US20210100988A1 - Methods of preparing balloon expandable catheters for cardiac and vascular interventions - Google Patents

Methods of preparing balloon expandable catheters for cardiac and vascular interventions Download PDF

Info

Publication number
US20210100988A1
US20210100988A1 US16/940,465 US202016940465A US2021100988A1 US 20210100988 A1 US20210100988 A1 US 20210100988A1 US 202016940465 A US202016940465 A US 202016940465A US 2021100988 A1 US2021100988 A1 US 2021100988A1
Authority
US
United States
Prior art keywords
balloon catheter
balloon
inflator
air
inflation lumen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US16/940,465
Other versions
US11878133B2 (en
Inventor
Justin Peterson
Victoria UNG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic Inc filed Critical Medtronic Inc
Priority to US16/940,465 priority Critical patent/US11878133B2/en
Assigned to MEDTRONIC, INC. reassignment MEDTRONIC, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PETERSON, JUSTIN, UNG, VICTORIA
Priority to PCT/US2020/053725 priority patent/WO2021071732A1/en
Priority to EP20793524.8A priority patent/EP4041364A1/en
Priority to CN202080070563.1A priority patent/CN115279445A/en
Publication of US20210100988A1 publication Critical patent/US20210100988A1/en
Priority to US18/532,090 priority patent/US20240100307A1/en
Application granted granted Critical
Publication of US11878133B2 publication Critical patent/US11878133B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/1018Balloon inflating or inflation-control devices
    • A61M25/10181Means for forcing inflation fluid into the balloon
    • A61M25/10182Injector syringes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M25/104Balloon catheters used for angioplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1061Balloon catheters with special features or adapted for special applications having separate inflations tubes, e.g. coaxial tubes or tubes otherwise arranged apart from the catheter tube
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1077Balloon catheters with special features or adapted for special applications having a system for expelling the air out of the balloon before inflation and use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/12Blood circulatory system
    • A61M2210/125Heart

Abstract

Methods for purging a balloon catheter of air. An inflation fluid is inserted into a balloon and an inflation lumen of a balloon catheter. The inflation lumen is in fluid communication with the balloon. The balloon catheter is positioned in an inverted orientation with a distal end thereof disposed below a proximal end thereof. The distal end of the balloon catheter includes a balloon. A vibration source is positioned in direct contact with an outer surface of the balloon catheter. The balloon catheter is vibrated via the vibration source. A vacuum is applied or pulled on the inflation lumen of the balloon catheter. The steps of vibrating the balloon catheter and applying the vacuum are performed simultaneously.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Patent Application No. 62/912,179 filed Oct. 8, 2019.
  • FIELD OF THE INVENTION
  • The present disclosure relates to balloon catheters, and more particularly to methods of purging air from balloon catheters prior to use in an interventional procedure.
  • BACKGROUND OF THE INVENTION
  • Balloon catheters are conventionally used in a wide variety of medical procedures. For example, a balloon is inflated during percutaneous transluminal coronary angioplasty (PTCA) to dilate a stenotic blood vessel and may also be used to deliver a stent to support the vessel lumen in an open position. Typically, balloon inflation is accomplished by injecting an inflation fluid under pressure into an inflation lumen of a balloon catheter. As the pressure of the inflation fluid within the balloon catheter increases during use, there is a possibility that the balloon may burst due to excess pressure of the inflation fluid. If such bursting occurs, the inflation fluid inside the catheter will enter the blood stream of the patient. Normally, the pressurizing inflation fluid is a saline or other physiologically inert solution which should not cause harm to the patient. However, should there be any air within the catheter, bursting of the balloon might release air into the patient's blood vessel with the possibility that an air embolus might be formed. Therefore, balloon catheters must be purged of air prior to use to eliminate the risk of an air embolism entering a vessel if the system were to leak or the balloon were to rupture. The air also must be evacuated from the balloon to accomplish a desired inflation of the balloon using a specific volume of inflation fluid without the need to account for compression of an unknown volume of air within the balloon.
  • Since the balloon is used in arteries and veins, an inflation media must be selected which will avoid serious injury to the patient should the media be accidentally released into the body. Radiopaque contrast media, either 100% or in solution with water or saline, is typically employed to fill and purge the balloon of all harmful gases. As described above, air removal is essential not only to ensure the safety of the patient but also to prevent air blocks which could limit the amount of expansion of the balloon, thereby reducing the effectiveness of the procedure.
  • A common method of purging air from a balloon catheter prior to use involves creating a vacuum inside the inflation lumen of the balloon catheter, typically in conjunction with a syringe used for inflation fluid filling purposes. Inflation fluid is injected into the inflation lumen and air is drawn into the syringe. In such a procedure, air which has been purged from the catheter collects in the syringe, which is removed from the catheter so that air in the syringe may be expelled. These steps may have to be repeated multiple times to adequately purge the catheter of air, requiring a substantial amount of labor and preparation time. Depending on the size of the balloon, and therefore the volume of fluid and bubbles in the balloon catheter, the preparation time can reach up to thirty minutes. Long preparation time is particularly an issue for the larger balloon catheters such as those used to implant a replacement heart valve.
  • Accordingly, it would be desirable to provide a method of purging air from balloon catheters that requires less preparation time.
  • SUMMARY OF THE INVENTION
  • Embodiments hereof relate to a method for purging a balloon catheter of air. In an embodiment, an inflation fluid is inserted into a balloon and an inflation lumen of a balloon catheter. The inflation lumen is in fluid communication with the balloon. The balloon catheter is positioned in an inverted orientation with a distal end thereof disposed below a proximal end thereof. The distal end of the balloon catheter includes a balloon. A vibration source is positioned in direct contact with an outer surface of the balloon catheter. The balloon catheter is vibrated via the vibration source to cause air within the balloon of the balloon catheter or air within the inflation lumen of the balloon catheter to move upwards towards the proximal end of the balloon catheter.
  • In another embodiment, an inflation fluid is inserted into a balloon and an inflation lumen of a balloon catheter. The inflation lumen is in fluid communication with the balloon. The balloon catheter is positioned in an inverted orientation with a distal end thereof disposed below a proximal end thereof. The distal end of the balloon catheter includes a balloon. A vibration source is positioned in direct contact with an outer surface of the balloon catheter. An inflation fluid is inserted into the balloon and the inflation lumen of the balloon catheter. A vacuum is applied or pulled on the inflation lumen of the balloon catheter. The balloon catheter is vibrated via the vibration source while applying the vacuum on the inflation lumen of the balloon catheter to cause air within the balloon of the balloon catheter or air within the inflation lumen of the balloon catheter to move upwards through the inflation fluid towards the proximal end of the balloon catheter.
  • In another embodiment, an inflation fluid is inserted into a balloon and an inflation lumen of a balloon catheter. The inflation lumen is in fluid communication with the balloon. The balloon catheter is positioned in an inverted orientation with a distal end thereof disposed below a proximal end thereof. The distal end of the balloon catheter includes a balloon. A vibration source is positioned in direct contact with an outer surface of the balloon catheter. The balloon catheter is vibrated via the vibration source. A vacuum is applied or pulled on the inflation lumen of the balloon catheter. The steps of vibrating the balloon catheter and applying the vacuum are performed simultaneously.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing and other features and advantages of the invention will be apparent from the following description of embodiments hereof as illustrated in the accompanying drawings. The accompanying drawings, which are incorporated herein and form a part of the specification, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention. The drawings are not to scale.
  • FIG. 1 is a side view of a balloon catheter in accordance with an embodiment hereof, wherein a balloon of the balloon catheter is in an expanded configuration.
  • FIG. 1A is a cross-sectional view taken along line A-A of FIG. 1.
  • FIG. 1B is a cross-sectional view of a balloon catheter according to an alternate embodiment hereof.
  • FIG. 2 is a side view of the balloon catheter of FIG. 1 and a stopcock, an inflator, and a vibration source, wherein the stopcock, the inflator, and the vibration source are accessories utilized in a method of purging air from the balloon catheter according to an embodiment hereof.
  • FIG. 3 is a flow chart illustrating a method of purging air from a balloon catheter according to an embodiment hereof
  • FIG. 4 is a flow chart illustrating a method of purging air from a balloon catheter according to another embodiment hereof.
  • FIG. 5 is a flow chart illustrating a method of purging air from a balloon catheter according to another embodiment hereof.
  • DETAILED DESCRIPTION
  • Specific embodiments of the present invention are now described with reference to the figures, wherein like reference numbers indicate identical or functionally similar elements. The terms “distal” and “proximal” are used in the following description with respect to a position or direction relative to the treating clinician. “Distal” or “distally” is a position distant from or in a direction away from the clinician. “Proximal” or “proximally” is a position near or in a direction toward the clinician.
  • The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Although the description of the invention is in the context of balloon catheters utilized in treatment of a heart valve, the invention may also be used where it is deemed useful in other valved intraluminal sites that are not in the heart or in the context of treatment of blood vessel or other body passageways. Further, the invention has applicability to all balloon expandable devices and any balloon catheter that may be purged of air prior to use thereof. Stated another way, the invention has broad applicability across all vascular interventions that involve a balloon catheter. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
  • Embodiments hereof relate to a method of purging a balloon catheter of air prior to an interventional procedure. More particularly, embodiments hereof relate to the application of a vibration source to expeditiously remove bubbles, or voids, from a balloon catheter prior to use. Methods described herein substantially reduce the length of the catheter preparation time by applying a vibration source to expedite bubble removal from the balloon catheter. To facilitate the air removal process, a vibration source is placed in direct contact with certain external parts of the catheter. This vibratory action causes the entrapped bubbles to rise through the column of inflation fluid and exit the catheter. This vibratory action significantly reduces the catheter preparation time. For example, in an embodiment, the catheter preparation time may be reduced from approximately 15-30 minutes when air is purged from a relatively large balloon catheter using conventional purging methods to less than 2 minutes for the same relatively large balloon catheter using vibratory action to expeditiously remove air as described in embodiments hereof. The shortened catheter preparation time reduces physical strain on staff, and also reduces overall procedure time which thereby increases potential patient volume and revenue for the catheter lab center.
  • Turning now to the figures, FIGS. 1 and 1A depict an exemplary balloon catheter 100 that may be purged of air prior to use in an interventional procedure according to an embodiment hereof. In embodiments hereof, the balloon catheter 100 may form the basis of a prosthetic heart valve delivery system, a stent delivery system, a graft delivery system, and/or a drug delivery system. Stated another way, the balloon catheter 100 may be used to deliver a balloon-expandable device (not shown), such as a replacement heart valve, a stent, a graft, a drug delivery device, or another balloon-expandable device. Alternatively, the balloon catheter 100 may be utilized in a balloon angioplasty procedure. The objective in angioplasty is to restore adequate blood flow through the affected artery, which may be accomplished by inflating a balloon of a balloon catheter within the narrowed lumen of the artery to dilate the vessel.
  • The balloon catheter 100 includes a proximal portion 102 that extends out of the patient during clinical use and has a hub 104. As would be understood by one of ordinary skill in the art of balloon catheter design, the hub 104 includes a luer fitting 105 or other type of fitting that may be connected to a source of inflation fluid and may be of another construction or configuration without departing from the scope of the present invention. A distal portion 106 of the balloon catheter 100 is positionable at a target treatment location and includes an inflatable balloon 108, which is shown in an expanded or inflated configuration in FIG. 1. The balloon 108 may be made of a biocompatible material such as a thermoplastic polyurethane (TPU) resin, styrene-ethylene-butadiene-styrene (SEBS), PEBAX®, or the like.
  • With reference to the FIG. 1A which is a cross-sectional view taken along line A-A of FIG. 1, the balloon catheter 100 may have an over-the-wire (OTW) coaxial catheter configuration with an outer tubular component or shaft 110 and an inner tubular component or shaft 112. The outer shaft 110 has a proximal end 111 coupled to the hub 104 and a distal end 114 coupled to a proximal end of the balloon 108. The inner shaft 112 defines a guidewire lumen 116 extending substantially the entire length of the catheter for accommodating a guidewire (not shown). The inner shaft 112 has a proximal end (obscured from view in FIG. 1) coupled to the hub 104 and a distal end 118 terminating distally of the balloon 108 and defining a distal guidewire port. The inner shaft 112 extends coaxially within the outer shaft 110 such that an annular inflation lumen 120 is defined between an inner surface of the outer shaft 110 and an outer surface of the inner shaft 112. The inflation lumen 120 thus extends within the outer shaft 110 and into the inner volume of the balloon 108 to allow inflation fluid received through an inflation port of the luer fitting 105 of the hub 104 to be delivered to the balloon 108. A distal end of the balloon 108 is coupled to the inner shaft 112 distal of a distal end 114 of the outer shaft 110.
  • Other types of catheter construction are also amendable to the invention, such as, without limitation thereto, a catheter shaft formed by multi-lumen profile extrusion. For example, an alternate catheter construction is illustrated in FIG. 1B, which is a cross-sectional view of a balloon catheter 100B according to an alternative embodiment. Rather than including coaxial inner and outer catheter shafts, the balloon catheter 100B includes a single catheter shaft 110B that defines an inflation lumen 120B and a guidewire lumen 116B, each extending substantially the entire length of the catheter and parallel to each other. Although depicted as circular in cross-section, one or more lumen(s) of the catheter shaft 110B may have any suitable cross-section including for example circular, elliptical, or crescent shapes. In addition, the balloon catheter 100B may have a rapid-exchange configuration with the guidewire lumen extending only along a distal portion of the catheter, as understood by those of ordinary skill in the art.
  • Regardless of the type of catheter construction, the catheter shaft(s) may be formed of a polymeric material, non-exhaustive examples of which include polyethylene, polyethylene block amide (PEBA), polyamide and/or combinations thereof. Optionally, the catheter shaft(s) or some portion thereof may be formed as a composite having a reinforcement material incorporated within a polymeric body in order to enhance strength and/or flexibility. Suitable reinforcement layers include braiding, wire mesh layers, embedded axial wires, embedded helical or circumferential wires, and the like. In one embodiment, for example, at least a proximal portion of the outer shaft 110 or catheter shaft 110B may be formed from a reinforced polymeric tube.
  • Turning now to FIG. 2, the balloon catheter 100 is shown in conjunction with a stopcock 222, an inflator 224, and a vibration source 226. The stopcock 222, the inflator 224, and the vibration source 226 are accessories or tools that are utilized in a method of purging air from the balloon catheter 100 prior to use in an interventional procedure according embodiments hereof. The stopcock 222 may be a three-way stopcock, and is configured to regulate the flow of an inflation fluid or gas therethrough, as known by persons having ordinary skill in the art. More particularly, as will be described in more detail herein, the stopcock 222 seals the balloon catheter 100 during application of a vacuum via the inflator 224 during the air purging methods described herein. The inflator 224 is configured to apply or pull a vacuum on the inflation lumen 120 of the balloon catheter 100 in order to purge air from the balloon 108 and the inflation lumen 120. In the embodiment depicted in FIG. 2, the inflator 224 is a syringe. Further, in addition to pulling a vacuum, the inflator 224 is also configured to hold an inflation fluid therein in order to flush the inflation lumen 120. The vibration source 226 is a tool that is configured to directly contact one or more external areas of the balloon catheter 100 to cause air entrapped in the balloon catheter 100 to exit from the balloon catheter 100, as will be described in more detail herein. For example purposes only, in an embodiment, the vibration source 226 may be a commercially available vortex mixer such as Vortex-Genie 2 available from Scientific Industries, Inc. of Bohemia, N.Y. In further embodiments, the vibration source 226 is a handheld tool that is configured to be held by a user and is configured to make direct physical contact with the outer surface of the balloon 108 and/or the outer surface of the outer shaft 110 or the shaft 110B.
  • Turning now to FIG. 3, a method for purging the balloon catheter 100 of air according to an embodiment hereof is shown. The method of FIG. 3 is preferably performed prior to an interventional procedure which utilizes the balloon catheter 100 in situ. This method is particularly advantageous for balloon catheters having larger balloons, such as but not limited to a balloon catheter configured as a delivery device for a replacement heart valve, because the method substantially reduces the length of the catheter preparation time by applying the vibration source 226 to expedite bubble/air removal from the balloon catheter as described above.
  • In a step 330, the balloon catheter 100 is removed from its packaging. The stopcock 222 is attached to the inflation port at the proximal portion 102 of the balloon catheter 100. More particularly, the stopcock 222 is attached to the inflation port of the luer fitting 105 of the hub 104 of the balloon catheter 100. As described above, the distal portion 106 of the balloon catheter 100 includes the balloon 108 and the inflation lumen 120 of the balloon catheter 100 is in fluid communication with the interior of the balloon 120. Although the method of FIG. 3 is described with respect to the balloon catheter 100, it will be understood by those of ordinary skill in the art that this is for sake of illustration only and the methods described herein for purging a balloon catheter of air may be utilized on balloon catheters of any construction and size.
  • In a step 332, the inflator 224 is prepared by at least partially filling the inflator 224 with an inflation fluid. In an embodiment, the inflator 224 is a syringe and the inflation fluid is a radiopaque contrast fluid, or a radiopaque contrast fluid mixed with saline or water. Other suitable biocompatible inflation fluids may be utilized.
  • In a step 334, the inflator 224 is attached to the stopcock 222 which was previously attached to the inflation port of the luer fitting 105 of the hub 104 of the balloon catheter 100 as described above and the stopcock 222 is opened to the balloon catheter 100. When the stopcock 222 is opened to the balloon catheter 100, the inflator 224 and the inflation lumen 120 of the balloon catheter 100 are in fluid communication and the inflation lumen 120 of the balloon catheter 100 is sealed with respect to atmosphere. Alternatively, the inflator 224 may be attached to the stopcock 222 and then the assembly of the inflator 224 and the stopcock 222 may be simultaneously attached to the inflation port at the proximal portion 102 of the balloon catheter 100.
  • In a step 336, the inflation lumen 120 is at least partially filled with the inflation fluid from the inflator 224. In order to at least partially fill the inflation lumen 120 with the inflation fluid from the inflator, the inflation fluid may be injected or inserted into the balloon 108 and the inflation lumen 120 of the balloon catheter 100 via the inflator 224 by advancing the plunger of the inflator 224. In another embodiment, in order to at least partially fill the inflation lumen 120 with the inflation fluid from the inflator, a vacuum may be applied or pulled on the inflation lumen 120 of the balloon catheter 100 via the inflator 224 and then the vacuum may be removed by slowly releasing the plunger of the inflator 224 to a neutral position, thereby at least partially filling the inflation lumen 120 with the inflation fluid from the inflator. More particularly, a user can manually apply or pull a vacuum on the inflation lumen 120 of the balloon catheter 100 by “pulling negative” or retracting the plunger of the inflator 224. When the plunger of the inflator 224 is released to a neutral position, the inflation fluid within the inflator 224 is drawn into the balloon catheter 100 and the inflation lumen 120 at least partially fills with the inflation fluid. Stated another way, removing the vacuum results in inflation fluid from the inflator 224 being pulled into the balloon catheter 100 such that the inflation lumen 120 and the balloon 108 are filled with the inflation fluid. The inflation fluid is drawn into the inflation lumen 120 and balloon 108 as a result of the pressure changes of the enclosed system.
  • In a step 338, the balloon catheter 100 is inverted or positioned in an inverted orientation such that the distal portion 106 including the balloon 108 is oriented below or downwardly relative to the proximal portion 102 of the balloon catheter and the inflator 224 coupled thereto. In an embodiment, the balloon catheter 100 is positioned in a vertical orientation with its distal end including the balloon 108 disposed vertically below the hub 104 and the inflator 224. However, the balloon catheter 100 is not required to be oriented vertically; the balloon catheter 100 may be oriented at an angle so long as the distal portion 106 thereof including the balloon 108 is oriented below or downwardly relative to the inflator 224. As will be described in more detail herein, the positioning of the inflator 224 above the balloon catheter 100 allows air bubbles to ascend or rise through the column of inflation fluid in the inflation lumen 120 and exit from the balloon catheter 100 via the inflator 224.
  • In a step 340, the vibration source 226 is positioned in direct contact with an outer surface of the balloon catheter. In an embodiment, the vibration source 226 is a handheld tool that is configured to be held by a user. In an embodiment, the vibration source 226 includes an outer surface configured to be held by a user and includes an inner surface (not shown) that is configured to make direct physical contact with the outer surface of the balloon 108 and/or the outer surface of the outer shaft 110. For example, the inner surface of the vibration source 226 may have a shape corresponding to the outer surface of the balloon 108 and/or the outer surface of the outer shaft 110.
  • In a step 342, a vacuum is applied or pulled on the inflation lumen 120 of the balloon catheter 100 via the inflator 224. More particularly, a user can manually apply or pull a vacuum on the inflation lumen 120 of the balloon catheter 100 by “pulling negative” or retracting the plunger of the inflator 224. Application of a vacuum results in the evacuation of air from the inflation lumen 120 of the balloon catheter 100. Stated another way, any residual air or gas is purged from the inflation lumen 120 of the balloon catheter 100 and the pressure within the inflation lumen 120 of the balloon catheter 100 is lowered to a pressure lower than atmospheric pressure. In an embodiment, any residual air or gas is purged from the inflation lumen 120 of the balloon catheter 100 until the pressure in the inflation lumen 120 is between 1 PSIA and 12 PSIA. During the step 342, the stopcock remains in its previous position (“open to the balloon catheter 100”) and thereby seals the balloon catheter 100 while the inflator 224 pulls a vacuum on the inflation lumen 120 of the balloon catheter 110.
  • In a step 344, the vacuum is maintained on the inflation lumen 120 of the balloon catheter 100 via the inflator 224 while simultaneously applying vibration to the balloon catheter 100 via the vibration source 226. The balloon catheter 100 is vibrated via the vibration source 226 while applying the vacuum on the inflation lumen 120 of the balloon catheter 100 to cause air within the balloon 108 of the balloon catheter 100 or air within the inflation lumen 120 of the balloon catheter 100 to move upwards towards the proximal end of the balloon catheter 100 and the inflator 224. Stated another way, vibrating the balloon catheter 100 with the vibration source 226 causes any air or bubbles entrapped in the balloon catheter 100 to ascend out of the balloon 108 and inflation lumen 120 until such air or bubbles exit from the balloon catheter 100 and enter into the inflator 224. As air or bubbles exit from the balloon catheter 100 and enter into the inflator 224, the user can visually see such air or bubbles in the inflator 224. The vacuum is maintained on the inflation lumen 120 of the balloon catheter 100 via the inflator 224 while simultaneously applying vibration to the balloon catheter 100 until no new air or bubbles are seen entering into the inflator 224. For example, in an embodiment, the vacuum is maintained on the inflation lumen and vibration is simultaneously applied on the balloon catheter for between 15 and 45 seconds. In an embodiment, the vacuum is maintained on the inflation lumen and vibration is simultaneously applied on the balloon catheter for approximately 30 seconds. Although described herein that vibration is applied during the step 344, vibration may also be applied during previous method steps as well. For example, vibration may begin immediately after the vibration source 226 is placed into direct contact with the balloon catheter 100 or the vibration may begin prior to or at the same time as the step 342 when the vacuum is initially pulled or applied to the inflation lumen 120.
  • In an embodiment, during the step 344, the vibration source 226 is moved or slid along the outer surface of the balloon catheter 100 while vibrating the balloon catheter. For example, the vibration source 226 may originally be placed in direct physical contact with the outer surface of the balloon 108. As the air or bubbles entrapped in the balloon 108 ascend through the inflation lumen 120, the user can move or slide the vibration source 226 onto the outer surface of the outer shaft 110 in conjunction with movement of the air within the balloon catheter 100. Direct contact between the outer surface of the balloon catheter 100 and the vibration source 226 is preferably maintained while the vibration source 226 is moved.
  • In a step 346, after no new air or bubbles are seen entering into the inflator 224, the vacuum is removed from the inflation lumen 120 of the balloon catheter 100 by slowly releasing the plunger of the inflator 224 to a neutral position. Vibration via the vibration source 226 may continue to be applied during this step, or may be removed.
  • In a step 348, the stopcock 222 is closed to the balloon catheter 100. When the stopcock 222 is closed to the balloon catheter 100, the inflator 224 and the inflation lumen 120 of the balloon catheter 100 are no longer in fluid communication. The inflation lumen 120 of the balloon catheter 100 remains sealed with respect to atmosphere. At this step of the method, it is no longer required to apply vibration to the balloon catheter 100 via the vibration source 226.
  • In a step 350, after the stopcock 222 is closed to the balloon catheter, the inflator 224 is detached from the stopcock 222 and purged by advancing the plunger to force the air out of the syringe. Any air that has accumulated in the inflator 224 during the step 344 is released or purged from the inflator 224.
  • In a step 352, an operator decides or determines whether the balloon catheter 100 is sufficiently purged of air. For example, the operator may visually inspect the balloon catheter 100 to determine whether any additional air bubbles are still present within the balloon catheter 100. The operator may also make the decision whether the balloon catheter 100 is sufficient purged of air based on an observation of the rate and size of air or bubbles seen entering into the inflator 224 during the step 344. If the rate of air or bubbles was relatively slow and/or the size of the air or bubbles was relatively small, the operator may determine that the balloon catheter 100 is sufficiently purged of air. If the operator determines that the balloon catheter 100 is sufficiently purged of air, the balloon catheter preparation method is considered to be complete at a step 354. However, if the operator determines that the balloon catheter 100 is not sufficiently purged of air, the inflator 224 would then be reattached to the stopcock 222 and the above-described steps of using the inflator to apply or pull a vacuum on the inflation lumen 120 of the balloon catheter 100 while vibrating the balloon catheter 100 with the vibration source 226 are repeated until the air or bubbles are fully purged from the balloon 108 and the inflation lumen 120. More particularly, the steps 334, 336, 338, 340, 342, 344, 346, 348, and 350 are repeated as necessary until all air is removed from the balloon catheter.
  • FIG. 4 illustrates another embodiment hereof in which the inflation lumen 120 may be repeatedly flushed as desired, with vibration being applied while applying vacuum to the balloon catheter, prior to detaching the inflator to purge the inflator of all trapped air. Similar to the method of FIG. 3, the method of FIG. 4 is preferably performed prior to an interventional procedure which utilizes the balloon catheter 100 in situ. This method is particularly advantageous for balloon catheters having larger balloons, such as but not limited to a balloon catheter configured as a delivery device for a replacement heart valve, because the method substantially reduces the length of the catheter preparation time by applying the vibration source 226 to expedite bubble/air removal from the balloon catheter as described above.
  • In a step 430, similar to the step 330, the balloon catheter 100 is removed from its packaging. The stopcock 222 is attached to the inflation port at the proximal portion 102 of the balloon catheter 100. More particularly, the stopcock 222 is attached to the inflation port of the luer fitting 105 of the hub 104 of the balloon catheter 100. As described above, the distal portion 106 of the balloon catheter 100 includes the balloon 108 and the inflation lumen 120 of the balloon catheter 100 is in fluid communication with the interior of the balloon 120. Although the method of FIG. 4 is described with respect to the balloon catheter 100, it will be understood by those of ordinary skill in the art that this is for sake of illustration only and the methods described herein for purging a balloon catheter of air may be utilized on balloon catheters of any construction and size.
  • In a step 432, similar to the step 332, the inflator 224 is prepared by at least partially filling the inflator 224 with an inflation fluid. In an embodiment, the inflator 224 is a syringe and the inflation fluid is a radiopaque contrast fluid, or a radiopaque contrast fluid mixed with saline or water. Other suitable biocompatible inflation fluids may be utilized.
  • In a step 434, similar to the step 334, the inflator 224 is attached to the stopcock 2.22 which was previously attached to the inflation port of the luer fitting 105 of the hub 104 of the balloon catheter 100 as described above and the stopcock 222 is opened to the balloon catheter 100. When the stopcock 222 is opened to the balloon catheter 100, the inflator 224 and the inflation lumen 120 of the balloon catheter 100 are in fluid communication and the inflation lumen 120 of the balloon catheter 100 is sealed with respect to atmosphere. Alternatively, the inflator 224 may be attached to the stopcock 222 and then the assembly of the inflator 224 and the stopcock 222 may be simultaneously attached to the inflation port at the proximal portion 102 of the balloon catheter 100.
  • In a step 436, similar to the step 336, the inflation lumen 120 is at least partially filled with the inflation fluid from the inflator 224. In order to at least partially fill the inflation lumen 120 with the inflation fluid from the inflator, the inflation fluid may be injected or inserted into the balloon 108 and the inflation lumen 120 of the balloon catheter 100 via the inflator 224 by advancing the plunger of the inflator 224. In another embodiment, in order to at least partially fill the inflation lumen 120 with the inflation fluid from the inflator, a vacuum may be applied or pulled on the inflation lumen 120 of the balloon catheter 100 via the inflator 224 and then the vacuum may be removed by slowly releasing the plunger of the inflator 224 to a neutral position, thereby at least partially filling the inflation lumen 120 with the inflation fluid from the inflator. More particularly, a user can manually apply or pull a vacuum on the inflation lumen 120 of the balloon catheter 100 by “pulling negative” or retracting the plunger of the inflator 224. When the plunger of the inflator 224 is released to a neutral position, the inflation fluid within the inflator 224 is drawn into the balloon catheter 100 and the inflation lumen 120 at least partially fills with the inflation fluid. Stated another way, removing the vacuum results in inflation fluid from the inflator 224 being pulled into the balloon catheter 100 such that the inflation lumen 120 and the balloon 108 are filled with the inflation fluid. The inflation fluid is drawn into the inflation lumen 120 and balloon 108 as a result of the pressure changes of the enclosed system.
  • In a step 438 similar to the step 338, the balloon catheter 100 is inverted or positioned in an inverted orientation such that the distal portion 106 including the balloon 108 is oriented below or downwardly relative to the proximal portion 102 of the balloon catheter and the inflator 224 coupled thereto. In an embodiment, the balloon catheter 100 is positioned in a vertical orientation with its distal end including the balloon 108 disposed vertically below the hub 104 and the inflator 224. However, the balloon catheter 100 is not required to be oriented vertically; the balloon catheter 100 may be oriented at an angle so long as the distal portion 106 thereof including the balloon 108 is oriented below or downwardly relative to the inflator 224. As will be described in more detail herein, the positioning of the inflator 224 above the balloon catheter 100 allows air bubbles to ascend or rise through the column of inflation fluid in the inflation lumen 120 and exit from the balloon catheter 100 via the inflator 224.
  • In a step 440, similar to the step 340, the vibration source 226 is positioned in direct contact with an outer surface of the balloon catheter. In an embodiment, the vibration source 226 is a handheld tool that is configured to be held by a user. In an embodiment, the vibration source 226 includes an outer surface configured to be held by a user and includes an inner surface (not shown) that is configured to make direct physical contact with the outer surface of the balloon 108 and/or the outer surface of the outer shaft 110. For example, the inner surface of the vibration source 226 may have a shape corresponding to the outer surface of the balloon 108 and/or the outer surface of the outer shaft 110.
  • In a step 442, similar to the step 342, a vacuum is applied or pulled on the inflation lumen 120 of the balloon catheter 100 via the inflator 224. More particularly, a user can manually apply or pull a vacuum on the inflation lumen 120 of the balloon catheter 100 by “pulling negative” or retracting the plunger of the inflator 224. Application of a vacuum results in the evacuation of air from the inflation lumen 120 of the balloon catheter 100. Stated another way, any residual air or gas is purged from the inflation lumen 120 of the balloon catheter 100 and the pressure within the inflation lumen 120 of the balloon catheter 100 is lowered to a pressure lower than atmospheric pressure. In an embodiment, any residual air or gas is purged from the inflation lumen 120 of the balloon catheter 100 until the pressure in the inflation lumen 120 is between 1 PSIA and 12 PSIA. During the step 442, the stopcock 222 remains in its previous position (“open to the balloon catheter 100”) and thereby seals the balloon catheter 100 while the inflator 224 pulls a vacuum on the inflation lumen 120 of the balloon catheter 110.
  • In a step 444, similar to the step 344, the vacuum is maintained on the inflation lumen 120 of the balloon catheter 100 via the inflator 224 while simultaneously applying vibration to the balloon catheter 100 via the vibration source 226. The balloon catheter 100 is vibrated via the vibration source 226 while applying the vacuum on the inflation lumen 120 of the balloon catheter 100 to cause air within the balloon 108 of the balloon catheter 100 or air within the inflation lumen 120 of the balloon catheter 100 to move upwards through the column of inflation fluid towards the proximal end of the balloon catheter 100 and the inflator 224. Stated another way, vibrating the balloon catheter 100 with the vibration source 226 causes any air or bubbles entrapped in the balloon catheter 100 to ascend out of the balloon 108 and inflation lumen 120 until such air or bubbles exit from the balloon catheter 100 and enter into the inflator 224. As air or bubbles exit from the balloon catheter 100 and enter into the inflator 224, the user can visually see such air or bubbles in the inflator 224. The vacuum is maintained on the inflation lumen 120 of the balloon catheter 100 via the inflator 224 while simultaneously applying vibration to the balloon catheter 100 until no new air or bubbles are seen entering into the inflator 224. For example, in an embodiment, the vacuum is maintained on the inflation lumen and vibration is simultaneously applied on the balloon catheter for between 15 and 45 seconds. In an embodiment, the vacuum is maintained on the inflation lumen and vibration is simultaneously applied on the balloon catheter for approximately 30 seconds. Although described herein that vibration is applied during the step 442, vibration may also be applied during previous method steps as well. For example, vibration may begin immediately after the vibration source 226 is placed into direct contact with the balloon catheter 100 or the vibration may begin prior to or at the same time as the step 442 when the vacuum is initially pulled or applied to the inflation lumen 120.
  • In an embodiment, during the step 444, the vibration source 226 is moved or slid along the outer surface of the balloon catheter 100 while vibrating the balloon catheter. For example, the vibration source 226 may originally be placed in direct physical contact with the outer surface of the balloon 108. As the air or bubbles entrapped in the balloon 108 ascend into the inflation lumen 120, the user can move or slide the vibration source 226 onto the outer surface of the outer shaft 110 in conjunction with movement of the air within the balloon catheter 100. Direct contact between the outer surface of the balloon catheter 100 and the vibration source 226 is preferably maintained while the vibration source 226 is moved.
  • In a step 446, similar to the step 346, after no new air or bubbles are seen entering into the inflator 224, the vacuum is removed from the inflation lumen 120 of the balloon catheter 100 by slowly releasing the plunger of the inflator 224 to a neutral position. Vibration via the vibration source 226 may continue to be applied during this step, or may be removed.
  • In a step 447, steps 442, 444, and 446 may be repeated if desired to flush the inflation lumen 120 of the balloon catheter 100 again. More particularly, it may be desired to flush the inflation lumen 120 several times before proceeding to the later method steps of closing and detaching the stopcock 222 and purging the inflator 224 of all trapped air. Thus, an operator may choose to repeat the steps of pulling a vacuum, maintaining the vacuum while simultaneously applying vibration to the balloon catheter 100, and then removing the vacuum as many times as desired before proceeding to the next method steps.
  • In a step 448, similar to the step 348, the stopcock 222 is closed to the balloon catheter 100. When the stopcock 222 is closed to the balloon catheter 100, the inflator 224 and the inflation lumen 120 of the balloon catheter 100 are no longer in fluid communication. The inflation lumen 120 of the balloon catheter 100 remains sealed with respect to atmosphere. At this step of the method, it is no longer required to apply vibration to the balloon catheter 100 via the vibration source 226.
  • In a step 450, similar to the step 350, after the stopcock 222 is closed to the balloon catheter, the inflator 224 is detached from the stopcock 222 and purged by advancing the plunger to force the air out of the syringe. Any air that has accumulated in the inflator 224 during the previous steps is released or purged from the inflator 224.
  • In a step 452, similar to the step 352, an operator decides or determines whether the balloon catheter 100 is sufficiently purged of air. For example, the operator may visually inspect the balloon catheter 100 to determine whether any additional air bubbles are still present within the balloon catheter 100. The operator may also make the decision whether the balloon catheter 100 is sufficient purged of air based on an observation of the rate and size of air or bubbles seen entering into the inflator 224 during the step 444. If the rate of air or bubbles was relatively slow and/or the size of the air or bubbles was relatively small, the operator may determine that the balloon catheter 100 is sufficiently purged of air. If the operator determines that the balloon catheter 100 is sufficiently purged of air, the balloon catheter preparation method is considered to be complete at a step 454. However, if the operator determines that the balloon catheter 100 is not sufficiently purged of air, the inflator 224 would then be reattached to the stopcock 222 and the above-described steps of using the inflator to apply or pull a vacuum on the inflation lumen 120 of the balloon catheter 100 while vibrating the balloon catheter 100 with the vibration source 226 are repeated until the air or bubbles are fully purged from the balloon 108 and the inflation lumen 120. More particularly, the steps 434, 436, 438, 440, 442, 444, 446, 447, 448, and 450 are repeated as necessary until all air is removed from the balloon catheter.
  • In the above-described methods of FIGS. 3 and 4, the inflator 224 is used to manually pull vacuum as well as to inject or insert inflation fluid into the balloon catheter 100 during the described methods. However, in another embodiment, pulling a vacuum with the inflator 224 is not required as shown in the method depicted in FIG. 5. Stated another way, in an embodiment, only vibration via the vibration source 224 may be utilized to purge air from the balloon catheter 100. Similar to the method of FIG. 3, the method of FIG. 5 is preferably performed prior to an interventional procedure which utilizes the balloon catheter 100 in situ. This method is particularly advantageous for balloon catheters having larger balloons, such as but not limited to a balloon catheter configured as a delivery device for a replacement heart valve, because the method substantially reduces the length of the catheter preparation time by applying the vibration source 226 to expedite bubble/air removal from the balloon catheter as described above.
  • In a step 530, similar to the step 330, the balloon catheter 100 is removed from its packaging. The stopcock 222 is attached to the inflation port at the proximal portion 102 of the balloon catheter 100. More particularly, the stopcock 222. is attached to the inflation port of the luer fitting 105 of the hub 104 of the balloon catheter 100. As described above, the distal portion 106 of the balloon catheter 100 includes the balloon 108 and the inflation lumen 120 of the balloon catheter 100 is in fluid communication with the interior of the balloon 120. Although the method of FIG. 5 is described with respect to the balloon catheter 100, it will be understood by those of ordinary skill in the art that this is for sake of illustration only and the methods described herein for purging a balloon catheter of air may be utilized on balloon catheters of any construction and size.
  • In a step 532 similar to the step 332, the inflator 224 is prepared by at least partially filling the inflator 224 with an inflation fluid. In an embodiment, the inflator 224 is a syringe and the inflation fluid is a radiopaque contrast fluid, or a radiopaque contrast fluid mixed with saline or water. Other suitable biocompatible inflation fluids may be utilized.
  • In a step 534, similar to the step 334, the inflator 224 is attached to the stopcock 222 which was previously attached to the inflation port of the luer fitting 105 of the hub 104 of the balloon catheter 100 as described above and the stopcock 222 is opened to the balloon catheter 100. When the stopcock 222 is opened to the balloon catheter 100, the inflator 224 and the inflation lumen 120 of the balloon catheter 100 are in fluid communication and the inflation lumen 120 of the balloon catheter 100 is sealed with respect to atmosphere. Alternatively, the inflator 224 may be attached to the stopcock 222 and then the assembly of the inflator 224 and the stopcock 222 may be simultaneously attached to the inflation port at the proximal portion 102 of the balloon catheter 100.
  • In a step 536, similar to the step 336, the inflation lumen 120 is at least partially filled with the inflation fluid from the inflator 224. In order to at least partially fill the inflation lumen 120 with the inflation fluid from the inflator, the inflation fluid may be injected or inserted into the balloon 108 and the inflation lumen 120 of the balloon catheter 100 via the inflator 224 by advancing the plunger of the inflator 224. In another embodiment, in order to at least partially fill the inflation lumen 120 with the inflation fluid from the inflator, a vacuum may be applied or pulled on the inflation lumen 120 of the balloon catheter 100 via the inflator 224 and then the vacuum may be removed by slowly releasing the plunger of the inflator 224 to a neutral position, thereby at least partially filling the inflation lumen 120 with the inflation fluid from the inflator. More particularly, a user can manually apply or pull a vacuum on the inflation lumen 120 of the balloon catheter 100 by “pulling negative” or retracting the plunger of the inflator 224. When the plunger of the inflator 224 is released to a neutral position, the inflation fluid within the inflator 224 is drawn into the balloon catheter 100 and the inflation lumen 120 at least partially fills with the inflation fluid. Stated another way, removing the vacuum results in inflation fluid from the inflator 224 being pulled into the balloon catheter 100 such that the inflation lumen 120 and the balloon 108 are filled with the inflation fluid. The inflation fluid is drawn into the inflation lumen 120 and balloon 108 as a result of the pressure changes of the enclosed system.
  • In a step 538, similar to the step 338, the balloon catheter 100 is inverted or positioned in an inverted orientation such that the distal portion 106 including the balloon 108 is oriented below or downwardly relative to the proximal portion 102 of the balloon catheter and the inflator 224 coupled thereto. In an embodiment, the balloon catheter 100 is positioned in a vertical orientation with its distal end including the balloon 108 disposed vertically below the hub 104 and the inflator 224. However, the balloon catheter 100 is not required to be oriented vertically; the balloon catheter 100 may be oriented at an angle so long as the distal portion 106 thereof including the balloon 108 is oriented below or downwardly relative to the inflator 224. As will be described in more detail herein, the positioning of the inflator 224 above the balloon catheter 100 allows air bubbles to ascend or rise through the column of inflation fluid in the inflation lumen 120 and exit from the balloon catheter 100 via the inflator 224.
  • In a step 540, similar to the step 340, the vibration source 226 is positioned in direct contact with an outer surface of the balloon catheter. In an embodiment, the vibration source 226 is a handheld tool that is configured to be held by a user. In an embodiment, the vibration source 226 includes an outer surface configured to be held by a user and includes an inner surface (not shown) that is configured to make direct physical contact with the outer surface of the balloon 108 and/or the outer surface of the outer shaft 110. For example, the inner surface of the vibration source 226 may have a shape corresponding to the outer surface of the balloon 108 and/or the outer surface of the outer shaft 110.
  • In a step 544, vibration is applied to the balloon catheter 100 via the vibration source 226. The balloon catheter 100 is vibrated via the vibration source 226 to cause air within the balloon 108 of the balloon catheter 100 or air within the inflation lumen 120 of the balloon catheter 100 to move upwards towards the proximal end of the balloon catheter 100 and the inflator 224. Stated another way, vibrating the balloon catheter 100 with the vibration source 226 causes any air or bubbles entrapped in the balloon catheter 100 to ascend out of the balloon 108 and inflation lumen 120 until such air or bubbles exit from the balloon catheter 100 and enter into the inflator 224. As air or bubbles exit from the balloon catheter 100 and enter into the inflator 224, the user can visually see such air or bubbles in the inflator 224. Vibration is applied to the balloon catheter 100 until no new air or bubbles are seen entering into the inflator 224. For example, in an embodiment, vibration is applied on the balloon catheter for between 15 and 45 seconds. In an embodiment, vibration is applied on the balloon catheter for approximately 30 seconds.
  • In an embodiment, during the step 544, the vibration source 226 is moved or slid along the outer surface of the balloon catheter 100 while vibrating the balloon catheter. For example, the vibration source 226 may originally be placed in direct physical contact with the outer surface of the balloon 108. As the air or bubbles entrapped in the balloon 108 ascend into the inflation lumen 120, the user can move or slide the vibration source 226 onto the outer surface of the outer shaft 110 in conjunction with movement of the air within the balloon catheter 100. Direct contact between the outer surface of the balloon catheter 100 and the vibration source 226 is preferably maintained while the vibration source 226 is moved.
  • In a step 548, similar to the step 348, the stopcock 222 is closed to the balloon catheter 100. When the stopcock 222 is closed to the balloon catheter 100, the inflator 224 and the inflation lumen 120 of the balloon catheter 100 are no longer in fluid communication. The inflation lumen 120 of the balloon catheter 100 remains sealed with respect to atmosphere. At this step of the method, it is no longer required to apply vibration to the balloon catheter 100 via the vibration source 226.
  • In a step 550, similar to the step 350, after the stopcock 222 is closed to the balloon catheter, the inflator 224 is detached from the stopcock 222 and purged by advancing the plunger to force the air out of the syringe. Any air that has accumulated in the inflator 224 during the step 544 is released or purged from the inflator 224.
  • In a step 552, similar to the step 352, an operator decides or determines whether the balloon catheter 100 is sufficiently purged of air. For example, the operator may visually inspect the balloon catheter 100 to determine whether any additional air bubbles are still present within the balloon catheter 100. The operator may also make the decision whether the balloon catheter 100 is sufficient purged of air based on an observation of the rate and size of air or bubbles seen entering into the inflator 224 during the step 544. If the rate of air or bubbles was relatively slow and/or the size of the air or bubbles was relatively small, the operator may determine that the balloon catheter 100 is sufficiently purged of air. If the operator determines that the balloon catheter 100 is sufficiently purged of air, the balloon catheter preparation method is considered to be complete at a step 554. However, if the operator determines that the balloon catheter 100 is not sufficiently purged of air, the inflator 224 would then be reattached to the stopcock 222 and the above-described steps including vibrating the balloon catheter 100 with the vibration source 226 are repeated until the air or bubbles are fully purged from the balloon 108 and the inflation lumen 120. More particularly, the steps 534, 536, 538, 540, 544, 548, and 550 are repeated as necessary until all air is removed from the balloon catheter.
  • While only some embodiments according to the present invention have been described herein, it should be understood that they have been presented by way of illustration and example only, and not limitation. Various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Further, each feature of each embodiment discussed herein, and of each reference cited herein, can be used in combination with the features of any other embodiment. All patents and publications discussed herein are incorporated by reference herein in their entirety.

Claims (20)

1. A method for purging a balloon catheter of air, the method comprising the steps of:
inserting an inflation fluid into a balloon and an inflation lumen of a balloon catheter, wherein the inflation lumen is in fluid communication with the balloon;
positioning the balloon catheter in an inverted orientation with a distal end thereof disposed below a proximal end thereof, wherein the distal end of the balloon catheter includes the balloon;
positioning a vibration source in direct contact with an outer surface of the balloon catheter; and
vibrating the balloon catheter with the vibration source to cause air within the balloon of the balloon catheter or air within the inflation lumen of the balloon catheter to move upwards towards the proximal end of the balloon catheter.
2. The method of claim 1, wherein the method for purging the balloon catheter of air is performed prior to an interventional procedure.
3. The method of claim 1, further comprising the step of:
moving the vibration source along the outer surface of the balloon catheter while vibrating the balloon catheter, wherein direct contact between the outer surface of the balloon catheter and the vibration source is maintained during the step of moving the vibration source.
4. The method of claim 1, further comprising the steps of:
attaching an inflator to the proximal end of the balloon catheter; and
using the inflator to apply a vacuum on the inflation lumen of the balloon catheter while vibrating the balloon catheter with the vibration source.
5. The method of claim 4, wherein the inflator is a syringe having the inflation fluid therein.
6. The method of claim 4, further comprising the steps of:
detaching the inflator from the proximal end of the balloon catheter after the step of using the inflator to apply the vacuum on the inflation lumen of the balloon catheter; and
removing air that has accumulated in the inflator from the inflator.
7. The method of claim 6, further comprising the steps of:
reattaching the inflator to the proximal end of the balloon catheter after the step of removing air that from the inflator; and
repeating the step of using the inflator to apply a vacuum on the inflation lumen of the balloon catheter while vibrating the balloon catheter with the vibration source.
8. The method of claim 1, wherein a stopcock seals the balloon catheter during the step of using the inflator to apply a vacuum on the inflation lumen of the balloon catheter.
9. The method of claim 1, wherein the balloon catheter is configured as a delivery device for a replacement aortic heart valve.
10. A method for purging a balloon catheter of air, the method comprising the steps of:
inserting an inflation fluid into a balloon and an inflation lumen of a balloon catheter, wherein the inflation lumen is in fluid communication with the balloon;
positioning the balloon catheter in an inverted orientation with a distal end thereof disposed below a proximal end thereof, wherein the distal end of the balloon catheter includes the balloon;
positioning a vibration source in direct contact with an outer surface of the balloon catheter;
applying a vacuum on the inflation lumen of the balloon catheter; and
vibrating the balloon catheter with the vibration source while applying the vacuum on the inflation lumen of the balloon catheter to cause any air within the balloon of the balloon catheter and any air within the inflation lumen of the balloon catheter to move upwards through the inflation fluid towards the proximal end of the balloon catheter.
11. The method of claim 10, wherein the method for purging the balloon catheter of air is performed prior to an interventional procedure.
12. The method of claim 10, further comprising the step of:
moving the vibration source along the outer surface of the balloon catheter while vibrating the balloon catheter, wherein direct contact between the outer surface of the balloon catheter and the vibration source is maintained during the step of moving the vibration source.
13. The method of claim 10, wherein the steps of inserting the inflation fluid into the balloon and the inflation lumen and applying the vacuum on the inflation lumen are performed via an inflator attached to the proximal end of the balloon catheter.
14. The method of claim 13, wherein the inflator is a syringe.
15. The method of claim 13, further comprising the steps of:
detaching the inflator from the proximal end of the balloon catheter after the step of vibrating the balloon catheter with the vibration source while applying the vacuum on the inflation lumen of the balloon catheter; and
removing any air that has accumulated in the inflator from the inflator.
16. The method of claim 15, further comprising the steps of:
reattaching the inflator to the proximal end of the balloon catheter after the step of removing any air that has accumulated in the inflator from the inflator; and
repeating the method for purging the balloon catheter of air until all air is purged from the balloon catheter.
17. The method of claim 10, wherein a stopcock seals the balloon catheter during the step of applying the vacuum on the inflation lumen of the balloon catheter.
18. The method of claim 10, wherein the balloon catheter is configured as a delivery device for a replacement aortic heart valve.
19. A method for purging a balloon catheter of air, the method comprising the steps of:
inserting an inflation fluid into a balloon and an inflation lumen of a balloon catheter, wherein the inflation lumen is in fluid communication with the balloon;
positioning the balloon catheter in an inverted orientation with a distal end thereof disposed below a proximal end thereof, wherein the distal end of the balloon catheter includes the balloon;
positioning a vibration source in direct contact with an outer surface of the balloon catheter;
vibrating the balloon catheter with the vibration source; and
applying a vacuum on the inflation lumen of the balloon catheter;
wherein the steps of vibrating the balloon catheter and applying the vacuum are performed simultaneously.
20. The method of claim 19, wherein the balloon catheter is configured as a delivery device for a replacement aortic heart valve.
US16/940,465 2019-10-08 2020-07-28 Methods of preparing balloon expandable catheters for cardiac and vascular interventions Active 2042-07-29 US11878133B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/940,465 US11878133B2 (en) 2019-10-08 2020-07-28 Methods of preparing balloon expandable catheters for cardiac and vascular interventions
PCT/US2020/053725 WO2021071732A1 (en) 2019-10-08 2020-10-01 Methods of preparing balloon expandable catheters for cardiac and vascular interventions
EP20793524.8A EP4041364A1 (en) 2019-10-08 2020-10-01 Methods of preparing balloon expandable catheters for cardiac and vascular interventions
CN202080070563.1A CN115279445A (en) 2019-10-08 2020-10-01 Method for preparing balloon-expandable catheters for cardiac and vascular interventions
US18/532,090 US20240100307A1 (en) 2019-10-08 2023-12-07 Methods of preparing balloon expandable catheters for cardiac and vascular interventions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962912179P 2019-10-08 2019-10-08
US16/940,465 US11878133B2 (en) 2019-10-08 2020-07-28 Methods of preparing balloon expandable catheters for cardiac and vascular interventions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/532,090 Continuation US20240100307A1 (en) 2019-10-08 2023-12-07 Methods of preparing balloon expandable catheters for cardiac and vascular interventions

Publications (2)

Publication Number Publication Date
US20210100988A1 true US20210100988A1 (en) 2021-04-08
US11878133B2 US11878133B2 (en) 2024-01-23

Family

ID=75273829

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/940,465 Active 2042-07-29 US11878133B2 (en) 2019-10-08 2020-07-28 Methods of preparing balloon expandable catheters for cardiac and vascular interventions
US18/532,090 Pending US20240100307A1 (en) 2019-10-08 2023-12-07 Methods of preparing balloon expandable catheters for cardiac and vascular interventions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/532,090 Pending US20240100307A1 (en) 2019-10-08 2023-12-07 Methods of preparing balloon expandable catheters for cardiac and vascular interventions

Country Status (4)

Country Link
US (2) US11878133B2 (en)
EP (1) EP4041364A1 (en)
CN (1) CN115279445A (en)
WO (1) WO2021071732A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4793351A (en) * 1987-06-15 1988-12-27 Mansfield Scientific, Inc. Multi-lumen balloon catheter
US5035705A (en) * 1989-01-13 1991-07-30 Scimed Life Systems, Inc. Method of purging a balloon catheter
AU2003200619A1 (en) * 2003-02-21 2004-09-09 Japan Electel Inc. Radiofrequency thermal balloon catheter
US20050033343A1 (en) * 2002-11-25 2005-02-10 F.D. Cardio Ltd. Catheter drive
KR100488673B1 (en) * 2003-03-18 2005-05-11 사타케 슈타로 Radiofrequency thermal balloon catheter
US20150343191A1 (en) * 2012-12-28 2015-12-03 Bard Peripheral Vascular Drug delivery via mechanical vibration balloon

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1942353A (en) 1932-11-22 1934-01-02 Berger Kornel Apparatus for and method of forming internal threads by stamping dies
US3248184A (en) 1963-01-11 1966-04-26 Gen Motors Corp Shell member and method of manufacture
NL6615372A (en) 1966-10-31 1968-05-01
US3570014A (en) 1968-09-16 1971-03-16 Warren D Hancock Stent for heart valve
US3845903A (en) 1973-08-15 1974-11-05 Dunham Bush Inc One piece radial vane diffuser and method of manufacturing the same
CA1069652A (en) 1976-01-09 1980-01-15 Alain F. Carpentier Supported bioprosthetic heart valve with compliant orifice ring
DE3325820A1 (en) 1982-09-27 1984-03-29 Kraftwerk Union AG, 4330 Mülheim METHOD FOR DRAWING SHEET AND DEVICE FOR CARRYING OUT THIS METHOD
US4626255A (en) 1983-09-23 1986-12-02 Christian Weinhold Heart valve bioprothesis
DE3572081D1 (en) 1984-09-28 1989-09-07 Philips Nv Method of drape drawing a shadow mask for a colour display tube and device for such a method
US4821722A (en) 1987-01-06 1989-04-18 Advanced Cardiovascular Systems, Inc. Self-venting balloon dilatation catheter and method
US5489298A (en) 1991-01-24 1996-02-06 Autogenics Rapid assembly concentric mating stent, tissue heart valve with enhanced clamping and tissue exposure
US5334153A (en) 1992-10-07 1994-08-02 C. R. Bard, Inc. Catheter purge apparatus and method of use
US5904697A (en) 1995-02-24 1999-05-18 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US5716417A (en) 1995-06-07 1998-02-10 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
US7220275B2 (en) 1996-11-04 2007-05-22 Advanced Stent Technologies, Inc. Stent with protruding branch portion for bifurcated vessels
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US6245102B1 (en) 1997-05-07 2001-06-12 Iowa-India Investments Company Ltd. Stent, stent graft and stent valve
US6001124A (en) 1997-10-09 1999-12-14 Vascular Science, Inc. Oblique-angle graft connectors
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
EP1795155B1 (en) 1999-07-02 2014-03-19 Spine Solutions Inc. Intervertebral implant
US6494889B1 (en) 1999-09-01 2002-12-17 Converge Medical, Inc. Additional sutureless anastomosis embodiments
EP1229865B1 (en) 1999-09-10 2010-11-17 Cook Incorporated Endovascular treatment for chronic venous insufficiency
JP3826995B2 (en) 2000-02-16 2006-09-27 トヨタ自動車株式会社 Manufacturing method of carrier
AU2001245432B2 (en) 2000-03-03 2006-04-27 Cook Medical Technologies Llc Bulbous valve and stent for treating vascular reflux
WO2002064195A2 (en) 2001-02-14 2002-08-22 Acist Medical Systems, Inc. Catheter fluid control system
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US7374571B2 (en) 2001-03-23 2008-05-20 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of manufacture
US6649063B2 (en) 2001-07-12 2003-11-18 Nxstage Medical, Inc. Method for performing renal replacement therapy including producing sterile replacement fluid in a renal replacement therapy unit
US6793678B2 (en) 2002-06-27 2004-09-21 Depuy Acromed, Inc. Prosthetic intervertebral motion disc having dampening
US7270679B2 (en) 2003-05-30 2007-09-18 Warsaw Orthopedic, Inc. Implants based on engineered metal matrix composite materials having enhanced imaging and wear resistance
US7267680B2 (en) 2003-10-08 2007-09-11 David Walter Wright Anastomosis apparatus and methods of deployment and manufacture
DE202004009542U1 (en) 2004-06-16 2004-08-12 Aesculap Ag & Co. Kg Artificial intervertebral disk, comprising core with intensely curved upper and less curved lower surface
ES2331007T3 (en) 2004-09-08 2009-12-18 Synthes Gmbh UNIVERSAL APPLICATION INTERVERTEBRAL DISK PROTESIS.
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US7361192B2 (en) 2005-04-22 2008-04-22 Doty Keith L Spinal disc prosthesis and methods of use
US20060271161A1 (en) 2005-05-26 2006-11-30 Boston Scientific Scimed, Inc. Selective treatment of stent side branch petals
FR2888489B1 (en) 2005-07-18 2008-05-16 Abbott Spine Sa INTERVERTEBRAL DISC PROSTHESIS WITH ANCHORING MEANS
EP2583640B1 (en) 2006-02-16 2022-06-22 Venus MedTech (HangZhou), Inc. Minimally invasive replacement heart valve
EP1986576B1 (en) 2006-02-23 2012-04-11 Faneuil Innovations Investment Ltd. Intervertebral disc replacement
EP2063817A4 (en) 2006-09-15 2012-04-18 Pioneer Surgical Technology Inc Joint arthroplasty devices having articulating members
WO2008049048A2 (en) 2006-10-18 2008-04-24 Graphic Packaging International, Inc. Tool for forming a three dimensional article or container
WO2008103295A2 (en) 2007-02-16 2008-08-28 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US7892332B2 (en) 2007-10-01 2011-02-22 Baxter International Inc. Dialysis systems having air traps with internal structures to enhance air removal
US20130053693A1 (en) 2007-12-21 2013-02-28 Indian Wells Medical, Inc. Method and apparatus for prevention of catheter air intake
US8801776B2 (en) 2008-02-25 2014-08-12 Medtronic Vascular, Inc. Infundibular reducer devices
US8034099B2 (en) 2008-03-27 2011-10-11 Medtronic Vascular, Inc. Stent prosthesis having select flared crowns
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US20100256723A1 (en) 2009-04-03 2010-10-07 Medtronic Vascular, Inc. Prosthetic Valve With Device for Restricting Expansion
US8500801B2 (en) 2009-04-21 2013-08-06 Medtronic, Inc. Stents for prosthetic heart valves and methods of making same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4793351A (en) * 1987-06-15 1988-12-27 Mansfield Scientific, Inc. Multi-lumen balloon catheter
US5035705A (en) * 1989-01-13 1991-07-30 Scimed Life Systems, Inc. Method of purging a balloon catheter
US20050033343A1 (en) * 2002-11-25 2005-02-10 F.D. Cardio Ltd. Catheter drive
AU2003200619A1 (en) * 2003-02-21 2004-09-09 Japan Electel Inc. Radiofrequency thermal balloon catheter
KR100488673B1 (en) * 2003-03-18 2005-05-11 사타케 슈타로 Radiofrequency thermal balloon catheter
US20150343191A1 (en) * 2012-12-28 2015-12-03 Bard Peripheral Vascular Drug delivery via mechanical vibration balloon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
English Translation of KR-100488673-B1 (Year: 2005) *

Also Published As

Publication number Publication date
WO2021071732A1 (en) 2021-04-15
EP4041364A1 (en) 2022-08-17
US11878133B2 (en) 2024-01-23
CN115279445A (en) 2022-11-01
US20240100307A1 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
US5035705A (en) Method of purging a balloon catheter
US7169161B2 (en) Guidewire having occlusive device and repeatably crimpable proximal end
JP4994371B2 (en) Embolism protection device and method of using the same
US6544221B1 (en) Balloon designs for drug delivery
US4793351A (en) Multi-lumen balloon catheter
US7615031B2 (en) Gas inflation/evacuation system incorporating a multiple element valved guidewire assembly having an occlusive device
JP5976777B2 (en) Methods and systems for the treatment of intravascular aneurysms
US9034025B2 (en) Balloon catheters and methods for use
JP5139812B2 (en) Device for removing emboli
JP2017507744A (en) Inflatable occlusion wire balloon for aortic applications
EP1742698A2 (en) Guidewire assembly including a repeatably inflatable occlusive balloon on a guidewire ensheathed with a spiral coil
US20030088263A1 (en) Guidewire occlusion system utilizing repeatably inflatable gas-filled occlusive device
US20050004517A1 (en) Embolization protection system for vascular procedures
WO2003099352A2 (en) Methods and apparatus for aspiration and priming of inflatable structures in catheters
CN110430842B (en) Balloon catheter and method of use
WO2020072837A1 (en) Inflation devices and systems for balloon catheters and methods for use
CN108367137A (en) Perfusion balloon catheter with alternative actuating valve
US10610394B2 (en) Systems and methods for using perfluorocarbons to remove gases from medical devices
CN108135716B (en) Systems and methods for removing air from medical devices
US20200146858A1 (en) Dual balloon catheters and methods for use
US11878133B2 (en) Methods of preparing balloon expandable catheters for cardiac and vascular interventions
JP2005508230A (en) Guidewire expansion system employing a gas-filled expansion element that can be expanded repeatedly
US7377931B2 (en) Balloon catheter with self-actuating purging valve
US20230173238A1 (en) Balloon catheter assembly for insertion and positioning therapeutic devices within a vascular system
US20040122464A1 (en) Balloon catheter having a microporous distal tip

Legal Events

Date Code Title Description
AS Assignment

Owner name: MEDTRONIC, INC., MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PETERSON, JUSTIN;UNG, VICTORIA;REEL/FRAME:053324/0926

Effective date: 20191008

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE