KR20230080915A - Ligand efficacy analysis method for taste substances of ligand binding domain of human sweet receptor using tryptophan fluorescence assay - Google Patents

Ligand efficacy analysis method for taste substances of ligand binding domain of human sweet receptor using tryptophan fluorescence assay Download PDF

Info

Publication number
KR20230080915A
KR20230080915A KR1020210168487A KR20210168487A KR20230080915A KR 20230080915 A KR20230080915 A KR 20230080915A KR 1020210168487 A KR1020210168487 A KR 1020210168487A KR 20210168487 A KR20210168487 A KR 20210168487A KR 20230080915 A KR20230080915 A KR 20230080915A
Authority
KR
South Korea
Prior art keywords
vft
ligand
taste
human
receptor
Prior art date
Application number
KR1020210168487A
Other languages
Korean (ko)
Other versions
KR102624889B1 (en
Inventor
박태현
고휘진
차연경
Original Assignee
서울대학교산학협력단
리셉텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 리셉텍 주식회사 filed Critical 서울대학교산학협력단
Priority to KR1020210168487A priority Critical patent/KR102624889B1/en
Priority to PCT/KR2022/001896 priority patent/WO2023101100A1/en
Publication of KR20230080915A publication Critical patent/KR20230080915A/en
Application granted granted Critical
Publication of KR102624889B1 publication Critical patent/KR102624889B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/5436Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand physically entrapped within the solid phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/72Receptors; Cell surface antigens; Cell surface determinants for hormones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/72Receptors; Cell surface antigens; Cell surface determinants for hormones
    • C07K14/723G protein coupled receptor, e.g. TSHR-thyrotropin-receptor, LH/hCG receptor, FSH receptor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/72Assays involving receptors, cell surface antigens or cell surface determinants for hormones
    • G01N2333/726G protein coupled receptor, e.g. TSHR-thyrotropin-receptor, LH/hCG receptor, FSH

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Endocrinology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a method for analyzing ligand efficacy of a ligand binding domain of a human sweet taste receptor for a taste substance, comprising the steps of: producing a ligand binding domain consisting of a human sweet taste receptor T1R2 venus fly trap (VFT); and treating the ligand binding domain with a taste substance, and then analyzing fluorescence changes in tryptophan in a protein. According to the present invention, a dose-dependent and selective functionality of a sweet taste substance can be verified by tryptophan fluorescence assay, which is a relatively simple method, using the T1R2 VFTs produced to a high standard.

Description

트립토판 형광 분석을 이용한 인간 단맛 수용체의 리간드 결합 도메인의 맛 물질에 대한 리간드 효능 분석 방법{Ligand efficacy analysis method for taste substances of ligand binding domain of human sweet receptor using tryptophan fluorescence assay}Ligand efficacy analysis method for taste substances of ligand binding domain of human sweet receptor using tryptophan fluorescence assay}

본 발명은 트립토판 형광 분석을 이용한 인간 단맛 수용체의 리간드 결합 도메인의 맛 물질에 대한 리간드 효능 분석 방법에 관한 것이다.The present invention relates to a method for analyzing ligand efficacy for taste substances of a ligand binding domain of a human sweet taste receptor using tryptophan fluorescence analysis.

맛은 음식의 기호에 영향을 주고 이를 통해 몸에 필요한 영양소 및 해로운 물질에 대한 정보를 받는다. 인간이 느끼는 다섯 가지 기본적인 맛 중 단맛은 주요 에너지원인 탄수화물을 인식하게 해주어 체내 열량 섭취를 조절과 음식 선호도에 기여한다. 하지만 현대인의 당류 과잉 섭취에 의한 비만, 당뇨 등의 질환과의 연관성이 주목을 받으며, 단맛의 설탕 대체물질 또는 단맛 개선제 개발에 대한 관심이 높아졌다. 따라서 단맛의 측정은 식품, 음료 및 제약 업계 등에 매우 중요하게 활용될 수 있다. Taste influences the taste of food and receives information about nutrients and harmful substances necessary for the body through it. Among the five basic tastes that humans feel, sweetness helps us recognize carbohydrates, which are the main energy source, and contributes to regulating calorie intake and food preference. However, as the association with diseases such as obesity and diabetes due to excessive intake of sugar by modern people has attracted attention, interest in developing sweet sugar substitutes or sweetness improvers has increased. Therefore, measurement of sweetness can be very important in the food, beverage and pharmaceutical industries.

맛을 측정하는 기존의 대표적인 방법인 관능검사(sensory evaluation)는 패널이 맛을 느꼈을 때의 감정의 정보도 제공 가능하다는 장점이 있으나, 개인마다 맛에 대한 감도가 다르기에 객관성과 정확성이 떨어진다는 단점이 있다. 단맛의 객관적인 측정을 위한 방법들로 고성능 액체크로마토그래피(High performance liquid chromatography)의 사용이나 전자 혀(electronic tongue)의 개발이 되었지만, 모두 단맛을 이루는 구성성분을 파악할 수 있지만, 실제 인간의 혀에서 느끼는 맛의 정도를 측정할 수 없다는 단점과 그 한계가 지적되어 왔다. 최근 인간 미각의 모사를 통한 맛의 측정 및 표준화에 대한 관심이 높아지면서, 인간 혀에서 단맛을 감지하는데 기여하는 생체 재료의 활용이 주목을 끌고 있다. Sensory evaluation, a representative existing method for measuring taste, has the advantage of being able to provide information on emotions when the panel feels the taste, but the disadvantage is that objectivity and accuracy are low because each individual has a different sensitivity to taste there is As methods for objective measurement of sweetness, the use of high performance liquid chromatography or the development of an electronic tongue have been developed, but all of them can identify the components that make up sweetness, but the actual human tongue feels it. The disadvantage and limitation of not being able to measure the degree of taste has been pointed out. Recently, as interest in taste measurement and standardization through simulation of human taste has increased, the use of biomaterials that contribute to detecting sweetness on the human tongue is attracting attention.

Class C GPCR인 단맛 수용체는 크기가 크고 구조가 복잡하여 bacterial expression이 어렵다고 알려져 있다. 따라서 본 발명자들은 이의 대안으로 단맛 주요 리간드 결합 부위로 알려진 T1R2 VFT를 생산하고 단백질 내 트립토판의 형광 변화 분석을 통해 단맛 효능을 분석하여 본 발명을 완성하게 되었다.Sweet taste receptors, which are Class C GPCRs, are known to be difficult to bacterial expression due to their large size and complex structure. Therefore, the inventors of the present invention completed the present invention by producing T1R2 VFT, which is known as a major ligand binding site for sweetness, and analyzing the efficacy of sweetness by analyzing the fluorescence change of tryptophan in the protein as an alternative.

KRKR 10-1860097 10-1860097 B1B1

본 발명은 인간 단맛 수용체의 T1R2 VFT의 다양한 단맛 물질에 대한 용량의존적(dose-dependent) 및 선별적(selective) 기능성을 검증하는 방법을 제공하기 위한 것이다. The present invention is to provide a method for verifying the dose-dependent and selective functionality of the T1R2 VFT of the human sweet taste receptor for various sweet substances.

또한, 본 발명은 인간 단맛 수용체의 T1R2 VFT가 인간의 단맛을 측정할 수 있는 생체 재료로 추후 다양한 분석 방법 또는 바이오센서를 동원하여 인간의 미각을 모사하는 맛 물질의 객관적 측정 가능성을 제시하기 위한 것이다.In addition, the present invention is a biomaterial in which the T1R2 VFT of the human sweetness receptor can measure human sweetness, and is intended to suggest the possibility of objective measurement of taste substances that mimic human taste by mobilizing various analysis methods or biosensors in the future. .

상기 과제를 해결하기 위하여, 본 발명의 일 실시예는 인간 단맛 수용체 T1R2 VFT(Venus fly trap)로 이루어진 리간드 결합 도메인을 생산하는 단계; 및In order to solve the above problems, an embodiment of the present invention produces a ligand binding domain consisting of human sweet receptor T1R2 VFT (Venus fly trap); and

상기 리간드 결합 도메인에 맛 물질을 처리한 후 단백질 내 트립토판의 형광 변화를 분석하는 단계;Analyzing a change in fluorescence of tryptophan in the protein after treating the ligand-binding domain with a taste substance;

를 포함하는 인간 단맛 수용체의 리간드 결합 도메인의 맛 물질에 대한 리간드 효능 분석 방법을 제공한다.It provides a ligand efficacy analysis method for the taste material of the ligand binding domain of the human sweet receptor comprising a.

또한 본 발명의 다른 실시예는 상기 인간 단맛 수용체의 T1R2 VFT를 인간의 단맛을 측정할 수 있는 생체 재료로 사용하는 단맛 측정방법을 제공한다.In addition, another embodiment of the present invention provides a sweetness measurement method using the T1R2 VFT of the human sweetness receptor as a biological material capable of measuring human sweetness.

본 발명에 따르면 높은 수준으로 생산된 T1R2 VFT를 활용하여 비교적 간단한 방법인 트립토판 형광 분석을 통해 단맛 물질의 용량의존적(dose-dependent) 및 선별적(selective) 기능성을 검증할 수 있다. According to the present invention, it is possible to verify the dose-dependent and selective functionality of sweet substances through tryptophan fluorescence analysis, which is a relatively simple method, by utilizing the high-level produced T1R2 VFT.

또한 본 발명에 따른 단맛 수용체의 T1R2 VFT는 인간의 단맛을 측정할 수 있는 생체 재료로 추후 다양한 분석 방법 또는 바이오센서를 동원하여 인간의 미각을 모사한 맛 물질의 객관적 측정에 효과적으로 사용될 수 있다.In addition, the T1R2 VFT of the sweetness receptor according to the present invention is a biomaterial capable of measuring human sweetness, and can be effectively used for objective measurement of taste substances that mimic human taste by mobilizing various analysis methods or biosensors in the future.

도 1은 본 발명의 일 실시예에 따른 T1R2 VFT를 포함한 pET-DEST 42 벡터의 모식도이다.
도 2는 본 발명의 일 실시예에 따른 T1R2 VFT의 발현, 가용화 및 정제 후 SDS-PAGE 결과이다.
도 3은 본 발명의 일 실시예에 따른 T1R2 VFT 단백질의 정제 후 SDS-PAGE 결과이다.
도 4는 본 발명의 일 실시예에 따른 T1R2 VFT의 재접힘(refolding) 후 SDS-PAGE 결과이다.
도 5는 본 발명의 일 실시예에 따른 다양한 농도의 단맛 물질(천연 감미료)에 대한 T1R2 VFT의 트립토판 형광분석 결과를 나타낸다.
도 6은 본 발명의 일 실시예에 따른 다양한 농도의 단맛 물질(인공 감미료)에 대한 T1R2 VFT의 트립토판 형광분석 결과를 나타낸다.
도 7은 본 발명의 일 실시예에 따른 다양한 맛 물질(맛 분자)에 대한 T1R2 VFT의 트립토판 형광분석 결과를 나타낸다.
1 is a schematic diagram of a pET-DEST 42 vector including a T1R2 VFT according to an embodiment of the present invention.
Figure 2 is an SDS-PAGE result after expression, solubilization and purification of T1R2 VFT according to an embodiment of the present invention.
3 is an SDS-PAGE result after purification of T1R2 VFT protein according to an embodiment of the present invention.
4 is an SDS-PAGE result after refolding of the T1R2 VFT according to an embodiment of the present invention.
5 shows the results of tryptophan fluorescence analysis of T1R2 VFT for sweet substances (natural sweeteners) at various concentrations according to an embodiment of the present invention.
6 shows the results of tryptophan fluorescence analysis of T1R2 VFT for sweet substances (artificial sweeteners) at various concentrations according to an embodiment of the present invention.
7 shows the results of tryptophan fluorescence analysis of T1R2 VFT for various taste substances (taste molecules) according to an embodiment of the present invention.

이하, 본 발명에 대하여 설명한다.Hereinafter, the present invention will be described.

본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는, 다른 정의가 없다면, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.All terms (including technical and scientific terms) used in this specification, unless otherwise defined, may be used in a meaning commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in commonly used dictionaries are not interpreted ideally or excessively unless explicitly specifically defined.

본 명세서에서 사용된 용어 “단맛 수용체”는 T1R2과 T1R3가 이종이합체상태(heterodimer)로 존재하는 Class C G-단백질 결합 수용체(G-protein coupled receptor, GPCR)를 의미한다. T1R2(TAS1R2) 및 T1R3(TAS1R3)는 N-말단 부분인 비너스 플라이트랩(Venus fly trap, VFT) 영역과, 막관통 영역, 및 VFT 영역과 막관통 영역을 연결하는 시스테인-풍부 도메인(CRD)으로 구성되어 있다. T1R2 서브유닛의 VFT는 수크로스, 포도당 및 사카린과 같은 가장 단맛 물질에 대한 결합 부위를 제공한다.As used herein, the term “sweet taste receptor” refers to a Class C G-protein coupled receptor (GPCR) in which T1R2 and T1R3 exist as heterodimers. T1R2 (TAS1R2) and T1R3 (TAS1R3) consist of an N-terminal Venus fly trap (VFT) region, a transmembrane region, and a cysteine-rich domain (CRD) connecting the VFT region and the transmembrane region. Consists of. The VFT of the T1R2 subunit provides binding sites for the sweetest substances such as sucrose, glucose and saccharin.

본 발명의 일 실시예에 따르면, According to one embodiment of the present invention,

인간 단맛 수용체 T1R2 VFT(Venus fly trap)로 이루어진 리간드 결합 도메인을 생산하는 단계; 및producing a ligand binding domain consisting of human sweet taste receptor T1R2 VFT (Venus fly trap); and

상기 리간드 결합 도메인에 맛 물질을 처리한 후 단백질 내 트립토판의 형광 변화를 분석하는 단계;Analyzing a change in fluorescence of tryptophan in the protein after treating the ligand-binding domain with a taste substance;

를 포함하는 인간 단맛 수용체의 리간드 결합 도메인의 맛 물질에 대한 리간드 효능 분석 방법이 개시된다.A ligand efficacy analysis method for taste substances of a ligand binding domain of a human sweet receptor comprising a is disclosed.

상기 리간드 결합 도메인(ligand binding domain)은 인간 단맛 수용체 T1R2의 VFT(Venus fly trap)로 이루어진다. 바람직하게는, 상기 인간 단맛 수용체 T1R2의 VFT는 서열번호 1로 표시되는 아미노산 서열의 1번째 내지 20번째 아미노산 서열이 제거된 서열, 즉 서열번호 1로 표시되는 아미노산 서열의 21번째 내지 472번째 아미노산 서열을 포함한다.The ligand binding domain consists of VFT (Venus fly trap) of human sweet taste receptor T1R2. Preferably, the VFT of the human sweet taste receptor T1R2 is a sequence from which the 1st to 20th amino acid sequence of the amino acid sequence represented by SEQ ID NO: 1 is removed, that is, the 21st to 472nd amino acid sequence of the amino acid sequence represented by SEQ ID NO: 1 includes

본 발명의 일 실시예에서는 인간 단맛 수용체 T1R2 VFT(Venus fly trap) 유전자를 인간 게놈 DNA의 중합효소 연쇄 반응(PCR)으로 증폭시킨 후 박테리아 발현 벡터에 클로닝시킨 다음 E. coli 균주를 형질전환하고 형질전환된 세포를 배양함으로써 T1R2 VFT 유전자의 과발현을 유도하였다.In one embodiment of the present invention, the human sweet taste receptor T1R2 VFT (Venus fly trap) gene was amplified by polymerase chain reaction (PCR) of human genomic DNA, cloned into a bacterial expression vector, and then transformed into an E. coli strain. Overexpression of the T1R2 VFT gene was induced by culturing the transformed cells.

상기 리간드 결합 도메인과 단맛 리간드를 포함하는 시료를 첨가하면 단맛 리간드가 수용체 단백질에 결합함에 따라 수용체 단백질의 구조적 변화가 발생한다. 단백질 내 트립토판 잔기는 약 350 nm의 방출 파장에서 고유 형광을 나타낸다. 리간드가 수용체 단백질에 결합함에 따라 발생한 단백질의 구조적 변화에 의해 고유 형광이 소멸된다. 즉, 단맛 리간드를 포함하는 시료에 의한 T1R2 VFT의 자극은 단백질 내 트립토판의 형광 변화를 야기한다. 본 발명은 이러한 단백질 내 트립토판의 형광 변화를 분석하여 물질의 단맛 효능을 분석하였다.When a sample containing the ligand-binding domain and a sweet ligand is added, a structural change of the receptor protein occurs as the sweet ligand binds to the receptor protein. Tryptophan residues in proteins show intrinsic fluorescence at an emission wavelength of about 350 nm. As the ligand binds to the receptor protein, the intrinsic fluorescence is quenched by structural changes in the protein. That is, stimulation of the T1R2 VFT by a sample containing a sweet ligand causes a change in the fluorescence of tryptophan in the protein. In the present invention, the sweetness effect of the substance was analyzed by analyzing the fluorescence change of tryptophan in the protein.

상기 단맛 리간드는 천연감미료 또는 인공감미료에서 유래할 수 있다. 일 례로 수크로스(Sucrose), 글루코스(Glucose), 프럭토스(Fructose), 스테비오시드(Stevioside), 아스파탐(Aspartame), AcesulfameK, 사카린, 수크랄로스(Sucralose) 및 네오탐(Neotame)로 이루어진 군으로부터 선택되는 1종 이상에서 유래될 수 있으나 이에 제한되지 않는다.The sweet ligand may be derived from natural sweeteners or artificial sweeteners. For example, sucrose, glucose, fructose, stevioside, aspartame, acesulfameK, saccharin, sucralose, and neotame are selected from the group consisting of It may be derived from one or more species, but is not limited thereto.

본 발명에 따르면 높은 수준으로 생산된 T1R2 VFT를 활용하여 비교적 간단한 방법인 트립토판 형광 분석을 통해 단맛 물질의 용량의존적(dose-dependent) 및 선별적(selective) 기능성을 검증할 수 있다.According to the present invention, it is possible to verify the dose-dependent and selective functionality of sweet substances through tryptophan fluorescence analysis, which is a relatively simple method, by utilizing the high-level produced T1R2 VFT.

본 발명에 따른 단맛 수용체의 T1R2 VFT는 인간의 단맛을 측정할 수 있는 생체 재료로 추후 다양한 분석 방법 또는 바이오센서를 동원하여 인간의 미각을 모사한 맛 물질의 객관적 측정에 효과적으로 사용할 수 있다.The T1R2 VFT of the sweetness receptor according to the present invention is a biomaterial that can measure human sweetness, and can be effectively used for objective measurement of taste substances that mimic human taste by mobilizing various analysis methods or biosensors in the future.

본 발명의 다른 실시예는 인간 단맛 수용체의 T1R2 VFT를 인간의 단맛을 측정할 수 있는 생체 재료로 사용하는 단맛 측정방법을 제공한다.Another embodiment of the present invention provides a method for measuring sweetness using the T1R2 VFT of human sweetness receptor as a biological material capable of measuring human sweetness.

상기 인간 단맛 수용체 T1R2 VFT는 서열번호 1로 표시되는 아미노산 서열의 21번째 내지 472번째 아미노산 서열을 포함한다.The human sweet taste receptor T1R2 VFT includes the 21st to 472nd amino acid sequence of the amino acid sequence represented by SEQ ID NO: 1.

이하에서, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 그러나, 이하의 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 실시예로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, the following examples are only for exemplifying the present invention, and the scope of the present invention is not limited to the examples.

<실시예><Example>

재료의 준비 preparation of materials

인간 cDNA, pCMV6-ENTRY-hTAS1R2는 Origene(미국)에서 구입하였다. 99% 순도의 반도체 단일벽 CNT를 NanoIngetris(캐나다)에서 구입하여 받은 그대로 사용했다. 수크로스, 글루코스, 프럭토스, 스테비오시드, 아스파탐, 아세설팜K, 사카린, 수크랄로스 및 네오탐, 소듐 시클라메이트, 셀로비오스, 글루타민산일나트륨, denatonium benzoate은 Sigma-Aldrich(미국)에서 구입하였다.Human cDNA, pCMV6-ENTRY-hTAS1R2, was purchased from Origene (USA). Semiconductor single-wall CNTs of 99% purity were purchased from NanoIngetris (Canada) and used as received. Sucrose, glucose, fructose, stevioside, aspartame, acesulfame K, saccharin, sucralose and neotame, sodium cyclamate, cellobiose, monosodium glutamate, and denatonium benzoate were purchased from Sigma-Aldrich (USA).

실시예 1. T1R2 VFT 유전자 클로닝, 발현 및 정제Example 1. T1R2 VFT gene cloning, expression and purification

1-1. T1R2 VFT 유전자 클로닝1-1. T1R2 VFT gene cloning

신호 펩티드(아미노산 1-20개)가 결실된 T1R2 VFT 유전자를 프라이머(5' CAC CAG GAG ATA TAC ATA TGG CTG AGA ACT CG 3', 5' GAC ATA GGG ATC GTG TTG 3')를 사용하여 인간 게놈 DNA의 중합효소 연쇄 반응(PCR)으로 증폭시켰다. 증폭된 PCR 산물을 지향성 TOPO 클로닝으로 pENTR 벡터에 삽입한 후, C-말단 다클로닝 부위(Multi cloning site, MCS)에 6xHis 유전자를 가지고 있는 pET-DEST 42 박테리아 발현 벡터에 클로닝시켰다. 상기 pET-DEST 42 박테리아 발현 벡터의 구조를 도 1에 나타내었다.The T1R2 VFT gene with the signal peptide (1-20 amino acids) deleted was transcribed into the human genome using primers (5' CAC CAG GAG ATA TAC ATA TGG CTG AGA ACT CG 3', 5' GAC ATA GGG ATC GTG TTG 3'). DNA was amplified by polymerase chain reaction (PCR). The amplified PCR product was inserted into the pENTR vector by directional TOPO cloning, and then cloned into the pET-DEST 42 bacterial expression vector having the 6xHis gene at the C-terminal multi-cloning site (MCS). The structure of the pET-DEST 42 bacterial expression vector is shown in FIG. 1 .

이때 사용한 프라이머는 하기 표 1과 같다:The primers used at this time are shown in Table 1 below:

Sense primerSense primer CAC CAG GAG ATA TAC ATA TGG CTG AGA ACT CGCAC CAG GAG ATA TAC ATA TGG CTG AGA ACT CG Anti-sense primerAnti-sense primer GAC ATA GGG ATC GTG TTGGAC ATA GGG ATC GTG TTG

1-2. T1R2 VFT의 발현, 가용화 및 정제1-2. Expression, solubilization and purification of T1R2 VFT

상기 pET-DEST 42 박테리아 발현 벡터를 E. coli RosettaTM(DE3) 균주에 형질전환시킨 후, 50㎍/Ml의 암피실린을 첨가한 LB(Luria-Broth) 배지에서 37℃로 하루 동안 배양하였다. OD600 값dl 0.5이 될 때까지 성장시킨 후, 0.5mM 이소프로필 β-D-티오갈락토사이드(IPTG)를 사용하여 T1R2 VFT 발현을 유도하였다. 세포를 4시간 동안 배양하고 원심분리(7000g, 20분, 4℃)에 의해 수확한 후 얻어진 펠렛을 2mM EDTA(pH 8.0)를 포함하는 인산완충식염수(PBS)에 재현탁하고 초음파 처리(5초 켜기/끄기, 25% 진폭, 5분)로 용해시켰다. 그런 다음 샘플을 원심분리(12000g, 30분, 4℃)에 의해 수집하였다. 상기 T1R2 VFT의 발현을 SDS-PAGE로 확인하고, 그 결과를 도 2에 나타내었다.The pET-DEST 42 bacterial expression vector was transformed into an E. coli Rosetta TM (DE3) strain, and cultured at 37° C. for one day in LB (Luria-Broth) medium supplemented with 50 μg/Ml ampicillin. After growth to an OD 600 value of 0.5, T1R2 VFT expression was induced using 0.5 mM isopropyl β-D-thiogalactoside (IPTG). Cells were cultured for 4 hours and harvested by centrifugation (7000 g, 20 min, 4 °C), and the resulting pellet was resuspended in phosphate buffered saline (PBS) containing 2 mM EDTA (pH 8.0) and sonicated (5 sec). on/off, 25% amplitude, 5 min). Samples were then collected by centrifugation (12000g, 30 min, 4°C). The expression of the T1R2 VFT was confirmed by SDS-PAGE, and the results are shown in FIG. 2 .

상기 T1R2 VFT를 포함하는 불용성 분획을 30℃에서 밤새 가용화 완충액(0.1M Tris-HCl, 20mM 소듐 도데실 설페이트(SDS), 100mM 디티오트레이톨(DTT), 1mM EDTA, pH 8.0) 중에서 가용화시켰다. 가용화된 샘플을 원심분리(12000g, 30분, 30℃)하고 수집하였다. 샘플을 14킬로달톤 분자량 컷오프(MWCO)의 MEMBRA-CEL® 투석막(Viskase)을 사용하여 투석 완충액(0.1M 인산나트륨, 10mM SDS, pH 8.0) 중에서 투석하였다. 투석된 샘플을 0.45μm 바틀탑 필터(Thermo Fisher Scientific)로 여과한 후, 샘플을 결합 완충액(0.1M 인산나트륨, 10mM SDS, pH 8.0)으로 평형화된 5ml HisTrap 친화성 컬럼(GE Healthcare)에 로딩하였다. 그런 다음 컬럼을 세척 완충액(0.1M 인산나트륨, 10mM SDS, pH 7.0)으로 점차적으로 세척하였다. 마지막으로, T1R2 VFT를 용리 완충액(0.1M 인산나트륨, 10mM SDS, pH 6.0)으로 용출하고 나중에 사용하기 위해 -80℃에서 보관하였다. 상기 T1R2 VFT의 가용화 및 정제를 SDS-PAGE로 확인하고, 그 결과를 도 2 및 도 3에 나타내었다.The insoluble fraction containing the T1R2 VFT was solubilized in solubilization buffer (0.1 M Tris-HCl, 20 mM sodium dodecyl sulfate (SDS), 100 mM dithiothreitol (DTT), 1 mM EDTA, pH 8.0) at 30 °C overnight. Solubilized samples were centrifuged (12000g, 30 min, 30°C) and collected. Samples were dialyzed in dialysis buffer (0.1 M sodium phosphate, 10 mM SDS, pH 8.0) using a MEMBRA-CEL® dialysis membrane (Viskase) with a 14 kilodalton molecular weight cutoff (MWCO). After filtering the dialyzed sample with a 0.45 μm bottle-top filter (Thermo Fisher Scientific), the sample was loaded onto a 5 ml HisTrap affinity column (GE Healthcare) equilibrated with binding buffer (0.1 M sodium phosphate, 10 mM SDS, pH 8.0). . The column was then gradually washed with wash buffer (0.1 M sodium phosphate, 10 mM SDS, pH 7.0). Finally, the T1R2 VFT was eluted with elution buffer (0.1 M sodium phosphate, 10 mM SDS, pH 6.0) and stored at -80 °C for later use. Solubilization and purification of the T1R2 VFT were confirmed by SDS-PAGE, and the results are shown in FIGS. 2 and 3 .

겔 염색 및 웨스턴 블롯 분석 결과 54 kDa에서 밴드를 보여주었으며, 이는 온라인 ExPASy 생물정보학 도구에 의해 계산된 T1R2 VFT의 분자량에 해당한다. 이러한 결과는 T1R2 VFT가 성공적으로 과발현되고 정제되었음을 나타낸다.Gel staining and Western blot analysis showed a band at 54 kDa, which corresponds to the molecular weight of T1R2 VFT calculated by the online ExPASy bioinformatics tool. These results indicate that the T1R2 VFT was successfully overexpressed and purified.

1-3. T1R2 VFT의 재접힘(refolding)1-3. Refolding of the T1R2 VFT

상기 T1R2 VFT의 접힘(folding)을 재현하기 위해 0.5 mg/ml의 농도로 희석한 후 실온에서 14킬로달톤 MWCO의 MEMBRA-CEL® 투석막(Viskase)을 사용하여 4-(2-히드록시에틸)-1-피페라진에탄술폰산(HEPES) 완충액 I (20 mM HEPES, 10 mM SDS, 0.5 mM EDTA, pH 8.0) 중에서 투석하였다. 그 다음 투석 완충액을 실온에서 HEPES 완충액 II(20mM HEPES, 5mM SDS, 0.5mM EDTA, pH 7.5)으로 변경하였다. 그 다음, 완충액을 실온에서 HEPES 완충액 III(20mM HEPES, 3mM SDS, 0.5mM EDTA, pH 7.5)로 교체하였다. 10mM의 메틸-β-시클로덱스트린을 투석된 단백질 시료에 첨가하고 4℃에서 밤새 교반하였다. 혼합된 샘플을 4℃에서 리폴딩 완충액(20mM HEPES, 1mM EDTA 및 150mM NaCl, pH 7.5)으로 최종적으로 투석시켜 refolding되도록 하였다. SDS-PAGE 및 웨스턴 블롯 분석을 통해 refolding 결과를 확인하고, 그 결과를 도 4에 나타내었다.In order to reproduce the folding of the T1R2 VFT, 4-(2-hydroxyethyl)- It was dialyzed in 1-piperazineethanesulfonic acid (HEPES) buffer I (20 mM HEPES, 10 mM SDS, 0.5 mM EDTA, pH 8.0). The dialysis buffer was then changed to HEPES buffer II (20 mM HEPES, 5 mM SDS, 0.5 mM EDTA, pH 7.5) at room temperature. The buffer was then replaced with HEPES buffer III (20 mM HEPES, 3 mM SDS, 0.5 mM EDTA, pH 7.5) at room temperature. 10 mM methyl-β-cyclodextrin was added to the dialyzed protein sample and stirred overnight at 4°C. The mixed samples were finally dialyzed at 4° C. against refolding buffer (20 mM HEPES, 1 mM EDTA and 150 mM NaCl, pH 7.5) to allow refolding. The refolding results were confirmed through SDS-PAGE and Western blot analysis, and the results are shown in FIG. 4 .

실시예 2. 트립토판 형광 분석Example 2. Tryptophan fluorescence assay

재접힘된 T1R2 VFT의 리간드 결합 기능을 LS 55 발광 분광계(Perkin Elmer)를 사용하는 트립토판 형광 소광 분석에 의해 분석하였다. T1R2 VFT의 고유한 트립토판 형광을 290 nm에서 여기 및 350 nm에서 방출로 측정하였다. The ligand binding function of the refolded T1R2 VFT was analyzed by tryptophan fluorescence quenching assay using an LS 55 luminescence spectrometer (Perkin Elmer). Intrinsic tryptophan fluorescence of the T1R2 VFT was measured with excitation at 290 nm and emission at 350 nm.

상대 형광 강도를 하기 식 1으로 산출하였다:Relative fluorescence intensity was calculated by Equation 1 below:

[식 1][Equation 1]

F/F 0 (%) = [(F 0 - F)/F 0 ] X 100)으로 산출하였다. F/F 0 (%) = [( F 0 - F )/ F 0 ] X 100).

F 0 F 는 각각 미각 분자 처리 전과 후의 T1R2 VFT의 형광 강도를 나타낸다. F 0 and F represent the fluorescence intensity of T1R2 VFT before and after treatment with taste molecules, respectively.

하기 표 2에 기재된 다양한 맛 물질에 대한 T1R2 VFT의 기능을 트립토판 형광 분석으로 평가하였다.The function of T1R2 VFT for various taste substances listed in Table 2 below was evaluated by tryptophan fluorescence assay.

시료sample 비고note 수크로스(Sucrose)Sucrose 단맛(천연감미료)Sweetness (natural sweetener) 글루코스(Glucose)Glucose 단맛(천연감미료)Sweetness (natural sweetener) 프럭토스(Fructose)Fructose 단맛(천연감미료)Sweetness (natural sweetener) 스테비오시드(Stevioside)Stevioside 단맛(인공감미료)Sweetness (artificial sweeteners) 아스파탐(Aspartame)Aspartame 단맛(인공감미료)Sweetness (artificial sweeteners) 아세설팜K(AcesulfameK)Acesulfame K 단맛(인공감미료)Sweetness (artificial sweeteners) 사카린(Saccharin)Saccharin 단맛(인공감미료)Sweetness (artificial sweeteners) 수크랄로스(Sucralose)Sucralose 단맛(인공감미료)Sweetness (artificial sweeteners) 네오탐(Neotame)Neotame 단맛(인공감미료)Sweetness (artificial sweeteners) 소듐 시클라메이트(Sodium cyclamate)Sodium cyclamate 단맛(인공감미료)Sweetness (artificial sweeteners) 셀로비오스(Cellobiose)Cellobiose 무 맛(tasteless)의 환원당Tasteless reducing sugar 글루타민산일나트륨(L-Glutamic acid monosodium salt monohydrate, MSG)Monosodium glutamate (L-Glutamic acid monosodium salt monohydrate (MSG)) 감칠맛Umami Denatonium benzoateDenatonium benzoate 쓴맛bitter

2-1. 트립토판 형광 분석을 이용한 재접힘(refolding)된 T1R2 VFT의 다양한 단맛 물질에 대한 용량의존적(dose-dependent) 기능성 검증 2-1. Verification of dose-dependent functionality of refolded T1R2 VFT for various sweet substances using tryptophan fluorescence assay

상기 표 2에 기재된 천연감미료와 인공감미료에 대하여 다양한 농도에서 T1R2 VFT의 기능을 트립토판 형광 분석으로 평가하였다.The function of T1R2 VFT was evaluated by tryptophan fluorescence analysis at various concentrations for the natural and artificial sweeteners described in Table 2 above.

도 5 및 도 6에서 보는 바와 같이 농도가 높을수록 정규화된 형광 강도(Normalized fluorescence intensity)가 증가하였다.As shown in FIGS. 5 and 6, the higher the concentration, the higher the normalized fluorescence intensity.

다양한 단맛 물질이 재접힘(refolding)된 T1R2 VFT에 결합하면 단백질의 구조적 변화를 유도하여 트립토판 형광 소광의 변화가 생겼음을 알 수 있다. It can be seen that when various sweet substances bind to the refolded T1R2 VFT, structural changes in the protein are induced, resulting in changes in tryptophan fluorescence quenching.

이로부터 본 발명에 따른 재접힘(refolding)된 T1R2 VFT은 다양한 단맛 물질에 대하여 용량의존적(dose-dependent) 기능성을 가짐을 알 수 있다. From this, it can be seen that the refolded T1R2 VFT according to the present invention has a dose-dependent functionality with respect to various sweet substances.

2-2. 트립토판 형광 분석을 이용한 재접힘(refolding)된 T1R2 VFT의 다양한 맛 물질에 대한 선별적(selective) 기능성 검증2-2. Verification of selective functionality for various taste substances of refolded T1R2 VFT using tryptophan fluorescence analysis

상기 표 2에 기재된 맛 물질에 대한 T1R2 VFT의 기능을 트립토판 형광 분석으로 평가하였다.The function of T1R2 VFT for the taste substances listed in Table 2 was evaluated by tryptophan fluorescence analysis.

도 7에 나타낸 바와 같이 셀로비오스(cellobiose), 글루타민산일나트륨(MSG) 및 denatonium benzoate(denatonium, 쓴맛) 도입 시 상대 형광 강도 변화값은 3% 미만인 반면, 천연감미료 및 인공감미료에 대한 상대 형광 강도 변화값은 훨씬 컸다. 특히 인공감미료에 대한 상대 형광 강도 변화값은 7%를 초과하였다. 그리고 T1R3의 막횡단 도메인과 상호작용하는 것으로 알려진 인공 감미료인 시클라메이트(cyclamate)를 사용하여 유의미한 형광 변화가 감지되지 않았다. 이로부터 본 발명에 따른 재접힘(refolding)된 T1R2 VFT은 단맛 물질을 선별적으로 인식할 수 있음을 알 수 있다.As shown in Figure 7, the relative fluorescence intensity change value when cellobiose, monosodium glutamate (MSG) and denatonium benzoate (denatonium, bitter taste) were introduced was less than 3%, whereas relative fluorescence intensity change for natural and artificial sweeteners The value was much greater. In particular, the relative fluorescence intensity change value for artificial sweeteners exceeded 7%. And no significant fluorescence change was detected using cyclamate, an artificial sweetener known to interact with the transmembrane domain of T1R3. From this, it can be seen that the refolded T1R2 VFT according to the present invention can selectively recognize sweet substances.

<110> Seoul National University R&DB Foundation <120> Ligand efficacy analysis method for taste substances of ligand binding domain of human sweet receptor using tryptophan fluorescence assay <130> DP210601 <160> 1 <170> KoPatentIn 3.0 <210> 1 <211> 472 <212> PRT <213> Artificial Sequence <220> <223> Artificial Sequence <400> 1 Met Ala Glu Asn Ser Asp Phe Tyr Leu Pro Gly Asp Tyr Leu Leu Gly 1 5 10 15 Gly Leu Phe Ser Leu His Ala Asn Met Lys Gly Ile Val His Leu Asn 20 25 30 Phe Leu Gln Val Pro Met Cys Lys Glu Tyr Glu Val Lys Val Ile Gly 35 40 45 Tyr Asn Leu Met Gln Ala Met Arg Phe Ala Val Glu Glu Ile Asn Asn 50 55 60 Asp Ser Ser Leu Leu Pro Gly Val Leu Leu Gly Tyr Glu Ile Val Asp 65 70 75 80 Val Cys Tyr Ile Ser Asn Asn Val Gln Pro Val Leu Tyr Phe Leu Ala 85 90 95 His Glu Asp Asn Leu Leu Pro Ile Gln Glu Asp Tyr Ser Asn Tyr Ile 100 105 110 Ser Arg Val Val Ala Val Ile Gly Pro Asp Asn Ser Glu Ser Val Met 115 120 125 Thr Val Ala Asn Phe Leu Ser Leu Phe Leu Leu Pro Gln Ile Thr Tyr 130 135 140 Ser Ala Ile Ser Asp Glu Leu Arg Asp Lys Val Arg Phe Pro Ala Leu 145 150 155 160 Leu Arg Thr Thr Pro Ser Ala Asp His His Ile Glu Ala Met Val Gln 165 170 175 Leu Met Leu His Phe Arg Trp Asn Trp Ile Ile Val Leu Val Ser Ser 180 185 190 Asp Thr Tyr Gly Arg Asp Asn Gly Gln Leu Leu Gly Glu Arg Val Ala 195 200 205 Arg Arg Asp Ile Cys Ile Ala Phe Gln Glu Thr Leu Pro Thr Leu Gln 210 215 220 Pro Asn Gln Asn Met Thr Ser Glu Glu Arg Gln Arg Leu Val Thr Ile 225 230 235 240 Val Asp Lys Leu Gln Gln Ser Thr Ala Arg Val Val Val Val Phe Ser 245 250 255 Pro Asp Leu Thr Leu Tyr His Phe Phe Asn Glu Val Leu Arg Gln Asn 260 265 270 Phe Thr Gly Ala Val Trp Ile Ala Ser Glu Ser Trp Ala Ile Asp Pro 275 280 285 Val Leu His Asn Leu Thr Glu Leu Arg His Leu Gly Thr Phe Leu Gly 290 295 300 Ile Thr Ile Gln Ser Val Pro Ile Pro Gly Phe Ser Glu Phe Arg Glu 305 310 315 320 Trp Gly Pro Gln Ala Gly Pro Pro Pro Leu Ser Arg Thr Ser Gln Ser 325 330 335 Tyr Thr Cys Asn Gln Glu Cys Asp Asn Cys Leu Asn Ala Thr Leu Ser 340 345 350 Phe Asn Thr Ile Leu Arg Leu Ser Gly Glu Arg Val Val Tyr Ser Val 355 360 365 Tyr Ser Ala Val Tyr Ala Val Ala His Ala Leu His Ser Leu Leu Gly 370 375 380 Cys Asp Lys Ser Thr Cys Thr Lys Arg Val Val Tyr Pro Trp Gln Leu 385 390 395 400 Leu Glu Glu Ile Trp Lys Val Asn Phe Thr Leu Leu Asp His Gln Ile 405 410 415 Phe Phe Asp Pro Gln Gly Asp Val Ala Leu His Leu Glu Ile Val Gln 420 425 430 Trp Gln Trp Asp Arg Ser Gln Asn Pro Phe Gln Ser Val Ala Ser Tyr 435 440 445 Tyr Pro Leu Gln Arg Gln Leu Lys Asn Ile Gln Asp Ile Ser Trp His 450 455 460 Thr Ile Asn Asn Thr Ile Pro Met 465 470 <110> Seoul National University R&DB Foundation <120> Ligand efficacy analysis method for taste substances of ligand binding domain of human sweet receptor using tryptophan fluorescence assay <130> DP210601 <160> 1 <170> KoPatentIn 3.0 <210> 1 <211> 472 <212> PRT <213> artificial sequence <220> <223> Artificial Sequence <400> 1 Met Ala Glu Asn Ser Asp Phe Tyr Leu Pro Gly Asp Tyr Leu Leu Gly 1 5 10 15 Gly Leu Phe Ser Leu His Ala Asn Met Lys Gly Ile Val His Leu Asn 20 25 30 Phe Leu Gln Val Pro Met Cys Lys Glu Tyr Glu Val Lys Val Ile Gly 35 40 45 Tyr Asn Leu Met Gln Ala Met Arg Phe Ala Val Glu Glu Ile Asn Asn 50 55 60 Asp Ser Ser Leu Leu Pro Gly Val Leu Leu Gly Tyr Glu Ile Val Asp 65 70 75 80 Val Cys Tyr Ile Ser Asn Asn Val Gln Pro Val Leu Tyr Phe Leu Ala 85 90 95 His Glu Asp Asn Leu Leu Pro Ile Gln Glu Asp Tyr Ser Asn Tyr Ile 100 105 110 Ser Arg Val Val Ala Val Ile Gly Pro Asp Asn Ser Glu Ser Val Met 115 120 125 Thr Val Ala Asn Phe Leu Ser Leu Phe Leu Leu Pro Gln Ile Thr Tyr 130 135 140 Ser Ala Ile Ser Asp Glu Leu Arg Asp Lys Val Arg Phe Pro Ala Leu 145 150 155 160 Leu Arg Thr Thr Pro Ser Ala Asp His His Ile Glu Ala Met Val Gln 165 170 175 Leu Met Leu His Phe Arg Trp Asn Trp Ile Ile Val Leu Val Ser Ser 180 185 190 Asp Thr Tyr Gly Arg Asp Asn Gly Gln Leu Leu Gly Glu Arg Val Ala 195 200 205 Arg Arg Asp Ile Cys Ile Ala Phe Gln Glu Thr Leu Pro Thr Leu Gln 210 215 220 Pro Asn Gln Asn Met Thr Ser Glu Glu Arg Gln Arg Leu Val Thr Ile 225 230 235 240 Val Asp Lys Leu Gln Gln Ser Thr Ala Arg Val Val Val Val Phe Ser 245 250 255 Pro Asp Leu Thr Leu Tyr His Phe Phe Asn Glu Val Leu Arg Gln Asn 260 265 270 Phe Thr Gly Ala Val Trp Ile Ala Ser Glu Ser Trp Ala Ile Asp Pro 275 280 285 Val Leu His Asn Leu Thr Glu Leu Arg His Leu Gly Thr Phe Leu Gly 290 295 300 Ile Thr Ile Gln Ser Val Pro Ile Pro Gly Phe Ser Glu Phe Arg Glu 305 310 315 320 Trp Gly Pro Gln Ala Gly Pro Pro Pro Leu Ser Arg Thr Ser Gln Ser 325 330 335 Tyr Thr Cys Asn Gln Glu Cys Asp Asn Cys Leu Asn Ala Thr Leu Ser 340 345 350 Phe Asn Thr Ile Leu Arg Leu Ser Gly Glu Arg Val Val Tyr Ser Val 355 360 365 Tyr Ser Ala Val Tyr Ala Val Ala His Ala Leu His Ser Leu Leu Gly 370 375 380 Cys Asp Lys Ser Thr Cys Thr Lys Arg Val Val Tyr Pro Trp Gln Leu 385 390 395 400 Leu Glu Glu Ile Trp Lys Val Asn Phe Thr Leu Leu Asp His Gln Ile 405 410 415 Phe Phe Asp Pro Gln Gly Asp Val Ala Leu His Leu Glu Ile Val Gln 420 425 430 Trp Gln Trp Asp Arg Ser Gln Asn Pro Phe Gln Ser Val Ala Ser Tyr 435 440 445 Tyr Pro Leu Gln Arg Gln Leu Lys Asn Ile Gln Asp Ile Ser Trp His 450 455 460 Thr Ile Asn Asn Thr Ile Pro Met 465 470

Claims (5)

인간 단맛 수용체 T1R2 VFT(Venus fly trap)로 이루어진 리간드 결합 도메인을 생산하는 단계; 및
상기 리간드 결합 도메인에 맛 물질을 처리한 후 단백질 내 트립토판의 형광 변화를 분석하는 단계;
를 포함하는 인간 단맛 수용체의 리간드 결합 도메인의 맛 물질에 대한 리간드 효능 분석 방법.
producing a ligand binding domain consisting of human sweet taste receptor T1R2 VFT (Venus fly trap); and
Analyzing a change in fluorescence of tryptophan in the protein after treating the ligand-binding domain with a taste substance;
A method for analyzing ligand efficacy for taste substances in the ligand binding domain of a human sweet receptor comprising a.
제1항에 있어서,
상기 인간 단맛 수용체 T1R2 VFT는 서열번호 1로 표시되는 아미노산 서열의 21번째 내지 472번째 아미노산 서열을 포함하는, 인간 단맛 수용체의 리간드 결합 도메인의 맛 물질에 대한 리간드 효능 분석 방법.
According to claim 1,
The human sweet receptor T1R2 VFT comprises the 21st to 472nd amino acid sequence of the amino acid sequence represented by SEQ ID NO: 1, the ligand efficacy analysis method for the taste material of the ligand binding domain of the human sweet taste receptor.
제1항에 있어서,
상기 단백질 내 트립토판의 형광 변화를 분석하는 단계는 T1R2 VFT의 고유한 트립토판 형광을 290 nm에서 여기 및 350 nm에서 방출로 측정한 후 상대 형광 강도를 하기 식 1으로 산출하는 것인, 인간 단맛 수용체의 리간드 결합 도메인의 맛 물질에 대한 리간드 효능 분석 방법:
[식 1]
F/F 0 (%) = [(F 0 - F)/F 0 ] X 100)
(상기 F 0 F 는 각각 미각 분자 처리 전과 후의 T1R2 VFT의 형광 강도를 나타낸다.)
According to claim 1,
The step of analyzing the fluorescence change of tryptophan in the protein is to measure the unique tryptophan fluorescence of T1R2 VFT by excitation at 290 nm and emission at 350 nm, and then calculate the relative fluorescence intensity by the following formula 1, of human sweet taste receptor. Method for Assaying Ligand Efficacy of Ligand Binding Domains to Taste Substances:
[Equation 1]
F/F 0 (%) = [( F 0 - F )/ F 0 ] X 100)
( F 0 and F represent the fluorescence intensity of T1R2 VFT before and after treatment with taste molecules, respectively.)
인간 단맛 수용체의 T1R2 VFT를 인간의 단맛을 측정할 수 있는 생체 재료로 사용하는 단맛 측정방법.A method for measuring sweetness using T1R2 VFT of human sweetness receptor as a biological material capable of measuring human sweetness. 제4항에 있어서,
상기 인간 단맛 수용체 T1R2 VFT는 서열번호 1로 표시되는 아미노산 서열의 21번째 내지 472번째 아미노산 서열을 포함하는, 단맛 측정방법.
According to claim 4,
The human sweet taste receptor T1R2 VFT comprises the 21st to 472nd amino acid sequence of the amino acid sequence represented by SEQ ID NO: 1, sweetness measuring method.
KR1020210168487A 2021-11-30 2021-11-30 Ligand efficacy analysis method for taste substances of ligand binding domain of human sweet receptor using tryptophan fluorescence assay KR102624889B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210168487A KR102624889B1 (en) 2021-11-30 2021-11-30 Ligand efficacy analysis method for taste substances of ligand binding domain of human sweet receptor using tryptophan fluorescence assay
PCT/KR2022/001896 WO2023101100A1 (en) 2021-11-30 2022-02-08 Ligand efficacy analysis method for taste substances of ligand binding domain of human sweet receptor using tryptophan fluorescence assay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210168487A KR102624889B1 (en) 2021-11-30 2021-11-30 Ligand efficacy analysis method for taste substances of ligand binding domain of human sweet receptor using tryptophan fluorescence assay

Publications (2)

Publication Number Publication Date
KR20230080915A true KR20230080915A (en) 2023-06-07
KR102624889B1 KR102624889B1 (en) 2024-01-15

Family

ID=86612518

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210168487A KR102624889B1 (en) 2021-11-30 2021-11-30 Ligand efficacy analysis method for taste substances of ligand binding domain of human sweet receptor using tryptophan fluorescence assay

Country Status (2)

Country Link
KR (1) KR102624889B1 (en)
WO (1) WO2023101100A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090286262A1 (en) * 2006-06-19 2009-11-19 Jay Patrick Slack Nucleic acid, polypeptide and its use
KR101860097B1 (en) 2016-03-22 2018-06-27 서울대학교산학협력단 Umami taste biosensor using ligand-binding domain of umami taste receptor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090286262A1 (en) * 2006-06-19 2009-11-19 Jay Patrick Slack Nucleic acid, polypeptide and its use
KR101860097B1 (en) 2016-03-22 2018-06-27 서울대학교산학협력단 Umami taste biosensor using ligand-binding domain of umami taste receptor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANNI LAFFITTE et al., Wartburg symposium on flavor chemistry & biology, Jun 2016, Eisenach, Germany. 1 p *
BELLOIR, C. et al., Scientific Reports, (2021.11.15.), Vol. 11, pp 1-15. 1부.* *

Also Published As

Publication number Publication date
WO2023101100A1 (en) 2023-06-08
KR102624889B1 (en) 2024-01-15

Similar Documents

Publication Publication Date Title
Franke et al. Rhodopsin mutants that bind but fail to activate transducin
Suzuki et al. The crystal structure of plant ATG12 and its biological implication in autophagy
Diochot et al. A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid‐sensitive channel in sensory neurons
JP5604782B2 (en) Receptor reconstructed product and disease test method using the same
Midoro-Horiuti et al. Molecular cloning of the mountain cedar (Juniperus ashei) pollen major allergen, Jun a 1
HU230159B1 (en) Vegf receptor chimeras for the treatment of eye disorders characterized by vascular permeability
Otvos Jr et al. Development of a pharmacologically improved peptide agonist of the leptin receptor
Hanada et al. Amino acid residues on the surface of soybean 4‐kDa peptide involved in the interaction with its binding protein
Shabbir et al. Glycosylation-dependent activation of epithelial sodium channel by solnatide
León et al. High-level production of recombinant sulfide-reactive hemoglobin I from Lucina pectinata in Escherichia coli: High yields of fully functional holoprotein synthesis in the BLi5 E. coli strain
CN102671185A (en) Application of scolopendra mutilans neurotoxin peptide omega-SLPTX-Ssmla
KR102624889B1 (en) Ligand efficacy analysis method for taste substances of ligand binding domain of human sweet receptor using tryptophan fluorescence assay
Hanada et al. Interaction of a 43-kDa receptor-like protein with a 4-kDa hormone-like peptide in soybean
Khorchid et al. Structural characterization of Escherichia coli sensor histidine kinase EnvZ: the periplasmic C-terminal core domain is critical for homodimerization
KR20220151176A (en) Pharmaceutical composition for lowering blood cholesterol, preventing or treating cardiovascular and metabolic diseases, and anti-inflammatory
Béven et al. Ca2+-myristoyl switch and membrane binding of chemically acylated neurocalcins
Ghanavatian et al. Structural features and activity of Brazzein and its mutants upon substitution of a surfaced exposed alanine
US20080207504A1 (en) SECRETED FRIZZLED RELATED PROTEIN, sFRP, FRAGMENTS AND METHODS OF USE THEREOF
EP1102844A2 (en) Human neuronal acid-sensitive cationic channel, its cloning and applications
US7279293B2 (en) Constitutively active histamine H3 receptor mutants and uses thereof
JPH10504306A (en) Two non-contiguous regions contributing to nidogen binding of laminin γ1 chain to a single EGF-like motif
US10913784B2 (en) RAGE fusion proteins with improved stability and ligand binding affinity and uses thereof
KR101795569B1 (en) Method for predicting degree of sweet taste
KR20160148099A (en) Method for predicting degree of sweet taste
Yang et al. Molecular Mechanism of the Intracellular Segments of the Melanocortin-4 Receptor for NDP− MSH Signaling

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant