US20210145348A1 - Compositions and methods for a universal clinical test for olfactory dysfunction - Google Patents

Compositions and methods for a universal clinical test for olfactory dysfunction Download PDF

Info

Publication number
US20210145348A1
US20210145348A1 US16/628,075 US201816628075A US2021145348A1 US 20210145348 A1 US20210145348 A1 US 20210145348A1 US 201816628075 A US201816628075 A US 201816628075A US 2021145348 A1 US2021145348 A1 US 2021145348A1
Authority
US
United States
Prior art keywords
methyl
ethyl
smell
compounds
acetate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/628,075
Other languages
English (en)
Inventor
Julien Wen HSIEH
Andreas Keller
Leslie Birgit VOSSHALL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockefeller University
Original Assignee
Rockefeller University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockefeller University filed Critical Rockefeller University
Priority to US16/628,075 priority Critical patent/US20210145348A1/en
Publication of US20210145348A1 publication Critical patent/US20210145348A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4005Detecting, measuring or recording for evaluating the nervous system for evaluating the sensory system
    • A61B5/4011Evaluating olfaction, i.e. sense of smell
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/59Mixtures
    • A61K2800/591Mixtures of compounds not provided for by any of the codes A61K2800/592 - A61K2800/596

Definitions

  • the disclosure generally relates to compositions and methods of sensory diagnosis and/or repair.
  • Smell dysfunction manifests itself primarily in the reduced ability to detect or identify volatile chemicals, and ranges from the complete inability to smell any odors, to a partial reduction in olfactory sensitivity, to smell distortion, for instance that a large number of odors smell like cigarette smoke.
  • the prevalence of smell dysfunction in the general adult population is about 20% in Europe and the United States (1-3). This condition is dangerous because those affected are unable to detect fire, spoiled food, hazardous chemicals, and leaks of odorized natural gas (4, 5).
  • Smell loss also has severe health consequences, including mental health symptoms such as depression, anxiety, and social isolation. It affects quality of life by altering food preferences and the amount of food ingested (5). Food is often perceived as bland or tasteless by patients with smell disorders, leading to loss of appetite or overeating (4, 5).
  • Smell dysfunction has many causes, including head trauma, upper respiratory tract infection, nasal polyps, and congenital anomalies (6, 7). In many cases, the cause of smell dysfunction is unknown (5, 8). Importantly, smell dysfunction is an early sign of Alzheimer's disease (9), the most common cause of dementia in the United States that is projected to affect an estimated 1 in every 45 individuals by 2050 (10). There is growing evidence that diminished olfactory function arises early in the progression of Alzheimer's disease, and is highly predictive of future cognitive decline (3, 4). Because of the high prevalence and dramatic consequences of smell loss, accurate diagnosis of olfactory dysfunction is important. While self-reported hearing loss tends to be accurate (11), self-reporting of olfactory dysfunction is notoriously unreliable. Therefore, accurate diagnostic tests for smell dysfunction that can be deployed worldwide are critically important. Following a diagnosis, therapeutic options and counseling can be offered to patients suffering from smell loss (12).
  • odor stimuli In clinical smell testing, patients are presented with odor stimuli in a variety of formats, including scratch ‘n’ sniff strips, glass vials or jars, felt-tip pens, or paper scent strips used in perfume shops, and asked to answer questions about what they smell. Smell tests assess the ability of subjects to detect, discriminate, or identify odors. Olfactory threshold tests measure the lowest concentration of an odor stimulus that a patient can perceive, while discrimination tests assess the ability of subjects to distinguish two different smells. Finally, odor identification tests evaluate whether a patient can detect and match odors to standard words that describe the smell (13).
  • the second challenge is to develop a test that is not influenced by the patient's prior olfactory experiences.
  • This has an obvious influence on the results of odor identification tests such as the University of Pennsylvania Smell Identification Test (UPSIT) for which subjects are given a booklet with 40 scratch ‘n’ sniff items and asked to select one of four words (for example “gingerbread”, “menthol”, “apple”, or “cheddar cheese”) that best describes what the odor smells like.
  • UPSIT University of Pennsylvania Smell Identification Test
  • Whether a patient can correctly identify the smell of gingerbread depends not only on the patient's sense of smell, but also on whether the patient has previously encountered the smell of gingerbread. This in turn depends on many factors such as the cultural and age group the patient belongs to.
  • the UPSIT has been adapted for use in a number of countries worldwide by replacing unfamiliar items and adapting the answers on the multiple-choice test.
  • the North American UPSIT was adapted for Taiwanese subjects by replacing “clove”, “cheddar cheese”, “cinnamon”, “gingerbread”, “dill pickle”, “lime”, “wintergreen”, and “grass” with “sandalwood”, “fish”, “coffee”, “rubber tire”, “jasmine”, “grapefruit”, “magnolia”, and “baby powder” (18).
  • the strong influence of prior olfactory experience on the test results limits the utility of odor identification tests.
  • the present disclosure provides compositions, kits, and methods for determining olfactory sensitivity and olfactory resolution.
  • the disclosure provides distinct ensembles of odorants that can be used in making such determinations.
  • odorants are provided in a plurality of dilutions, such as serial dilutions, such that iterative exposure to the distinct dilutions provides for quantifying and/or scoring olfactory sensitivity and/or resolution.
  • the lowest concentration of an odor stimulus that a subject can perceive is determined, and used to provide a value for olfactory sensitivity.
  • a subject's capacity to distinguish distinct smells from one another is quantified and/or scored to provide a value for olfactory resolution.
  • Certain aspects of olfactory resolution and/or sensitivity can be assessed using a variety of experimental designs, a non-limiting example of which comprises a triangle test, whereby the capacity of an individual to determine the presence or absence of an olfactory stimulus, and/or to discriminate between distinct olfactory stimuli, is analyzed.
  • a value determined using an approach described herein can be used to assist in a diagnosis of an olfactory defect, and/or another condition or disorder that is correlated with olfactory sensory acuity, for example, by determining a sensitivity and/or resolution value that is lower or different from a threshold or reference value.
  • methods of the disclosure can comprise performance of triangle tests.
  • Triangle tests are known to those skilled in the art as a discriminative approach used in sensory science to determine the presence or absence of a stimulus, and/or a difference between distinct samples, such as by asking a subject to select one of three stimuli that is different from the other two.
  • Kits comprising combinations of odorants described herein are also provided.
  • FIG. 1 shows SMELL-S olfactory sensitivity and SMELL-R olfactory resolution tests.
  • A Schematic of triangle test stimuli for SMELL-S, comprising two glass vials containing solvent (gray) and one containing increasingly diluted mixtures of 30 molecules (red-white mosaic). Olfactory sensitivity of a subject measured with SMELL-S [Subject Expt 1-A023, SMELL-S (v2)].
  • FIG. 2 shows test-retest reliability and relationship between SMELL-S and SMELL-R tests.
  • A Experiment 1 design, showing one example of the many different presentations of the six smell tests. SMELL-R tests were always administered after SMELL-S or threshold tests in a given visit.
  • FIG. 3 shows addressing the problem of odor-specific insensitivity.
  • B Experiment 2 design.
  • C The relationship between different etiologies of olfactory dysfunction and UPSIT scores in published studies, as well as of Experiment 2 subjects divided by self-reported smell abilities (mean ⁇ 95% confidence interval).
  • FIG. 4 shows SMELL-S and SMELL-R diagnostic accuracy.
  • B Area under the ROC curve (AUC) for SMELL-S (v2). The optimal cut-off is indicated by the blue dot.
  • C Plots of four measures of diagnostic accuracy resulting from different cut-off scores for SMELL-S (v2) (percentage ⁇ 95% confidence interval).
  • E Area under the ROC curve (AUC) for SMELL-R (v2).
  • the optimal cut-off is indicated by the green dot.
  • F Plots of four measures of diagnostic accuracy resulting from different cut-off scores for SMELL-R (v2) (rate or percentage ⁇ 95% confidence interval).
  • the optimal cut-off score for olfactory dysfunction defined by Youden's Index (center) is indicated by the green dot. Subjects with identical values are indicated by superimposed open circles and an X, and retain the specified color coding.
  • FIG. 5 shows addressing the problem of different prior olfactory experiences.
  • A Experiment 3 design.
  • C-D Histogram of North American and Taiwanese subject scores for the UPSIT (C) and SMELL-R (v2) (D).
  • E Cross-population comparison of UPSIT and SMELL-R (v2) (mean ⁇ 95% confidence interval) for subjects in (C,D).
  • FIG. 6 shows SMELL-S (panel A) and SMELL-R (panel B) stimuli are stable over 4 months of testing.
  • the median and interquartile range of testing score per study visit day were plotted. The slope of the data was fitted by linear regression, and analyzed for significant difference from a slope of zero, which would correspond to perfect stability across the testing period. Stimuli for each test were freshly made only once at the beginning of the study, stored at room temperature in a ventilated lab, and used throughout the study. Study visit days took place 2-3 times a week. We tested 75 subjects who performed each one of the 4 tests twice.
  • the disclosure includes all method steps and compositions of matter described herein in the text figures and tables of this disclosure, including all such steps individually and in all combinations thereof.
  • the disclosure includes all compositions of matter including but not necessarily limited to every combination and sub-combination of compounds described herein, all dilutions of the compounds, all compound mixtures, all compound ratios, and all combinations of compound combinations that may be provided in single containers, or more than one container, and sets of compounds provided in single and separate containers.
  • Containers are defined as the vehicle by which stimuli are presented to the subject, and can comprise a solid or liquid formulation in a vial or jar; a scratch ‘n’ sniff scent strip; a solid or liquid formulation in a device that produces a vapor or aerosol of the stimuli.
  • the stimuli can be delivered manually by the subjects manipulating the container and sniffing, or digitally by a device that automatically delivers the stimuli to the subject.
  • a mixture of compounds described herein can be provided in a semi-solid composition, including but not limited to a wax.
  • mixtures that are present in, for example, a wax can be provided as a component of a device, such as a disk, or cartridge.
  • the disclosure includes a system comprising one or more disks or cartridges that comprise a mixture of compounds described herein in a liquid, semi-solid, or solid medium.
  • the system allows for production and/or dissemination to a user of a vapor, such as in the presence of a drift, such as an air drift.
  • the compound combinations can comprise or consist of any of the compounds listed for any combination thereof, and my further include buffers or diluents that, for example, do not impact the olfactory system of a subject undergoing testing using the compounds.
  • the disclosure includes a proviso that any compound or combination of compounds can be excluded from the claims of this application or patent, including but not necessarily limited to those compounds disclosed herein as “excluded” wherein the exclusion is for any reason, including but not limited to lateralization score or intensity-matching, or a combination thereof.
  • Compounds of this disclosure are provided with compound identifiers (CID) which are the permanent identifier for a unique chemical structure as curated in PubChem, a project of the National Center for Biotechnology Information (NCBI) of the US government.
  • CID compound identifiers
  • compositions comprising any combination of compounds described herein remain stable over a period of time, such as from seven days, to at least a period of twelve months, including all days and intervals of days there between.
  • the combinations of compounds are stored at room temperature and remain stable.
  • stability is determined by the combination of compounds remaining suitable for using in a method described herein. In an embodiment, stability is determined as described for FIG. 6 , which demonstrates determining stability of SMELL-S ( FIG. 6 , panel A) and SMELL-R ( FIG.
  • the disclosure includes measuring olfactory sensitivity, olfactory resolution, and combinations thereof. Such measurements can be made during a single test, or over consecutive tests, which may be performed during a single testing period, such as in a single day, or over a series of testing periods.
  • the tests may be performed by a health care professional, or may be conveniently self-administered by the user.
  • the tests thus involve methods for evaluating the olfactory function of an individual.
  • the methods generally comprise allowing a subject to nasally inhale odorants from any combination of compounds and/or series of compound combinations described herein such that a determination of the sensitivity and/or the resolution capability of the olfactory function of the individual is made.
  • the disclosure includes assigning threshold and/or score values to the olfactory function of the individual, as further described herein.
  • the disclosure includes using the compound combinations described herein to assess olfactory function and generate one or more scores or other values that represent olfactory sensitivity, olfactory resolution, and/or combinations thereof.
  • the disclosure includes use of control combinations of compounds and comparing perception of smell of test combinations to perception of smell to the control combinations.
  • the disclosures provides for integration of the testing procedures described herein with adaptive software to develop one or more thresholds and/or scores for olfactory sensitivity and/or resolution.
  • embodiments of the disclosure can in part be implemented by a device comprising a microprocessor running software to perform one or more calculations described herein.
  • the disclosure includes an application (i.e., an app) that can guide a user through one or a series of tests described herein, and whereby the test results can be entered into the app and one or more threshold values or scores can be generated and presented to the user via a user interface.
  • Such apps can be configured to run on a computer connected to a bar code scanner, or any mobile device, such as a mobile phone or a tablet that can scan a QR code with a camera.
  • the software/app interfaces with a scent delivery device that controls the release of the stimuli, wherein the stimuli comprise a combination of compounds as described herein.
  • the disclosure comprises a distributed system in a networked environment.
  • the invention facilitates determination of the lowest concentration of an odor stimulus that a subject can perceive, and thus provides for generating a value for olfactory sensitivity.
  • the invention facilitates analysis of a subject's ability to distinguish distinct smells from one another, and thus provides a value for olfactory resolution.
  • methods of the disclosure can comprise performance of triangle tests. Triangle tests are known to those skilled in the art as a discriminative approach used in sensory science to determine the presence or absence of a stimulus, and/or a difference between distinct samples, such as by asking a subject to select one of three stimuli that is different from the other two.
  • subjects are tested using a series of odorant combinations, which may or may not be presented using a triangle test approach, to determine which of a series of test combinations of odorants can be perceived using, for instance, serial dilutions of combinations of odorants, until a threshold is reached wherein no smell can be perceived.
  • subjects are tested to determine which of a series of test combinations of odorants are different from a reference combination, such as by removal or replacement of one or more odorants from a series of odorant combinations, until a threshold is reached, wherein difference in smell between a sample and a reference cannot be detected.
  • a triangle test may comprise a test using three unknown samples to determine whether or not an individual can determine which sample is distinct from the others, i.e., the individual is provided samples XXY, which represents three compounds or combinations of compounds or dilutions thereof, to the individual, and the individual is tested to determine whether or not the individual can identify Y as distinct from samples XX.
  • Non-limiting embodiments of the disclosure are generally outlined in FIG. 1 , wherein panel A in FIG. 1 depicts an approach to determining olfactory sensitivity, and wherein FIG. 1 , panel B, presents an approach to determining olfactory resolution. All steps and combinations of steps depicted in the figures of this disclosure are included within its scope. All dilution values described herein, whether or not depicted in the figures, are encompassed within this disclosure. All possible combinations of compounds listed Supporting Data Set 1 and all other tables provided herein are encompassed by this disclosure. Any single compound, or any combination of compounds described herein, can be excluded from the claims.
  • the disclosure provides for determining a threshold score that is at least in part calculated using a reversal, wherein a reversal comprises a change in the direction of the concentration used for the test, i.e., the subject who is nasally inhaling samples with increasing concentrations is subsequently provided a decreased concentration, or vice versa.
  • a reversal comprises a change in the direction of the concentration used for the test, i.e., the subject who is nasally inhaling samples with increasing concentrations is subsequently provided a decreased concentration, or vice versa.
  • more than one reversal point can be attained in order to determine a threshold value.
  • from 1-7 reversals are attained.
  • a threshold value is determined when a subject cannot detect a particular high concentration of odorants at least twice, or the subject detects a particular low concentration of odorants more than one time.
  • a threshold value can be the same as, or used in establishing a score for the individual.
  • a score can be determined using reversals in combination with concentration values where one, or a series, or an average of concentration values where reversal(s) occurred are used.
  • an individual is assigned a score of from 1-16, wherein 16 indicates the individual is able to correctly identify low concentrations of odorants, whereas a score of 1 indicates the individual was not able to identify high concentrations of odorants.
  • Such thresholds and scores can be used for determining olfactory sensitivity, and can be adapted for determining olfactory resolution.
  • standard staircase procedures can be used, given the benefit of the present disclosure, to determine a subject's ability to discriminate between different combinations of compounds that can be, for example, altered in a stepwise fashion to become increasingly similar or dissimilar to each other, and/or to test the capability of an individual to detect a sample that is dissimilar from other sample(s), such as is generally outlined in FIG. 1B .
  • compositions, kits and methods of this disclosure are broadly applicable to geographically and culturally distinct populations of human individuals, and to individuals over a variety of ages.
  • the disclosure removes difficulties of, for example, semantic-based smell tests that include biases based on lack of prior exposure to an odorant, and/or an inability to verbalize a characteristic of an odorant due to geographical, cultural, or linguistic influences or experience.
  • the present disclosure provides smell tests that use mixtures of molecules that average out the variability in sensitivity to individual molecules. Because these mixtures have unfamiliar odors, and the tests are non-semantic, their use eliminates differences in test performance due to the familiarity with the smells or the words used to describe them.
  • the tests facilitate smell testing of diverse populations, without the need to adapt the test stimuli.
  • compositions and methods of this disclosure are used to test a human individual who is diagnosed with, suspected of having, or is at risk for developing one or more sensory and/or cognitive disorders.
  • the individual is at risk for developing a cognitive disorder that comprises memory loss, and/or dementia.
  • the disclosure is used to aid in diagnosis of such a disorder, and may moreover contribute to earlier diagnosis than has been possible before the development of the present invention.
  • the disorder is Alzheimer's disease, or is a post-concussion syndrome, or Chronic Traumatic Encephalopathy (CTE).
  • CTE Chronic Traumatic Encephalopathy
  • the disclosure aids in diagnosis of hyposmia, anosmia, parosmia, or phantosmia.
  • compositions and methods of this disclosure may assist in the diagnosis of include but are not necessarily limited to: inflammatory nasal and sinus diseases, such as those caused by postviral olfactory dysfunction, chronic rhinosinusitis with nasal polyps, chronic rhinosinusitis without nasal polyps; nasal tumors, including esthesioneuroblastoma, adenocarcinoma, respiratory epithelial adenomatoid hamartoma; neurodegenerative diseases including Parkinson's Disease and Huntington's Disease; normal aging; toxic exposure to chemicals in the industrial workplace; congenital syndromes affecting the sense of smell, including Kallmann Syndrome, Kartagener Syndrome, Isolated Congenital Anosmia; brain tumors, including olfactory groove meningioma or temporal lobe neoplasia; systemic diseases, including diabetes, alcoholism, liver failure, renal failure, hypothyroidism, systemic lupus erythematosus; and psychiatric disorders,
  • compositions and methods of this disclosure can aid in monitoring a treatment for one or more conditions.
  • an individual can be evaluated with an initial test or set of tests described herein to establish baseline values for olfactory sensitivity and/or olfactory resolution.
  • the individual can subsequently be re-tested after, for example, a period of therapy for a disorder, and if the individual exhibits an improvement in a value for olfactory sensitivity and/or olfactory resolution relative to the baseline it may be indicative that the particular therapy is effective.
  • the individual exhibits worsening of a value for olfactory sensitivity and/or olfactory resolution relative to the baseline it may be indicative that the particular therapy is not effective.
  • Similar approaches can be adapted to determine if, for example, a particular agent, such as pharmaceutical agent or environmental agent, is having an impact on the olfactory function of an individual.
  • the disclosure is suitable for evaluating whether an individual has suitable olfactory properties that relate to, for example, a particular occupation wherein sense of smell is important for safety or other reasons, including but not necessarily limited to the development of consumer and industrial products that produce or otherwise involve perception of distinct odors.
  • SMELL-S olfactory sensitivity
  • SMELL-R olfactory resolution
  • SMELL-R showed significantly less bias in scores between North American and Taiwanese subjects than conventional semantically-based smell tests that need to be adapted and translated to different populations. It is expected that SMELL-S and SMELL-R will be broadly effective in diagnosing smell dysfunction, including that associated with the earliest signs of memory loss in Alzheimer's disease.
  • compounds used during testing according to this disclosure are provided to the subject in identical containers, with the proviso that coded indicia signifying to the test provider may be included to identify the composition of the compounds.
  • at least two containers, or at least three containers are provided. At least one of the containers comprises a distinct combination of compounds, and/or a distinct dilution of compounds, relative to at least one other container.
  • the containers are arranged in a particular order, such as a line, and the subject nasally inhales the sample from left to right, or right to left, or top to bottom, or bottom to top, etc.
  • the subject identifies strongest odor (SMELL-S, as described below) or the odd odor (SMELL-R, as described below), or completes both tests.
  • the disclosure provides combinations of the following compounds, which are also listed in the “Molecules Included” table that is part of the Supporting Data Set 1 that forms a part of this disclosure: butyraldehyde, cuminaldehyde, octanal, dihydrocoumarin, octanol, phenethylamine, pyruvic acid, methyl sulfide, 4-methyl-5-thiazoleethanol, decanoic acid, eugenol, 2-phenylethanol, dimethyl anthranilate, 2-isopropylphenol, 2-methoxy-4-methylphenol, carvyl acetate, furfuryl alcohol, ⁇ -methylbenzyl alcohol, acetophenone, methyl phenylacetate, diphenyl ether, ⁇ , ⁇ -dimethylbenzenepropanol, phenethyl acetate, 2-ethyl-1-hexanol, 4-methylanisole, ethyl propionate
  • the disclosure includes combinations of that comprise or consist of at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 of these compounds. Mixtures that include more than 30 compounds, whether or not they are the compounds described herein, are also included. In embodiments, the disclosure comprises combinations of these compounds, wherein the compounds are divided into more than one container. Any container suitable for holding the compounds, and whereby a human subject can access the container to smell its contents, is included in the disclosures. In embodiments, the container comprises a glass or plastic vessel which may comprise an attached or removal cover or cap.
  • the vessel is ajar, a tube, or a vial.
  • the vessel comprises an absorbent material.
  • the vessel comprises a digital scent delivery device that volatilizes or aerosolizes the stimuli from a solid or liquid form.
  • the disclosure comprises combinations that contain all of compounds in the Molecules Included list below, wherein sets of the compounds, such as from 2-30 of the compounds, are divided into separate containers.
  • the disclosures comprises sets of these compounds, wherein the compounds are diluted by a method and in a solvent appropriate for a given delivery system such as one or more dilutions obtained from a serial dilution.
  • the disclosure comprises any combination(s) or sets of combinations of compounds that are described in the “Table SMELL-R and SMELL-S Combinations” table that is part of the Supporting Data Set 1.
  • one or more of the compounds are diluted as set forth in the SMELL-R and SMELL-S Combinations table.
  • kits can comprise one or more containers comprising any combination of compounds described herein, and may comprise empty containers for iterative tests, and/or for making compound dilutions for use in the methods described herein.
  • the kits can include one or more solutions, such as for dissolving or suspending or dispersing any of the compounds described herein, and/or for diluting such compounds.
  • the kits may comprise compound master mixes that are suitable for use directly, or for making dilutions and compound combinations as described herein.
  • the kits can include printed material or a means for accessing web-hosted information that instructs the user how to perform the sensitivity and/or resolution tests described herein.
  • the disclosure comprises fixing one or more results from a test described herein in a tangible medium of expression, and optionally communicating the test result to a database, and/or to a health care provider.
  • This example provides a description of smell tests: SMELL-S and SMELL-R.
  • the Olfactory Sensitivity Test measures sensitivity to a mixture of 30 monomolecular odorants ( FIG. 1A ).
  • the Olfactory Resolution Test (SMELL-R) measures the ability of subjects to discriminate the smell of such mixtures with an increase in overlapping components ( FIG. 1B ) (21, 22). Tests were presented in glass jars or vials as triangle tests, in which subjects were asked to pick out the stimulus with the strongest odor (SMELL-S) or the odd odor (SMELL-R). Both tests used adaptive staircase procedures that are standard in clinical olfactory testing ( FIG.
  • test-retest reliability for SMELL-S
  • the bias as defined by the difference between the average of the test and retest scores, was close to zero for all three tests. This indicates that subjects did not show systematically different performance between the test and retest sessions.
  • the 95% limits of agreement were much smaller for the two SMELL-S tests than the phenylethyl alcohol threshold test ( FIG. 2B ).
  • the phenylethyl alcohol threshold test is commercially available as Sniffin' Sticks, a well-validated test administered by clinical staff that utilizes felt-tip pens for odorant delivery (23, 25).
  • Sniffin' Sticks a well-validated test administered by clinical staff that utilizes felt-tip pens for odorant delivery (23, 25).
  • SMELL-S v2
  • the standard measure of clinical test accuracy is the area under the receiver operating characteristic (ROC) curve, which plots the true and false positive rates at different cut-off scores.
  • the area under the ROC curve of SMELL-S (v2) is 0.98 (95% confidence interval: 0.85-1.00) ( FIG. 4B ), which is close to the perfect accuracy of 1.
  • An aspect of this disclosure is the development of a test that does not have to be adapted to different populations.
  • SMELL-R (v2) performs well in different countries
  • SMELL-R (v2) performance between Taiwanese and North American subjects Example 3, FIG. 5A .
  • As a positive control we used the North American version of the UPSIT for both populations, because previous work has shown that Taiwanese subjects have systematically lower scores on this test due to unfamiliarity with several of the test items (18).
  • Taiwanese subjects had a Chinese translation of the English multiple-choice questions in the test booklet.
  • SMELL-R (v2) did not require any language translation because it is non-semantic.
  • Taiwanese subjects scored higher on SMELL-R (v2) than the North American subjects ( FIG. 5D ) (p 0.0157, Mann Whitney test).
  • SMELL-R (v2) can be applied across different populations with different prior olfactory experiences, and without the need to adapt it to the local culture and language.
  • Subjects were aged 18 or over and agreed to refrain from using perfume or cologne, and ingesting anything except water one hour prior to the study visit. At the beginning of each visit, subjects washed their hands with odorless soap. For subjects reporting a normal sense of smell and taste, we excluded subjects who presented with current or past history of conditions that might be related to smell loss (acute or chronic rhinosinusitis, nasal tumor, upper respiratory tract infection or head trauma that altered the sense of smell for more than one month, history of brain or sinonasal surgery, asthma, stroke, neurodegenerative disease, radiation therapy or chemotherapy, active smoking, or consumption of medication affecting the sense of smell during the study). Participants with self-reported smell dysfunction were not subject to these exclusion criteria. All raw data in the paper, including details about the demographics of the subjects, odorants, and composition of the test stimuli are in Supporting Data Set 1.
  • the testing station comprised a computer, wireless mouse, barcode scanner, and trays containing numbered stimulus containers labeled with bar codes.
  • Triangle tests were set up so that subjects were never tested with the same set of stimuli twice in a row, to avoid the situation where subjects remembered their answers from the previous trial.
  • Subjects used a barcode scanner to register test data automatically. Subjects took between 20-35 minutes to complete each smell test, with the exception of the UPSIT which took 10-15 minutes.
  • a standard inter-trial interval was imposed to avoid odor adaptation by requiring subjects to play a computer game for 20 seconds.
  • SMELL-S and SMELL-R were created with four different mixtures of 30 molecules drawn from a panel of 109 monomolecular, intensity-matched chemicals. These odorants were selected from stimuli utilized in previous psychophysical studies (21, 38). We used only molecules that minimally activated the trigeminal system, because such stimuli can be detected by anosmic subjects (39, 40). A characteristic of trigeminal activation by a molecule is a fresh, cold, burning, eucalyptus, pungent, or tickling sensation. We used a lateralization task in which an odorant is applied into only one nostril to assign a lateralization score to each molecule. It is possible to localize the stimulated nostril if it activates the trigeminal system.
  • Stimuli for the vial threshold tests and SMELL-S were presented to subjects with amber glass vials (height: 95 mm, diameter: 28 mm).
  • Stimuli for SMELL-R were presented to subjects with amber glass jars (height: 51 mm, diameter: 55 mm). The complete list of stimuli used in this study is in Supporting Data Set 1.
  • Threshold tests were administered as a series of triangle tests. Subjects were presented with three vials: two contained 1 ml solvent (paraffin oil) and one contained either phenylethyl alcohol or butanol diluted in solvent in a total volume of 1 ml. Tests comprised 16 different concentrations generated by serial dilutions (1:2) of either odorant in paraffin oil, with the starting concentrations at 0.0313% for phenylethyl alcohol (vial) and 0.25% for butanol (vial). The subject was prompted to sniff each vial and select the one with the strongest perceived odor using an adaptive staircase procedure commonly used in smell testing (23).
  • the procedure started at the lowest concentration. If they identified an incorrect vial, the second next higher concentration was presented and so on, until they identified the correct vial. If the subjects identified the correct vial, they were retested at the same concentration. If they identified the correct vial in this retest, they were tested at the next lower concentration. If they identified an incorrect vial, they were tested at the next higher concentration.
  • a reversal is when the direction in which the concentration is changed reverses. The procedure ended after the seventh reversal, or until the subject failed the level with the highest concentration twice in row, or succeeded with the lowest concentration level 5 times in row.
  • the threshold was defined as the average of the concentrations at which the last two reversals occurred. If the highest concentration were not correctly identified twice, the score was 1. If the lowest was identified 5 times in a row, the score was 16.
  • SMELL-S (v1) and SMELL-S (v2) we prepared 19 serial dilutions in paraffin oil (1:2) of two different mixtures of 30 monomolecular odorants and used the last 16 dilutions, such that the tests ranged from easiest (level 1, 1:8 dilution) to most difficult (level 16, 1:262,144 dilution). Subjects were asked to sniff 3 vials, one of which was filled with 1 ml of a mixture of 30 components, and the other two were filled with 1 ml of solvent (paraffin oil). Subjects were instructed to pick out the one vial with the strongest perceived odor. If they were unable to detect any difference among the three vials, they were prompted to choose one at random.
  • the procedure started at the lowest concentration (level 16).
  • SMELL-R (v1) and SMELL-R (v2) we prepared 16 pairs of mixtures of 30 monomolecular odorants that differ in how many components the two mixtures in the pair share from 0% (easiest; level 1) to 96.7% (most difficult; level 16).
  • ODD odor components of a mixture of 30 molecules
  • CONTROL odor components from another mixture of 30 components that did not change in composition across the levels.
  • Increasing the level of difficulty by one point correspond to an addition of 2 overlapping molecules between both mixtures, except from level 15 to 16, where we added only 1 shared molecule.
  • Stimuli (8 ml) were introduced into jars containing absorbent cotton pads. Subjects were asked to sniff the contents of 3 jars, one of which was filled with 8 ml of a mixture of 30 components, and the other two were filled with 8 ml of a mixture of 30 components with different degree of overlap with the first jar. Subjects were instructed to pick out the odd jar. If they were unable to detect any difference among the three jars, they were prompted to choose one at random. Triangle tests started at a medium difficulty (level 8). If they identified the incorrect jar, the next easier level was presented. We calculated the SMELL-R resolution score following the same adaptive staircase procedure described above. For each subject, we measured the olfactory resolution with two versions of the tests, SMELL-R (v1) and SMELL-R (v2), which differed only in the chemical constituents of the two sets of mixtures.
  • the Sniffin' Sticks (23) threshold phenylethyl alcohol threshold test is a commercial product that uses felt-tip pens filled with odorant instead of ink for odor presentation.
  • the test comprises pens containing 16 serial dilutions of phenylethyl alcohol (1:2) in solvent (propylene glycol) with a starting concentration of 4%.
  • the test was administered as a triangle test. Three pens were presented to the subjects by the investigator in a randomized order. Two pens contained the solvent only, and the third pen contained the diluted odorant.
  • the University of Pennsylvania Smell Identification Test (UPSIT, marketed as the Smell Identification Test by Sensonics International) is a well-validated and self-administered smell identification test widely used in the USA (43).
  • the test consists of 4 different 10-page booklets, with a total of 40 monomolecular stimuli. On each page, there is a different “scratch and sniff” strip which is embedded with a microencapsulated odorant. There are also four choice multiple-choice questions on each page. Subjects used the tip of a pencil to release the smell of the stimuli.
  • the Taiwanese subjects were given a reference sheet on which the English multiple-choice questions in the UPSIT booklets were translated into Chinese by R.-S. J. ( FIG. 5B ) (18).
  • ICC Intra-class Correlation Coefficient
  • Taiwanese IRB Protocol #JHS-0901
  • the North American subjects were tested at The Rockefeller University Hospital, and the Taiwanese subjects were tested in the Department of Otolaryngology at Taichung Veterans General Hospital.
  • the experimental design was the same in both institutions.
  • Each subject came to the test site for a single visit, during which subjects performed the SMELL-R (v2) and UPSIT, separated by a 10 minute break, in randomized order ( FIG. 5A ).
  • SMELL-S and SMELL-R olfactory tests not influenced by odor-specific insensitivity or prior olfactory experience
  • SMELL-R MIXTURES CID Odor name Dilution SMELL-R (v1) first mix 14514 2-acetyl-5-methylfuran 1/1000 first mix 12741 2-decanone 1/10 first mix 7720 2-ethyl-1-hexanol 1/1,000 first mix 13187 2-nonanone 1/100 first mix 6054 2-phenylethanol 1/100 first mix 89440 6-acetyl-1,1,2,4,4,7- 1/10 hexamethyltetralin first mix 7410 acetophenone 1/1,000 first mix 16324 allyl butyrate 1/1000 first mix 261 butyraldehyde 1/1,000 first mix 10364 carvacrol 1/1000 first mix 7335 carvyl acetate 1/1000 first mix 2969 decanoic acid 1/10 first mix 660 dihydrocoumarin 1/100 first mix 62378 dihydrojasmone 1/10 first mix 6826 dimethyl anthranilate 1/100 first mix 7583 diphenyl ether
  • SMELL-S and SMELL-R olfactory tests not influenced by odor-specific insensitivity or prior olfactory experience
  • SMELL-S MIXTURES CID Molecule Dilution SMELL-S (v1) 14514 2-acetyl-5-methylfuran 1/1000 12741 2-decanone 1/10 7720 2-ethyl-1-hexanol 1/1,000 13187 2-nonanone 1/100 6054 2-phenylethanol 1/100 89440 6-acetyl-1,1,2,4,4,7-hexamethyltetralin 1/10 7410 acetophenone 1/1,000 16324 allyl butyrate 1/1000 261 butyraldehyde 1/1,000 10364 carvacrol 1/1000 7335 carvyl acetate 1/1000 2969 decanoic acid 1/10 660 dihydrocoumarin 1/100 62378 dihydrojasmone 1/10 6826 dimethyl anthranilate 1/100 7583 diphenyl ether 1/1,000 24020 ethyl 2-methylbutyrate 1/1000 12327 ethyl undecanoate 1
  • SMELL-S and SMELL-R olfactory tests not influenced by odor-specific insensitivity or prior olfactory experience
  • Table SMELL-R Combinations This Table lists the composition of stimuli for all 16 levels of SMELL-R (v1) and SMELL-R (v2).
  • the ODD odor is presented in a single vial
  • the CONTROL odor is presented in two identical vials.
  • the task is for the subject to sniff the three vials and select the one vial containing the ODD odor. All mixtures have equal volumes of each component.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Neurology (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Fats And Perfumes (AREA)
US16/628,075 2017-07-03 2018-07-03 Compositions and methods for a universal clinical test for olfactory dysfunction Abandoned US20210145348A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/628,075 US20210145348A1 (en) 2017-07-03 2018-07-03 Compositions and methods for a universal clinical test for olfactory dysfunction

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762528420P 2017-07-03 2017-07-03
US16/628,075 US20210145348A1 (en) 2017-07-03 2018-07-03 Compositions and methods for a universal clinical test for olfactory dysfunction
PCT/US2018/040704 WO2019010172A1 (fr) 2017-07-03 2018-07-03 Compositions et procédés destinés à un test clinique universel pour un dysfonctionnement olfactif

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/040704 A-371-Of-International WO2019010172A1 (fr) 2017-07-03 2018-07-03 Compositions et procédés destinés à un test clinique universel pour un dysfonctionnement olfactif

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/160,624 Continuation US20230172525A1 (en) 2017-07-03 2023-01-27 Compositions and methods for a universal clinical test for olfactory dysfunction

Publications (1)

Publication Number Publication Date
US20210145348A1 true US20210145348A1 (en) 2021-05-20

Family

ID=64950333

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/628,075 Abandoned US20210145348A1 (en) 2017-07-03 2018-07-03 Compositions and methods for a universal clinical test for olfactory dysfunction
US18/160,624 Pending US20230172525A1 (en) 2017-07-03 2023-01-27 Compositions and methods for a universal clinical test for olfactory dysfunction

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/160,624 Pending US20230172525A1 (en) 2017-07-03 2023-01-27 Compositions and methods for a universal clinical test for olfactory dysfunction

Country Status (3)

Country Link
US (2) US20210145348A1 (fr)
EP (1) EP3648613A4 (fr)
WO (1) WO2019010172A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD973523S1 (en) 2021-06-14 2022-12-27 U-Smell-It Multi-odorant testing device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111579724B (zh) * 2020-06-01 2022-07-12 中国标准化研究院 一种麻和辣阈上感觉敏感度快速分类方法、装置及应用
WO2022028949A1 (fr) * 2020-08-05 2022-02-10 Mkg Consulting Ug (Haftungsbeschränkt) Système de test pandémique rapide
CA3201385A1 (fr) * 2020-08-26 2022-03-03 Evon Medics, Llc Systemes et procedes de test olfactif

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844302B1 (en) * 2000-10-27 2005-01-18 International Flavors & Fragrances Inc. Encapsulated flavor and fragrance

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800897A (en) * 1996-01-25 1998-09-01 Eastman Chemical Company Air freshener composition containing a fiber pad
AU2004292536A1 (en) * 2003-11-21 2005-06-09 Arena Pharmaceuticals, Inc. Methods for producing olfactory GPCRS
JP5015797B2 (ja) * 2004-12-22 2012-08-29 シムライズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング・ウント・コンパニー・コマンジツト・ゲゼルシヤフト アクリレート及びアセトフェノンをベースとする水素用着臭剤
US20070077204A1 (en) * 2005-06-10 2007-04-05 The Trustees Of Columbia University In The City Of New York Olfactory identification tests for cognitive diseases and disorders
EP2174585A1 (fr) * 2008-09-29 2010-04-14 Carlo Maremmani Kit de test d'identification olfactive pour déterminer des troubles neurologiques
US9959392B2 (en) * 2011-09-07 2018-05-01 Yeda Research And Development Co. Ltd. Olfactory signature and odorant mixture having the same
EP2792302A1 (fr) * 2013-04-17 2014-10-22 Institut Pasteur Moyens olfactifs utiles dans le diagnostic et le traitement de la dépression
US10980467B2 (en) * 2015-04-03 2021-04-20 Olfaxis, Llc Apparatus, method, and system for testing human olfactory systems
JP6949838B2 (ja) * 2015-10-29 2021-10-13 フィルメニッヒ インコーポレイテッドFirmenich Incorporated 高甘味度甘味料

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844302B1 (en) * 2000-10-27 2005-01-18 International Flavors & Fragrances Inc. Encapsulated flavor and fragrance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD973523S1 (en) 2021-06-14 2022-12-27 U-Smell-It Multi-odorant testing device
USD995337S1 (en) 2021-06-14 2023-08-15 Derek Kalev Toomre Multi-odorant testing device

Also Published As

Publication number Publication date
EP3648613A4 (fr) 2021-03-31
US20230172525A1 (en) 2023-06-08
EP3648613A1 (fr) 2020-05-13
WO2019010172A1 (fr) 2019-01-10

Similar Documents

Publication Publication Date Title
US20230172525A1 (en) Compositions and methods for a universal clinical test for olfactory dysfunction
Le Bon et al. Psychophysical evaluation of chemosensory functions 5 weeks after olfactory loss due to COVID-19: a prospective cohort study on 72 patients
Cameron et al. Odor identification testing in children and young adults using the smell wheel
Sorokowska et al. Changes of olfactory abilities in relation to age: odor identification in more than 1400 people aged 4 to 80 years
Allen et al. Flavoring chemicals in e-cigarettes: diacetyl, 2, 3-pentanedione, and acetoin in a sample of 51 products, including fruit-, candy-, and cocktail-flavored e-cigarettes
Veyseller et al. Connecticut (CCCRC) olfactory test: normative values in 426 healthy volunteers
JP6666327B2 (ja) 純粋嗅剤に対する嗅覚検知閾値の左右差を検知するための改良された方法
Doty Olfactory dysfunction and its measurement in the clinic
Naka et al. Clinical significance of smell and taste disorders in patients with diabetes mellitus
Doty Olfactory dysfunction and its measurement in the clinic and workplace
White et al. Metacognitive knowledge of olfactory dysfunction in Parkinson’s disease
Coucke et al. Δ9-Tetrahydrocannabinol concentrations in exhaled breath and physiological effects following cannabis intake–A pilot study using illicit cannabis
Landis et al. Olfactory function improves following hemodialysis
Maremmani et al. The validity and reliability of the Italian Olfactory Identification Test (IOIT) in healthy subjects and in Parkinson's disease patients
Rodríguez-Violante et al. Comparing the accuracy of different smell identification tests in Parkinson’s disease: relevance of cultural aspects
Hayes et al. Evaluation of smoking on olfactory thresholds of phenyl ethyl alcohol and n-butanol
EP2174585A1 (fr) Kit de test d'identification olfactive pour déterminer des troubles neurologiques
KR102297693B1 (ko) 후각 검사용 키트
Fasunla et al. Evaluation of olfactory and gustatory function of HIV infected women
Froutan et al. Lead toxicity: a probable cause of abdominal pain in drug abusers
Tran et al. Development and validation of the Vietnamese smell identification test
Picillo et al. Validation of an Italian version of the 40-item University of Pennsylvania Smell Identification Test that is physician administered: our experience on one hundred and thirty-eight healthy subjects.
Gellrich et al. Assessment of olfactory function in children and adolescents: An overview
Risby et al. Breath analysis—past, present and future: a special issue in honour of Michael Phillips’ 70th birthday
Labianca Non-foolproof nature of slope detection technology in the Dräger Alcotest 9510

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION