of RAGE has been implicated in a variety of diseases and disorders, including diabetes and its microvascular complications, macrovascular complications, and other complications. AGEs and other RAGE ligands have been implicated in aging as well in a number of other diseases, including neurodegenerative disease, diabetic complications, ischemia-reperfusion injury in multiple organs, renal disease, etc. Soluble forms of RAGE (sRAGE and esRAGE) that include the extracellular ligand binding domain but lack the transmembrane and cytoplasmic domains of the endogenous protein may be useful for binding RAGE ligands, thereby impeding RAGE activation and downstream signaling cascades. Thus, there exists a need for drug-like soluble RAGE molecules with enhanced binding affinity to RAGE ligands and an extended half-life suitable for therapeutic applications. Production of therapeutic proteins on a commercial scale requires proteins that can be efficiently expressed and purified without disrupting protein function. Manufacturability can be described as the ability to express and purify a protein in a sufficiently efficient manner and with sufficient stability and structural integrity to allow for cost-effective production of the protein. For commercial purposes, manufacturability must be determined for each potential therapeutic protein. Although protein expression and purification processes can be optimized for a protein, manufacturability may be a function of intrinsic properties of the protein.
  • SUMMARY OF THE INVENTION
  • The present disclosure provides biologically active therapeutic proteins based on RAGE having improved manufacturability properties capable of efficient production as well as enhanced ligand binding properties and enhanced stability in vivo.
  • Disclosed here are compositions comprising RAGE fusion and methods of use thereof. Accordingly, one embodiment of the disclosure is an isolated polypeptide comprising a first domain and a second domain. In some embodiments the first domain is at least 97% identical to the sequence of SEQ ID NO: 74. In some embodiments the second domain comprises an Fc region of an immunoglobulin. In some embodiments the carboxy terminus of the first domain is coupled to the amino terminus of the second domain by a peptide linkage.
  • In some embodiments the polypeptide is resistant to cleavage by a disintegrin and metalloproteinase 10 (ADAM 10). In some embodiments the polypeptide is at least 15% more resistant to cleavage by at least one of ADAM10, matrix metalloproteinase 9 (MMP9), and trypsin as compared to a polypeptide comprising the sequence set forth in SEQ ID NO: 5. In some embodiments the percent resistance equals the difference between the fraction of polypeptide that remains full length following incubation with at least one of ADAM10, MMP9, and trypsin for a defined time period compared to a control polypeptide treated for the same time and under the same conditions.
  • In some embodiments the polypeptide is resistant to degradation in human serum. In some embodiments the polypeptide is at least 15% more resistant to degradation in human serum as compared to a polypeptide comprising the sequence set forth in SEQ ID NO: 5. In some embodiments the percent resistance equals the difference between the fraction of polypeptide that remains full length following incubation in human serum for a defined time period as compared to a control polypeptide treated for the same time and under the same conditions.
  • In some embodiments the polypeptide has improved resistance to thermal denaturation. In some embodiments the polypeptide has a higher onset of thermal denaturation (Tagg) of at least 5° C. as compared to a polypeptide comprising the sequence set forth in SEQ ID NO: 5. In some embodiments the change in onset of thermal denaturation (Tagg) equals the temperature at which the polypeptide transitions from a compact folded monomeric state to an unfolded state as analyzed in a defined temperature gradient as compared to a control polypeptide treated in the same temperature gradient and under the same conditions.
  • In some embodiments the polypeptide specifically binds at least one of: an advanced glycation endproduct (AGE), CML-HSA (carboxymethylated human serum albumin), HMGB1 (amphoterin), amyloid-beta, S100A1, S100A2, S100A4 (metastasin), S100A5, S100A6, S100A7 (psoriasin), S100A8/9, S100A11, S100A12, S100B, S 100P, lipopolysaccharide (LPS), oxidized low-density lipoprotein (oxLDL), CD11b (MAC1), phosphatidyl serine, C3 a, S100P, S100G, S100Z, carbonylated proteins, malondialdehyde (MDA), laminin, type I Collagen, type IV Collagen, CAPZA1, CAPZA2, DDOST, LGALS3, MAPK1, MAPK3, PRKCSH, S100A4, S100A5, S100A6, S100A8, S100A9, S100P, and SAA1.
  • In some embodiments the polypeptide comprises a polypeptide dimer.
  • In some embodiments the first domain comprises at least one asparagine residue linked to a glycan. In some embodiments the first domain an amino acid substitution at one or more of amino acid residues 3 or 59, wherein said amino acid residues 3 or 59 correspond to an amino acid at position 3 or 59 of said first domain. In a preferred embodiment the amino acid at position 3 of the domain is substituted with glutamic acid or glutamine. In another preferred embodiment the amino acid at position 59 of the first domain is substituted with alanine, glutamic acid, or glutamine. In one embodiment the amino acid residue at position 60 of the first domain is substituted with serine. In some embodiments the first domain comprises the sequence set forth in SEQ ID NO: 74.
  • In some embodiments the heavy chain of the polypeptide comprises CH2 and CH3 domains of a human IgG. In one embodiment the CH2 and CH3 domains comprise the amino acid sequence set forth in SEQ ID NO: 4.
  • In some embodiments the immunoglobulin Fc of the polypeptide comprises one or more amino acid substitutions at one or more of amino acid residues 252, 254, or 256, numbered according to the EU numbering. In some embodiments amino acid residue 252 is substituted with tyrosine. In some embodiments amino acid residue 254 is substituted with threonine. In some embodiments amino acid residue 256 is substituted with glutamine or glutamic acid.
  • In some embodiments of the present disclosure the polypeptide may comprise a Fc region of an IgG1, IgG2, or IgG4 immunoglobulin. In some embodiments the polypeptide may comprise a peptide linkage that comprises at least a portion of an immunoglobulin hinge region. In some embodiments the peptide linkage may comprise at least a portion of the hinge region of IgG1, IgG2, or IgG4. In some embodiments the peptide linkage may comprise an amino acid sequence having at least 95% sequence identity to the sequence set forth in SEQ ID NO: 11, SEQ ID NO: 10, or SEQ ID NO: 8.
  • In some embodiments the carboxy terminal lysine of the IgG4 CH2-CH3 immunoglobulin domain is deleted comprising the sequences set forth in SEQ ID NO: 54 and SEQ ID NO: 55.
  • In some embodiments the polypeptide has a higher apparent binding affinity to a receptor for advanced glycation endproducts (RAGE) ligand compared to a polypeptide comprising the sequence of SEQ ID NO: 5. In some embodiments the apparent equilibrium dissociation constant (Kd) of the interaction between the polypeptide and its ligand may be 20 nanomolar (nM) or less.
  • Exemplary embodiments include a polypeptide that is expressed a greater amount in CHO-3E7 cells than a polypeptide comprising the sequence set forth in SEQ ID NO: 5 when CHO-3E7 cells are transfected under otherwise identical defined conditions with nucleic acid plasmid encoding either polypeptide. In a preferred embodiment the greater amount is at least 5%. In another preferred embodiment the nucleic acid plasmid comprises the nucleic acid vector pTT5.
  • One embodiment of the disclosure is an isolated polypeptide comprising a RAGE polypeptide coupled to an Fc region of an immunoglobulin. In some embodiments the carboxy terminus of the RAGE polypeptide is coupled to the amino terminus of the immunoglobulin Fc region by a peptide linkage. In some embodiments the peptide linkages comprise novel stem and hinge regions. In some embodiments the RAGE polypeptide comprises the amino acid sequence set forth in SEQ ID NO: 2.
  • In some embodiments the polypeptide has the amino acid sequence of SEQ ID NO: 53. In some embodiments the polypeptide has the amino acid sequence of SEQ ID NO: 12. In some embodiments the polypeptide has the amino acid sequence of SEQ ID NO: 15. In some embodiments the polypeptide has the amino acid sequence of SEQ ID NO: 16.
  • Some embodiments of the disclosure comprise an isolated nucleic acid molecule comprising a polynucleotide encoding a polypeptide comprising a RAGE polypeptide coupled to a heavy chain fragment of an Fc region of an immunoglobulin. In some embodiments the polynucleotide encodes a polypeptide comprising a first amino acid sequence and a second amino acid sequence. In some embodiments the sequence of the first domain is at least 97% identical to the sequence set forth in SEQ ID NO: 74. In some embodiments the second amino acid sequence comprises an Fc region of an immunoglobulin. In some embodiments the carboxy terminus of the first amino acid sequence is coupled to the amino terminus of the second amino acid sequence by a peptide linkage. In some embodiments the polynucleotide is operably linked to a transcriptional or translational regulatory sequence.
  • A further embodiment comprises a vector comprising an isolated nucleic acid molecule comprising a polynucleotide encoding a polypeptide comprising a RAGE polypeptide coupled to a heavy chain fragment of an Fc region of an immunoglobulin. Some embodiments of the present disclosure comprise a host cell comprising a vector comprising an isolated nucleic acid molecule comprising a polynucleotide encoding a polypeptide comprising a RAGE polypeptide coupled to a heavy chain fragment of an Fc region of an immunoglobulin. In some embodiments the host cell is a mammalian cell.
  • An embodiment of the present disclosure comprises a therapeutic composition for treating a RAGE-mediated disorder wherein the composition comprises a first amino acid sequence and a second amino acid sequence. In some embodiments the first domain is at least 97% identical to the sequence set forth in SEQ ID NO: 74. In some embodiments the second amino acid sequence comprises a heavy chain fragment of an Fc region of an immunoglobulin. In some embodiments the carboxy terminus of the first amino acid sequence is coupled to the amino terminus of the second amino acid sequence by a peptide linkage. In some embodiments the peptide linkage linking the first amino acid sequence and the second amino acid sequence comprises a stem derived from a soluble splice variant and a silent antibody hinge region.
  • BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
  • These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, and accompanying drawings, where:
  • FIG. 1 is a schematic of a dimerized esRAGE-Fc fusion protein. The RAGE polypeptide comprises V, C1, C2, and the stem domains. The Fc polypeptide comprises the CH2 and CH3 domains. The linker between the two polypeptides is identified as the hinge.
  • FIGS. 2A-2L show expression of RAGE-Fc fusion protein constructs assessed by Western blot: Construct #1 (FIG. 2A); Construct #9 (FIG. 2B); Construct #10 (FIG. 2C); Construct #11 (FIG. 2D); Construct #12 (FIG. 2E); Construct #13 (FIG. 2F); Construct #14 (FIG. 2G); Construct #15 (FIG. 2H); Construct #16 (FIG. 2I); Construct #17 (FIG. 2J); Construct #18 (FIG. 2K); and Construct #19 (FIG. 2L).
  • FIGS. 3A-3J show expression of RAGE-Fc fusion protein constructs assessed by Western blot: Construct #20 (FIG. 3A); Construct #21 (FIG. 3B); Construct #22 (FIG. 3C); Construct #23 (FIG. 3D); Construct #24 (FIG. 3E); Construct #25 (FIG. 3F); Construct #26 (FIG. 3G); Construct #27 (FIG. 3H); Construct #28 (FIG. 3I); and Construct #29 (FIG. 3J).
  • FIGS. 4A-4I show expression of RAGE-Fc fusion protein constructs assessed by Western blot: Construct #30 (FIG. 4A); Construct #31 (FIG. 4B); Construct #32 (FIG. 4C); Construct #33 (FIG. 4D); Construct #34 (FIG. 4E); Construct #35 (FIG. 4F); Construct #36 (FIG. 4G); Construct #16ΔK (FIG. 4H); Construct #12ΔK (FIG. 4I).
  • FIGS. 5A-5F show scaled-up expression of RAGE-Fc fusion protein constructs assessed by Western blot: Construct #1 (FIG. 5A); Construct #9 (FIG. 5B); Construct #10 (FIG. 5C); Construct #11 (FIG. 5D); Construct #12 (FIG. 5E); Construct #6 (FIG. 5F).
  • FIGS. 6A-6D show the concentration response curves generated by ELISA assays performed to assess ligand binding activities of RAGE-Fc fusion proteins: CML-HSA (FIG. 6A); HMGB1 (FIG. 6B); S100A9 (FIG. 6C); S100A12 (FIG. 6D).
  • FIGS. 7A-7G show SDS-PAGE results of RAGE-Fc fusion proteins incubated with buffer alone for 0 and 24 hours (FIG. 7A); MMP9 for 0 and 24 hours (FIG. 7B); MMP9 for 15 and 24 hours (FIG. 7C); ADAM10 for 0 and 2 hours (FIG. 7D); ADAM10 for 15 and 24 hours (FIG. 7E); trypsin for 0 and 2 hours (FIG. 7F); and trypsin for 15 and 24 hours (FIG. 7G).
  • FIGS. 8A-8D show time course proteolysis data for fusion proteins incubated in the absence of protease (FIG. 8A); or in the presence of MMP9 (FIG. 8B); ADAM10 (FIG. 8C); or trypsin (FIG. 8D).
  • FIGS. 9A-9D show SDS-PAGE results of RAGE-Fc fusion proteins incubated with human serum for 0 hours (FIG. 9A); 17 hours (FIG. 9B); 49 hours (FIG. 9C); and 138 hours (FIG. 9D).
  • FIG. 10 shows time course proteolysis data for fusion proteins incubated in human serum over 138 hours.
  • FIGS. 11A-11D show thermal denaturation curves of RAGE-Fc fusion proteins as measured by dynamic light scattering: Construct #1 (FIG. 11A); Construct #10 (FIG. 11B); Construct #12 (FIG. 11C); and Construct #16 (FIG. 11D).
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present disclosure describes fusion proteins comprising extracellular RAGE joined via a peptide linkage at the carboxyl terminus with an immunoglobulin Fc. The fusion proteins of the disclosure are characterized by their ability to bind to at least one RAGE ligand (e.g., advanced glycation end-product (AGE), HMGB1 (amphoterin), S100A11, S100A12) with high affinity, thereby disrupting endogenous RAGE-mediated signaling. The RAGE fusion proteins of the present disclosure are further characterized by enhanced stability, extended half-life, and improved manufacturability compared to other soluble RAGE proteins.
  • The stabilized RAGE-Fc fusion proteins are characterized by a RAGE protein that is different from the extracellular domain of the full-length RAGE polypeptide by the addition of 16 amino acids at the carboxyl terminus. The carboxyl terminus of the RAGE protein is joined to the amino terminus of a human immunoglobulin Fc via a peptide linkage comprised of at least part of an immunoglobulin hinge. In some embodiments a short peptide linker may be inserted between the RAGE protein and the immunoglobulin hinge.
  • DEFINITIONS
  • Terms used in the claims and specification are defined as set forth below unless otherwise specified.
  • The term “ameliorating” refers to any therapeutically beneficial result in the treatment of a disease state (e.g., a RAGE-mediated disease).
  • The term “isolated” refers to a protein or polypeptide molecule purified to some degree from endogenous material.
  • The term “RAGE” as used herein refers to the polypeptide sequence encoding Receptor for Advanced Glycation Endproduct (RAGE) or any variation thereof, including, but not limited to, isoforms that lack all or part of the N-terminal V-type immunoglobulin domain (N-truncated), isoforms that lack all or part of the transmembrane domain (C-truncated), and isoforms that comprise 1, 2, 3, 4 or more than 4 amino acid substitutions compared to wild-type RAGE.
  • The term “sRAGE” as used herein refers to soluble RAGE or RAGE lacking a transmembrane domain (C-truncated). As used herein, sRAGE refers to soluble RAGE that is generated as a result of protease cleavage that removes the transmembrane domain.
  • The term “esRAGE” (endogenous soluble RAGE) as used herein refers to soluble RAGE generated by an alternative splice site that results in a modified C-terminus comprising the following sequence at positions 332 to 347: EGFDKVREAEDSPQHM (the C-terminal portion of the V1 stem) (SEQ ID NO: 52). As used herein, “esRAGE” may comprise one or more amino acid substitutions, including point mutations within amino acid positions 332 to 347. The term percent “identity,” in the context of two or more nucleic acid or polypeptide sequences, refer to two or more sequences or subsequences that have a specified percentage of nucleotides or amino acid residues that are identical, when compared and aligned for maximum correspondence using BLASTP and BLASTN algorithms, using the default parameters as publicly available through the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov/). Depending on the application, the percent “identity” can exist over a region of the sequence being compared, e.g., over a functional domain, or, alternatively, exist over the full length of the two sequences to be compared. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection (see generally Ausubel et al.).
  • As used herein, the terms “treatment,” “treating,” and the like, refer to administering an agent, or carrying out a procedure for the purposes of obtaining an effect. The effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of effecting a partial or complete cure for a disease and/or symptoms of the disease. “Treatment,” as used herein, covers any treatment of any pathological state in a mammal, particularly in a human, and includes: (a) inhibiting the disease, i.e., arresting its development; (b) relieving the disease, i.e., causing regression of the disease; (c) delaying onset of the disease; (d) decreasing the duration of the disease; (e) relieving or reducing the severity of any symptom of the disease; or (f) decreasing the risk or severity of any complication of the disease.
  • Treating may refer to any indicia of success in the treatment or amelioration or prevention of a pathologic state, including any objective or subjective parameter such as abatement; remission; diminishing of symptoms or making the disease condition more tolerable to the patient; slowing in the rate of degeneration or decline; or making the final point of degeneration less debilitating. The treatment or amelioration of symptoms can be based on objective or subjective parameters, including the results of an examination by a physician. Accordingly, the term “treating” includes the administration of the compounds or agents of the present invention to delay, to alleviate, or to arrest or inhibit development of the symptoms or conditions associated with the pathologic state. The term “therapeutic effect” refers to the reduction, elimination, prevention, delayed onset, or accelerated resolution of the disease, symptoms of the disease, or side effects of the disease in the subject.
  • The term “prevent” as used herein refers to avoiding or averting the onset of a symptom or symptoms characteristic of one or more disease states.
  • The term “prophylaxis” as used herein refers to therapy given to prevent or ameliorate symptoms of one or more disease states.
  • “In combination with”, “combination therapy” and “combination products” refer, in certain embodiments, to the concurrent administration to a patient of a first therapeutic and the compounds as used herein. When administered in combination, each component can be administered at the same time or sequentially in any order at different points in time. Thus, each component can be administered separately but sufficiently closely in time so as to provide the desired therapeutic effect.
  • The term “subject” refers to any animal, such as mammals, including humans.
  • The term “sufficient amount” means an amount sufficient to produce a desired effect, e.g., an amount sufficient to modulate protein aggregation in a cell.
  • The term “therapeutically effective amount” is an amount that is effective to ameliorate a symptom of a disease. A therapeutically effective amount can be a “prophylactically effective amount” as prophylaxis can be considered therapy.
  • The term “percent resistant” refers to the percent resistance equal to the difference between the fraction of peptide that remains full length following incubation with at least one of ADAM10, MMP9, and trypsin for a defined time period compared to a control peptide treated for the same time and under the same conditions.
  • The term “increased thermal stability” refers to the highest temperature which a polypeptide remains in a folded state following incubation in temperature gradient for a defined time period as compared to a control polypeptide treated with the same temperature gradient and under the same conditions.
  • The term “specific binding,” as used herein, refers to an affinity between a receptor and its ligand in which the Kd value is below 10−6 M, 10−7 M, 10−8 M, 10−9 M, or 10−10 M.
  • Abbreviations used in this application include the following: Advanced Glycation Endproduct (AGE), Receptor for Advanced Glycation Endproduct (RAGE), soluble RAGE (sRAGE), endogenous secretory RAGE (esRAGE), immunoglobulin (Ig).
  • It must be noted that, as used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise.
  • RAGE Fusion Proteins
  • The present disclosure provides RAGE fusion proteins, and methods of making and using such fusion proteins.
  • In a first aspect, isolated polypeptides are provided.
  • Embodiments of the isolated polypeptides are fusion proteins comprising four modules: an amino-terminus derived from a RAGE exodomain, a stem derived from a soluble splice variant (esRAGE) or a shortened portion of its stem region (lacking the C-terminal 13 amino acid residues of the stem containing the proteolytic cleavage site), a silent antibody hinge region, and an antibody Fc region. In some embodiments the fusion protein comprises an esRAGE polypeptide. The esRAGE polypeptide may be at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO: 74.
  • In typical embodiments, the isolated polypeptides comprise a first domain wherein said first domain has an amino acid sequence at least 97% identical to the sequence of SEQ ID NO:74; and a second domain comprising a fragment of a Fc region of an immunoglobulin, wherein the carboxy terminus of said first domain is coupled to the amino terminus of said second domain by a peptide linkage.
  • SEQ ID NO: 1 provides the sequence of esRAGE (including the N-terminal leader sequence) and SEQ ID NO:74 provides the sequence of mature esRAGE (lacking the N-terminal leader sequence). esRAGE is an endogenous soluble form of RAGE generated by an alternative splice site which results in the extracellular domain of full RAGE, modified at the carboxyl terminus by an additional 16 amino acids beginning at position 332 (SEQ ID NO: 1) or position 310 (SEQ ID NO: 74).
  • In various embodiments, the first domain has a sequence that differs from SEQ ID NO: 1 by 1, 2, 3, 4, 5, 6, 7, or more than 7 amino acids. In some embodiments, the first domain has a substitution of the asparagine at position 25 of SEQ ID NO: 1 (position 3 of SEQ ID NO: 74), wherein the substitution is a glutamic acid or glutamine. In some embodiments, the first domain has the asparagine at position 81 of SEQ ID NO: 1 (position 59 of SEQ ID NO: 74) substituted with alanine. In some embodiments, the first domain has the glycine at position 82 of SEQ ID NO: 1 (position 60 of SEQ ID NO: 74) substituted with serine. In some embodiments, the first domain has an amino acid inserted, deleted, or substituted in the amino acid sequence corresponding to positions 332-347 of SEQ ID NO: 1 (positions 310-325 of SEQ ID NO: 74).
  • In some embodiments the fusion protein comprises a full-length RAGE polypeptide.
  • In some embodiments the fusion protein comprises a RAGE polypeptide with a shortened stern region lacking the C-terminal 13 amino acid residues. The shortened stem RAGE polypeptide may be at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO: 74.
  • In some embodiments the amino-terminus module may comprise a signal sequence. The signal sequence may comprise the amino acid residues at positions 1-22 of the amino acid sequence set forth in SEQ ID NO: 1. In some embodiments the signal sequence may be at least 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence at positions 1-22 of the sequence set forth in SEQ ID NO: 1. In still other embodiments the amino-terminus module may comprise any signal sequence useful for expressing RAGE fusion proteins.
  • In some embodiments, the amino-terminus module comprising a RAGE polypeptide of the present disclosure may be glycosylated on at least one of the asparagine residues at positions 25 and 81 (SEQ ID NO: 1) or positions 3 and 59 (SEQ ID NO: 74). In some embodiments glycosylation at either position may be required for optimal ligand binding. In some embodiments glycosylation of the asparagine residues at both position 25 and 81 (SEQ ID NO: 1) or position 3 and 59 (SEQ ID NO: 74) may impair ligand binding.
  • In some embodiments of the present disclosure the RAGE polypeptide may dimerize. In some embodiments the RAGE polypeptide may dimerize upon binding a RAGE ligand. In some cases the V domains of RAGE polypeptides may interact to form homodimers. In some cases dimerization may be mediated by the C1 or C2 domains.
  • In some embodiments, the RAGE polypeptide may be linked to a polypeptide comprising an immunoglobulin domain or a portion (e.g., a fragment thereof) of an immunoglobulin domain. In some cases the polypeptide comprising an immunoglobulin domain or a portion of an immunoglobulin domain may comprise a human IgG Fc region or a portion thereof. In some cases the human IgG Fc region comprises at least a portion of the CH2 and CH3 domains of a human IgG Fc region. The human IgG Fc region may be derived from any of the known IgG subtypes: IgG1, IgG2, IgG3, or IgG4.
  • In some cases the RAGE fusion protein may comprise the CH2 and CH3 domains of human IgG4. In some embodiments the fusion protein may comprise the sequence set forth in SEQ ID NO: 7. In other embodiments the fusion protein may comprise a polypeptide having at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity to SEQ ID NO: 7.
  • In some embodiments the Fc polypeptide of the fusion protein may be proinflammatory in vivo. In other embodiments, the Fc polypeptide may be silenced (e.g. comprise a peptide sequence that prevents formation of immune complexes that otherwise would form through productive engagement (i.e. engagement that results in an inflammatory response) of the Fc polypeptide to an Fc receptor) in vivo. In some embodiments the Fc polypeptide may be silenced with respect to binding Fc-gamma receptors by the nature of specific AA sequences in the hinge region.
  • The Fc polypeptide of the RAGE fusion protein may increase the stability of the fusion protein. For example, the Fc polypeptide of the fusion protein may contribute to stabilizing the RAGE fusion protein, thereby increasing the half-life of the RAGE fusion protein. In some cases the Fc polypeptide may significantly increase the serum half-life.
  • In some embodiments the RAGE fusion protein of the present disclosure may be more stable than RAGE fusion proteins in the prior art because the RAGE fusion protein of the disclosure lacks protease cleavage sites of RAGE fusion proteins of the prior art. For example, removal of the additional 16 amino acids in the esRAGE splice variant may result in the elimination of one or more protease cleavage sites. In some embodiments the RAGE fusion protein lacks the C-terminal 13 amino acids of the RAGE stem and thereby lacks a protease cleavage site of the prior art. In some embodiments the Fc polypeptide of the present disclosure may include fewer protease cleavage sites than the prior art. In other embodiments, the peptide linkage may include fewer protease cleavage sites than that in the prior art.
  • Protease cleavage sites are amino acid sequences recognized and cleaved by protease enzymes, resulting in a truncated polypeptide. Protease enzymes may include but are not limited to a disintegrin and metalloproteinase 10 (ADAM10), matrix metalloproteinase 9 (MMP9), and trypsin.
  • In one embodiment, the RAGE fusion protein of the present disclosure comprises an Fc polypeptide optimized to increase the in vivo serum half-life of the fusion protein. In one embodiment the Fc polypeptide is optimized by generating mutations (e.g., amino acid substitutions) that increase the half-life of the fusion protein. In one embodiment the Fc polypeptide comprises mutations comprising amino acid substitutions at residue positions 252, 254, and 256 (numbered according to the EU index as in Kabat). In a preferred embodiment the residue at position 252 is substituted with tyrosine, the residue at position 254 is substituted with threonine, and the residue at position 256 is substituted with glutamic acid (glutamate).
  • In some embodiments the serum half-life of the fusion protein is increased by 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, or 200% as compared to a polypeptide comprising the sequence set forth in SEQ ID NO: 5.
  • The RAGE fusion protein of the present disclosure further comprises a peptide linkage (linker). Linkers serve primarily as a spacer between a polypeptide and a second heterologous polypeptide or other type of fusion. In one embodiment the linker is made up of amino acids linked together by peptide bonds, preferably from 1 to 20 amino acids linked by peptide bonds, wherein the amino acids are selected from the 20 naturally occurring amino acids. In one embodiment a linker is made up of a majority of amino acids that are sterically unhindered (e.g., glycine, alanine). In a further embodiment the linker may comprise the amino acid sequence of an IgG hinge region or partial IgG hinge region, as exemplified in SEQ ID NO: 8.
  • Expression of RAGE Fusion Proteins
  • RAGE fusion proteins of the present disclosure may be produced using a variety of expression-host systems. These systems include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; and insect cell systems infected with virus expression vectors (e.g., baculovirus); and mammalian systems. Mammalian cells useful in recombinant protein production include but are not limited to VERO cells, HeLa cells, Chinese hamster ovary (CHO) cells (e.g., CHO-3E7 cells), COS cells, W138, BHK, HepG2, 3T3, RIN, MDCK, A549, PC12, K562, L cells, C127 cells, HEK 293, epidermal A431 cells, human Colo205 cells, HL-60, U937, HaK, and Jurkat cells. Mammalian expression allows for the production of secreted or soluble polypeptides which may be recovered from the growth medium.
  • Recombinant expression of a RAGE fusion protein of the present disclosure may require construction of a plasmid comprising a polynucleotide that encodes the fusion protein. The plasmid may be generated by sub-cloning the polynucleotide into an expression vector (e.g. pTT5, pcDNA3.1) using standard recombinant techniques, wherein the expression vector comprises regulatory signals for transcription and translation in mammalian systems.
  • In one embodiment a recombinant plasmid comprising a polynucleotide that encodes the fusion protein may be introduced into CHO cells by transfection such that the cells express the fusion protein. In one embodiment, cells expressing the fusion protein may be selected and cloned to generate cell lines that stably express the fusion protein. For example, cells expressing the recombinant construct may be selected for plasmid-encoded neomycin resistance by applying the antibiotic G418 to transfected cells. Individual clones may be selected and clones expressing high levels of the fusion protein as detected by Western Blot analysis of the cell supernatant may be expanded.
  • The RAGE fusion proteins of the present disclosure may be purified according to protein purification techniques known to those of skill in the art. For example, supernatant from a system which secretes recombinant protein into culture may be concentrated using a commercially available protein concentration filter. In one embodiment the supernatant may be applied directly to a suitable affinity purification matrix. For example, a suitable affinity purification matrix may comprise a molecule (e.g. Protein A, AGE) bound to a support. In one embodiment the supernatant may be applied to an anion exchange resin, for example, a matrix having pendant diethylaminoethyl (DEAE) groups. In another embodiment the supernatant may be applied to a cation exchange matrix. The matrices may include but are not limited to, acrylamide, agarose, dextran, and cellulose. After washing and eluting from the purification matrix, eluted fractions may be concentrated. In some embodiments the elution may be subjected to aqueous ion exchange or size exclusion chromatography. In some embodiments the elution may be subjected to high performance liquid chromatography (HPLC) for final purification.
  • Pharmaceutical Compositions
  • Methods for treatment of RAGE-mediated diseases are also encompassed by the present disclosure. Said methods of the disclosure include administering a therapeutically effective amount of esRAGE-Fc fusion protein. The fusion protein of the disclosure can be formulated in pharmaceutical compositions. These compositions can comprise, in addition to one or more of the esRAGE-Fc fusion proteins, a pharmaceutically acceptable excipient, carrier, buffer, stabilizer, or other materials well known to those skilled in the art. Such materials should be non-toxic and should not interfere with the efficacy of the active ingredient. The precise nature of the carrier or other material can depend on the route of administration, e.g. intravenous, cutaneous or subcutaneous, nasal, intramuscular, intraperitoneal routes.
  • For pharmaceutical compositions for intravenous, cutaneous or subcutaneous injection, or injection at the site of affliction, the active ingredient will be in the form of a parenterally acceptable aqueous solution which is pyrogen-free and has suitable pH, isotonicity and stability. Those of relevant skill in the art are well able to prepare suitable solutions using, for example, isotonic vehicles such as Sodium Chloride Injection, Ringer's Injection, Lactated Ringer's Injection. Preservatives, stabilizers, buffers, antioxidants and/or other additives can be included, as required.
  • Administration of the pharmaceutically useful fusion protein of the present invention is preferably in a “therapeutically effective amount” or “prophylactically effective amount” (as the case can be, although prophylaxis can be considered therapy), this being sufficient to show benefit to the individual. The actual amount administered, and rate and time-course of administration, will depend on the nature and severity of disease being treated. Prescription of treatment, e.g. decisions on dosage etc, is within the responsibility of general practitioners and other medical doctors, and typically takes account of the disorder to be treated, the condition of the individual patient, the site of delivery, the method of administration and other factors known to practitioners. Examples of the techniques and protocols mentioned above can be found in Remington's Pharmaceutical Sciences, 16th edition, Osol, A. (ed), 1980.
  • A composition can be administered alone or in combination with other treatments, either simultaneously or sequentially dependent upon the condition to be treated.
  • Uses of RAGE Fusion Proteins
  • The present disclosure provides methods and pharmaceutical compositions for binding RAGE ligands with high affinity, thereby inhibiting or reducing RAGE activation and thus RAGE-mediated signaling. In one aspect, the present disclosure provides methods and reagents for treating RAGE-mediated disorders (e.g., inflammation, nephropathy, arteriosclerosis, retinopathy, and other complications resulting from diabetes) in a subject in need thereof by administering a therapeutically effective amount of the fusion proteins of the disclosure to the subject. In one embodiment the fusion proteins of the present disclosure may bind one or more RAGE ligands in a subject and thereby decrease or inhibit RAGE-mediated signaling cascades. In some embodiments the fusion proteins may thereby reduce or inhibit an inflammatory response.
  • EXAMPLES
  • Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc.), but some experimental error and deviation should, of course, be allowed for.
  • The practice of the present invention will employ, unless otherwise indicated, conventional methods of protein chemistry, biochemistry, recombinant DNA techniques and pharmacology, within the skill of the art. Such techniques are explained fully in the literature.
  • Example 1: Expression and Purification of RAGE-IgG Fc Fusion Proteins
  • The following methods were used for expressing and purifying the RAGE-Fc fusion proteins.
  • The following method was used to produce the RAGE-Fc protein comprising the amino acid sequence set forth in SEQ ID NO: 16. Polynucleotides encoding esRAGE (SEQ ID NO: 1) were fused to polynucleotides encoding the human IgG4 Fc (amino acid residues 359-590 of the amino acid sequence set forth in SEQ ID NO: 17) via polynucleotides encoding a linker sequence derived from the IgG2 hinge (SEQ ID NO: 9) by PCR overlap extension. Primers used for PCR contained the mutation resulting in the amino acid substitutions of methionine to tyrosine at position 252, serine to threonine at position 254, and threonine to glutamic acid (glutamate) at position 256 of the Fc polypeptide wherein the numbering is according to the EU index as in Kabat. The full polynucleotide sequence is SEQ ID NO: 43 for the RAGE-Fc fusion protein having the amino acid sequence set forth in SEQ ID NO:16. Double stranded DNA fragments were subcloned into pTT5 vector.
  • Transient expression of RAGE-Fc fusion proteins was carried out as follows.
  • The RAGE-Fc polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 16 was transiently expressed in CHO-3E7 cells grown in serum-free FreeStyle™ CHO Expression Medium (Thermo Fisher Scientific). The cells were maintained in Erlenmeyer Flasks (Corning Inc.) at 37° C. with 5% CO2 on an orbital shaker (VWR Scientific). One day before transfection the cells were seeded at an appropriate density in Corning Erlenmeyer Flasks. On the day of transfection, DNA containing a polynucleotide encoding the esRAGE-Fc polypeptide and transfection reagent were mixed at an optimal ratio and then added into the flask containing cells previously seeded for transfection. The recombinant plasmid DNA encoding the esRAGE-Fc polypeptide was transiently transfected into suspension CHO-3E7 cell cultures. The cell culture supernatant collected on post-transfection day 6 was used for purification.
  • Purification of esRAGE-Fc fusion proteins was carried out as follows.
  • The cell culture broth was centrifuged and the resulting supernatant was loaded onto a Monofinity A Resin prepacked affinity purification column at an appropriate flow rate. After washing and elution with appropriate buffer, the eluted fractions were pooled and buffer exchanged to final formulation buffer.
  • The purified protein was analyzed by SDS-PAGE and Western blotting for molecular weight and purity measurements. Results of Western blots of the fusion proteins are shown in FIGS. 2A-4I: Construct #1 (FIG. 2A); Construct #9 (FIG. 2B); Construct #10 (FIG. 2C); Construct #11 (FIG. 2D); Construct #12 (FIG. 2E); Construct #13 (FIG. 2F); Construct #14 (FIG. 2G); Construct #15 (FIG. 2H); Construct #16 (FIG. 2I); Construct #17 (FIG. 2J); Construct #18 (FIG. 2K); Construct #19 (FIG. 2L); Construct #20 (FIG. 3A); Construct #21 (FIG. 3B); Construct #22 (FIG. 3C); Construct #23 (FIG. 3D); Construct #24 (FIG. 3E); Construct #25 (FIG. 3F); Construct #26 (FIG. 3G); Construct #27 (FIG. 3H); Construct #28 (FIG. 3I); Construct #29 (FIG. 3J); Construct #30 (FIG. 4A); Construct #31 (FIG. 4B); Construct #32 (FIG. 4C); Construct #33 (FIG. 4D); Construct #34 (FIG. 4E); Construct #35 (FIG. 4F); Construct #36 (FIG. 4G); Construct #16ΔK (FIG. 4H); Construct #12ΔK (FIG. 24I).
  • Expression of a number of fusion proteins was performed at 1 L scale and proteins were purified by Protein A affinity chromatography, followed by Superdex200 size exclusion chromatography. Purified protein was analyzed by SDS-PAGE and Western blotting for molecular weight and purity measurements. Results of Western blots of the fusion proteins are shown in FIG. 5: Construct #1 (FIG. 5A); Construct #9 (FIG. 5B); Construct #10 (FIG. 5C); Construct #11 (FIG. 5D); Construct #12 (FIG. 5E); Construct #6 (FIG. 5F)
  • The lanes of each blot in FIGS. 2A-2L, FIGS. 3A-3J, FIGS. 4A-4I, and FIGS. 5A-5F are labeled according to the contents of each as follows: M2, protein marker (GenScript, Cat. No. M00521); P, Human IgG1, Kappa (as positive control) (Sigma, Cat. No. 15154); 1, RAGE-Fc fusion protein under reducing conditions (with DTT); 2, RAGE-Fc fusion protein under non-reducing conditions (no DTT). The primary antibody used for all blots was Goat Anti-Human IgG-HRP (GenScript, Cat. No. A00166).
  • The concentration of the purified protein was determined by Bradford assay using bovine serum albumin (BSA) as a standard. Quantified expression data is shown in Tables 9, 10 and 11.
  • Example 2: Assessing Binding Affinities of RAGE Fusion Proteins by ELISA
  • Functional ELISA assays were performed to assess the ligand binding characteristics of RAGE-Fc fusion proteins. Apparent binding affinities of RAGE-Fc fusion proteins to the RAGE ligands CML-HSA, HMGB1, S100A9 and S100A12 were measured for the following fusion proteins: Construct #1 (SEQ ID NO: 5), Construct #9 (SEQ ID NO: 53), Construct #10 (SEQ ID NO: 12), Construct #12 (SEQ ID NO: 15), and Construct #16 (SEQ ID NO: 16). Previous experiments were carried out to determine fundamental functionality of an ELISA, optimal coating concentrations and volumes, a dynamic range for the RAGE-Fc constructs, as well as optimized antibody dilutions and TMB development times.
  • RAGE ligands CML-HSA, HMGB1, S100A9 and S100A12 were separately coated onto a coated plate (MaxiSorp™) at a concentration of 50 nanomolar (nM), 100 microliters (μL) per well. RAGE ligand CML-HSA was separately coated onto a coated plate (MaxiSorp™) at a concentration of 100 nanograms (ng), 100 μL per well. The plates were then incubated overnight at 4° C. to allow the protein to bind to the plate coating. Following the coating step, the plates were washed once with 150 μL of wash solution (2.67 mM potassium chloride, 1.47 potassium phosphate monobasic, 136.9 mM sodium chloride, 8.10 mM sodium phosphate dibasic, 0.05% Tween-20). The plate was then aspirated and blocked for 90 minutes at 4° C. with 130 μL of a solution of 1% BSA (1 g/L) in DPBS (pH 7.4) with 0.03% sodium azide to prevent background binding to unfilled regions of the plate wells while blocking with a protein that does not interact with soluble RAGE constructs. After the blocking step, two washes were performed with the wash solution. The RAGE-Fc fusion protein was then incubated on the wells in log10 dilution with each separate ligand for 120 minutes at 37° C. while shaking. After the RAGE-Fc binding step, three washes were performed with the wash solution. Binding of the RAGE-Fc fusion to CIVIL-HSA, HMGB1, S100A9, and S100A12 was detected with a horseradish peroxidase (HRP) conjugated antibody with antigen specificity to IgG Fc (Abcam, Cat. No. ab99759). 100 μL of antibody diluted 1:5000 in DBPS was added to the assay wells, followed by 60 minutes of incubation at 37° C. while shaking. The wells were then washed four times with the wash solution. 100 μL of TMB (ThermoFisher Scientific, Cat. No. 34029) was then added to each well. After approximately one minute, the reaction was stopped by the addition of 50 μL of 1 M hydrochloric acid. Absorbance of the well contents was measured on a spectrophotometer at a wavelength of 450 nM.
  • Results of the ELISA assays (FIGS. 6A-6D) show that the RAGE-Fc fusion proteins of the disclosure ( Constructs # 9, 10, 12, 16) bind to the RAGE ligands CML-HSA (FIG. 6A), HMGB1 (FIG. 6B), S100A9 (FIG. 6C) and S100A12 (FIG. 6D) with greater apparent affinity than the RAGE-Fc fusion in the prior art (Construct #1). Apparent Kd values were calculated for each fusion protein-ligand interaction and are shown in Tables 1, 2, 3, and 4.
  • TABLE 1
    Apparent binding affinity of RAGE-Fc
    constructs to CML-HSA
    Construct Construct Construct Construct Construct
    #
    1 #9 #10 #12 #16
    Apparent 88 nM 6 nM 99 nM 39 nM 35 nM
    Kd
  • TABLE 2
    Apparent binding affinity of RAGE-Fc
    constructs to HMGB1
    Construct Construct Construct Construct Construct
    #
    1 #9 #10 #12 #16
    Apparent 26 nM 2 nM 15 nM 7 nM 7 nM
    Kd
  • TABLE 3
    Apparent binding affinity of RAGE-Fc
    constructs to S100A9
    Construct Construct Construct Construct Construct
    #
    1 #9 #10 #12 #16
    Apparent 266 nM 13 nM 41 nM 25 nM 27 nM
    Kd
  • TABLE 4
    Apparent binding affinity of RAGE-Fc
    constructs to S100A12
    Construct Construct Construct Construct Construct
    #
    1 #9 #10 #12 #16
    Apparent 180 nM 9 nM 46 nM 44 nM 36 nM
    Kd
  • Example 3: Assessing Susceptability to Proteolytic Degradation
  • ADAM10 (a disintegrin and metalloproteinase 10) and MMP9 (matrix metalloproteinase 9) are enzymes that cleave full length RAGE. The enzymes were used to assess the vulnerability of RAGE-Fc fusion proteins to proteolytic cleavage by biologically relevant enzymes. In addition, trypsin was used as a non-specific enzyme to assess the general protease resistance of each fusion protein. For comparison, the esRAGE-Fc fusion proteins of the present disclosure were tested against a purified version identical to commercially available RAGE-Fc construct.
  • Each enzyme was verified to be functional under set assay conditions by demonstrating cleavage of a known peptide substrate. In brief, 0.06 μM of ADAM10 or 0.01 μM of MMP9 was incubated with 5 μM of fluorogenic peptide substrate [Mca-KPLGL-Dpa-AR-NH2 (SEQ ID NO: 75)]. The fluorescence was measured kinetically at 320 nm excitation and 405 nm emission via an automated fluorescence microplate reader. Trypsin at 0.002 μM was incubated with 766 M of chromogenic substrate [Nα-Benzoyl-DL-arginine 4-nitroanilide hydrochloride]. The absorbance was measured kinetically at 405 nm via an automated microplate spectrophotometer. All the enzymes demonstrated proteolytic activity (data not shown).
  • Once the enzymes were verified to be functional they were incubated at 37° C. with the various RAGE-Fc fusion proteins for up to 24 hours. In brief, 0.06 μM of ADAM10 (Specific Activity: 1 μg of ADAM10 cleaves 20 pmol/min/μg of substrate; 50,000 μg=1 Unit), 0.01 μM of MMP9 (Specific Activity: 1 μg of MMP9 cleaves 1,300 pmol/min/μg of substrate; 769 μg=1 Unit), or 0.002 μM of trypsin (Specific Activity: 1 μg of Trypsin cleaves 2,500 pmol/min/μg of substrate; 400 μg=1 Unit) were incubated with 2.5 μM of RAGE-Fc fusion protein. The enzymatic reaction was stopped by adding an anionic detergent 1% lithium dodecyl sulfate (LDS), at the following time points: 0, 2, 15, 24 hours. As a control, the RAGE-Fc fusion proteins were incubated without enzyme to ensure that they were stable over the 24-hour time course of the experiment. The samples were then run on SDS-PAGE using SYPRO Ruby protein gel stain. Each sample was run under reducing (0.1 M DTT) conditions. The gels were imaged on Bio-Rad Molecular Imager and the bands were analyzed using Image Lab Software.
  • Results of the proteolytic stability experiments are shown in FIGS. 7A-7G, FIGS. 8A-8D, and Table 5. The results show that Constructs #9 (RAGE-Fc fusion lacking the C-terminal 13 amino acid RAGE stem), and 10, 12, and 16 (esRAGE-Fc fusions) were more resistant to proteolytic cleavage by MMP9 and trypsin and Constructs #12 and 16 were more resistant to proteolytic cleavage by ADAM10, as compared to Construct #1 (commercial RAGE-Fc fusion protein without the additional 16 amino acids at the carboxy terminus of the RAGE polypeptide) (SEQ ID NO: 5). All protease experiments were conducted under non-reducing conditions to preserve disulfide bonds in the Fc polypeptide during the stability time course. Reaction products were run on SDS-PAGE under reducing conditions in order to observe the reduced monomeric products (FIGS. 7A-7G). Examples of quantification data of the SDS-PAGE results at a specific time point are shown in Table 5. Data is presented as percent of full-length RAGE-Fc fusion protein (FL) remaining after the indicated treatment. The full-length proteins were quantified by fluorescent image intensities on the SDS-PAGE gel. Percentages are expressed as of function of the time zero band intensity for each condition. FIGS. 8A-8D show time course proteolysis data for the fusion proteins. Data shown is quantified from fluorescent bands of SDS-PAGE gels run under reducing conditions. Percent change is expressed as percent of the full length RAGE-Fc construct present at the indicated time point. Table 6 identifies the SEQ ID NO. of each construct tested.
  • TABLE 5
    Full Lenth Construct
    Protease Time (h) #1 #9 #10 #12 #16
    ADAM10 15 84% 91% 92% 100% 100%
    MMP9
    15 15% 52% 38%  51%  65%
    Trypsin
    15  0% 39% 39%  35%  34%
  • TABLE 6
    RAGE Fc
    Construct SEQ ID NO
    #
    1  5
    #9 53
    #10 12
    #12 15
    #16 16
  • Example 4: Assessing Susceptability to Degradation in Serum
  • The RAGE-Fc fusion proteins were assessed for their vulnerability to cleavage by enzymes found in normal human serum. For comparison, the esRAGE-Fc fusion proteins of the present disclosure were tested against a purified version identical to commercially available RAGE-Fc construct.
  • The serum was verified to contain active enzymes under set assay conditions by demonstrating cleavage of a fluorogenic peptide substrate. In brief, the serum was incubated with 10 μM of fluorogenic peptide substrate [Mca-KPLGL-Dpa-AR-NH2 (SEQ ID NO: 75)]. The fluorescence was measured kinetically at 320 nm excitation and 405 nm emission via an automated fluorescence microplate reader. The serum demonstrated proteolytic activity (data not shown).
  • Once the serum was verified to contain active enzymes it was incubated at 37° C. with the various RAGE-Fc fusion proteins for up to 138 hours. In brief, 75% (v/v) of serum was incubated with 25% (v/v) of 2 μM of RAGE-Fc fusion protein in PBS. The enzymatic reaction was stopped by adding an anionic detergent 1% lithium dodecyl sulfate (LDS), at the following time points: 0, 17, 49, 138 hours. As a control, the serum was tested without RAGE-Fc fusion protein to ensure no endogenous soluble RAGE was detected in the serum. The serum samples were tested with Western Blot to detect the presence of the constructs. In brief, the samples were run on SDS-PAGE under reducing conditions (0.1 M DTT), then transferred to PVDF membrane and stained with Ponceau to ensure the transfer was successful. The PVDF membrane was then blocked with 5% BSA in TBS-Tween for 1 hour at room temperature, then incubated with the primary antibody diluted 1:500 in TBS-Tween containing 5% BSA (Invitrogen, Cat. No. 701316) overnight at 4° C. The membrane was then washed five times with TBS-Tween for 5 min per wash and then incubated with the secondary antibody diluted 1:5000 in TBS-Tween containing 5% BSA (GenTex, Cat No. GTX213110-01) for 1 hour at room temperature. The membrane was again washed five times with TBS-Tween for 5 min per wash, and then detected using (ECL) chemiluminescence. The gels were imaged on Bio-Rad Molecular Imager and the bands were analyzed using Image Lab Software.
  • Results of the serum stability experiments are shown in FIGS. 9A-9D, FIG. 10, and Table 7. The results show that Constructs #9, 12, and 16 were more resistant to proteolytic cleavage by enzymes found in serum as compared to Constructs #1 and #10. All serum stability experiments were conducted under non-reducing conditions to preserve disulfide bonds in the Fc polypeptide during the stability time course. Reaction products were run on SDS-PAGE under reducing conditions in order to observe the reduced monomeric products as seen on the Western Blots (FIGS. 9A-9D). Quantification data of the Western Blot results are shown in Table 7. Data is presented as percent of full-length RAGE-Fc fusion protein (FL) remaining after the indicated time point. The full-length proteins were quantified by image intensities on the Western Blot membrane. Percentages are expressed as of function of the time zero band intensity for each condition. FIGS. 8A-8D show time course proteolysis data for the fusion proteins. Data shown is quantified from intensity bands of the Western Blot membranes run under reducing conditions. Percent change is expressed as percent of the full length RAGE-Fc construct present at the indicated time point. Table 4 identifies the SEQ ID NO. of each construct tested.
  • TABLE 7
    Full Lenth Construct
    Time (h) #1 #9 #10 #12 #16
    0 100% 100% 100% 100% 100%
    17  65% 100% 100%  99%  81%
    49  47% 100%  74%  86%  64%
    138   0%  22%   0%  23%  17%
  • Example 5: Assessing Thermal Stability and Aggregation
  • Dynamic light scattering (DLS) was used to analyze the aggregation temperature (Tagg) of RAGE-Fc fusion proteins in the same buffer solution. DLS was performed using the DynaPro® NanoStar® instrument to measure the effect of temperature on translational diffusion coefficients (Dt) of nanoparticles and colloids in solution by quantifying dynamic fluctuations in scattered light. Sizes and size distributions, in turn, are calculated from the diffusion coefficients in terms of hydrodynamic diameter (dh). Results are shown in FIGS. 11A-11D: Construct #1 (FIG. 11A); Construct #10 (FIG. 11B); Construct #12 (FIG. 11C); Construct #16 (FIG. 11D). DLS profiles of fusion proteins were analyzed by the framework of Onset model, the dots indicate the raw data while the green solid line indicates the fitting curve by the model. The results show that Constructs #10 and #12 (esRAGE-Fc fusions) have enhanced thermal stability as compared to Construct #1. Results from this analysis including hydrodynamic radius (nm) and Tagg (° C.) are shown in Table 8.
  • TABLE 8
    Concentration
    Construct (mg/ml) Tagg (° C.) Radius (nm)
    #1 2.26 61.39 7.49
    #10 2.86 63.40 8.06
    #12 1.55 67.24 7.50
    #16 2.00 52.94 8.68
  • Example 6: Improved Manufacturability
  • Further modified RAGE-Fc fusion proteins were constructed to test for improvement of protein expression and manufacturability of the fusion protein. Improved manufacturability manifests in one or more of the following ways: higher expression, increased stability, or improved solubility. Solubility may be assessed by SDS-PAGE under reducing and non-reducing conditions, followed by Western blot. In contrast to the prior art, the improved molecules of the present disclosure demonstrate reduced tendency to aggregate as shown by distinct protein bands visible under reducing conditions compared to smeared bands visible under non-reducing conditions (see FIGS. 2A-2L, FIGS. 3A-3J, FIGS. 4A-4I, and FIGS. 5A-5F, comparing bands in lane 1 (reducing condition) with bands in lane 2 (non-reducing conditions)).
  • For example, esRAGE-Fc fusion proteins were constructed using at least a portion of the hinge region of alternative human IgG polypeptides as a linker between the C-terminus of esRAGE and the amino terminus of the Fc polypeptide of the fusion protein. A RAGE-Fc fusion protein was also constructed using a RAGE polypeptide with a shortened stern region lacking the C-terminal 13 amino acid residues, with a portion of the hinge region of alternative human IgG polypeptides as a linker between the C-terminus of RAGE and the amino terminus of the Fc polypeptide of the fusion protein. Additional modified fusion proteins were generated by introducing amino acid substitutions into the esRAGE polypeptide, and/or the Fc polypeptide of the fusion protein. Fusion proteins comprising alternative linkers and amino acid substitutions were generated using overlap PCR mutagenesis according to known methods.
  • Testing of esRAGE-Fc fusion proteins comprising linkers from alternative IgG hinge regions and esRAGE-Fc fusion proteins comprising amino acid substitutions was performed as follows. Polynucleotides encoding esRAGE-Fc fusion proteins comprising an IgG4 hinge linker (SEQ ID NO: 39), a RAGE polypeptide with a shortened stem region lacking the C-terminal 13-amino acid residues (SEQ ID NO: 54), or polynucleotides encoding fusion proteins comprising an IgG2 linker (SEQ ID NO: 41) were expressed in CHO-3E7 cells as described in Example 1. Further, polynucleotides encoding esRAGE-Fc fusion proteins comprising amino substitutions M252Y, S254T, and T256E in the Fc polypeptide (SEQ ID NO: 44) were also expressed in CHO-3E7 cells as described in Example 1. The cultures were grown for six days following transfection; on day 6 the cell culture supernatant was collected and used for purification as described in Example 1. Purified protein was analyzed by SDS-PAGE under reducing and non-reducing conditions and by Western blot using a primary Goat Anti-Human IgG-HRP antibody (GenScript, Cat. No. A00166). Protein concentration was determined by Bradford assay using BSA as a protein standard. Tables 5 and 6 show the concentration, purity, and total purified protein yield for each fusion protein.
  • The esRAGE-Fc fusion protein encoded by the amino acid sequence set forth in SEQ ID NO: 12 (nucleotide sequence set forth in SEQ ID NO: 39) differs from the fusion protein encoded by the amino acid sequence set forth in SEQ ID NO 15 (nucleotide sequence set forth in SEQ ID NO: 41) only by the IgG hinge from which the linker is derived. Further, the esRAGE-Fc fusion protein encoded by the amino acid sequence set forth in SEQ ID NO: 16 (nucleotide sequence set forth in SEQ ID NO: 43) differs from the fusion protein encoded by the amino acid sequence set forth in SEQ ID NO: 15 (nucleotide sequence set forth in SEQ ID NO: 41) only by the amino acid substitutions at positions 252, 254, and 256 (EU numbering) of the Fc polypeptide. The results shown in Table 9 demonstrate that the purity and yield, and thus the manufacturability of the fusion protein may be improved by replacing a linker from the IgG4 hinge with a linker from the IgG2 hinge. Similarly, the results shown in Table 9 demonstrate that manufacturability of the fusion protein is improved by incorporating amino acid substitutions M252Y, S254T, and T256E (EU numbering) in the Fc polypeptide of the fusion protein.
  • TABLE 9
    Amino acid Nucleotide Total
    sequence sequence Construct name Concentration Purity protein
    SEQ ID NO: 12 SEQ ID NO: 39 Construct #10: RAGEV-C1-C2-V1 stem 0.29 mg/mL 70%  580 μg
    (M/A)-IgG4-hinge(S/P-AA)-
    (IgG4CH2-CH3)
    SEQ ID NO: 14 SEQ ID NO: 40 Construct #11: RAGEV-C1-C2-V1 stem 0.16 mg/mL 80%  640 μg
    (M/A)-VH8aa-IgG4-hinge(S/P-AA)-
    (IgG4CH2-CH3)
    SEQ ID NO: 15 SEQ ID NO: 41 Construct #12: 0.19 mg/mL 80%  760 μg
    RAGEV-C1-C2-V1stem(M/A)-IgG21ower-
    hinge-(IgG4CH2-CH3)
    SEQ ID NO: 16 SEQ ID NO: 43 Construct #16: 0.21 mg/mL 90% 1.68 mg
    RAGE V-C1-C2-V1stem(M/A)-IgG2
    lower hinge-(IgG4CH2-CH3)-YTE
  • Data showing the concentration, purity, and total purified protein yield for RAGE-Fc fusion proteins expressed at 1L scale and purified using Monofinity A Resin affinity purification, followed by HiLoad26/600 Superdex200 pg size exclusion chromatography. The results shown in Table 10 demonstrate that the purity and yield, and thus the manufacturability of the fusion protein in scaled-up production may be improved by replacing a linker from the IgG4 hinge with a linker from the IgG2 hinge. Similarly, the results shown in Table 10 demonstrate that manufacturability of the fusion protein is improved by incorporating amino acid substitutions M252Y, S254T, and T256E (EU numbering) in the Fc polypeptide of the fusion protein.
  • TABLE 10
    Amino acid Nucleotide Total
    sequence sequence Construct name Concentration Purity protein
    SEQ ID NO: 5 SEQ ID NO: 38 Construct #1: RAGE V-C1-C2-Natural 0.58 mg/mL 90% 18.27 mg
    Stem-short linker-IgG1
    hinge-(IgG1CH2-CH3)
    SEQ ID NO: 54 SEQ ID NO: 57 Construct #9: RAGE V-C1-C2-shortened- 0.48 mg/mL 90%  2.88 mg
    stem-VH8aa-IgG4-
    hinge(S/P-AA)-(IgG4CH2-CH3)
    SEQ ID NO: 12 SEQ ID NO: 39 Construct #10: RAGE V-C1-C2-V1 stem 0.38 mg/mL 90%  4.94 mg
    (M/A)-IgG4-hinge(S/P-AA)-
    (IgG4CH2-CH3)
    SEQ ID NO: 14 SEQ ID NO: 40 Construct #11: RAGE V-C1-C2-V1 stem 0.43 mg/mL 90%  4.30 mg
    (M/A)-VH8aa-IgG4-hinge(S/P-AA)-
    (IgG4CH2-CH3)
    SEQ ID NO: 15 SEQ ID NO: 41 Construct #12: 0.66 mg/mL 90%  7.26 mg
    RAGE V-C1-C2-V1stem(M/A)-IgG2lower-
    hinge-(IgG4CH2-CH3)
    SEQ ID NO: 16 SEQ ID NO: 43 Construct #16: 0.43 mg/mL 90% 12.25 mg
    RAGE V-C1-C2-V1stem(M/A)-IgG2
    lower hinge-(IgG4CH2-CH3)-YTE
  • Data showing the concentration, purity, and total purified protein yield for additional RAGE-Fc fusion proteins is provided in Table 11.
  • TABLE 11
    Amino acid Nucleotide Total
    sequence sequence Construct name Concentration Purity protein
    SEQ ID NO: 5 SEQ ID NO: 38 Construct #1: RAGE V-C1-C2-Natural 0.26 mg/mL 80% 1.56 mg
    Stem-short linker-IgG1
    hinge-(IgG1CH2-CH3)
    SEQ ID NO: 37 SEQ ID NO: 42 Construct #13: RAGE V-C1-C2 0.15 mg/mL 65%  450 μg
    (N25E/G82S)-Natural Stem-short
    linker-IgG1 hinge-(IgG1CH2-CH3)
    SEQ ID NO: 17 SEQ ID NO: 44 Construct #17: 0.21 mg/mL 80% 2.10 mg
    RAGE V-C1-C2-V1stem(M/A)-
    (N25E)-IgG2 lower hinge-(IgG4CH2-CH3)
    SEQ ID NO: 18 SEQ ID NO: 45 Construct #18: 0.14 mg/mL 75% 1.40 mg
    RAGE V-C1-C2-V1stem(M/A)-
    (N25Q)-IgG2 lower hinge-(IgG4CH2-CH3)
    SEQ ID NO: 19 SEQ ID NO: 46 Construct #19: 0.13 mg/mL 85%  780 μg
    RAGE V-C1-C2-V1stem(M/A)-
    (G82S)-IgG2 lower hinge-(IgG4CH2-CH3)
    SEQ ID NO: 20 SEQ ID NO: 47 Construct #20: 0.10 mg/mL 70% 1.05 mg
    RAGE V-C1-C2-V1stem(M/A)-
    (N25E/G82S)-IgG2 lower hinge-(IgG4CH2-CH3)
    SEQ ID NO: 21 SEQ ID NO: 48 Construct #21: 0.12 mg/mL 75% 1.08 mg
    RAGE V-C1-C2-V1stem(M/A)-
    (N25Q/G82S)-IgG2 lower
    hinge-(IgG4CH2-CH3)
    SEQ ID NO: 22 SEQ ID NO: 49 Construct #22: 0.13 mg/mL N/A  780 μg
    RAGE V-C1-C2-V1stem(M/A)-
    (N81A)-IgG2 lower hinge-(IgG4CH2-CH3)
    SEQ ID NO: 23 SEQ ID NO: 50 Construct #23:   52 μg/mL 35%  676 μg
    RAGE V-C1-C2-V1stem(M/A)-
    (N25E/N81A)-IgG2 lower hinge-(IgG4CH2-CH3)
    SEQ ID NO: 24 SEQ ID NO: 51 Construct #24: 0.13 mg/mL N/A 1.69 mg
    RAGE V-C1-C2-V1stem(M/A)-
    (N25Q/N81A)-IgG2 lower hinge-(IgG4CH2-CH3)
  • While the invention has been particularly shown and described with reference to a preferred embodiment and various alternate embodiments, it will be understood by persons skilled in the relevant art that various changes in form and details can be made therein without departing from the spirit and scope of the invention.
  • All references, issued patents and patent applications cited within the body of the instant specification are hereby incorporated by reference in their entirety, for all purposes.
  • INFORMAL SEQUENCE LISTING
  • SEQ ID NO DESCRIPTION SEQUENCE
    SEQ ID NO: 1 esRAGE including the MAAGTAVGAW VLVLSLWGAV VGAQNITARI
    natural leader sequence GEPLVLKCKG APKKPPQRLE WKLNTGRTEA
    (natural leader sequence is WKVLSPQGGG PWDSVARVLP NGSLFLPAVG
    underlined) IQDEGIFRCQ AMNRNGKETK SNYRVRVYQI
    PGKPEIVDSA SELTAGVPNK VGTCVSEGSY
    PAGTLSWHLD GKPLVPNEKG VSVKEQTRRH
    PETGLFTLQS ELMVTPARGG DPRPTFSCSF
    SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL
    VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH
    WMKDGVPLPL PPSPVLILPE IGPQDQGTYS
    CVATHSSHGP QESRAVSISI IEPGEEGPTA
    GEGFDKVREA EDSPQHM
    SEQ ID NO: 2 15 of 16 AA of C-term. EGFDKVREA EDSPQH
    sequence unique to esRAGE
    SEQ ID NO: 3 AA sequence of hRAGE- MAAGTAVGAW VLVLSLWGAV VGAQNITARI
    IgG4Fc fusion protein of US GEPLVLKCKG APKKPPQRLE WKLNTGRTEA
    9,399,668-SEQ ID NO: 6 in WKVLSPQGGG PWDSVARVLP NGSLFLPAVG
    the ′668 patent (includes the TQDEGIFRCQ AMNRNGKETK SNYRVRVYQI
    natural leader sequence, PGKPEIVDSA SELTAGVPNK VGTCVSEGSY
    underlined) PAGTLSWHLD GKPLVPNEKG VSVKEQTRRH
    PETGLFTLQS ELMVTPARGG DPRPTFSCSP
    SPGLPRRRAL HTAPIQPRVW EPVPLEEVQL
    VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH
    WMKDGVPLPL PPSPVLILPE IGPQDQGTYS
    CVATHSSHGP QESRAVSISI IEPGEEGPTA
    GSVGGSGLGT LALAASTKGP SVFPLAPCSR
    STSESTAALG CLVKDYFPEP VTVSWNSGAL
    TSGVHTFPAV LQSSGLYSLS SVVTVPSSSL
    GTKTYTCNVD HKPSNTKVDK RVESKYGPPC
    PSCPAPEFLG GPSVFLFPPK PKDTLMISRT
    PEVTCVVVDV SQEDPEVQFN WYVDGVEVHN
    AKTKPREEQF NSTYRVVSVL TVLHQDWLNG
    KEYKCKVSNK GLPSSTEKTI SKAKGQPREP
    QVYTLPPSQE EMTKNQVSLT CLVKGFYPSD
    IAVEWESNGQ PENNYKTTPP VLDSDGSFFL
    YSRLTVDKSR WQEGNVFSCS VMHEALHNHY
    TQKSLSLSLG K
    SEQ ID NO: 4 Sequence corresponding to xYxTxE
    M252Y/S254T/T256E
    mutation in CH2 domain of
    IgG Fc
    SEQ ID NO: 5 Sequence corresponding to AQNITARIGE PLVLKCKGAP KKPPQRLE
    Construct #1 (mature WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    protein; lacking the natural NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    leader sequence) SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GSVGGSGLGT LALAIEGRMP
    KSCDKTHTCP PCPAPELLGG PSVFLFPPKP
    KDTLMISRTP EVTCVVVDVS HEDPEVKFNW
    YVDGVEVHNA KTKPREEQYN STYRVVSVLT
    VLHQDWLNGK EYKCKVSNKA LPAPIEKTIS
    KAKGQPREPQ VYTLPPSRDE LTKNQVSLTC
    LVKGFYPSDI AVEWESNGQP ENNYKTTPPV
    LDSDGSFFLY SKLTVDKSRW QQGNVFSCSV
    MHEALHNHYT QKSLSLSPGK
    SEQ ID NO: 6 Sequence of extracellular AQNITARIGE PLVLKCKGAP KKPPQRLE
    domain of WT hRAGE (not WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    the splice variant) (mature NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    protein; lacking the natural SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    leader sequence) VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA G
    SEQ ID NO: 7 AA359-590 of construct #17 GG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS
    QEDPEVQFNW YVDGVEVHNA KTKPREEQFN
    STYRVVSVLT VLHQDWLNGK EYKCKVSNKG
    LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE
    MTKNQVSLTC LVKGFYPSDI AVEWESNGQP
    ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW
    QEGNVFSCSV MHEALHNHYT QKSLSLSLGK
    SEQ ID NO: 8 Modified IgG4 (S/P-AA) ESKYGPPCPPCPAPEAA
    hinge that is present in
    esRAGE-Fc linker in
    constructs #10, 11, 33, 35,
    and 36
    SEQ ID NO: 9 IgG2 lower hinge that is VECPPCAPPVA
    present in esRAGE-Fc linker
    in constructs #12, 16-29, 31-
    32
    SEQ ID NO: 10 IgG2 complete hinge that is ERKCCVECPPCAPPVA
    present in esRAGE-Fc linker
    in construct #30
    SEQ ID NO: 11 IgG1 hinge that is present in EPKSCDKTHTCPPCPAPEAA
    esRAGE-Fc linker in
    construct #34
    SEQ ID NO: 12 Construct #10 AQNITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)-IgG4-hinge NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    (S/P-AA)-(IgG4CH2-CH3) SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    (mature protein; lacking the VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    natural leader sequence) VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAESK
    YGPPCPPCPA PEAAGGPSVF LFPPKPKDTL
    MISRTPEVTC VVVDVSQEDP EVQFNWYVDG
    VEVHNAKTKP REEQFNSTYR VVSVLTVLHQ
    DWLNGKEYKC KVSNKGLPSS IEKTISKAKG
    QPREPQVYTL PPSQEEMTKN QVSLTCLVKG
    FYPSDIAVEW ESNGQPENNY KTTPPVLDSD
    GSFFLYSRLT VDKSRWQEGN VFSCSVMHEA
    LHNHYTQKSL SLSLGK
    SEQ ID NO: 13 Shortened stem-VH8aa- GTLVTVSS
    IgG4-hinge(S/P-AA)
    SEQ ID NO: 14 Construct #11 AQNITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)-VH8 aa-IgG4- NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    hinge (S/P-AA)- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    (IgG4CH2-CH3) (mature VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    protein; lacking the natural VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    leader sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAGTL
    VTVSSESKYG PPCPPCPAPE AAGGPSVFLF
    PPKPKDTLMI SRTPEVTCVV VDVSQEDPEV
    QFNWYVDGVE VHNAKTKPRE EQFNSTYRVV
    SVLTVLHQDW LNGKEYKCKV SNKGLPSSIE
    KTISKAKGQP REPQVYTLPP SQEEMTKNQV
    SLTCLVKGFY PSDIAVEWES NGQPENNYKT
    TPPVLDSDGS FFLYSRLTVD KSRWQEGNVF
    SCSVMHEALH NHYTQKSLSL SLGK
    SEQ ID NO: 15 Construct #12 AQNITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)-IgG2 lower NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    hinge-(IgG4CH2-CH3) SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    (mature protein; lacking the VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    natural leader sequence) VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLMISRTP
    EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA
    KTKPREEQFN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ
    VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SRLTVDKSRW QEGNVFSCSV MHEALHNHYT
    QKSLSLSLGK
    SEQ ID NO: 16 Construct #16 AQNITARIGE PLVLKCKGAP KKPPQRLE
    (#12 + YTE) WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    RAGE V-C1-C2- NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    V1stem(M/A)-IgG2 lower SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    hinge-(IgG4CH2-CH3)- VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    YTE (mature protein; VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    lacking the natural leader DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    sequence) EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLYITREP
    EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA
    KTKPREEQFN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ
    VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SRLTVDKSRW QEGNVFSCSV MHEALHNHYT
    QKSLSLSLGK
    SEQ ID NO: 17 Construct #17 AQEITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)-(N25E)-IgG2 NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    lower hinge-(IgG4CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    CH3) (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLMISRTP
    EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA
    KTKPREEQFN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ
    VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SRLTVDKSRW QEGNVFSCSV MHEALHNHYT
    QKSLSLSLGK
    SEQ ID NO: 18 Construct #18 AQQITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)-(N25Q)-IgG2 NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    lower hinge-(IgG4CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    CH3) (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLMISRTP
    EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA
    KTKPREEQFN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ
    VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SRLTVDKSRW QEGNVFSCSV MHEALHNHYT
    QKSLSLSLGK
    SEQ ID NO: 19 Construct #19 AQNITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)-(G82S)-IgG2 NSSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    lower hinge-(IgG4CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    CH3) (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLMISRTP
    EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA
    KTKPREEQFN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ
    VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SRLTVDKSRW QEGNVFSCSV MHEALHNHYT
    QKSLSLSLGK
    SEQ ID NO: 20 Construct #20 AQEITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)- NSSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    (N25E/G82S)-IgG2 lower SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    hinge-(IgG4CH2-CH3) VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    (mature protein; lacking the VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    natural leader sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLMISRTP
    EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA
    KTKPREEQFN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ
    VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SRLTVDKSRW QEGNVFSCSV MHEALHNHYT
    QKSLSLSLGK
    SEQ ID NO: 21 Construct #21 AQQITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)- NSSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    (N25Q/G82S)-IgG2 lower SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    hinge-(IgG4CH2-CH3) VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    (mature protein; lacking the VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    natural leader sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLMISRTP
    EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA
    KTKPREEQFN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ
    VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SRLTVDKSRW QEGNVFSCSV MHEALHNHYT
    QKSLSLSLGK
    SEQ ID NO: 22 Construct #22 AQNITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)-(N81A)-IgG2 AGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    lower hinge-(IgG4CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    CH3) (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLMISRTP
    EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA
    KTKPREEQFN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ
    VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SRLTVDKSRW QEGNVFSCSV MHEALHNHYT
    QKSLSLSLGK
    SEQ ID NO: 23 Construct #23 AQEITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)- AGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    (N25E/N81A)-IgG2 lower SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    hinge-(IgG4CH2-CH3) VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    (mature protein; lacking the VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    natural leader sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLMISRTP
    EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA
    KTKPREEQFN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ
    VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SRLTVDKSRW QEGNVFSCSV MHEALHNHYT
    QKSLSLSLGK
    SEQ ID NO: 24 Construct #24 AQQITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1 tem(M/A)- AGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    (N25Q/N81A)-IgG2 lower SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    hinge-(IgG4CH2-CH3) VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    (mature protein; lacking the VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    natural leader sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLMISRTP
    EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA
    KTKPREEQFN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ
    VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SRLTVDKSRW QEGNVFSCSV MHEALHNHYT
    QKSLSLSLGK
    SEQ ID NO: 25 Construct #25 AQEITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)-(N25E)-IgG2 NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    lower hinge-(IgG4CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    CH3)-YTE (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLYITREP
    EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA
    KTKPREEQFN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ
    VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SRLTVDKSRW QEGNVFSCSV MHEALHNHYT
    QKSLSLSLGK
    SEQ ID NO: 26 Construct #26 AQQITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)-(N25Q)-IgG2 NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    lower hinge-(IgG4CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    CH3)-YTE (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLYITREP
    EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA
    KTKPREEQFN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ
    VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SRLTVDKSRW QEGNVFSCSV MHEALHNHYT
    QKSLSLSLGK
    SEQ ID NO: 27 Construct #27 AQNITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)-(G82S)-IgG2 NSSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    lower hinge-(IgG4CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    CH3)-YTE (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLYITREP
    EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA
    KTKPREEQFN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ
    VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SRLTVDKSRW QEGNVFSCSV MHEALHNHYT
    QKSLSLSLGK
    SEQ ID NO: 28 Construct #28 AQEITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)- NSSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    (N25E/G82S)-IgG2 lower SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    hinge-(IgG4CH2-CH3)- VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    YTE (mature protein; VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    lacking the natural leaders DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    sequence) EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLYITREP
    EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA
    KTKPREEQFN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ
    VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SRLTVDKSRW QEGNVFSCSV MHEALHNHYT
    QKSLSLSLGK
    SEQ ID NO: 29 Construct #29 AQQITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)- NSSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    (N25Q/G82S)-IgG2 lower SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    hinge-(IgG4CH2-CH3)- VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    YTE (mature protein; VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    lacking the natural leaders DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    sequence) EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLYITREP
    EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA
    KTKPREEQFN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ
    VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SRLTVDKSRW QEGNVFSCSV MHEALHNHYT
    QKSLSLSLGK
    SEQ ID NO: 30 Construct #30 AQNITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)-IgG2 NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    complete hinge-(IgG4CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    CH3)-YTE (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAERK
    CCVECPPCAP PVAGGPSVFL FPPKPKDTLY
    ITREPEVTCV VVDVSQEDPE VQFNWYVDGV
    EVHNAKTKPR EEQFNSTYRV VSVLTVLHQD
    WLNGKEYKCK VSNKGLPSSI EKTISKAKGQ
    PREPQVYTLP PSQEEMTKNQ VSLTCLVKGF
    YPSDIAVEWE SNGQPENNYK TTPPVLDSDG
    SFFLYSRLTV DKSRWQEGNV FSCSVMHEAL
    HNHYTQKSLS LSLGK
    SEQ ID NO: 31 Construct #31 AQNITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)-IgG2 lower NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    hinge-(IgG2CH2-CH3)- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    YTE (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGP SVFLFPPKPK DTLYITREPE
    VTCVVVDVSH EDPEVQFNWY VDGVEVHNAK
    TKPREEQFNS TFRVVSVLTV VHQDWLNGKE
    YKCKVSNKGL PAPIEKTISK TKGQPREPQV
    YTLPPSREEM TKNQVSLTCL VKGFYPSDIA
    VEWESNGQPE NNYKTTPPML DSDGSFFLYS
    KLTVDKSRWQ QGNVFSCSVM HEALHNHYTQ
    KSLSLSPGK
    SEQ ID NO: 32 Construct #32 AQNITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)-IgG2 lower NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    hinge-(IgG1CH2-CH3)- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    YTE (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLYITREP
    EVTCVVVDVS HEDPEVKFNW YVDGVEVHNA
    KTKPREEQYN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKA LPAPIEKTIS KAKGQPREPQ
    VYTLPPSRDE LTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SKLTVDKSRW QQGNVFSCSV MHEALHNHYT
    QKSLSLSPGK
    SEQ ID NO: 33 Construct #33 AQNITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)-IgG4-hinge NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    (S/P-AA)-(IgG1CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    CH3)-YTE (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    lacking the natural leaders VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAESK
    YGPPCPPCPA PEAAGGPSVF LFPPKPKDTL
    YITREPEVTC VVVDVSHEDP EVKFNWYVDG
    VEVHNAKTKP REEQYNSTYR VVSVLTVLHQ
    DWLNGKEYKC KVSNKALPAP IEKTISKAKG
    QPREPQVYTL PPSRDELTKN QVSLTCLVKG
    FYPSDIAVEW ESNGQPENNY KTTPPVLDSD
    GSFFLYSKLT VDKSRWQQGN VFSCSVMHEA
    LHNHYTQKSL SLSPGK
    SEQ ID NO: 34 Construct #34 AQNITARIGE PLVLKCKGAP KKPPQRLE
    RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    V1stem(M/A)-IgG1 hinge NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    (AA)-(IgG1CH2-CH3)- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    YTE (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    lacking the natural leaders VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAEPK
    SCDKTHTCPP CPAPEAAGGP SVFLFPPKPK
    DTLYITREPE VTCVVVDVSH EDPEVKFNWY
    VDGVEVHNAK TKPREEQYNS TYRVVSVLTV
    LHQDWLNGKE YKCKVSNKAL PAPIEKTISK
    AKGQPREPQV YTLPPSRDEL TKNQVSLTCL
    VKGFYPSDIA VEWESNGQPE NNYKTTPPVL
    DSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM
    HEALHNHYTQ KSLSLSPGK
    SEQ ID NO: 35 Construct #35 AQNITARIGE PLVLKCKGAP KKPPQRLE
    (10 + YTE) WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    RAGE V-C1-C2- RAGE V- NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    C1-C2-V1stem(M/A)-IgG4- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    hinge (S/P-AA)- VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    (IgG4CH2-CH3)-YTE VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    (mature protein; lacking the DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    natural leaders sequence) EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAESK
    YGPPCPPCPA PEAAGGPSVF LFPPKPKDTL
    YITREPEVTC VVVDVSQEDP EVQFNWYVDG
    VEVHNAKTKP REEQFNSTYR VVSVLTVLHQ
    DWLNGKEYKC KVSNKGLPSS IEKTISKAKG
    QPREPQVYTL PPSQEEMTKN QVSLTCLVKG
    FYPSDIAVEW ESNGQPENNY KTTPPVLDSD
    GSFFLYSRLT VDKSRWQEGN VFSCSVMHEA
    LHNHYTQKSL SLSLGK
    SEQ ID NO: 36 Construct #36 AQNITARIGE PLVLKCKGAP KKPPQRLE
    (#11 + YTE) WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    RAGE V-C1-C2- NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    V1stem(M/A)-VH8aa-IgG4- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    hinge (S/P-AA)- VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    (IgG4CH2-CH3)-YTE VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    (mature protein; lacking the DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    natural leaders sequence) EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAGTL
    VTVSSESKYG PPCPPCPAPE AAGGPSVFLF
    PPKPKDTLYI TREPEVTCVV VDVSQEDPEV
    QFNWYVDGVE VHNAKTKPRE EQFNSTYRVV
    SVLTVLHQDW LNGKEYKCKV SNKGLPSSIE
    KTISKAKGQP REPQVYTLPP SQEEMTKNQV
    SLTCLVKGFY PSDIAVEWES NGQPENNYKT
    TPPVLDSDGS FFLYSRLTVD KSRWQEGNVF
    SCSVMHEALH NHYTQKSLSL SLGK
    SEQ ID NO: 37 Construct #13 AQEITARIGE PLVLKCKGAP KKPPQRLEWK
    RAGEV-C1-C2 (N25E/G82S)- LNTGRTEAWK VLSPQGGGPW DSVARVLPNS
    Natural Stem-short linker-IgG1 SLFLPAVGIQ DEGIFRCQAM NRNGKETKSN
    hinge-(IgG1CH2-CH3) YRVRVYQIPG KPEIVDSASE LTAGVPNKVG
    (mature protein; lacking the TCVSEGSYPA GTLSWHLDGK PLVPNEKGVS
    natural leaders sequence) VKEQTRRHPE TGLFTLQSEL MVTPARGGDP
    RPTFSCSFSP GLPRHRALRT APIQPRVWEP
    VPLEEVQLVV EPEGGAVAPG GTVTLTCEVP
    AQPSPQIHWM KDGVPLPLPP SPVLILPEIG
    PQDQGTYSCV ATHSSHGPQE SRAVSISIIE
    PGEEGPTAGS VGGSGLGTLA LAIEGRMPKS
    CDKTHTCPPC PAPELLGGPS VFLFPPKPKD
    TLMISRTPEV TCVVVDVSHE DPEVKFNWYV
    DGVEVHNAKT KPREEQYNST YRVVSVLTVL
    HQDWLNGKEY KCKVSNKALP APIEKTISKA
    KGQPREPQVY TLPPSRDELT KNQVSLTCLV
    KGFYPSDIAV EWESNGQPEN NYKTTPPVLD
    SDGSFFLYSK LTVDKSRWQQ GNVFSCSVMH
    EALHNHYTQK SLSLSPGK
    SEQ ID NO: 38 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #1 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGCCCTACAGCTGGTTCTGTTGGA
    GGCTCTGGACTGGGCACACTGGCCCTGGCTATTGAGGGC
    AGAATGCCCAAGTCCTGCGACAAGACCCACACCTGTCCT
    CCATGTCCTGCTCCAGAACTGCTCGGCGGACCTTCCGTG
    TTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGATGATC
    TCTCGGACCCCTGAAGTGACCTGCGTGGTGGTGGATGTG
    TCTCACGAGGATCCCGAAGTGAAGTTCAATTGGTACGTG
    GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA
    GAGGAACAGTACAACTCCACCTACAGAGTGGTGTCCGTG
    CTGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAG
    TATAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCTCCT
    ATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGG
    GAACCCCAGGTTTACACCTTGCCACCTTCTCGGGACGAG
    CTGACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAG
    GGCTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCT
    AATGGCCAGCCTGAGAACAACTACAAGACAACCCCTCCT
    GTGCTGGACTCCGACGGCTCATTCTTCCTGTACTCCAAG
    CTGACAGTGGACAAGTCCAGATGGCAGCAGGGCAACGTG
    TTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAATCAC
    TACACCCAGAAGTCCCTGTCTCTGTCCCCTGGCAAATGA
    SEQ ID NO: 39 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #10 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT
    GACAAAGTGCGCGAGGCCGAGGATTCTCCTCAGCATGCT
    GAGTCTAAGTACGGCCCTCCTTGTCCTCCATGTCCTGCT
    CCAGAAGCTGCTGGCGGCCCTTCCGTGTTTCTGTTCCCT
    CCAAAGCCTAAGGACACCCTGATGATCTCTCGGACCCCT
    GAAGTGACCTGCGTGGTGGTGGATGTGTCCCAAGAGGAT
    CCCGAGGTGCAGTTCAATTGGTACGTGGACGGCGTGGAA
    GTGCACAACGCCAAGACCAAGCCTAGAGAGGAACAGTTC
    AACTCCACCTACAGAGTGGTGTCCGTGCTGACCGTGCTG
    CACCAGGATTGGCTGAATGGCAAAGAGTATAAGTGCAAG
    GTGTCCAACAAGGGCCTGCCTTCCAGCATCGAAAAGACC
    ATCTCCAAGGCCAAGGGCCAGCCTAGGGAACCCCAGGTT
    TACACCCTGCCTCCAAGCCAAGAGGAAATGACCAAGAAC
    CAGGTGTCCCTGACATGCCTGGTCAAGGGCTTCTACCCC
    TCCGATATCGCCGTGGAATGGGAGTCTAATGGCCAGCCT
    GAGAACAACTACAAGACCACACCTCCTGTGCTGGACTCC
    GACGGCAGCTTCTTTCTGTACTCCCGCCTGACCGTGGAC
    AAGTCCAGGTGGCAAGAGGGCAACGTGTTCTCCTGCTCC
    GTGATGCACGAGGCCCTGCACAATCACTACACCCAGAAG
    TCCCTGTCTCTGTCCCTGGGCAAATGA
    SEQ ID NO: 40 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #11 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT
    GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCATGCC
    GGAACACTGGTCACCGTGTCCTCCGAGTCTAAGTACGGC
    CCTCCTTGTCCTCCATGTCCTGCTCCAGAAGCTGCTGGC
    GGCCCTTCCGTGTTTCTGTTCCCTCCAAAGCCTAAGGAC
    ACCCTGATGATCTCTCGGACCCCTGAAGTGACCTGCGTG
    GTGGTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTC
    AATTGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAG
    ACCAAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGA
    GTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTG
    AATGGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGC
    CTGCCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAG
    GGCCAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCA
    AGCCAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACA
    TGCCTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTG
    GAATGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAG
    ACCACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTT
    CTGTACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAA
    GAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCC
    CTGCACAATCACTACACCCAGAAGTCCCTGTCTCTGTCC
    CTGGGCAAATGA
    SEQ ID NO: 41 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #12 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT
    GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCATGCC
    GTGGAATGCCCTCCTTGTGCTCCTCCTGTGGCTGGCGGC
    CCTTCCGTGTTTCTGTTCCCTCCAAAGCCTAAGGACACC
    CTGATGATCTCTCGGACCCCTGAAGTGACCTGCGTGGTG
    GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT
    TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC
    AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG
    GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT
    GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG
    CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC
    CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC
    CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC
    CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA
    TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC
    ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG
    TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG
    GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG
    CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG
    GGCAAATGA
    SEQ ID NO: 42 Nucleotide sequence of GCTCAGGAGATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #13 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTAACTCCTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGCCCTACAGCTGGTTCTGTTGGA
    GGCTCTGGACTGGGCACACTGGCCCTGGCTATTGAGGGC
    AGAATGCCCAAGTCCTGCGACAAGACCCACACCTGTCCT
    CCATGTCCTGCTCCAGAACTGCTCGGCGGACCTTCCGTG
    TTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGATGATC
    TCTCGGACCCCTGAAGTGACCTGCGTGGTGGTGGATGTG
    TCTCACGAGGATCCCGAAGTGAAGTTCAATTGGTACGTG
    GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA
    GAGGAACAGTACAACTCCACCTACAGAGTGGTGTCCGTG
    CTGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAG
    TATAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCTCCT
    ATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGG
    GAACCCCAGGTTTACACCTTGCCACCTTCTCGGGACGAG
    CTGACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAG
    GGCTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCT
    AATGGCCAGCCTGAGAACAACTACAAGACAACCCCTCCT
    GTGCTGGACTCCGACGGCTCATTCTTCCTGTACTCCAAG
    CTGACAGTGGACAAGTCCAGATGGCAGCAGGGCAACGTG
    TTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAATCAC
    TACACCCAGAAGTCCCTGTCTCTGTCCCCTGGCAAATGA
    SEQ ID NO: 43 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #16 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT
    GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT
    GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC
    CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC
    CTGTACATCACCCGCGAGCCTGAAGTGACCTGCGTGGTG
    GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT
    TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC
    AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG
    GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT
    GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG
    CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC
    CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC
    CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC
    CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA
    TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC
    ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG
    TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG
    GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG
    CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG
    GGCAAATGA
    SEQ ID NO: 44 Nucleotide sequence of GCTCAGGAAATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #17 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT
    GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT
    GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC
    CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC
    CTGATGATCTCTCGCACCCCTGAAGTGACCTGCGTGGTG
    GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT
    TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC
    AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG
    GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT
    GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG
    CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC
    CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC
    CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC
    CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA
    TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC
    ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG
    TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG
    GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG
    CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG
    GGCAAATGA
    SEQ ID NO: 45 Nucleotide sequence of GCTCAGCAGATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #18 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT
    GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT
    GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC
    CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC
    CTGATGATCTCTCGCACCCCTGAAGTGACCTGCGTGGTG
    GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT
    TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC
    AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG
    GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT
    GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG
    CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC
    CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC
    CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC
    CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA
    TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC
    ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG
    TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG
    GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG
    CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG
    GGCAAATGA
    SEQ ID NO: 46 Nucleotide sequence of GCTCAGAACATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #19 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTAACTCTTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT
    GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT
    GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC
    CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC
    CTGATGATCTCTCGCACCCCTGAAGTGACCTGCGTGGTG
    GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT
    TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC
    AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG
    GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT
    GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG
    CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC
    CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC
    CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC
    CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA
    TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC
    ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG
    TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG
    GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG
    CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG
    GGCAAATGA
    SEQ ID NO: 47 Nucleotide sequence of GCTCAGGAAATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #20 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTAACTCTTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT
    GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT
    GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC
    CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC
    CTGATGATCTCTCGCACCCCTGAAGTGACCTGCGTGGTG
    GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT
    TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC
    AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG
    GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT
    GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG
    CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC
    CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC
    CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC
    CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA
    TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC
    ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG
    TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG
    GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG
    CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG
    GGCAAATGA
    SEQ ID NO: 48 Nucleotide sequence of GCTCAGCAGATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #21 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTAACTCTTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT
    GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT
    GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC
    CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC
    CTGATGATCTCTCGCACCCCTGAAGTGACCTGCGTGGTG
    GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT
    TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC
    AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG
    GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT
    GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG
    CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC
    CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC
    CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC
    CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA
    TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC
    ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG
    TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG
    GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG
    CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG
    GGCAAATGA
    SEQ ID NO: 49 Nucleotide sequence of GCTCAGAACATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #22 TGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTGCTGGCTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT
    GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT
    GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC
    CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC
    CTGATGATCTCTCGCACCCCTGAAGTGACCTGCGTGGTG
    GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT
    TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC
    AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG
    GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT
    GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG
    CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC
    CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC
    CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC
    CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA
    TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC
    ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG
    TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG
    GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG
    CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG
    GGCAAATGA
    SEQ ID NO: 50 Nucleotide sequence of GCTCAGGAAATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #23 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTGCTGGCTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT
    GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT
    GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC
    CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC
    CTGATGATCTCTCGCACCCCTGAAGTGACCTGCGTGGTG
    GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT
    TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC
    AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG
    GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT
    GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG
    CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC
    CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC
    CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC
    CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA
    TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC
    ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG
    TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG
    GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG
    CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG
    GGCAAATGA
    SEQ ID NO: 51 Nucleotide sequence of GCTCAGCAGATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #24 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTGCTGGCTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT
    GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT
    GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC
    CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC
    CTGATGATCTCTCGCACCCCTGAAGTGACCTGCGTGGTG
    GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT
    TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC
    AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG
    GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT
    GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG
    CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC
    CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC
    CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC
    CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA
    TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC
    ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG
    TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG
    GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG
    CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG
    GGCAAATGA
    SEQ ID NO: 52 16 AA C-terminal sequence EGFDKVREAEDSPQHM
    unique to esRAGE 
    SEQ ID NO: 53 Construct #9 AQNITARIGEPLVLKCKGAPKKPPQRLEWKLNTGRTEAW
    RAGE V-C1-C2-shortened KVLSPQGGGPWDSVARVLPNGSLFLPAVGIQDEGIFRCQ
    stem-VH8 aa-IgG4- AMNRNGKETKSNYRVRVYQIPGKPEIVDSASELTAGVPN
    hinge(S/P-AA)-(IgG4CH2- KVGTCVSEGSYPAGTLSWHLDGKPLVPNEKGVSVKEQTR
    CH3) (mature protein; RHPETGLFTLQSELMVTPARGGDPRPTFSCSFSPGLPRH
    lacking the natural leaders RALRTAPIQPRVWEPVPLEEVQLVVEPEGGAVAPGGTVT
    sequence) LTCEVPAQPSPQIHWMKDGVPLPLPPSPVLILPEIGPQD
    QGTYSCVATHSSHGPQESRAVSISIIEPGEEGPTAGGTL
    VTVSSESKYGPPCPPCPAPEAAGGPSVFLFPPKPKDTLM
    ISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKP
    SIEKTISKAKGQPPEPQVYTLPPSQEEMTKNQVSLTCLV
    KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS
    RLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK
    SEQ ID NO: 54 Construct #16ΔK AQNITARIGE PLVLKCKGAP KKPPQRLE
    RAGEV-C1-C2-V1stem WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    (M/A)-IgG2 lower hinge- NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    (IgG4CH2-CH3)-YTE-ΔK SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    (mature protein; lacking the VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    natural leaders sequence) VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLYITREP
    EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA
    KTKPREEQFN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ
    VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SRLTVDKSRW QEGNVFSCSV MHEALHNHYT
    QKSLSLSLG*
    SEQ ID NO: 55 Construct #12ΔK AQNITARIGE PLVLKCKGAP KKPPQRLE
    RAGEV-C1-C2-V1stem WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    (M/A)-IgG2 lower hinge- NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    (IgG4CH2-CH3)-ΔK SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    (mature protein; lacking the VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    natural leaders sequence) VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
    PPCAPPVAGG PSVFLFPPKP KDTLMISRTP
    EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA
    KTKPREEQFN STYRVVSVLT VLHQDWLNGK
    EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ
    VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI
    AVEWESNGQP ENNYKTTPPV LDSDGSFFLY
    SRLTVDKSRW QEGNVFSCSV MHEALHNHYT
    QKSLSLSLΔ*
    SEQ ID NO: 56 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #9 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGACCTACAGCTGGCGGAACACTG
    GTCACCGTGTCCTCCGAGTCTAAGTACGGCCCTCCTTGT
    CCTCCATGTCCTGCTCCAGAAGCTGCTGGCGGCCCTTCC
    GTGTTTCTGTTCCCTCCAAAGCCTAAGGACACCCTGATG
    ATCTCTCGGACCCCTGAAGTGACCTGCGTGGTGGTGGAT
    GTGTCCCAAGAGGATCCCGAGGTGCAGTTCAATTGGTAC
    GTGGACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCT
    AGAGAGGAACAGTTCAACTCCACCTACAGAGTGGTGTCC
    GTGCTGACCGTGCTGCACCAGGATTGGCTGAATGGCAAA
    GAGTATAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCC
    AGCATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCT
    AGGGAACCCCAGGTTTACACCCTGCCTCCAAGCCAAGAG
    GAAATGACCAAGAACCAGGTGTCCCTGACATGCCTGGTC
    AAGGGCTTCTACCCCTCCGATATCGCCGTGGAATGGGAG
    TCTAATGGCCAGCCTGAGAACAACTACAAGACCACACCT
    CCTGTGCTGGACTCCGACGGCAGCTTCTTTCTGTACTCC
    CGCCTGACCGTGGACAAGTCCAGGTGGCAAGAGGGCAAC
    GTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAAT
    CACTACACCCAGAAGTCCCTGTCTCTGTCCCTGGGCAAA
    TGA
    SEQ ID NO: 57 Nucleotide sequence of GCTCAGGAGATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #25 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC
    TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA
    AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG
    TGGCTAGAGTGCTGCCTAACGGCTCCTGTTTCTGCCTGC
    TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC
    CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG
    CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG
    GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA
    GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC
    ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC
    AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC
    ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA
    TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT
    TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC
    CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC
    TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA
    AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC
    TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG
    ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT
    GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA
    CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC
    AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG
    GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG
    TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGTTGAGTG
    CCCTCCATGTGCTCCTCCAGTTGCTGGTGGCCCTTCCGT
    GTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGTACAT
    CACCCGCGAGCCTGAATGACCTGCGTGGTGGTGGATGTG
    TCCCAAGAGGATCCCGAGGTGCAGTTCAATTGGTACGTG
    GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA
    GAGGAACAGTTCAACTCCACCTACAGGTGGTGTCCGTGC
    TGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAGT
    ATAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCCAGCA
    TCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGGA
    ACCCCAGGTTTACACCCTGCCTCCAAGCCAAGAGGAAAT
    GACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAGGG
    CTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCTAA
    TGGCCAGCTGAGAACAACTACAAGACCACACCTCCTGTG
    CTGGACTCCGACGGCAGCTTCTTTCTGTACTCCCGCCTG
    ACCGTGGACAAGTCCAGGTGGCAAGAGGGCAACGTGTTC
    TCCTGCTCCGTGATGCAGAGGCCCTGCACAATCACTACA
    CCCAGAAGTCCCTGTCTCTGTCCCTGGGCAAATGA
    SEQ ID NO: 58 Nucleotide sequence of GCTCAGCAGATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #26 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC
    TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA
    AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG
    TGGCTAGAGTGCTGCCTAACGGCTCCTGTTTCTGCCTGC
    TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC
    CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG
    CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG
    GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA
    GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC
    ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC
    AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC
    ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA
    TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT
    TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC
    CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC
    TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA
    AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC
    TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG
    ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT
    GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA
    CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC
    AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG
    GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG
    TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGTTGAGTG
    CCCTCCATGTGCTCCTCCAGTTGCTGGTGGCCCTTCCGT
    GTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGTACAT
    CACCCGCGAGCCTGAATGACCTGCGTGGTGGTGGATGTG
    TCCCAAGAGGATCCCGAGGTGCAGTTCAATTGGTACGTG
    GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA
    GAGGAACAGTTCAACTCCACCTACAGGTGGTGTCCGTGC
    TGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAGT
    ATAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCCAGCA
    TCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGGA
    ACCCCAGGTTTACACCCTGCCTCCAAGCCAAGAGGAAAT
    GACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAGGG
    CTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCTAA
    TGGCCAGCTGAGAACAACTACAAGACCACACCTCCTGTG
    CTGGACTCCGACGGCAGCTTCTTTCTGTACTCCCGCCTG
    ACCGTGGACAAGTCCAGGTGGCAAGAGGGCAACGTGTTC
    TCCTGCTCCGTGATGCAGAGGCCCTGCACAATCACTACA
    CCCAGAAGTCCCTGTCTCTGTCCCTGGGCAAATGA
    SEQ ID NO: 59 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #27 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC
    TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA
    AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG
    TGGCTAGAGTGCTGCCTAACTCTTCCTGTTTCTGCCTGC
    TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC
    CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG
    CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG
    GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA
    GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC
    ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC
    AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC
    ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA
    TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT
    TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC
    CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC
    TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA
    AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC
    TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG
    ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT
    GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA
    CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC
    AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG
    GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG
    TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGTTGAGTG
    CCCTCCATGTGCTCCTCCAGTTGCTGGTGGCCCTTCCGT
    GTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGTACAT
    CACCCGCGAGCCTGAATGACCTGCGTGGTGGTGGATGTG
    TCCCAAGAGGATCCCGAGGTGCAGTTCAATTGGTACGTG
    GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA
    GAGGAACAGTTCAACTCCACCTACAGGTGGTGTCCGTGC
    TGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAGT
    ATAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCCAGCA
    TCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGGA
    ACCCCAGGTTTACACCCTGCCTCCAAGCCAAGAGGAAAT
    GACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAGGG
    CTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCTAA
    TGGCCAGCTGAGAACAACTACAAGACCACACCTCCTGTG
    CTGGACTCCGACGGCAGCTTCTTTCTGTACTCCCGCCTG
    ACCGTGGACAAGTCCAGGTGGCAAGAGGGCAACGTGTTC
    TCCTGCTCCGTGATGCAGAGGCCCTGCACAATCACTACA
    CCCAGAAGTCCCTGTCTCTGTCCCTGGGCAAATGA
    SEQ ID NO: 60 Nucleotide sequence of GCTCAGGAGATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #28 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC
    TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA
    AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG
    TGGCTAGAGTGCTGCCTAACTCCTCCTGTTTCTGCCTGC
    TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC
    CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG
    CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG
    GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA
    GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC
    ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC
    AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC
    ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA
    TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT
    TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC
    CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC
    TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA
    AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC
    TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG
    ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT
    GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA
    CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC
    AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG
    GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG
    TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGTTGAGTG
    CCCTCCATGTGCTCCTCCAGTTGCTGGTGGCCCTTCCGT
    GTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGTACAT
    CACCCGCGAGCCTGAATGACCTGCGTGGTGGTGGATGTG
    TCCCAAGAGGATCCCGAGGTGCAGTTCAATTGGTACGTG
    GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA
    GAGGAACAGTTCAACTCCACCTACAGGTGGTGTCCGTGC
    TGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAGT
    ATAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCCAGCA
    TCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGGA
    ACCCCAGGTTTACACCCTGCCTCCAAGCCAAGAGGAAAT
    GACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAGGG
    CTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCTAA
    TGGCCAGCTGAGAACAACTACAAGACCACACCTCCTGTG
    CTGGACTCCGACGGCAGCTTCTTTCTGTACTCCCGCCTG
    ACCGTGGACAAGTCCAGGTGGCAAGAGGGCAACGTGTTC
    TCCTGCTCCGTGATGCAGAGGCCCTGCACAATCACTACA
    CCCAGAAGTCCCTGTCTCTGTCCCTGGGCAAATGA
    SEQ ID NO: 61 Nucleotide sequence of GCTCAGCAGATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #29 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC
    TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA
    AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG
    TGGCTAGAGTGCTGCCTAACTCTTCCTGTTTCTGCCTGC
    TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC
    CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG
    CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG
    GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA
    GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC
    ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC
    AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC
    ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA
    TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT
    TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC
    CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC
    TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA
    AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC
    TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG
    ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT
    GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA
    CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC
    AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG
    GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG
    TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGTTGAGTG
    CCCTCCATGTGCTCCTCCAGTTGCTGGTGGCCCTTCCGT
    GTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGTACAT
    CACCCGCGAGCCTGAATGACCTGCGTGGTGGTGGATGTG
    TCCCAAGAGGATCCCGAGGTGCAGTTCAATTGGTACGTG
    GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA
    GAGGAACAGTTCAACTCCACCTACAGGTGGTGTCCGTGC
    TGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAGT
    ATAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCCAGCA
    TCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGGA
    ACCCCAGGTTTACACCCTGCCTCCAAGCCAAGAGGAAAT
    GACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAGGG
    CTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCTAA
    TGGCCAGCTGAGAACAACTACAAGACCACACCTCCTGTG
    CTGGACTCCGACGGCAGCTTCTTTCTGTACTCCCGCCTG
    ACCGTGGACAAGTCCAGGTGGCAAGAGGGCAACGTGTTC
    TCCTGCTCCGTGATGCAGAGGCCCTGCACAATCACTACA
    CCCAGAAGTCCCTGTCTCTGTCCCTGGGCAAATGA
    SEQ ID NO: 62 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #30 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC
    TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA
    AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG
    TGGCTAGAGTGCTGCCTAACGGCTCCTGTTTCTGCCTGC
    TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC
    CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG
    CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG
    GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA
    GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC
    ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC
    AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC
    ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA
    TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT
    TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC
    CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC
    TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA
    AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC
    TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG
    ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT
    GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA
    CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC
    AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG
    GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG
    TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGAGAGAAA
    GTGCTGCGTTGAGTGCCCTCCATGTGCTCCTCCAGTTGC
    TGGTGGCCCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAA
    GGACACCCTGTACATCCCCGCGAGCCTGAAGTGACCTGC
    GTGGTGGTGGATGTGTCCCAAGAGGATCCCGAGGTGCAG
    TTCAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCC
    AAGACCAAGCCTAGAGAGGAACAGTTAACTCCACCTACA
    GAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGC
    TGAATGGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGG
    GCCTGCCTTCCAGCATCGAAAAGACCATCTCCAAGGCAA
    GGGCCAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCC
    AAGCCAAGAGGAAATGACCAAGAACCAGGTGTCCCTGAC
    ATGCCTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGT
    GGAATGGAGTCTAATGGCCAGCCTGAGAACAACTACAAG
    ACCACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTT
    CTGTACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAA
    GAGGGCAACGTGTTCTCTGCTCCGTGATGCACGAGGCCC
    TGCACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCC
    TGGGCAAATGA
    SEQ ID NO: 63 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #31 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC
    TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA
    AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG
    TGGCTAGAGTGCTGCCTAACGGCTCCTGTTTCTGCCTGC
    TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC
    CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG
    CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG
    GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA
    GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC
    ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC
    AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC
    ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA
    TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT
    TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC
    CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC
    TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA
    AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC
    TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG
    ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT
    GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA
    CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC
    AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG
    GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG
    TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGTTGAGTG
    CCCTCCATGTGCTCCTCCAGTGGCTGGCCCTTCCGTGTT
    CCTGTTTCCTCCAAAGCCTAAGGACACCCTGTACATCAC
    CCGCGAGCCTGAAGTGCCTGCGTGGTGGTGGATGTGTCT
    CACGAGGATCCCGAGGTGCAGTTCAATTGGTACGTGGAC
    GGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGAGAG
    GAACAGTTCAACTCCACCTTCAGAGTGTGTCCGTGCTGA
    CCGTGGTGCATCAGGATTGGCTGAATGGGAAAGAGTACA
    AGTGCAAGGTGTCCAACAAGGGCCTGCCTGCTCCTATCG
    AAAAGACCATCTCTAAGACCAAGGGACAGCCCCGGGACC
    TCAGGTGTACACACTGCCACCTAGCCGGGAAGAGATGAC
    CAAGAACCAGGTGTCCCTGACATGCCTGGTCAAGGGCTT
    CTACCCCTCCGATATCGCCGTGGAATGGGAGTCTAATGG
    CCAGCCTAGAACAACTACAAGACCACACCTCCTATGCTG
    GACTCCGACGGCTCATTCTTCCTGTACTCCAAGCTGACA
    GTGGACAAGTCCAGATGGCAGCAGGGCAACGTGTTCTCC
    TGCTCCGTGATGCACGAGCCCTGCACAATCACTACACCC
    AGAAGTCCCTGTCTCTGTCCCCTGGCAAATGA
    SEQ ID NO: 64 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #32 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC
    TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA
    AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG
    TGGCTAGAGTGCTGCCTAACGGCTCCTGTTTCTGCCTGC
    TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC
    CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG
    CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG
    GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA
    GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC
    ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC
    AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC
    ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA
    TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT
    TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC
    CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC
    TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA
    AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC
    TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG
    ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT
    GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA
    CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC
    AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG
    GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG
    TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGTTGAGTG
    CCCTCCATGTGCTCCTCCAGTTGCTGGTGGCCCTTCCGT
    GTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGTACAT
    CACCCGCGAGCCTGAATGACCTGCGTGGTGGTGGATGTG
    TCTCACGAGGACCCCGAAGTGAAGTTCAATTGGTACGTG
    GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA
    GAGGAACAGTACAACTCCACCTACAGGTGGTGTCCGTGC
    TGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAGT
    ATAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCTCCTA
    TCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGGA
    ACCCCAGGTTTACACCTTGCCACCTTCTCGGGACGAGCT
    GACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAGGG
    CTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCTAA
    TGGCCAGCTGAGAACAACTACAAGACCACACCTCCTGTG
    CTGGACTCCGACGGCTCATTCTTCCTGTACTCCAAGCTG
    ACAGTGGACAAGTCCAGATGGCAGCAGGGCAACGTGTTC
    TCCTGCTCCGTGATGCAGAGGCCCTGCACAATCACTACA
    CCCAGAAGTCCCTGTCTCTGTCCCCTGGCAAATGA
    SEQ ID NO: 65 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #33 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC
    TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA
    AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG
    TGGCTAGAGTGCTGCCTAACGGCTCCTGTTTCTGCCTGC
    TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC
    CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG
    CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG
    GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA
    GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC
    ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC
    AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC
    ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA
    TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT
    TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC
    CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC
    TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA
    AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC
    TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG
    ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT
    GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA
    CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC
    AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG
    GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG
    TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGAGTCTAA
    GTACGGCCCTCCTTGTCCTCCATGTCCTGCTCCAGAAGC
    TGCTGGTGGCCCTTCCGTGTTCCTGTTTCCTCCAAAGCC
    TAAGGACACCCTGTACTCACCCGCGAGCCTGAAGTGACC
    TGCGTGGTGGTGGATGTGTCTCACGAGGACCCCGAAGTG
    AAGTTCAATTGGTACGTGGACGGCGTGGAAGTGCACAAC
    GCCAAGACCAAGCCTAGAGAGGAACATACAACTCCACCT
    ACAGAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATT
    GGCTGAATGGCAAAGAGTATAAGTGCAAGGTGTCCAACA
    AGGCCCTGCCTGCTCCTATCGAAAAGACCATCTCCAGGC
    CAAGGGCCAGCCTAGGGAACCCCAGGTTTACACCTTGCC
    ACCTTCTCGGGACGAGCTGACCAAGAACCAGGTGTCCCT
    GACATGCCTGGTCAAGGGCTTCTACCCCTCCGATATCGC
    CGTGGAAGGGAGTCTAATGGCCAGCCTGAGAACAACTAC
    AAGACCACACCTCCTGTGCTGGACTCCGACGGCTCATTC
    TTCCTGTACTCCAAGCTGACAGTGGACAAGTCCAGATGG
    CAGCAGGGCAACGTGTTTCCTGCTCCGTGATGCACGAGG
    CCCTGCACAATCACTACACCCAGAAGTCCCTGTCTCTGT
    CCCCTGGCAAATGA
    SEQ ID NO: 66 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #34 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC
    TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA
    AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG
    TGGCTAGAGTGCTGCCTAACGGCTCCTGTTTCTGCCTGC
    TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC
    CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG
    CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG
    GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA
    GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC
    ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC
    AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC
    ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA
    TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT
    TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC
    CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC
    TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA
    AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC
    TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG
    ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT
    GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA
    CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC
    AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG
    GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG
    TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGAGCCTAA
    GTCCTGCGACAAGACCCACACCTGTCCTCCATGTCCTGC
    TCCAGAAGCTGCTGGTGGCCCTTCCGTGTTCCTGTTTCC
    TCCAAAGCCTAAGGACCCCTGTACATCACCCGCGAGCCT
    GAAGTGACCTGCGTGGTGGTGGATGTGTCTCACGAGGAC
    CCCGAAGTGAAGTTCAATTGGTACGTGGACGGCGTGGAA
    GTGCACAACGCCAAGACCAAGCCTAGGAGGAACAGTACA
    ACTCCACCTACAGAGTGGTGTCCGTGCTGACCGTGCTGC
    ACCAGGATTGGCTGAATGGCAAAGAGTATAAGTGCAAGG
    TGTCCAACAAGGCCCTGCCTGCTCCTATCGAAAAGACAT
    CTCCAAGGCCAAGGGCCAGCCTAGGGAACCCCAGGTTTA
    CACCTTGCCACCTTCTCGGGACGAGCTGACCAAGAACCA
    GGTGTCCCTGACATGCCTGGTCAAGGGCTTCTACCCCTC
    CGATATCCCGTGGAATGGGAGTCTAATGGCCAGCCTGAG
    AACAACTACAAGACCACACCTCCTGTGCTGGACTCCGAC
    GGCTCATTCTTCCTGTACTCCAAGCTGACAGTGGACAAG
    TCCAGATGGCAGCAGGGAACGTGTTCTCCTGCTCCGTGA
    TGCACGAGGCCCTGCACAATCACTACACCCAGAAGTCCC
    TGTCTCTGTCCCCTGGCAAATGA
    SEQ ID NO: 67 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #35 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT
    GACAAAGTGCGCGAGGCCGAGGATTCTCCTCAGCATGCT
    GAGTCTAAGTACGGCCCTCCTTGTCCTCCATGTCCTGCT
    CCAGAAGCTGCTGGCGGCCCTTCCGTGTTTCTGTTCCCT
    CCAAAGCCTAAGGACACCCTGTACATCACCCGGGAGCCT
    GAAGTGACCTGCGTGGTGGTGGATGTGTCCCAAGAGGAT
    CCCGAGGTGCAGTTCAATTGGTACGTGGACGGCGTGGAA
    GTGCACAACGCCAAGACCAAGCCTAGAGAGGAACAGTTC
    AACTCCACCTACAGAGTGGTGTCCGTGCTGACCGTGCTG
    CACCAGGATTGGCTGAATGGCAAAGAGTATAAGTGCAAG
    GTGTCCAACAAGGGCCTGCCTTCCAGCATCGAAAAGACC
    ATCTCCAAGGCCAAGGGCCAGCCTAGGGAACCCCAGGTT
    TACACCCTGCCTCCAAGCCAAGAGGAAATGACCAAGAAC
    CAGGTGTCCCTGACATGCCTGGTCAAGGGCTTCTACCCC
    TCCGATATCGCCGTGGAATGGGAGTCTAATGGCCAGCCT
    GAGAACAACTACAAGACCACACCTCCTGTGCTGGACTCC
    GACGGCAGCTTCTTTCTGTACTCCCGCCTGACCGTGGAC
    AAGTCCAGGTGGCAAGAGGGCAACGTGTTCTCCTGCTCC
    GTGATGCACGAGGCCCTGCACAATCACTACACCCAGAAG
    TCCCTGTCTCTGTCCCTGGGCAAATGA
    SEQ ID NO: 68 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #36 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT
    GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCATGCC
    GGAACACTGGTCACCGTGTCCTCCGAGTCTAAGTACGGC
    CCTCCTTGTCCTCCATGTCCTGCTCCAGAAGCTGCTGGC
    GGCCCTTCCGTGTTTCTGTTCCCTCCAAAGCCTAAGGAC
    ACCCTGTACATCACCCGGGAGCCTGAAGTGACCTGCGTG
    GTGGTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTC
    AATTGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAG
    ACCAAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGA
    GTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTG
    AATGGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGC
    CTGCCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAG
    GGCCAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCA
    AGCCAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACA
    TGCCTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTG
    GAATGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAG
    ACCACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTT
    CTGTACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAA
    GAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCC
    CTGCACAATCACTACACCCAGAAGTCCCTGTCTCTGTCC
    CTGGGCAAATGA
    SEQ ID NO: 69 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #1 64K CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC
    TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA
    AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG
    TGGCTAGAGTGCTGCCTAACGGCTCCTGTTTCTGCCTGC
    TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC
    CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG
    CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG
    GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA
    GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC
    ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC
    AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC
    ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA
    TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT
    TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC
    CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC
    TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA
    AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC
    TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG
    ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT
    GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA
    CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC
    AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG
    GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG
    TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGTTGAGTG
    CCCTCCATGTGCTCCTCCAGTTGCTGGTGGCCCTTCCGT
    GTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGTACAT
    CACCCGCGAGCCTGAATGACCTGCGTGGTGGTGGATGTG
    TCCCAAGAGGATCCCGAGGTGCAGTTCAATTGGTACGTG
    GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA
    GAGGAACAGTTCAACTCCACCTACAGGTGGTGTCCGTGC
    TGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAGT
    ATAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCCAGCA
    TCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGGA
    ACCCCAGGTTTACACCCTGCCTCCAAGCCAAGAGGAAAT
    GACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAGGG
    CTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCTAA
    TGGCCAGCTGAGAACAACTACAAGACCACACCTCCTGTG
    CTGGACTCCGACGGCAGCTTCTTTCTGTACTCCCGCCTG
    ACCGTGGACAAGTCCAGGTGGCAAGAGGGCAACGTGTTC
    TCCTGCTCCGTGATGCAGAGGCCCTGCACAATCACTACA
    CCCAGAAGTCCCTGTCTCTGTCCCTGGGCTGA
    SEQ ID NO: 70 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG
    Construct #124K CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG
    CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG
    AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT
    GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT
    GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG
    GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC
    CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC
    GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC
    AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT
    GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG
    CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA
    CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG
    CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT
    ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT
    AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG
    GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA
    CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC
    CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC
    CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA
    TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC
    CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC
    GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC
    GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT
    GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCATGCC
    GTGGAATGCCCTCCTTGTGCTCCTCCTGTGGCTGGCGGC
    CCTTCCGTGTTTCTGTTCCCTCCAAAGCCTAAGGACACC
    CTGATGATCTCTCGGACCCCTGAAGTGACCTGCGTGGTG
    GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT
    TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC
    AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG
    GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT
    GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG
    CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC
    CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC
    CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC
    CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA
    TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC
    ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG
    TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG
    GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG
    CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG
    GGCTGA
    SEQ ID NO: 71 Short Stem sequence (#9) HSSHGPQESRAVSISITEPGEEGPTAG
    SEQ ID NO: 72 V1 stem sequence HSSHGPQESRAVSISIIEPGEEGPTAGEGFDKVREAEDS
    PQHA
    SEQ ID NO: 73 C-terminal 13 amino acids of SVGGSGLGTLALA
    RAGE stem
    SEQ ID NO: 74 esRAGE (sequence of the AQNITARI GEPLVLKCKG APKKPPQRLE
    mature protein; lacking the WKLNTGRTEA WKVLSPQGGG PWDSVARVLP
    natural leader sequence) NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK
    SNYRVRVYQI PGKPEIVDSA SELTAGVPNK
    VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG
    VSVKEQTRRH PETGLFTLQS ELMVTPARGG
    DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW
    EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE
    VPAQPSPQIH WMKDGVPLPL PPSPVLILPE
    IGPQDQGTYS CVATHSSHGP QESRAVSISI
    IEPGEEGPTA GEGFDKVREA EDSPQHM

Claims (20)

1. An isolated polypeptide comprising:
(a) a first domain wherein said first domain has an amino acid sequence at least 97% identical to the sequence of SEQ ID NO:74; and
(b) a second domain comprising a fragment of a Fc region of an immunoglobulin,
wherein the carboxy terminus of said first domain is coupled to the amino terminus of said second domain by a peptide linkage.
2. The isolated polypeptide of claim 1, wherein said polypeptide is resistant to cleavage by a disintegrin and metalloproteinase 10 (ADAM10).
3. The isolated polypeptide of claim 1, wherein said polypeptide is at least 15% more resistant to cleavage by at least one of ADAM10, matrix metalloproteinase 9 (MMP9), and trypsin as compared to a polypeptide having the sequence of SEQ ID NO: 5.
4. The isolated polypeptide of claim 1, wherein said polypeptide is at least 15% more resistant to degradation in human serum as compared to a polypeptide comprising the sequence of SEQ ID NO: 5, wherein the percent resistance equals the difference between the fraction of peptide that remains full length following incubation in human serum for a defined time period compared to a control peptide treated for the same time and under the same conditions.
5. The isolated polypeptide of claim 1, wherein said polypeptide has increased thermal stability of at least 5° C. as compared to a polypeptide having the sequence of SEQ ID NO: 5.
6. The isolated polypeptide of claim 1, wherein said polypeptide specifically binds an advanced glycation endproduct (AGE).
7. The isolated polypeptide of claim 1, wherein said polypeptide specifically binds HMGB1 (Amphoterin).
8. The isolated polypeptide of claim 1, wherein said polypeptide specifically binds at least one of the group consisting of: S100A1, S100A2, S100A4 (metastasin), S100A5, S100A6, S100A7 (psoriasin), S100A8/9, S100A11, S100A12, S100B, S100P, lipopolysaccharide (LPS), oxidized low-density lipoprotein (oxLDL), CD11b (MAC1), phosphatidyl serine, C3 a, S100P, S100G, S100Z, carbonylated proteins, malondialdehyde (MDA), laminin, type I Collagen, type IV Collagen, CAPZA1, CAPZA2, DDOST, LGALS3, MAPK1, MAPK3, PRKCSH, S100A4, S100A5, S100A6, S100A8, S100A9, S100P, and SAA1.
9. The isolated polypeptide of claim 1, wherein said polypeptide specifically binds amyloid-beta.
10. The isolated polypeptide of claim 1, wherein said polypeptide is a dimer of a polypeptide having the sequence of SEQ ID NO: 74.
11. The isolated polypeptide of claim 1, wherein said first domain comprises at least one asparagine residue linked to a glycan.
12. The isolated polypeptide of claim 1, wherein said first domain comprises an amino acid substitution at one or more of amino acid residues 3 or 59 of SEQ ID NO:74.
13. The isolated polypeptide of claim 12, wherein said amino acid substitution is a substitution with glutamic acid or glutamine at amino acid residue 3.
14. The isolated polypeptide of claim 12, wherein said amino acid substitution is a substitution with alanine, glutamic acid, or glutamine at amino acid residue 59.
15. The isolated polypeptide of claim 1, wherein said first domain comprises an amino acid substitution at amino acid residue 60 of SEQ ID NO:74.
16. The isolated polypeptide of claim 1, wherein said first domain has the sequence set forth in SEQ ID NO: 74.
17. The isolated polypeptide of claim 15, wherein said amino acid substitution is a substitution with serine.
18. The isolated polypeptide of claim 1, wherein said Fc fragment comprises CH2 and CH3 domains of a human IgG.
19. An isolated polypeptide comprising a RAGE polypeptide coupled to a Fc region of an immunoglobulin, wherein the carboxy terminus of said RAGE polypeptide is coupled to the amino terminus of said immunoglobulin Fc region by a peptide linkage and wherein said RAGE polypeptide has the sequence of SEQ ID NO: 2.
20. A pharmaceutical composition for treating a RAGE-mediated disorder comprising the isolated polypeptide of claim 1.
US17/127,659 2018-09-14 2020-12-18 RAGE Fusion Proteins with Improved Stability and Ligand Binding Affinity and Uses Thereof Abandoned US20210188940A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/127,659 US20210188940A1 (en) 2018-09-14 2020-12-18 RAGE Fusion Proteins with Improved Stability and Ligand Binding Affinity and Uses Thereof
US17/478,592 US11535661B2 (en) 2018-09-14 2021-09-17 RAGE fusion proteins with improved stability and ligand binding affinity and uses thereof
US18/146,223 US20230212252A1 (en) 2018-09-14 2022-12-23 RAGE Fusion Proteins with Improved Stability and Ligand Binding Affinity and Uses Thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862731663P 2018-09-14 2018-09-14
US16/571,011 US10913784B2 (en) 2018-09-14 2019-09-13 RAGE fusion proteins with improved stability and ligand binding affinity and uses thereof
US17/127,659 US20210188940A1 (en) 2018-09-14 2020-12-18 RAGE Fusion Proteins with Improved Stability and Ligand Binding Affinity and Uses Thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/571,011 Continuation US10913784B2 (en) 2018-09-14 2019-09-13 RAGE fusion proteins with improved stability and ligand binding affinity and uses thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/478,592 Continuation US11535661B2 (en) 2018-09-14 2021-09-17 RAGE fusion proteins with improved stability and ligand binding affinity and uses thereof

Publications (1)

Publication Number Publication Date
US20210188940A1 true US20210188940A1 (en) 2021-06-24

Family

ID=69777913

Family Applications (4)

Application Number Title Priority Date Filing Date
US16/571,011 Active US10913784B2 (en) 2018-09-14 2019-09-13 RAGE fusion proteins with improved stability and ligand binding affinity and uses thereof
US17/127,659 Abandoned US20210188940A1 (en) 2018-09-14 2020-12-18 RAGE Fusion Proteins with Improved Stability and Ligand Binding Affinity and Uses Thereof
US17/478,592 Active US11535661B2 (en) 2018-09-14 2021-09-17 RAGE fusion proteins with improved stability and ligand binding affinity and uses thereof
US18/146,223 Abandoned US20230212252A1 (en) 2018-09-14 2022-12-23 RAGE Fusion Proteins with Improved Stability and Ligand Binding Affinity and Uses Thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/571,011 Active US10913784B2 (en) 2018-09-14 2019-09-13 RAGE fusion proteins with improved stability and ligand binding affinity and uses thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
US17/478,592 Active US11535661B2 (en) 2018-09-14 2021-09-17 RAGE fusion proteins with improved stability and ligand binding affinity and uses thereof
US18/146,223 Abandoned US20230212252A1 (en) 2018-09-14 2022-12-23 RAGE Fusion Proteins with Improved Stability and Ligand Binding Affinity and Uses Thereof

Country Status (5)

Country Link
US (4) US10913784B2 (en)
EP (1) EP3849578A4 (en)
JP (1) JP7307178B2 (en)
CA (1) CA3112637A1 (en)
WO (1) WO2020056379A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112206311B (en) * 2020-09-23 2021-12-28 南方医科大学 Application of S100A11 protein as biomarker and therapeutic target of diabetes

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0313491A (en) * 2002-08-16 2007-08-14 Wyeth Corp compositions and methods for treating rage-associated disorders
WO2006012415A2 (en) 2004-07-20 2006-02-02 Critical Therapeutics, Inc. Rage protein derivatives
BRPI0514013A (en) 2004-08-03 2008-05-27 Transtech Pharma Inc rage fusion proteins and methods of use
EA012082B1 (en) 2004-08-03 2009-08-28 Транстек Фарма, Инк. Rage fusion proteins and methods of use
AU2005289594B2 (en) 2004-09-27 2012-02-02 Centocor, Inc. Srage mimetibody, compositions, methods and uses
US20070087406A1 (en) 2005-05-04 2007-04-19 Pei Jin Isoforms of receptor for advanced glycation end products (RAGE) and methods of identifying and using same
ES2564634T3 (en) 2007-06-14 2016-03-28 Galactica Pharmaceuticals, Inc. RAGE fusion proteins
WO2011102845A1 (en) 2010-02-18 2011-08-25 Transtech Pharma, Inc. Rage fusion protein compositions and methods of use
EP2762493B1 (en) * 2011-09-30 2021-06-09 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule promoting disappearance of antigens having plurality of biological activities
KR20130083861A (en) * 2012-01-13 2013-07-23 연세대학교 산학협력단 Pharmaceutical compositions for preventing and treating lupus nephritis comprising soluble rage as active ingredient
JP6871679B2 (en) 2016-03-23 2021-05-12 国立大学法人 岡山大学 Gene expression cassette and its products
US11111296B2 (en) * 2015-12-14 2021-09-07 The Broad Institute, Inc. Compositions and methods for treating cardiac dysfunction

Also Published As

Publication number Publication date
WO2020056379A1 (en) 2020-03-19
US10913784B2 (en) 2021-02-09
JP2022500086A (en) 2022-01-04
CA3112637A1 (en) 2020-03-19
US20200115435A1 (en) 2020-04-16
EP3849578A4 (en) 2022-06-22
JP7307178B2 (en) 2023-07-11
US11535661B2 (en) 2022-12-27
EP3849578A1 (en) 2021-07-21
US20220119480A1 (en) 2022-04-21
US20230212252A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
Franke et al. A single amino acid substitution in rhodopsin (lysine 248—-leucine) prevents activation of transducin.
JP5273746B2 (en) Modified chimeric polypeptide with improved pharmacokinetic properties
Ashcom et al. The human alpha 2-macroglobulin receptor: identification of a 420-kD cell surface glycoprotein specific for the activated conformation of alpha 2-macroglobulin.
RU2688349C2 (en) In vitro prediction of antibody half-life in vivo
KR20120068764A (en) Fgf21 mutants and uses thereof
KR20110025810A (en) Fgf21 mutants and uses thereof
Hanna et al. A novel form of the membrane protein CD147 that contains an extra Ig-like domain and interacts homophilically
IL211740A (en) Recombinant proteins having haemostatic activity and capable of inducing platelet aggregation
Kohda et al. A 40-kDa epidermal growth factor/transforming growth factor alpha-binding domain produced by limited proteolysis of the extracellular domain of the epidermal growth factor receptor.
AU2005229072A1 (en) BMP-3 propeptides and related methods
US20230212252A1 (en) RAGE Fusion Proteins with Improved Stability and Ligand Binding Affinity and Uses Thereof
JP2009132715A (en) New class ii cytokine receptor and use thereof
CA3052084A1 (en) A polypeptide linker for preparing multispecific antibodies
CA2710040C (en) A soluble tumor necrosis factor receptor mutant
KR102561135B1 (en) POLYPEPTIDE DIMER COMPRISING EXTRACELLULAR DOMAIN OF ALPHA SUBUNIT OF IgE Fc RECEPTOR WITH HIGH CONTENT OF SIALIC ACID AND PHARMACEUTICAL COMPOSITION COMPRISING THE SAME
Beck et al. Generation of soluble interleukin-1 receptor from an immunoadhesin by specific cleavage
US20020137095A1 (en) Reelin protein CR-50 epitope region
Jacques et al. Biochemical study of a recombinant soluble interleukin-2 receptor. Evidence for a homodimeric structure
KR20210134990A (en) COMPOSITION COMPRISING RECOMBINANT GpIbα RECEPTOR PROTEIN
WO2021251438A1 (en) Fusion protein containing erythropoietin polypeptide
KR20230080915A (en) Ligand efficacy analysis method for taste substances of ligand binding domain of human sweet receptor using tryptophan fluorescence assay
AU2023246439A2 (en) Cd80 protein variant and cd80 fusion protein
US20080200408A1 (en) Deletion mutants of tetrodotoxin-resistant sodium channel alpha subunit
AU2014336052A1 (en) Method for determining high-mannose glycans

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BIOAGE LABS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUGHES, ROBERT;STROHL, WILLIAM;REEL/FRAME:065773/0766

Effective date: 20190919