US20210170312A1 - Filter device - Google Patents

Filter device Download PDF

Info

Publication number
US20210170312A1
US20210170312A1 US16/769,296 US201816769296A US2021170312A1 US 20210170312 A1 US20210170312 A1 US 20210170312A1 US 201816769296 A US201816769296 A US 201816769296A US 2021170312 A1 US2021170312 A1 US 2021170312A1
Authority
US
United States
Prior art keywords
backwash
filter
drive shaft
fluid
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/769,296
Other versions
US11458424B2 (en
Inventor
Bernhard Schlichter
Jörg Hermann Gerstner
Albert Kaints
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydac Process Technology GmbH
Original Assignee
Hydac Process Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydac Process Technology GmbH filed Critical Hydac Process Technology GmbH
Assigned to HYDAC PROCESS TECHNOLOGY GMBH reassignment HYDAC PROCESS TECHNOLOGY GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GERSTNER, JÖRG, KAINTS, ALBERT, SCHLICHTER, BERNHARD
Publication of US20210170312A1 publication Critical patent/US20210170312A1/en
Application granted granted Critical
Publication of US11458424B2 publication Critical patent/US11458424B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/117Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements arranged for outward flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • B01D29/68Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps with backwash arms, shoes or nozzles
    • B01D29/682Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps with backwash arms, shoes or nozzles with a rotary movement with respect to the filtering element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • B01D29/52Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition in parallel connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • B01D29/52Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition in parallel connection
    • B01D29/54Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition in parallel connection arranged concentrically or coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • B01D29/68Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps with backwash arms, shoes or nozzles
    • B01D29/688Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps with backwash arms, shoes or nozzles with backwash arms or shoes acting on the cake side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2201/00Details relating to filtering apparatus
    • B01D2201/08Regeneration of the filter
    • B01D2201/081Regeneration of the filter using nozzles or suction devices
    • B01D2201/082Suction devices placed on the cake side of the filtering element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • B01D29/668Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps with valves, e.g. rotating valves for coaxially placed filtering elements

Definitions

  • the invention relates to a filter device comprising a filter housing having a fluid inlet for unfiltered matter and having a fluid outlet for filtrate and having at least one multi-part or one-piece filter insert held in the filter housing, which filter insert can be cleaned using a backwash device having at least one backwash element in counter flow to the direction of filtration, which backwash device can be moved by means of a fluid-conveying drive shaft of a rotary drive along the inside of the relevant filter insert, wherein the individual backwash element has, at the end adjacent to this inside, at least one gap-shaped passage opening, which extends in parallel to the axis of rotation of the drive shaft and which opens into a flow chamber connected to the drive shaft in a fluid-conveying manner.
  • Filter devices of this type are state of the art, see for instance DE202011000268U. Cleaning filter inserts by backwashing results in the option of longer operating times between changing the filter inserts in these filter devices. This reduces maintenance costs and prevents frequent interruptions of operation.
  • the filter units can be operated in automatic mode such that a backwash process is initiated if, due to dirt accumulating on the filter, the differential pressure ⁇ p reaches a preselected limit value at which cleaning is required. If such filter devices are used for applications in which there may be temporary dirt surges, for instance in maritime applications, such as ballast water applications, where extreme dirt concentrations in the inflow may occur, e.g. due to sediment turbulence in port basins, the known filter devices are inadequate.
  • the invention addresses the problem of providing a filter device of the type mentioned above, which guarantees a high operational reliability for applications in which extreme dirt surges are to be expected.
  • this object is achieved by a filter device having the features of claim 1 in its entirety.
  • an essential feature of the invention is at least one further backwash device having at least one further backwash element being present, the fluid-conveying drive shaft being divided into chambers separated from each other and the one backwash element of the one backwash device being connected to one of the chambers and the other backwash element of the other backwash device being connected to another chamber. Because at least one additional backwash device is provided for each individual filter insert, the backwash efficiency of the filter device according to the invention can be flexibly adapted to the requirements for different dirt concentrations in the filter inlet. Activating the second backwash device accelerates the dirt discharge by 100% compared to the known operation having one backwash device per filter insert, i.e. even extreme dirt surges (TSS peaks) can be controlled.
  • TSS peaks extreme dirt surges
  • the filter device according to the invention can be operated in such that in normal operation, by opening only one of the chambers via a flushing valve, only one backwash device is operated for one backwash period as long as the increase Op over time at the filter is within a preselected limit value. If the increase in differential pressure accelerates, this one backwash unit is put into continuous operation. If a dirt surge occurs in this operating condition, the second backwash device is switched on by opening the backwash valve of the second chamber until the differential pressure drops to the desired value, after which the second backwash device is switched off again. The continuous flushing using the first backwash device is preferably maintained for a preselected time until the condition has returned to normal load. In this way, the invention permits a more efficient use of the screen area for high TSS mass flows. For smaller filter sizes, higher TSS peaks can be reliably controlled in this way.
  • the backwash devices used are arranged diametrically opposite from each other in relation to the axis of rotation of the drive shaft.
  • More than two back-backwash elements can be used, which are subdivided into groups and assigned to the one and to the further backwash device.
  • a group of at least two backwash elements arranged vertically one above the other in parallel to the axis of rotation of the drive shaft can form a backwash device.
  • the arrangement can advantageously be made such that the drive shaft is divided into two chambers along its axis of rotation, wherein the backwash elements of one backwash device open into one chamber and the backwash elements of the other backwash device open into the other chamber.
  • the drive shaft can have passage openings on its opposite end faces for the discharge of backwash fluid of the one or the other backwash device.
  • two vertically superimposed filter inserts are provided, each of which has two backwash devices, wherein in both filter inserts the backwash elements of one backwash device open into one chamber and the backwash elements of the other backwash device open into another chamber.
  • the drive shaft is divided transversely to the axis of rotation into two further chambers, wherein the backwash elements of one backwash device in each filter insert are connected to one passage opening via one assigned chamber each and the backwash elements of the other backwash device are connected to the other passage opening via one further chamber each. Therefore, when both backwash devices of both filter inserts are in operation, the backwash quantities of two axially offset backwash devices flow out of each passage opening of the drive shaft. This results in a compensation of the flow forces acting on the drive shaft and in a reduction of mechanical stress.
  • the discharge of backwash fluid via the passage openings of the drive shaft can be controlled by means of flushing valves, which can be actuated in a known manner by the assigned filter control system.
  • the backwash elements are guided along the inside of the individual assignable filter insert without gap.
  • the subject matter of the invention is also a process for operating a filter device according to any one of the claims 1 to 11 .
  • FIG. 1 shows a perspective oblique view of an exemplary embodiment of the filter device according to the invention
  • FIG. 2 shows a vertical section of the exemplary embodiment of the filter device, wherein the section plane has been moved out of the drawing plane in certain areas;
  • FIG. 3 shows a central vertical section of an exemplary embodiment of the filter device
  • FIG. 4 shows a perspective oblique view, wherein the exemplary embodiment is shown vertically cut away in a central sectional plane;
  • FIG. 5 shows a perspective oblique view of the separately shown drive shaft for a second exemplary embodiment of the filter device according to the invention, wherein the outer wall areas are shown transparently to illustrate the design.
  • FIGS. 1 to 4 which illustrate an exemplary embodiment of the filter device according to the invention as a whole, a filter housing as a whole is designated by 1 .
  • the two-part filter housing 1 has a circular cylindrical inlet part 3 having a closed base 5 .
  • a fluid inlet 8 is provided on its sidewall for the inflow of unfiltered matter into the inlet part 3
  • a fluid outlet 9 for filtrate is located on the sidewall of the main part 7 . As shown in FIG.
  • a switch box 11 is mounted on the outside of the main part 7 , which contains, among other things, a state-of-the-art electronic filter control system.
  • the main part 7 is closed by a cover part 13 .
  • a lower filter insert 15 and an upper filter insert 17 are held in the main part 7 , the filter sieves 19 and 21 of which are flowed through from the inside to the outside during the filtration process.
  • the flow of unfiltered matter to the interior of the filter inserts 15 , 17 occurs from the inlet section 3 via a pre-filter 23 , which is intended for maritime use as a so-called fish screen.
  • each filter insert 15 , 17 has a first backwash device 25 and a second backwash device 27 , which are each mounted diametrically opposite from each other on a drive shaft 29 , which is formed by a hollow shaft, which has a rectangular cross-section in the section extending through the filter inserts 15 , 17 .
  • the backwash devices 25 and 27 of the filter inserts 15 , 17 each have two backwash elements 31 , which are arranged in pairs one above the other and each pair is supported on a joint support 33 as shown in FIG. 2 .
  • An adjusting device 35 ( FIG.
  • the adjusting devices 35 having a spindle drive may be designed in the manner as disclosed, for instance, in FIGS. 1 to 3 of an application DE102017002646.7, which shows a post-published state of the art, such that the adjusting device 35 provides for a radially outer end position for the supports 33 , from which they can be moved radially inwards against a spring force.
  • the lower end of the drive shaft 29 is supported in a pivot bearing 37 , which is held on cross members 39 , which extend in the radial direction at the transition from the input part 3 to the main part 7 .
  • the interior of the hollow drive shaft 29 having a passage opening 41 merges into a flushing line 43 , which is routed through the bottom 5 of the input part 3 to a flushing valve 45 , which can be actuated by an electric servomotor 47 .
  • the upper end of the drive shaft 29 is supported in a pivot bearing 49 located on the cover part 13 , wherein a drive shaft extension 51 of the drive shaft 29 extends through the pivot bearing 49 into an attachment 53 located on the cover part 13 .
  • the interior of the attachment 53 is connected to a second flushing valve 57 , which can be actuated by an electric servomotor 59 , via a second flushing line 55 .
  • the drive shaft extension 51 of the drive shaft 29 is designed in the manner of a hollow pin as shown in FIG. 5 using the example of the drive shaft 29 provided for a second exemplary embodiment.
  • the drive shaft extension 51 has an upper passage opening 61 as an outlet from the interior of the drive shaft 29 , as well as lateral, window-like wall openings 63 for the fluid connection to the interior of the attachment 53 and thus to the flushing line 55 .
  • a coupling slot 65 is formed in the shaft 51 , with which a driver 67 of the output shaft 69 of an electric gear motor 71 engages, which is arranged on the top of the attachment 53 .
  • the drive shaft 29 is divided by a partition wall 73 , which extends along the axis of rotation over a large part of the length of the drive shaft 29 between the passage openings 41 and 61 , into two chambers 75 and 77 , of which the chamber 75 is connected to the lower passage opening 41 and the other chamber 77 is connected to the upper passage opening 61 .
  • the flow channels some of which are numbered and denoted by 79 in FIG. 4 only, of the pair of backwash elements 31 on the left side of the drawing are connected to the chamber 75 , whereas the backwash elements 31 of the pairs on the right side are connected to the other chamber 77 .
  • the filter device according to the invention can therefore be operated such that under normal operating conditions, in which the increase of the pressure difference Op at the filter over time remains moderate, only one of the backwash devices 25 or 27 is put into operation in order to compensate for the increase of the pressure difference. If necessary, one of the backwash devices 25 or 27 remains in continuous operation. If an extreme dirt concentration in the inlet, for instance due to the occurrence of a TSS peak, occurs, the second backwash device 25 or 27 of the filter inserts 15 , 17 is switched on by opening the relevant further flushing valve 45 or 57 . If the differential pressure drops back to the normal value during backwash using both flushing devices 25 and 27 , then one backwash device 25 or 27 is switched off again, while continuous flushing using only one backwash device 25 or 27 can be maintained for a preselected time.
  • FIG. 5 shows the design of the drive shaft 29 of a second exemplary embodiment of the filter device according to the invention.
  • the interior of the drive shaft 29 is divided into two additional chambers 85 and 87 by two further partitions 81 and 83 extending at an angle to the axis of rotation, of which the chamber 85 is connected to the upper passage opening 61 and the other chamber 87 is connected to the lower passage opening 41 .
  • the flow channels 79 connect the backwash devices 25 of both filter inserts 15 and 17 to the lower passage opening 41 , in the design of FIG.

Abstract

A filter device, comprising a filter housing (1) having a fluid inlet (8) for unfiltered matter and having a fluid outlet (9) for filtrate and having at least one one-piece or multi-part filter insert (05, 17) held in the filter housing (1), which filter insert (15, 17) can be cleaned using a backwash device (25) having at least one backwash element (31) in counter flow to the direction of filtration, which backwash element can be moved along the inside of the relevant filter insert (15, 17) by means of a fluid-conveying drive shaft (29) of a rotary drive (69, 71), wherein the individual backwash element (31) has, at the end adjacent to this inside, at least one gap-shaped passage opening, which extends in parallel to the axis of rotation of the drive shaft (29) and which opens into a flow chamber connected to the drive shaft (29) in a fluid-conveying manner, is characterized in that at least one further backwash device (27) having at least one further backwash element (31) is present, in that the fluid-conveying drive shaft (29) is divided into chambers (73, 75) separated from each other, and in that in each case one backwash element (31) of one backwash device (25) is connected to one of the chambers (73, 75) and the other backwash element (31) of the other backwash device (27) is connected to another chamber (73, 75).

Description

  • The invention relates to a filter device comprising a filter housing having a fluid inlet for unfiltered matter and having a fluid outlet for filtrate and having at least one multi-part or one-piece filter insert held in the filter housing, which filter insert can be cleaned using a backwash device having at least one backwash element in counter flow to the direction of filtration, which backwash device can be moved by means of a fluid-conveying drive shaft of a rotary drive along the inside of the relevant filter insert, wherein the individual backwash element has, at the end adjacent to this inside, at least one gap-shaped passage opening, which extends in parallel to the axis of rotation of the drive shaft and which opens into a flow chamber connected to the drive shaft in a fluid-conveying manner.
  • Filter devices of this type are state of the art, see for instance DE202011000268U. Cleaning filter inserts by backwashing results in the option of longer operating times between changing the filter inserts in these filter devices. This reduces maintenance costs and prevents frequent interruptions of operation. In combination with intelligent filter control systems, the filter units can be operated in automatic mode such that a backwash process is initiated if, due to dirt accumulating on the filter, the differential pressure Δp reaches a preselected limit value at which cleaning is required. If such filter devices are used for applications in which there may be temporary dirt surges, for instance in maritime applications, such as ballast water applications, where extreme dirt concentrations in the inflow may occur, e.g. due to sediment turbulence in port basins, the known filter devices are inadequate. For reasons of economy and because of the installation sizes required, it is not practical to design the filter device for the worst-case scenario of such applications, i.e. for extreme dirt surges, so-called TSS peaks (totally suspended solids). In terms of process stability and availability of equipment of the known filter devices there is room for improvement.
  • In view of this issue, the invention addresses the problem of providing a filter device of the type mentioned above, which guarantees a high operational reliability for applications in which extreme dirt surges are to be expected.
  • According to the invention, this object is achieved by a filter device having the features of claim 1 in its entirety.
  • According to the characterizing part of claim 1, an essential feature of the invention is at least one further backwash device having at least one further backwash element being present, the fluid-conveying drive shaft being divided into chambers separated from each other and the one backwash element of the one backwash device being connected to one of the chambers and the other backwash element of the other backwash device being connected to another chamber. Because at least one additional backwash device is provided for each individual filter insert, the backwash efficiency of the filter device according to the invention can be flexibly adapted to the requirements for different dirt concentrations in the filter inlet. Activating the second backwash device accelerates the dirt discharge by 100% compared to the known operation having one backwash device per filter insert, i.e. even extreme dirt surges (TSS peaks) can be controlled.
  • Advantageously, the filter device according to the invention can be operated in such that in normal operation, by opening only one of the chambers via a flushing valve, only one backwash device is operated for one backwash period as long as the increase Op over time at the filter is within a preselected limit value. If the increase in differential pressure accelerates, this one backwash unit is put into continuous operation. If a dirt surge occurs in this operating condition, the second backwash device is switched on by opening the backwash valve of the second chamber until the differential pressure drops to the desired value, after which the second backwash device is switched off again. The continuous flushing using the first backwash device is preferably maintained for a preselected time until the condition has returned to normal load. In this way, the invention permits a more efficient use of the screen area for high TSS mass flows. For smaller filter sizes, higher TSS peaks can be reliably controlled in this way.
  • Advantageously the backwash devices used are arranged diametrically opposite from each other in relation to the axis of rotation of the drive shaft.
  • More than two back-backwash elements can be used, which are subdivided into groups and assigned to the one and to the further backwash device. A group of at least two backwash elements arranged vertically one above the other in parallel to the axis of rotation of the drive shaft can form a backwash device.
  • The arrangement can advantageously be made such that the drive shaft is divided into two chambers along its axis of rotation, wherein the backwash elements of one backwash device open into one chamber and the backwash elements of the other backwash device open into the other chamber.
  • For the connection of the chambers to their assigned backwash valves, the drive shaft can have passage openings on its opposite end faces for the discharge of backwash fluid of the one or the other backwash device.
  • In advantageous exemplary embodiments, two vertically superimposed filter inserts are provided, each of which has two backwash devices, wherein in both filter inserts the backwash elements of one backwash device open into one chamber and the backwash elements of the other backwash device open into another chamber.
  • In the case of particularly advantageous exemplary embodiments, in the case of two filter inserts situated one above the other, the drive shaft is divided transversely to the axis of rotation into two further chambers, wherein the backwash elements of one backwash device in each filter insert are connected to one passage opening via one assigned chamber each and the backwash elements of the other backwash device are connected to the other passage opening via one further chamber each. Therefore, when both backwash devices of both filter inserts are in operation, the backwash quantities of two axially offset backwash devices flow out of each passage opening of the drive shaft. This results in a compensation of the flow forces acting on the drive shaft and in a reduction of mechanical stress.
  • The discharge of backwash fluid via the passage openings of the drive shaft can be controlled by means of flushing valves, which can be actuated in a known manner by the assigned filter control system.
  • There is a coupling point for the engagement of a drive motor on one of the end faces of the drive shaft, preferably on its upper end face in the vertical installation direction.
  • With particular advantage, the backwash elements are guided along the inside of the individual assignable filter insert without gap.
  • According to claim 12, the subject matter of the invention is also a process for operating a filter device according to any one of the claims 1 to 11.
  • Below the invention is explained in detail with reference to exemplary embodiments shown in the drawing.
  • In the Figures:
  • FIG. 1 shows a perspective oblique view of an exemplary embodiment of the filter device according to the invention;
  • FIG. 2 shows a vertical section of the exemplary embodiment of the filter device, wherein the section plane has been moved out of the drawing plane in certain areas;
  • FIG. 3 shows a central vertical section of an exemplary embodiment of the filter device;
  • FIG. 4 shows a perspective oblique view, wherein the exemplary embodiment is shown vertically cut away in a central sectional plane; and
  • FIG. 5 shows a perspective oblique view of the separately shown drive shaft for a second exemplary embodiment of the filter device according to the invention, wherein the outer wall areas are shown transparently to illustrate the design.
  • In FIGS. 1 to 4, which illustrate an exemplary embodiment of the filter device according to the invention as a whole, a filter housing as a whole is designated by 1. The two-part filter housing 1 has a circular cylindrical inlet part 3 having a closed base 5. On the inlet part 3 there is a main housing part 7, which is circular-cylindrical in shape like the inlet part 3. A fluid inlet 8 is provided on its sidewall for the inflow of unfiltered matter into the inlet part 3, and a fluid outlet 9 for filtrate is located on the sidewall of the main part 7. As shown in FIG. 1, a switch box 11 is mounted on the outside of the main part 7, which contains, among other things, a state-of-the-art electronic filter control system. At the top the main part 7 is closed by a cover part 13. A lower filter insert 15 and an upper filter insert 17 are held in the main part 7, the filter sieves 19 and 21 of which are flowed through from the inside to the outside during the filtration process. The flow of unfiltered matter to the interior of the filter inserts 15, 17 occurs from the inlet section 3 via a pre-filter 23, which is intended for maritime use as a so-called fish screen.
  • For cleaning deposits on the filter screen 19, 21 from the lower and upper filter inserts 15 and 17 respectively, each filter insert 15, 17 has a first backwash device 25 and a second backwash device 27, which are each mounted diametrically opposite from each other on a drive shaft 29, which is formed by a hollow shaft, which has a rectangular cross-section in the section extending through the filter inserts 15, 17. As shown in FIGS. 3 and 4, the backwash devices 25 and 27 of the filter inserts 15, 17 each have two backwash elements 31, which are arranged in pairs one above the other and each pair is supported on a joint support 33 as shown in FIG. 2. An adjusting device 35 (FIG. 2) can be used to adjust the position of the supports 33 relative to the drive shaft 29 such that the outside of the backwash elements 31, on which outside there is a backwash inlet slot as per usual, is guided along the inside of the relevant filter screen 19, 21 without gap during the rotational movement of the drive shaft 29. The adjusting devices 35 having a spindle drive may be designed in the manner as disclosed, for instance, in FIGS. 1 to 3 of an application DE102017002646.7, which shows a post-published state of the art, such that the adjusting device 35 provides for a radially outer end position for the supports 33, from which they can be moved radially inwards against a spring force.
  • The lower end of the drive shaft 29 is supported in a pivot bearing 37, which is held on cross members 39, which extend in the radial direction at the transition from the input part 3 to the main part 7. At the pivot bearing 37, the interior of the hollow drive shaft 29 having a passage opening 41 merges into a flushing line 43, which is routed through the bottom 5 of the input part 3 to a flushing valve 45, which can be actuated by an electric servomotor 47. The upper end of the drive shaft 29 is supported in a pivot bearing 49 located on the cover part 13, wherein a drive shaft extension 51 of the drive shaft 29 extends through the pivot bearing 49 into an attachment 53 located on the cover part 13. The interior of the attachment 53 is connected to a second flushing valve 57, which can be actuated by an electric servomotor 59, via a second flushing line 55. The drive shaft extension 51 of the drive shaft 29 is designed in the manner of a hollow pin as shown in FIG. 5 using the example of the drive shaft 29 provided for a second exemplary embodiment. As shown, the drive shaft extension 51 has an upper passage opening 61 as an outlet from the interior of the drive shaft 29, as well as lateral, window-like wall openings 63 for the fluid connection to the interior of the attachment 53 and thus to the flushing line 55. In addition, a coupling slot 65 is formed in the shaft 51, with which a driver 67 of the output shaft 69 of an electric gear motor 71 engages, which is arranged on the top of the attachment 53.
  • As FIGS. 3 and 4 show, in the first exemplary embodiment, the drive shaft 29 is divided by a partition wall 73, which extends along the axis of rotation over a large part of the length of the drive shaft 29 between the passage openings 41 and 61, into two chambers 75 and 77, of which the chamber 75 is connected to the lower passage opening 41 and the other chamber 77 is connected to the upper passage opening 61. For each filter insert 15 and 17, the flow channels, some of which are numbered and denoted by 79 in FIG. 4 only, of the pair of backwash elements 31 on the left side of the drawing are connected to the chamber 75, whereas the backwash elements 31 of the pairs on the right side are connected to the other chamber 77. When the backwash valve 45 at the first flushing line 43, which is connected to the chamber 75 via the passage opening 41, is opened, a backwash process only occurs using the backwash device 25 of the filter inserts 15, 17. If the second flushing valve 57 is opened when the first flushing valve 45 is closed, the backwash process only occurs using the backwash devices 27 on the right side of the drawing, which are connected to the second flushing valve 57 via the second chamber 77, the upper outlet 61 and the backwash line 55. If both flushing valves 45 and 57 are open for a special backwash, the backwash is performed using both backwash devices 25 and 27 of both filter inserts 15 and 17.
  • The filter device according to the invention can therefore be operated such that under normal operating conditions, in which the increase of the pressure difference Op at the filter over time remains moderate, only one of the backwash devices 25 or 27 is put into operation in order to compensate for the increase of the pressure difference. If necessary, one of the backwash devices 25 or 27 remains in continuous operation. If an extreme dirt concentration in the inlet, for instance due to the occurrence of a TSS peak, occurs, the second backwash device 25 or 27 of the filter inserts 15, 17 is switched on by opening the relevant further flushing valve 45 or 57. If the differential pressure drops back to the normal value during backwash using both flushing devices 25 and 27, then one backwash device 25 or 27 is switched off again, while continuous flushing using only one backwash device 25 or 27 can be maintained for a preselected time.
  • FIG. 5 shows the design of the drive shaft 29 of a second exemplary embodiment of the filter device according to the invention. As shown, the interior of the drive shaft 29 is divided into two additional chambers 85 and 87 by two further partitions 81 and 83 extending at an angle to the axis of rotation, of which the chamber 85 is connected to the upper passage opening 61 and the other chamber 87 is connected to the lower passage opening 41. While in the first exemplary embodiment the flow channels 79 connect the backwash devices 25 of both filter inserts 15 and 17 to the lower passage opening 41, in the design of FIG. 5 only the flow channels 79 of the backwash elements 31 of the lower filter insert 15 are connected to the passage opening 41, while the flow channels 79 of the backwash device 25 of the upper filter insert 17 are connected to the upper passage opening 61. The flow channels 89 of the second backwash device 27 of the upper filter insert 17 are also connected to the latter, as in the first exemplary embodiment, whereas the fluid channels of the second backwash device 27 of the lower filter insert 15 are connected to the lower passage opening 41, as in the first exemplary embodiment. For this arrangement, when both backwash devices 25 and 27 are operated simultaneously, flow forces occur, which act on the drive shaft 29 at more evenly distributed points, in comparison to the first exemplary embodiment, such that the drive shaft 29 is subject to less mechanical stress during operation.

Claims (12)

1. A filter device, comprising a filter housing (1) having a fluid inlet (8) for unfiltered matter and having a fluid outlet (9) for filtrate and having at least one one-piece or multi-part filter insert (15, 17) held in the filter housing (1), which filter insert can be cleaned using a backwash device (25) having at least one backwash element (31) in counter flow to the direction of filtration, which backwash element can be moved along the inside of the relevant filter insert (15, 17) by means of a fluid-conveying drive shaft (29) of a rotary drive (69, 71), wherein the individual backwash element (31) has, at the end adjacent to this inside, at least one gap-shaped passage opening, which extends in parallel to the axis of rotation of the drive shaft (29) and which opens into a flow chamber connected to the drive shaft (29) in a fluid-conveying manner, characterized in that at least one further backwash device (27) having at least one further backwash element (31) is present, in that the fluid-conveying drive shaft (29) is divided into chambers (73, 75) separated from each other, and in that in each case one backwash element (31) of one backwash device (25) is connected to one of the chambers (73, 75) and the other backwash element (31) of the other backwash device (27) is connected to another chamber (73, 75).
2. The filter device according to claim 1, characterized in that the inserted backwash devices (25, 27) are arranged diametrically opposite from each other in relation to the axis of rotation of the drive shaft (29).
3. The filter device according to claim 1, characterized in that more than two backwash elements (31) are used, which are subdivided into groups and are assigned to the one (25) and to the further backwash device (27), respectively.
4. The filter device according to claim 1, characterized in that a group of at least two backwash elements (31) arranged vertically one above the other in parallel to the axis of rotation of the drive shaft (29) form a backwash device (25, 27).
5. The filter device according to claim 1, characterized in that the drive shaft (29) is divided into two chambers (73, 75) along its axis of rotation, and that the backwash elements (31) of the one backwash device (25) open into one chamber (73) and the backwash elements (31) of the other backwash device (27) open into the other chamber (75).
6. The filter device according to claim 1, characterized in that the drive shaft (29) has passage openings (41, 61) on its opposite end faces for the discharge of backwash fluid of the one (25) or the other backwash device (27).
7. The filter device according to claim 1, characterized in that two vertically superimposed filter inserts (15, 17) are provided, each of which has two backwash devices (25, 27) and that for both filter inserts (15, 17) the backwash elements (31) of the one backwash device (25) open into one chamber (73) and the backwash elements (31) of the other backwash device (27) open into another chamber (75).
8. The filter device according to claim 1, characterized in that in the case of two filter inserts (15, 17) lying one above the other, the drive shaft (29) is divided transversely to the axis of rotation into two further chambers (85, 87), and that for every filter insert (15, 17) the backwash elements (31) of the one backwash device (25) are connected to one passage opening (41) via one assigned chamber (75 or 85) each and the backwash elements (31) of the other backwash device (27) are connected to the other passage opening (61) via one further chamber (77 or 87) each.
9. The filter device according to claim 1, characterized in that the discharge of backwash fluid via the passage openings (41, 61) of the drive shaft (29) can be controlled by means of flushing valves (45, 57).
10. The filter device according to claim 1, characterized in that the drive shaft (29) has a coupling point (51, 65) for the engagement of a drive motor (71) on one of its end faces, preferably on its upper end face in the vertical installation direction.
11. The filter device according to claim 1, characterized in that the backwash elements (31) are guided along the inside of the individually assignable filter insert (15, 17) without gap.
12. A method for operating a filter device according to claim 1, characterized in that
in normal operation only one backwash device (25 or 27) is used and
all backwash devices (25 and 27) can be used for a special backwash.
US16/769,296 2017-12-05 2018-11-16 Filter device Active 2038-12-16 US11458424B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017011221.5A DE102017011221A1 (en) 2017-12-05 2017-12-05 filter means
DE102017011221.5 2017-12-05
PCT/EP2018/081575 WO2019110279A1 (en) 2017-12-05 2018-11-16 Filter device

Publications (2)

Publication Number Publication Date
US20210170312A1 true US20210170312A1 (en) 2021-06-10
US11458424B2 US11458424B2 (en) 2022-10-04

Family

ID=64362540

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/769,296 Active 2038-12-16 US11458424B2 (en) 2017-12-05 2018-11-16 Filter device

Country Status (7)

Country Link
US (1) US11458424B2 (en)
EP (1) EP3694623B1 (en)
JP (1) JP7328964B2 (en)
KR (1) KR20200090249A (en)
CN (1) CN111565813B (en)
DE (1) DE102017011221A1 (en)
WO (1) WO2019110279A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210283537A1 (en) * 2020-03-10 2021-09-16 Grenex Limited Backwashing suction device for fabric filtration apparatus
US11278826B2 (en) * 2017-03-18 2022-03-22 Hydac Process Technology Gmbh Filter apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL300326A (en) * 2020-08-03 2023-04-01 Netafim Ltd Filter arrangements
CN112156524B (en) * 2020-09-16 2022-03-25 山鹰华中纸业有限公司 Papermaking white water filtering device and filtering process
KR102524114B1 (en) * 2022-12-14 2023-04-21 주식회사 월드이노텍 Back washable Filter

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2327532C3 (en) 1973-05-30 1975-12-04 Dr.-Ing. Erich Dinglinger Kg, 2800 Bremen Liquid filter with automatic cleaning
GB1485989A (en) * 1975-05-23 1977-09-14 Plenty Group Ltd Filter with backflushing device
DE3443752A1 (en) * 1984-11-30 1986-06-05 August G. Koch Maschinenfabrik, 2300 Kiel Backwashable filter for liquids
IT1235896B (en) * 1989-11-24 1992-11-25 Gel Srl SELF-CLEANING FILTER FOR WATER SYSTEMS, EQUIPPED WITH A HYDRAULIC TURBINET FOR THE OPERATION OF CERTAIN CLEANING BRUSHES
CN2464423Y (en) * 2001-02-14 2001-12-12 王克涛 Horizontal counter-washing water filter
JP3755487B2 (en) * 2002-06-21 2006-03-15 コベルコ建機株式会社 Oil filter for construction machinery
DE202011000268U1 (en) * 2011-02-04 2012-05-16 Boll & Kirch Filterbau Gmbh Backwash filter with rinsing device
WO2015076524A1 (en) 2013-11-21 2015-05-28 현대중공업 주식회사 Filter device
CN203663533U (en) * 2013-12-13 2014-06-25 欧阳良斌 Self-cleaning screen filter for agricultural micro-irrigation system
DE202014104200U1 (en) * 2014-06-11 2015-09-14 Boll & Kirch Filterbau Gmbh Backwash filter and filter insert for this
KR101666105B1 (en) * 2015-03-11 2016-10-17 주식회사 파나시아 Ballast water filtering device with enhanced back flush function
CN205391896U (en) 2016-03-04 2016-07-27 上海滤威过滤系统有限公司 Filter and binary channels belt cleaning device thereof
CN105536331B (en) * 2016-03-04 2017-11-03 上海滤威过滤系统有限公司 Filter and its binary channels cleaning device
CN106582089A (en) * 2016-11-24 2017-04-26 洛阳双瑞金属复合材料有限公司 Hydraulic driven automatic self-cleaning filter
DE102017002646A1 (en) 2017-03-18 2018-09-20 Hydac Process Technology Gmbh filter means

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11278826B2 (en) * 2017-03-18 2022-03-22 Hydac Process Technology Gmbh Filter apparatus
US20210283537A1 (en) * 2020-03-10 2021-09-16 Grenex Limited Backwashing suction device for fabric filtration apparatus
US11504655B2 (en) * 2020-03-10 2022-11-22 Grenex Limited Backwashing suction device for fabric filtration apparatus

Also Published As

Publication number Publication date
DE102017011221A1 (en) 2019-06-06
EP3694623A1 (en) 2020-08-19
JP2021505372A (en) 2021-02-18
CN111565813A (en) 2020-08-21
WO2019110279A1 (en) 2019-06-13
CN111565813B (en) 2022-06-14
EP3694623B1 (en) 2024-01-10
JP7328964B2 (en) 2023-08-17
KR20200090249A (en) 2020-07-28
US11458424B2 (en) 2022-10-04
EP3694623C0 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
US20210170312A1 (en) Filter device
EP3259043B1 (en) Filtration system for filtering lubricating oil, particularly for marine units such as marine engines
DE10309428B4 (en) filter
CN109952137B (en) Filter device
KR100771414B1 (en) Backflush filter, in particular for filtering lubricant oil
US4415448A (en) Flush-back filter
EP3482810B1 (en) Reverse rinsing filter and method for operating the same
US20140183110A1 (en) Filter device
US6932900B2 (en) Filter device
DK2756874T3 (en) A filter device
KR102563988B1 (en) Filtering apparatus
CN101628189B (en) Lubricant oil automatic backwashing combined filter
EP2952791B1 (en) Manifold module and filter assembly
DE102009006863B4 (en) oil separator
EP0031195A1 (en) Fluid strainer or filter
KR20110109387A (en) A filter backwashing filtering system and a filtering method thereof
DE102014014029A1 (en) Filter housing with discharge nozzle in the main filter area
EP0616827B1 (en) Liquid filter
AU2016240897B2 (en) Pressure-type filtration device
EP0347620B1 (en) Pressure filter
JP5993480B1 (en) Filtration device
WO2019130328A1 (en) Multi stage auto self cleaning filter
CN215692064U (en) Novel back flush filter device
WO2014125056A1 (en) Multi-basket filter
UA139872U (en) KARELINA FILTERING SYSTEM FOR LIQUID PURIFICATION

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: HYDAC PROCESS TECHNOLOGY GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHLICHTER, BERNHARD;GERSTNER, JOERG;KAINTS, ALBERT;SIGNING DATES FROM 20200306 TO 20200406;REEL/FRAME:052996/0958

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE