US20210093618A1 - Substituted benzamides and methods of use thereof - Google Patents

Substituted benzamides and methods of use thereof Download PDF

Info

Publication number
US20210093618A1
US20210093618A1 US16/677,487 US201916677487A US2021093618A1 US 20210093618 A1 US20210093618 A1 US 20210093618A1 US 201916677487 A US201916677487 A US 201916677487A US 2021093618 A1 US2021093618 A1 US 2021093618A1
Authority
US
United States
Prior art keywords
compound
group
alkyl
haloalkyl
pain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/677,487
Inventor
Jean-Christophe Andrez
Paul Robert BICHLER
Chien-An Chen
Sultan Chowdhury
Shannon Marie Decker
Christoph Martin Dehnhardt
Thilo Focken
Michael Edward GRIMWOOD
Ivan William Hemeon
Qi Jia
Jun Li
Zhiguo LIU
Daniel F. Ortwine
Brian Salvatore SAFINA
Daniel Sutherlin
Tao Sheng
Shaoyi Sun
Andrew D. White
Michael Scott Wilson
Alla Yurevna Zenova
Jiuxiang Zhu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xenon Pharmaceuticals Inc
Genentech Inc
Original Assignee
Xenon Pharmaceuticals Inc
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xenon Pharmaceuticals Inc, Genentech Inc filed Critical Xenon Pharmaceuticals Inc
Priority to US16/677,487 priority Critical patent/US20210093618A1/en
Publication of US20210093618A1 publication Critical patent/US20210093618A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/397Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having four-membered rings, e.g. azetidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4015Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil having oxo groups directly attached to the heterocyclic ring, e.g. piracetam, ethosuximide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/4151,2-Diazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4412Non condensed pyridines; Hydrogenated derivatives thereof having oxo groups directly attached to the heterocyclic ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4545Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring hetero atom, e.g. pipamperone, anabasine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/02Stomatological preparations, e.g. drugs for caries, aphtae, periodontitis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/10Drugs for disorders of the urinary system of the bladder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/06Antimigraine agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D205/00Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
    • C07D205/02Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D205/04Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D205/00Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
    • C07D205/12Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/12Oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/18Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D211/20Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by singly bound oxygen or sulphur atoms
    • C07D211/22Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by singly bound oxygen or sulphur atoms by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/18Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D211/30Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by doubly bound oxygen or sulfur atoms or by two oxygen or sulfur atoms singly bound to the same carbon atom
    • C07D211/32Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with substituted hydrocarbon radicals attached to ring carbon atoms with hydrocarbon radicals, substituted by doubly bound oxygen or sulfur atoms or by two oxygen or sulfur atoms singly bound to the same carbon atom by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/40Oxygen atoms
    • C07D211/42Oxygen atoms attached in position 3 or 5
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/54Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/60Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/92Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with a hetero atom directly attached to the ring nitrogen atom
    • C07D211/96Sulfur atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/66Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/68Halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D237/00Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
    • C07D237/02Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
    • C07D237/06Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D237/08Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/04Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/301,4-Oxazines; Hydrogenated 1,4-oxazines not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/14Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D295/155Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/22Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with hetero atoms directly attached to ring nitrogen atoms
    • C07D295/26Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/02Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D305/04Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D305/08Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D451/00Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof
    • C07D451/02Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof containing not further condensed 8-azabicyclo [3.2.1] octane or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane; Cyclic acetals thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D451/00Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof
    • C07D451/02Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof containing not further condensed 8-azabicyclo [3.2.1] octane or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane; Cyclic acetals thereof
    • C07D451/04Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof containing not further condensed 8-azabicyclo [3.2.1] octane or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane; Cyclic acetals thereof with hetero atoms directly attached in position 3 of the 8-azabicyclo [3.2.1] octane or in position 7 of the 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring system
    • C07D451/06Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D453/00Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids
    • C07D453/02Heterocyclic compounds containing quinuclidine or iso-quinuclidine ring systems, e.g. quinine alkaloids containing not further condensed quinuclidine ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/08Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring

Definitions

  • the present invention relates to organic compounds useful for therapy and/or prophylaxis in a mammal, and in particular to inhibitors of sodium channel (e.g., NAV 1.7) that are useful for treating sodium channel-mediated diseases or conditions, such as pain, as well as other diseases and conditions associated with the mediation of sodium channels.
  • inhibitors of sodium channel e.g., NAV 1.7
  • Voltage-gated sodium channels transmembrane proteins that initiate action potentials in nerve, muscle and other electrically excitable cells, are a necessary component of normal sensation, emotions, thoughts and movements (Catterall, W. A., Nature (2001), Vol. 409, pp. 988-990).
  • These channels consist of a highly processed alpha subunit that is associated with auxiliary beta subunits.
  • the pore-forming alpha subunit is sufficient for channel function, but the kinetics and voltage dependence of channel gating are in part modified by the beta subunits (Goldin et al., Neuron (2000), Vol. 28, pp. 365-368).
  • Electrophysiological recording, biochemical purification, and molecular cloning have identified ten different sodium channel alpha subunits and four beta subunits (Yu, F. H., et al., Sci. STKE (2004), 253; and Yu, F. H., et al., Neurosci. (2003), 20:7577-85).
  • sodium channels include rapid activation and inactivation when the voltage across the plasma membrane of an excitable cell is depolarized (voltage-dependent gating), and efficient and selective conduction of sodium ions through conducting pores intrinsic to the structure of the protein (Sato, C., et al., Nature (2001), 409:1047-1051).
  • sodium channels are closed.
  • sodium channels open rapidly and then inactivate. Channels only conduct currents in the open state and, once inactivated, have to return to the resting state, favoured by membrane hyperpolarization, before they can reopen.
  • Different sodium channel subtypes vary in the voltage range over which they activate and inactivate as well as their activation and inactivation kinetics.
  • NaV1.x The sodium channel family of proteins has been extensively studied and shown to be involved in a number of vital body functions. Research in this area has identified variants of the alpha subunits that result in major changes in channel function and activities, which can ultimately lead to major pathophysiological conditions.
  • NaV1.1 and NaV1.2 are highly expressed in the brain (Raymond, C. K., et al., J. Biol. Chem. (2004), 279(44):46234-41) and are vital to normal brain function.
  • NaV1.3 is expressed primarily in the fetal central nervous system. It is expressed at very low levels or not at all in the peripheral nervous system, but expression is upregulated in the dorsal horn sensory neurons of rats after nervous system injury (Hains, B. D., et al., J. Neurosci. (2003), 23(26):8881-92). Thus, it is an inducible target for treatment of pain following nerve injury.
  • NaV1.4 is expressed primarily in skeletal muscle (Raymond, C. K., et al., op. cit.). Mutations in this gene have been shown to have profound effects on muscle function including paralysis, (Tamaoka A., Intern. Med. (2003), (9):769-70).
  • NaV1.5 is expressed mainly in cardiac myocytes (Raymond, C. K., et al., op. cit.), including atria, ventricles, the sino-atrial node, atrio-ventricular node and cardiac Purkinje fibers.
  • the rapid upstroke of the cardiac action potential and the rapid impulse conduction through cardiac tissue is due to the opening of NaV1.5.
  • Abnormalities in the function of NaV1.5 can result in the genesis of a variety of cardiac arrhythmias.
  • Mutations in human NaV1.5 result in multiple arrhythmic syndromes, including, for example, long QT3 (LQT3), Brugada syndrome (BS), an inherited cardiac conduction defect, sudden unexpected nocturnal death syndrome (SUNDS) and sudden infant death syndrome (SIDS) (Liu, H., et al., Am. J. Pharmacogenomics (2003), 3(3):173-9).
  • LQT3 long QT3
  • BS Brugada syndrome
  • SUNDS sudden unexpected nocturnal death syndrome
  • SIDS sudden infant death syndrome
  • NaV1.6 is a widely distributed voltage-gated sodium channel found throughout the central and peripheral nervous systems. It is expressed at high density in the nodes of Ranvier of myelinated neurons (Caldwell, J. H., et al., Proc. Natl. Acad. Sci. USA (2000), 97(10): 5616-20).
  • NaV1.7 is a tetrodotoxin-sensitive voltage-gated sodium channel encoded by the gene SCN9A.
  • Human NaV1.7 was first cloned from neuroendocrine cells (Klugbauer, N., et al., 1995 EMBO J., 14 (6): 1084-90.) and rat NaV1.7 was cloned from a pheochromocytoma PC12 cell line (Toledo-Aral, J. J., et al., Proc. Natl. Acad. Sci. USA (1997), 94:1527-1532) and from rat dorsal root ganglia (Sangameswaran, L., et al., (1997), J. Biol.
  • NaV1.7 is expressed primarily in the peripheral nervous system, especially nocieptors and olfactory neurons and sympathetic neurons. The inhibition, or blocking, of NaV1.7 has been shown to result in analgesic activity. Knockout of NaV1.7 expression in a subset of sensory neurons that are predominantly nociceptive results in resistance to inflammatory pain (Nassar, et al., op. cit.). Likewise, loss of function mutations in humans results in congenital indifference to pain (CIP), in which the individuals are resistant to both inflammatory and neuropathic pain (Cox, J. J., et al., Nature (2006); 444:894-898; Goldberg, Y.
  • CIP congenital indifference to pain
  • NaV1.8 is expressed primarily in sensory ganglia of the peripheral nervous system, such as the dorsal root ganglia (Raymond, C. K., et al., op. cit.). There are no identified human mutations for NaV1.8 that produce altered pain responses. NaV1.8 differs from most neuronal NaV's in that it is insensitive to block by tetrodotoxin. Thus, one can isolate the current carried by this channel with tetrodotoxin. These studies have shown that a substantial portion of total sodium current is NaV1.8 in some dorsal root ganglion neurons (Blair, N. T., et al., J Neurosci (2002), 22: 10277-90).
  • NaV1.8 Knock-down of NaV1.8 in rats has been achieved by using antisense DNA or small interfering RNAs and virtually complete reversal of neuropathic pain was achieved in the spinal nerve ligation and chronic constriction injury models (Dong, X. W., et al., Neuroscience (2007), 146: 812-21; Lai J., et al. Pain (2002), 95: 143-52).
  • NaV1.8 is considered a promising target for analgesic agents based upon the limited tissue distribution of this NaV isoform and the analgesic activity produced by knock-down of channel expression.
  • NaV1.9 is also a tetrodotoxin insensitive, sodium channel expressed primarily in dorsal root ganglia neurons (Dib-Hajj, S. D., et al. (see Dib-Hajj, S. D., et al., Proc. Natl. Acad. Sci. USA (1998), 95(15):8963-8). It is also expressed in enteric neurons, especially the myenteric plexus (Rugiero, F., et al., J Neurosci (2003), 23: 2715-25). The limited tissue distribution of this NaV isoform suggests that it may be a useful target for analgesic agents (Lai, J., et al., op.
  • Knock-out of NaV1.9 results in resistance to some forms of inflammatory pain (Amaya, F., et al., J Neurosci (2006), 26: 12852-60; Priest, B. T., et al., Proc Natl Acad Sci USA (2005), 102: 9382-7).
  • Sodium channels are targeted by a diverse array of pharmacological agents. These include neurotoxins, antiarrhythmics, anticonvulsants and local anesthetics (England, S., et al., Future Med Chem (2010), 2: 775-90; Termin, A., et al., Annual Reports in Medicinal Chemistry (2008), 43: 43-60). All of the current pharmacological agents that act on sodium channels have receptor sites on the alpha subunits. At least six distinct receptor sites for neurotoxins and one receptor site for local anesthetics and related drugs have been identified (Cestele. S., et al., Biochimie (2000), Vol. 82, pp. 883-892).
  • the small molecule sodium channel blockers or the local anesthetics and related antiepileptic and antiarrhythmic drugs interact with overlapping receptor sites located in the inner cavity of the pore of the sodium channel (Catterall, W. A., Neuron (2000), 26:13-25). Amino acid residues in the S6 segments from at least three of the four domains contribute to this complex drug receptor site, with the IVS6 segment playing the dominant role. These regions are highly conserved and as such most sodium channel blockers known to date interact with similar potency with all channel subtypes.
  • sodium channel blockers with therapeutic selectivity and a sufficient therapeutic window for the treatment of epilepsy (e.g., lamotrignine, phenytoin and carbamazepine) and certain cardiac arrhythmias (e.g., lignocaine, tocainide and mexiletine).
  • epilepsy e.g., lamotrignine, phenytoin and carbamazepine
  • cardiac arrhythmias e.g., lignocaine, tocainide and mexiletine.
  • the potency and therapeutic index of these blockers is not optimal and have limited the usefulness of these compounds in a variety of therapeutic areas where a sodium channel blocker would be ideally suited.
  • Sodium channel blockers have been shown to be useful in the treatment of pain, including acute, chronic, inflammatory and/or neuropathic pain (see, e.g., Wood, J. N., et al., J. Neurobiol. (2004), 61(1), 55-71.
  • Preclinical evidence demonstrates that sodium channel blockers can suppress neuronal firing in peripheral and central sensory neurons, and it is via this mechanism that they are considered to be useful for relieving pain.
  • abnormal or ectopic firing can original from injured or otherwise sensitized neurons.
  • sodium channels can accumulate in peripheral nerves at sites of axonal injury and may function as generators of ectopic firing (Devor et al., J. Neurosci.
  • lidocaine a known sodium channel blocker
  • mexiletine has dose-limiting side effects
  • a major focus of drug discovery targeting voltage-gated sodium channels has been on strategies for improving the therapeutic index.
  • One of the leading strategies is to identify selective sodium channel blockers designed to preferentially block NaV1.7, NaV1.8, NaV1.9 and/or NaV1.3. These are the sodium channel isoforms preferentially expressed in sensory neurons and unlikely to be involved in generating any dose-limiting side effects.
  • neuropathic pain In addition to the strategies of identifying selective sodium channel blockers, there is the continuing strategy of identifying therapeutic agents for the treatment of neuropathic pain. There has been some degree of success in treating neuropathic pain symptoms by using medications originally approved as anticonvulsants, such as gabapentin, and more recently pregabalin. However, pharmacotherapy for neuropathic pain has generally had limited success for a variety of reasons: sedation, especially by drugs first developed as anticonvulsants or anti-depressants, addiction or tachyphylaxis, especially by opiates, or lack of efficacy, especially by NSAIDs and anti-inflammatory agents.
  • neuropathic pain includes, but is not limited to, post-herpetic neuralgia, trigeminal neuralgia, diabetic neuropathy, chronic lower back pain, phantom limb pain, and pain resulting from cancer and chemotherapy, chronic pelvic pain, complex regional pain syndrome and related neuralgias.
  • the present invention provides for novel compounds.
  • Embodiment 1 abbreviated as “E1”
  • the invention provides for a compound of formula I:
  • R 1 is C 1-8 alkyl, C 2-8 alkenyl, C 1-8 haloalkyl, C 1-8 alkoxy, C 3-8 carbocycle, C-linked C 2-7 heterocycle, or —NR 1A R 1B , wherein R 1A and R 1B are each independently selected from the group consisting of hydrogen, C 1-8 alkyl, C 1-8 alkoxy, and wherein R 1A and R 1B are optionally combined to form a 3 to 8 membered heterocyclic ring optionally comprising 1 additional heteroatom selected from N, O and S; and wherein R 1 is optionally substituted with from 1 to 5 substituents selected from the group consisting of C 1-4 alkyl, C 1-4 haloalkyl, F, Cl, Br, I, —OH, —CN, —NO 2 , —NR R1a R R1b , —OR R1a , —SR R1a , —Si(R R1a ) 3 and C 3-6 carbocycle;
  • R N is hydrogen, C 1-4 alkyl or C 1-4 haloalkyl
  • R 2 is selected from the group consisting of H, F, Cl, Br, I, —CN, C 1-8 alkyl, C 1-8 haloalkyl and C 1-8 alkoxy;
  • R 3 is selected from the group consisting of H, F, Cl, Br, I, —CN, C 1-8 alkyl, C 1-8 haloalkyl and C 1-8 alkoxy;
  • R 4 is selected from the group consisting of H, F, Cl, Br, I, —CN, C 1-8 alkyl, C 1-8 haloalkyl and C 1-8 alkoxy;
  • R 5 is selected from the group consisting of H, F, Cl, Br, I, —CN, C 1-8 alkyl, C 1-8 haloalkyl, C 1-8 alkoxy, C 3-8 cycloalkyl and C 2-7 heterocycle, wherein said C 3-8 cycloalkyl and C 2-7 heterocycle is optionally substituted with 1-3 substituents selected from F, Cl, Br and I;
  • L is a linker selected from the group consisting of C 1-4 alkylene, C 2-4 alkenylene and C 2-4 alkynylene, wherein L is optionally substituted with from 1 to 3 substituents selected from the group consisting of ⁇ O, C 1-4 alkyl, halo, and C 1-4 haloalkyl;
  • m represents the integer 0 or 1;
  • X 1 and X 2 are each independently selected from the group consisting of absent, —O—, —S(O)—, —S(O) 2 — and —N(R X )— wherein R x is H, C 1-8 alkyl, C 1-8 alkanoyl, or —S(O) 2 (C 1-8 alkyl), and wherein if the subscript m is 0 then one of X 1 or X 2 is absent;
  • n is an integer from 0 to 5;
  • the ring A is a C 2-11 heterocycle comprising a nitrogen atom and further optionally comprising 1-2 heteroatoms selected from N, O and S;
  • each R AA is independently selected from the group consisting of C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 heteroalkyl, CN, F, Cl, Br and I; and
  • R A is selected from the group consisting of —(X RB ) 0-1 OR A1 , C 6-10 aryl-(X RA )—, C 1-20 heteroaryl-(X RA )—, C 3-12 carbocycle-(X RA )—, —R A2 , —S(O) 2 —R A2 , and C 2-11 heterocycle-(X RA )—, wherein said C 1-10 aryl, C 5-9 heteroaryl, C 3-12 carbocycle and C 2-11 heterocycle of R A is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, I, —NH 2 , —OH, —CN, —NO 2 , C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 (halo)alkoxy, C 1-4 alkylamino, C 1-4 dialkylamino, C 1-4 alkanoyl, C 1-4 alkyl-OC
  • R 1 is C 1-8 alkyl, C 2-8 alkenyl, C 1-8 haloalkyl, C 1-8 alkoxy, C 3-8 carbocycle, C-linked C 2-7 heterocycle, or —NR 1A R 1B , wherein R 1A and R 1B are each independently selected from the group consisting of hydrogen, C 1-8 alkyl, C 1-8 alkoxy, and wherein R 1A and R 1B are optionally combined to form a 3 to 8 membered heterocyclic ring optionally comprising 1 additional heteroatom selected from N, O and S; and wherein R 1 is optionally substituted with from 1 to 5 substituents selected from the group consisting of C 1-4 alkyl, C 1-4 haloalkyl, F, Cl, Br, I, —OH, —CN, —NO 2 , —NR R1a R R1b , —OR R1a , —SR R1a , —Si(R R1a ) 3 and C 3-6 carbocycle;
  • R N is hydrogen, C 1-4 alkyl or C 1-4 haloalkyl
  • R 2 is selected from the group consisting of H, F, Cl, Br, I, —CN, C 1-8 alkyl, C 1-8 haloalkyl and C 1-8 alkoxy;
  • R 3 is selected from the group consisting of H, F, Cl, Br, I, —CN, C 1-8 alkyl, C 1-8 haloalkyl and C 1-8 alkoxy;
  • R 4 is selected from the group consisting of H, F, Cl, Br, I, —CN, C 1-8 alkyl, C 1-8 haloalkyl and C 1-8 alkoxy;
  • R 5 is selected from the group consisting of H, F, Cl, Br, I, —CN, C 1-8 alkyl, C 1-8 haloalkyl, C 1-8 alkoxy, C 3-8 cycloalkyl and C 2-7 heterocycle, wherein said C 3-8 cycloalkyl and C 2-7 heterocycle is optionally substituted with 1-3 substituents selected from F, Cl, Br and I;
  • L is a linker selected from the group consisting of C 1-4 alkylene, C 2-4 alkenylene and C 2-4 alkynylene, wherein L is optionally substituted with from 1 to 3 substituents selected from the group consisting of ⁇ O, C 1-4 alkyl, halo, and C 1-4 haloalkyl;
  • m represents the integer 0 or 1;
  • X 1 and X 2 are each independently selected from the group consisting of absent, —O—, —S(O)—, —S(O) 2 — and —N(R X )— wherein R x is H, C 1-8 alkyl, C 1-8 alkanoyl, or —S(O) 2 (C 1-8 alkyl), and wherein if the subscript m is 0 then one of X 1 or X 2 is absent;
  • n is an integer from 0 to 5;
  • the ring A is a C 2-11 heterocycle comprising a nitrogen atom and further optionally comprising 1-2 heteroatoms selected from N, O and S;
  • each R AA is independently selected from the group consisting of C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 heteroalkyl, F, Cl, Br and I; and
  • R A is selected from the group consisting of —(X RR ) 0-1 OR A1 , C 6-10 aryl-(X RA )—, C 5-9 heteroaryl-(X RA )—, C 3-12 carbocycle-(X RA )—, —R A2 , —S(O) 2 —R A2 , and C 2-11 heterocycle-(X RA )—, wherein said C 6-10 aryl, C 5-9 heteroaryl, C 3-12 carbocycle and C 2-11 heterocycle of R A is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, I, —NH 2 , —OH, —CN, —NO 2 , C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 (halo)alkoxy, C 1-4 alkylamino, C 1-4 dialkylamino, C 1-4 alkanoyl, C 1-4 alkyl-OC
  • R 1 is C 1-8 alkyl, C 2-8 alkenyl, C 1-8 haloalkyl, C 1-8 alkoxy, C 3-8 carbocycle, C-linked C 2-7 heterocycle, or —NR 1A R 1B , wherein R 1A and R 1B are each independently selected from the group consisting of hydrogen, C 1-8 alkyl, C 1-8 alkoxy, and wherein R 1A and R 1B are optionally combined to form a 3 to 8 membered heterocyclic ring optionally comprising 1 additional heteroatom selected from N, O and S; and wherein R 1 is optionally substituted with from 1 to 5 substituents selected from the group consisting of C 1-4 alkyl, C 1-4 haloalkyl, F, Cl, Br, I, —OH, —CN, —NO 2 , —NR R1a R R1b , —OR R1a , —SR R1a , —Si(R R1a ) 3 and C 3-6 carbocycle;
  • R N is hydrogen, C 1-4 alkyl or C 1-4 haloalkyl
  • R 2 is selected from the group consisting of H, F, Cl, Br, I, —CN, C 1-8 alkyl, C 1-8 haloalkyl and C 1-8 alkoxy;
  • R 3 is selected from the group consisting of H, F, Cl, Br, I, —CN, C 1-8 alkyl, C 1-8 haloalkyl and C 1-8 alkoxy;
  • R 4 is selected from the group consisting of H, F, Cl, Br, I, —CN, C 1-8 alkyl, C 1-8 haloalkyl and C 1-8 alkoxy;
  • R 5 is selected from the group consisting of H, F, Cl, Br, I, —CN, C 1-8 alkyl, C 1-8 haloalkyl, C 1-8 alkoxy, C 3-8 cycloalkyl and C 2-7 heterocycle, wherein said C 3-8 cycloalkyl and C 2-7 heterocycle is optionally substituted with 1-3 substituents selected from F, Cl, Br and I;
  • L is a linker selected from the group consisting of C 1-4 alkylene, C 2-4 alkenylene and C 2-4 alkynylene, wherein L is optionally substituted with from 1 to 3 substituents selected from the group consisting of ⁇ O, C 1-4 alkyl, halo, and C 1-4 haloalkyl;
  • m represents the integer 0 or 1;
  • X 1 and X 2 are each independently selected from the group consisting of absent, —O—, —S(O)—, —S(O) 2 — and —N(R X )— wherein R x is H, C 1-8 alkyl, C 1-8 alkanoyl, or —S(O) 2 (C 1-8 alkyl), and wherein if the subscript m is 0 then one of X 1 or X 2 is absent;
  • n is an integer from 0 to 5;
  • the ring A is a C 2-11 heterocycle comprising a nitrogen atom and further optionally comprising 1-2 heteroatoms selected from N, O and S;
  • each R AA is independently selected from the group consisting of C 1-6 alkyl, C 1-6 haloalkyl, C 1-6 heteroalkyl, F, Cl, Br and I; and
  • R A is selected from the group consisting of —(X RB ) 0-1 OR A1 , C 6-10 aryl-(X RA )—, C 5-9 heteroaryl-(X RA )—, C 3-12 carbocycle-(X RA )—, and C 2-11 heterocycle-(X RA )—, wherein said C 6-10 aryl, C 5-9 heteroaryl, C 3-12 carbocycle and C 2-11 heterocycle of R A is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, I, —NH 2 , —OH, —CN, —NO 2 , C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 (halo)alkoxy, C 1-4 alkylamino, C 1-4 dialkylamino, phenyl, C 1-4 alkanoyl, C 1-4 alkyl-OC( ⁇ O)—, C 1-4 alkyl-S(O
  • E7 The compound of E1, E2, E3, E4, E5, or E6 wherein R 1 is selected from the group consisting of C 1-8 alkyl, C 1-8 haloalkyl, C 3-8 carbocycle, C 2-7 heterocycle, and —NR 1A R 1B , wherein R 1A and R 1B are each independently selected from the group consisting of C 1-8 alkyl and C 1-8 alkoxy, and wherein R 1A and R 1B are optionally combined to form a 3 to 6 membered heterocyclic ring; and wherein R 1 is optionally substituted with from 1 to 5 substituents selected from the group consisting of C 1-4 alkyl, C 1-4 haloalkyl, F, Cl, Br, I, —OH, —OR R1a , —SR R1a , —Si(R R1a ) 3 , and C 3-8 carbocycle; wherein R R1a and R R1b are independently selected from the group consisting of hydrogen, C 1-8 alkyl
  • E9 The compound of E1, E2, E3, E4, E5, or E6 wherein R 1 is methyl, cyclopropyl, 1-azetidinyl or 2-methoxyethyl.
  • E10 The compound of E1, E2, E3, E7, E8, or E9 wherein R 2 is H.
  • E11 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, or E10 wherein R 3 is F, Cl, or Br.
  • E12 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, or E10 wherein R 3 is F.
  • E13 The compound of E1, E2, E3, E7, E8, E9, E10, E11, or E12 wherein R 4 is H.
  • E14 The compound of E11, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, or E13 wherein R 5 is C 3-5 cycloalkyl.
  • E15 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, or E13 wherein R 5 is cyclopropyl.
  • E16 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, or E15 wherein X 1 is —O— or —N(H)—; X 2 is absent; the subscript m is 1; and -(L)- is an optionally substituted group selected from the group consisting of C 1-4 alkylene, C 2-4 alkenylene or C 2-4 alkynylene.
  • E17 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, or E15 wherein X 1 is —O— or —N(H)—; X 2 is absent; the subscript m is 1; and -(L)- is selected from the group consisting of —CH 2 —, —C( ⁇ O)—, —C(H)(CH 3 )—, —CH 2 —CH 2 —, —CH 2 —C(H)(CH 3 )—, —C(H)(CH 3 )—C(H 2 )—, —CH 2 CH 2 CH 2 —, —CH 2 —C(H)(CH 3 )—CH 2 — or —CH 2 CH 2 CH 2 CH 2 —.
  • E18 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, or E15 wherein X 1 is —O—; the subscript m is 1 and -(L)- is —CH 2 — or —CH 2 —CH 2 —.
  • E19 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, or E15 wherein X 1 is absent; X 2 is —O— or —N(H)—; the subscript m is 1; and -(L)- is selected from the group consisting of —C(H) 2 —, —C( ⁇ O)—, —C(H)(CH 3 )—, —CH 2 —CH 2 —, —CH 2 —C(H)(CH 3 )—, —C(H)(CH 3 )—C(H 2 )—, —CH 2 CH 2 CH 2 —, —CH 2 —C(H)(CH 3 )—CH 2 — or —CH 2 CH 2 CH 2 CH 2 —.
  • E20 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, or E15 wherein X 1 and X 2 is absent; the subscript m is 1; and -(L)- is selected from the group consisting of —C(H) 2 —, —C( ⁇ O)—, —C(H)(CH 3 )—, —CH 2 —CH 2 —, —CH 2 —C(H)(CH 3 )—, —C(H)(CH 3 )—C(H 2 )—, —CH 2 CH 2 CH 2 —, —CH 2 —C(H)(CH 3 )—CH 2 — or —CH 2 CH 2 CH 2 CH 2 —.
  • E21 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E2, E13, E14, or E15 wherein m is 0; X 1 is selected from —O—, and —N(H)—; and X 2 is absent.
  • E22 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, or E21 wherein A is optionally substituted and is selected from azetidine, pyrrolidine, piperidine, morpholine, homopiperazine, and piperazine.
  • E23 The compound E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, or E21 of wherein:
  • E24 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, or E21 wherein:
  • E25 The compound of of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, or E24 wherein R AA is selected from the group consisting of methyl, trifluoromethyl, ethyl, CN, F, Cl, Br, and I.
  • E26 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, or E24 wherein R AA is selected from the group consisting of methyl, trifluoromethyl, ethyl, F, Cl, Br, and I.
  • R A is selected from the group consisting of phenyl-(X RA )—, wherein said phenyl is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, —NH, —OH, —CN, —NO 2 , C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 alkylamino, C 1-4 dialkylamino, phenyl, C 1-4 alkanoyl, C 1-4 alkyl-OC( ⁇ O)— and C 3-6 carbocycle; and wherein X RA is selected from the group consisting of absent, —O—, —S—, —
  • E28 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein R A is phenyl-(X RA )—, wherein said phenyl is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, C 1-4 alkyl, —CN, C 3-6 carbocycle and C 1-4 haloalkyl; wherein X RA is selected from the group consisting of absent and C 1-4 alkylene; and wherein X RA is optionally substituted with 1 to 3 substituents selected from the group consisting of C 1-4 alkyl and phenyl that is optionally substituted with 1 to 5 substitutents selected from, F, Cl, C 1-4 alkyl, and C 1-4 haloalkyl.
  • R A is
  • R A is —(X RB ) 0-1 OR A1 ;
  • R A1 is selected from the group consisting of hydrogen, C 1-8 alkyl, C 2-8 alkenyl, C 1-8 haloalkyl, C 3-8 cycloalkyl, phenyl and benzyl;
  • X RB is selected from the group consisting of absent and C 1-4 alkylene that is optionally substituted with 1 to 3 substituents selected from the group consisting of C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 heteroalkyl, oxo ( ⁇ O), and phenyl that is optionally substituted with 1 to 5 substitutents selected from, F, Cl,
  • E30 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein R A is selected from the group consisting of
  • E31 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein R A is selected from the group consisting of
  • E32 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein R A is selected from the group consisting of phenyl, phenylmethyl, pyrazolyl, pyrazolylmethyl, cyclobutyl, cyclohexylmethyl, cyclopentyl, cyclopentylmethyl, cyclobutyl, cyclobutylmethyl, pyrimidinyl, pyrimidinylmethyl, pyrazinyl, pyrazinylmethyl, pyridazinyl, pyridazinylmethyl, indolinyl, indolinylmethyl, isoindolinyl, and isoindolinylmethyl, and wherein R A is optionally substituted with from 1 to 5 substitute
  • R A is selected from the group consisting of —(X RB ) 0-1 OR A1 , C 6-10 aryl-(X RA )—, C 1-20 heteroaryl-(X RA )—, C 3-12 carbocycle-(X RA )— and C 2-11 heterocycle-(X RA )—, wherein said C 6-10 aryl, C 5-9 heteroaryl, C 3-12 carbocycle and C 2-11 heterocycle of R A is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, I, —NH 2 , —OH, —CN, —NO 2 , C 1-4 alkyl, C 1-4 haloal
  • E34 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein R A is selected from the group consisting of —(X RB ) 0-1 OR A1 , C 6-10 aryl-(X RA )—, C 5-9 heteroaryl-(X RA )—, C 3-12 carbocycle-(X RA )— and C 2-11 heterocycle-(X RA )—, wherein said C 6-10 aryl, C 1-9 heteroaryl, C 3-12 carbocycle and C 2-1l heterocycle of R A is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, I, —NH 2 , —OH, —CN, —NO 2 , C 1-4 alkyl, C 1-4 halo
  • R A is C 6-10 aryl-(X RA )—, wherein said C 1-10 aryl, of R A is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, I, —NH 2 , —OH, —CN, —NO 2 , C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 (halo)alkoxy, C 1-4 alkylamino, C 1-4 dialkylamino, phenyl, C 1-4 alkanoyl, C 1-4 alkyl-OC( ⁇ O)—, C 1-4 alkyl-S(O) 2 —, and C 3-6 carb
  • E36 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein R A is phenyl —(X RA )—, wherein said phenyl is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, —CN, C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, and C 1-4 (halo)alkoxy; and X RA is C 1-4 alkylene that is optionally substituted with 1 to 3 substituents selected from the group consisting of C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 heteroalkyl, oxo ( ⁇ O), and phenyl that is optionally substituted with 1 to 5 substitutents selected from, F, Cl,
  • E37 The compound of E1, E2, E3, E7, E8, E9, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, E26, E27, E28, E29, E30, E31, E32, E33, E34, E35, or E36 wherein the compound has the formula Id:
  • E38 The compound of E37 wherein R 1 is methyl, ethyl, cyclopropyl, or 1-azetidinyl.
  • E39 The compound of E37 or E38 wherein —X 2 -(L) m -X 1 — is —O—, —CH 2 —, —CH 2 —O—, or —CH 2 CH 2 —O—.
  • E40 The compound of E37, E38, or E39 wherein:
  • E42 The compound of E37, E38, or E39 wherein A is optionally substituted azetidine, pyrrolidine, piperidine, morpholine, homopiperazine, and piperazine.
  • E43 The compound of E37, E38, or E39 wherein:
  • E44 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E37, E38, or E39 wherein:
  • E45 The compound of E1, E2, E3, E4, E7, E8, E9, E10, E11, E12, E13, E14, E15, E25, E26, E27, E28, E29, E30, E31, E32, E33, E34, E35, E36, E37, or E38 wherein: has the formula:
  • E47 The compound of claim E46, wherein R AA is selected from the group consisting of hydrogen, F, Cl and C 1-4 haloalkyl.
  • R AA is selected from the group consisting of hydrogen, F, Cl and C 1-4 haloalkyl.
  • E48 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, E26, E37, E38, E39, E40, E41, E42, E43, E44, E45, E46, or E47 wherein R A is
  • E49 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, E26, E37, E38, E39, E40, E41, E42, E43, E44, E45, E46, or E47 wherein R A is
  • E50 The compound of E1 which is selected from:
  • E52 The compound of E1, which is selected from the compounds of Examples 162-593 and the free bases and salts thereof.
  • E53 The compound of claim E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein R A is selected from the group consisting of benzyl, 3,5-dichlorobenzyl, N-acetylpiperidin-3-yl, 2-chloro-4-fluorobenzyl, 2,4-difluorobenzyl, 2,6-dichlorobenzyl, N-(cyclohexylmethyl)piperidin-3-yl, 1-methyl-3-phenyl-1H-pyrazol-5-ylmethyl, pyridazin-4-ylmethyl, isoindolin-4-ylmethyl, alpha-phenylbenz
  • E54 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein R A is selected from the group consisting of:
  • R A is C 6-10 aryl-(X RA )—, wherein said C 6-10 aryl, of R A is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, I, —NH 2 , —OH, —CN, —NO 2 , C 1-4 alkyl, C 1-4 haloalkyl, C 1-4 alkoxy, C 1-4 (halo)alkoxy, C 1-4 alkylamino, C 1-4 dialkylamino, phenyl, C 1-4 alkanoyl, C 1-4 alkyl-OC( ⁇ O)—, C 1-4 alkyl-S(O) 2 —, and C 3-6 carb
  • E56 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein R A is
  • E57 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein R A is
  • E58 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, E26, E37, E38, E39, E40, E41, E42, E43, E44, E45, E46, or E47 wherein R A is
  • E59 The compound of E1, which is selected from:
  • the present invention provides for a pharmaceutical composition
  • a pharmaceutical composition comprising a compound of formula I or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable excipient.
  • the present invention provides for a method of treating a disease or condition in a mammal selected from the group consisting of pain, depression, cardiovascular diseases, respiratory diseases, and psychiatric diseases, and combinations thereof, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof.
  • said disease or condition is selected from the group consisting of neuropathic pain, inflammatory pain, visceral pain, cancer pain, chemotherapy pain, trauma pain, surgical pain, post-surgical pain, childbirth pain, labor pain, neurogenic bladder, ulcerative colitis, chronic pain, persistent pain, peripherally mediated pain, centrally mediated pain, chronic headache, migraine headache, sinus headache, tension headache, phantom limb pain, dental pain, peripheral nerve injury or a combination thereof.
  • said disease or condition is selected from the group consisting of pain associated with HIV, HIV treatment induced neuropathy, trigeminal neuralgia, post-herpetic neuralgia, eudynia, heat sensitivity, tosarcoidosis, irritable bowel syndrome, Crohns disease, pain associated with multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), diabetic neuropathy, peripheral neuropathy, arthritis, rheumatoid arthritis, osteoarthritis, atherosclerosis, paroxysmal dystonia, myasthenia syndromes, myotonia, malignant hyperthermia, cystic fibrosis, pseudoaldosteronism, rhabdomyolysis, hypothyroidism, bipolar depression, anxiety, schizophrenia, sodium channel toxi related illnesses, familial erythromelalgia, primary erythromelalgia, familial rectal pain, cancer, epilepsy, partial and general tonic seizures, restless leg syndrome, ar
  • the present invention provides for a method of treating pain in a mammal by the inhibition of ion flux through a voltage-dependent sodium channel in the mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof.
  • the present invention provides for a method of decreasing ion flux through a voltage-dependent sodium channel in a cell in a mammal, wherein the method comprises contacting the cell with a compound of formula I, or a pharmaceutically acceptable salt thereof.
  • the present invention provides for a method of treating pruritus in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof.
  • the present invention provides for a method of treating cancer in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount a compound of formula I, or a pharmaceutically acceptable salt thereof.
  • the present invention provides for a method of treating, but not preventing, pain in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof.
  • the pain is selected from the group consisting of neuropathic pain, inflammatory pain, visceral pain, cancer pain, chemotherapy pain, trauma pain, surgical pain, post-surgical pain, childbirth pain, labor pain, neurogenic bladder, ulcerative colitis, chronic pain, persistent pain, peripherally mediated pain, centrally mediated pain, chronic headache, migraine headache, sinus headache, tension headache, phantom limb pain, dental pain, peripheral nerve injury or a combination thereof.
  • the pain is associated with a disease or condition selected from the group consisting of HIV, HIV treatment induced neuropathy, trigeminal neuralgia, post-herpetic neuralgia, eudynia, heat sensitivity, tosarcoidosis, irritable bowel syndrome, Crohns disease, pain associated with multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), diabetic neuropathy, peripheral neuropathy, arthritis, rheumatoid arthritis, osteoarthritis, atherosclerosis, paroxysmal dystonia, myasthenia syndromes, myotonia, malignant hyperthermia, cystic fibrosis, pseudoaldosteronism, rhabdomyolysis, hypothyroidism, bipolar depression, anxiety, schizophrenia, sodium channel toxi related illnesses, familial erythromelalgia, primary erythromelalgia, familial rectal pain, cancer, epilepsy, partial and general tonic seizures, restless leg syndrome,
  • the present invention provides for a method of treating, but not preventing, acute pain or chronic pain in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof.
  • the present invention provides for a method of treating, but not preventing, neuropathic pain or inflammatory pain in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof.
  • the present invention provides for a method for the treatment or prophylaxis of pain, depression, cardiovascular disease, respiratory disease, or psychiatric disease, or a combinations thereof, in an animal which method comprises administering an effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof.
  • the present invention provides for a compound of formula I, or a pharmaceutically acceptable salt thereof for the use as a medicament for the treatment of diseases and disorders selected from the group consisting of pain, depression, cardiovascular diseases, respiratory diseases, and psychiatric diseases, or a combination thereof.
  • the present invention provides for the use of a compound of formula I, or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment of diseases and disorders selected from the group consisting of pain, depression, cardiovascular diseases, respiratory diseases, and psychiatric diseases, or a combination thereof.
  • the present invention provides for the invention as described herein.
  • alkyl by itself or as part of another substituent, means, unless otherwise stated, a straight or branched chain hydrocarbon radical, having the number of carbon atoms designated (i.e., C 1-8 means one to eight carbons).
  • alkyl groups include methyl, ethyl, n-propyl, iso-propyl, n-butyl, t-butyl, iso-butyl, sec-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like.
  • alkenyl refers to an unsaturated alkyl radical having one or more double bonds.
  • alkynyl refers to an unsaturated alkyl radical having one or more triple bonds.
  • unsaturated alkyl groups include vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers.
  • heteroalkyl by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain hydrocarbon radical, consisting of the stated number of carbon atoms and from one to three heteroatoms selected from the group consisting of O, N, Si and S, and wherein the nitrogen and sulfur atoms can optionally be oxidized and the nitrogen heteroatom can optionally be quaternized.
  • the heteroatom(s) O, N and S can be placed at any interior position of the heteroalkyl group.
  • heteroatom Si can be placed at any position of the heteroalkyl group, including the position at which the alkyl group is attached to the remainder of the molecule.
  • a “heteroalkyl” can contain up to three units of unsaturation, and also include mono- and poly-halogenated variants, or combinations thereof.
  • Examples include —CH 2 —CH 2 —O—CH 3 , —CH 2 —CH 2 —O—CF 3 , —CH 2 —CH 2 —NH—CH 3 , —CH 2 —CH 2 —N(CH 3 )—CH 3 , —CH 2 —S—CH 2 —C H 3 , —S(O)—CH 3 , —CH 2 —CH 2 —S(O) 2 —CH 3 , —CH ⁇ CH—O—CH 3 , —Si(CH 3 ) 3 , —CH 2 —CH ⁇ N—OCH 3 , and —CH ⁇ CH ⁇ N(CH 3 )—CH 3 .
  • Up to two heteroatoms can be consecutive, such as, for example, —CH 2 —NH—OCH 3 and —CH 2 —O—Si(CH 3 ) 3 .
  • alkylene by itself or as part of another substituent means a divalent radical derived from an alkane (including branched alkane), as exemplified by —CH 2 CH 2 CH 2 CH 2 — and —CH(CH 2 )CH 2 CH 2 —.
  • an alkyl (or alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred in the present invention.
  • alkenylene and alkynylene refer to the unsaturated forms of “alkylene” having double or triple bonds, respectively.
  • Alkylene”, “alkenylene” and “alkynylene” are also meant to include mono and poly-halogenated variants.
  • heteroalkylene by itself or as part of another substituent means a divalent radical, saturated or unsaturated or polyunsaturated, derived from heteroalkyl, as exemplified by —CH 2 —CH 2 —S—CH 2 CH 2 — and —CH 2 —S—CH 2 —CH 2 —NH—CH 2 —, —O—CH 2 —CH ⁇ CH—, —CH 2 —CH ⁇ C(H)CH 2 —O—CH 2 — and —S—CH 2 —C ⁇ C—.
  • heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like).
  • chain termini e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like.
  • heteroalkylene is also meant to include mono and poly-halogenated variants.
  • alkoxy alkylamino and “alkylthio”, are used in their conventional sense, and refer to those alkyl groups attached to the remainder of the molecule via an oxygen atom (“oxy”), an amino group (“amino”) or thio group, and further include mono- and poly-halogenated variants thereof. Additionally, for dialkylamino groups, the alkyl portions can be the same or different.
  • halo or “halogen,” by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom.
  • (halo)alkyl is meant to include both a “alkyl” and “haloalkyl” substituent.
  • haloalkyl is meant to include monohaloalkyl and polyhaloalkyl.
  • C 1-4 haloalkyl is mean to include trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, difluoromethyl, and the like.
  • aryl refers to a single all carbon aromatic ring or a multiple condensed all carbon ring system wherein at least one of the rings is aromatic.
  • an aryl group has 6 to 20 carbon atoms, 6 to 14 carbon atoms, or 6 to 12 carbon atoms.
  • Aryl includes a phenyl radical.
  • Aryl also includes multiple condensed ring systems (e.g., ring systems comprising 2, 3 or 4 rings) having about 9 to 20 carbon atoms in which at least one ring is aromatic and wherein the other rings may be aromatic or not aromatic (i.e., carbocycle).
  • Such multiple condensed ring systems are optionally substituted with one or more (e.g., 1, 2 or 3) oxo groups on any carbocycle portion of the multiple condensed ring system.
  • the rings of the multiple condensed ring system can be connected to each other via fused, spiro and bridged bonds when allowed by valency requirements. It is to be understood that the point of attachment of a multiple condensed ring system, as defined above, can be at any position of the ring system including an aromatic or a carbocycle portion of the ring.
  • aryl groups include, but are not limited to, phenyl, indenyl, naphthyl, 1, 2, 3, 4-tetrahydronaphthyl, anthracenyl, and the like.
  • carrier or “carbocyclyl” refers to a single saturated (i.e., cycloalkyl) or a single partially unsaturated (e.g., cycloalkenyl, cycloalkadienyl, etc.) all carbon ring having 3 to 7 carbon atoms (i.e., (C 3 -C 7 )carbocycle).
  • carrier or “carbocyclyl” also includes multiple condensed, saturated and partially unsaturated all carbon ring systems (e.g., ring systems comprising 2, 3 or 4 carbocyclic rings).
  • carbocycle includes multicyclic carbocyles such as a bicyclic carbocycles (e.g., bicyclic carbocycles having about 6 to 12 carbon atoms such as bicyclo[3.1.0]hexane and bicyclo[2.1.1]hexane), and polycyclic carbocycles (e.g tricyclic and tetracyclic carbocycles with up to about 20 carbon atoms).
  • the rings of the multiple condensed ring system can be connected to each other via fused, spiro and bridged bonds when allowed by valency requirements.
  • multicyclic carbocyles can be connected to each other via a single carbon atom to form a spiro connection (e.g., spiropentane, spiro[4,5]decane, etc), via two adjacent carbon atoms to form a fused connection (e.g., carbocycles such as decahydronaphthalene, norsabinane, norcarane) or via two non-adjacent carbon atoms to form a bridged connection (e.g., norbornane, bicyclo[2.2.2]octane, etc).
  • a spiro connection e.g., spiropentane, spiro[4,5]decane, etc
  • a fused connection e.g., carbocycles such as decahydronaphthalene, norsabinane, norcarane
  • a bridged connection e.g., norbornane, bicyclo[2.2.2]octane,
  • carbocycle or “carbocyclyl” can also be optionally substituted with one or more (e.g., 1, 2 or 3) oxo groups.
  • carbocycle includes a C 3-12 carbocycle.
  • carbocycle includes a C 3-8 carbocycle.
  • carbocycle includes a C 3-6 carbocycle.
  • carbocycle includes a C 3-5 carbocycle.
  • Non-limiting examples of carbocycles include cyclopropyl, cyclobutyl, cyclopentyl, 1-cyclopent-1-enyl, 1-cyclopent-2-enyl, 1-cyclopent-3-enyl, cyclohexyl, 1-cyclohex-1-enyl, 1-cyclohex-2-enyl, bicyclo[2.2.1]heptane, pinane, adamantane, norborene, spirocyclic C 5-12 alkane, and 1-cyclohex-3-enyl.
  • heteroaryl refers to a single aromatic ring that has at least one atom other than carbon in the ring, wherein the atom is selected from the group consisting of oxygen, nitrogen and sulfur; “heteroaryl” also includes multiple condensed ring systems that have at least one such aromatic ring, which multiple condensed ring systems are further described below.
  • heteroaryl includes single aromatic rings of from about 1 to 6 carbon atoms and about 1-4 heteroatoms selected from the group consisting of oxygen, nitrogen and sulfur. The sulfur and nitrogen atoms may also be present in an oxidized form provided the ring is aromatic.
  • heteroaryl ring systems include but are not limited to pyridyl, pyrimidinyl, oxazolyl or furyl.
  • “Heteroaryl” also includes multiple condensed ring systems (e.g., ring systems comprising 2, 3 or 4 rings) wherein a heteroaryl group, as defined above, is condensed with one or more rings selected from heteroaryls (to form for example a naphthyridinyl such as 1,8-naphthyridinyl), heterocycles, (to form for example a 1, 2, 3, 4-tetrahydronaphthyridinyl such as 1,2,3,4-tetrahydro-1,8-naphthyridinyl), carbocycles (to form for example 5,6,7,8-tetrahydroquinolyl) and aryls (to form for example indazolyl) to form the multiple condensed ring system.
  • heteroaryl to form for example a naphthyridin
  • a heteroaryl (a single aromatic ring or multiple condensed ring system) has about 1-20 carbon atoms and about 1-6 heteroatoms within the heteroaryl ring.
  • Such multiple condensed ring systems may be optionally substituted with one or more (e.g., 1, 2, 3 or 4) oxo groups on the carbocycle or heterocycle portions of the condensed ring.
  • the rings of the multiple condensed ring system can be connected to each other via fused, spiro and bridged bonds when allowed by valency requirements. It is to be understood that the individual rings of the multiple condensed ring system may be connected in any order relative to one another.
  • the point of attachment of a multiple condensed ring system can be at any position of the multiple condensed ring system including a heteroaryl, heterocycle, aryl or carbocycle portion of the multiple condensed ring system. It is also to be understood that the point of attachment for a heteroaryl or heteroaryl multiple condensed ring system can be at any suitable atom of the heteroaryl or heteroaryl multiple condensed ring system including a carbon atom and a heteroatom (e.g., a nitrogen).
  • heteroaryls include but are not limited to pyridyl, pyrrolyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyrazolyl, thienyl, indolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, furyl, oxadiazolyl, thiadiazolyl, quinolyl, isoquinolyl, benzothiazolyl, benzoxazolyl, indazolyl, quinoxalyl, quinazolyl, 5,6,7,8-tetrahydroisoquinolinyl benzofuranyl, benzimidazolyl, thianaphthenyl, pyrrolo[2,3-b]pyridinyl, quinazolinyl-4(3H)-one, triazolyl, 4,5,6,7-tetrahydro-1H-indazole and 3b,4,4
  • heterocyclyl or “heterocycle” as used herein refers to a single saturated or partially unsaturated ring that has at least one atom other than carbon in the ring, wherein the atom is selected from the group consisting of oxygen, nitrogen and sulfur; the term also includes multiple condensed ring systems that have at least one such saturated or partially unsaturated ring, which multiple condensed ring systems are further described below.
  • the term includes single saturated or partially unsaturated rings (e.g., 3, 4, 5, 6 or 7-membered rings) from about 1 to 6 carbon atoms and from about 1 to 3 heteroatoms selected from the group consisting of oxygen, nitrogen and sulfur in the ring.
  • the ring may be substituted with one or more (e.g., 1, 2 or 3) oxo groups and the sulfur and nitrogen atoms may also be present in their oxidized forms.
  • exemplary heterocycles include but are not limited to azetidinyl, tetrahydrofuranyl and piperidinyl.
  • heterocycle also includes multiple condensed ring systems (e.g., ring systems comprising 2, 3 or 4 rings) wherein a single heterocycle ring (as defined above) can be condensed with one or more groups selected from heterocycles (to form for example a 1,8-decahydronapthyridinyl), carbocycles (to form for example a decahydroquinolyl) and aryls to form the multiple condensed ring system.
  • a heterocycle a single saturated or single partially unsaturated ring or multiple condensed ring system
  • Such multiple condensed ring systems may be optionally substituted with one or more (e.g., 1, 2, 3 or 4) oxo groups on the carbocycle or heterocycle portions of the multiple condensed ring.
  • the rings of the multiple condensed ring system can be connected to each other via fused, spiro and bridged bonds when allowed by valency requirements. It is to be understood that the individual rings of the multiple condensed ring system may be connected in any order relative to one another. It is also to be understood that the point of attachment of a multiple condensed ring system (as defined above for a heterocycle) can be at any position of the multiple condensed ring system including a heterocycle, aryl and carbocycle portion of the ring.
  • heterocycle includes a C 2-20 heterocycle.
  • heterocycle includes a C 2-7 heterocycle.
  • heterocycle includes a C 2-5 heterocycle.
  • heterocycle includes a C 2-4 heterocycle.
  • heterocycles include, but are not limited to aziridinyl, azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, tetrahydrofuranyl, dihydrooxazolyl, tetrahydropyranyl, tetrahydrothiopyranyl, 1,2,3,4-tetrahydroquinolyl, benzoxazinyl, dihydrooxazolyl, chromanyl, 1,2-dihydropyridinyl, 2,3-dihydrobenzofuranyl, 1,3-benzodioxolyl, 1,4-benzodioxanyl, spiro[cyclopropane-1,1′-isoindolinyl]-3′-one, isoindolinyl-1-one, 2-oxa-6-azaspiro[3.3]heptanyl, imid
  • Substituents for the alkyl radicals can be a variety of groups including, but not limited to, -halogen, —OR′, —NR′R′′, —SR′, —SiR′R′′R′′′, —OC(O)R′, —C(O)R′, —CO 2 R′, —CONR′R′′, —OC(O)NR′R′′, —NR′′C(O)R′, —NR′′′C(O)NR′R′′, —NR′′C(O) 2 R′, —NHC(NH 2 ) ⁇ NH, —NR′C(NH 2 ) ⁇ NH, —NHC(NH 2 ) ⁇ NR′, —NR′′′C(NR′R′′) ⁇ N—CN, —NR′′′C(NR′R′′) ⁇ NOR′, —NHC(NH 2 ) ⁇ NH, —NR′C(NH 2 ) ⁇ NR′, —NR′′′C(NR′R′′) ⁇ N—
  • R′, R′′ and R′′′ each independently refer groups including, for example, hydrogen, unsubstituted C 1-6 alkyl, unsubstituted heteroalkyl, unsubstituted aryl, aryl substituted with 1-3 halogens, unsubstituted C 1-6 alkyl, C 1-6 alkoxy or C 1-6 thioalkoxy groups, or unsubstituted aryl-C 1-4 alkyl groups, unsubstituted heteroaryl, substituted heteroaryl, among others.
  • R′ and R′′ are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 3-, 4-, 5-, 6-, or 7-membered ring.
  • —NR′R′′ is meant to include 1-pyrrolidinyl and 4-morpholinyl.
  • Other substitutents for alkyl radicals, including heteroalkyl, alkylene, include for example, ⁇ O, ⁇ NR′, ⁇ N—OR′, ⁇ N—CN, ⁇ NH, wherein R′ include substituents as described above.
  • substituents for the aryl and heteroaryl groups are varied and are generally selected from the group including, but not limited to halogen, —OR′, —OC(O)R′, —NR′R′′,
  • substituents include each of the above aryl substituents attached to a ring atom by an alkylene tether of from 1-4 carbon atoms.
  • a substituent for the aryl or heteroaryl group contains an alkylene linker (e.g., —(CH 2 ) 1-4 —NR′R′′)
  • the alkylene linker includes halo variants as well.
  • the linker “—(CH 2 ) 1-4 —” when used as part of a substituent is meant to include difluoromethylene, 1,2-difluoroethylene, etc.
  • heteroatom is meant to include oxygen (O), nitrogen (N), sulfur (S) and silicon (Si).
  • chiral refers to molecules which have the property of non-superimposability of the mirror image partner, while the term “achiral” refers to molecules which are superimposable on their mirror image partner.
  • stereoisomers refers to compounds which have identical chemical constitution, but differ with regard to the arrangement of the atoms or groups in space.
  • a wavy line “ ” that intersects a bond in a chemical structure indicates the point of attachment of the bond that the wavy bond intersects in the chemical structure to the remainder of a molecule.
  • C-linked means that the group that the term describes is attached the remainder of the molecule through a ring carbon atom.
  • N-linked means that the group that the term describes is attached to the remainder of the molecule through a ring nitrogen atom.
  • Diastereomer refers to a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another. Diastereomers have different physical properties, e.g. melting points, boiling points, spectral properties, and reactivities. Mixtures of diastereomers can separate under high resolution analytical procedures such as electrophoresis and chromatography.
  • Enantiomers refer to two stereoisomers of a compound which are non-superimposable mirror images of one another.
  • the compounds of the invention can contain asymmetric or chiral centers, and therefore exist in different stereoisomeric forms. It is intended that all stereoisomeric forms of the compounds of the invention, including but not limited to, diastereomers, enantiomers and atropisomers, as well as mixtures thereof such as racemic mixtures, form part of the present invention.
  • a specific stereoisomer can also be referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture.
  • a 50:50 mixture of enantiomers is referred to as a racemic mixture or a racemate, which can occur where there has been no stereoselection or stereospecificity in a chemical reaction or process.
  • the terms “racemic mixture” and “racemate” refer to an equimolar mixture of two enantiomeric species, devoid of optical activity.
  • tautomer or “tautomeric form” refers to structural isomers of different energies which are interconvertible via a low energy barrier.
  • proton tautomers also known as prototropic tautomers
  • Valence tautomers include interconversions by reorganization of some of the bonding electrons.
  • solvate refers to an association or complex of one or more solvent molecules and a compound of the invention.
  • solvents that form solvates include, but are not limited to, water, isopropanol, ethanol, methanol, DMSO, ethyl acetate, acetic acid, and ethanolamine.
  • hydrate refers to the complex where the solvent molecule is water.
  • protecting group refers to a substituent that is commonly employed to block or protect a particular functional group on a compound.
  • an “amino-protecting group” is a substituent attached to an amino group that blocks or protects the amino functionality in the compound.
  • Suitable amino-protecting groups include acetyl, trifluoroacetyl, t-butoxycarbonyl (BOC), benzyloxycarbonyl (CBZ) and 9-fluorenylmethylenoxycarbonyl (Fmoc).
  • a “hydroxy-protecting group” refers to a substituent of a hydroxy group that blocks or protects the hydroxy functionality. Suitable protecting groups include acetyl and silyl.
  • a “carboxy-protecting group” refers to a substituent of the carboxy group that blocks or protects the carboxy functionality.
  • Common carboxy-protecting groups include phenylsulfonylethyl, cyanoethyl, 2-(trimethylsilyl)ethyl, 2-(trimethylsilyl)ethoxymethyl, 2-(p-toluenesulfonyl)ethyl, 2-(p-nitrophenylsulfenyl)ethyl, 2-(diphenylphosphino)-ethyl, nitroethyl and the like.
  • protecting groups and their use see P. G. M. Wuts and T. W. Greene, Greene's Protective Groups in Organic Synthesis 4 th edition, Wiley-Interscience, New York, 2006.
  • mammal includes, but is not limited to, humans, mice, rats, guinea pigs, monkeys, dogs, cats, horses, cows, pigs, and sheep
  • salts are meant to include salts of the active compounds which are prepared with relatively nontoxic acids or bases, depending on the particular substituents found on the compounds described herein.
  • base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired base, either neat or in a suitable inert solvent.
  • salts derived from pharmaceutically-acceptable inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic, manganous, potassium, sodium, zinc and the like.
  • Salts derived from pharmaceutically-acceptable organic bases include salts of primary, secondary and tertiary amines, including substituted amines, cyclic amines, naturally-occurring amines and the like, such as arginine, betaine, caffeine, choline, N,N′-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine and the like.
  • acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired acid, either neat or in a suitable inert solvent.
  • pharmaceutically acceptable acid addition salts include those derived from inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phosphorous acids and the like, as well as the salts derived from relatively nontoxic organic acids like acetic, propionic, isobutyric, malonic, benzoic, succinic, suberic, fumaric, mandelic, phthalic, benzenesulfonic, p-tolylsulfonic, citric, tartaric, methanesulfonic, and the like.
  • salts of amino acids such as arginate and the like, and salts of organic acids like glucuronic or galactunoric acids and the like (see, for example, Berge, S. M., et al., “Pharmaceutical Salts”, Journal of Pharmaceutical Science, 1977, 66, 1-19).
  • Certain specific compounds of the present invention contain both basic and acidic functionalities that allow the compounds to be converted into either base or acid addition salts.
  • the neutral forms of the compounds can be regenerated by contacting the salt with a base or acid and isolating the parent compound in the conventional manner.
  • the parent form of the compound differs from the various salt forms in certain physical properties, such as solubility in polar solvents, but otherwise the salts are equivalent to the parent form of the compound for the purposes of the present invention.
  • the present invention provides compounds which are in a prodrug form.
  • prodrug refers to those compounds that readily undergo chemical changes under physiological conditions to provide the compounds of the present invention.
  • prodrugs can be converted to the compounds of the present invention by chemical or biochemical methods in an ex vivo environment. For example, prodrugs can be slowly converted to the compounds of the present invention when placed in a transdermal patch reservoir with a suitable enzyme or chemical reagent.
  • Prodrugs of the invention include compounds wherein an amino acid residue, or a polypeptide chain of two or more (e.g., two, three or four) amino acid residues, is covalently joined through an amide or ester bond to a free amino, hydroxy or carboxylic acid group of a compound of the present invention.
  • the amino acid residues include but are not limited to the 20 naturally occurring amino acids commonly designated by three letter symbols and also includes phosphoserine, phosphothreonine, phosphotyrosine, 4-hydroxyproline, hydroxylysine, demosine, isodemosine, gamma-carboxyglutamate, hippuric acid, octahydroindole-2-carboxylic acid, statine, 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, penicillamine, ornithine, 3-methylhistidine, norvaline, beta-alanine, gamma-aminobutyric acid, citrulline, homocysteine, homoserine, methyl-alanine, para-benzoylphenylalanine, phenyiglycine, propargyiglycine, sarcosine, methionine sulfone and tert-butylglycine.
  • prodrugs are also encompassed.
  • a free carboxyl group of a compound of the invention can be derivatized as an amide or alkyl ester.
  • compounds of this invention comprising free hydroxy groups can be derivatized as prodrugs by converting the hydroxy group into a group such as, but not limited to, a phosphate ester, hemisuccinate, dimethylaminoacetate, or phosphoryloxymethyloxycarbonyl group, as outlined in Fleisher, D. et al., (1996) Improved oral drug delivery: solubility limitations overcome by the use of prodrugs Advanced Drug Delivery Reviews, 19:115.
  • Carbamate prodrugs of hydroxy and amino groups are also included, as are carbonate prodrugs, sulfonate esters and sulfate esters of hydroxy groups.
  • Derivatization of hydroxy groups as (acyloxy)methyl and (acyloxy)ethyl ethers, wherein the acyl group can be an alkyl ester optionally substituted with groups including, but not limited to, ether, amine and carboxylic acid functionalities, or where the acyl group is an amino acid ester as described above, are also encompassed.
  • Prodrugs of this type are described in J. Med. Chem., (1996), 39:10.
  • More specific examples include replacement of the hydrogen atom of the alcohol group with a group such as (C 1-6 )alkanoyloxymethyl, 1-((C 1-6 )alkanoyloxy)ethyl, 1-methyl-1-((C 1-6 )alkanoyloxy)ethyl, (C 1-6 )alkoxycarbonyloxymethyl, N—(C 1-6 )alkoxycarbonylaminomethyl, succinoyl, (C 1-6 )alkanoyl, alpha-amino(C 1-4 )alkanoyl, arylacyl and alpha-aminoacyl, or alpha-aminoacyl-alpha-aminoacyl, where each alpha-aminoacyl group is independently selected from the naturally occurring L-amino acids, P(O)(OH) 2 , —P(O)(O(C 1-6 )alkyl) 2 or glycosyl (the radical resulting from the removal of a hydroxyl group of
  • prodrug derivatives see, for example, a) Design of Prodrugs, edited by H. Bundgaard, (Elsevier, 1985) and Methods in Enzymology, Vol. 42, p. 309-396, edited by K. Widder, et al. (Academic Press, 1985); b) A Textbook of Drug Design and Development, edited by Krogsgaard-Larsen and H. Bundgaard, Chapter 5 “Design and Application of Prodrugs,” by H. Bundgaard p. 113-191 (1991); c) H. Bundgaard, Advanced Drug Delivery Reviews, 8:1-38 (1992); d) H.
  • a “metabolite” refers to a product produced through metabolism in the body of a specified compound or salt thereof. Such products can result for example from the oxidation, reduction, hydrolysis, amidation, deamidation, esterification, deesterification, enzymatic cleavage, and the like, of the administered compound.
  • Metabolite products typically are identified by preparing a radiolabelled (e.g., 14 C or 3 H) isotope of a compound of the invention, administering it parenterally in a detectable dose (e.g., greater than about 0.5 mg/kg) to an animal such as rat, mouse, guinea pig, monkey, or to man, allowing sufficient time for metabolism to occur (typically about 30 seconds to 30 hours) and isolating its conversion products from the urine, blood or other biological samples.
  • a detectable dose e.g., greater than about 0.5 mg/kg
  • metabolites In general, analysis of metabolites is done in the same way as conventional drug metabolism studies well known to those skilled in the art.
  • the metabolite products so long as they are not otherwise found in vivo, are useful in diagnostic assays for therapeutic dosing of the compounds of the invention.
  • Certain compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are intended to be encompassed within the scope of the present invention. Certain compounds of the present invention can exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated by the present invention and are intended to be within the scope of the present invention.
  • Certain compounds of the present invention possess asymmetric carbon atoms (optical centers) or double bonds; the racemates, diastereomers, geometric isomers, regioisomers and individual isomers (e.g., separate enantiomers) are all intended to be encompassed within the scope of the present invention.
  • the compounds of the present invention can also contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute such compounds.
  • the present invention also embraces isotopically-labeled variants of the present invention which are identical to those recited herein, bur the for the fact that one or more atoms are replace by an atom having the atomic mass or mass number different from the predominant atomic mass or mass number usually found in nature for the atom. All isotopes of any particular atom or element as specified are contemplated within the scope of the compounds of the invention, and their uses.
  • Exemplary isotopes that can be incorporated in to compounds of the invention include istopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, sulfur, fluorine, chlorine and iodine, such as 2 H (“D”), 3 H, 11 C, 13 C, 14 C, 13 N, 15 N, 15 O, 17 O, 18 O, 32 P, 33 P, 35 S, 18 F, 36 Cl, 123 I and 125 I.
  • Certain isotopically labeled compounds of the present invention e.g., those labeled with 3 H or 14 C
  • Tritiated ( 3 H) and carbon-14 ( 14 C) isotopes are useful for their ease of preparation and detectability.
  • isotopes such as deuterium (i.e., 2 H) may afford certain therapeutic advantages resulting from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage requirements) and hence may be preferred in some circumstances.
  • Positron emitting isotopes such as 15 O, 13 N, 11 C, and 18 F are useful for positron emission tomography (PET) studies to examine substrate receptor occupancy.
  • Isotopically labeled compounds of the present inventions can generally be prepared by following procedures analogous to those disclosed in the Schemes and/or in the Examples herein below, by substituting an isotopically labeled reagent for a non-isotopically labeled reagent.
  • beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease or disorder, stabilized (i.e., not worsening) state of disease or disorder, delay or slowing of disease progression, amelioration or palliation of the disease state or disorder, and remission (whether partial or total), whether detectable or undetectable.
  • Treatment can also mean prolonging survival as compared to expected survival if not receiving treatment.
  • Those in need of treatment include those already with the disease or disorder as well as those prone to have the disease or disorder or those in which the disease or disorder is to be prevented.
  • terapéuticaally effective amount means an amount of a compound of the present invention that (i) treats or prevents the particular disease, condition, or disorder, (ii) attenuates, ameliorates, or eliminates one or more symptoms of the particular disease, condition, or disorder, or (iii) prevents or delays the onset of one or more symptoms of the particular disease, condition, or disorder described herein.
  • efficacy can, for example, be measured by assessing the time to disease progression (TTP) and/or determining the response rate (RR).
  • bioavailability refers to the systemic availability (i.e., blood/plasma levels) of a given amount of drug administered to a patient. Bioavailability is an absolute term that indicates measurement of both the time (rate) and total amount (extent) of drug that reaches the general circulation from an administered dosage form.
  • the compound is selected from compounds of formula I as described in the Examples herein and salts thereof.
  • Compounds of formula (I) can be made from compounds of formula (II) by displacement with formula (III) and a base (reaction step ii in Scheme 1). Suitable conditions include potassium tert-butoxide or cesium carbonate in DMSO, NaH in DMF, or K 2 CO 3 in DMF.
  • Formula (II) can be made according to step (i) by activation of the acid group of formula (IV) with reagents such as oxalyl chloride, carbonyl di-imidazole (CDI), propylphosphonic anhydride, a uronium based amide coupling agent or a carbodiimide reagent followed by displacement with a sulfonamide of formula (VII) in the presence of a nucleophilic base such as 4-dimethylaminopyridine.
  • reagents such as oxalyl chloride, carbonyl di-imidazole (CDI), propylphosphonic anhydride, a uronium based amide coupling agent or a carbodiimide reagent followed by displacement with a sulfonamide of formula (VII) in the presence of a nucleophilic base such as 4-dimethylaminopyridine.
  • Illustrative conditions comprise N, N-dimethylaminopropyl
  • compounds of formula (I) can be made from compounds of formula (IV) by reversing steps (i) and (ii) as described in Scheme 1. Illustrative conditions for steps vi and vii are as previously described in steps (ii) and (i), respectively.
  • Compounds of formula (I) can also be made from compounds of formula (V) according to step (v) by displacement of the ester with compounds of formula (VII) and a suitable base such as potassium tert-butoxide, NaH or DBU.
  • a suitable base such as potassium tert-butoxide, NaH or DBU.
  • Compounds of formula (I) can also be made from compounds of formula (v) by a two steps sequence (see steps viii and vii in Scheme 1).
  • Compounds of formula (V) can be made from compounds of formula (VIII) according to step (iv) via a nucleophilic substitution reaction using compounds of formula (III) and a base as described in step ii.
  • Compounds of formula (VIII) can be made from compounds of formula (IV) according to step (iii) using protecting group methodology as described in references such as ‘Greene's Protective Groups in Organic Synthesis’.
  • Pg is tolyl
  • illustrative conditions comprise thionyl chloride or carbonyldiimidazole with para-cresol.
  • Pg is tert-butyl
  • illustrative conditions comprise di-tert butyl dicarbonate and 4-dimethylaminopyridine in tert-butanol.
  • reaction step (iv) by activation of the acid group with reagents such as oxalyl chloride, carbonyl di-imidazole (CDI), a uronium based amide coupling agent, propylphosphonic anhydride or a carbodiimide reagent followed by displacement with a suitable sulfonamide of formula (VII) in the presence of a nucleophilic base such as 4-dimethylaminopyridine.
  • reagents such as oxalyl chloride, carbonyl di-imidazole (CDI), a uronium based amide coupling agent, propylphosphonic anhydride or a carbodiimide reagent followed by displacement with a suitable sulfonamide of formula (VII) in the presence of a nucleophilic base such as 4-dimethylaminopyridine.
  • compounds of formula (I) can be prepared from compounds of formula (XII) (—V ⁇ NH 2 ) according to reaction step (v) by displacement of a sulfonyl chloride of formula (XIII) under basic reaction conditions.
  • Compounds of formula (XI) can be prepared from compounds of formula (X) by palladium-catalyzed coupling of a compound of formula (R 5 M) according to step (ii). Conveniently the coupling is effective with a boronic acid or ester of formula (R 5 M).
  • the coupling reaction can be carried out with a variety of palladium catalysts such as palladium acetate or tetrakistriphenylphosphine palladium (0) in various solvents and in the presence of bases such as sodium and potassium carbonate, cesium fluoride or potassium phosphate.
  • Compounds of formula (X) can be prepared under similar conditions as described for the preparation of compounds of formula (V), (VI) and (I) in Scheme 1.
  • compositions and medicaments comprising a compound of formula I or and embodiment thereof and at least one pharmaceutically acceptable carrier, diluent or excipient.
  • the compositions of the invention can be used to selectively inhibit NaV1.7 in patients (e.g, humans).
  • composition is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.
  • pharmaceutically acceptable it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
  • the invention provides for pharmaceutical compositions (or medicaments) comprising a compound of formula I or an embodiment thereof, and its stereoisomers, geometric isomers, tautomers, solvates, metabolites, isotopes, pharmaceutically acceptable salts, or prodrugs thereof) and a pharmaceutically acceptable carrier, diluent or excipient.
  • the invention provides for preparing compositions (or medicaments) comprising compounds of the invention.
  • the invention provides for administering compounds of formula I or its embodiments and compositions comprising compounds of formula I or an embodiment thereof to a patient (e.g., a human patient) in need thereof.
  • compositions are formulated, dosed, and administered in a fashion consistent with good medical practice.
  • Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners.
  • the effective amount of the compound to be administered will be governed by such considerations, and is the minimum amount necessary to inhibit NaV1.7 activity as required to prevent or treat the undesired disease or disorder, such as for example, pain. For example, such amount may be below the amount that is toxic to normal cells, or the mammal as a whole.
  • the therapeutically effective amount of the compound of the invention administered parenterally per dose will be in the range of about 0.01-100 mg/kg, alternatively about e.g., 0.1 to 20 mg/kg of patient body weight per day, with the typical initial range of compound used being 0.3 to 15 mg/kg/day.
  • the daily does is, in certain embodiments, given as a single daily dose or in divided doses two to six times a day, or in sustained release form. In the case of a 70 kg adult human, the total daily dose will generally be from about 7 mg to about 1,400 mg. This dosage regimen may be adjusted to provide the optimal therapeutic response.
  • the compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day.
  • the compounds of the present invention may be administered in any convenient administrative form, e.g., tablets, powders, capsules, solutions, dispersions, suspensions, syrups, sprays, suppositories, gels, emulsions, patches, etc.
  • Such compositions may contain components conventional in pharmaceutical preparations, e.g., diluents, carriers, pH modifiers, sweeteners, bulking agents, and further active agents.
  • the compounds of the invention may be administered by any suitable means, including oral, topical (including buccal and sublingual), rectal, vaginal, transdermal, parenteral, subcutaneous, intraperitoneal, intrapulmonary, intradermal, intrathecal and epidural and intranasal, and, if desired for local treatment, intralesional administration.
  • Parenteral infusions include intramuscular, intravenous, intraarterial, intraperitoneal, intracerebral, intraocular, intralesional or subcutaneous administration.
  • compositions comprising compounds of formula I or an embodiment thereof are normally formulated in accordance with standard pharmaceutical practice as a pharmaceutical composition.
  • a typical formulation is prepared by mixing a compound of the present invention and a diluent, carrier or excipient. Suitable diluents, carriers and excipients are well known to those skilled in the art and are described in detail in, e.g., Ansel, Howard C., et al., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems. Philadelphia: Lippincott, Williams & Wilkins, 2004; Gennaro, Alfonso R., et al. Remington: The Science and Practice of Pharmacy. Philadelphia: Lippincott, Williams & Wilkins, 2000; and Rowe, Raymond C.
  • the formulations may also include one or more buffers, stabilizing agents, surfactants, wetting agents, lubricating agents, emulsifiers, suspending agents, preservatives, antioxidants, opaquing agents, glidants, processing aids, colorants, sweeteners, perfuming agents, flavoring agents, diluents and other known additives to provide an elegant presentation of the drug (i.e., a compound of the present invention or pharmaceutical composition thereof) or aid in the manufacturing of the pharmaceutical product (i.e., medicament).
  • buffers stabilizing agents, surfactants, wetting agents, lubricating agents, emulsifiers, suspending agents, preservatives, antioxidants, opaquing agents, glidants, processing aids, colorants, sweeteners, perfuming agents, flavoring agents, diluents and other known additives to provide an elegant presentation of the drug (i.e., a compound of the present invention or pharmaceutical composition thereof) or aid in the manufacturing
  • Suitable carriers, diluents and excipients are well known to those skilled in the art and include materials such as carbohydrates, waxes, water soluble and/or swellable polymers, hydrophilic or hydrophobic materials, gelatin, oils, solvents, water and the like.
  • the particular carrier, diluent or excipient used will depend upon the means and purpose for which a compound of the present invention is being applied.
  • Solvents are generally selected based on solvents recognized by persons skilled in the art as safe (GRAS) to be administered to a mammal.
  • safe solvents are non-toxic aqueous solvents such as water and other non-toxic solvents that are soluble or miscible in water.
  • Suitable aqueous solvents include water, ethanol, propylene glycol, polyethylene glycols (e.g., PEG 400, PEG 300), etc. and mixtures thereof.
  • the formulations can also include one or more buffers, stabilizing agents, surfactants, wetting agents, lubricating agents, emulsifiers, suspending agents, preservatives, antioxidants, opaquing agents, glidants, processing aids, colorants, sweeteners, perfuming agents, flavoring agents and other known additives to provide an elegant presentation of the drug (i.e., a compound of the present invention or pharmaceutical composition thereof) or aid in the manufacturing of the pharmaceutical product (i.e., medicament).
  • Acceptable diluents, carriers, excipients and stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutaminc, asparag
  • a active pharmaceutical ingredient of the invention can also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions.
  • colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules
  • Sustained-release preparations of a compound of the invention can be prepared.
  • suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing a compound of formula I or an embodiment thereof, which matrices are in the form of shaped articles, e.g., films, or microcapsules.
  • sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinyl alcohol)), polylactides (U.S. Pat. No.
  • Sustained release compositions also include liposomally entrapped compounds, which can be prepared by methods known per se (Epstein et al., Proc. Natl. Acad. Sci. U.S.A. 82:3688, 1985; Hwang et al., Proc. Natl. Acad. Sci. U.S.A. 77:4030, 1980; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324A).
  • the liposomes are of the small (about 200-800 Angstroms) unilamelar type in which the lipid content is greater than about 30 mol % cholesterol, the selected proportion being adjusted for the optimal therapy.
  • the formulations include those suitable for the administration routes detailed herein.
  • the formulations can conveniently be presented in unit dosage form and can be prepared by any of the methods well known in the art of pharmacy. Techniques and formulations generally are found in Remington: The Science and Practice of Pharmacy: Remington the Science and Practice of Pharmacy (2005) 21 st Edition, Lippincott Williams & Wilkins, Philadelphia, Pa. Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients.
  • the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers, diluents or excipients or finely divided solid carriers, diluents or excipients, or both, and then, if necessary, shaping the product.
  • a typical formulation is prepared by mixing a compound of the present invention and a carrier, diluent or excipient.
  • the formulations can be prepared using conventional dissolution and mixing procedures.
  • the bulk drug substance i.e., compound of the present invention or stabilized form of the compound (e.g., complex with a cyclodextrin derivative or other known complexation agent) is dissolved in a suitable solvent in the presence of one or more of the excipients described above.
  • a compound of the present invention is typically formulated into pharmaceutical dosage forms to provide an easily controllable dosage of the drug and to enable patient compliance with the prescribed regimen.
  • compounds of formula I or an embodiment thereof may be formulated by mixing at ambient temperature at the appropriate pH, and at the desired degree of purity, with physiologically acceptable carriers, i.e., carriers that are non-toxic to recipients at the dosages and concentrations employed into a galenical administration form.
  • physiologically acceptable carriers i.e., carriers that are non-toxic to recipients at the dosages and concentrations employed into a galenical administration form.
  • the pH of the formulation depends mainly on the particular use and the concentration of compound, but preferably ranges anywhere from about 3 to about 8.
  • a compound of formula I (or an embodiment thereof) is formulated in an acetate buffer, at pH 5.
  • the compounds of formula I or an embodiment thereof are sterile.
  • the compound may be stored, for example, as a solid or amorphous composition, as a lyophilized formulation or as an aqueous solution.
  • Formulations of a compound of the invention e.g., compound of formula I or an embodiment thereof
  • suitable for oral administration can be prepared as discrete units such as pills, capsules, cachets or tablets each containing a predetermined amount of a compound of the invention.
  • Compressed tablets can be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface active or dispersing agent. Molded tablets can be made by molding in a suitable machine a mixture of the powdered active, ingredient moistened with an inert liquid diluent. The tablets can optionally be coated or scored and optionally are formulated so as to provide slow or controlled release of the active ingredient therefrom.
  • a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface active or dispersing agent.
  • Molded tablets can be made by molding in a suitable machine a mixture of the powdered active, ingredient moistened with an inert liquid diluent.
  • the tablets can optionally be coated or scored and optionally
  • Tablets, troches, lozenges, aqueous or oil suspensions, dispersible powders or granules, emulsions, hard or soft capsules, e.g., gelatin capsules, syrups or elixirs can be prepared for oral use.
  • Formulations of a compound of the invention (e.g., compound of formula I or an embodiment thereof) intended for oral use can be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions can contain one or more agents including sweetening agents, flavoring agents, coloring agents and preserving agents, in order to provide a palatable preparation. Tablets containing the active ingredient in admixture with non-toxic pharmaceutically acceptable excipient which are suitable for manufacture of tablets are acceptable.
  • excipients can be, for example, inert diluents, such as calcium or sodium carbonate, lactose, calcium or sodium phosphate; granulating and disintegrating agents, such as maize starch, or alginic acid; binding agents, such as starch, gelatin or acacia; and lubricating agents, such as magnesium stearate, stearic acid or talc. Tablets can be uncoated or can be coated by known techniques including microencapsulation to delay disintegration and adsorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate alone or with a wax can be employed.
  • inert diluents such as calcium or sodium carbonate, lactose, calcium or sodium phosphate
  • granulating and disintegrating agents such as maize starch, or alginic acid
  • binding agents such as starch, ge
  • An example of a suitable oral administration form is a tablet containing about 1 mg, 5 mg, 10 mg, 25 mg, 30 mg, 50 mg, 80 mg, 100 mg, 150 mg, 250 mg, 300 mg and 500 mg of the compound of the invention compounded with about 90-30 mg anhydrous lactose, about 5-40 mg sodium croscarmellose, about 5-30 mg polyvinylpyrrolidone (PVP) K30, and about 1-10 mg magnesium stearate.
  • the powdered ingredients are first mixed together and then mixed with a solution of the PVP.
  • the resulting composition can be dried, granulated, mixed with the magnesium stearate and compressed to tablet form using conventional equipment.
  • An example of an aerosol formulation can be prepared by dissolving the compound, for example 5-400 mg, of the invention in a suitable buffer solution, e.g. a phosphate buffer, adding a tonicifier, e.g. a salt such sodium chloride, if desired.
  • a suitable buffer solution e.g. a phosphate buffer
  • a tonicifier e.g. a salt such sodium chloride
  • the solution may be filtered, e.g., using a 0.2 micron filter, to remove impurities and contaminants.
  • the formulations are preferably applied as a topical ointment or cream containing the active ingredient(s) in an amount of, for example, 0.075 to 20% w/w.
  • the active ingredient can be employed with either a paraffinic or a water-miscible ointment base.
  • the active ingredients can be formulated in a cream with an oil-in-water cream base.
  • the aqueous phase of the cream base can include a polyhydric alcohol, i.e., an alcohol having two or more hydroxyl groups such as propylene glycol, butane 1,3-diol, mannitol, sorbitol, glycerol and polyethylene glycol (including PEG 400) and mixtures thereof.
  • the topical formulations can desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethyl sulfoxide and related analogs.
  • the oily phase of the emulsions of this invention can be constituted from known ingredients in a known manner. While the phase can comprise merely an emulsifier, it desirably comprises a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat.
  • Emulsifiers and emulsion stabilizers suitable for use in the formulation of the invention include Tween® 60, Span® 80, cetostearyl alcohol, benzyl alcohol, myristyl alcohol, glyceryl mono-stearate and sodium lauryl sulfate.
  • a pharmaceutical composition according to the invention it is desired to administer an effective amount of a pharmaceutical composition according to the invention to target area, e.g., skin surfaces, mucous membranes, and the like, which are adjacent to peripheral neurons which are to be treated.
  • This amount will generally range from about 0.0001 mg to about 1 g of a compound of the invention per application, depending upon the area to be treated, whether the use is diagnostic, prophylactic or therapeutic, the severity of the symptoms, and the nature of the topical vehicle employed.
  • a preferred topical preparation is an ointment, wherein about 0.001 to about 50 mg of active ingredient is used per cc of ointment base.
  • the pharmaceutical composition can be formulated as transdermal compositions or transdermal delivery devices (“patches”). Such compositions include, for example, a backing, active compound reservoir, a control membrane, liner and contact adhesive. Such transdermal patches may be used to provide continuous pulsatile, or on demand delivery of the compounds of the present invention as desired.
  • Aqueous suspensions of a compound of the invention contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions.
  • excipients include a suspending agent, such as sodium carboxymethylcellulose, croscarmellose, povidone, methylcellulose, hydroxypropyl methylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia, and dispersing or wetting agents such as a naturally occurring phosphatide (e.g., lecithin), a condensation product of an alkylene oxide with a fatty acid (e.g., polyoxyethylene stearate), a condensation product of ethylene oxide with a long chain aliphatic alcohol (e.g., heptadecaethyleneoxycetanol), a condensation product of ethylene oxide with a partial ester derived from a fatty acid and a hexitol anhydride (
  • the aqueous suspension can also contain one or more preservatives such as ethyl or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents and one or more sweetening agents, such as sucrose or saccharin.
  • preservatives such as ethyl or n-propyl p-hydroxybenzoate
  • coloring agents such as a coloring agent
  • flavoring agents such as sucrose or saccharin.
  • sweetening agents such as sucrose or saccharin.
  • Formulations of a compound of the invention can be in the form of a sterile injectable preparation, such as a sterile injectable aqueous or oleaginous suspension.
  • a sterile injectable preparation such as a sterile injectable aqueous or oleaginous suspension.
  • This suspension can be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above.
  • the sterile injectable preparation can also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, such as a solution in 1,3-butanediol or prepared as a lyophilized powder.
  • the acceptable vehicles and solvents that can be employed are water, Ringer's solution and isotonic sodium chloride solution.
  • sterile fixed oils can conventionally be employed as a solvent or suspending medium.
  • any bland fixed oil can be employed including synthetic mono- or diglycerides.
  • fatty acids such as oleic acid can likewise be used in the preparation of injectables.
  • a time-release formulation intended for oral administration to humans can contain approximately 1 to 1000 mg of active material compounded with an appropriate and convenient amount of carrier material which can vary from about 5 to about 95% of the total compositions (weight:weight).
  • the pharmaceutical composition can be prepared to provide easily measurable amounts for administration.
  • an aqueous solution intended for intravenous infusion can contain from about 3 to 500 ⁇ g of the active ingredient per milliliter of solution in order that infusion of a suitable volume at a rate of about 30 mL/hr can occur.
  • Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which can contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which can include suspending agents and thickening agents.
  • Formulations suitable for topical administration to the eye also include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent for the active ingredient.
  • the active ingredient is preferably present in such formulations in a concentration of about 0.5 to 20% w/w, for example about 0.5 to 10% w/w, for example about 1.5% w/w.
  • Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
  • Formulations for rectal administration can be presented as a suppository with a suitable base comprising for example cocoa butter or a salicylate.
  • Formulations suitable for intrapulmonary or nasal administration have a particle size for example in the range of 0.1 to 500 microns (including particle sizes in a range between 0.1 and 500 microns in increments microns such as 0.5, 1, 30 microns, 35 microns, etc.), which is administered by rapid inhalation through the nasal passage or by inhalation through the mouth so as to reach the alveolar sacs.
  • Suitable formulations include aqueous or oily solutions of the active ingredient.
  • Formulations suitable for aerosol or dry powder administration can be prepared according to conventional methods and can be delivered with other therapeutic agents such as compounds heretofore used in the treatment of disorders as described below.
  • the formulations can be packaged in unit-dose or multi-dose containers, for example sealed ampoules and vials, and can be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water, for injection immediately prior to use.
  • sterile liquid carrier for example water
  • Extemporaneous injection solutions and suspensions are prepared from sterile powders, granules and tablets of the kind previously described.
  • Preferred unit dosage formulations are those containing a daily dose or unit daily sub-dose, as herein above recited, or an appropriate fraction thereof, of the active ingredient.
  • certain embodiments of the invention provide for a compound of formula I (or an embodiment thereof) to traverse the blood-brain barrier.
  • Certain neurodegenerative diseases are associated with an increase in permeability of the blood-brain barrier, such that a compound of formula I (or an embodiment thereof) can be readily introduced to the brain.
  • the blood-brain barrier remains intact, several art-known approaches exist for transporting molecules across it, including, but not limited to, physical methods, lipid-based methods, and receptor and channel-based methods.
  • Physical methods of transporting a compound of formula I (or an embodiment thereof) across the blood-brain barrier include, but are not limited to, circumventing the blood-brain barrier entirely, or by creating openings in the blood-brain barrier.
  • Circumvention methods include, but are not limited to, direct injection into the brain (see, e.g., Papanastassiou et al., Gene Therapy 9:398-406, 2002), interstitial infusion/convection-enhanced delivery (see, e.g., Bobo et al., Proc. Natl. Acad. Sci. U.S.A. 91:2076-2080, 1994), and implanting a delivery device in the brain (see, e.g., Gill et al., Nature Med. 9:589-595, 2003; and Gliadel WafersTM, Guildford.
  • direct injection into the brain see, e.g., Papanastassiou et al., Gene Therapy 9:398-406, 2002
  • interstitial infusion/convection-enhanced delivery see, e.g., Bobo et al., Proc. Natl. Acad. Sci. U.S.A. 91:2076-20
  • Methods of creating openings in the barrier include, but are not limited to, ultrasound (see, e.g., U.S. Patent Publication No. 2002/0038086), osmotic pressure (e.g., by administration of hypertonic mannitol (Neuwelt, E. A., Implication of the Blood-Brain Barrier and its Manipulation, Volumes 1 and 2, Plenum Press, N.Y., 1989)), and permeabilization by, e.g., bradykinin or permeabilizer A-7 (see, e.g., U.S. Pat. Nos. 5,112,596, 5,268,164, 5,506,206, and 5,686,416).
  • ultrasound see, e.g., U.S. Patent Publication No. 2002/0038086
  • osmotic pressure e.g., by administration of hypertonic mannitol (Neuwelt, E. A., Implication of the Blood-Brain Barrier and its Manipulation, Volumes 1 and 2, Plenum Press,
  • Lipid-based methods of transporting a compound of formula I (or an embodiment thereof) across the blood-brain barrier include, but are not limited to, encapsulating the a compound of formula I (or an embodiment thereof) in liposomes that are coupled to antibody binding fragments that bind to receptors on the vascular endothelium of the blood-brain barrier (see, e.g., U.S. Patent Application Publication No. 2002/0025313), and coating a compound of formula I (or an embodiment thereof) in low-density lipoprotein particles (see, e.g., U.S. Patent Application Publication No. 2004/0204354) or apolipoprotein E (see, e.g., U.S. Patent Application Publication No. 2004/0131692).
  • Receptor and channel-based methods of transporting a compound of formula I (or an embodiment thereof) across the blood-brain barrier include, but are not limited to, using glucocorticoid blockers to increase permeability of the blood-brain barrier (see, e.g., U.S. Patent Application Publication Nos. 2002/0065259, 2003/0162695, and 2005/0124533); activating potassium channels (see, e.g., U.S. Patent Application Publication No. 2005/0089473), inhibiting ABC drug transporters (see, e.g., U.S. Patent Application Publication No.
  • the compounds can be administered continuously by infusion into the fluid reservoirs of the CNS, although bolus injection may be acceptable.
  • the inhibitors can be administered into the ventricles of the brain or otherwise introduced into the CNS or spinal fluid. Administration can be performed by use of an indwelling catheter and a continuous administration means such as a pump, or it can be administered by implantation, e.g., intracerebral implantation of a sustained-release vehicle. More specifically, the inhibitors can be injected through chronically implanted cannulas or chronically infused with the help of osmotic minipumps. Subcutaneous pumps are available that deliver proteins through a small tubing to the cerebral ventricles.
  • Highly sophisticated pumps can be refilled through the skin and their delivery rate can be set without surgical intervention.
  • suitable administration protocols and delivery systems involving a subcutaneous pump device or continuous intracerebroventricular infusion through a totally implanted drug delivery system are those used for the administration of dopamine, dopamine agonists, and cholinergic agonists to Alzheimer's disease patients and animal models for Parkinson's disease, as described by Harbaugh, J. Neural Transm. Suppl. 24:271, 1987; and DeYebenes et al., Mov. Disord. 2: 143, 1987.
  • a compound of formula I (or an embodiment thereof) used in the invention are formulated, dosed, and administered in a fashion consistent with good medical practice.
  • Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners.
  • a compound of formula I (or an embodiment thereof) need not be, but is optionally formulated with one or more agent currently used to prevent or treat the disorder in question. The effective amount of such other agents depends on the amount of a compound of the invention present in the formulation, the type of disorder or treatment, and other factors discussed above.
  • the appropriate dosage of a compound of formula I (or an embodiment thereof) (when used alone or in combination with other agents) will depend on the type of disease to be treated, the properties of the compound, the severity and course of the disease, whether the compound is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the compound, and the discretion of the attending physician.
  • the compound is suitably administered to the patient at one time or over a series of treatments.
  • about 1 ⁇ g/kg to 15 mg/kg (e.g., 0.1 mg/kg-10 mg/kg) of compound can be an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion.
  • One typical daily dosage might range from about 1 ⁇ g kg to 100 mg/kg or more, depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment would generally be sustained until a desired suppression of disease symptoms occurs.
  • One exemplary dosage of a compound of formula I (or an embodiment thereof) would be in the range from about 0.05 mg/kg to about 10 mg/kg. Thus, one or more doses of about 0.5 mg/kg, 2.0 mg/kg, 4.0 mg/kg, or 10 mg/kg (or any combination thereof) may be administered to the patient.
  • Such doses may be administered intermittently, e.g., every week or every three weeks (e.g., such that the patient receives from about two to about twenty, or, e.g., about six doses of the antibody).
  • An initial higher loading dose, followed by one or more lower doses may be administered.
  • An exemplary dosing regimen comprises administering an initial loading dose of about 4 mg/kg, followed by a weekly maintenance dose of about 2 mg kg of the compound.
  • other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays.
  • typical daily dosages might range from, for example, about 1 g/kg to up to 100 mg/kg or more (e.g., about 1 ⁇ g kg to 1 mg/kg, about 1 ⁇ g/kg to about 5 mg/kg, about 1 mg kg to 10 mg/kg, about 5 mg/kg to about 200 mg/kg, about 50 mg/kg to about 150 mg/mg, about 100 mg/kg to about 500 mg/kg, about 100 mg/kg to about 400 mg/kg, and about 200 mg/kg to about 400 mg/kg), depending on the factors mentioned above.
  • the clinician will administer a compound until a dosage is reached that results in improvement in or, optimally, elimination of, one or more symptoms of the treated disease or condition. The progress of this therapy is easily monitored by conventional assays.
  • One or more agent provided herein may be administered together or at different times (e.g., one agent is administered prior to the administration of a second agent).
  • One or more agent may be administered to a subject using different techniques (e.g., one agent may be administered orally, while a second agent is administered via intramuscular injection or intranasally).
  • One or more agent may be administered such that the one or more agent has a pharmacologic effect in a subject at the same time.
  • one or more agent may be administered, such that the pharmacological activity of the first administered agent is expired prior the administration of one or more secondarily administered agents (e.g., 1, 2, 3, or 4 secondarily administered agents).
  • the compounds of the invention modulate, preferably inhibit, ion flux through a voltage-dependent sodium channel in a mammal, (e.g, a human). Any such modulation, whether it be partial or complete inhibition or prevention of ion flux, is sometimes referred to herein as “blocking” and corresponding compounds as “blockers” or “inhibitors”.
  • the compounds of the invention modulate the activity of a sodium channel downwards by inhibiting the voltage-dependent activity of the sodium channel, and/or reduce or prevent sodium ion flux across a cell membrane by preventing sodium channel activity such as ion flux.
  • the compounds of the invention inhibit the ion flux through a voltage-dependent sodium channel.
  • the compounds are state or frequency dependent modifiers of the sodium channels, having a low affinity for the rested/closed state and a high affinity for the inactivated state. Without being bound by any particular theory, it is thought that these compounds are likely to interact with overlapping sites located in the inner cavity of the sodium conducting pore of the channel similar to that described for other state-dependent sodium channel blockers (CestIER, S., et al., op. cit.). These compounds may also be likely to interact with sites outside of the inner cavity and have allosteric effects on sodium ion conduction through the channel pore.
  • the compounds of the invention are sodium channel blockers and are therefore useful for treating diseases and conditions in mammals, for example humans, and other organisms, including all those diseases and conditions which are the result of aberrant voltage-dependent sodium channel biological activity or which may be ameliorated by modulation of voltage-dependent sodium channel biological activity.
  • the compounds of the invention i.e., the compounds of formula (I) and embodiments and (or stereoisomers, geometric isomers, tautomers, solvates, metabolites, isotopes, pharmaceutically acceptable salts, or prodrugs thereof), are useful for treating diseases and conditions in mammals, for example humans, which are the result of aberrant voltage-dependent NaV1.7 biological activity or which may be ameliorated by the modulation, preferably the inhibition, of NaV1.7 biological activity.
  • the compounds of the invention selectively inhibit NaV1.7 over NaV1.5.
  • a sodium channel-mediated disease or condition refers to a disease or condition in a mammal, preferably a human, which is ameliorated upon modulation of the sodium channel and includes, but is not limited to, pain, central nervous conditions such as epilepsy, anxiety, depression and bipolar disease; cardiovascular conditions such as arrhythmias, atrial fibrillation and ventricular fibrillation; neuromuscular conditions such as restless leg syndrome and muscle paralysis or tetanus; neuroprotection against stroke, neural trauma and multiple sclerosis; and channelopathies such as erythromyalgia and familial rectal pain syndrome.
  • pain central nervous conditions
  • cardiovascular conditions such as arrhythmias, atrial fibrillation and ventricular fibrillation
  • neuromuscular conditions such as restless leg syndrome and muscle paralysis or tetanus
  • neuroprotection against stroke neural trauma and multiple sclerosis
  • channelopathies such as erythromyalgia and familial rectal pain syndrome.
  • the present invention relates to compounds, pharmaceutical compositions and methods of using the compounds and pharmaceutical compositions for the treatment of sodium channel-mediated diseases in mammals, preferably humans and preferably diseases and conditions related to pain, central nervous conditions such as epilepsy, anxiety, depression and bipolar disease; cardiovascular conditions such as arrhythmias, atrial fibrillation and ventricular fibrillation; neuromuscular conditions such as restless leg syndrome and muscle paralysis or tetanus; neuroprotection against stroke, neural trauma and multiple sclerosis; and channelopathies such as erythromyalgia and familial rectal pain syndrome, by administering to a mammal, for example a human, in need of such treatment an effective amount of a sodium channel blocker modulating, especially inhibiting, agent.
  • central nervous conditions such as epilepsy, anxiety, depression and bipolar disease
  • cardiovascular conditions such as arrhythmias, atrial fibrillation and ventricular fibrillation
  • neuromuscular conditions such as restless leg syndrome and muscle paralysis or tetanus
  • a sodium channel-mediated disease or condition also includes pain associated with HIV, HIV treatment induced neuropathy, trigeminal neuralgia, glossopharyngeal neuralgia, neuropathy secondary to metastatic infiltration, adiposis dolorosa, thalamic lesions, hypertension, autoimmune disease, asthma, drug addiction (e.g., opiate, benzodiazepine, amphetamine, cocaine, alcohol, butane inhalation), Alzheimer, dementia, age-related memory impairment, Korsakoff syndrome, restenosis, urinary dysfunction, incontinence, Parkinson's disease, cerebrovascular ischemia, neurosis, gastrointestinal disease, sickle cell anemia, transplant rejection, heart failure, myocardial infarction, reperfusion injury, intermittant claudication, angina, convulsion, respiratory disorders, cerebral or myocardial ischemias, long-QT syndrome, Catecholeminergic polymorphic ventricular tachycardia, ophthalmic diseases, spasticity, spastic
  • pain refers to all categories of pain and is recognized to include, but is not limited to, neuropathic pain, inflammatory pain, nociceptive pain, idiopathic pain, neuralgic pain, orofacial pain, burn pain, burning mouth syndrome, somatic pain, visceral pain, myofacial pain, dental pain, cancer pain, chemotherapy pain, trauma pain, surgical pain, post-surgical pain, childbirth pain, labor pain, chronic regional pain syndrome (CRPS), reflex sympathetic dystrophy, brachial plexus avulsion, neurogenic bladder, acute pain (e.g., musculoskeletal and post-operative pain), chronic pain, persistent pain, peripherally mediated pain, centrally mediated pain, chronic headache, migraine headache, familial hemiplegic migraine, conditions associated with cephalic pain, sinus headache, tension headache, phantom limb pain, peripheral nerve injury, pain following stroke, thalamic lesions, radiculopathy, HIV pain, post-herpetic pain, non-cardiac chest pain,
  • the present invention therefore also relates to compounds, pharmaceutical compositions and methods of using the compounds and pharmaceutical compositions for the treatment of diseases or conditions such as cancer and pruritus (itch).
  • Pruritus commonly known as itch
  • itch is a common dermatological condition. While the exact causes of pruritus are complex and incompletely understood, there has long been evidence that itch involves sensory neurons, especially C fibers, similar to those that mediate pain (Schmelz, M., et al., J. Neurosci. (1997), 17: 8003-8). In particular, it is believed that sodium influx through voltage-gated sodium channels is essential for the propagation of itch sensation from the skin. Transmission of the itch impulses results in the unpleasant sensation that elicits the desire or reflex to scratch.
  • pruritis can be elicited by histamine or PAR-2 agonists such as mucunain that activate distinct populations of C fibers (Namer, B., et al., J. Neurophysiol. (2008), 100: 2062-9).
  • PAR-2 agonists such as mucunain that activate distinct populations of C fibers
  • a variety of neurotrophic peptides are known to mediate itch in animal models (Wang, H., and Yosipovitch, G., International Journal of Dermatology (2010), 49: 1-11). Itch can also be elicited by opioids, evidence of distinct pharmacology from that of pain responses.
  • the compounds of the invention can also be useful for treating pruritus.
  • the rationale for treating itch with inhibitors of voltage-gated sodium channels, especially NaV1.7, is as follows:
  • the propagation of electrical activity in the C fibers that sense pruritinergic stimulants requires sodium entry through voltage-gated sodium channels.
  • NaV1.7 is expressed in the C fibers and kerotinocytes in human skin (Zhao, P., et al., Pain (2008), 139: 90-105).
  • a gain of function mutation of NaV1.7 (L858F) that causes erythromelalgia also causes chronic itch (Li, Y., et al., Clinical and Experimental Dermatology (2009), 34: e313-e4).
  • Chronic itch can be alleviated with treatment by sodium channel blockers, such as the local anesthetic lidocaine (Oaklander, A. L., et al., Pain (2002), 96: 9-12; Villamil. A. G., et al., The American Journal of Medicine (2005), 118: 1160-3).
  • lidocaine was effective when administered either intravenously or topically (a Lidodenn patch).
  • Lidocaine can have multiple activities at the plasma concentrations achieved when administered systemically, but when administered topically, the plasma concentrations are only about 1 ⁇ M (Center for Drug Evaluation and Research NDA 20-612).
  • lidocaine is selective for sodium channel block and inhibits spontaneous electrical activity in C fibers and pain responses in animal models (Xiao, W. H., and Bennett, G. J., Pain (2008), 137: 218-28).
  • the types of itch or skin irritation include, but are not limited to:
  • psoriatic pruritus itch due to hemodyalisis, aguagenic pruritus, and itching caused by skin disorders (e.g., contact dermatitis), systemic disorders, neuropathy, psychogenic factors or a mixture thereof;
  • itch caused by allergic reactions, insect bites, hypersensitivity (e.g., dry skin, acne, eczema, psoriasis), inflammatory conditions or injury;
  • hypersensitivity e.g., dry skin, acne, eczema, psoriasis
  • the compounds of the invention are also useful in treating certain cancers, such as hormone sensitive cancers, such as prostate cancer (adenocarcinoma), breast cancer, ovarian cancer, testicular cancer and thyroid neoplasia, in a mammal, preferably a human.
  • hormone sensitive cancers such as prostate cancer (adenocarcinoma), breast cancer, ovarian cancer, testicular cancer and thyroid neoplasia
  • the voltage gated sodium channels have been demonstrated to be expressed in prostate and breast cancer cells. Up-regulation of neonatal NaV1.5 occurs as an integral part of the metastatic process in human breast cancer and could serve both as a novel marker of the metastatic phenotype and a therapeutic target (Clin. Cancer Res. (2005), Aug. 1; 11(15): 5381-9).
  • the present invention provides a method for treating a mammal for, or protecting a mammal from developing, a sodium channel-mediated disease, especially pain, comprising administering to the mammal, especially a human, in need thereof, a therapeutically effective amount of a compound of the invention or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention wherein the compound modulates the activity of one or more voltage-dependent sodium channels.
  • a disease or a condition in a mammal preferably a human
  • the disease or condition is selected from the group consisting of pain, depression, cardiovascular diseases, respiratory diseases, and psychiatric diseases, and combinations thereof
  • the method comprises administering to the mammal in need thereof a therapeutically effective amount of an embodiment of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.
  • One embodiment of this embodiment is wherein the disease or condition is selected from the group consisting of neuropathic pain, inflammatory pain, visceral pain, cancer pain, chemotherapy pain, trauma pain, surgical pain, post surgical pain, childbirth pain, labor pain, neurogenic bladder, ulcerative colitis, chronic pain, persistent pain, peripherally mediated pain, centrally mediated pain, chronic headache, migraine headache, sinus headache, tension headache, phantom limb pain, peripheral nerve injury, and combinations thereof.
  • the disease or condition is selected from the group consisting of neuropathic pain, inflammatory pain, visceral pain, cancer pain, chemotherapy pain, trauma pain, surgical pain, post surgical pain, childbirth pain, labor pain, neurogenic bladder, ulcerative colitis, chronic pain, persistent pain, peripherally mediated pain, centrally mediated pain, chronic headache, migraine headache, sinus headache, tension headache, phantom limb pain, peripheral nerve injury, and combinations thereof.
  • the disease or condition is selected from the group consisting of pain associated with HIV, HIV treatment induced neuropathy, trigeminal neuralgia, post herpetic neuralgia, eudynia, heat sensitivity, tosarcoidosis, irritable bowel syndrome, Crohns disease, pain associated with multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), diabetic neuropathy, peripheral neuropathy, arthritic, rheumatoid arthritis, osteoarthritis, atherosclerosis, paroxysmal dystonia, myasthenia syndromes, myotonia, malignant hyperthermia, cystic fibrosis, pseudoaldosteronism, rhabdomyolysis, hypothyroidism, bipolar depression, anxiety, schizophrenia, sodium channel toxin related illnesses, familial erythromelalgia, primary erythromelalgia, familial rectal pain, cancer, epilepsy, partial and general tonic seizures, restless leg
  • Another embodiment of the invention is a method of treating, but not preventing, pain in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.
  • One embodiment of this embodiment is a method wherein the pain is selected from the group consisting of neuropathic pain, inflammatory pain, visceral pain, cancer pain, chemotherapy pain, trauma pain, surgical pain, post surgical pain, childbirth pain, labor pain, dental pain, chronic pain, persistent pain, peripherally mediated pain, centrally mediated pain, chronic headache, migraine headache, sinus headache, tension headache, phantom limb pain, peripheral nerve injury, trigeminal neuralgia, post herpetic neuralgia, eudynia, familial erythromelalgia, primary erythromelalgia, familial rectal pain or fibromyalgia, and combinations thereof.
  • Another embodiment of this embodiment is a method wherein the pain is associated with a disease or condition selected from HIV, HIV treatment induced neuropathy, heat sensitivity, tosarcoidosis, irritable bowel syndrome, Crohns disease, multiple sclerosis, amyotrophic lateral sclerosis, diabetic neuropathy, peripheral neuropathy, rheumatoid arthritis, osteoarthritis, atherosclerosis, paroxysmal dystonia, myasthenia syndromes, myotonia, malignant hyperthermia, cystic fibrosis, pseudoaldosteronism, rhabdomyolysis, hypothyroidism, bipolar depression, anxiety, schizophrenia, sodium channel toxin related illnesses, neurogenic bladder, ulcerative colitis, cancer, epilepsy, partial and general tonic seizures, restless leg syndrome, arrhythmias, ischaemic conditions caused by stroke or neural trauma, tachy arrhythmias, atrial fibrillation and ventricular fibrillation.
  • a disease or condition selected from HIV, HIV treatment
  • Another embodiment of the invention is the method of treating pain in a mammal, preferably a human, by the inhibition of ion flux through a voltage dependent sodium channel in the mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of an embodiment of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.
  • Another embodiment of the invention is the method of treating pruritus in a mammal, preferably a human, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of an embodiment of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.
  • Another embodiment of the invention is the method of treating cancer in a mammal, preferably a human, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of an embodiment of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.
  • Another embodiment of the invention is the method of decreasing ion flux through a voltage dependent sodium channel in a cell in a mammal, wherein the method comprises contacting the cell with an embodiment of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof.
  • Another embodiment of the invention is the method of selectively inhibiting a first voltage-gated sodium channel over a second voltage-gated sodium channel in a mammal, wherein the method comprises administering to the mammal an inhibitory amount of a compound of formula (I), or an embodiment of a compound of formula (I).
  • Another embodiment of the invention is the method of selectively inhibiting NaV1.7 in a mammal or a mammalian cell as compared to NaV1.5, wherein the method comprises administering to the mammal in need thereof an inhibitory amount of a compound of formula (I) or an embodiment of an embodiment thereof.
  • the present invention also contemplates relatedly a compound of formula I or an embodiment thereof for the use as a medicament in the treatment of such diseases and conditions.
  • the present invention also contemplates relatedly the use of a compound of formula I or an embodiment thereof for the manufacture of a medicament for the treatment of such diseases and conditions.
  • Another embodiment of the invention is a method of using the compounds of formula (I) as standards or controls in in vitro or in vivo assays in determining the efficacy of test compounds in modulating voltage-dependent sodium channels.
  • the compounds of formula (I) are isotopically-labeled by having one or more atoms therein replaced by an atom having a different atomic mass or mass number.
  • isotopically-labeled (i.e., radiolabelled) compounds of formula (i) are considered to be within the scope of this invention.
  • isotopes that can be incorporated into the compounds of formula (I) include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, sulfur, fluorine, chlorine, and iodine, such as, but not limited to, 2 H, 3 H, 11 C, 13 C, 14 C, 13 N, 15 N, 15 O, 17 O, 18 O, 31 P, 32 P, 35 S, 18 F, 36 Cl, 123 I, and 125 I, respectively.
  • isotopically-labeled compounds would be useful to help determine or measure the effectiveness of the compounds, by characterizing, for example, the site or mode of action on the sodium channels, or binding affinity to pharmacologically important site of action on the sodium channels, particularly NaV1.7.
  • isotopically-labeled compounds of formula (I), for example, those incorporating a radioactive isotope, are useful in drug and/or substrate tissue distribution studies.
  • the radioactive isotopes tritium, i.e. 3 H, and carbon-14, i.e., 14 C, are particularly useful for this purpose in view of their ease of incorporation and ready means of detection.
  • substitution with heavier isotopes such as deuterium, i.e. 2 H, may afford certain therapeutic advantages resulting from greater metabolic stability, for example, increased in vivo half-life or reduced dosage requirements, and hence may be preferred in some circumstances.
  • Isotopically-labeled compounds of formula (I) can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described in the Examples as set out below using an appropriate isotopically-labeled reagent in place of the non-labeled reagent previously employed.
  • the assessment of the compounds of the invention in mediating, especially inhibiting, the sodium channel ion flux can be determined using the assays described hereinbelow.
  • the assessment of the compounds in treating conditions and diseases in humans may be established in industry standard animal models for demonstrating the efficacy of compounds in treating pain.
  • Animal models of human neuropathic pain conditions have been developed that result in reproducible sensory deficits (allodynia, hyperalgesia, and spontaneous pain) over a sustained period of time that can be evaluated by sensory testing.
  • By establishing the degree of mechanical, chemical, and temperature induced allodynia and hyperalgesia present several physiopathological conditions observed in humans can be modeled allowing the evaluation of pharmacotherapies.
  • ectopic activity in the injured nerve corresponds to the behavioural signs of pain.
  • intravenous application of the sodium channel blocker and local anesthetic lidocaine can suppress the ectopic activity and reverse the tactile allodynia at concentrations that do not affect general behaviour and motor function (Mao, J. and Chen, L. L, Pain (2000), 87:7-17). Allometric scaling of the doses effective in these rat models, translates into doses similar to those shown to be efficacious in humans (Tanelian, D. L. and Brose, W. G., Anesthesiology (1991), 74(5):949-951).
  • Lidoderm® lidocaine applied in the form of a dermal patch
  • Lidoderm® is currently an FDA approved treatment for post-herpetic neuralgia (Devers, A. and Glaler, B. S., Clin. J. Pain (2000), 16(3):205-8).
  • the present invention readily affords many different means for identification of sodium channel modulating agents that are useful as therapeutic agents. Identification of modulators of sodium channel can be assessed using a variety of in vitro and in vivo assays, e.g., measuring current, measuring membrane potential, measuring ion flux, (e.g., sodium or guanidinium), measuring sodium concentration, measuring second messengers and transcription levels, and using e.g., voltage-sensitive dyes, radioactive tracers, and patch-clamp electrophysiology.
  • in vitro and in vivo assays e.g., measuring current, measuring membrane potential, measuring ion flux, (e.g., sodium or guanidinium), measuring sodium concentration, measuring second messengers and transcription levels, and using e.g., voltage-sensitive dyes, radioactive tracers, and patch-clamp electrophysiology.
  • One such protocol involves the screening of chemical agents for ability to modulate the activity of a sodium channel thereby identifying it as a modulating agent.
  • Throughput of test compounds is an important consideration in the choice of screening assay to be used. In some strategies, where hundreds of thousands of compounds are to be tested, it is not desirable to use low throughput means. In other cases, however, low throughput is satisfactory to identify important differences between a limited number of compounds. Often it will be necessary to combine assay types to identify specific sodium channel modulating compounds.
  • Electrophysiological assays using patch clamp techniques is accepted as a gold standard for detailed characterization of sodium channel compound interactions, and as described in Bean et al., op. cit, and Leuwer, M., et al., op. cit.
  • LTS manual low-throughput screening
  • MTS medium-throughput screening
  • HTS high-throughput screening
  • Planar electrodes are capable of achieving high-resistance, cells-attached seals followed by stable, low-noise whole-cell recordings that are comparable to conventional recordings.
  • a suitable instrument is the PatchXpress 7000A (Axon Instruments Inc, Union City, Calif.).
  • a variety of cell lines and culture techniques, which include adherent cells as well as cells growing spontaneously in suspension are ranked for seal success rate and stability.
  • Immortalized cells e.g. HEK and CHO
  • stably expressing high levels of the relevant sodium ion channel can be adapted into high-density suspension cultures.
  • assays can be selected which allow the investigator to identify compounds which block specific states of the channel, such as the open state, closed state or the resting state, or which block transition from open to closed, closed to resting or resting to open. Those skilled in the art are generally familiar with such assays.
  • Binding assays are also available. Designs include traditional radioactive filter based binding assays or the confocal based fluorescent system available from Evotec OAI group of companies (Hamburg, Germany), both of which are HTS.
  • Radioactive flux assays can also be used.
  • channels are stimulated to open with veratridine or aconitine and held in a stabilized open state with a toxin, and channel blockers are identified by their ability to prevent ion influx.
  • the assay can use radioactive 22[Na] and 14[C] guanidinium ions as tracers.
  • FlashPlate & Cytostar-T plates in living cells avoids separation steps and are suitable for HTS. Scintillation plate technology has also advanced this method to HTS suitability. Because of the functional aspects of the assay, the information content is reasonably good.
  • HTS FLIPR system membrane potential kit
  • Sodium dyes can be used to measure the rate or amount of sodium ion influx through a channel. This type of assay provides a very high information content regarding potential channel blockers. The assay is functional and would measure Na+ influx directly. CoroNa Red, SBFI and/or sodium green (Molecular Probes, Inc. Eugene Oreg.) can be used to measure Na influx; all are Na responsive dyes. They can be used in combination with the FLIPR instrument. The use of these dyes in a screen has not been previously described in the literature. Calcium dyes may also have potential in this format.
  • FRET based voltage sensors are used to measure the ability of a test compound to directly block Na influx.
  • HTS systems include the VIPRTM II FRET system (Life Technologies, or Aurora Biosciences Corporation, San Diego, Calif., a division of Vertex Pharmaceuticals, Inc.) which may be used in conjunction with FRET dyes, also available from Aurora Biosciences.
  • This assay measures sub-second responses to voltage changes. There is no requirement for a modifier of channel function.
  • the assay measures depolarization and hyperpolarizations, and provides ratiometric outputs for quantification.
  • a somewhat less expensive MTS version of this assay employs the FLEXstationTM (Molecular Devices Corporation) in conjunction with FRET dyes from Aurora Biosciences. Other methods of testing the compounds disclosed herein are also readily known and available to those skilled in the art.
  • Modulating agents so identified are then tested in a variety of in vivo models so as to determine if they alleviate pain, especially chronic pain or other conditions such as cancer and pruritus (itch) with minimal adverse events.
  • the assays described below in the Biological Assays Section are useful in assessing the biological activity of the instant compounds.
  • the efficacy of a compound of the invention is expressed by its IC50 value (“Inhibitory Concentration—50%”), which is the measure of the amount of compound required to achieve 50% inhibition of the activity of the target sodium channel over a specific time period.
  • IC50 value “Inhibitory Concentration—50%”
  • representative compounds of the present invention have demonstrated IC50's ranging from less than 100 nanomolar to less than 10 micromolar in the patch voltage clamp NaV1.7 electrophysiology assay described herein.
  • the compounds of the invention can be used in in vitro or in vivo studies as exemplary agents for comparative purposes to find other compounds also useful in treatment of, or protection from, the various diseases disclosed herein.
  • Another aspect of the invention relates to inhibiting NaV1.1, NaV1.2, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaV1.8, or NaV1.9 activity, preferably NaV1.7 activity, in a biological sample or a mammal, preferably a human, which method comprises administering to the mammal, preferably a human, or contacting said biological sample with a compound of formula (I) or a pharmaceutical composition comprising a compound of formula (I).
  • biological sample includes, without limitation, cell cultures or extracts thereof; biopsied material obtained from a mammal or extracts thereof; and blood, saliva, urine, feces, semen, tears, or other body fluids or extracts thereof.
  • Inhibition of NaV1.1, NaV1.2, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaV1.8, or NaV1.9 activity in a biological sample is useful for a variety of purposes that are known to one of skill in the art. Examples of such purposes include, but are not limited to, the study of sodium ion channels in biological and pathological phenomena; and the comparative evaluation of new sodium ion channel inhibitors.
  • the compounds of the invention can be used in the preparation of a medicament for the treatment of sodium channel-mediated disease or condition in a mammal.
  • the compounds of the invention may be usefully combined with one or more other compounds of the invention or one or more other therapeutic agent or as any combination thereof, in the treatment of sodium channel-mediated diseases and conditions.
  • a compound of the invention may be administered simultaneously, sequentially or separately in combination with other therapeutic agents, including, but not limited to:
  • opiates analgesics e.g., morphine, heroin, cocaine, oxymorphine, levorphanol, levallorphan, oxycodone, codeine, dihydrocodeine, propoxyphene, nalmefene, fentanyl, hydrocodone, hydromorphone, meripidine, methadone, nalorphine, naloxone, naltrexone, buprenorphine, butorphanol, nalbuphine and pentazocine;
  • morphine heroin, cocaine, oxymorphine, levorphanol, levallorphan, oxycodone, codeine, dihydrocodeine, propoxyphene, nalmefene, fentanyl, hydrocodone, hydromorphone, meripidine, methadone, nalorphine, naloxone, naltrexone, buprenorphine, butorphanol, nalbuphine and pentazocine
  • non-opiate analgesics e.g., acetomeniphen, salicylates (e.g., aspirin);
  • nonsteroidal antiinflammatory drugs e.g., ibuprofen, naproxen, fenoprofen, ketoprofen, celecoxib, diclofenac, diflusinal, etodolac, fenbufen, fenoprofen, flufenisal, flurbiprofen, ibuprofen, indomethacin, ketoprofen, ketorolac, meclofenamic acid, mefenamic acid, meloxicam, nabumetone, naproxen, nimesulide, nitroflurbiprofen, olsalazine, oxaprozin, phenylbutazone, piroxicam, sulfasalazine, sulindac, tolmetin and zomepirac;
  • NSAIDs nonsteroidal antiinflammatory drugs
  • anticonvulsants e.g., carbamazepine, oxcarbazepine, lamotrigine, valproate, topiramate, gabapentin and pregabalin;
  • antidepressants such as tricyclic antidepressants, e.g., amitriptyline, clomipramine, despramine, imipramine and nortriptyline;
  • COX-2 selective inhibitors e.g., celecoxib, rofecoxib, parecoxib, valdecoxib, deracoxib, etoricoxib, and lumiracoxib;
  • alpha-adrenergics e.g., doxazosin, tamsulosin, clonidine, guanfacine, dexmetatomidine, modafinil, and 4-amino-6,7-dimethoxy-2-(5-methane sulfonamido-1,2,3,4-tetrahydroisoquinol-2-yl)-5-(2-pyridyl) quinazoline;
  • barbiturate sedatives e.g., amobarbital, aprobarbital, butabarbital, butabital, mephobarbital, metharbital, methohexital, pentobarbital, phenobartital, secobarbital, talbutal, theamylal and thiopental; tachykinin (NK) antagonist, particularly an NK-3, NK-2 or NK-1 antagonist, e.g., ( ⁇ R, 9R)-7-[3,5-bis(trifluoromethyl)benzyl)]-8,9,10,11-tetrahydro-9-methyl-5-(4-methylphenyl)-7H-[1,4]diazocino[2,1-g][1,7]-naphthyridine-6-13-dione (TAK-637), 5-[[2R,3S)-2-[(1R)-1-[3,5-bis(trifluoromethylphenyl]ethoxy-3
  • coal-tar analgesics in particular paracetamol
  • serotonin reuptake inhibitors e.g., paroxetine, sertraline, norfluoxetine (fluoxetine desmethyl metabolite), metabolite demethylsertraline, ′3 fluvoxamine, paroxetine, citalopram, citalopram metabolite desmethylcitalopram, escitalopram, d,l-fenfluramine, femoxetine, ifoxetine, cyanodothiepin, litoxetine, dapoxetine, nefazodone, cericlamine, trazodone and fluoxetine;
  • noradrenaline (norepinephrine) reuptake inhibitors e.g., maprotilinc, lofepramine, mirtazepine, oxaprotiline, fezolamine, tomoxetine, mianserin, buproprion, buproprion metabolite hydroxybuproprion, nomifensine and viloxazine (Vivalan®)
  • a selective noradrenaline reuptake inhibitor such as reboxetine, in particular (S,S)-reboxetine, and venlafaxine duloxetine neuroleptics sedative/anxiolytics;
  • dual serotonin-noradrenaline reuptake inhibitors such as venlafaxine, venlafaxine metabolite O-desmethylvenlafaxine, clomipramine, clomipramine metabolite desmethylclomipramine, duloxetine, milnacipran and imipramine;
  • acetylcholinesterase inhibitors such as donepezil
  • 5-HT3 antagonists such as ondansetron
  • metabotropic glutamate receptor (mGluR) antagonists metabotropic glutamate receptor (mGluR) antagonists
  • local anaesthetic such as mexiletine and lidocaine
  • corticosteroid such as dexamethasone
  • antiarrhythimics e.g., mexiletine and phenytoin
  • muscarinic antagonists e.g., tolterodine, propiverine, tropsium t chloride, darifenacin, solifenacin, temiverine and ipratropium;
  • vanilloid receptor agonists e.g., resinferatoxin
  • antagonists e.g., capsazepine
  • sedatives e.g., glutethimide, meprobamate, methaqualone, and dichloralphenazone;
  • anxiolytics such as benzodiazepines
  • antidepressants such as mirtazapine
  • topical agents e.g., lidocaine, capsacin and resiniferotoxin
  • muscle relaxants such as benzodiazepines, baclofen, carisoprodol, chlorzoxazone, cyclobenzaprine, methocarbamol and orphrenadine;
  • cholinergic (nicotinc) analgesics cholinergic (nicotinc) analgesics
  • Sodium channel-mediated diseases and conditions that may be treated and/or prevented using such combinations include but not limited to, pain, central and peripherally mediated, acute, chronic, neuropathic as well as other diseases with associated pain and other central nervous disorders such as epilepsy, anxiety, depression and bipolar disease; or cardiovascular disorders such as arrhythmias, atrial fibrillation and ventricular fibrillation; neuromuscular disorders such as restless leg syndrome and muscle paralysis or tetanus; neuroprotection against stroke, neural trauma and multiple sclerosis; and channelopathies such as erythromyalgia and familial rectal pain syndrome.
  • “combination” refers to any mixture or permutation of one or more compounds of the invention and one or more other compounds of the invention or one or more additional therapeutic agent. Unless the context makes clear otherwise, “combination” may include simultaneous or sequentially delivery of a compound of the invention with one or more therapeutic agents. Unless the context makes clear otherwise, “combination” may include dosage forms of a compound of the invention with another therapeutic agent. Unless the context makes clear otherwise, “combination” may include routes of administration of a compound of the invention with another therapeutic agent. Unless the context makes clear otherwise, “combination” may include formulations of a compound of the invention with another therapeutic agent. Dosage forms, routes of administration and pharmaceutical compositions include, but are not limited to, those described herein.
  • LC/MS Method D Agilent SB C18, 2.1 ⁇ 30 mm, 1.8 ⁇ m; mobile phase: A water (0.05% TFA), B CH 3 CN (0.05% TFA); gradient: 3% B (0.3 min), followed by 3-95% B (6.5 min), 95% B (1.5 min); flow rate: 0.4 mL/min; oven temperature 25° C.
  • LC/MS Method E Acquity BEH C18, 2.1 ⁇ 50 mm, 1.8 ⁇ m; mobile phase: A water (0.1% FA), B CH 3 CN (0.1% FA); gradient: 3% B (0.4 min), followed by 3-95% B (7.5 min), 95% B (0.5 min); flow rate: 0.5 mL/min; oven temperature 25° C.
  • LC/MS Method F Agilent SB C18, 2.1 ⁇ 30 mm, 1.8 ⁇ m; mobile phase: A water (0.05% TFA), B CH 3 CN (0.05% TFA); gradient: 3% B (0.3 min), followed by 3-95% B (6.5 min), 95% B (1.5 min); flow rate: 0.4 mL/min; oven temperature 25° C.
  • LC/MS Method G Acquity BEH C18, 2.1 ⁇ 50 mm, 1.8 ⁇ m; mobile phase: A water (0.1% FA), B CH 3 CN (0.1% FA); gradient: 3% B (0.4 min), followed by 3-95% B (7.5 min), 95% B (0.5 min); flow rate: 0.5 mL/min; oven temperature 25° C.
  • reaction mixture was stirred at ambient temperature for 16 hours and then diluted with dichloromethane (10 mL) and washed with aqueous hydrochloric acid (1.0 N, 10 mL). The aqueous layer was extracted with dichloromethane (10 mL); the organic layers were combined, dried over anhydrous sodium sulfate, filtered and concentrated.
  • the mixture was degassed thoroughly and the reaction vessel filled up with nitrogen before heating at 115° C. for 16 hours.
  • the reaction mixture was then cooled to ambient temperature and quenched by addition of 100 mL of water.
  • the mixture was extracted with diethyl ether (2 ⁇ 100 mL). The organic layers were combined, concentrated.
  • the residue was purified by column chromatography (10 to 30% gradient of ethyl acetate in hexanes) to give the title compound as an colorless oil (16.50 g, 75%).
  • the mixture was diluted with ethyl acetate (100 mL) and then quenched by addition of 1 N hydrochloric acid solution (10 mL).
  • the organic phase was washed with 1 N hydrochloric acid solution (5 mL), water (5 mL) and brine (5 mL); dried over anhydrous sodium sulfate and filtered.
  • Step 1 Preparation of methyl 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)-piperidin-3-yl)oxy)-2-fluorobenzoate and methyl 5-cyclopropyl-4-(((R)-1-((R)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)oxy)-2-fluorobenzoate
  • reaction mixture was diluted with ethyl acetate (100 mL), washed with water (80 mL), saturated ammonium chloride (2 ⁇ 80 mL), brine (80 mL), dried over anhydrous sodium sulfate, filtered the solid, and concentrated in vacuo.
  • Step 1 Preparation of tert-butyl 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-chloro-2-fluorobenzoate
  • Step 2 Preparation of tert-butyl 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Step 4 Preparation of 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-((2-(trimethylsilyl)ethyl)sulfonyl)benzamide
  • Example 60 The compound was prepared in a similar manner to Example 60 from 4-((1-benzhydrylazetidin-3-yl)-methoxy)-5-cyclopropyl-2-fluorobenzoic acid and 2-methoxyethanesulfonamide.
  • Example 60 The compound was prepared in a similar manner to Example 60 from 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and cyclopropylmethanesulfonamide.
  • Step 1 Preparation of 4-((1-(tert-butoxycarbonyl)-3-fluoroazetidin-3-yl)methoxy)-5-chloro-2-fluorobenzoic acid
  • Step 2 Preparation of tert-butyl 3-((2-chloro-4-(ethoxycarbonyl)-5-fluorophenoxy)methyl)-3-fluoroazetidine-1-carboxylate
  • Step 3 Preparation of ethyl 4-((1-benzyl-3-fluoroazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Step 4 Preparation of ethyl 4-((1-benzyl-3-fluoroazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • step 3 To the residue from step 3 was added dichloromethane (0.83 mL), followed by N,N-diisopropylethylamine (0.19 mL, 1.1 mmol) and benzyl bromide (26 mg, 0.15 mmol). The mixture was stirred at rt for 16 hr. Dilute aq Na 2 CO 3 was added. The contents were extracted with DCM (2 ⁇ ). The combined extracts were dried (Na 2 SO 4 ). The crude was purified with silica gel flash chromatography (0-25% EtOAc/heptane) to give the product as viscous oil (43.8 mg).
  • Step 5 Preparation of 4-((1-benzyl-3-fluoroazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Step 6 Preparation of 4-((1-benzyl-3-fluoroazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Step 1 Preparation of tert-butyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)-3-methylazetidine-1-carboxylate
  • the compound was prepared from tert-butyl 3-(hydroxymethyl)-3-methylazetidine-1-carboxylate and tert-butyl 5-chloro-2,4-difluorobenzoate in a similar manner to step 1 of Example 60.
  • Step 2 Preparation of tert-butyl 3-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-3-methylazetidine-1-carboxylate
  • the compound was prepared from tert-butyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)-3-methylazetidine-1-carboxylate in a similar manner to step 2 of Example 60.
  • Step 3 Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-((3-methylazetidin-3-yl)methoxy)benzoate
  • Step 4 Preparation of tert-butyl 4-((1-benzhydryl-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Step 5 Preparation of 4-((1-benzhydryl-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Pain & Pain Management (AREA)
  • Dermatology (AREA)
  • Psychiatry (AREA)
  • Virology (AREA)
  • Urology & Nephrology (AREA)
  • Rheumatology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oncology (AREA)
  • AIDS & HIV (AREA)
  • Communicable Diseases (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pulmonology (AREA)
  • Vascular Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Hydrogenated Pyridines (AREA)

Abstract

The invention provides compounds having the general formula I:
Figure US20210093618A1-20210401-C00001
and pharmaceutically acceptable salts thereof, wherein the variables RA, RAA, subscript n, ring A, X2, L, subscript m, X1, R1, R2, R3, R4, R5, and RN have the meaning as described herein, and compositions containing such compounds and methods for using such compounds and compositions.

Description

  • The present invention relates to organic compounds useful for therapy and/or prophylaxis in a mammal, and in particular to inhibitors of sodium channel (e.g., NAV 1.7) that are useful for treating sodium channel-mediated diseases or conditions, such as pain, as well as other diseases and conditions associated with the mediation of sodium channels.
  • Voltage-gated sodium channels, transmembrane proteins that initiate action potentials in nerve, muscle and other electrically excitable cells, are a necessary component of normal sensation, emotions, thoughts and movements (Catterall, W. A., Nature (2001), Vol. 409, pp. 988-990). These channels consist of a highly processed alpha subunit that is associated with auxiliary beta subunits. The pore-forming alpha subunit is sufficient for channel function, but the kinetics and voltage dependence of channel gating are in part modified by the beta subunits (Goldin et al., Neuron (2000), Vol. 28, pp. 365-368). Electrophysiological recording, biochemical purification, and molecular cloning have identified ten different sodium channel alpha subunits and four beta subunits (Yu, F. H., et al., Sci. STKE (2004), 253; and Yu, F. H., et al., Neurosci. (2003), 20:7577-85).
  • The hallmarks of sodium channels include rapid activation and inactivation when the voltage across the plasma membrane of an excitable cell is depolarized (voltage-dependent gating), and efficient and selective conduction of sodium ions through conducting pores intrinsic to the structure of the protein (Sato, C., et al., Nature (2001), 409:1047-1051). At negative or hyperpolarized membrane potentials, sodium channels are closed. Following membrane depolarization, sodium channels open rapidly and then inactivate. Channels only conduct currents in the open state and, once inactivated, have to return to the resting state, favoured by membrane hyperpolarization, before they can reopen. Different sodium channel subtypes vary in the voltage range over which they activate and inactivate as well as their activation and inactivation kinetics.
  • The sodium channel family of proteins has been extensively studied and shown to be involved in a number of vital body functions. Research in this area has identified variants of the alpha subunits that result in major changes in channel function and activities, which can ultimately lead to major pathophysiological conditions. The members of this family of proteins are denoted NaV1.x, where x=1 to 9. NaV1.1 and NaV1.2 are highly expressed in the brain (Raymond, C. K., et al., J. Biol. Chem. (2004), 279(44):46234-41) and are vital to normal brain function. Some loss of function mutations in NaV1.1 in humans result in epilepsy, apparently because many of these channels are expressed in inhibitory neurons (Yu, F. H., et al., Nat Neurosci (2006), 9 (9). 1142-9). Thus, block of NaV1.1 in the CNS may be counter-productive because it can produce hyperexcitability. However, NaV1.1 is also expressed in the peripheral nervous system and block may afford analgesic activity.
  • NaV1.3 is expressed primarily in the fetal central nervous system. It is expressed at very low levels or not at all in the peripheral nervous system, but expression is upregulated in the dorsal horn sensory neurons of rats after nervous system injury (Hains, B. D., et al., J. Neurosci. (2003), 23(26):8881-92). Thus, it is an inducible target for treatment of pain following nerve injury.
  • NaV1.4 is expressed primarily in skeletal muscle (Raymond, C. K., et al., op. cit.). Mutations in this gene have been shown to have profound effects on muscle function including paralysis, (Tamaoka A., Intern. Med. (2003), (9):769-70).
  • NaV1.5, is expressed mainly in cardiac myocytes (Raymond, C. K., et al., op. cit.), including atria, ventricles, the sino-atrial node, atrio-ventricular node and cardiac Purkinje fibers. The rapid upstroke of the cardiac action potential and the rapid impulse conduction through cardiac tissue is due to the opening of NaV1.5. Abnormalities in the function of NaV1.5 can result in the genesis of a variety of cardiac arrhythmias. Mutations in human NaV1.5 result in multiple arrhythmic syndromes, including, for example, long QT3 (LQT3), Brugada syndrome (BS), an inherited cardiac conduction defect, sudden unexpected nocturnal death syndrome (SUNDS) and sudden infant death syndrome (SIDS) (Liu, H., et al., Am. J. Pharmacogenomics (2003), 3(3):173-9). Sodium channel blocker therapy has been used extensively in treating cardiac arrhythmias.
  • NaV1.6 is a widely distributed voltage-gated sodium channel found throughout the central and peripheral nervous systems. It is expressed at high density in the nodes of Ranvier of myelinated neurons (Caldwell, J. H., et al., Proc. Natl. Acad. Sci. USA (2000), 97(10): 5616-20).
  • NaV1.7 is a tetrodotoxin-sensitive voltage-gated sodium channel encoded by the gene SCN9A. Human NaV1.7 was first cloned from neuroendocrine cells (Klugbauer, N., et al., 1995 EMBO J., 14 (6): 1084-90.) and rat NaV1.7 was cloned from a pheochromocytoma PC12 cell line (Toledo-Aral, J. J., et al., Proc. Natl. Acad. Sci. USA (1997), 94:1527-1532) and from rat dorsal root ganglia (Sangameswaran, L., et al., (1997), J. Biol. Chem., 272 (23): 14805-9). NaV1.7 is expressed primarily in the peripheral nervous system, especially nocieptors and olfactory neurons and sympathetic neurons. The inhibition, or blocking, of NaV1.7 has been shown to result in analgesic activity. Knockout of NaV1.7 expression in a subset of sensory neurons that are predominantly nociceptive results in resistance to inflammatory pain (Nassar, et al., op. cit.). Likewise, loss of function mutations in humans results in congenital indifference to pain (CIP), in which the individuals are resistant to both inflammatory and neuropathic pain (Cox, J. J., et al., Nature (2006); 444:894-898; Goldberg, Y. P., et al., Clin. Genet. (2007); 71:311-319). Conversely, gain of function mutations in NaV1.7 have been established in two human heritable pain conditions, primary erythromelalgia and familial rectal pain, (Yang, Y., et al., J. Med. Genet. (2004), 41(3):171-4). In addition, a single nucleotide polymorphism (R1150W) that has very subtle effects on the time- and voltage-dependence of channel gating has large effects on pain perception (Estacion, M., et al., 2009. Ann Neurol 66: 862-6; Reimann, F., et al., Proc Natl Acad Sci USA (2010), 107: 5148-53). About 10% of the patients with a variety of pain conditions have the allele conferring greater sensitivity to pain and thus might be more likely to respond to block of NaV1.7. Because NaV1.7 is expressed in both sensory and sympathetic neurons, one might expect that enhanced pain perception would be accompanied by cardiovascular abnormalities such as hypertension, but no correlation has been reported. Thus, both the CIP mutations and SNP analysis suggest that human pain responses are more sensitive to changes in NaV1.7 currents than are perturbations of autonomic function.
  • NaV1.8 is expressed primarily in sensory ganglia of the peripheral nervous system, such as the dorsal root ganglia (Raymond, C. K., et al., op. cit.). There are no identified human mutations for NaV1.8 that produce altered pain responses. NaV1.8 differs from most neuronal NaV's in that it is insensitive to block by tetrodotoxin. Thus, one can isolate the current carried by this channel with tetrodotoxin. These studies have shown that a substantial portion of total sodium current is NaV1.8 in some dorsal root ganglion neurons (Blair, N. T., et al., J Neurosci (2002), 22: 10277-90). Knock-down of NaV1.8 in rats has been achieved by using antisense DNA or small interfering RNAs and virtually complete reversal of neuropathic pain was achieved in the spinal nerve ligation and chronic constriction injury models (Dong, X. W., et al., Neuroscience (2007), 146: 812-21; Lai J., et al. Pain (2002), 95: 143-52). Thus, NaV1.8 is considered a promising target for analgesic agents based upon the limited tissue distribution of this NaV isoform and the analgesic activity produced by knock-down of channel expression.
  • NaV1.9 is also a tetrodotoxin insensitive, sodium channel expressed primarily in dorsal root ganglia neurons (Dib-Hajj, S. D., et al. (see Dib-Hajj, S. D., et al., Proc. Natl. Acad. Sci. USA (1998), 95(15):8963-8). It is also expressed in enteric neurons, especially the myenteric plexus (Rugiero, F., et al., J Neurosci (2003), 23: 2715-25). The limited tissue distribution of this NaV isoform suggests that it may be a useful target for analgesic agents (Lai, J., et al., op. cit.; Wood, J. N., et al., op. cit.; Chung, J. M., et al., op. cit.). Knock-out of NaV1.9 results in resistance to some forms of inflammatory pain (Amaya, F., et al., J Neurosci (2006), 26: 12852-60; Priest, B. T., et al., Proc Natl Acad Sci USA (2005), 102: 9382-7).
  • This closely related family of proteins has long been recognized as targets for therapeutic intervention. Sodium channels are targeted by a diverse array of pharmacological agents. These include neurotoxins, antiarrhythmics, anticonvulsants and local anesthetics (England, S., et al., Future Med Chem (2010), 2: 775-90; Termin, A., et al., Annual Reports in Medicinal Chemistry (2008), 43: 43-60). All of the current pharmacological agents that act on sodium channels have receptor sites on the alpha subunits. At least six distinct receptor sites for neurotoxins and one receptor site for local anesthetics and related drugs have been identified (Cestele. S., et al., Biochimie (2000), Vol. 82, pp. 883-892).
  • The small molecule sodium channel blockers or the local anesthetics and related antiepileptic and antiarrhythmic drugs interact with overlapping receptor sites located in the inner cavity of the pore of the sodium channel (Catterall, W. A., Neuron (2000), 26:13-25). Amino acid residues in the S6 segments from at least three of the four domains contribute to this complex drug receptor site, with the IVS6 segment playing the dominant role. These regions are highly conserved and as such most sodium channel blockers known to date interact with similar potency with all channel subtypes. Nevertheless, it has been possible to produce sodium channel blockers with therapeutic selectivity and a sufficient therapeutic window for the treatment of epilepsy (e.g., lamotrignine, phenytoin and carbamazepine) and certain cardiac arrhythmias (e.g., lignocaine, tocainide and mexiletine). However, the potency and therapeutic index of these blockers is not optimal and have limited the usefulness of these compounds in a variety of therapeutic areas where a sodium channel blocker would be ideally suited.
  • Sodium channel blockers have been shown to be useful in the treatment of pain, including acute, chronic, inflammatory and/or neuropathic pain (see, e.g., Wood, J. N., et al., J. Neurobiol. (2004), 61(1), 55-71. Preclinical evidence demonstrates that sodium channel blockers can suppress neuronal firing in peripheral and central sensory neurons, and it is via this mechanism that they are considered to be useful for relieving pain. In some instances, abnormal or ectopic firing can original from injured or otherwise sensitized neurons. For example, it has been shown that sodium channels can accumulate in peripheral nerves at sites of axonal injury and may function as generators of ectopic firing (Devor et al., J. Neurosci. (1993), 132: 1976). Changes in sodium channel expression and excitability have also been shown in animal models of inflammatory pain where treatment with proinflammatory materials (CFA, Carrageenan) promoted pain-related behaviors and correlated with increased expression of sodium channel subunits (Gould et al., Brain Res., (1999), 824(2): 296-99; Black et al., Pain (2004), 108(3): 237-47). Alterations in either the level of expression or distribution of sodium channels, therefore, may have a major influence on neuronal excitability and pain-related behaviors.
  • Controlled infusions of lidocaine, a known sodium channel blocker, indicate that the drug is efficacious against neuropathic pain, but has a narrow therapeutic index. Likewise, the orally available local anesthetic, mexiletine, has dose-limiting side effects (Wallace, M. S., et al., Reg. Anesth. Pain Med. (2000), 25: 459-67). A major focus of drug discovery targeting voltage-gated sodium channels has been on strategies for improving the therapeutic index. One of the leading strategies is to identify selective sodium channel blockers designed to preferentially block NaV1.7, NaV1.8, NaV1.9 and/or NaV1.3. These are the sodium channel isoforms preferentially expressed in sensory neurons and unlikely to be involved in generating any dose-limiting side effects. For example, there is concern that blocking of NaV1.5 would be arrhythmogenic, so that selectivity of a sodium channel blocker against NaV1.5 is viewed as highly desirable. Furthermore, nearly 700 mutations of the SCN1A gene that codes for NaV1.1 have been identified in patients with Severe Myoclonic Epilepsy of Infancy (SMEI), making this the most commonly mutated gene in human epilepsy. Half of these mutations result in protein truncation (Meisler, M. H., et al., The Journal of Physiology (2010), 588: 1841-8). Thus, selectivity of a sodium channel blocker against NaV1.1 is also desirable.
  • In addition to the strategies of identifying selective sodium channel blockers, there is the continuing strategy of identifying therapeutic agents for the treatment of neuropathic pain. There has been some degree of success in treating neuropathic pain symptoms by using medications originally approved as anticonvulsants, such as gabapentin, and more recently pregabalin. However, pharmacotherapy for neuropathic pain has generally had limited success for a variety of reasons: sedation, especially by drugs first developed as anticonvulsants or anti-depressants, addiction or tachyphylaxis, especially by opiates, or lack of efficacy, especially by NSAIDs and anti-inflammatory agents. Consequently, there is still a considerable need to explore novel treatment modalities for neuropathic pain, which includes, but is not limited to, post-herpetic neuralgia, trigeminal neuralgia, diabetic neuropathy, chronic lower back pain, phantom limb pain, and pain resulting from cancer and chemotherapy, chronic pelvic pain, complex regional pain syndrome and related neuralgias.
  • There are a limited number of effective sodium channel blockers for the treatment of pain with a minimum of adverse side effects which are currently in the clinic. There is also an unmet medical need to treat neuropathic pain and other sodium channel associated pathological states effectively and without adverse side effects due to the blocking of sodium channels not involved in nociception. The present invention provides methods to meet these critical needs.
  • SUMMARY OF THE INVENTION
  • In one aspect the present invention provides for novel compounds. In a first embodiment of such compounds (Embodiment 1; abbreviated as “E1”) the invention provides for a compound of formula I:
  • Figure US20210093618A1-20210401-C00002
  • or a pharmaceutically acceptable salt thereof, wherein:
  • R1 is C1-8 alkyl, C2-8 alkenyl, C1-8 haloalkyl, C1-8 alkoxy, C3-8 carbocycle, C-linked C2-7 heterocycle, or —NR1AR1B, wherein R1A and R1B are each independently selected from the group consisting of hydrogen, C1-8 alkyl, C1-8 alkoxy, and wherein R1A and R1B are optionally combined to form a 3 to 8 membered heterocyclic ring optionally comprising 1 additional heteroatom selected from N, O and S; and wherein R1 is optionally substituted with from 1 to 5 substituents selected from the group consisting of C1-4 alkyl, C1-4 haloalkyl, F, Cl, Br, I, —OH, —CN, —NO2, —NRR1aRR1b, —ORR1a, —SRR1a, —Si(RR1a)3 and C3-6 carbocycle; wherein RR1a and RR1b are independently selected from the group consisting of hydrogen, C1-8 alkyl, C1-8 haloalkyl;
  • RN is hydrogen, C1-4 alkyl or C1-4 haloalkyl;
  • R2 is selected from the group consisting of H, F, Cl, Br, I, —CN, C1-8alkyl, C1-8 haloalkyl and C1-8 alkoxy;
  • R3 is selected from the group consisting of H, F, Cl, Br, I, —CN, C1-8alkyl, C1-8 haloalkyl and C1-8 alkoxy;
  • R4 is selected from the group consisting of H, F, Cl, Br, I, —CN, C1-8alkyl, C1-8 haloalkyl and C1-8 alkoxy;
  • R5 is selected from the group consisting of H, F, Cl, Br, I, —CN, C1-8 alkyl, C1-8 haloalkyl, C1-8 alkoxy, C3-8 cycloalkyl and C2-7 heterocycle, wherein said C3-8 cycloalkyl and C2-7 heterocycle is optionally substituted with 1-3 substituents selected from F, Cl, Br and I;
  • L is a linker selected from the group consisting of C1-4 alkylene, C2-4 alkenylene and C2-4 alkynylene, wherein L is optionally substituted with from 1 to 3 substituents selected from the group consisting of ═O, C1-4 alkyl, halo, and C1-4 haloalkyl;
  • the subscript m represents the integer 0 or 1;
  • X1 and X2 are each independently selected from the group consisting of absent, —O—, —S(O)—, —S(O)2— and —N(RX)— wherein Rx is H, C1-8 alkyl, C1-8 alkanoyl, or —S(O)2(C1-8 alkyl), and wherein if the subscript m is 0 then one of X1 or X2 is absent;
  • the subscript n is an integer from 0 to 5;
  • the ring A is a C2-11 heterocycle comprising a nitrogen atom and further optionally comprising 1-2 heteroatoms selected from N, O and S;
  • each RAA is independently selected from the group consisting of C1-6 alkyl, C1-6 haloalkyl, C1-6 heteroalkyl, CN, F, Cl, Br and I; and
  • RA is selected from the group consisting of —(XRB)0-1ORA1, C6-10 aryl-(XRA)—, C1-20 heteroaryl-(XRA)—, C3-12 carbocycle-(XRA)—, —RA2, —S(O)2—RA2, and C2-11 heterocycle-(XRA)—, wherein said C1-10 aryl, C5-9 heteroaryl, C3-12 carbocycle and C2-11 heterocycle of RA is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4(halo)alkoxy, C1-4 alkylamino, C1-4 dialkylamino, C1-4 alkanoyl, C1-4 alkyl-OC(═O)—, C1-4 alkyl-S(O)2—, C3-6 carbocycle, and phenyl that is optionally substituted with one or more substituents selected from fluoro, chloro, and bromo; RA1 is selected from the group consisting of hydrogen, C1-8 alkyl, C2-8 alkenyl, C1-8 haloalkyl, C3-8 cycloalkyl, phenyl and benzyl; RA is selected from the group consisting of C1-8 alkyl that is optionally substituted with one or more substituents selected from oxo (═O), fluoro, amino, C1-4 alkylamino and C1-4 dialkylamino; XRA is selected from the group consisting of absent, —O—, —S—, —N(H)—, —N(C1-4 alkyl)-, —S(O)—, —S(O)2—, —C(═O)—, C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene; XRB is selected from the group consisting of absent, C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene; wherein any C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene of XRA or XRB is optionally substituted with 1 to 3 substituents selected from the group consisting of C1-4 alkyl, C1-4 haloalkyl, C1-4 heteroalkyl, oxo (═O), hydroxy, and phenyl that is optionally substituted with 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4(halo)alkoxy, C1-4 alkylamino and C1-4 dialkylamino; or wherein XRA or XRB is optionally substituted with 2 substituents that combine to form a 3 to 5 membered carbocycle or a 3-5 membered heterocycle;
  • provided the compound of formula I is not:
  • Figure US20210093618A1-20210401-C00003
    Figure US20210093618A1-20210401-C00004
    Figure US20210093618A1-20210401-C00005
    Figure US20210093618A1-20210401-C00006
  • E2 The compound or salt of E1 wherein:
  • R1 is C1-8 alkyl, C2-8 alkenyl, C1-8 haloalkyl, C1-8 alkoxy, C3-8 carbocycle, C-linked C2-7 heterocycle, or —NR1AR1B, wherein R1A and R1B are each independently selected from the group consisting of hydrogen, C1-8 alkyl, C1-8 alkoxy, and wherein R1A and R1B are optionally combined to form a 3 to 8 membered heterocyclic ring optionally comprising 1 additional heteroatom selected from N, O and S; and wherein R1 is optionally substituted with from 1 to 5 substituents selected from the group consisting of C1-4 alkyl, C1-4 haloalkyl, F, Cl, Br, I, —OH, —CN, —NO2, —NRR1aRR1b, —ORR1a, —SRR1a, —Si(RR1a)3 and C3-6 carbocycle; wherein RR1a and RR1b are independently selected from the group consisting of hydrogen, C1-8 alkyl, C1-8 haloalkyl;
  • RN is hydrogen, C1-4 alkyl or C1-4 haloalkyl;
  • R2 is selected from the group consisting of H, F, Cl, Br, I, —CN, C1-8 alkyl, C1-8 haloalkyl and C1-8 alkoxy;
  • R3 is selected from the group consisting of H, F, Cl, Br, I, —CN, C1-8 alkyl, C1-8 haloalkyl and C1-8 alkoxy;
  • R4 is selected from the group consisting of H, F, Cl, Br, I, —CN, C1-8 alkyl, C1-8 haloalkyl and C1-8 alkoxy;
  • R5 is selected from the group consisting of H, F, Cl, Br, I, —CN, C1-8 alkyl, C1-8 haloalkyl, C1-8 alkoxy, C3-8 cycloalkyl and C2-7 heterocycle, wherein said C3-8 cycloalkyl and C2-7 heterocycle is optionally substituted with 1-3 substituents selected from F, Cl, Br and I;
  • L is a linker selected from the group consisting of C1-4 alkylene, C2-4 alkenylene and C2-4 alkynylene, wherein L is optionally substituted with from 1 to 3 substituents selected from the group consisting of ═O, C1-4 alkyl, halo, and C1-4 haloalkyl;
  • the subscript m represents the integer 0 or 1;
  • X1 and X2 are each independently selected from the group consisting of absent, —O—, —S(O)—, —S(O)2— and —N(RX)— wherein Rx is H, C1-8 alkyl, C1-8 alkanoyl, or —S(O)2(C1-8 alkyl), and wherein if the subscript m is 0 then one of X1 or X2 is absent;
  • the subscript n is an integer from 0 to 5;
  • the ring A is a C2-11 heterocycle comprising a nitrogen atom and further optionally comprising 1-2 heteroatoms selected from N, O and S;
  • each RAA is independently selected from the group consisting of C1-6 alkyl, C1-6 haloalkyl, C1-6 heteroalkyl, F, Cl, Br and I; and
  • RA is selected from the group consisting of —(XRR)0-1ORA1, C6-10 aryl-(XRA)—, C5-9 heteroaryl-(XRA)—, C3-12 carbocycle-(XRA)—, —RA2, —S(O)2—RA2, and C2-11 heterocycle-(XRA)—, wherein said C6-10 aryl, C5-9 heteroaryl, C3-12 carbocycle and C2-11 heterocycle of RA is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4(halo)alkoxy, C1-4 alkylamino, C1-4 dialkylamino, C1-4alkanoyl, C1-4 alkyl-OC(═O)—, C1-4 alkyl-S(O)2—, C3-6 carbocycle, and phenyl that is optionally substituted with one or more substituents selected from fluoro, chloro, and bromo; RA1 is selected from the group consisting of hydrogen, C1-8 alkyl, C2-8 alkenyl, C1-8 haloalkyl, C3-8 cycloalkyl, phenyl and benzyl; RA2 is selected from the group consisting of C1-8 alkyl that is optionally substituted with one or more substituents selected from oxo (═O), fluoro, amino, C1-4 alkylamino and C1-4 dialkylamino; XRA is selected from the group consisting of absent, —O—, —S—, —N(H)—, —N(C1-4 alkyl)-, —S(O)—, —S(O)2—, —C(═O)—, C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene; XRB is selected from the group consisting of absent, C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene; wherein any C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene of XRA or XRB is optionally substituted with 1 to 3 substituents selected from the group consisting of C1-4 alkyl, C1-4 haloalkyl, C1-4 heteroalkyl, oxo (═O), and phenyl that is optionally substituted with 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4(halo)alkoxy, C1-4 alkylamino and C1-4 dialkylamino; or wherein XRA or XRB is optionally substituted with 2 substituents that combine to form a 3 to 5 membered carbocycle or a 3-5 membered heterocycle;
  • E3 The compound or salt of E1 or E2 wherein:
  • R1 is C1-8 alkyl, C2-8 alkenyl, C1-8 haloalkyl, C1-8 alkoxy, C3-8 carbocycle, C-linked C2-7 heterocycle, or —NR1AR1B, wherein R1A and R1B are each independently selected from the group consisting of hydrogen, C1-8 alkyl, C1-8 alkoxy, and wherein R1A and R1B are optionally combined to form a 3 to 8 membered heterocyclic ring optionally comprising 1 additional heteroatom selected from N, O and S; and wherein R1 is optionally substituted with from 1 to 5 substituents selected from the group consisting of C1-4 alkyl, C1-4 haloalkyl, F, Cl, Br, I, —OH, —CN, —NO2, —NRR1aRR1b, —ORR1a, —SRR1a, —Si(RR1a)3 and C3-6 carbocycle; wherein RR1a and RR1b are independently selected from the group consisting of hydrogen, C1-8 alkyl, C1-8 haloalkyl;
  • RN is hydrogen, C1-4 alkyl or C1-4 haloalkyl;
  • R2 is selected from the group consisting of H, F, Cl, Br, I, —CN, C1-8alkyl, C1-8 haloalkyl and C1-8 alkoxy;
  • R3 is selected from the group consisting of H, F, Cl, Br, I, —CN, C1-8alkyl, C1-8 haloalkyl and C1-8 alkoxy;
  • R4 is selected from the group consisting of H, F, Cl, Br, I, —CN, C1-8alkyl, C1-8 haloalkyl and C1-8 alkoxy;
  • R5 is selected from the group consisting of H, F, Cl, Br, I, —CN, C1-8 alkyl, C1-8 haloalkyl, C1-8 alkoxy, C3-8 cycloalkyl and C2-7 heterocycle, wherein said C3-8 cycloalkyl and C2-7 heterocycle is optionally substituted with 1-3 substituents selected from F, Cl, Br and I;
  • L is a linker selected from the group consisting of C1-4 alkylene, C2-4alkenylene and C2-4 alkynylene, wherein L is optionally substituted with from 1 to 3 substituents selected from the group consisting of ═O, C1-4 alkyl, halo, and C1-4 haloalkyl;
  • the subscript m represents the integer 0 or 1;
  • X1 and X2 are each independently selected from the group consisting of absent, —O—, —S(O)—, —S(O)2— and —N(RX)— wherein Rx is H, C1-8 alkyl, C1-8 alkanoyl, or —S(O)2(C1-8 alkyl), and wherein if the subscript m is 0 then one of X1 or X2 is absent;
  • the subscript n is an integer from 0 to 5;
  • the ring A is a C2-11 heterocycle comprising a nitrogen atom and further optionally comprising 1-2 heteroatoms selected from N, O and S;
  • each RAA is independently selected from the group consisting of C1-6 alkyl, C1-6 haloalkyl, C1-6 heteroalkyl, F, Cl, Br and I; and
  • RA is selected from the group consisting of —(XRB)0-1ORA1, C6-10 aryl-(XRA)—, C5-9 heteroaryl-(XRA)—, C3-12 carbocycle-(XRA)—, and C2-11 heterocycle-(XRA)—, wherein said C6-10 aryl, C5-9 heteroaryl, C3-12 carbocycle and C2-11 heterocycle of RA is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4(halo)alkoxy, C1-4alkylamino, C1-4 dialkylamino, phenyl, C1-4 alkanoyl, C1-4 alkyl-OC(═O)—, C1-4 alkyl-S(O)2—, and C3-6 carbocycle; RA1 is selected from the group consisting of hydrogen, C1-8 alkyl, C2-8 alkenyl, C1-8 haloalkyl, C3-8 cycloalkyl, phenyl and benzyl; XRA is selected from the group consisting of absent, —O—, —S—, —N(H)—, —N(C1-4 alkyl)-, —S(O)2—, —C(═O)—, C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene; XRB is selected from the group consisting of absent, C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene; wherein any C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene of XRA or XRB is optionally substituted with 1 to 3 substituents selected from the group consisting of C1-4alkyl, C1-4 haloalkyl, C1-4 heteroalkyl, oxo (═O), and phenyl that is optionally substituted with 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4(halo)alkoxy, C1-4 alkylamino and C1-4 dialkylamino; or wherein XRA or XRB is optionally substituted with 2 substituents that combine to form a 3 to 5 membered carbocycle or a 3-5 membered heterocycle.
  • E4 The compound of E1, E2, or E3 wherein the compound has the formula Ia:
  • Figure US20210093618A1-20210401-C00007
  • E5 The compound of E1, E2, or E3, wherein the compound has the formula Ib:
  • Figure US20210093618A1-20210401-C00008
  • E6 The compound of E1, E2, or E3, wherein the compound has the formula Ic:
  • Figure US20210093618A1-20210401-C00009
  • E7 The compound of E1, E2, E3, E4, E5, or E6 wherein R1 is selected from the group consisting of C1-8 alkyl, C1-8 haloalkyl, C3-8 carbocycle, C2-7 heterocycle, and —NR1AR1B, wherein R1A and R1B are each independently selected from the group consisting of C1-8 alkyl and C1-8 alkoxy, and wherein R1A and R1B are optionally combined to form a 3 to 6 membered heterocyclic ring; and wherein R1 is optionally substituted with from 1 to 5 substituents selected from the group consisting of C1-4 alkyl, C1-4 haloalkyl, F, Cl, Br, I, —OH, —ORR1a, —SRR1a, —Si(RR1a)3, and C3-8 carbocycle; wherein RR1a and RR1b are independently selected from the group consisting of hydrogen, C1-8 alkyl, C1-8 haloalkyl
    E8 The compound of E1, E2, E3, E4, E5, or E6 wherein R1 is methyl, cyclopropyl, cyclopropylmethyl, 1-azetidinyl, 1-methylcycloprop-1-yl, difluoromethyl, N-methylamino, ethyl, 2-methoxyeth-1-yl, 2-trimethylsilyleth-1-yl, propyl, 1,1,1-trifluoroprop-3-yl, butyl, morpholino, pyrrolidino, or 3-fluoroazetidin-1-yl.
    E9 The compound of E1, E2, E3, E4, E5, or E6 wherein R1 is methyl, cyclopropyl, 1-azetidinyl or 2-methoxyethyl.
    E10 The compound of E1, E2, E3, E7, E8, or E9 wherein R2 is H.
    E11 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, or E10 wherein R3 is F, Cl, or Br.
    E12 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, or E10 wherein R3 is F.
    E13 The compound of E1, E2, E3, E7, E8, E9, E10, E11, or E12 wherein R4 is H.
    E14 The compound of E11, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, or E13 wherein R5 is C3-5 cycloalkyl.
    E15 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, or E13 wherein R5 is cyclopropyl.
    E16 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, or E15 wherein X1 is —O— or —N(H)—; X2 is absent; the subscript m is 1; and -(L)- is an optionally substituted group selected from the group consisting of C1-4 alkylene, C2-4 alkenylene or C2-4 alkynylene.
    E17 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, or E15 wherein X1 is —O— or —N(H)—; X2 is absent; the subscript m is 1; and -(L)- is selected from the group consisting of —CH2—, —C(═O)—, —C(H)(CH3)—, —CH2—CH2—, —CH2—C(H)(CH3)—, —C(H)(CH3)—C(H2)—, —CH2CH2CH2—, —CH2—C(H)(CH3)—CH2— or —CH2CH2CH2CH2—.
    E18 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, or E15 wherein X1 is —O—; the subscript m is 1 and -(L)- is —CH2— or —CH2—CH2—.
    E19 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, or E15 wherein X1 is absent; X2 is —O— or —N(H)—; the subscript m is 1; and -(L)- is selected from the group consisting of —C(H)2—, —C(═O)—, —C(H)(CH3)—, —CH2—CH2—, —CH2—C(H)(CH3)—, —C(H)(CH3)—C(H2)—, —CH2CH2CH2—, —CH2—C(H)(CH3)—CH2— or —CH2CH2CH2CH2—.
    E20 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, or E15 wherein X1 and X2 is absent; the subscript m is 1; and -(L)- is selected from the group consisting of —C(H)2—, —C(═O)—, —C(H)(CH3)—, —CH2—CH2—, —CH2—C(H)(CH3)—, —C(H)(CH3)—C(H2)—, —CH2CH2CH2—, —CH2—C(H)(CH3)—CH2— or —CH2CH2CH2CH2—.
    E21 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E2, E13, E14, or E15 wherein m is 0; X1 is selected from —O—, and —N(H)—; and X2 is absent.
    E22 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, or E21 wherein A is optionally substituted and is selected from azetidine, pyrrolidine, piperidine, morpholine, homopiperazine, and piperazine.
    E23 The compound E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, or E21 of wherein:
  • Figure US20210093618A1-20210401-C00010
  • is selected from the group consisting of:
  • Figure US20210093618A1-20210401-C00011
  • E24 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, or E21 wherein:
  • Figure US20210093618A1-20210401-C00012
  • is selected from the group consisting of:
  • Figure US20210093618A1-20210401-C00013
  • E25 The compound of of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, or E24 wherein RAA is selected from the group consisting of methyl, trifluoromethyl, ethyl, CN, F, Cl, Br, and I.
    E26 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, or E24 wherein RAA is selected from the group consisting of methyl, trifluoromethyl, ethyl, F, Cl, Br, and I.
    E27 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein RA is selected from the group consisting of phenyl-(XRA)—, wherein said phenyl is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, —NH, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 alkylamino, C1-4 dialkylamino, phenyl, C1-4 alkanoyl, C1-4 alkyl-OC(═O)— and C3-6 carbocycle; and wherein XRA is selected from the group consisting of absent, —O—, —S—, —N(H)—, —N(C1-4 alkyl)-, C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene; and wherein XRA is optionally substituted with 1 to 3 substituents selected from the group consisting of C1-4 alkyl, C1-4 haloalkyl, C1-4 heteroalkyl, and phenyl that is optionally substituted with 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 alkylamino and C1-4 dialkylamino.
    E28 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein RA is phenyl-(XRA)—, wherein said phenyl is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, C1-4 alkyl, —CN, C3-6 carbocycle and C1-4 haloalkyl; wherein XRA is selected from the group consisting of absent and C1-4 alkylene; and wherein XRA is optionally substituted with 1 to 3 substituents selected from the group consisting of C1-4 alkyl and phenyl that is optionally substituted with 1 to 5 substitutents selected from, F, Cl, C1-4 alkyl, and C1-4 haloalkyl.
    E29 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein RA is —(XRB)0-1ORA1; RA1 is selected from the group consisting of hydrogen, C1-8 alkyl, C2-8 alkenyl, C1-8 haloalkyl, C3-8 cycloalkyl, phenyl and benzyl; and XRB is selected from the group consisting of absent and C1-4 alkylene that is optionally substituted with 1 to 3 substituents selected from the group consisting of C1-4 alkyl, C1-4 haloalkyl, C1-4 heteroalkyl, oxo (═O), and phenyl that is optionally substituted with 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4(halo)alkoxy, C1-4 alkylamino and C1-4 dialkylamino.
    E30 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein RA is selected from the group consisting of
  • Figure US20210093618A1-20210401-C00014
    Figure US20210093618A1-20210401-C00015
  • E31 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein RA is selected from the group consisting of
  • Figure US20210093618A1-20210401-C00016
  • E32 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein RA is selected from the group consisting of phenyl, phenylmethyl, pyrazolyl, pyrazolylmethyl, cyclobutyl, cyclohexylmethyl, cyclopentyl, cyclopentylmethyl, cyclobutyl, cyclobutylmethyl, pyrimidinyl, pyrimidinylmethyl, pyrazinyl, pyrazinylmethyl, pyridazinyl, pyridazinylmethyl, indolinyl, indolinylmethyl, isoindolinyl, and isoindolinylmethyl, and wherein RA is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4(halo)alkoxy, C1-4alkylamino, C1-4 dialkylamino, C1-4 alkanoyl, C1-4 alkyl-OC(═O)—, C1-4 alkyl-S(O)2—, C3-6 carbocycle, and phenyl that is optionally substituted with one or more substituents selected from fluoro, chloro, and bromo.
    E33 The compound of claim E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein RA is selected from the group consisting of —(XRB)0-1ORA1, C6-10 aryl-(XRA)—, C1-20 heteroaryl-(XRA)—, C3-12 carbocycle-(XRA)— and C2-11 heterocycle-(XRA)—, wherein said C6-10 aryl, C5-9 heteroaryl, C3-12 carbocycle and C2-11 heterocycle of RA is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 alkylamino, C1-4 dialkylamino, phenyl, C1-4 alkanoyl, C1-4 alkyl-OC(═O)— and C3-6 carbocycle; RA1 is selected from the group consisting of hydrogen, C1-8 alkyl, C2-8 alkenyl, C1-8 haloalkyl, C3-4 cycloalkyl, phenyl and benzyl; XRA is selected from the group consisting of absent, —O—, —S—, —N(H)—, —N(C1-4alkyl)-, C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene; and XRB is selected from the group consisting of absent, C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene; wherein any C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene of XRA or XRB is optionally substituted with 1 to 3 substituents selected from the group consisting of C1-4 alkyl, C1-4 haloalkyl, and C1-4 heteroalkyl.
    E34 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein RA is selected from the group consisting of —(XRB)0-1ORA1, C6-10 aryl-(XRA)—, C5-9 heteroaryl-(XRA)—, C3-12 carbocycle-(XRA)— and C2-11 heterocycle-(XRA)—, wherein said C6-10 aryl, C1-9 heteroaryl, C3-12 carbocycle and C2-1l heterocycle of RA is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4 alkylamino, C1-4 dialkylamino, phenyl, C1-4 alkanoyl, C1-4 alkyl-OC(═O)— and C3-6 carbocycle; RA1 is selected from the group consisting of hydrogen, C1-8 alkyl, C2-8 alkenyl, C1-8 haloalkyl, C3-8 cycloalkyl, phenyl and benzyl; XRA is selected from the group consisting of absent, —O—, —S—, —N(H)—, —N(C1-4 alkyl)-, C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene; and XRB is selected from the group consisting of absent, C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene; wherein any C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene of XRA or XRB is optionally substituted with 1 to 3 substituents selected from the group consisting of C1-4 alkyl, C1-4 haloalkyl, and C1-4 heteroalkyl.
    E35 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein RA is C6-10 aryl-(XRA)—, wherein said C1-10 aryl, of RA is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4(halo)alkoxy, C1-4alkylamino, C1-4 dialkylamino, phenyl, C1-4 alkanoyl, C1-4 alkyl-OC(═O)—, C1-4 alkyl-S(O)2—, and C3-6 carbocycle; and XRA is selected from the group consisting of —C(═O)—, C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene; wherein any C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene of XRA is optionally substituted with 1 to 3 substituents selected from the group consisting of C1-4 alkyl, C1-4 haloalkyl, C1-4 heteroalkyl, oxo (═O), and phenyl that is optionally substituted with 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4(halo)alkoxy, C1-4 alkylamino and C1-4 dialkylamino.
    E36 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein RA is phenyl —(XRA)—, wherein said phenyl is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, —CN, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, and C1-4(halo)alkoxy; and XRA is C1-4 alkylene that is optionally substituted with 1 to 3 substituents selected from the group consisting of C1-4 alkyl, C1-4 haloalkyl, C1-4 heteroalkyl, oxo (═O), and phenyl that is optionally substituted with 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4(halo)alkoxy, C1-4 alkylamino and C1-4 dialkylamino.
    E37 The compound of E1, E2, E3, E7, E8, E9, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, E26, E27, E28, E29, E30, E31, E32, E33, E34, E35, or E36 wherein the compound has the formula Id:
  • Figure US20210093618A1-20210401-C00017
  • E38 The compound of E37 wherein R1 is methyl, ethyl, cyclopropyl, or 1-azetidinyl.
    E39 The compound of E37 or E38 wherein —X2-(L)m-X1— is —O—, —CH2—, —CH2—O—, or —CH2CH2—O—.
    E40 The compound of E37, E38, or E39 wherein:
  • Figure US20210093618A1-20210401-C00018
  • E41 The compound of E37, E38, or E39 wherein:
  • Figure US20210093618A1-20210401-C00019
  • E42 The compound of E37, E38, or E39 wherein A is optionally substituted azetidine, pyrrolidine, piperidine, morpholine, homopiperazine, and piperazine.
    E43 The compound of E37, E38, or E39 wherein:
  • Figure US20210093618A1-20210401-C00020
  • is selected from the group consisting of:
  • Figure US20210093618A1-20210401-C00021
  • E44 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E37, E38, or E39 wherein:
  • Figure US20210093618A1-20210401-C00022
  • is selected from the group consisting of:
  • Figure US20210093618A1-20210401-C00023
  • E45 The compound of E1, E2, E3, E4, E7, E8, E9, E10, E11, E12, E13, E14, E15, E25, E26, E27, E28, E29, E30, E31, E32, E33, E34, E35, E36, E37, or E38 wherein:
    has the formula:
  • Figure US20210093618A1-20210401-C00024
  • E46 The compound of E41, wherein
  • Figure US20210093618A1-20210401-C00025
  • E47 The compound of claim E46, wherein RAA is selected from the group consisting of hydrogen, F, Cl and C1-4 haloalkyl.
    E48 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, E26, E37, E38, E39, E40, E41, E42, E43, E44, E45, E46, or E47 wherein RA is
  • Figure US20210093618A1-20210401-C00026
    Figure US20210093618A1-20210401-C00027
    Figure US20210093618A1-20210401-C00028
    Figure US20210093618A1-20210401-C00029
    Figure US20210093618A1-20210401-C00030
    Figure US20210093618A1-20210401-C00031
    Figure US20210093618A1-20210401-C00032
    Figure US20210093618A1-20210401-C00033
    Figure US20210093618A1-20210401-C00034
    Figure US20210093618A1-20210401-C00035
    Figure US20210093618A1-20210401-C00036
    Figure US20210093618A1-20210401-C00037
    Figure US20210093618A1-20210401-C00038
    Figure US20210093618A1-20210401-C00039
    Figure US20210093618A1-20210401-C00040
    Figure US20210093618A1-20210401-C00041
    Figure US20210093618A1-20210401-C00042
    Figure US20210093618A1-20210401-C00043
    Figure US20210093618A1-20210401-C00044
  • E49 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, E26, E37, E38, E39, E40, E41, E42, E43, E44, E45, E46, or E47 wherein RA is
  • Figure US20210093618A1-20210401-C00045
    Figure US20210093618A1-20210401-C00046
    Figure US20210093618A1-20210401-C00047
    Figure US20210093618A1-20210401-C00048
    Figure US20210093618A1-20210401-C00049
    Figure US20210093618A1-20210401-C00050
    Figure US20210093618A1-20210401-C00051
    Figure US20210093618A1-20210401-C00052
    Figure US20210093618A1-20210401-C00053
    Figure US20210093618A1-20210401-C00054
    Figure US20210093618A1-20210401-C00055
    Figure US20210093618A1-20210401-C00056
  • E50 The compound of E1 which is selected from:
  • Figure US20210093618A1-20210401-C00057
    Figure US20210093618A1-20210401-C00058
    Figure US20210093618A1-20210401-C00059
    Figure US20210093618A1-20210401-C00060
    Figure US20210093618A1-20210401-C00061
    Figure US20210093618A1-20210401-C00062
    Figure US20210093618A1-20210401-C00063
    Figure US20210093618A1-20210401-C00064
    Figure US20210093618A1-20210401-C00065
    Figure US20210093618A1-20210401-C00066
    Figure US20210093618A1-20210401-C00067
    Figure US20210093618A1-20210401-C00068
    Figure US20210093618A1-20210401-C00069
    Figure US20210093618A1-20210401-C00070
    Figure US20210093618A1-20210401-C00071
    Figure US20210093618A1-20210401-C00072
    Figure US20210093618A1-20210401-C00073
    Figure US20210093618A1-20210401-C00074
    Figure US20210093618A1-20210401-C00075
    Figure US20210093618A1-20210401-C00076
    Figure US20210093618A1-20210401-C00077
    Figure US20210093618A1-20210401-C00078
    Figure US20210093618A1-20210401-C00079
  • Figure US20210093618A1-20210401-C00080
    Figure US20210093618A1-20210401-C00081
    Figure US20210093618A1-20210401-C00082
    Figure US20210093618A1-20210401-C00083
    Figure US20210093618A1-20210401-C00084
    Figure US20210093618A1-20210401-C00085
    Figure US20210093618A1-20210401-C00086
    Figure US20210093618A1-20210401-C00087
    Figure US20210093618A1-20210401-C00088
    Figure US20210093618A1-20210401-C00089
    Figure US20210093618A1-20210401-C00090
    Figure US20210093618A1-20210401-C00091
    Figure US20210093618A1-20210401-C00092
    Figure US20210093618A1-20210401-C00093
    Figure US20210093618A1-20210401-C00094
    Figure US20210093618A1-20210401-C00095
    Figure US20210093618A1-20210401-C00096
    Figure US20210093618A1-20210401-C00097
    Figure US20210093618A1-20210401-C00098
    Figure US20210093618A1-20210401-C00099
    Figure US20210093618A1-20210401-C00100
    Figure US20210093618A1-20210401-C00101
    Figure US20210093618A1-20210401-C00102
  • Figure US20210093618A1-20210401-C00103
    Figure US20210093618A1-20210401-C00104
    Figure US20210093618A1-20210401-C00105
    Figure US20210093618A1-20210401-C00106
    Figure US20210093618A1-20210401-C00107
    Figure US20210093618A1-20210401-C00108
    Figure US20210093618A1-20210401-C00109
    Figure US20210093618A1-20210401-C00110
    Figure US20210093618A1-20210401-C00111
    Figure US20210093618A1-20210401-C00112
    Figure US20210093618A1-20210401-C00113
    Figure US20210093618A1-20210401-C00114
    Figure US20210093618A1-20210401-C00115
    Figure US20210093618A1-20210401-C00116
    Figure US20210093618A1-20210401-C00117
    Figure US20210093618A1-20210401-C00118
    Figure US20210093618A1-20210401-C00119
    Figure US20210093618A1-20210401-C00120
    Figure US20210093618A1-20210401-C00121
    Figure US20210093618A1-20210401-C00122
    Figure US20210093618A1-20210401-C00123
    Figure US20210093618A1-20210401-C00124
    Figure US20210093618A1-20210401-C00125
    Figure US20210093618A1-20210401-C00126
    Figure US20210093618A1-20210401-C00127
  • Figure US20210093618A1-20210401-C00128
    Figure US20210093618A1-20210401-C00129
    Figure US20210093618A1-20210401-C00130
    Figure US20210093618A1-20210401-C00131
    Figure US20210093618A1-20210401-C00132
    Figure US20210093618A1-20210401-C00133
    Figure US20210093618A1-20210401-C00134
    Figure US20210093618A1-20210401-C00135
    Figure US20210093618A1-20210401-C00136
    Figure US20210093618A1-20210401-C00137
    Figure US20210093618A1-20210401-C00138
    Figure US20210093618A1-20210401-C00139
    Figure US20210093618A1-20210401-C00140
    Figure US20210093618A1-20210401-C00141
    Figure US20210093618A1-20210401-C00142
    Figure US20210093618A1-20210401-C00143
    Figure US20210093618A1-20210401-C00144
    Figure US20210093618A1-20210401-C00145
    Figure US20210093618A1-20210401-C00146
    Figure US20210093618A1-20210401-C00147
    Figure US20210093618A1-20210401-C00148
  • Figure US20210093618A1-20210401-C00149
    Figure US20210093618A1-20210401-C00150
    Figure US20210093618A1-20210401-C00151
    Figure US20210093618A1-20210401-C00152
    Figure US20210093618A1-20210401-C00153
    Figure US20210093618A1-20210401-C00154
  • and salts thereof.
    E51 The compound of E1, which is selected from:
  • Figure US20210093618A1-20210401-C00155
    Figure US20210093618A1-20210401-C00156
    Figure US20210093618A1-20210401-C00157
    Figure US20210093618A1-20210401-C00158
    Figure US20210093618A1-20210401-C00159
    Figure US20210093618A1-20210401-C00160
    Figure US20210093618A1-20210401-C00161
    Figure US20210093618A1-20210401-C00162
    Figure US20210093618A1-20210401-C00163
    Figure US20210093618A1-20210401-C00164
    Figure US20210093618A1-20210401-C00165
    Figure US20210093618A1-20210401-C00166
    Figure US20210093618A1-20210401-C00167
    Figure US20210093618A1-20210401-C00168
    Figure US20210093618A1-20210401-C00169
    Figure US20210093618A1-20210401-C00170
    Figure US20210093618A1-20210401-C00171
    Figure US20210093618A1-20210401-C00172
    Figure US20210093618A1-20210401-C00173
    Figure US20210093618A1-20210401-C00174
    Figure US20210093618A1-20210401-C00175
    Figure US20210093618A1-20210401-C00176
    Figure US20210093618A1-20210401-C00177
    Figure US20210093618A1-20210401-C00178
    Figure US20210093618A1-20210401-C00179
  • and salts thereof.
    E52 The compound of E1, which is selected from the compounds of Examples 162-593 and the free bases and salts thereof.
    E53 The compound of claim E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein RA is selected from the group consisting of benzyl, 3,5-dichlorobenzyl, N-acetylpiperidin-3-yl, 2-chloro-4-fluorobenzyl, 2,4-difluorobenzyl, 2,6-dichlorobenzyl, N-(cyclohexylmethyl)piperidin-3-yl, 1-methyl-3-phenyl-1H-pyrazol-5-ylmethyl, pyridazin-4-ylmethyl, isoindolin-4-ylmethyl, alpha-phenylbenzyl, 3,4-dichlorobenzyl, 4-fluorobenzyl, 2-chlorobenzyl, 3-chlorobenzyl, 2,4-dichlorobenzyl, 4-methylbenzyl, 2-(trifluoromethyl)-4-fluorobenzyl, 4-fluorophenyl, phenyl, 3,5-dichlorophenyl, benzyl, alpha-methyl-3,5-dichlorobenzyl, 3,5-dichlorophenoxy, tert-butoxycarbonyl, 3-fluorobenzyl, 3-chloro-5-fluorobenzyl, and 4-(trifluoromethyl)-3-fluorobenzyl.
    E54 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein RA is selected from the group consisting of:
  • Figure US20210093618A1-20210401-C00180
    Figure US20210093618A1-20210401-C00181
    Figure US20210093618A1-20210401-C00182
    Figure US20210093618A1-20210401-C00183
    Figure US20210093618A1-20210401-C00184
    Figure US20210093618A1-20210401-C00185
  • E55 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein RA is C6-10 aryl-(XRA)—, wherein said C6-10 aryl, of RA is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4(halo)alkoxy, C1-4 alkylamino, C1-4 dialkylamino, phenyl, C1-4 alkanoyl, C1-4 alkyl-OC(═O)—, C1-4 alkyl-S(O)2—, and C3-6 carbocycle; and XRA is C1-4 alkylene that is optionally substituted with 1 to 3 substituents selected from the group consisting of C1-4 alkyl, C1-4haloalkyl, C1-4 heteroalkyl, oxo (═O), and phenyl that is optionally substituted with 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4(halo)alkoxy, C1-4 alkylamino and C1-4 dialkylamino.
    E56 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein RA is
  • Figure US20210093618A1-20210401-C00186
  • E57 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, or E26 wherein RA is
  • Figure US20210093618A1-20210401-C00187
  • E58 The compound of E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, E20, E21, E22, E23, E24, E25, E26, E37, E38, E39, E40, E41, E42, E43, E44, E45, E46, or E47 wherein RA is
  • Figure US20210093618A1-20210401-C00188
  • E59 The compound of E1, which is selected from:
  • Figure US20210093618A1-20210401-C00189
  • and salts thereof.
  • In another aspect the present invention provides for a pharmaceutical composition comprising a compound of formula I or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable excipient.
  • In another aspect the present invention provides for a method of treating a disease or condition in a mammal selected from the group consisting of pain, depression, cardiovascular diseases, respiratory diseases, and psychiatric diseases, and combinations thereof, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof. In another aspect of the present invention said disease or condition is selected from the group consisting of neuropathic pain, inflammatory pain, visceral pain, cancer pain, chemotherapy pain, trauma pain, surgical pain, post-surgical pain, childbirth pain, labor pain, neurogenic bladder, ulcerative colitis, chronic pain, persistent pain, peripherally mediated pain, centrally mediated pain, chronic headache, migraine headache, sinus headache, tension headache, phantom limb pain, dental pain, peripheral nerve injury or a combination thereof. In another aspect of the present invention said disease or condition is selected from the group consisting of pain associated with HIV, HIV treatment induced neuropathy, trigeminal neuralgia, post-herpetic neuralgia, eudynia, heat sensitivity, tosarcoidosis, irritable bowel syndrome, Crohns disease, pain associated with multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), diabetic neuropathy, peripheral neuropathy, arthritis, rheumatoid arthritis, osteoarthritis, atherosclerosis, paroxysmal dystonia, myasthenia syndromes, myotonia, malignant hyperthermia, cystic fibrosis, pseudoaldosteronism, rhabdomyolysis, hypothyroidism, bipolar depression, anxiety, schizophrenia, sodium channel toxi related illnesses, familial erythromelalgia, primary erythromelalgia, familial rectal pain, cancer, epilepsy, partial and general tonic seizures, restless leg syndrome, arrhythmias, fibromyalgia, neuroprotection under ischaemic conditions cause by stroke or neural trauma, tach-arrhythmias, atrial fibrillation and ventricular fibrillation.
  • In another aspect the present invention provides for a method of treating pain in a mammal by the inhibition of ion flux through a voltage-dependent sodium channel in the mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof.
  • In another aspect the present invention provides for a method of decreasing ion flux through a voltage-dependent sodium channel in a cell in a mammal, wherein the method comprises contacting the cell with a compound of formula I, or a pharmaceutically acceptable salt thereof.
  • In another aspect the present invention provides for a method of treating pruritus in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof.
  • In another aspect the present invention provides for a method of treating cancer in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount a compound of formula I, or a pharmaceutically acceptable salt thereof.
  • In another aspect the present invention provides for a method of treating, but not preventing, pain in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof. In another aspect of the present invention the pain is selected from the group consisting of neuropathic pain, inflammatory pain, visceral pain, cancer pain, chemotherapy pain, trauma pain, surgical pain, post-surgical pain, childbirth pain, labor pain, neurogenic bladder, ulcerative colitis, chronic pain, persistent pain, peripherally mediated pain, centrally mediated pain, chronic headache, migraine headache, sinus headache, tension headache, phantom limb pain, dental pain, peripheral nerve injury or a combination thereof. In another aspect the present invention the pain is associated with a disease or condition selected from the group consisting of HIV, HIV treatment induced neuropathy, trigeminal neuralgia, post-herpetic neuralgia, eudynia, heat sensitivity, tosarcoidosis, irritable bowel syndrome, Crohns disease, pain associated with multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), diabetic neuropathy, peripheral neuropathy, arthritis, rheumatoid arthritis, osteoarthritis, atherosclerosis, paroxysmal dystonia, myasthenia syndromes, myotonia, malignant hyperthermia, cystic fibrosis, pseudoaldosteronism, rhabdomyolysis, hypothyroidism, bipolar depression, anxiety, schizophrenia, sodium channel toxi related illnesses, familial erythromelalgia, primary erythromelalgia, familial rectal pain, cancer, epilepsy, partial and general tonic seizures, restless leg syndrome, arrhythmias, fibromyalgia, neuroprotection under ischaemic conditions cause by stroke or neural trauma, tach-arrhythmias, atrial fibrillation and ventricular fibrillation.
  • In another aspect the present invention provides for a method of treating, but not preventing, acute pain or chronic pain in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof.
  • In another aspect the present invention provides for a method of treating, but not preventing, neuropathic pain or inflammatory pain in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof.
  • In another aspect the present invention provides for a method for the treatment or prophylaxis of pain, depression, cardiovascular disease, respiratory disease, or psychiatric disease, or a combinations thereof, in an animal which method comprises administering an effective amount of a compound of formula I, or a pharmaceutically acceptable salt thereof.
  • In another aspect the present invention provides for a compound of formula I, or a pharmaceutically acceptable salt thereof for the use as a medicament for the treatment of diseases and disorders selected from the group consisting of pain, depression, cardiovascular diseases, respiratory diseases, and psychiatric diseases, or a combination thereof.
  • In another aspect the present invention provides for the use of a compound of formula I, or a pharmaceutically acceptable salt thereof for the manufacture of a medicament for the treatment of diseases and disorders selected from the group consisting of pain, depression, cardiovascular diseases, respiratory diseases, and psychiatric diseases, or a combination thereof.
  • In another aspect the present invention provides for the invention as described herein.
  • DETAILED DESCRIPTION OF THE INVENTION Definitions
  • As used herein, the term “alkyl”, by itself or as part of another substituent, means, unless otherwise stated, a straight or branched chain hydrocarbon radical, having the number of carbon atoms designated (i.e., C1-8 means one to eight carbons). Examples of alkyl groups include methyl, ethyl, n-propyl, iso-propyl, n-butyl, t-butyl, iso-butyl, sec-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, and the like. The term “alkenyl” refers to an unsaturated alkyl radical having one or more double bonds. Similarly, the term “alkynyl” refers to an unsaturated alkyl radical having one or more triple bonds. Examples of such unsaturated alkyl groups include vinyl, 2-propenyl, crotyl, 2-isopentenyl, 2-(butadienyl), 2,4-pentadienyl, 3-(1,4-pentadienyl), ethynyl, 1- and 3-propynyl, 3-butynyl, and the higher homologs and isomers.
  • The term “heteroalkyl,” by itself or in combination with another term, means, unless otherwise stated, a stable straight or branched chain hydrocarbon radical, consisting of the stated number of carbon atoms and from one to three heteroatoms selected from the group consisting of O, N, Si and S, and wherein the nitrogen and sulfur atoms can optionally be oxidized and the nitrogen heteroatom can optionally be quaternized. The heteroatom(s) O, N and S can be placed at any interior position of the heteroalkyl group.
  • The heteroatom Si can be placed at any position of the heteroalkyl group, including the position at which the alkyl group is attached to the remainder of the molecule. A “heteroalkyl” can contain up to three units of unsaturation, and also include mono- and poly-halogenated variants, or combinations thereof. Examples include —CH2—CH2—O—CH3, —CH2—CH2—O—CF3, —CH2—CH2—NH—CH3, —CH2—CH2—N(CH3)—CH3, —CH2—S—CH2—C H3, —S(O)—CH3, —CH2—CH2—S(O)2—CH3, —CH═CH—O—CH3, —Si(CH3)3, —CH2—CH═N—OCH3, and —CH═CH═N(CH3)—CH3. Up to two heteroatoms can be consecutive, such as, for example, —CH2—NH—OCH3 and —CH2—O—Si(CH3)3.
  • The term “alkylene” by itself or as part of another substituent means a divalent radical derived from an alkane (including branched alkane), as exemplified by —CH2CH2CH2CH2— and —CH(CH2)CH2CH2—. Typically, an alkyl (or alkylene) group will have from 1 to 24 carbon atoms, with those groups having 10 or fewer carbon atoms being preferred in the present invention. “Alkenylene” and “alkynylene” refer to the unsaturated forms of “alkylene” having double or triple bonds, respectively. “Alkylene”, “alkenylene” and “alkynylene” are also meant to include mono and poly-halogenated variants.
  • The term “heteroalkylene” by itself or as part of another substituent means a divalent radical, saturated or unsaturated or polyunsaturated, derived from heteroalkyl, as exemplified by —CH2—CH2—S—CH2CH2— and —CH2—S—CH2—CH2—NH—CH2—, —O—CH2—CH═CH—, —CH2—CH═C(H)CH2—O—CH2— and —S—CH2—C≡C—. For heteroalkylene groups, heteroatoms can also occupy either or both of the chain termini (e.g., alkyleneoxy, alkylenedioxy, alkyleneamino, alkylenediamino, and the like). The term “heteroalkylene” is also meant to include mono and poly-halogenated variants.
  • The terms “alkoxy,” “alkylamino” and “alkylthio”, are used in their conventional sense, and refer to those alkyl groups attached to the remainder of the molecule via an oxygen atom (“oxy”), an amino group (“amino”) or thio group, and further include mono- and poly-halogenated variants thereof. Additionally, for dialkylamino groups, the alkyl portions can be the same or different.
  • The terms “halo” or “halogen,” by themselves or as part of another substituent, mean, unless otherwise stated, a fluorine, chlorine, bromine, or iodine atom. The term “(halo)alkyl” is meant to include both a “alkyl” and “haloalkyl” substituent. Additionally, the term “haloalkyl,” is meant to include monohaloalkyl and polyhaloalkyl. For example, the term “C1-4 haloalkyl” is mean to include trifluoromethyl, 2,2,2-trifluoroethyl, 4-chlorobutyl, 3-bromopropyl, difluoromethyl, and the like.
  • The term “aryl” as used herein refers to a single all carbon aromatic ring or a multiple condensed all carbon ring system wherein at least one of the rings is aromatic. For example, in certain embodiments, an aryl group has 6 to 20 carbon atoms, 6 to 14 carbon atoms, or 6 to 12 carbon atoms. Aryl includes a phenyl radical. Aryl also includes multiple condensed ring systems (e.g., ring systems comprising 2, 3 or 4 rings) having about 9 to 20 carbon atoms in which at least one ring is aromatic and wherein the other rings may be aromatic or not aromatic (i.e., carbocycle). Such multiple condensed ring systems are optionally substituted with one or more (e.g., 1, 2 or 3) oxo groups on any carbocycle portion of the multiple condensed ring system. The rings of the multiple condensed ring system can be connected to each other via fused, spiro and bridged bonds when allowed by valency requirements. It is to be understood that the point of attachment of a multiple condensed ring system, as defined above, can be at any position of the ring system including an aromatic or a carbocycle portion of the ring. Non-limiting examples of aryl groups include, but are not limited to, phenyl, indenyl, naphthyl, 1, 2, 3, 4-tetrahydronaphthyl, anthracenyl, and the like.
  • The term “carbocycle” or “carbocyclyl” refers to a single saturated (i.e., cycloalkyl) or a single partially unsaturated (e.g., cycloalkenyl, cycloalkadienyl, etc.) all carbon ring having 3 to 7 carbon atoms (i.e., (C3-C7)carbocycle). The term “carbocycle” or “carbocyclyl” also includes multiple condensed, saturated and partially unsaturated all carbon ring systems (e.g., ring systems comprising 2, 3 or 4 carbocyclic rings). Accordingly, carbocycle includes multicyclic carbocyles such as a bicyclic carbocycles (e.g., bicyclic carbocycles having about 6 to 12 carbon atoms such as bicyclo[3.1.0]hexane and bicyclo[2.1.1]hexane), and polycyclic carbocycles (e.g tricyclic and tetracyclic carbocycles with up to about 20 carbon atoms). The rings of the multiple condensed ring system can be connected to each other via fused, spiro and bridged bonds when allowed by valency requirements. For example, multicyclic carbocyles can be connected to each other via a single carbon atom to form a spiro connection (e.g., spiropentane, spiro[4,5]decane, etc), via two adjacent carbon atoms to form a fused connection (e.g., carbocycles such as decahydronaphthalene, norsabinane, norcarane) or via two non-adjacent carbon atoms to form a bridged connection (e.g., norbornane, bicyclo[2.2.2]octane, etc). The “carbocycle” or “carbocyclyl” can also be optionally substituted with one or more (e.g., 1, 2 or 3) oxo groups. In one embodiment the term carbocycle includes a C3-12 carbocycle. In one embodiment the term carbocycle includes a C3-8 carbocycle. In one embodiment the term carbocycle includes a C3-6 carbocycle. In one embodiment the term carbocycle includes a C3-5 carbocycle. Non-limiting examples of carbocycles include cyclopropyl, cyclobutyl, cyclopentyl, 1-cyclopent-1-enyl, 1-cyclopent-2-enyl, 1-cyclopent-3-enyl, cyclohexyl, 1-cyclohex-1-enyl, 1-cyclohex-2-enyl, bicyclo[2.2.1]heptane, pinane, adamantane, norborene, spirocyclic C5-12 alkane, and 1-cyclohex-3-enyl.
  • The term “heteroaryl” as used herein refers to a single aromatic ring that has at least one atom other than carbon in the ring, wherein the atom is selected from the group consisting of oxygen, nitrogen and sulfur; “heteroaryl” also includes multiple condensed ring systems that have at least one such aromatic ring, which multiple condensed ring systems are further described below. Thus, “heteroaryl” includes single aromatic rings of from about 1 to 6 carbon atoms and about 1-4 heteroatoms selected from the group consisting of oxygen, nitrogen and sulfur. The sulfur and nitrogen atoms may also be present in an oxidized form provided the ring is aromatic. Exemplary heteroaryl ring systems include but are not limited to pyridyl, pyrimidinyl, oxazolyl or furyl. “Heteroaryl” also includes multiple condensed ring systems (e.g., ring systems comprising 2, 3 or 4 rings) wherein a heteroaryl group, as defined above, is condensed with one or more rings selected from heteroaryls (to form for example a naphthyridinyl such as 1,8-naphthyridinyl), heterocycles, (to form for example a 1, 2, 3, 4-tetrahydronaphthyridinyl such as 1,2,3,4-tetrahydro-1,8-naphthyridinyl), carbocycles (to form for example 5,6,7,8-tetrahydroquinolyl) and aryls (to form for example indazolyl) to form the multiple condensed ring system. Thus, a heteroaryl (a single aromatic ring or multiple condensed ring system) has about 1-20 carbon atoms and about 1-6 heteroatoms within the heteroaryl ring. Such multiple condensed ring systems may be optionally substituted with one or more (e.g., 1, 2, 3 or 4) oxo groups on the carbocycle or heterocycle portions of the condensed ring. The rings of the multiple condensed ring system can be connected to each other via fused, spiro and bridged bonds when allowed by valency requirements. It is to be understood that the individual rings of the multiple condensed ring system may be connected in any order relative to one another. It is also to be understood that the point of attachment of a multiple condensed ring system (as defined above for a heteroaryl) can be at any position of the multiple condensed ring system including a heteroaryl, heterocycle, aryl or carbocycle portion of the multiple condensed ring system. It is also to be understood that the point of attachment for a heteroaryl or heteroaryl multiple condensed ring system can be at any suitable atom of the heteroaryl or heteroaryl multiple condensed ring system including a carbon atom and a heteroatom (e.g., a nitrogen). Exemplary heteroaryls include but are not limited to pyridyl, pyrrolyl, pyrazinyl, pyrimidinyl, pyridazinyl, pyrazolyl, thienyl, indolyl, imidazolyl, oxazolyl, isoxazolyl, thiazolyl, furyl, oxadiazolyl, thiadiazolyl, quinolyl, isoquinolyl, benzothiazolyl, benzoxazolyl, indazolyl, quinoxalyl, quinazolyl, 5,6,7,8-tetrahydroisoquinolinyl benzofuranyl, benzimidazolyl, thianaphthenyl, pyrrolo[2,3-b]pyridinyl, quinazolinyl-4(3H)-one, triazolyl, 4,5,6,7-tetrahydro-1H-indazole and 3b,4,4a,5-tetrahydro-1H-cyclopropa[3,4]cyclo-penta[1,2-c]pyrazole.
  • The term “heterocyclyl” or “heterocycle” as used herein refers to a single saturated or partially unsaturated ring that has at least one atom other than carbon in the ring, wherein the atom is selected from the group consisting of oxygen, nitrogen and sulfur; the term also includes multiple condensed ring systems that have at least one such saturated or partially unsaturated ring, which multiple condensed ring systems are further described below. Thus, the term includes single saturated or partially unsaturated rings (e.g., 3, 4, 5, 6 or 7-membered rings) from about 1 to 6 carbon atoms and from about 1 to 3 heteroatoms selected from the group consisting of oxygen, nitrogen and sulfur in the ring. The ring may be substituted with one or more (e.g., 1, 2 or 3) oxo groups and the sulfur and nitrogen atoms may also be present in their oxidized forms. Exemplary heterocycles include but are not limited to azetidinyl, tetrahydrofuranyl and piperidinyl. The term “heterocycle” also includes multiple condensed ring systems (e.g., ring systems comprising 2, 3 or 4 rings) wherein a single heterocycle ring (as defined above) can be condensed with one or more groups selected from heterocycles (to form for example a 1,8-decahydronapthyridinyl), carbocycles (to form for example a decahydroquinolyl) and aryls to form the multiple condensed ring system. Thus, a heterocycle (a single saturated or single partially unsaturated ring or multiple condensed ring system) has about 2-20 carbon atoms and 1-6 heteroatoms within the heterocycle ring. Such multiple condensed ring systems may be optionally substituted with one or more (e.g., 1, 2, 3 or 4) oxo groups on the carbocycle or heterocycle portions of the multiple condensed ring. The rings of the multiple condensed ring system can be connected to each other via fused, spiro and bridged bonds when allowed by valency requirements. It is to be understood that the individual rings of the multiple condensed ring system may be connected in any order relative to one another. It is also to be understood that the point of attachment of a multiple condensed ring system (as defined above for a heterocycle) can be at any position of the multiple condensed ring system including a heterocycle, aryl and carbocycle portion of the ring. It is also to be understood that the point of attachment for a heterocycle or heterocycle multiple condensed ring system can be at any suitable atom of the heterocycle or heterocycle multiple condensed ring system including a carbon atom and a heteroatom (e.g., a nitrogen). In one embodiment the term heterocycle includes a C2-20 heterocycle. In one embodiment the term heterocycle includes a C2-7 heterocycle. In one embodiment the term heterocycle includes a C2-5 heterocycle. In one embodiment the term heterocycle includes a C2-4 heterocycle. Exemplary heterocycles include, but are not limited to aziridinyl, azetidinyl, pyrrolidinyl, piperidinyl, homopiperidinyl, morpholinyl, thiomorpholinyl, piperazinyl, tetrahydrofuranyl, dihydrooxazolyl, tetrahydropyranyl, tetrahydrothiopyranyl, 1,2,3,4-tetrahydroquinolyl, benzoxazinyl, dihydrooxazolyl, chromanyl, 1,2-dihydropyridinyl, 2,3-dihydrobenzofuranyl, 1,3-benzodioxolyl, 1,4-benzodioxanyl, spiro[cyclopropane-1,1′-isoindolinyl]-3′-one, isoindolinyl-1-one, 2-oxa-6-azaspiro[3.3]heptanyl, imidazolidin-2-one N-methylpiperidine, imidazolidine, pyrazolidine, butyrolactam, valerolactam, imidazolidinone, hydantoin, dioxolane, phthalimide, 1,4-dioxane, thiomorpholine, thiomorpholine-S-oxide, thiomorpholine-S,S-oxide, pyran, 3-pyrroline, thiopyran, pyrone, tetrhydrothiophene, quinuclidine, tropane, 2-azaspiro[3.3]heptane, (1R,5S)-3-azabicyclo[3.2.1]octane, (1s,4s)-2-azabicyclo[2.2.2]octane, (1R,4R)-2-oxa-5-azabicyclo[2.2.2]octane and pyrrolidin-2-one.
  • The above terms (e.g., “alkyl,” “aryl” and “heteroaryl”), in some embodiments, will include both substituted and unsubstituted forms of the indicated radical. Preferred substituents for each type of radical are provided below.
  • Substituents for the alkyl radicals (including those groups often referred to as alkylene, alkenyl, alkynyl, heteroalkyl, carbocycle, and heterocyclyl) can be a variety of groups including, but not limited to, -halogen, —OR′, —NR′R″, —SR′, —SiR′R″R′″, —OC(O)R′, —C(O)R′, —CO2R′, —CONR′R″, —OC(O)NR′R″, —NR″C(O)R′, —NR′″C(O)NR′R″, —NR″C(O)2R′, —NHC(NH2)═NH, —NR′C(NH2)═NH, —NHC(NH2)═NR′, —NR′″C(NR′R″)═N—CN, —NR′″C(NR′R″)═NOR′, —NHC(NH2)═NR′, —S(O)R′, —S(O)2R′, —S(O)2NR′R″, —NR′S(O)2R″, —NR′″S(O)2NR′R″, —CN, —NO2, —(CH2)1-4—OR′, —(CH2)1-4—NR′R″, —(CH2)1-4—SR′, —(CH2)1-4—SiR′R″R′″, —(CH2)1-4—OC(O)R′, —(CH2)1-4—C(O)R′, —(CH2)1-4—CO2R′, —(CH2)1-4CONR′R″, in a number ranging from zero to (2m′+1), where m′ is the total number of carbon atoms in such radical. R′, R″ and R′″ each independently refer groups including, for example, hydrogen, unsubstituted C1-6 alkyl, unsubstituted heteroalkyl, unsubstituted aryl, aryl substituted with 1-3 halogens, unsubstituted C1-6 alkyl, C1-6 alkoxy or C1-6 thioalkoxy groups, or unsubstituted aryl-C1-4 alkyl groups, unsubstituted heteroaryl, substituted heteroaryl, among others. When R′ and R″ are attached to the same nitrogen atom, they can be combined with the nitrogen atom to form a 3-, 4-, 5-, 6-, or 7-membered ring. For example, —NR′R″ is meant to include 1-pyrrolidinyl and 4-morpholinyl. Other substitutents for alkyl radicals, including heteroalkyl, alkylene, include for example, ═O, ═NR′, ═N—OR′, ═N—CN, ═NH, wherein R′ include substituents as described above.
  • Similarly, substituents for the aryl and heteroaryl groups are varied and are generally selected from the group including, but not limited to halogen, —OR′, —OC(O)R′, —NR′R″,
  • —SR′, —R′, —CN, —NO2, —CO2R′, —CONR′R″, —C(O)R′, —OC(O)NR′R″, —NR″C(O)R′, —NR″C(O)2R′, —NR′C(O)NR″R′″, —NHC(NH2)═NH, —NR′C(NH2)═NH, —NHC(NH2)═NR′, —S(O)R′, —S(O)2R′, —S(O)2NR′R″, —NR′S(O)2R″, —N3, perfluoro-C1-4 alkoxy, and perfluoro-C1-4alkyl, —(CH2)1-4—OR′, —(CH2)1-4—NR′R″, —(CH2)1-4—SR′, —(CH2)1-4—SiR′R″R′″, —(CH2)1-4—OC(O)R′, —(CH2)1-4—C(O)R′, —(CH2)1-4—CO2R′, —(CH2)1-4CONR′R″, in a number ranging from zero to the total number of open valences on the aromatic ring system; and where R′, R″ and R′″ are independently selected from hydrogen, C1-6 alkyl, C3-6carbocycle, C2-6alkenyl, C2-6 alkynyl, unsubstituted aryl and heteroaryl, (unsubstituted aryl)-C1-4 alkyl, and unsubstituted aryloxy-C1-4 alkyl. Other suitable substituents include each of the above aryl substituents attached to a ring atom by an alkylene tether of from 1-4 carbon atoms. When a substituent for the aryl or heteroaryl group contains an alkylene linker (e.g., —(CH2)1-4—NR′R″), the alkylene linker includes halo variants as well. For example, the linker “—(CH2)1-4—” when used as part of a substituent is meant to include difluoromethylene, 1,2-difluoroethylene, etc.
  • As used herein, the term “heteroatom” is meant to include oxygen (O), nitrogen (N), sulfur (S) and silicon (Si).
  • As used herein, the term “chiral” refers to molecules which have the property of non-superimposability of the mirror image partner, while the term “achiral” refers to molecules which are superimposable on their mirror image partner.
  • As used herein, the term “stereoisomers” refers to compounds which have identical chemical constitution, but differ with regard to the arrangement of the atoms or groups in space.
  • As used herein a wavy line “
    Figure US20210093618A1-20210401-P00001
    ” that intersects a bond in a chemical structure indicates the point of attachment of the bond that the wavy bond intersects in the chemical structure to the remainder of a molecule.
  • As used herein, the term “C-linked” means that the group that the term describes is attached the remainder of the molecule through a ring carbon atom.
  • As used herein, the term “N-linked” means that the group that the term describes is attached to the remainder of the molecule through a ring nitrogen atom.
  • “Diastereomer” refers to a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another. Diastereomers have different physical properties, e.g. melting points, boiling points, spectral properties, and reactivities. Mixtures of diastereomers can separate under high resolution analytical procedures such as electrophoresis and chromatography.
  • “Enantiomers” refer to two stereoisomers of a compound which are non-superimposable mirror images of one another.
  • Stereochemical definitions and conventions used herein generally follow S. P. Parker, Ed., McGraw-Hill Dictionary of Chemical Terms (1984) McGraw-Hill Book Company, New York; and Eliel, E. and Wilen, S., “Stereochemistry of Organic Compounds”, John Wiley & Sons, Inc., New York, 1994. The compounds of the invention can contain asymmetric or chiral centers, and therefore exist in different stereoisomeric forms. It is intended that all stereoisomeric forms of the compounds of the invention, including but not limited to, diastereomers, enantiomers and atropisomers, as well as mixtures thereof such as racemic mixtures, form part of the present invention. Many organic compounds exist in optically active forms, i.e., they have the ability to rotate the plane of plane-polarized light. In describing an optically active compound, the prefixes D and L, or R and S, are used to denote the absolute configuration of the molecule about its chiral center(s). The prefixes d and l or (+) and (−) are employed to designate the sign of rotation of plane-polarized light by the compound, with (−) or l meaning that the compound is levorotatory. A compound prefixed with (+) or d is dextrorotatory. For a given chemical structure, these stereoisomers are identical except that they are mirror images of one another. A specific stereoisomer can also be referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture. A 50:50 mixture of enantiomers is referred to as a racemic mixture or a racemate, which can occur where there has been no stereoselection or stereospecificity in a chemical reaction or process. The terms “racemic mixture” and “racemate” refer to an equimolar mixture of two enantiomeric species, devoid of optical activity.
  • As used herein, the term “tautomer” or “tautomeric form” refers to structural isomers of different energies which are interconvertible via a low energy barrier. For example, proton tautomers (also known as prototropic tautomers) include interconversions via migration of a proton, such as keto-enol and imine-enamine isomerizations. Valence tautomers include interconversions by reorganization of some of the bonding electrons.
  • As used herein, the term “solvate” refers to an association or complex of one or more solvent molecules and a compound of the invention. Examples of solvents that form solvates include, but are not limited to, water, isopropanol, ethanol, methanol, DMSO, ethyl acetate, acetic acid, and ethanolamine. The term “hydrate” refers to the complex where the solvent molecule is water.
  • As used herein, the term “protecting group” refers to a substituent that is commonly employed to block or protect a particular functional group on a compound. For example, an “amino-protecting group” is a substituent attached to an amino group that blocks or protects the amino functionality in the compound. Suitable amino-protecting groups include acetyl, trifluoroacetyl, t-butoxycarbonyl (BOC), benzyloxycarbonyl (CBZ) and 9-fluorenylmethylenoxycarbonyl (Fmoc). Similarly, a “hydroxy-protecting group” refers to a substituent of a hydroxy group that blocks or protects the hydroxy functionality. Suitable protecting groups include acetyl and silyl. A “carboxy-protecting group” refers to a substituent of the carboxy group that blocks or protects the carboxy functionality. Common carboxy-protecting groups include phenylsulfonylethyl, cyanoethyl, 2-(trimethylsilyl)ethyl, 2-(trimethylsilyl)ethoxymethyl, 2-(p-toluenesulfonyl)ethyl, 2-(p-nitrophenylsulfenyl)ethyl, 2-(diphenylphosphino)-ethyl, nitroethyl and the like. For a general description of protecting groups and their use, see P. G. M. Wuts and T. W. Greene, Greene's Protective Groups in Organic Synthesis 4th edition, Wiley-Interscience, New York, 2006.
  • As used herein, the term “mammal” includes, but is not limited to, humans, mice, rats, guinea pigs, monkeys, dogs, cats, horses, cows, pigs, and sheep
  • As used herein, the term “pharmaceutically acceptable salts” is meant to include salts of the active compounds which are prepared with relatively nontoxic acids or bases, depending on the particular substituents found on the compounds described herein. When compounds of the present invention contain relatively acidic functionalities, base addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired base, either neat or in a suitable inert solvent. Examples of salts derived from pharmaceutically-acceptable inorganic bases include aluminum, ammonium, calcium, copper, ferric, ferrous, lithium, magnesium, manganic, manganous, potassium, sodium, zinc and the like. Salts derived from pharmaceutically-acceptable organic bases include salts of primary, secondary and tertiary amines, including substituted amines, cyclic amines, naturally-occurring amines and the like, such as arginine, betaine, caffeine, choline, N,N′-dibenzylethylenediamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, isopropylamine, lysine, methylglucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethylamine, trimethylamine, tripropylamine, tromethamine and the like. When compounds of the present invention contain relatively basic functionalities, acid addition salts can be obtained by contacting the neutral form of such compounds with a sufficient amount of the desired acid, either neat or in a suitable inert solvent. Examples of pharmaceutically acceptable acid addition salts include those derived from inorganic acids like hydrochloric, hydrobromic, nitric, carbonic, monohydrogencarbonic, phosphoric, monohydrogenphosphoric, dihydrogenphosphoric, sulfuric, monohydrogensulfuric, hydriodic, or phosphorous acids and the like, as well as the salts derived from relatively nontoxic organic acids like acetic, propionic, isobutyric, malonic, benzoic, succinic, suberic, fumaric, mandelic, phthalic, benzenesulfonic, p-tolylsulfonic, citric, tartaric, methanesulfonic, and the like. Also included are salts of amino acids such as arginate and the like, and salts of organic acids like glucuronic or galactunoric acids and the like (see, for example, Berge, S. M., et al., “Pharmaceutical Salts”, Journal of Pharmaceutical Science, 1977, 66, 1-19). Certain specific compounds of the present invention contain both basic and acidic functionalities that allow the compounds to be converted into either base or acid addition salts.
  • The neutral forms of the compounds can be regenerated by contacting the salt with a base or acid and isolating the parent compound in the conventional manner. The parent form of the compound differs from the various salt forms in certain physical properties, such as solubility in polar solvents, but otherwise the salts are equivalent to the parent form of the compound for the purposes of the present invention.
  • In addition to salt forms, the present invention provides compounds which are in a prodrug form. As used herein the term “prodrug” refers to those compounds that readily undergo chemical changes under physiological conditions to provide the compounds of the present invention. Additionally, prodrugs can be converted to the compounds of the present invention by chemical or biochemical methods in an ex vivo environment. For example, prodrugs can be slowly converted to the compounds of the present invention when placed in a transdermal patch reservoir with a suitable enzyme or chemical reagent.
  • Prodrugs of the invention include compounds wherein an amino acid residue, or a polypeptide chain of two or more (e.g., two, three or four) amino acid residues, is covalently joined through an amide or ester bond to a free amino, hydroxy or carboxylic acid group of a compound of the present invention. The amino acid residues include but are not limited to the 20 naturally occurring amino acids commonly designated by three letter symbols and also includes phosphoserine, phosphothreonine, phosphotyrosine, 4-hydroxyproline, hydroxylysine, demosine, isodemosine, gamma-carboxyglutamate, hippuric acid, octahydroindole-2-carboxylic acid, statine, 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, penicillamine, ornithine, 3-methylhistidine, norvaline, beta-alanine, gamma-aminobutyric acid, citrulline, homocysteine, homoserine, methyl-alanine, para-benzoylphenylalanine, phenyiglycine, propargyiglycine, sarcosine, methionine sulfone and tert-butylglycine.
  • Additional types of prodrugs are also encompassed. For instance, a free carboxyl group of a compound of the invention can be derivatized as an amide or alkyl ester. As another example, compounds of this invention comprising free hydroxy groups can be derivatized as prodrugs by converting the hydroxy group into a group such as, but not limited to, a phosphate ester, hemisuccinate, dimethylaminoacetate, or phosphoryloxymethyloxycarbonyl group, as outlined in Fleisher, D. et al., (1996) Improved oral drug delivery: solubility limitations overcome by the use of prodrugs Advanced Drug Delivery Reviews, 19:115. Carbamate prodrugs of hydroxy and amino groups are also included, as are carbonate prodrugs, sulfonate esters and sulfate esters of hydroxy groups. Derivatization of hydroxy groups as (acyloxy)methyl and (acyloxy)ethyl ethers, wherein the acyl group can be an alkyl ester optionally substituted with groups including, but not limited to, ether, amine and carboxylic acid functionalities, or where the acyl group is an amino acid ester as described above, are also encompassed. Prodrugs of this type are described in J. Med. Chem., (1996), 39:10. More specific examples include replacement of the hydrogen atom of the alcohol group with a group such as (C1-6)alkanoyloxymethyl, 1-((C1-6)alkanoyloxy)ethyl, 1-methyl-1-((C1-6)alkanoyloxy)ethyl, (C1-6)alkoxycarbonyloxymethyl, N—(C1-6)alkoxycarbonylaminomethyl, succinoyl, (C1-6)alkanoyl, alpha-amino(C1-4)alkanoyl, arylacyl and alpha-aminoacyl, or alpha-aminoacyl-alpha-aminoacyl, where each alpha-aminoacyl group is independently selected from the naturally occurring L-amino acids, P(O)(OH)2, —P(O)(O(C1-6)alkyl)2 or glycosyl (the radical resulting from the removal of a hydroxyl group of the hemiacetal form of a carbohydrate).
  • For additional examples of prodrug derivatives, see, for example, a) Design of Prodrugs, edited by H. Bundgaard, (Elsevier, 1985) and Methods in Enzymology, Vol. 42, p. 309-396, edited by K. Widder, et al. (Academic Press, 1985); b) A Textbook of Drug Design and Development, edited by Krogsgaard-Larsen and H. Bundgaard, Chapter 5 “Design and Application of Prodrugs,” by H. Bundgaard p. 113-191 (1991); c) H. Bundgaard, Advanced Drug Delivery Reviews, 8:1-38 (1992); d) H. Bundgaard, et al., Journal of Pharmaceutical Sciences, 77:285 (1988); and e) N. Kakeya, et al., Chem. Pharm. Bull., 32:692 (1984), each of which is specifically incorporated herein by reference.
  • Additionally, the present invention provides for metabolites of compounds of the invention. As used herein, a “metabolite” refers to a product produced through metabolism in the body of a specified compound or salt thereof. Such products can result for example from the oxidation, reduction, hydrolysis, amidation, deamidation, esterification, deesterification, enzymatic cleavage, and the like, of the administered compound.
  • Metabolite products typically are identified by preparing a radiolabelled (e.g., 14C or 3H) isotope of a compound of the invention, administering it parenterally in a detectable dose (e.g., greater than about 0.5 mg/kg) to an animal such as rat, mouse, guinea pig, monkey, or to man, allowing sufficient time for metabolism to occur (typically about 30 seconds to 30 hours) and isolating its conversion products from the urine, blood or other biological samples. These products are easily isolated since they are labeled (others are isolated by the use of antibodies capable of binding epitopes surviving in the metabolite). The metabolite structures are determined in conventional fashion, e.g., by MS, LC/MS or NMR analysis. In general, analysis of metabolites is done in the same way as conventional drug metabolism studies well known to those skilled in the art. The metabolite products, so long as they are not otherwise found in vivo, are useful in diagnostic assays for therapeutic dosing of the compounds of the invention.
  • Certain compounds of the present invention can exist in unsolvated forms as well as solvated forms, including hydrated forms. In general, the solvated forms are equivalent to unsolvated forms and are intended to be encompassed within the scope of the present invention. Certain compounds of the present invention can exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated by the present invention and are intended to be within the scope of the present invention.
  • Certain compounds of the present invention possess asymmetric carbon atoms (optical centers) or double bonds; the racemates, diastereomers, geometric isomers, regioisomers and individual isomers (e.g., separate enantiomers) are all intended to be encompassed within the scope of the present invention.
  • The compounds of the present invention can also contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute such compounds. For example, the present invention also embraces isotopically-labeled variants of the present invention which are identical to those recited herein, bur the for the fact that one or more atoms are replace by an atom having the atomic mass or mass number different from the predominant atomic mass or mass number usually found in nature for the atom. All isotopes of any particular atom or element as specified are contemplated within the scope of the compounds of the invention, and their uses. Exemplary isotopes that can be incorporated in to compounds of the invention include istopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, sulfur, fluorine, chlorine and iodine, such as 2H (“D”), 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 32P, 33P, 35S, 18F, 36Cl, 123I and 125I. Certain isotopically labeled compounds of the present invention (e.g., those labeled with 3H or 14C) are useful in compound and/or substrate tissue distribution assays. Tritiated (3H) and carbon-14 (14C) isotopes are useful for their ease of preparation and detectability. Further substitution with heavier isotopes such as deuterium (i.e., 2H) may afford certain therapeutic advantages resulting from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage requirements) and hence may be preferred in some circumstances. Positron emitting isotopes such as 15O, 13N, 11C, and 18F are useful for positron emission tomography (PET) studies to examine substrate receptor occupancy. Isotopically labeled compounds of the present inventions can generally be prepared by following procedures analogous to those disclosed in the Schemes and/or in the Examples herein below, by substituting an isotopically labeled reagent for a non-isotopically labeled reagent.
  • The terms “treat” and “treatment” refer to both therapeutic treatment and/or prophylactic treatment or preventative measures, wherein the object is to prevent or slow down (lessen) an undesired physiological change or disorder, such as, for example, the development or spread of cancer. For purposes of this invention, beneficial or desired clinical results include, but are not limited to, alleviation of symptoms, diminishment of extent of disease or disorder, stabilized (i.e., not worsening) state of disease or disorder, delay or slowing of disease progression, amelioration or palliation of the disease state or disorder, and remission (whether partial or total), whether detectable or undetectable. “Treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment. Those in need of treatment include those already with the disease or disorder as well as those prone to have the disease or disorder or those in which the disease or disorder is to be prevented.
  • The phrase “therapeutically effective amount” or “effective amount” means an amount of a compound of the present invention that (i) treats or prevents the particular disease, condition, or disorder, (ii) attenuates, ameliorates, or eliminates one or more symptoms of the particular disease, condition, or disorder, or (iii) prevents or delays the onset of one or more symptoms of the particular disease, condition, or disorder described herein. For cancer therapy, efficacy can, for example, be measured by assessing the time to disease progression (TTP) and/or determining the response rate (RR).
  • The term “bioavailability” refers to the systemic availability (i.e., blood/plasma levels) of a given amount of drug administered to a patient. Bioavailability is an absolute term that indicates measurement of both the time (rate) and total amount (extent) of drug that reaches the general circulation from an administered dosage form.
  • In another embodiment, the compound is selected from compounds of formula I as described in the Examples herein and salts thereof.
  • Synthesis of Compounds
  • Compounds of formula (I) may be prepared by the process illustrated in Schemes 1 and 2. Compounds of formula (I), wherein X1 is O, S, or NH, may be prepared by the processes illustrated in Scheme 1.
  • Figure US20210093618A1-20210401-C00190
  • Compounds of formula (I) can be made from compounds of formula (II) by displacement with formula (III) and a base (reaction step ii in Scheme 1). Suitable conditions include potassium tert-butoxide or cesium carbonate in DMSO, NaH in DMF, or K2CO3 in DMF. Formula (II) can be made according to step (i) by activation of the acid group of formula (IV) with reagents such as oxalyl chloride, carbonyl di-imidazole (CDI), propylphosphonic anhydride, a uronium based amide coupling agent or a carbodiimide reagent followed by displacement with a sulfonamide of formula (VII) in the presence of a nucleophilic base such as 4-dimethylaminopyridine. Illustrative conditions comprise N, N-dimethylaminopropyl-N′-ethylcarbodiimide and 4-dimethylamino-pyridine with N, N-diisopropylethylamine.
  • Alternatively, compounds of formula (I) can be made from compounds of formula (IV) by reversing steps (i) and (ii) as described in Scheme 1. Illustrative conditions for steps vi and vii are as previously described in steps (ii) and (i), respectively.
  • Compounds of formula (I) can also be made from compounds of formula (V) according to step (v) by displacement of the ester with compounds of formula (VII) and a suitable base such as potassium tert-butoxide, NaH or DBU. Compounds of formula (I) can also be made from compounds of formula (v) by a two steps sequence (see steps viii and vii in Scheme 1). Compounds of formula (V) can be made from compounds of formula (VIII) according to step (iv) via a nucleophilic substitution reaction using compounds of formula (III) and a base as described in step ii. Compounds of formula (VIII) can be made from compounds of formula (IV) according to step (iii) using protecting group methodology as described in references such as ‘Greene's Protective Groups in Organic Synthesis’. When Pg is tolyl, illustrative conditions comprise thionyl chloride or carbonyldiimidazole with para-cresol. When Pg is tert-butyl, illustrative conditions comprise di-tert butyl dicarbonate and 4-dimethylaminopyridine in tert-butanol. Compounds of formula (I), wherein R5 is C1-8 alkyl, C1-8 haloalkyl, C1-8 alkoxy, C3-8cycloalkyl or C2-7heterocycloalkyl can be prepared by the process illustrated in Scheme 2. In certain embodiment, W groups in compounds of formula (IX, X and XI) are an ester or cyano group.
  • Figure US20210093618A1-20210401-C00191
  • Compounds of formula (I) can be prepared from compounds of formulae (XII)
  • (—V═OH) according to reaction step (iv) by activation of the acid group with reagents such as oxalyl chloride, carbonyl di-imidazole (CDI), a uronium based amide coupling agent, propylphosphonic anhydride or a carbodiimide reagent followed by displacement with a suitable sulfonamide of formula (VII) in the presence of a nucleophilic base such as 4-dimethylaminopyridine.
  • Alternatively, compounds of formula (I) can be prepared from compounds of formula (XII) (—V═NH2) according to reaction step (v) by displacement of a sulfonyl chloride of formula (XIII) under basic reaction conditions.
  • Compounds of formula (XII) can be prepared by hydrolysis of the nitrile functional group in compounds of formula (XI, W═CN) or by hydrosis of the ester functional group in compounds of formula (XI, W=CO2Pg) by either acidic or basic methods according to step (iii) as required.
  • Compounds of formula (XI) can be prepared from compounds of formula (X) by palladium-catalyzed coupling of a compound of formula (R5M) according to step (ii). Conveniently the coupling is effective with a boronic acid or ester of formula (R5M). The coupling reaction can be carried out with a variety of palladium catalysts such as palladium acetate or tetrakistriphenylphosphine palladium (0) in various solvents and in the presence of bases such as sodium and potassium carbonate, cesium fluoride or potassium phosphate. Compounds of formula (X) can be prepared under similar conditions as described for the preparation of compounds of formula (V), (VI) and (I) in Scheme 1.
  • Pharmaceutical Compositions and Administration
  • In addition to one or more of the compounds provided above (or stereoisomers, geometric isomers, tautomers, solvates, metabolites, isotopes, pharmaceutically acceptable salts, or prodrugs thereof), the invention also provides for compositions and medicaments comprising a compound of formula I or and embodiment thereof and at least one pharmaceutically acceptable carrier, diluent or excipient. The compositions of the invention can be used to selectively inhibit NaV1.7 in patients (e.g, humans).
  • The term “composition,” as used herein, is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts. By “pharmaceutically acceptable” it is meant the carrier, diluent or excipient must be compatible with the other ingredients of the formulation and not deleterious to the recipient thereof.
  • In one embodiment, the invention provides for pharmaceutical compositions (or medicaments) comprising a compound of formula I or an embodiment thereof, and its stereoisomers, geometric isomers, tautomers, solvates, metabolites, isotopes, pharmaceutically acceptable salts, or prodrugs thereof) and a pharmaceutically acceptable carrier, diluent or excipient. In another embodiment, the invention provides for preparing compositions (or medicaments) comprising compounds of the invention. In another embodiment, the invention provides for administering compounds of formula I or its embodiments and compositions comprising compounds of formula I or an embodiment thereof to a patient (e.g., a human patient) in need thereof.
  • Compositions are formulated, dosed, and administered in a fashion consistent with good medical practice. Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners. The effective amount of the compound to be administered will be governed by such considerations, and is the minimum amount necessary to inhibit NaV1.7 activity as required to prevent or treat the undesired disease or disorder, such as for example, pain. For example, such amount may be below the amount that is toxic to normal cells, or the mammal as a whole.
  • In one example, the therapeutically effective amount of the compound of the invention administered parenterally per dose will be in the range of about 0.01-100 mg/kg, alternatively about e.g., 0.1 to 20 mg/kg of patient body weight per day, with the typical initial range of compound used being 0.3 to 15 mg/kg/day. The daily does is, in certain embodiments, given as a single daily dose or in divided doses two to six times a day, or in sustained release form. In the case of a 70 kg adult human, the total daily dose will generally be from about 7 mg to about 1,400 mg. This dosage regimen may be adjusted to provide the optimal therapeutic response. The compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day.
  • The compounds of the present invention may be administered in any convenient administrative form, e.g., tablets, powders, capsules, solutions, dispersions, suspensions, syrups, sprays, suppositories, gels, emulsions, patches, etc. Such compositions may contain components conventional in pharmaceutical preparations, e.g., diluents, carriers, pH modifiers, sweeteners, bulking agents, and further active agents.
  • The compounds of the invention may be administered by any suitable means, including oral, topical (including buccal and sublingual), rectal, vaginal, transdermal, parenteral, subcutaneous, intraperitoneal, intrapulmonary, intradermal, intrathecal and epidural and intranasal, and, if desired for local treatment, intralesional administration. Parenteral infusions include intramuscular, intravenous, intraarterial, intraperitoneal, intracerebral, intraocular, intralesional or subcutaneous administration.
  • The compositions comprising compounds of formula I or an embodiment thereof are normally formulated in accordance with standard pharmaceutical practice as a pharmaceutical composition. A typical formulation is prepared by mixing a compound of the present invention and a diluent, carrier or excipient. Suitable diluents, carriers and excipients are well known to those skilled in the art and are described in detail in, e.g., Ansel, Howard C., et al., Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems. Philadelphia: Lippincott, Williams & Wilkins, 2004; Gennaro, Alfonso R., et al. Remington: The Science and Practice of Pharmacy. Philadelphia: Lippincott, Williams & Wilkins, 2000; and Rowe, Raymond C. Handbook of Pharmaceutical Excipients. Chicago, Pharmaceutical Press, 2005. The formulations may also include one or more buffers, stabilizing agents, surfactants, wetting agents, lubricating agents, emulsifiers, suspending agents, preservatives, antioxidants, opaquing agents, glidants, processing aids, colorants, sweeteners, perfuming agents, flavoring agents, diluents and other known additives to provide an elegant presentation of the drug (i.e., a compound of the present invention or pharmaceutical composition thereof) or aid in the manufacturing of the pharmaceutical product (i.e., medicament).
  • Suitable carriers, diluents and excipients are well known to those skilled in the art and include materials such as carbohydrates, waxes, water soluble and/or swellable polymers, hydrophilic or hydrophobic materials, gelatin, oils, solvents, water and the like. The particular carrier, diluent or excipient used will depend upon the means and purpose for which a compound of the present invention is being applied. Solvents are generally selected based on solvents recognized by persons skilled in the art as safe (GRAS) to be administered to a mammal. In general, safe solvents are non-toxic aqueous solvents such as water and other non-toxic solvents that are soluble or miscible in water. Suitable aqueous solvents include water, ethanol, propylene glycol, polyethylene glycols (e.g., PEG 400, PEG 300), etc. and mixtures thereof. The formulations can also include one or more buffers, stabilizing agents, surfactants, wetting agents, lubricating agents, emulsifiers, suspending agents, preservatives, antioxidants, opaquing agents, glidants, processing aids, colorants, sweeteners, perfuming agents, flavoring agents and other known additives to provide an elegant presentation of the drug (i.e., a compound of the present invention or pharmaceutical composition thereof) or aid in the manufacturing of the pharmaceutical product (i.e., medicament).
  • Acceptable diluents, carriers, excipients and stabilizers are nontoxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutaminc, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein complexes); and/or non-ionic surfactants such as TWEEN™, PLURONICS™ or polyethylene glycol (PEG). A active pharmaceutical ingredient of the invention (e.g., compound of formula I or an embodiment thereof) can also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington: The Science and Practice of Pharmacy: Remington the Science and Practice of Pharmacy (2005) 21st Edition, Lippincott Williams & Wilkins, Philadelphia, Pa.
  • Sustained-release preparations of a compound of the invention (e.g., compound of formula I or an embodiment thereof) can be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing a compound of formula I or an embodiment thereof, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinyl alcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman et al., Biopolymers 22:547, 1983), non-degradable ethylene-vinyl acetate (Langer et al., J. Biomed. Mater. Res. 15:167, 1981), degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate) and poly-D-(−)-3-hydroxybutyric acid (EP 133,988A). Sustained release compositions also include liposomally entrapped compounds, which can be prepared by methods known per se (Epstein et al., Proc. Natl. Acad. Sci. U.S.A. 82:3688, 1985; Hwang et al., Proc. Natl. Acad. Sci. U.S.A. 77:4030, 1980; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324A). Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamelar type in which the lipid content is greater than about 30 mol % cholesterol, the selected proportion being adjusted for the optimal therapy.
  • The formulations include those suitable for the administration routes detailed herein. The formulations can conveniently be presented in unit dosage form and can be prepared by any of the methods well known in the art of pharmacy. Techniques and formulations generally are found in Remington: The Science and Practice of Pharmacy: Remington the Science and Practice of Pharmacy (2005) 21st Edition, Lippincott Williams & Wilkins, Philadelphia, Pa. Such methods include the step of bringing into association the active ingredient with the carrier which constitutes one or more accessory ingredients.
  • In general the formulations are prepared by uniformly and intimately bringing into association the active ingredient with liquid carriers, diluents or excipients or finely divided solid carriers, diluents or excipients, or both, and then, if necessary, shaping the product. A typical formulation is prepared by mixing a compound of the present invention and a carrier, diluent or excipient. The formulations can be prepared using conventional dissolution and mixing procedures. For example, the bulk drug substance (i.e., compound of the present invention or stabilized form of the compound (e.g., complex with a cyclodextrin derivative or other known complexation agent) is dissolved in a suitable solvent in the presence of one or more of the excipients described above. A compound of the present invention is typically formulated into pharmaceutical dosage forms to provide an easily controllable dosage of the drug and to enable patient compliance with the prescribed regimen.
  • In one example, compounds of formula I or an embodiment thereof may be formulated by mixing at ambient temperature at the appropriate pH, and at the desired degree of purity, with physiologically acceptable carriers, i.e., carriers that are non-toxic to recipients at the dosages and concentrations employed into a galenical administration form. The pH of the formulation depends mainly on the particular use and the concentration of compound, but preferably ranges anywhere from about 3 to about 8. In one example, a compound of formula I (or an embodiment thereof) is formulated in an acetate buffer, at pH 5. In another embodiment, the compounds of formula I or an embodiment thereof are sterile. The compound may be stored, for example, as a solid or amorphous composition, as a lyophilized formulation or as an aqueous solution.
  • Formulations of a compound of the invention (e.g., compound of formula I or an embodiment thereof) suitable for oral administration can be prepared as discrete units such as pills, capsules, cachets or tablets each containing a predetermined amount of a compound of the invention.
  • Compressed tablets can be prepared by compressing in a suitable machine the active ingredient in a free-flowing form such as a powder or granules, optionally mixed with a binder, lubricant, inert diluent, preservative, surface active or dispersing agent. Molded tablets can be made by molding in a suitable machine a mixture of the powdered active, ingredient moistened with an inert liquid diluent. The tablets can optionally be coated or scored and optionally are formulated so as to provide slow or controlled release of the active ingredient therefrom.
  • Tablets, troches, lozenges, aqueous or oil suspensions, dispersible powders or granules, emulsions, hard or soft capsules, e.g., gelatin capsules, syrups or elixirs can be prepared for oral use. Formulations of a compound of the invention (e.g., compound of formula I or an embodiment thereof) intended for oral use can be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions can contain one or more agents including sweetening agents, flavoring agents, coloring agents and preserving agents, in order to provide a palatable preparation. Tablets containing the active ingredient in admixture with non-toxic pharmaceutically acceptable excipient which are suitable for manufacture of tablets are acceptable. These excipients can be, for example, inert diluents, such as calcium or sodium carbonate, lactose, calcium or sodium phosphate; granulating and disintegrating agents, such as maize starch, or alginic acid; binding agents, such as starch, gelatin or acacia; and lubricating agents, such as magnesium stearate, stearic acid or talc. Tablets can be uncoated or can be coated by known techniques including microencapsulation to delay disintegration and adsorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate alone or with a wax can be employed.
  • An example of a suitable oral administration form is a tablet containing about 1 mg, 5 mg, 10 mg, 25 mg, 30 mg, 50 mg, 80 mg, 100 mg, 150 mg, 250 mg, 300 mg and 500 mg of the compound of the invention compounded with about 90-30 mg anhydrous lactose, about 5-40 mg sodium croscarmellose, about 5-30 mg polyvinylpyrrolidone (PVP) K30, and about 1-10 mg magnesium stearate. The powdered ingredients are first mixed together and then mixed with a solution of the PVP. The resulting composition can be dried, granulated, mixed with the magnesium stearate and compressed to tablet form using conventional equipment. An example of an aerosol formulation can be prepared by dissolving the compound, for example 5-400 mg, of the invention in a suitable buffer solution, e.g. a phosphate buffer, adding a tonicifier, e.g. a salt such sodium chloride, if desired. The solution may be filtered, e.g., using a 0.2 micron filter, to remove impurities and contaminants.
  • For treatment of the eye or other external tissues, e.g., mouth and skin, the formulations are preferably applied as a topical ointment or cream containing the active ingredient(s) in an amount of, for example, 0.075 to 20% w/w. When formulated in an ointment, the active ingredient can be employed with either a paraffinic or a water-miscible ointment base. Alternatively, the active ingredients can be formulated in a cream with an oil-in-water cream base. If desired, the aqueous phase of the cream base can include a polyhydric alcohol, i.e., an alcohol having two or more hydroxyl groups such as propylene glycol, butane 1,3-diol, mannitol, sorbitol, glycerol and polyethylene glycol (including PEG 400) and mixtures thereof. The topical formulations can desirably include a compound which enhances absorption or penetration of the active ingredient through the skin or other affected areas. Examples of such dermal penetration enhancers include dimethyl sulfoxide and related analogs.
  • The oily phase of the emulsions of this invention can be constituted from known ingredients in a known manner. While the phase can comprise merely an emulsifier, it desirably comprises a mixture of at least one emulsifier with a fat or an oil or with both a fat and an oil. Preferably, a hydrophilic emulsifier is included together with a lipophilic emulsifier which acts as a stabilizer. It is also preferred to include both an oil and a fat. Together, the emulsifier(s) with or without stabilizer(s) make up the so-called emulsifying wax, and the wax together with the oil and fat make up the so-called emulsifying ointment base which forms the oily dispersed phase of the cream formulations. Emulsifiers and emulsion stabilizers suitable for use in the formulation of the invention include Tween® 60, Span® 80, cetostearyl alcohol, benzyl alcohol, myristyl alcohol, glyceryl mono-stearate and sodium lauryl sulfate.
  • In one aspect of topical applications, it is desired to administer an effective amount of a pharmaceutical composition according to the invention to target area, e.g., skin surfaces, mucous membranes, and the like, which are adjacent to peripheral neurons which are to be treated. This amount will generally range from about 0.0001 mg to about 1 g of a compound of the invention per application, depending upon the area to be treated, whether the use is diagnostic, prophylactic or therapeutic, the severity of the symptoms, and the nature of the topical vehicle employed. A preferred topical preparation is an ointment, wherein about 0.001 to about 50 mg of active ingredient is used per cc of ointment base. The pharmaceutical composition can be formulated as transdermal compositions or transdermal delivery devices (“patches”). Such compositions include, for example, a backing, active compound reservoir, a control membrane, liner and contact adhesive. Such transdermal patches may be used to provide continuous pulsatile, or on demand delivery of the compounds of the present invention as desired.
  • Aqueous suspensions of a compound of the invention (e.g., compound of formula I or an embodiment thereof) contain the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients include a suspending agent, such as sodium carboxymethylcellulose, croscarmellose, povidone, methylcellulose, hydroxypropyl methylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia, and dispersing or wetting agents such as a naturally occurring phosphatide (e.g., lecithin), a condensation product of an alkylene oxide with a fatty acid (e.g., polyoxyethylene stearate), a condensation product of ethylene oxide with a long chain aliphatic alcohol (e.g., heptadecaethyleneoxycetanol), a condensation product of ethylene oxide with a partial ester derived from a fatty acid and a hexitol anhydride (e.g., polyoxyethylene sorbitan monooleate). The aqueous suspension can also contain one or more preservatives such as ethyl or n-propyl p-hydroxybenzoate, one or more coloring agents, one or more flavoring agents and one or more sweetening agents, such as sucrose or saccharin.
  • Formulations of a compound of the invention (e.g., compound of formula I or an embodiment thereof) can be in the form of a sterile injectable preparation, such as a sterile injectable aqueous or oleaginous suspension. This suspension can be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents which have been mentioned above. The sterile injectable preparation can also be a sterile injectable solution or suspension in a non-toxic parenterally acceptable diluent or solvent, such as a solution in 1,3-butanediol or prepared as a lyophilized powder. Among the acceptable vehicles and solvents that can be employed are water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile fixed oils can conventionally be employed as a solvent or suspending medium. For this purpose any bland fixed oil can be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid can likewise be used in the preparation of injectables.
  • The amount of active ingredient that can be combined with the carrier material to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. For example, a time-release formulation intended for oral administration to humans can contain approximately 1 to 1000 mg of active material compounded with an appropriate and convenient amount of carrier material which can vary from about 5 to about 95% of the total compositions (weight:weight). The pharmaceutical composition can be prepared to provide easily measurable amounts for administration. For example, an aqueous solution intended for intravenous infusion can contain from about 3 to 500 μg of the active ingredient per milliliter of solution in order that infusion of a suitable volume at a rate of about 30 mL/hr can occur.
  • Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which can contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which can include suspending agents and thickening agents.
  • Formulations suitable for topical administration to the eye also include eye drops wherein the active ingredient is dissolved or suspended in a suitable carrier, especially an aqueous solvent for the active ingredient. The active ingredient is preferably present in such formulations in a concentration of about 0.5 to 20% w/w, for example about 0.5 to 10% w/w, for example about 1.5% w/w.
  • Formulations suitable for topical administration in the mouth include lozenges comprising the active ingredient in a flavored basis, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia; and mouthwashes comprising the active ingredient in a suitable liquid carrier.
  • Formulations for rectal administration can be presented as a suppository with a suitable base comprising for example cocoa butter or a salicylate.
  • Formulations suitable for intrapulmonary or nasal administration have a particle size for example in the range of 0.1 to 500 microns (including particle sizes in a range between 0.1 and 500 microns in increments microns such as 0.5, 1, 30 microns, 35 microns, etc.), which is administered by rapid inhalation through the nasal passage or by inhalation through the mouth so as to reach the alveolar sacs. Suitable formulations include aqueous or oily solutions of the active ingredient. Formulations suitable for aerosol or dry powder administration can be prepared according to conventional methods and can be delivered with other therapeutic agents such as compounds heretofore used in the treatment of disorders as described below.
  • The formulations can be packaged in unit-dose or multi-dose containers, for example sealed ampoules and vials, and can be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example water, for injection immediately prior to use. Extemporaneous injection solutions and suspensions are prepared from sterile powders, granules and tablets of the kind previously described. Preferred unit dosage formulations are those containing a daily dose or unit daily sub-dose, as herein above recited, or an appropriate fraction thereof, of the active ingredient.
  • When the binding target is located in the brain, certain embodiments of the invention provide for a compound of formula I (or an embodiment thereof) to traverse the blood-brain barrier. Certain neurodegenerative diseases are associated with an increase in permeability of the blood-brain barrier, such that a compound of formula I (or an embodiment thereof) can be readily introduced to the brain. When the blood-brain barrier remains intact, several art-known approaches exist for transporting molecules across it, including, but not limited to, physical methods, lipid-based methods, and receptor and channel-based methods.
  • Physical methods of transporting a compound of formula I (or an embodiment thereof) across the blood-brain barrier include, but are not limited to, circumventing the blood-brain barrier entirely, or by creating openings in the blood-brain barrier.
  • Circumvention methods include, but are not limited to, direct injection into the brain (see, e.g., Papanastassiou et al., Gene Therapy 9:398-406, 2002), interstitial infusion/convection-enhanced delivery (see, e.g., Bobo et al., Proc. Natl. Acad. Sci. U.S.A. 91:2076-2080, 1994), and implanting a delivery device in the brain (see, e.g., Gill et al., Nature Med. 9:589-595, 2003; and Gliadel Wafers™, Guildford.
  • Pharmaceutical). Methods of creating openings in the barrier include, but are not limited to, ultrasound (see, e.g., U.S. Patent Publication No. 2002/0038086), osmotic pressure (e.g., by administration of hypertonic mannitol (Neuwelt, E. A., Implication of the Blood-Brain Barrier and its Manipulation, Volumes 1 and 2, Plenum Press, N.Y., 1989)), and permeabilization by, e.g., bradykinin or permeabilizer A-7 (see, e.g., U.S. Pat. Nos. 5,112,596, 5,268,164, 5,506,206, and 5,686,416).
  • Lipid-based methods of transporting a compound of formula I (or an embodiment thereof) across the blood-brain barrier include, but are not limited to, encapsulating the a compound of formula I (or an embodiment thereof) in liposomes that are coupled to antibody binding fragments that bind to receptors on the vascular endothelium of the blood-brain barrier (see, e.g., U.S. Patent Application Publication No. 2002/0025313), and coating a compound of formula I (or an embodiment thereof) in low-density lipoprotein particles (see, e.g., U.S. Patent Application Publication No. 2004/0204354) or apolipoprotein E (see, e.g., U.S. Patent Application Publication No. 2004/0131692).
  • Receptor and channel-based methods of transporting a compound of formula I (or an embodiment thereof) across the blood-brain barrier include, but are not limited to, using glucocorticoid blockers to increase permeability of the blood-brain barrier (see, e.g., U.S. Patent Application Publication Nos. 2002/0065259, 2003/0162695, and 2005/0124533); activating potassium channels (see, e.g., U.S. Patent Application Publication No. 2005/0089473), inhibiting ABC drug transporters (see, e.g., U.S. Patent Application Publication No. 2003/0073713); coating a compound of formula I (or an embodiment thereof) with a transferrin and modulating activity of the one or more transferrin receptors (see, e.g., U.S. Patent Application Publication No. 2003/0129186), and cationizing the antibodies (see, e.g., U.S. Pat. No. 5,004,697).
  • For intracerebral use, in certain embodiments, the compounds can be administered continuously by infusion into the fluid reservoirs of the CNS, although bolus injection may be acceptable. The inhibitors can be administered into the ventricles of the brain or otherwise introduced into the CNS or spinal fluid. Administration can be performed by use of an indwelling catheter and a continuous administration means such as a pump, or it can be administered by implantation, e.g., intracerebral implantation of a sustained-release vehicle. More specifically, the inhibitors can be injected through chronically implanted cannulas or chronically infused with the help of osmotic minipumps. Subcutaneous pumps are available that deliver proteins through a small tubing to the cerebral ventricles. Highly sophisticated pumps can be refilled through the skin and their delivery rate can be set without surgical intervention. Examples of suitable administration protocols and delivery systems involving a subcutaneous pump device or continuous intracerebroventricular infusion through a totally implanted drug delivery system are those used for the administration of dopamine, dopamine agonists, and cholinergic agonists to Alzheimer's disease patients and animal models for Parkinson's disease, as described by Harbaugh, J. Neural Transm. Suppl. 24:271, 1987; and DeYebenes et al., Mov. Disord. 2: 143, 1987.
  • A compound of formula I (or an embodiment thereof) used in the invention are formulated, dosed, and administered in a fashion consistent with good medical practice. Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners. A compound of formula I (or an embodiment thereof) need not be, but is optionally formulated with one or more agent currently used to prevent or treat the disorder in question. The effective amount of such other agents depends on the amount of a compound of the invention present in the formulation, the type of disorder or treatment, and other factors discussed above.
  • These are generally used in the same dosages and with administration routes as described herein, or about from 1 to 99% of the dosages described herein, or in any dosage and by any route that is empirically/clinically determined to be appropriate.
  • For the prevention or treatment of disease, the appropriate dosage of a compound of formula I (or an embodiment thereof) (when used alone or in combination with other agents) will depend on the type of disease to be treated, the properties of the compound, the severity and course of the disease, whether the compound is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the compound, and the discretion of the attending physician. The compound is suitably administered to the patient at one time or over a series of treatments. Depending on the type and severity of the disease, about 1 μg/kg to 15 mg/kg (e.g., 0.1 mg/kg-10 mg/kg) of compound can be an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. One typical daily dosage might range from about 1 μg kg to 100 mg/kg or more, depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment would generally be sustained until a desired suppression of disease symptoms occurs. One exemplary dosage of a compound of formula I (or an embodiment thereof) would be in the range from about 0.05 mg/kg to about 10 mg/kg. Thus, one or more doses of about 0.5 mg/kg, 2.0 mg/kg, 4.0 mg/kg, or 10 mg/kg (or any combination thereof) may be administered to the patient. Such doses may be administered intermittently, e.g., every week or every three weeks (e.g., such that the patient receives from about two to about twenty, or, e.g., about six doses of the antibody). An initial higher loading dose, followed by one or more lower doses may be administered. An exemplary dosing regimen comprises administering an initial loading dose of about 4 mg/kg, followed by a weekly maintenance dose of about 2 mg kg of the compound. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays.
  • Other typical daily dosages might range from, for example, about 1 g/kg to up to 100 mg/kg or more (e.g., about 1 μg kg to 1 mg/kg, about 1 μg/kg to about 5 mg/kg, about 1 mg kg to 10 mg/kg, about 5 mg/kg to about 200 mg/kg, about 50 mg/kg to about 150 mg/mg, about 100 mg/kg to about 500 mg/kg, about 100 mg/kg to about 400 mg/kg, and about 200 mg/kg to about 400 mg/kg), depending on the factors mentioned above. Typically, the clinician will administer a compound until a dosage is reached that results in improvement in or, optimally, elimination of, one or more symptoms of the treated disease or condition. The progress of this therapy is easily monitored by conventional assays. One or more agent provided herein may be administered together or at different times (e.g., one agent is administered prior to the administration of a second agent). One or more agent may be administered to a subject using different techniques (e.g., one agent may be administered orally, while a second agent is administered via intramuscular injection or intranasally). One or more agent may be administered such that the one or more agent has a pharmacologic effect in a subject at the same time. Alternatively, one or more agent may be administered, such that the pharmacological activity of the first administered agent is expired prior the administration of one or more secondarily administered agents (e.g., 1, 2, 3, or 4 secondarily administered agents).
  • Indications and Methods of Treatment
  • The compounds of the invention modulate, preferably inhibit, ion flux through a voltage-dependent sodium channel in a mammal, (e.g, a human). Any such modulation, whether it be partial or complete inhibition or prevention of ion flux, is sometimes referred to herein as “blocking” and corresponding compounds as “blockers” or “inhibitors”. In general, the compounds of the invention modulate the activity of a sodium channel downwards by inhibiting the voltage-dependent activity of the sodium channel, and/or reduce or prevent sodium ion flux across a cell membrane by preventing sodium channel activity such as ion flux.
  • The compounds of the invention inhibit the ion flux through a voltage-dependent sodium channel. In one aspect, the compounds are state or frequency dependent modifiers of the sodium channels, having a low affinity for the rested/closed state and a high affinity for the inactivated state. Without being bound by any particular theory, it is thought that these compounds are likely to interact with overlapping sites located in the inner cavity of the sodium conducting pore of the channel similar to that described for other state-dependent sodium channel blockers (Cestèle, S., et al., op. cit.). These compounds may also be likely to interact with sites outside of the inner cavity and have allosteric effects on sodium ion conduction through the channel pore.
  • Any of these consequences may ultimately be responsible for the overall therapeutic benefit provided by these compounds.
  • Accordingly, the compounds of the invention are sodium channel blockers and are therefore useful for treating diseases and conditions in mammals, for example humans, and other organisms, including all those diseases and conditions which are the result of aberrant voltage-dependent sodium channel biological activity or which may be ameliorated by modulation of voltage-dependent sodium channel biological activity. In particular, the compounds of the invention, i.e., the compounds of formula (I) and embodiments and (or stereoisomers, geometric isomers, tautomers, solvates, metabolites, isotopes, pharmaceutically acceptable salts, or prodrugs thereof), are useful for treating diseases and conditions in mammals, for example humans, which are the result of aberrant voltage-dependent NaV1.7 biological activity or which may be ameliorated by the modulation, preferably the inhibition, of NaV1.7 biological activity. In certain aspects, the compounds of the invention selectively inhibit NaV1.7 over NaV1.5.
  • As defined herein, a sodium channel-mediated disease or condition refers to a disease or condition in a mammal, preferably a human, which is ameliorated upon modulation of the sodium channel and includes, but is not limited to, pain, central nervous conditions such as epilepsy, anxiety, depression and bipolar disease; cardiovascular conditions such as arrhythmias, atrial fibrillation and ventricular fibrillation; neuromuscular conditions such as restless leg syndrome and muscle paralysis or tetanus; neuroprotection against stroke, neural trauma and multiple sclerosis; and channelopathies such as erythromyalgia and familial rectal pain syndrome.
  • In one aspect, the present invention relates to compounds, pharmaceutical compositions and methods of using the compounds and pharmaceutical compositions for the treatment of sodium channel-mediated diseases in mammals, preferably humans and preferably diseases and conditions related to pain, central nervous conditions such as epilepsy, anxiety, depression and bipolar disease; cardiovascular conditions such as arrhythmias, atrial fibrillation and ventricular fibrillation; neuromuscular conditions such as restless leg syndrome and muscle paralysis or tetanus; neuroprotection against stroke, neural trauma and multiple sclerosis; and channelopathies such as erythromyalgia and familial rectal pain syndrome, by administering to a mammal, for example a human, in need of such treatment an effective amount of a sodium channel blocker modulating, especially inhibiting, agent.
  • A sodium channel-mediated disease or condition also includes pain associated with HIV, HIV treatment induced neuropathy, trigeminal neuralgia, glossopharyngeal neuralgia, neuropathy secondary to metastatic infiltration, adiposis dolorosa, thalamic lesions, hypertension, autoimmune disease, asthma, drug addiction (e.g., opiate, benzodiazepine, amphetamine, cocaine, alcohol, butane inhalation), Alzheimer, dementia, age-related memory impairment, Korsakoff syndrome, restenosis, urinary dysfunction, incontinence, Parkinson's disease, cerebrovascular ischemia, neurosis, gastrointestinal disease, sickle cell anemia, transplant rejection, heart failure, myocardial infarction, reperfusion injury, intermittant claudication, angina, convulsion, respiratory disorders, cerebral or myocardial ischemias, long-QT syndrome, Catecholeminergic polymorphic ventricular tachycardia, ophthalmic diseases, spasticity, spastic paraplegia, myopathies, myasthenia gravis, paramyotonia congentia, hyperkalemic periodic paralysis, hypokalemic periodic paralysis, alopecia, anxiety disorders, psychotic disorders, mania, paranoia, seasonal affective disorder, panic disorder, obsessive compulsive disorder (OCD), phobias, autism, Aspergers Syndrome, Retts syndrome, disintegrative disorder, attention deficit disorder, aggressivity, impulse control disorders, thrombosis, pre clampsia, congestive cardiac failure, cardiac arrest, Freidrich's ataxia, Spinocerebellear ataxia, myelopathy, radiculopathy, systemic lupus erythamatosis, granulomatous disease, olivo-ponto-cerebellar atrophy, spinocerebellar ataxia, episodic ataxia, myokymia, progressive pallidal atrophy, progressive supranuclear palsy and spasticity, traumatic brain injury, cerebral oedema, hydrocephalus injury, spinal cord injury, anorexia nervosa, bulimia, Prader-Willi syndrome, obesity, optic neuritis, cataract, retinal haemorrhage, ischaemic retinopathy, retinitis pigmentosa, acute and chronic glaucoma, macular degeneration, retinal artery occlusion, Chorea, Huntington's chorea, cerebral edema, proctitis, post-herpetic neuralgia, eudynia, heat sensitivity, sarcoidosis, irritable bowel syndrome, Tourette syndrome, Lesch-Nyhan Syndrome, Brugado syndrome, Liddle syndrome, Crohns disease, multiple sclerosis and the pain associated with multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), disseminated sclerosis, diabetic neuropathy, peripheral neuropathy, charcot marie tooth syndrome, arthritic, rheumatoid arthritis, osteoarthritis, chondrocalcinosis, atherosclerosis, paroxysmal dystonia, myasthenia syndromes, myotonia, myotonic dystrophy, muscular dystrophy, malignant hyperthennia, cystic fibrosis, pseudoaldosteronism, rhabdomyolysis, mental handicap, hypothyroidism, bipolar depression, anxiety, schizophrenia, sodium channel toxin related illnesses, familial erythromelalgia, primary erythromelalgia, rectal pain, cancer, epilepsy, partial and general tonic seizures, febrile seizures, absence seizures (petit mal), myoclonic seizures, atonic seizures, clonic seizures, Lennox Gastaut, West Syndome (infantile spasms), multiresistant seizures, seizure prophylaxis (anti-epileptogenic), familial Mediterranean fever syndrome, gout, restless leg syndrome, arrhythmias, fibromyalgia, neuroprotection under ischaemic conditions caused by stroke or neural trauma, tachy-arrhythmias, atrial fibrillation and ventricular fibrillation and as a general or local anaesthetic.
  • As used herein, the term “pain” refers to all categories of pain and is recognized to include, but is not limited to, neuropathic pain, inflammatory pain, nociceptive pain, idiopathic pain, neuralgic pain, orofacial pain, burn pain, burning mouth syndrome, somatic pain, visceral pain, myofacial pain, dental pain, cancer pain, chemotherapy pain, trauma pain, surgical pain, post-surgical pain, childbirth pain, labor pain, chronic regional pain syndrome (CRPS), reflex sympathetic dystrophy, brachial plexus avulsion, neurogenic bladder, acute pain (e.g., musculoskeletal and post-operative pain), chronic pain, persistent pain, peripherally mediated pain, centrally mediated pain, chronic headache, migraine headache, familial hemiplegic migraine, conditions associated with cephalic pain, sinus headache, tension headache, phantom limb pain, peripheral nerve injury, pain following stroke, thalamic lesions, radiculopathy, HIV pain, post-herpetic pain, non-cardiac chest pain, irritable bowel syndrome and pain associated with bowel disorders and dyspepsia, and combinations thereof.
  • Furthermore, sodium channel blockers have clinical uses in addition to pain. The present invention therefore also relates to compounds, pharmaceutical compositions and methods of using the compounds and pharmaceutical compositions for the treatment of diseases or conditions such as cancer and pruritus (itch).
  • Pruritus, commonly known as itch, is a common dermatological condition. While the exact causes of pruritus are complex and incompletely understood, there has long been evidence that itch involves sensory neurons, especially C fibers, similar to those that mediate pain (Schmelz, M., et al., J. Neurosci. (1997), 17: 8003-8). In particular, it is believed that sodium influx through voltage-gated sodium channels is essential for the propagation of itch sensation from the skin. Transmission of the itch impulses results in the unpleasant sensation that elicits the desire or reflex to scratch.
  • Multiple causes and electrical pathways for eliciting itch are known. In humans, pruritis can be elicited by histamine or PAR-2 agonists such as mucunain that activate distinct populations of C fibers (Namer, B., et al., J. Neurophysiol. (2008), 100: 2062-9). A variety of neurotrophic peptides are known to mediate itch in animal models (Wang, H., and Yosipovitch, G., International Journal of Dermatology (2010), 49: 1-11). Itch can also be elicited by opioids, evidence of distinct pharmacology from that of pain responses.
  • There exists a complex interaction between itch and pain responses that arises in part from the overlapping sensory input from the skin (Ikoma, A., et al., Arch. Dermatol. (2003), 139: 1475-8) and also from the diverse etiology of both pain and pruritis. Pain responses can exacerbate itching by enhancing central sensitization or lead to inhibition of painful scratching. Particularly severe forms of chronic itch occur when pain responses are absent, as in the case of post-herpetic itch (Oaklander, A. L., et al., Pain (2002), 96: 9-12).
  • The compounds of the invention can also be useful for treating pruritus. The rationale for treating itch with inhibitors of voltage-gated sodium channels, especially NaV1.7, is as follows:
  • The propagation of electrical activity in the C fibers that sense pruritinergic stimulants requires sodium entry through voltage-gated sodium channels.
  • NaV1.7 is expressed in the C fibers and kerotinocytes in human skin (Zhao, P., et al., Pain (2008), 139: 90-105).
  • A gain of function mutation of NaV1.7 (L858F) that causes erythromelalgia also causes chronic itch (Li, Y., et al., Clinical and Experimental Dermatology (2009), 34: e313-e4).
  • Chronic itch can be alleviated with treatment by sodium channel blockers, such as the local anesthetic lidocaine (Oaklander, A. L., et al., Pain (2002), 96: 9-12; Villamil. A. G., et al., The American Journal of Medicine (2005), 118: 1160-3). In these reports, lidocaine was effective when administered either intravenously or topically (a Lidodenn patch). Lidocaine can have multiple activities at the plasma concentrations achieved when administered systemically, but when administered topically, the plasma concentrations are only about 1 μM (Center for Drug Evaluation and Research NDA 20-612). At these concentrations, lidocaine is selective for sodium channel block and inhibits spontaneous electrical activity in C fibers and pain responses in animal models (Xiao, W. H., and Bennett, G. J., Pain (2008), 137: 218-28). The types of itch or skin irritation, include, but are not limited to:
  • psoriatic pruritus, itch due to hemodyalisis, aguagenic pruritus, and itching caused by skin disorders (e.g., contact dermatitis), systemic disorders, neuropathy, psychogenic factors or a mixture thereof;
  • itch caused by allergic reactions, insect bites, hypersensitivity (e.g., dry skin, acne, eczema, psoriasis), inflammatory conditions or injury;
  • itch associated with vulvar vestibulitis; and
  • skin irritation or inflammatory effect from administration of another therapeutic such as, for example, antibiotics, antivirals and antihistamines.
  • The compounds of the invention are also useful in treating certain cancers, such as hormone sensitive cancers, such as prostate cancer (adenocarcinoma), breast cancer, ovarian cancer, testicular cancer and thyroid neoplasia, in a mammal, preferably a human. The voltage gated sodium channels have been demonstrated to be expressed in prostate and breast cancer cells. Up-regulation of neonatal NaV1.5 occurs as an integral part of the metastatic process in human breast cancer and could serve both as a novel marker of the metastatic phenotype and a therapeutic target (Clin. Cancer Res. (2005), Aug. 1; 11(15): 5381-9). Functional expression of voltage-gated sodium channel alpha-subunits, specifically NaV1.7, is associated with strong metastatic potential in prostate cancer (CaP) in vitro. Voltage-gated sodium channel alpha-subunits immunostaining, using antibodies specific to the sodium channel alpha subunit was evident in prostatic tissues and markedly stronger in CaP vs non-CaP patients (Prostate Cancer Prostatic Dis., 2005; 8(3):266-73). See also Diss, J. K. J., et al., Mol. Cell. Neurosci. (2008), 37:537-547 and Kis-Toth, K., et al., The Journal of Immunology (2011), 187:1273-1280.
  • In consideration of the above, in one embodiment, the present invention provides a method for treating a mammal for, or protecting a mammal from developing, a sodium channel-mediated disease, especially pain, comprising administering to the mammal, especially a human, in need thereof, a therapeutically effective amount of a compound of the invention or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention wherein the compound modulates the activity of one or more voltage-dependent sodium channels.
  • In another embodiment of the invention is a method of treating a disease or a condition in a mammal, preferably a human, wherein the disease or condition is selected from the group consisting of pain, depression, cardiovascular diseases, respiratory diseases, and psychiatric diseases, and combinations thereof, and wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of an embodiment of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.
  • One embodiment of this embodiment is wherein the disease or condition is selected from the group consisting of neuropathic pain, inflammatory pain, visceral pain, cancer pain, chemotherapy pain, trauma pain, surgical pain, post surgical pain, childbirth pain, labor pain, neurogenic bladder, ulcerative colitis, chronic pain, persistent pain, peripherally mediated pain, centrally mediated pain, chronic headache, migraine headache, sinus headache, tension headache, phantom limb pain, peripheral nerve injury, and combinations thereof.
  • Another embodiment of this embodiment is wherein the disease or condition is selected from the group consisting of pain associated with HIV, HIV treatment induced neuropathy, trigeminal neuralgia, post herpetic neuralgia, eudynia, heat sensitivity, tosarcoidosis, irritable bowel syndrome, Crohns disease, pain associated with multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), diabetic neuropathy, peripheral neuropathy, arthritic, rheumatoid arthritis, osteoarthritis, atherosclerosis, paroxysmal dystonia, myasthenia syndromes, myotonia, malignant hyperthermia, cystic fibrosis, pseudoaldosteronism, rhabdomyolysis, hypothyroidism, bipolar depression, anxiety, schizophrenia, sodium channel toxin related illnesses, familial erythromelalgia, primary erythromelalgia, familial rectal pain, cancer, epilepsy, partial and general tonic seizures, restless leg syndrome, arrhythmias, fibromyalgia, neuroprotection under ischaemic conditions caused by stroke or neural trauma, tachy arrhythmias, atrial fibrillation and ventricular fibrillation.
  • Another embodiment of the invention is a method of treating, but not preventing, pain in a mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.
  • One embodiment of this embodiment is a method wherein the pain is selected from the group consisting of neuropathic pain, inflammatory pain, visceral pain, cancer pain, chemotherapy pain, trauma pain, surgical pain, post surgical pain, childbirth pain, labor pain, dental pain, chronic pain, persistent pain, peripherally mediated pain, centrally mediated pain, chronic headache, migraine headache, sinus headache, tension headache, phantom limb pain, peripheral nerve injury, trigeminal neuralgia, post herpetic neuralgia, eudynia, familial erythromelalgia, primary erythromelalgia, familial rectal pain or fibromyalgia, and combinations thereof.
  • Another embodiment of this embodiment is a method wherein the pain is associated with a disease or condition selected from HIV, HIV treatment induced neuropathy, heat sensitivity, tosarcoidosis, irritable bowel syndrome, Crohns disease, multiple sclerosis, amyotrophic lateral sclerosis, diabetic neuropathy, peripheral neuropathy, rheumatoid arthritis, osteoarthritis, atherosclerosis, paroxysmal dystonia, myasthenia syndromes, myotonia, malignant hyperthermia, cystic fibrosis, pseudoaldosteronism, rhabdomyolysis, hypothyroidism, bipolar depression, anxiety, schizophrenia, sodium channel toxin related illnesses, neurogenic bladder, ulcerative colitis, cancer, epilepsy, partial and general tonic seizures, restless leg syndrome, arrhythmias, ischaemic conditions caused by stroke or neural trauma, tachy arrhythmias, atrial fibrillation and ventricular fibrillation.
  • Another embodiment of the invention is the method of treating pain in a mammal, preferably a human, by the inhibition of ion flux through a voltage dependent sodium channel in the mammal, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of an embodiment of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.
  • Another embodiment of the invention is the method of treating pruritus in a mammal, preferably a human, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of an embodiment of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.
  • Another embodiment of the invention is the method of treating cancer in a mammal, preferably a human, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of an embodiment of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, or a pharmaceutical composition comprising a therapeutically effective amount of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof, and a pharmaceutically acceptable excipient.
  • Another embodiment of the invention is the method of decreasing ion flux through a voltage dependent sodium channel in a cell in a mammal, wherein the method comprises contacting the cell with an embodiment of a compound of the invention, as set forth above, as a stereoisomer, enantiomer or tautomer thereof or mixtures thereof, or a pharmaceutically acceptable salt, solvate or prodrug thereof.
  • Another embodiment of the invention is the method of selectively inhibiting a first voltage-gated sodium channel over a second voltage-gated sodium channel in a mammal, wherein the method comprises administering to the mammal an inhibitory amount of a compound of formula (I), or an embodiment of a compound of formula (I).
  • Another embodiment of the invention is the method of selectively inhibiting NaV1.7 in a mammal or a mammalian cell as compared to NaV1.5, wherein the method comprises administering to the mammal in need thereof an inhibitory amount of a compound of formula (I) or an embodiment of an embodiment thereof.
  • For each of the above embodiments described related to treating diseases and conditions in a mammal, the present invention also contemplates relatedly a compound of formula I or an embodiment thereof for the use as a medicament in the treatment of such diseases and conditions.
  • For each of the above embodiments described related to treating diseases and conditions in a mammal, the present invention also contemplates relatedly the use of a compound of formula I or an embodiment thereof for the manufacture of a medicament for the treatment of such diseases and conditions.
  • Another embodiment of the invention is a method of using the compounds of formula (I) as standards or controls in in vitro or in vivo assays in determining the efficacy of test compounds in modulating voltage-dependent sodium channels.
  • In another embodiment of the invention, the compounds of formula (I) are isotopically-labeled by having one or more atoms therein replaced by an atom having a different atomic mass or mass number. Such isotopically-labeled (i.e., radiolabelled) compounds of formula (i) are considered to be within the scope of this invention. Examples of isotopes that can be incorporated into the compounds of formula (I) include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, sulfur, fluorine, chlorine, and iodine, such as, but not limited to, 2H, 3H, 11C, 13C, 14C, 13N, 15N, 15O, 17O, 18O, 31P, 32P, 35S, 18F, 36Cl, 123I, and 125I, respectively. These isotopically-labeled compounds would be useful to help determine or measure the effectiveness of the compounds, by characterizing, for example, the site or mode of action on the sodium channels, or binding affinity to pharmacologically important site of action on the sodium channels, particularly NaV1.7. Certain isotopically-labeled compounds of formula (I), for example, those incorporating a radioactive isotope, are useful in drug and/or substrate tissue distribution studies. The radioactive isotopes tritium, i.e. 3H, and carbon-14, i.e., 14C, are particularly useful for this purpose in view of their ease of incorporation and ready means of detection.
  • Substitution with heavier isotopes such as deuterium, i.e. 2H, may afford certain therapeutic advantages resulting from greater metabolic stability, for example, increased in vivo half-life or reduced dosage requirements, and hence may be preferred in some circumstances.
  • Substitution with positron emitting isotopes, such as 11C, 18F, 15O and 13N, can be useful in Positron Emission Topography (PET) studies for examining substrate receptor occupancy. Isotopically-labeled compounds of formula (I) can generally be prepared by conventional techniques known to those skilled in the art or by processes analogous to those described in the Examples as set out below using an appropriate isotopically-labeled reagent in place of the non-labeled reagent previously employed.
  • Testing Compounds
  • The assessment of the compounds of the invention in mediating, especially inhibiting, the sodium channel ion flux can be determined using the assays described hereinbelow. Alternatively, the assessment of the compounds in treating conditions and diseases in humans may be established in industry standard animal models for demonstrating the efficacy of compounds in treating pain. Animal models of human neuropathic pain conditions have been developed that result in reproducible sensory deficits (allodynia, hyperalgesia, and spontaneous pain) over a sustained period of time that can be evaluated by sensory testing. By establishing the degree of mechanical, chemical, and temperature induced allodynia and hyperalgesia present, several physiopathological conditions observed in humans can be modeled allowing the evaluation of pharmacotherapies.
  • In rat models of peripheral nerve injury, ectopic activity in the injured nerve corresponds to the behavioural signs of pain. In these models, intravenous application of the sodium channel blocker and local anesthetic lidocaine can suppress the ectopic activity and reverse the tactile allodynia at concentrations that do not affect general behaviour and motor function (Mao, J. and Chen, L. L, Pain (2000), 87:7-17). Allometric scaling of the doses effective in these rat models, translates into doses similar to those shown to be efficacious in humans (Tanelian, D. L. and Brose, W. G., Anesthesiology (1991), 74(5):949-951). Furthermore, Lidoderm®, lidocaine applied in the form of a dermal patch, is currently an FDA approved treatment for post-herpetic neuralgia (Devers, A. and Glaler, B. S., Clin. J. Pain (2000), 16(3):205-8).
  • The present invention readily affords many different means for identification of sodium channel modulating agents that are useful as therapeutic agents. Identification of modulators of sodium channel can be assessed using a variety of in vitro and in vivo assays, e.g., measuring current, measuring membrane potential, measuring ion flux, (e.g., sodium or guanidinium), measuring sodium concentration, measuring second messengers and transcription levels, and using e.g., voltage-sensitive dyes, radioactive tracers, and patch-clamp electrophysiology.
  • One such protocol involves the screening of chemical agents for ability to modulate the activity of a sodium channel thereby identifying it as a modulating agent.
  • A typical assay described in Bean et al., J. General Physiology (1983), 83:613-642, and Leuwer, M., et al., Br. J. Pharmacol (2004), 141(1):47-54, uses patch-clamp techniques to study the behaviour of channels. Such techniques are known to those skilled in the art, and may be developed, using current technologies, into low or medium throughput assays for evaluating compounds for their ability to modulate sodium channel behaviour.
  • Throughput of test compounds is an important consideration in the choice of screening assay to be used. In some strategies, where hundreds of thousands of compounds are to be tested, it is not desirable to use low throughput means. In other cases, however, low throughput is satisfactory to identify important differences between a limited number of compounds. Often it will be necessary to combine assay types to identify specific sodium channel modulating compounds.
  • Electrophysiological assays using patch clamp techniques is accepted as a gold standard for detailed characterization of sodium channel compound interactions, and as described in Bean et al., op. cit, and Leuwer, M., et al., op. cit. There is a manual low-throughput screening (LTS) method which can compare 2-10 compounds per day; a recently developed system for automated medium-throughput screening (MTS) at 20-50 patches (i.e. compounds) per day; and a technology from Molecular Devices Corporation (Sunnyvale, Calif.) which permits automated high-throughput screening (HTS) at 1000-3000 patches (i.e. compounds) per day.
  • One automated patch-clamp system utilizes planar electrode technology to accelerate the rate of drug discovery. Planar electrodes are capable of achieving high-resistance, cells-attached seals followed by stable, low-noise whole-cell recordings that are comparable to conventional recordings. A suitable instrument is the PatchXpress 7000A (Axon Instruments Inc, Union City, Calif.). A variety of cell lines and culture techniques, which include adherent cells as well as cells growing spontaneously in suspension are ranked for seal success rate and stability. Immortalized cells (e.g. HEK and CHO) stably expressing high levels of the relevant sodium ion channel can be adapted into high-density suspension cultures.
  • Other assays can be selected which allow the investigator to identify compounds which block specific states of the channel, such as the open state, closed state or the resting state, or which block transition from open to closed, closed to resting or resting to open. Those skilled in the art are generally familiar with such assays.
  • Binding assays are also available. Designs include traditional radioactive filter based binding assays or the confocal based fluorescent system available from Evotec OAI group of companies (Hamburg, Germany), both of which are HTS.
  • Radioactive flux assays can also be used. In this assay, channels are stimulated to open with veratridine or aconitine and held in a stabilized open state with a toxin, and channel blockers are identified by their ability to prevent ion influx. The assay can use radioactive 22[Na] and 14[C] guanidinium ions as tracers. FlashPlate & Cytostar-T plates in living cells avoids separation steps and are suitable for HTS. Scintillation plate technology has also advanced this method to HTS suitability. Because of the functional aspects of the assay, the information content is reasonably good.
  • Yet another format measures the redistribution of membrane potential using the FLIPR system membrane potential kit (HTS) available from Molecular Dynamics (a division of Amersham Biosciences, Piscataway, N.J.). This method is limited to slow membrane potential changes. Some problems may result from the fluorescent background of compounds. Test compounds may also directly influence the fluidity of the cell membrane and lead to an increase in intracellular dye concentrations. Still, because of the functional aspects of the assay, the information content is reasonably good.
  • Sodium dyes can be used to measure the rate or amount of sodium ion influx through a channel. This type of assay provides a very high information content regarding potential channel blockers. The assay is functional and would measure Na+ influx directly. CoroNa Red, SBFI and/or sodium green (Molecular Probes, Inc. Eugene Oreg.) can be used to measure Na influx; all are Na responsive dyes. They can be used in combination with the FLIPR instrument. The use of these dyes in a screen has not been previously described in the literature. Calcium dyes may also have potential in this format.
  • In another assay, FRET based voltage sensors are used to measure the ability of a test compound to directly block Na influx. Commercially available HTS systems include the VIPR™ II FRET system (Life Technologies, or Aurora Biosciences Corporation, San Diego, Calif., a division of Vertex Pharmaceuticals, Inc.) which may be used in conjunction with FRET dyes, also available from Aurora Biosciences. This assay measures sub-second responses to voltage changes. There is no requirement for a modifier of channel function. The assay measures depolarization and hyperpolarizations, and provides ratiometric outputs for quantification. A somewhat less expensive MTS version of this assay employs the FLEXstation™ (Molecular Devices Corporation) in conjunction with FRET dyes from Aurora Biosciences. Other methods of testing the compounds disclosed herein are also readily known and available to those skilled in the art.
  • Modulating agents so identified are then tested in a variety of in vivo models so as to determine if they alleviate pain, especially chronic pain or other conditions such as cancer and pruritus (itch) with minimal adverse events. The assays described below in the Biological Assays Section are useful in assessing the biological activity of the instant compounds.
  • Typically, the efficacy of a compound of the invention is expressed by its IC50 value (“Inhibitory Concentration—50%”), which is the measure of the amount of compound required to achieve 50% inhibition of the activity of the target sodium channel over a specific time period. For example, representative compounds of the present invention have demonstrated IC50's ranging from less than 100 nanomolar to less than 10 micromolar in the patch voltage clamp NaV1.7 electrophysiology assay described herein.
  • In another aspect of the invention, the compounds of the invention can be used in in vitro or in vivo studies as exemplary agents for comparative purposes to find other compounds also useful in treatment of, or protection from, the various diseases disclosed herein.
  • Another aspect of the invention relates to inhibiting NaV1.1, NaV1.2, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaV1.8, or NaV1.9 activity, preferably NaV1.7 activity, in a biological sample or a mammal, preferably a human, which method comprises administering to the mammal, preferably a human, or contacting said biological sample with a compound of formula (I) or a pharmaceutical composition comprising a compound of formula (I). The term “biological sample”, as used herein, includes, without limitation, cell cultures or extracts thereof; biopsied material obtained from a mammal or extracts thereof; and blood, saliva, urine, feces, semen, tears, or other body fluids or extracts thereof.
  • Inhibition of NaV1.1, NaV1.2, NaV1.3, NaV1.4, NaV1.5, NaV1.6, NaV1.7, NaV1.8, or NaV1.9 activity in a biological sample is useful for a variety of purposes that are known to one of skill in the art. Examples of such purposes include, but are not limited to, the study of sodium ion channels in biological and pathological phenomena; and the comparative evaluation of new sodium ion channel inhibitors.
  • The compounds of the invention (or stereoisomers, geometric isomers, tautomers, solvates, metabolites, isotopes, pharmaceutically acceptable salts, or prodrugs thereof) and/or the pharmaceutical compositions described herein which comprise a pharmaceutically acceptable excipient and one or more compounds of the invention, can be used in the preparation of a medicament for the treatment of sodium channel-mediated disease or condition in a mammal.
  • Combination Therapy
  • The compounds of the invention may be usefully combined with one or more other compounds of the invention or one or more other therapeutic agent or as any combination thereof, in the treatment of sodium channel-mediated diseases and conditions. For example, a compound of the invention may be administered simultaneously, sequentially or separately in combination with other therapeutic agents, including, but not limited to:
  • opiates analgesics, e.g., morphine, heroin, cocaine, oxymorphine, levorphanol, levallorphan, oxycodone, codeine, dihydrocodeine, propoxyphene, nalmefene, fentanyl, hydrocodone, hydromorphone, meripidine, methadone, nalorphine, naloxone, naltrexone, buprenorphine, butorphanol, nalbuphine and pentazocine;
  • non-opiate analgesics, e.g., acetomeniphen, salicylates (e.g., aspirin);
  • nonsteroidal antiinflammatory drugs (NSAIDs), e.g., ibuprofen, naproxen, fenoprofen, ketoprofen, celecoxib, diclofenac, diflusinal, etodolac, fenbufen, fenoprofen, flufenisal, flurbiprofen, ibuprofen, indomethacin, ketoprofen, ketorolac, meclofenamic acid, mefenamic acid, meloxicam, nabumetone, naproxen, nimesulide, nitroflurbiprofen, olsalazine, oxaprozin, phenylbutazone, piroxicam, sulfasalazine, sulindac, tolmetin and zomepirac;
  • anticonvulsants, e.g., carbamazepine, oxcarbazepine, lamotrigine, valproate, topiramate, gabapentin and pregabalin;
  • antidepressants such as tricyclic antidepressants, e.g., amitriptyline, clomipramine, despramine, imipramine and nortriptyline;
  • COX-2 selective inhibitors, e.g., celecoxib, rofecoxib, parecoxib, valdecoxib, deracoxib, etoricoxib, and lumiracoxib;
  • alpha-adrenergics, e.g., doxazosin, tamsulosin, clonidine, guanfacine, dexmetatomidine, modafinil, and 4-amino-6,7-dimethoxy-2-(5-methane sulfonamido-1,2,3,4-tetrahydroisoquinol-2-yl)-5-(2-pyridyl) quinazoline;
  • barbiturate sedatives, e.g., amobarbital, aprobarbital, butabarbital, butabital, mephobarbital, metharbital, methohexital, pentobarbital, phenobartital, secobarbital, talbutal, theamylal and thiopental; tachykinin (NK) antagonist, particularly an NK-3, NK-2 or NK-1 antagonist, e.g., (αR, 9R)-7-[3,5-bis(trifluoromethyl)benzyl)]-8,9,10,11-tetrahydro-9-methyl-5-(4-methylphenyl)-7H-[1,4]diazocino[2,1-g][1,7]-naphthyridine-6-13-dione (TAK-637), 5-[[2R,3S)-2-[(1R)-1-[3,5-bis(trifluoromethylphenyl]ethoxy-3-(4-fluorophenyl)-4-morpholinyl]-methyl]-1, 2-dihydro-3H-1,2,4-triazol-3-one (MK-869), aprepitant, lanepitant, dapitant or 3-[[2-methoxy5-(trifluoromethoxy)phenyl]-methylamino]-2-phenylpiperidine (2S,3S);
  • coal-tar analgesics, in particular paracetamol;
  • serotonin reuptake inhibitors, e.g., paroxetine, sertraline, norfluoxetine (fluoxetine desmethyl metabolite), metabolite demethylsertraline, ′3 fluvoxamine, paroxetine, citalopram, citalopram metabolite desmethylcitalopram, escitalopram, d,l-fenfluramine, femoxetine, ifoxetine, cyanodothiepin, litoxetine, dapoxetine, nefazodone, cericlamine, trazodone and fluoxetine;
  • noradrenaline (norepinephrine) reuptake inhibitors, e.g., maprotilinc, lofepramine, mirtazepine, oxaprotiline, fezolamine, tomoxetine, mianserin, buproprion, buproprion metabolite hydroxybuproprion, nomifensine and viloxazine (Vivalan®)), especially a selective noradrenaline reuptake inhibitor such as reboxetine, in particular (S,S)-reboxetine, and venlafaxine duloxetine neuroleptics sedative/anxiolytics;
  • dual serotonin-noradrenaline reuptake inhibitors, such as venlafaxine, venlafaxine metabolite O-desmethylvenlafaxine, clomipramine, clomipramine metabolite desmethylclomipramine, duloxetine, milnacipran and imipramine;
  • acetylcholinesterase inhibitors such as donepezil;
  • 5-HT3 antagonists such as ondansetron;
  • metabotropic glutamate receptor (mGluR) antagonists;
  • local anaesthetic such as mexiletine and lidocaine;
  • corticosteroid such as dexamethasone;
  • antiarrhythimics, e.g., mexiletine and phenytoin;
  • muscarinic antagonists, e.g., tolterodine, propiverine, tropsium t chloride, darifenacin, solifenacin, temiverine and ipratropium;
  • cannabinoids;
  • vanilloid receptor agonists (e.g., resinferatoxin) or antagonists (e.g., capsazepine);
  • sedatives, e.g., glutethimide, meprobamate, methaqualone, and dichloralphenazone;
  • anxiolytics such as benzodiazepines,
  • antidepressants such as mirtazapine,
  • topical agents (e.g., lidocaine, capsacin and resiniferotoxin);
  • muscle relaxants such as benzodiazepines, baclofen, carisoprodol, chlorzoxazone, cyclobenzaprine, methocarbamol and orphrenadine;
  • anti-histamines or H1 antagonists;
  • NMDA receptor antagonists;
  • 5-HT receptor agonists/antagonists;
  • PDEV inhibitors;
  • Tramadol®;
  • cholinergic (nicotinc) analgesics;
  • alpha-2-delta ligands;
  • prostaglandin E2 subtype antagonists;
  • leukotriene B4 antagonists;
  • 5-lipoxygenase inhibitors; and
  • 5-HT3 antagonists.
  • Sodium channel-mediated diseases and conditions that may be treated and/or prevented using such combinations include but not limited to, pain, central and peripherally mediated, acute, chronic, neuropathic as well as other diseases with associated pain and other central nervous disorders such as epilepsy, anxiety, depression and bipolar disease; or cardiovascular disorders such as arrhythmias, atrial fibrillation and ventricular fibrillation; neuromuscular disorders such as restless leg syndrome and muscle paralysis or tetanus; neuroprotection against stroke, neural trauma and multiple sclerosis; and channelopathies such as erythromyalgia and familial rectal pain syndrome.
  • As used herein “combination” refers to any mixture or permutation of one or more compounds of the invention and one or more other compounds of the invention or one or more additional therapeutic agent. Unless the context makes clear otherwise, “combination” may include simultaneous or sequentially delivery of a compound of the invention with one or more therapeutic agents. Unless the context makes clear otherwise, “combination” may include dosage forms of a compound of the invention with another therapeutic agent. Unless the context makes clear otherwise, “combination” may include routes of administration of a compound of the invention with another therapeutic agent. Unless the context makes clear otherwise, “combination” may include formulations of a compound of the invention with another therapeutic agent. Dosage forms, routes of administration and pharmaceutical compositions include, but are not limited to, those described herein.
  • The invention will be more fully understood by reference to the following examples. They should not, however, be construed as limiting the scope of the invention.
  • EXAMPLES
  • These examples serve to provide guidance to a skilled artisan to prepare and use the compounds, compositions and methods of the invention. While particular embodiments of the present invention are described, the skilled artisan will appreciate that various changes and modifications can be made without departing from the spirit and scope of the inventions.
  • The chemical reactions in the examples described can be readily adapted to prepare a number of other compounds of the invention, and alternative methods for preparing the compounds of this invention are deemed to be within the scope of this invention. For example, the synthesis of non-exemplified compounds according to the invention can be successfully performed by modifications apparent to those skilled in the art, for example, by appropriately protecting interfering group, by utilizing other suitable reagents known in the art, for example, by appropriately protecting interfering groups by utilizing other suitable reagents known in the art other than those described, and/or by making routine modifications of reaction conditions.
  • In the examples below, unless otherwise indicated all temperatures are set forth in degrees Celcius. Commerically available reagents were purchased from suppliers such as Aldrich Chemical Company, Lancaster, TCI or Maybridge and were used without further purification unless otherwise indicated. The reactions set forth below were done generally under a positive pressure of nitrogen or argon or with a drying tube (unless otherwise stated) in anhydrous solvents, and the reaction flasks were typically fitted with rubber septa for the introduction of substrates and reagents via syringe. Glassware was oven dried and/or heat dried. 1H NMR spectra were obtained in deuterated CDCl3, d6-DMSO, CH3OD or d6-acetone solvent solutions (reported in ppm) using or trimethylsilane (TMS) or residual non-deuterated solvent peaks as the reference standard. When peak multiplicities are reported, the following abbreviates are used: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet, br (broadened), dd (doublet of doublets), dt (doublet of triplets). Coupling constants, when given, are reported in Hz (Hertz).
  • All abbreviations used to describe reagents, reaction conditions or equipment are intended to be consistent with the definitions set forth in the “List of standard abbreviates and acronyms”. The chemical names of discrete compounds of the invention were obtained using the structure naming feature of ChemDraw naming program.
  • LCMS Analytical Methods
  • Final compounds were analyzed using three different LC/MS conditions, with UV detector monitoring at 214 nm and 254 nm, and mass spectrometry scanning 110-800 amu in ESI+ ionization mode.
    LC/MS Method A (8.0 min LC-MS Run): XBridge C18 column (4.6×50 mm, 3.5μm, 40° C.); mobile phase: A=10 mM ammonium hydrogen carbonate in water, B=acetonitrile; gradient: 0.0-8.0 min, 5%-95% B; flow rate=1.2 mL/min.
    LC/MS Method B (8.0 min LC-MS Run): XBridge C18 column (4.6×50 mm, 3.5 μm, 40° C.); mobile phase: A=0.1% ammonia in water, B=acetonitrile; gradient: 0.0-8.0 min, 5%-95% B; flow rate=1.2 mL/min.
    LC/MS Method C (8.0 min LC-MS Run): XBridge C18 column (4.6×50 mm, 3.5 μm, 40° C.); mobile phase: A=0.1% TFA in water, B=acetonitrile; gradient: 0.0-8.0 min, 5%-95% B; flow rate=1.2 mL/min.
    LC/MS Method D: Agilent SB C18, 2.1×30 mm, 1.8 μm; mobile phase: A water (0.05% TFA), B CH3CN (0.05% TFA); gradient: 3% B (0.3 min), followed by 3-95% B (6.5 min), 95% B (1.5 min); flow rate: 0.4 mL/min; oven temperature 25° C.
    LC/MS Method E: Acquity BEH C18, 2.1×50 mm, 1.8 μm; mobile phase: A water (0.1% FA), B CH3CN (0.1% FA); gradient: 3% B (0.4 min), followed by 3-95% B (7.5 min), 95% B (0.5 min); flow rate: 0.5 mL/min; oven temperature 25° C.
    LC/MS Method F: Agilent SB C18, 2.1×30 mm, 1.8 μm; mobile phase: A water (0.05% TFA), B CH3CN (0.05% TFA); gradient: 3% B (0.3 min), followed by 3-95% B (6.5 min), 95% B (1.5 min); flow rate: 0.4 mL/min; oven temperature 25° C.
    LC/MS Method G: Acquity BEH C18, 2.1×50 mm, 1.8 μm; mobile phase: A water (0.1% FA), B CH3CN (0.1% FA); gradient: 3% B (0.4 min), followed by 3-95% B (7.5 min), 95% B (0.5 min); flow rate: 0.5 mL/min; oven temperature 25° C.
  • Abbreviations MeCN Acetonitrile
  • EtOAc Ethyl acetate
  • DCE Dichloroethane DCM Dichloromethane DIPEA Diisopropylethylamine DEA Diethylamine
  • DMAP 4-dimethylaminopyridine
  • DMF N,N-Dimethylformamide
  • DMSO Dimethyl sulfoxide
    FA Formic acid
    IPA Isopropyl alcohol
    TFA Trifluoroacetic acid
    EDCI 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride
    HCl Hydrochloric acid
  • HPLC High Pressure Liquid Chromatography LCMS Liquid Chromatography Mass Spectrometry MeOH Methanol
  • NMP N-methyl-2-pyrrolidone
    RPHPLC Reverse phase high pressure liquid chromatography
    RT Retention time
  • THF Tetrahydrofuran EXAMPLES Example 1 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-4-((1-benzylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00192
  • Step 1. Preparation of (R)-tert-butyl 4-((1-benzylpiperidin-3-yl)oxy)-5-chloro-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00193
  • To a solution of (R)-1-benzylpiperidin-3-ol (0.38 g, 2.00 mmol) and tert-butyl 5-chloro-2,4-difluorobenzoate (0.50 g, 2.00 mmol) in anhydrous dimethyl sulfoxide (6 mL) was added cesium carbonate (2.16 g, 4.00 mmol). The reaction mixture was stirred at 70° C. for 2 hours under an atmosphere of nitrogen and then cooled to ambient temperature and quenched by addition of 10 mL of water. The mixture was extracted with ethyl acetate (3×15 mL); the organic layers were combined and washed with brine (15 mL), dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was purified by column chromatography eluting with a gradient of ethyl acetate in hexanes (0 to 25%) to give the title compound (0.66 g, 78%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.85 (d, J=7.74 Hz, 1H), 7.36-7.18 (m, 5H), 6.63 (d, J=12.2 Hz, 1H), 4.49-4.31 (m, 1H), 3.57 (s, 2H), 3.10-2.96 (m, 1H), 2.82-2.66 (m, 1H), 2.27 (m, 1H), 2.20-2.02 (m, 2H), 1.92-1.75 (m, 1H), 1.73-1.59 (m, 1H), 1.60-1.50 (m, 10H).
  • Step 2. Preparation of (R)-tert-butyl 4-((1-benzylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00194
  • To a solution of (R)-tert-butyl 4-((1-benzylpiperidin-3-yl)oxy)-5-chloro-2-fluorobenzoate (0.38 g, 0.90 mmol) and cyclopropylboronic acid (0.12 g, 1.35 mmol) in toluene (3 mL) and water (0.3 mL) was added potassium phosphate tribasic (0.64 g, 1.80 mmol), palladium (II) acetate (0.02 g, 0.09 mmol), and tricyclohexyl phosphonium tetrafluoroborate (0.07 g, 0.18 mmol) and the mixture was degassed thoroughly and the reaction vessel filled up with nitrogen before heating at 115° C. for 40 min under microwave irradiation. The reaction mixture was then cooled to ambient temperature and quenched by addition of 10 mL of water. The mixture was then extracted with diethyl ether (2×15 mL). The organic layers were combined, concentrated and The residue was purified by column chromatography (10 to 30% gradient of ethyl acetate in hexanes) to give the title compound (0.37 g, 98%) as a colorless oil: 1H NMR (300 MHz, CDCl3) d7.36 (d, J=8.4 Hz, 1H), 7.33-7.13 (m, 5H), 6.53 (d, J=12.8 Hz, 1H), 4.44-4.30 (m, 1H), 3.61-3.49 (m, 2H), 3.09-2.94 (m, 1H), 2.76-2.63 (m, 1H), 2.31-1.96 (m, 4H), 1.90-1.60 (m, 3H), 1.59-1.54 (m, 9H), 0.92-0.83 (m, 2H), 0.67-0.60 (m, 2H); MS(ES+) m/z 426.2 (M+1).
  • Step 3. Preparation of (R)—N-(azetidin-1-ylsulfonyl)-4-((1-benzylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00195
  • To a solution of (R)-tert-butyl 4-((1-benzylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate (0.127 g, 0.30 mmol) in dichloromethane (1 mL) was added trifluoroacetic acid (1 mL). After stirring at ambient temperature for 1 hour, the reaction mixture was concentrated, diluted with dichloromethane (10 mL) and washed with aqueous hydrochloric acid (1.0 N, 10 mL). The aqueous layers was extracted with dichloromethane (10 mL), the organic layers were combined, dried over anhydrous sodium sulfate, filtered and concentrated to give the corresponding carboxylic acid which was used directly for the next step. To a solution of the carboxylic acid (0.11 g, 0.30 mmol) in dichloromethane (2 mL) was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (0.124 g, 0.48 mmol) and 4-dimethylaminopyridine (0.091 g, 0.75 mmol) and azetidine sulfonamide (0.052 g, 0.39 mmol). The reaction mixture was stirred at ambient temperature for 16 hours and then diluted with dichloromethane (10 mL) and washed with aqueous hydrochloric acid (1.0 N, 10 mL). The aqueous layer was extracted with dichloromethane (10 mL); the organic layers were combined, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was first purified by column chromatography eluting with a gradient of methanol in dichloromethane (0% to 15%) and further purified by preparative HPLC (gradient of acetonitrile in water) to give the title compound as a white solid (0.021 g, 14%): 1H NMR (300 MHz, CDCl3) δ 7.54 (d, J=9.1 Hz, 1H), 7.33-7.22 (m, 5H), 6.56 (d, J=14.5 Hz, 1H), 4.48-4.34 (m, 1H), 4.22 (t, J=7.7 Hz, 4H), 3.57 (s, 2H), 3.07-2.93 (m, 1H), 2.78-2.67 (m, 1H), 2.35-2.13 (m, 4H), 2.13-1.99 (m, 2H), 1.91-1.78 (m, 1H), 1.76-1.46 (m, 2H), 0.95-0.85 (m, 2H), 0.69-0.61 (m, 2H). MS(ES+) m/z: 488.1 (M+1); MS(ES−) m/z 486.2 (M−1).
  • Example 2 Synthesis of (S)—N-(azetidin-1-ylsulfonyl)-4-((1-benzylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00196
  • Following the procedure as described in Example 1 step 1 to step 3, and making variation as required to replace (R)-1-benzylpiperidin-3-ol with (S)-1-benzylpiperidin-3-ol, the title compound was obtained as a white solid (0.012 g, 45%): 1H NMR (300 MHz, CDCl3) d 7.54 (d, J=9.15 Hz, 1H), 7.33-7.22 (m, 5H), 6.56 (d, J=14.5 Hz, 1H), 4.48-4.34 (m, 1H), 4.22 (t, J=7.7 Hz, 4H), 3.57 (s, 2H), 3.07-2.93 (m, 1H), 2.78-2.67 (m, 1H), 2.35-2.13 (m, 4H), 2.13-1.99 (m, 2H), 1.91-1.78 (m, 1H), 1.76-1.46 (m, 2H), 0.95-0.85 (m, 2H), 0.69-0.61 (m, 2H); MS(ES+) m/z 488.1 (M+1); MS(ES−) m/z 486.2 (M−1).
  • Example 3 Synthesis of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00197
  • Step 1. Preparation of (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00198
  • To a solution of (R)-tert-butyl 3-hydroxypiperidine-1-carboxylate (10.05 g, 50.00 mmol) and tert-butyl 5-chloro-2,4-difluorobenzoate (13.02 g, 52.50 mmol) in anhydrous DMSO (200 mL) was added cesium carbonate (40.62 g, 75.00 mmol). The reaction mixture was stirred at 70° C. for 1 hour under an atmosphere of nitrogen and then cooled to ambient temperature and quenched by addition of 50 mL of water. The mixture was extracted with ethyl acetate (3×100 mL); the organic layers were combined and washed with brine (150 mL), dried over anhydrous magnesium sulfate, filtered and concentrated. The crude material (22.50 g, 99%) was used directly for the next step without further purification: MS(ES+) m/z 430.2, 431.2 (M+1).
  • Step 2. Preparation of (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00199
  • To a solution of (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)piperidine-1-carboxylate (22.50 g, 50.00 mmol) and cyclopropylboronic acid (7.22 g, 83.90 mmol) in toluene (150 mL) and water (15 mL) was added potassium phosphate tribasic (39.53 g, 111.90 mmol), palladium (II) acetate (1.25 g, 5.60 mmol), and tricyclohexyl phosphonium tetrafluoroborate (4.10 g, 11.20 mmol). The mixture was degassed thoroughly and the reaction vessel filled up with nitrogen before heating at 115° C. for 16 hours. The reaction mixture was then cooled to ambient temperature and quenched by addition of 100 mL of water. The mixture was extracted with diethyl ether (2×100 mL). The organic layers were combined, concentrated. The residue was purified by column chromatography (10 to 30% gradient of ethyl acetate in hexanes) to give the title compound as an colorless oil (16.50 g, 75%). 1H NMR (300 MHz, CDCl3) d 7.36 (d, J=8.4 Hz, 1H), 6.55 (d, J=12.6 Hz, 1H), 4.37-4.21 (m, 1H), 3.81-3.32 (m, 4H), 2.03-1.76 (m, 5H), 1.55 (s, 9H), 0.92-0.79 (m, 2H), 0.73-0.50 (m, 2H).
  • Step 3. Preparation of (R)-5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoic acid, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00200
  • To a solution of (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)-piperidine-1-carboxylate (9.5 g, 21.8 mmol) in dichloromethane (200 mL), was added trifluoroacetic acid (40 ml). The reaction mixture was stirred at ambient temperature for 3 hours and then concentrated in vacuo. The residue was purified by column chromatography (5% to 100% methanol in water on C18 column) afforded the title compound as colorless solid (5.3 g, 64%): 1H NMR (300 MHz, DMSO-d6) δ 9.83 (brs, 2H), 7.27 (d, J=8.5 Hz, 1H), 7.02 (d, J=13.1 Hz, 1H), 4.76 (brs, 1H), 3.36-3.32 (m, 1H), 3.22-3.16 (m, 1H), 3.04 (brs, 2H), 2.27-2.18 (m, 1H), 1.96-1.66 (m, 4H), 0.92-0.87 (m, 2H), 0.66-0.52 (m, 2H); MS(ES+) m/z 280.3 (M+1); MS(ES−) m/z 278.4 (M−1).
  • Step 4. Preparation of (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C00201
  • To a stirred solution of (R)-5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoic acid trifluoroacetate (0.20 g, 0.53 mmol) in tetrahydrofuran (1 mL) under an atmosphere of nitrogen were introduced 3,5-dichlorobenzaldehyde (0.11 g, 0.64 mmol) and sodium triacetoxyborohydride (0.31 g, 0.96 mmol) and the mixture was stirred for 16 hours. Aqueous hydrochloric acid (1M, 5 mL) was added and the mixture was extracted with ethyl acetate (3×10 mL) and concentrated. The residue was purified by column chromatography eluting with 5% methanol in dichloromethane to give the title compound as an oil (0.16 g, 63%); MS(ES+) m/z 438.1, 440.1 (M+1); MS(ES−) m/z 436.1, 438.1 (M−1).
  • Step 5. Preparation of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00202
  • To a solution of (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid hydrochloride (0.07 g, 0.17 mmol) in dichloromethane (1 mL) was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (0.04 g, 0.25 mmol) and 4-dimethylaminopyridine (0.05 g, 0.42 mmol) and cyclopropylsulfonamide (0.02 g, 0.17 mmol). The reaction mixture was stirred at ambient temperature for 16 hours and then diluted with dichloromethane (10 mL) and washed with aqueous hydrochloric acid (1M, 10 mL). The aqueous layer was extracted with dichloromethane (10 mL), the organic layers were combined, dried over anhydrous sodium sulfate, filtered and concentrated to give an oil which was purified over silica gel chromatography (0 to 15% gradient of methanol containing 1% ammonia solution in dichloromethane) to give the title compound (0.02 g, 20%): 1H NMR (300 MHz, CDCl3) δ 7.41 (d, J=12.6 Hz, 1H), 7.23-7.18 (m, 3H), 6.54 (d, J=12.6 Hz, 1H), 4.49-4.33 (m, 1H), 3.56-3.39 (m, 2H), 2.94-2.81 (m, 1H), 2.68-2.53 (m, 1H), 2.46-2.31 (m, 1H), 2.31-2.16 (m, 1H), 2.11-1.97 (m, 2H), 1.92-1.78 (m, 1H), 1.73-1.52 (m, 3H), 0.98-0.79 (m, 6H), 0.72-0.57 (m, 2H); MS(ES+) m/z 541.1, 543.1 (M+1); MS(ES−) m/z 539.2, 541.2 (M−1).
  • Example 4 Synthesis of (R)-4-((1-acetylpiperidin-3-yl)oxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00203
  • This compound was isolated as a side product during the synthesis of Example 3 in step 5 (0.02 g, 24%) as a colorless solid: 1H NMR (300 MHz, DMSO-d6) d 7.21-7.00 (m, 2H), 4.83-4.52 (m, 1H), 4.06-3.93 (m, 1H), 3.86-3.69 (m, 1H), 3.63-3.38 (m, 2H), 3.13-2.93 (m, 2H), 1.99-1.76 (m, 5H), 1.72-1.36 (m, 2H), 1.29-1.03 (m, 4H), 0.90-0.79 (m, 2H), 0.69-0.60 (m, 2H); MS(ES+) m/z 425.2 (M+1); MS(ES−) m/z 423.3 (M−1).
  • Example 5 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00204
  • Following the procedure as described in Example 3 step 5, and making variation as required to replace cyclopropylsulfonamide with azetidine-1-sulfonamide, the title compound was obtained (0.02 g, 25%) as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 11.63-11.45 (m, 1H), 7.46-7.40 (m, 1H), 7.38-7.29 (m, 2H), 7.11 (d, J=8.36 Hz, 1H), 6.97 (d, J=13.0 Hz, 1H), 4.68-4.53 (m, 1H), 4.05-3.92 (m, 4H), 3.63-3.43 (m, 2H), 2.74-2.63 (m, 1H), 2.44-2.25 (m, 2H), 2.20-1.99 (m, 3H), 1.93-1.67 (m, 2H), 1.63-1.48 (m, 3H), 0.96-0.79 (m, 2H), 0.77-0.60 (m, 2H); MS(ES+) m/z 556.1, 558.1 (M+1); MS(ES−) m/z 554.2, 556.2 (M−1).
  • Example 6 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00205
  • Following the procedure as described in Example 3 steps 4 and 5, and making variations as required to replace 3,5-dichlorobenzaldehyde with 2-chloro-4-fluorobenzaldehyde and cyclopropylsulfonamide with azetidine-1-sulfonamide, the title compound was obtained (0.035 g, 50%) as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 11.62-11.47 (m, 1H), 7.45-7.40 (m, 1H), 7.38-7.28 (m, 2H), 7.11 (d, J=8.3 Hz, 1H), 4.68-4.53 (m, 1H), 4.05-3.92 (m, 4H), 3.62-3.42 (m, 2H), 2.75-2.63 (m, 1H), 2.44-2.26 (m, 2H), 2.20-2.00 (m, 3H), 1.90-1.67 (m, 2H), 1.63-1.48 (m, 3H), 0.94-0.81 (m, 2H), 0.76-0.62 (m, 2H); MS(ES+) m/z 540.1, 542.1 (M+1); MS(ES−) m/z 538.2, 540.2 (M−1).
  • Example 7 Synthesis of (R)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00206
  • Following the procedures as described in Example 3 steps 4 and 5, and making variation as required to replace 3,5-dichlorobenzaldehyde with 2-chloro-4-fluorobenzaldehyde, the title compound was obtained (0.038 g, 37%) as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 11.89-11.60 (m, 1H), 7.49 (dd, J=8.5, 6.5 Hz, 1H), 7.37 (dd, J=8.8, 2.6 Hz, 1H), 7.17-7.05 (m, 2H), 6.98 (d, J=13.2 Hz, 1H), 4.68-4.50 (m, 1H), 3.63-3.52 (m, 2H), 3.11-2.97 (m, 1H), 2.84-2.70 (m, 1H), 2.61-2.49 (m, 2H), 2.43-2.29 (m, 1H), 2.12-1.98 (m, 1H), 1.98-1.65 (m, 2H), 1.64-1.45 (m, 2H), 1.13-1.02 (m, 4H), 0.91-0.81 (m, 2H), 0.72-0.62 (m, 2H); MS(ES+) m/z 525.1, 527.1 (M+1); MS(ES−) m/z 523.2, 525.2 (M−1).
  • Example 8 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((1-(2,4-difluorobenzyl)-piperidin-3-yl)oxy)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00207
  • Following the procedures as described in Example 3 steps 4 and 5, and making variations as required to replace 3,5-dichlorobenzaldehyde with 2,4-difluorobenzaldehyde and cyclopropylsulfonamide with azetidine-1-sulfonamide, the title compound was obtained (0.048 g, 57%) as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 11.95-11.21 (m, 1H), 7.44 (dd, J=15.4, 8.53 Hz, H), 7.26-6.81 (m, 4H), 4.67-4.52 (m, 1H), 4.08-3.97 (m, 4H), 3.62-3.54 (m, 2H), 2.90-2.77 (m, 1H), 2.64-2.53 (m, 1H), 2.46-2.22 (m, 2H), 2.22-2.05 (m, 3H), 2.01-1.87 (m, 1H), 1.85-1.69 (m, 1H), 1.68-1.39 (m, 2H), 0.95-0.82 (m, 2H), 0.76-0.64 (m, 2H); MS(ES+) m/z 524.1 (M+1); MS(ES−) m/z 522.2 (M−1).
  • Example 9 Synthesis of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(2,4-difluorobenzyl)-piperidin-3-yl)oxy)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00208
  • Following the procedures as described in Example 3 steps 4 and 5, and making variation as required to replace 3,5-dichlorobenzaldehyde with 2,4-difluorobenzaldehyde, the title compound was obtained (0.035 g, 39%) as a colorless solid: H NMR (300 MHz, DMSO-d6) δ 11.87-11.57 (m, 1H), 7.51-7.38 (m, 1H), 7.26-6.95 (m, 4H), 4.67-4.51 (m, 1H), 3.62-3.55 (m, 2H), 3.13-3.00 (m, 1H), 2.90-2.77 (m, 1H), 2.65-2.52 (m, 1H), 2.45-2.16 (m, 2H), 2.11-2.01 (m, 1H), 1.99-1.87 (m, 1H), 1.83-1.68 (m, 1H), 1.67-1.38 (m, 2H), 1.14-1.01 (m, 4H), 0.93-0.83 (m, 2H), 0.75-0.61 (m, 2H); MS(ES+) m/z 509.2 (M+1); MS(ES−) m/z 507.3 (M−1).
  • Example 10 Synthesis of (R)-5-cyclopropyl-4-((1-(2,6-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00209
  • Following the procedures as described in Example 3 steps 4 and 5, and making variations as required to replace 3,5-dichlorobenzaldehyde with 2,6-dichlorobenzaldehyde and cyclopropylsulfonamide with methylsulfonamide, the title compound was obtained (0.018 g, 13%) as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 7.46-7.34 (m, 2H), 7.28 (dd, J=8.8, 7.18 Hz, 1H), 7.14 (d, J=8.8 Hz, 1H), 4.39-4.24 (m, 1H), 3.67 (m, 2H), 2.94-2.80 (m, 1H), 2.80-2.72 (m, 3H), 2.61-2.53 (m, 1H), 2.44-2.37 (m, 1H), 2.37-2.23 (m, 1H), 2.05-1.83 (m, 2H), 1.78-1.60 (m, 1H), 1.54-1.36 (m, 2H), 0.86-0.73 (m, 2H), 0.56-0.42 (m, 2H); MS(ES+) m/z 515.2, 517.2 (M+1); MS(ES−) m/z 513.3, 515.3 (M−1).
  • Example 11 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-4-((1-(cyclohexylmethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00210
  • Following the procedures as described in Example 3 steps 4 and 5, and making variations as required to replace 3,5-dichlorobenzaldehyde with cyclohexanecarbaldehyde and cyclopropylsulfonamide with azetidine-1-sulfonamide, the title compound was obtained (0.041 g, 51%) as a colorless solid: 1H NMR (300 MHz, acetonitrile-d3) δ 7.36-7.26 (m, 1H), 7.07-6.95 (m, 1H), 5.01-4.88 (m, 1H), 4.18-4.08 (m, 4H), 2.98-2.83 (m, 2H), 2.31-2.15 (m, 7H), 1.84-1.57 (m, 9H), 1.36-1.11 (m, 4H), 1.08-0.87 (m, 4H), 0.70-0.62 (m, 2H); MS(ES+) m/z 494.3 (M+1); MS(ES−) m/z 492.4 (M−1).
  • Example 12 Synthesis of (R)-5-cyclopropyl-2-fluoro-4-((1-((1-methyl-3-phenyl-1H-pyrazol-5-yl)methyl)piperidin-3-yl)oxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00211
  • Following the procedures as described in Example 3 steps 4 and 5, and making variations as required to replace 3,5-dichlorobenzaldehyde with 1-methyl-3-phenyl-1H-pyrazole-5-carbaldehyde and cyclopropylsulfonamide with methylsulfonamide, the title compound was obtained (0.023 g, 39%) as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 7.75-7.61 (m, 2H), 7.33 (t, J=7.5 Hz, 2H), 7.25-7.13 (m, 2H), 6.81-6.67 (m, 1H), 6.52 (d, J=3.3 Hz, 1H), 4.53-4.41 (m, 1H), 3.79 (s, 3H), 3.61-3.50 (m, 2H), 2.88-2.74 (m, 4H), 2.31-2.19 (m, 1H), 2.07-1.83 (m, 3H), 1.79-1.68 (m, 1H), 1.57-1.38 (m, 3H), 0.86-0.78 (m, 2H), 0.58-0.48 (m, 2H); MS(ES+) m/z 527.3 (M+1); MS(ES−) m/z 525.3 (M−1).
  • Example 13 Synthesis of (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(pyridazin-4-ylmethyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00212
  • Following the procedures as described in Example 3 steps 4 and 5, and making variations as required to replace 3,5-dichlorobenzaldehyde with 1-methyl-3-phenyl-1H-pyrazole-5-carbaldehyde and cyclopropylsulfonamide with methylsulfonamide, the title compound was obtained (0.035 g, 40%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 8.87-8.82 (m, 1H), 8.75 (dd, J=5.2, 0.8 Hz, 1H), 7.23-7.18 (m, 1H), 7.08 (d, J=8.8 Hz, 1H), 6.36 (d, J=13.5 Hz, 1H), 4.28-4.16 (m, 1H), 3.35 (d, J=15.0 Hz, 1H), 3.26 (d, J=15.0 Hz, 1H), 2.88 (s, 3H), 2.59-2.48 (m, 1H), 2.38-2.02 (m, 4H), 1.85-1.76 (m, 2H), 1.46-1.29 (m, 3H), 0.68-0.59 (m, 2H), 0.46-0.34 (m, 2H); MS(ES+) m/z 449.1 (M+1).
  • Example 14 Synthesis of (R)-5-cyclopropyl-2-fluoro-4-((1-(isoindolin-4-ylmethyl)piperidin-3-yl)oxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00213
  • Step 1. Preparation of (R)-tert-butyl 4-((3-(2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)-phenoxy)piperidin-1-yl)methyl)isoindoline-2-carboxylate
  • Figure US20210093618A1-20210401-C00214
  • Following the procedures as described in Example 3 steps 4 and 5, and making variations as required to replace 3,5-dichlorobenzaldehyde with tert-butyl 4-formylisoindoline-2-carboxylate and cyclopropylsulfonamide with methylsulfonamide, the title compound was obtained (0.030 g, 16%): MS(ES+) m/z 588.2 (M+1).
  • Step 2. Preparation of (R)-5-cyclopropyl-2-fluoro-4-((1-(isoindolin-4-ylmethyl)-piperidin-3-yl)oxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00215
  • To a stirred solution of (R)-tert-butyl 4-((3-(2-cyclopropyl-5-fluoro-4-((methylsulfonyl)-carbamoyl)phenoxy)piperidin-1-yl)methyl)isoindoline-2-carboxylate (0.030 g, 0.051 mmol) in dichloromethane (1 mL) was added trifluoroacetic acid (0.3 mL) and the mixture was stirred at ambient temperature for 1 hour and then concentrated. The residue was purified by silica gel chromatography (0 to 15% gradient of methanol plus 1% ammonia solution in dichloromethane) to give the title compound (0.01 g, 38%): 1H NMR (300 MHz, MeOD-d4) d 7.41-7.18 (m, 4H), 6.69 (d, J=13.1 Hz, 1H), 4.77-4.54 (m, 2H), 4.53-4.43 (m, 1H), 3.61-3.55 (m, 2H), 3.54-3.40 (m, 1H), 3.37-3.03 (m, 4H), 2.88-2.79 (m, 1H), 2.61-2.52 (m, 1H), 2.51-2.41 (m, 1H), 2.38-2.26 (m, 1H), 2.10-1.99 (m, 2H), 1.94-1.82 (m, 1H), 1.78-1.70 (m, 1H), 1.69-1.56 (m, 1H), 0.94-0.85 (m, 2H), 0.70-0.57 (m, 2H); MS(ES+) m/z 488.3 (M+1); MS(ES−) m/z 486.4 (M−1).
  • Example 15 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-4-((1-benzhydrylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00216
  • Step 1. Preparation of (R)-4-((1-benzhydrylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00217
  • To a stirred solution of (R)-5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoic acid trifluoroacetate (0.20 g, 0.53 mmol) in acetonitrile (2 mL) under an atmosphere of nitrogen were added (bromomethylene)dibenzene (0.16 g, 0.64 mmol), potassium carbonate (0.17 g, 1.28 mmol) and sodium iodide (0.09 g, 0.64 mmol) and the mixture was stirred at reflux for 16 hours. After cooled to ambient temperature, 1M aqueous hydrochloric acid (5 mL) was added slowly and the mixture was extracted with ethyl acetate (3×10 mL) and concentrated. The residue was purified over silica gel chromatography eluting with 30% ethyl acetate (containing 1% Formic acid) in hexanes to give compound the title compound as an oil (0.16 g, 70%): MS(ES+) m/z 446.1 (M+1).
  • Step 2. Preparation of (R)—N-(azetidin-1-ylsulfonyl)-4-((1-benzhydrylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00218
  • Following the procedure as described in Example 3 step 5, and making variations as required to replace cyclopropylsulfonamide with azetidine-1-sulfonamide, the title compound was obtained (0.035 g, 34%) as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 11.65-11.53 (m, 1H), 7.43-7.35 (m, 2H), 7.31-7.19 (m, 4H), 7.19-7.05 (m, 5H), 6.86 (d, J=13.0 Hz, 1H), 4.71-4.57 (m, 1H), 4.39-4.33 (m, 1H), 4.08-3.95 (m, 4H), 2.62-2.49 (m, 1H), 2.44-2.21 (m, 3H), 2.20-2.05 (m, 3H), 1.94-1.70 (m, 2H), 1.67-1.48 (m, 2H), 0.96-0.87 (m, 2H), 0.79-0.69 (m, 2H); MS (ES+) m/z 564.3 (M+1); MS(ES−) m/z 562.4 (M−1).
  • Example 16 Synthesis of (R)-4-((1-benzhydrylpiperidin-3-yl)oxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00219
  • Following the procedure as described in Example 15 step 2, and making variations as required to replace azetidine-1-sulfonamide with cyclopropylsulfonamide, the title compound was obtained (0.048 g, 52%) as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 11.90-11.73 (m, 1H), 7.43-7.34 (m, 2H), 7.31-7.20 (m, 4H), 7.19-7.04 (m, 5H), 6.86 (d, J=13.2 Hz, 1H), 4.73-4.55 (m, 1H), 4.40-4.32 (m, 1H), 3.12-2.99 (m, 1H), 2.62-2.49 (m, 1H), 2.44-2.21 (m, 3H), 2.20-2.05 (m, 1H), 1.94-1.71 (m, 2H), 1.68-1.46 (m, 2H), 1.15-1.02 (m, 4H), 0.96-0.87 (m, 2H), 0.79-0.68 (m, 2H); MS(ES+) m/z 549.3 (M+1); MS(ES−) m/z 547.4 (M−1).
  • Example 17 Synthesis of (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00220
  • Step 1. Preparation of (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00221
  • To a solution of (R)-5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoic acid (0.40 g, 1.43 mmol) and 3,4-dichlorobenzaldehyde (0.30 g, 1.72 mmol) in tetrahydrofuran (2 mL) was added sodium triacetoxyborohydride (0.55 g, 2.58 mmol). The reaction mixture was stirred at ambient temperature for 2 hours, and concentrated in vacuo. The residue was diluted with ethyl acetate (50 mL), washed with aqueous ammonium chloride (25% solution, 2×25 mL); dried over anhydrous sodium sulfate and concentrated invacuo. The crude product was purified by column chromatography (5% to 100% methanol in water on C18 column) afforded the title compound as colorless solid (0.42 g, 56%): MS(ES+) m/z 438.2, 440.2 (M+1); MS(ES−) m/z 436.3,
  • 438.3 (M−1).
  • Step 2. Preparation of (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00222
  • To a mixture of (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid (0.10 g, 0.23 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (0.10 g, 0.52 mmol) and 4-dimethylaminopyridine (0.06 g, 0.52 mmol) in anhydrous dichloromethane (2 mL) was added methanesulfonamide (0.03 g, 0.34 mmol) at ambient temperature. The resulting mixture was stirred at ambient temperature for 16 hours. The mixture was diluted with ethyl acetate (50 mL), washed with aqueous ammonium chloride (25% solution, 2×25 mL), dried over anhydrous sodium sulfate, and filtered.
  • The filtrate was concentrated in vacuo, the crude product was purified by silica gel column chromatography using 10-100% ethyl acetate in hexanes as an eluent to afford the title compound as colorless solid (0.07 g, 58%): 1H NMR (300 MHz, DMSO-d6) δ 11.74 (brs, 1H), 7.57-7.53 (m, 2H), 7.29 (dd, J=1.8, 8.3 Hz, 1H), 7.14 (d, J=8.4 Hz, 1H), 6.99 (d, J=13.2 Hz, 1H), 4.63-4.61 (m, 1H), 3.61 (d, J=14.0 Hz, 1H), 3.53 (d, J=14.0 Hz, 1H), 3.29 (s, 3H), 2.79-2.75 (m, 1H), 2.55-2.32 (m, 3H), 2.12-2.03 (m, 1H), 1.92-1.89 (m, 1H), 1.83-1.77 (m, 1H), 1.63-1.53 (m, 2H), 0.93-0.85 (m, 2H), 0.76-0.65 (m, 2H); MS(ES+) m/z 515.2, 517.2 (M+1); MS(ES−) m/z 513.1, 515.1 (M−1).
  • Example 18 Synthesis of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(3,4-dichlorobenzyl)-piperidin-3-yl)oxy)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00223
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as colorless solid (0.06 g, 51%): 1H NMR (300 MHz, DMSO-d6) δ 11.72 (brs, 1H), 7.56-7.53 (m, 2H), 7.28 (dd, J=1.8, 8.3 Hz, 1H), 7.13 (d, J=8.4 Hz, 1H), 7.00 (d, J=13.2 Hz, 1H), 4.63-4.61 (m, 1H), 3.60 (d, J=14.0 Hz, 1H), 3.51 (d, J=14.0 Hz, 1H), 3.11-3.02 (m, 1H), 2.77-2.74 (m, 1H), 2.54-2.34 (m, 3H), 2.13-2.03 (m, 1H), 1.92-1.77 (m, 2H), 1.60-1.56 (m, 2H), 0.12-1.07 (m, 4H), 0.92-0.88 (m, 2H), 0.74-0.69 (m, 2H); MS(ES+) m/z 541.2, 543.2 (M+1); MS(ES−) m/z 539.1, 541.1 (M−1).
  • Example 19 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)-piperidin-3-yl)oxy)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00224
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace methanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as colorless solid (0.01 g, 11%): 1H NMR (300 MHz, CDCl3) δ 8.65 (brs, 1H), 7.58 (d, J=9.1 Hz, 1H), 7.44-7.35 (m, 2H), 7.16-7.14 (m, 1H), 6.58 (d, J=14.1 Hz, 1H), 4.44 (brs, 1H), 4.27-4.22 (m, 4H), 3.56-3.45 (m, 2H), 2.92-2.88 (m, 1H), 2.67-2.63 (m, 1H), 2.41-2.22 (m, 4H), 2.12-2.03 (m, 2H), 1.91-1.87 (m, 1H), 1.68-1.63 (m, 2H), 0.97-0.91 (m, 2H), 0.71-0.67 (m, 2H); MS(ES+) m/z 556.2, 558.2 (M+1); MS(ES−) m/z 554.2, 556.2 (M−1).
  • Example 20 Synthesis of (R)-5-cyclopropyl-2-fluoro-4-((1-(4-fluorobenzyl)piperidin-3-yl)oxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00225
  • Step 1. Preparation of (R)-5-cyclopropyl-2-fluoro-4-((1-(4-fluorobenzyl)piperidin-3-yl)oxy)benzoic acid
  • Figure US20210093618A1-20210401-C00226
  • Following the procedure as described in Example 17 step 1, and making variations as required to replace 3,4-dichlorobenzaldehyde with 4-fluorobenzaldehyde, the title compound was obtained as colorless solid (0.22 g, 41%): MS(ES+) m/z 388.2 (M+1); MS(ES−) m/z 386.2 (M−1).
  • Step 2. Preparation of ((R)-5-cyclopropyl-2-fluoro-4-((1-(4-fluorobenzyl)piperidin-3-yl)oxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00227
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(4-fluorobenzyl)piperidin-3-yl)oxy)benzoic acid, the title compound was obtained as colorless solid (0.01 g, 14%): 1H NMR (300 MHz, DMSO-d6) δ 11.68 (brs, 1H), 7.36-7.31 (m, 2H), 7.15-7.09 (m, 3H), 6.93 (d, J=13.1 Hz, 1H), 4.59-4.55 (m, 1H), 3.62-3.50 (m, 2H), 3.21 (m, 3H), 2.84-2.81 (m, 1H), 2.60-2.56 (m, 1H), 2.44-2.26 (m, 2H), 2.10-2.01 (m, 1H), 1.98-1.92 (m, 1H), 1.82-1.76 (m, 1H), 1.64-1.46 (m, 2H), 0.90-0.87 (m, 2H), 0.69-0.65 (m, 2H); MS(ES+) m/z 465.3 (M+1); MS(ES−) m/z 463.2 (M−1).
  • Example 21 Synthesis of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(4-fluorobenzyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00228
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(4-fluorobenzyl)piperidin-3-yl)oxy)benzoic acid and methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as colorless solid (0.05 g, 51%): 1H NMR (300 MHz, DMSO-d6) δ 11.62 (brs, 1H), 7.36-7.31 (m, 2H), 7.15-7.09 (m, 3H), 6.97 (d, J=13.2 Hz, 1H), 4.62-4.57 (m, 1H), 3.63-3.52 (m, 2H), 3.09-3.01 (m, 1H), 2.83-2.80 (m, 1H), 2.60-2.56 (m, 1H), 2.42-2.27 (m, 2H), 2.11-2.02 (m, 1H), 1.98-1.92 (m, 1H), 1.82-1.76 (m, 1H), 1.61-1.50 (m, 2H), 1.10-1.06 (m, 4H), 0.91-0.87 (m, 2H), 0.71-0.67 (m, 2H); MS(ES+) m/z 491.3 (M+1); MS(ES−) m/z 489.3 (M−1).
  • Example 22 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluoro-4-((1-(4-fluorobenzyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00229
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(4-fluorobenzyl)piperidin-3-yl)oxy)benzoic acid and methanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as colorless solid (0.04 g, 44%): 1H NMR (300 MHz, DMSO-d6) δ 11.48 (brs, 1H), 7.35-7.31 (m, 2H), 7.14-7.09 (m, 3H), 6.98 (d, J=13.0 Hz, 1H), 4.60-4.58 (m, 1H), 4.01 (t, J=7.7 Hz, 4H), 3.62-3.50 (m, 2H), 2.82-2.79 (m, 1H), 2.60-2.56 (m, 1H), 2.41-2.26 (m, 2H), 2.20-2.04 (m, 3H), 1.98-1.92 (m, 1H), 1.82-1.76 (m, 1H), 1.64-1.46 (m, 2H), 0.91-0.85 (m, 2H), 0.72-0.68 (m, 2H); MS(ES+) m/z 506.3 (M+1); MS(ES−) m/z 504.3 (M−1).
  • Example 23 Synthesis of (R)-4-((1-(2-chlorobenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00230
  • Step 1. Preparation of (R)-5-cyclopropyl-2-fluoro-4-((1-(2-chlorobenzyl)piperidin-3-yl)oxy)benzoic acid
  • Figure US20210093618A1-20210401-C00231
  • Following the procedure as described in Example 17 step 1, and making variations as required to replace 3,4-dichlorobenzaldehyde with 2-chlorobenzaldehyde, the title compound was obtained as colorless solid (0.28 g, 41%): MS(ES+) m/z 404.2, 406.2 (M+1); MS(ES−) m/z 402.2.
  • 404.2 (M−1).
  • Step 2. Preparation of (R)-4-((1-(2-chlorobenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00232
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(2-chlorobenzyl)piperidin-3-yl)oxy)benzoic acid and methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as colorless solid (0.09 g, 98%): 1H NMR (300 MHz, DMSO-d6) δ 11.71 (brs, 1H), 7.48-7.45 (m, 1H), 7.39-7.36 (m, 1H), 7.24-7.21 (m, 2H), 7.08 (d, J=8.4 Hz, 1H), 6.97 (d, J=13.2 Hz, 1H), 4.60-4.58 (m, 1H), 3.59 (s, 2H), 3.07-2.99 (m, 1H), 2.79-2.76 (m, 1H), 2.58-2.51 (m, 1H), 2.50-2.36 (m, 2H), 2.10-2.00 (m, 1H), 1.92-1.88 (m, 1H), 1.81-1.75 (m, 1H), 1.58-1.51 (m, 2H), 1.08-1.04 (m, 4H), 0.87-0.83 (m, 2H), 0.68-0.65 (m, 2H); MS(ES+) m/z 507.3, 509.3 (M+1); MS(ES−) m/z 505.3, 507.3 (M−1).
  • Example 24 Synthesis of (R)-4-((1-(2-chlorobenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00233
  • Following the procedure as described in Example 17 step 3, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(2-chlorobenzyl)piperidin-3-yl)oxy)benzoic acid, the title compound was obtained as colorless solid (0.05 g, 58%): 1H NMR (300 MHz, DMSO-d6) δ 11.79 (brs, 1H), 7.52-7.49 (m, 1H), 7.43-7.39 (m, 1H), 7.28-7.24 (m, 2H), 7.13 (d, J=8.4 Hz, 1H), 7.00 (d, J=13.2 Hz, 1H), 4.64-4.561 (m, 1H), 3.64 (s, 2H), 3.31 (s, 3H), 2.83-2.80 (m, 1H), 2.63-2.57 (m, 1H), 2.53-2.38 (m, 2H), 2.13-2.04 (m, 1H), 1.95-1.92 (m, 1H), 1.84-1.77 (m, 1H), 1.62-1.57 (m, 2H), 0.92-0.85 (m, 2H), 0.72-0.68 (m, 2H); MS(ES+) m/z 481.2, 483.2 (M+1); MS(ES−) m/z 479.3, 481.3 (M−1).
  • Example 25 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-4-((1-(2-chlorobenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00234
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(2-chlorobenzyl)piperidin-3-yl)oxy)benzoic acid and methanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as colorless solid (0.07 g, 74%): 1H NMR (300 MHz, DMSO-d6) δ 11.56 (brs, 1H), 7.53-7.49 (m, 1H), 7.43-7.38 (m, 1H), 7.29-7.23 (m, 2H), 7.13 (d, J=8.3 Hz, 1H), 7.02 (d, J=13.0 Hz, 1H), 4.64-4.62 (m, 1H), 4.03 (t, J=7.7 Hz, 4H), 3.63 (s, 2H), 2.84-2.80 (m, 1H), 2.62-2.57 (m, 1H), 2.49-2.39 (m, 2H), 2.21-2.05 (m, 3H), 1.95-1.92 (m, 1H), 1.84-1.79 (m, 1H), 1.62-1.54 (m, 2H), 0.92-0.87 (m, 2H), 0.73-0.69 (m, 2H); MS(ES+) m/z 522.3, 524.2 (M+1); MS(ES−) m/z 520.3, 522.3 (M−1).
  • Example 26 Synthesis of (R)-4-((1-(3-chlorobenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00235
  • Step 1. Preparation of (R)-4-((1-(3-chlorobenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00236
  • Following the procedure as described in Example 17 step 1, and making variations as required to replace 3,4-dichlorobenzaldehyde with 3-chlorobenzaldehyde, the title compound was obtained as colorless solid (0.23 g, 41%): MS(ES+) m/z 404.2, 406.2 (M+1); MS(ES−) m/z 402.2, 404.2
  • (M−1).
  • Step 2. Preparation of (R)-4-((1-(3-chlorobenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00237
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(3-chlorobenzyl)piperidin-3-yl)oxy)benzoic acid, the title compound was obtained as colorless solid (0.04 g, 51%): 1H NMR (300 MHz, DMSO-d6) δ 11.71 (brs, 1H), 7.39-7.25 (m, 4H), 7.13 (d, J=8.4 Hz, 1H), 6.99 (d, J=13.1 Hz, 1H), 4.63-4.61 (m, 1H), 3.66-3.54 (m, 2H), 3.29 (s, 3H), 2.81-2.78 (m, 1H), 2.56-2.36 (m, 3H), 2.11-2.03 (m, 1H), 1.93-1.89 (m, 1H), 1.83-1.77 (m, 1H), 1.63-1.53 (m, 2H), 0.92-0.88 (m, 2H), 0.72-0.68 (m, 2H); MS(ES+) m/z 481.2, 483.2 (M+1); MS(ES−) m/z 479.3, 481.3 (M−1).
  • Example 27 Synthesis of (R)-4-((1-(3-chlorobenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00238
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(3-chlorobenzyl)piperidin-3-yl)oxy)benzoic acid and methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as colorless solid (0.06 g, 65%): 1H NMR (300 MHz, DMSO-d6) δ 11.71 (brs, 1H), 7.38-7.24 (m, 4H), 7.12 (d, J=8.4 Hz, 1H), 6.99 (d, J=13.2 Hz, 1H), 4.63-4.61 (m, 1H), 3.63-3.51 (m, 2H), 3.10-3.01 (m, 2H), 2.79-2.75 (m, 1H), 2.57-2.33 (m, 3H), 2.13-2.04 (m, 1H), 1.93-1.77 (m, 2H), 1.61-1.52 (m, 2H), 1.11-1.06 (m, 4H), 0.92-0.89 (m, 2H), 0.72-0.68 (m, 2H); MS(ES+) m/z 507.2, 509.2 (M+1); MS(ES−) m/z 505.3, 507.3 (M−1).
  • Example 28 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-4-((1-(3-chlorobenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00239
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(3-chlorobenzyl)piperidin-3-yl)oxy)benzoic acid and methanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as colorless solid (0.02 g, 22%): 1H NMR (300 MHz, DMSO-d6) δ 11.55 (brs, 1H), 7.37-7.24 (m, 4H), 7.14 (d, J=8.4 Hz, 1H), 6.98 (d, J=13.0 Hz, 1H), 4.61-4.59 (m, 1H), 3.99 (t, J=7.6 Hz, 4H), 3.61-3.49 (m, 2H), 2.78-2.74 (m, 1H), 2.54-2.27 (m, 3H), 2.18-2.04 (m, 3H), 1.95-1.90 (m, 1H), 1.82-1.76 (m, 1H), 1.60-1.52 (m, 2H), 0.93-0.85 (m, 2H), 0.72-0.68 (m, 2H); MS(ES+) m/z 522.2, 524.2 (M+1); MS(ES−) m/z 520.3, 522.3 (M−1).
  • Example 29 Synthesis of (R)-5-cyclopropyl-4-((1-(2,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00240
  • Step 1. Preparation of (R)-5-cyclopropyl-4-((1-(2,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00241
  • Following the procedure as described in Example 17 step 1, and making variations as required to replace 3,4-dichlorobenzaldehyde with 2,4-dichlorobenzaldehyde, the title compound was obtained as colorless solid (0.35 g, 56%): MS(ES+) m/z 438.2, 440.2 (M+1); MS(ES−) m/z 436.2,
  • 438.2 (M−1).
  • Step 2. Preparation of (R)-5-cyclopropyl-4-((1-(2,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00242
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(2,4-dichlorobenzyl)piperidin-3-yl)oxy)benzoic acid, the title compound was obtained as colorless solid (0.02 g, 25%): 1H NMR (300 MHz, DMSO-d6) δ 11.84 (brs, 1H), 7.57 (d, J=2.1 Hz, 1H), 7.50 (d, J=8.3 Hz, 1H), 7.33 (dd, J=2.1 Hz, 8.3 Hz, 1H), 7.13 (d, J=8.4 Hz, 1H), 6.99 (d, J=13.2 Hz, 1H), 4.63-4.61 (m, 1H), 3.59 (s, 2H), 3.30 (s, 3H), 2.81-2.76 (m, 1H), 2.58-2.39 (m, 3H), 2.12-2.04 (m, 1H), 1.94-1.77 (m, 2H), 1.61-1.53 (m, 2H), 0.91-0.88 (m, 2H), 0.72-0.69 (m, 2H); MS(ES+) m/z 515.1, 517.1 (M+1); MS(ES−) m/z 513.2, 515.2 (M−1).
  • Example 30 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((1-(2,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00243
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(2,4-dichlorobenzyl)piperidin-3-yl)oxy)benzoic acid and methanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as colorless solid (0.06 g, 64%): 1H NMR (300 MHz, DMSO-d6) δ 11.58 (brs, 1H), 7.56 (d, J=2.1 Hz, 1H), 7.50 (d, J=8.4 Hz, 1H), 7.33 (dd, J=2.1 Hz, 8.3 Hz, 1H), 7.13 (d, J=8.4 Hz, 1H), 7.01 (d, J=13.1 Hz, 1H), 4.63-4.61 (m, 1H), 4.03 (t, J=7.7 Hz, 4H), 3.59 (s, 2H), 2.79-2.76 (m, 1H), 2.58-2.39 (m, 3H), 2.21-2.04 (m, 3H), 1.94-1.79 (m, 2H), 1.59-1.56 (m, 2H), 0.92-0.88 (m, 2H), 0.73-0.69 (m, 2H); MS(ES+) m/z 556.2, 558.2 (M+1); MS(ES−) m/z 554.3, 556.3 (M−1).
  • Example 31 Synthesis of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(2,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00244
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(2,4-dichlorobenzyl)piperidin-3-yl)oxy)benzoic acid and methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as colorless solid (0.05 g, 48%): 1H NMR (300 MHz, DMSO-d6) δ 11.79 (brs, 1H), 7.57 (d, J=2.1 Hz, 1H), 7.50 (d, J=8.3 Hz, 1H), 7.33 (dd, J=2.1 Hz, 8.3 Hz, 1H), 7.12 (d, J=8.4 Hz, 1H), 7.01 (d, J=13.2 Hz, 1H), 4.63-4.61 (m, 1H), 3.59 (s, 2H), 3.11-3.03 (m, 1H), 2.80-2.76 (m, 1H), 2.58-2.39 (m, 3H), 2.12-2.04 (m, 1H), 1.94-1.77 (m, 2H), 1.60-1.55 (m, 2H), 1.12-1.07 (m, 4H), 0.91-0.88 (m, 2H), 0.72-0.69 (m, 2H); MS(ES+) m/z 541.2, 543.1 (M+1); MS(ES−) m/z 539.3, 542.2 (M−1).
  • Example 32 Synthesis of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(4-methylbenzyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00245
  • Step 1. Preparation of (R)-5-cyclopropyl-2-fluoro-4-((1-(4-methylbenzyl)piperidin-3-yl)oxy)benzoic acid
  • Figure US20210093618A1-20210401-C00246
  • Following the procedure as described in Example 17 step 1, and making variations as required to replace 3,4-dichlorobenzaldehyde with 4-methylbenzaldehyde, the title compound was obtained as colorless solid (0.24 g, 44%): MS(ES+) m/z 384.3 (M+1); MS(ES−) m/z 382.3 (M−1).
  • Step 2. Preparation of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(4-methylbenzyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00247
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(4-methylbenzyl)piperidin-3-yl)oxy)benzoic acid and methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as colorless solid (0.01 g, 18%): 1H NMR (300 MHz, DMSO-d6) δ 11.46 (brs, 1H), 7.20-7.09 (m, 5H), 6.96 (d, J=13.1 Hz, 1H), 4.59-4.57 (m, 1H), 3.63-3.52 (m, 2H), 3.08-3.00 (m, 1H), 2.86-2.82 (m, 1H), 2.63-2.59 (m, 1H), 2.43-2.33 (m, 2H), 2.26 (s, 3H), 2.11-2.02 (m, 1H), 1.98-1.92 (m, 1H), 1.82-1.77 (m, 1H), 1.64-1.49 (m, 2H), 1.08-1.03 (m, 4H), 0.90-0.87 (m, 2H), 0.70-0.66 (m, 2H); MS(ES+) m/z 487.2 (M+1); MS(ES−) m/z 485.3 (M−1).
  • Example 33 Synthesis of (R)—NV-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluoro-4-((1-(4-methylbenzyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00248
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(4-methylbenzyl)piperidin-3-yl)oxy)benzoic acid and methanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as off-white solid (0.05 g, 54%): 1H NMR (300 MHz, DMSO-d6) δ 11.28 (brs, 1H), 7.25-7.12 (m, 5H), 7.00 (d, J=13.0 Hz, 1H), 4.66-4.64 (m, 1H), 4.01 (t, J=7.7 Hz, 4H), 3.75-3.63 (m, 2H), 2.96-2.92 (m, 1H), 2.71-2.67 (m, 1H), 2.56-2.42 (m, 2H), 2.27 (s, 3H), 2.19-2.05 (m, 3H), 1.99-1.80 (m, 2H), 1.69-1.50 (m, 2H), 0.92-0.86 (m, 2H), 0.71-0.68 (m, 2H); MS(ES+) m/z 502.2 (M+1); MS(ES−) m/z 500.3 (M−1).
  • Example 34 Synthesis of (R)-5-cyclopropyl-2-fluoro-4-((1-(4-fluoro-2-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00249
  • Step 1. Preparation of (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate
  • Figure US20210093618A1-20210401-C00250
  • To a solution of (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)piperidine-1-carboxylate (22.50 g, 51.80 mmol) in anhydrous methanol (400 mL), was added sulfuric acid (10.0 mil). The reaction mixture was refluxed for 16 hours and then concentrated in vacuo. The pH of the residue was adjusted to 8-9 with 1M aqueous sodium hydroxide solution, and extracted with ethyl acetate (2×300 mL). Organic layers were combined, washed with saturated sodium bicarbonate solution (50 mL), brine solution (50 mL), dried over anhydrous sodium sulfate and concentrated invacuo. The crude product was purified by column chromatography (5% to 20% methanol in dichloromethane) afforded the title compound as an oil (10.00 g, 66%): MS (ES+) m/z 294.3 (M+1).
  • Step 2. Preparation of (R)-methyl 5-cyclopropyl-2-fluoro-4-((1-(4-fluoro-2-(trifluoromethyl)-benzyl)piperidin-3-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C00251
  • To a solution of (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate (0.225 g, 0.768 mmol) in anhydrous dimethylformamide (10 mL) was added potassium carbonate (0.269 g, 1.95 mmol) and 1-(bromomethyl)-4-fluoro-2-(trifluoromethyl)benzene (0.13 mL, 0.84 mmol). The mixture was stirred at ambient temperature for 1 hour, then poured into water (50 mL) and extracted with ethyl acetate (3×30 mL). The combined organic layer was washed with water (2×30 mL), brine (30 mL), dried over anhydrous sodium sulfate, filtered and concentrated invacuo. The residue was purified by column chromatography (0 to 30% ethyl acetate in hexanes) to give the title compound (0.286 g, 79%): MS (ES+) m/z 470.2 (M+1).
  • Step 3. Preparation of (R)-5-cyclopropyl-2-fluoro-4-((1-(4-fluoro-2-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00252
  • To a solution of (R)-methyl 5-cyclopropyl-2-fluoro-4-((1-(4-fluoro-2-(trifluoromethyl)-benzyl)piperidin-3-yl)oxy)benzoate (0.525 g, 1.12 mmol) in water and tetrahydrofuran (1:1, 20 mL) was added lithium hydroxide (0.265 g, 11.10 mmol). The mixture was heated to reflux for 2 hours and then stirred for an additional 16 hours at ambient temperature before neutralized with a 1 M aqueous hydrochloric acid solution. The aqueous layer was then extracted with ethyl acetate (3×30 mL). The combined organic layers were washed with brine (30 mL), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The crude product was used directly for the next step without further purification. To a solution of crude (R)-5-cyclopropyl-2-fluoro-4-((1-(4-fluoro-2-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)benzoic acid (0.161 g, 0.354 mmol) in anhydrous dichloromethane (5 mL) was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.212 g, 1.11 mmol), 4-dimethylamninopyridine (0.199 g, 1.63 mmol) and methanesulfonamide (0.105 g, 1.11 mmol). The mixture was stirred at ambient temperature for 32 hours, then diluted with ethyl acetate (50 mL) and washed with a 5% aqueous hydrochloric acid solution (2×25 mL). The combined aqueous layers were extracted with ethyl acetate (3×50 mL). The combined organic layers were then washed with water (50 mL) and brine (50 mL); dried over anhydrous sodium sulfate; filtered and concentrated in vacuo. The residue was purified by column chromatography (0 to 100% ethyl acetate (containing 0.2% acetic acid) in hexanes) to afford the title compound (0.033 g, 17%). 1H NMR (300 MHz, DMSO-d6) δ 11.87 (brs, 1H), 7.84-7.79 (m, 1H), 7.58-7.54 (m, 1H), 7.46-7.40 (m, 1H), 7.13 (d, J=8.4 Hz, 1H), 6.99 (d, J=13.2 Hz, 1H), 4.63 (brs, 1H), 3.63 (m, 2H), 3.32 (s, 3H), 2.74-2.70 (m, 1H), 2.44-2.32 (m, 2H), 2.14-2.05 (m, 1H), 1.98-1.74 (m, 3H), 1.66-1.53 (m, 2H), 0.97-0.87 (m, 2H), 0.76-0.67 (m, 2H); 19F NMR (282 MHz, DMSO-d6) δ−114.1, −113.1, −58.4; MS (ES+) m/z 533.2 (M+H).
  • Example 35 Synthesis of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(4-fluoro-2-(trifluoromethyl)-benzyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00253
  • Following the procedure as described in example 34 step 3 and making variations as required to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained (0.04 g, 20%): 1H NMR (300 MHz, DMSO-d6) δ 11.81 (brs, 1H), 7.83-7.79 (m, 1H), 7.58-7.54 (m, 1H), 7.46-7.40 (m, 1H), 7.12 (d, J=8.4 Hz, 1H), 6.99 (d, J=13.2 Hz, 1H), 4.63 (brs, 1H), 3.62 (m, 2H), 3.11-3.03 (m, 1H), 2.73-2.69 (m, 1H), 2.44-2.32 (m, 1H), 2.16-2.03 (m, 1H), 1.99-1.73 (m, 2H), 1.67-1.53 (m, 2H), 1.23 (s, 2H), 1.13-1.08 (m, 4H), 0.93-0.86 (m, 2H), 0.77-0.65 (m, 2H); 19F NMR (282 MHz. DMSO-d6) δ −114.1, −112.8, −58.4; MS (ES+) m/z 559.2 (M+H).
  • Example 36 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluoro-4-((1-(4-fluoro-2-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00254
  • Following the procedure as described in example 34 step 3 and making variations as required to replace methanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained (0.053 g, 26%): 1H NMR (300 MHz, DMSO-d6) δ 11.60 (br s, 1H), 7.83-7.78 (m, 1H), 7.58-7.54 (m, 1H), 7.46-7.40 (m, 1H), 7.14 (d, J=8.3 Hz, 1H), 6.99 (d, J=13.1 Hz, 1H), 4.63 (br s, 1H), 4.04 (t, J=7.7 Hz, 4H), 3.63 (m, 2H), 2.73-2.69 (m, 1H), 2.45-2.33 (m, 2H), 2.21-2.06 (m, 3H), 1.96-1.74 (m, 2H), 1.67-1.52 (m, 2H), 1.23 (s, 1H), 0.93-0.89 (m, 2H), 0.79-0.67 (m, 2H) 19F NMR (282 MHz, DMSO-d6) δ −114.1, −113.1, −58.4; MS (ES+) m/z 574.2 (M+H).
  • Example 37 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluoro-4-((1-(4-fluorophenyl)piperidin-3-yl)oxy)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00255
  • Step 1. Preparation of (R)-methyl 5-cyclopropyl-2-fluoro-4-((1-(4-fluorophenyl)piperidin-3-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C00256
  • To a mixture of (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate (0.587 g, 2.0 mmol), 4-fluorophenylboronic acid (0.56 g, 4.0 mmol), and copper(II) acetate (0.363 g, 2.0 mmol in anhydrous dichloromethane (8 mL) was added triethylamine (0.56 mL, 4.0 mmol) and the reaction mixture was stirred for 72 hours at ambient temperature under an atmosphere of dry air. The mixture was filtered through a plug of celite, the filter cake was washed with a mixture of dichloromethane and methanol (1:1, 20 mL), and the combined filtrate was concentrated in vacuo. Purification of the residue by column chromatography (0 to 50% ethyl acetate in hexanes) afforded the title compound as a light yellow oil (0.448 g, 58%): 1H NMR (300 MHz, CDCl3) δ 7.42 (d, J=8.4 Hz, 1H), 6.97-6.81 (m, 4H), 6.62 (d, J=12.8 Hz, 1H), 4.54-4.45 (m, 1H), 3.86 (s, 3H), 3.63-3.55 (m, 1H), 3.36-3.26 (m, 1H), 3.01 (dd, J=11.9, 8.0 Hz, 1H), 2.89 (ddd, J=12.0, 9.3, 2.9 Hz, 1H), 2.21-2.09 (m, 1H), 2.04-1.91 (m, 2H), 1.84-1.64 (m, 1H), 1.60-1.53 (m, 1H), 0.90-0.81 (m, 2H), 0.65-0.59 (m, 2H); MS (ES+) m/z 388.3 (M+1).
  • Step 2. Preparation of (R)-5-cyclopropyl-2-fluoro-4-((1-(4-fluorophenyl)piperidin-3-yl)oxy)benzoic acid
  • Figure US20210093618A1-20210401-C00257
  • To a mixture of (R)-methyl 5-cyclopropyl-2-fluoro-4-((1-(4-fluorophenyl)piperidin-3-yl)oxy)benzoate (0.448 g, 1.16 mmol) in tetrahydrofuran (10 mL) was added a solution of lithium hydroxide (0.139 g, 5.8 mmol) in water (3 mL). The reaction mixture was stirred for 16 hours at ambient temperature and subsequently for 1 hour at 60° C. After cooling to ambient temperature, the reaction mixture was adjusted to pH 1 with 1 N hydrochloric acid solution and extracted with dichloromethane (3×20 mL). The combined organic phase was washed with brine (5 mL), dried over anhydrous sodium sulfate, and filtered. Concentration of the filtrate in vacuo gave the title compound as a yellowish oil (0.43 g, 99%), which was used without further purification: MS (ES+) m/z 374.3 (M+1).
  • Step 3. Preparation of (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluoro-4-((1-(4-fluorophenyl)piperidin-3-yl)oxy)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00258
  • To a mixture of (R)-5-cyclopropyl-2-fluoro-4-((1-(4-fluorophenyl)piperidin-3-yl)oxy)benzoic acid (0.215 g, 0.58 mmol), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (0.167 g, 0.87 mmol), and 4-(dimethylamino)pyridine (0.213 g, 1.74 mmol) in anhydrous dichloromethane was added azetidine-1-sulfonamide (0.119 g, 0.87 mmol). The reaction mixture was stirred for 48 hours at ambient temperature. The mixture was diluted with ethyl acetate (100 mL) and then quenched by addition of 1 N hydrochloric acid solution (10 mL). The organic phase was washed with 1 N hydrochloric acid solution (5 mL), water (5 mL) and brine (5 mL); dried over anhydrous sodium sulfate and filtered. Concentration of the filtrate gave a residue which was purified first by column chromatography (0 to 50% ethyl acetate in hexanes) and then by reverse-phase preparative HPLC to afford the title compound as an off-white solid (0.168 g, 48%): 1H NMR (300 MHz, DMSO-d6) δ 11.61 (s, 1H), 7.30 (brs, 1H), 7.18-6.93 (m, 6H), 4.78-4.68 (m, 1H), 4.04 (t, J=7.7, 7.7 Hz, 4H), 3.52 (dd, J=12.2, 2.7 Hz, 1H), 3.31-3.18 (m, 2H), 3.13-3.03 (m, 1H), 2.23-2.10 (m, 2H), 2.10-1.99 (m, 1H), 1.99-1.84 (m, 2H), 1.76-1.61 (m, 2H), 0.86-0.77 (m, 2H), 0.70-0.62 (m, 2H); 19F NMR (282 MHz, DMSO-d6) δ −75.0, −112.9, −125.2; MS (ES−) m/z 490.3 (M−1).
  • Example 38 Synthesis of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(4-fluorophenyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00259
  • Following the procedure as described in Example 37 Step 3 and making variations as required to replace azetidine-1-sulfonamide with cyclopropanesulfonamide and purification by column chromatography (0 to 50% ethyl acetate in hexanes), the title compound was obtained as a colorless solid (0.177 g, 64%): 1H NMR (300 MHz, DMSO-d6) δ 11.82 (s, 1H), 7.18-6.89 (m, 6H), 4.77-4.66 (m, 1H), 3.50 (dd, J=12.3, 2.9 Hz, 1H), 3.29-3.15 (m, 2H), 3.13-3.01 (m, 2H), 2.09-1.99 (m, 1H), 1.97-1.81 (m, 2H), 1.75-1.60 (m, 2H), 1.16-1.06 (m, 4H), 0.86-0.77 (m, 2H), 0.69-0.61 (m, 2H); 19F NMR (282 MHz, DMSO-d6) δ −112.63, −125.87; MS (ES−) m/z 475.3 (M−1).
  • Example 39 Synthesis of (R)-5-chloro-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00260
  • Step 1. Preparation of (R)-5-chloro-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00261
  • To a mixture of (R)-methyl 5-chloro-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoate (0.15 g, 0.35 mmol) in tetrahydrofuran (20 mL) and water (20 mL) was added lithium hydroxide monohydrate (0.15 g, 3.5 mmol). The reaction mixture was heated to reflux for 4 hours. The reaction mixture was diluted with ethyl acetate (80 mL), washed with 1 M hydrochloric acid solution (50 mL) and brine (2×50 mL); dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to provide the title compound as a solid (0.15 g, quant.): MS (ES+) m/z 414.2, 416.2 (M+1).
  • Step 2. Preparation of (R)-5-chloro-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00262
  • A mixture of (R)-5-chloro-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid (0.15 g, 0.35 mmol), cyclopropanesulfonamide (0.064 g, 0.53 mmol), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (0.10 g, 0.53 mmol), and 4-dimethylaminopyridine (0.13 g, 1.05 mmol) in dichloromethane (20 mL) was stirred at ambient temperature for 18 hours. The reaction was concentrated in vacuo and the residue was first purified by flash chromatography (0 to 4% methanol in dichloromethane), then by reverse phase HPLC (acetonitrile in water+0.1% TFA) to provide the title compound (0.03 g, 17%): 1H NMR (300 MHz, DMSO-d6) δ 12.03 (brs, 1H), 9.45 (brs, 1H), 7.77 (d, J=7.6 Hz, 1H), 7.74-7.64 (m, 1H), 7.60-7.49 (m, 1H), 7.41-7.26 (m, 2H), 4.85-4.67 (m, 1H), 4.53-3.99 (m, 5H), 3.43-3.29 (m, 1H), 3.18-2.99 (m, 2H), 2.01-1.88 (m, 1H), 1.81-1.56 (m, 2H), 1.15-1.04 (m, 4H); MS (ES+) m/z 519.1, 521.1 (M+H).
  • Example 40 Synthesis of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-phenylpiperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00263
  • Step 1. Preparation of (R)-methyl 5-cyclopropyl-2-fluoro-4-((1-phenylpiperidin-3-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C00264
  • To a degassed mixture of (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate (0.76 g, 2.68 mmol), iodobenzene (1.49 mL, 13.4 mmol), L-proline (0.62 g, 5.36 mmol), and potassium carbonate (1.88 g, 13.4 mmol) in anhydrous dimethylsulfoxide (30 mL) was added copper (I) iodide (0.51 g, 2.68 mmol). The resulting mixture was heated to 75° C. under nitrogen for 2 hours. And then iodobenzene (1.0 mL, 9.0 mmol) was added to the reaction mixture stirring was continued at 75° C. under nitrogen for 24 hours. The reaction mixture was diluted with ethyl acetate (100 mL), washed with water (50 mL), saturated ammonium chloride (3×50 mL) and brine (50 mL); dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (Rf=0.2 in 9:1 hexanes:ethyl acetate) to provide the title compound as an oil (0.74 g, 75%): 1H NMR (300 MHz, CDCl3) δ 7.46-7.39 (m, 1H), 7.31-7.17 (m, 3H), 6.95-6.88 (m, 1H), 6.86-6.79 (m, 1H), 6.63 (d, J=12.8 Hz, 1H), 4.55-4.44 (m, 1H), 3.87 (s, 3H), 3.76-3.68 (m, 1H), 3.48-3.39 (m, 1H), 3.10 (dd, J=13.1, 8.0 Hz, 1H), 3.03-2.93 (m, 1H), 2.21-2.12 (m, 1H), 2.03-1.91 (m, 2H), 1.56-1.66 (m, 2H), 0.89-0.82 (m, 2H), 0.65-0.57 (m, 2H); MS (ES+) m/z 370.2 (M+H).
  • Step 2. Preparation of (R)-5-cyclopropyl-2-fluoro-4-((1-phenylpiperidin-3-yl)oxy)benzoic acid
  • Figure US20210093618A1-20210401-C00265
  • Following the procedure as described in Example 39 step 1 and making variation as required to replace (R)-methyl 5-chloro-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoate with (R)-methyl 5-cyclopropyl-2-fluoro-4-((1-phenylpiperidin-3-yl)oxy)benzoate, the title compound was obtained as a colorless solid (0.61 g, 86%): MS (ES+) m/z 356.2 (M+H).
  • Step 3. Preparation of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-phenylpiperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00266
  • Following the procedure as described in Example 39 step 2 and making variation as required to replace (R)-5-chloro-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-phenylpiperidin-3-yl)oxy)benzoic acid and purification by flash chromatography [(Rf=0.2 in 2:1 hexanes:ethyl acetate (containing 0.2% acetic acid)], the title compound was obtained as a colorless solid (0.075 g, 18%): 1H NMR (300 MHz, DMSO-d6) δ 11.78 (brs, 1H), 7.17-7.02 (m, 4H), 6.90-6.84 (m, 2H), 6.72-6.65 (m, 1H), 4.72-4.64 (m, 1H), 3.56-3.48 (m, 1H), 3.29-3.20 (m, 2H), 3.15-3.07 (m, 1H), 3.07-2.98 (m, 1H), 2.05-1.96 (m, 1H), 1.91-1.79 (m, 2H), 1.73-1.58 (m, 2H), 1.11-1.03 (m, 4H), 0.79-0.72 (m, 2H), 0.63-0.56 (m, 2H); MS (ES+) m/z 459.2 (M+H).
  • Example 41 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluoro-4-((1-phenylpiperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00267
  • Following the procedure as described in Example 39 step 2 and making variations as required to replace (R)-5-chloro-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-phenylpiperidin-3-yl)oxy)benzoic acid and cyclopropanesulfonamide with 1-azetidinesulfamide and purification by flash chromatography [(Rf=0.2 in 2:1 hexanes:ethyl acetate (containing 0.2% acetic acid)], the title compound was obtained as a colorless solid (0.08 g, 20%): 1H NMR (300 MHz, DMSO-d6) δ 11.57 (brs, 1H), 7.18-7.03 (m, 4H), 6.91-6.49 (m, 2H), 6.72-6.65 (m, 1H), 4.72-4.63 (m, 1H), 4.00 (t, J=7.6 Hz, 4H), 3.56-3.48 (m, 1H), 3.28-3.19 (m, 2H), 3.15-3.05 (m, 1H), 2.12 (quintet, J=7.6 Hz, 2H), 2.05-1.95 (m, 1H), 1.91-1.78 (m, 2H), 1.73-1.58 (m, 2H), 0.80-0.71 (m, 2H), 0.65-0.57 (m, 2H); MS (ES+) m/z 474.25 (M+H).
  • Example 42 Synthesis of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(3,5-dichlorophenyl)piperidin-3-yl)oxy)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00268
  • Step 1. Preparation of (R)-methyl 5-cyclopropyl-4-((1-(3,5-dichlorophenyl)piperidin-3-yl)oxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00269
  • Following the procedure as described in Example 40 step 1 and making variation as required to replace iodobenzene with 1,3-dichloro-5-iodobenzene, the title compound was obtained as a colorless oil (1.08 g, 47%): 1H NMR (300 MHz, CDCl3) δ 7.39 (d, J=8.3 Hz, 1H), 6.74-6.69 (m, 3H), 6.57 (d, J=12.7 Hz, 1H), 4.52-4.43 (m, 1H), 3.86 (s, 3H), 3.59 (dd, J=12.8, 3.07 Hz, 1H), 3.39-3.29 (m, 2H), 3.24-3.12 (m, 1H), 2.15-2.04 (m, 1H), 2.00-1.91 (m, 1H), 1.90-1.78 (m, 2H), 1.75-1.62 (m, 1H), 0.86-0.77 (m, 2H), 0.60-0.53 (m, 2H); MS (ES+) m/z 438.2, 440.2 (M+H).
  • Step 2. Preparation of (R)-5-cyclopropyl-4-((1-(3,5-dichlorophenyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00270
  • Following the procedure as described in Example 39 step 1 and making variation as required to replace (R)-methyl 5-chloro-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoate with (R)-methyl 5-cyclopropyl-4-((1-(3,5-dichlorophenyl)piperidin-3-yl)oxy)-2-fluorobenzoate, the title compound was obtained as a colorless solid (1.04 g, quant.): MS (ES+) m/z 424.2, 426.2 (M+H).
  • Step 3. Preparation of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(3,5-dichlorophenyl)piperidin-3-yl)oxy)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00271
  • Following the procedure as described in Example 39 step 2 and making variation as required to replace (R)-5-chloro-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-4-((1-(3,5-dichlorophenyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid and purification by flash chromatography [(Rf=0.25 in 2:1 hexanes:ethyl acetate (containing 0.2% acetic acid)), the title compound was obtained as a colorless solid (0.175 g, 47%): 1H NMR (300 MHz, DMSO-d6) δ 11.77 (brs, 1H), 7.06 (d, J=13.2 Hz, 1H), 7.01 (d, J=8.3 Hz, 1H), 6.85 (d, J=1.8 Hz, 2H), 6.69 (dd, J=1.7, 1.7 Hz, 1H), 4.73-4.65 (m, 1H), 3.73-3.63 (m, 1H), 3.57-3.49 (m, 1H), 3.48-3.39 (m, 2H), 3.27-3.21 (m, 1H), 3.08-2.97 (m, 1H), 2.00-1.88 (m, 1H), 1.84-1.71 (m, 1H), 1.67-1.59 (m, 1H), 1.57-1.46 (m, H1), 1.13-1.03 (m, 4H), 0.70-0.60 (m, 2H), 0.57-0.48 (m, 2H); MS (ES+) m/z 527.1, 529.1 (M+H1).
  • Example 43 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((1-(3,5-dichlorophenyl)piperidin-3-yl)oxy)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00272
  • Following the procedure as described in Example 39 step 2 and making variation as required to replace (R)-5-chloro-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-4-((1-(3,5-dichlorophenyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid and cyclopropanesulfonamide with 1-azetidinesulfamide and purification by flash chromatography (Rf=0.25 in 2:1 hexanes:ethyl acetate (+0.2% acetic acid)), the title compound was obtained as a colorless solid (0.16 g, 42%): 1H NMR (300 MHz, DMSO-d6) δ 11.55 (br s, 1H), 7.09-7.00 (m, 2H), 6.86 (d, J=1.7 Hz, 2H), 6.71-6.68 (m, 1H), 4.72-4.65 (m, 1H), 3.99 (t, J=7.7 Hz, 4H), 3.67 (dd, J=13.7, 5.5 Hz, 1H), 3.52 (dd, J=13.7, 2.3 Hz, 1H), 3.48-3.39 (m, 1H), 3.27-3.21 (m, 1H), 2.11 (p, J=7.7 Hz, 2H), 1.99-1.88 (m, 1H), 1.84-1.71 (m, 2H), 1.68-1.59 (m, 1H), 1.58-1.46 (m, 1H), 0.69-0.61 (m, 2H), 0.57-0.50 (m, 2H); MS (ES+) m/z 542.2, 544.1 (M+H).
  • Example 44 Synthesis of (R)-5-cyclopropyl-4-((1-(3,5-dichlorophenyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00273
  • Following the procedure as described in Example 39 step 2 and making variations as required to replace (R)-5-chloro-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-4-((1-(3,5-dichlorophenyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid and cyclopropanesulfonamide with methanesulfonamide and purification by flash chromatography (Rf=0.15 in 2:1 hexanes:ethyl acetate (+0.2% acetic acid)), the title compound was obtained as a colorless solid (0.15 g, 42%): 1H NMR (300 MHz, DMSO-d6) δ 11.83 (brs, 1H), 7.08-6.99 (m, 2H), 6.85 (d, J=1.7 Hz, 2H), 6.70-6.68 (m, 1H), 4.72-4.65 (m, 1H), 3.68 (dd, J=13.7, 5.4 Hz, 1H), 3.53 (dd, J=13.7, 2.4 Hz, 1H), 3.48-3.38 (m, 1H), 3.30 (s, 3H), 3.26-3.21 (m, 1H), 1.99-1.88 (m, 1H), 1.83-1.70 (m, 2H), 169-1.59 (m, 1H), 1.57-1.45 (m, 1H), 0.69-0.61 (m, 2H), 0.57-0.49 (m, 2H); MS (ES+) m/z 501.1, 503.1 (M+H)
  • Example 45 Synthesis of (S)—N-(azetidin-1-ylsulfonyl)-4-((1-benzylpyrrolidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00274
  • Following the procedures as described in Example 3 steps 1 to 5, and making variations as required to replace (R)-tert-butyl 3-hydroxypiperidine-1-carboxylate with (S)-tert-butyl 3-hydroxypyrrolidine-1-carboxylate, 3,5-dichlorobenzaldehyde with benzaldehyde and cyclopropylsulfonamide with azetidine-1-sulfonamide, the title compound was obtained (0.027 g, 5%): 1H NMR (300 MHz, DMSO-d6) d 7.40-7.17 (m, 5H), 7.13 (d, J=8.8 Hz, 1H), 6.69 (d, J=12.61 Hz, 1H), 5.00-4.87 (m, 1H), 3.86-3.71 (m, 4H), 3.65-3.59 (m, 2H), 2.98-2.84 (m, 1H), 2.78-2.56 (m, 3H), 2.37-1.77 (m, 5H), 0.92-0.78 (m, 2H), 0.62-0.52 (m, 2H); MS(ES+) m/z 474.2 (M+1); MS(ES−) m/z 472.3 (M−1).
  • Example 46 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-4-((1-benzylpyrrolidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00275
  • Following the procedures as described in Example 3 steps 1 to 5, and making variations as required to replace (R)-tert-butyl 3-hydroxypiperidine-1-carboxylate with (R)-tert-butyl 3-hydroxypyrrolidine-1-carboxylate, 3,5-dichlorobenzaldehyde with benzaldehyde and cyclopropylsulfonamide with azetidine-1-sulfonamide, the title compound was obtained (0.095 g, 27%): 1H NMR (300 MHz, DMSO-d6) d 7.45-7.18 (m, 5H), 7.10 (d, J=8.3 Hz, 1H), 6.82 (d, J=12.7 Hz, 1H), 5.07-4.94 (m, 1H), 3.98-3.87 (m, 4H), 3.76 (s, 2H), 3.06 (dd, J=11.0, 5.8 Hz, 1H), 2.91-2.74 (m, 2H), 2.72-2.57 (m, 1H), 2.34 (dt, J=13.9, 7.1 Hz, 1H), 2.17-1.94 (m, 3H), 1.93-1.79 (m, 1H), 0.90-0.77 (m, 2H), 0.67-0.56 (m, 2H); MS(ES+) m/z 474.2 (M+1); MS(ES−) m/z 472.3 (M−1).
  • Example 47 Synthesis of N-(azetidin-1-ylsulfonyl)-4-((8-(2-chlorobenzyl)-8-azabicyclo[3.2.1]octan-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00276
  • Step 1. Preparation of benzyl 3-(hydroxymethyl)-8-azabicyclo[3.2.1]octane-8-carboxylate
  • Figure US20210093618A1-20210401-C00277
  • To a solution of 8-Azabicyclo[3.2.1]octan-3-ylmethanol (1.00 g, 7.09 mmol) in dichloromethane (15 mL) and a saturated aqueous sodium bicarbonate solution (10 mL) at 0° C. was added benzyl chloroformate (1.26 g, 7.45 mmol) and the reaction mixture was stirred at 0° C. for 30 min. The reaction mixture was then extracted with dichloromethane (3×100 mL). The organic layers were combined and washed with brine (150 mL); dried over anhydrous sodium sulfate, filtered and concentrated to give the title compound, which was used directly for the next step. (1.50 g, 73%). 1H NMR (300 MHz, CDCl3) δ 7.43-7.24 (m, 5H), 5.15-5.09 (m, 2H), 4.59-4.57 (m, 1H), 4.40-4.27 (m, 2H), 3.41 (m, 2H), 2.14-1.90 (m, 3H), 1.88-1.80 (m, 1H), 1.73-1.48 (m, 4H).
  • Step 2. Preparation of benzyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate
  • Figure US20210093618A1-20210401-C00278
  • To a solution of benzyl 3-(hydroxymethyl)-8-azabicyclo[3.2.1]octane-8-carboxylate (1.92 g, 7.00 mmol) in anhydrous dimethylsulfoxide (15 mL) was added cesium carbonate (5.69 g, 10.50 mmol) and tert-butyl 5-chloro-2,4-difluorobenzoate (1.82 g, 7.35 mmol). The reaction mixture was stirred at 70° C. for 16 hours; cooled to ambient temperature and acidified to pH=1 with 5% aqueous hydrochloric acid solution and extracted with ethyl acetate (2×15 mL), the combined organics were washed with brine (15 mL); dried over anhydrous sodium sulfate; filtered and concentrated in vacuo. Purification of the residue by column chromatography (0 to 10% gradient of ethyl acetate in hexanes) afforded the title compound (2.00 g, 54%): 1H NMR (300 MHz, CDCl3) δ 7.85 (d, J=7.6 Hz, 1H), 7.39-7.26 (m, 5H), 6.56 (d, J=12.1 Hz, 1H), 5.13 (s, 2H), 4.46-4.28 (m, 2H), 3.81-3.73 (m, 2H), 2.54-2.32 (m, 1H), 2.03-1.96 (m, 4H), 1.79-1.65 (m, 4H), 1.60-1.51 (m, 9H); MS(ES+) m/z 504.2, 506.2 (M+1).
  • Step 3. Preparation of benzyl 3-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate
  • Figure US20210093618A1-20210401-C00279
  • To a solution of benzyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)-methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate (1.50 g, 2.98 mmol), cyclopropylboronic acid (0.38 g, 4.46 mmol), potassium phosphate (2.10 g, 5.95 mmol) and tricyclohexylphosphine tetrafluoroborate (0.22 g, 0.60 mmol) in toluene (15 mL) and water (1.5 mL) under a nitrogen atmosphere was added palladium acetate (0.06 g, 0.30 mmol). The reaction mixture was heated at reflux for 16 hours, and then cooled to ambient temperature. Water (50 mL) was added and the mixture was extracted with diethyl ether (2×100 mL), the combined organics were washed with brine (30 mL); dried over anhydrous sodium sulfate and concentrated in vacuo. Purification of the residue by column chromatography (10 to 30% gradient of ethyl acetate in hexanes) afforded the title compound (1.05 g, 66%). 1H NMR (300 MHz, CDCl3) δ 7.48 (d, J=8.4 Hz, 1H), 6.58 (d, J=12.9 Hz, 1H), 3.87 (dd, J=6.9, 2.3 Hz, 2H), 2.17-1.91 (m, 3H), 1.76-1.31 (m, 8H), 0.98-0.84 (m, 5H), 0.67-0.58 (m, 2H).
  • Step 4. Preparation of benzyl 3-((4-((azetidin-1-ylsulfonyl)carbamoyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate
  • Figure US20210093618A1-20210401-C00280
  • To a stirred solution of benzyl 3-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate (0.56 g, 1.10 mmol) in dichloromethane (5 mL) at 0° C. was added trifluoroacetic acid (1 mL) and the mixture was stirred for 1.5 hours at ambient temperature and then concentrated. The residue was further concentrated 2 times with toluene (5 mL) and then diluted with dichloromethane (5 mL). To this solution was added N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (0.426 g, 1.65 mmol) and 4-(dimethylamino)pyridine (0.335 g, 2.75 mmol) and azetidine-1-sulfonamide (0.165 g, 1.21 mmol). The reaction mixture was stirred at room temperature for 16 hours and then diluted with dichloromethane (10 mL) and washed with aqueous hydrochloric acid (1M, 10 mL). The aqueous layer was extracted with dichloromethane (10 mL); the organic layers were combined, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by column chromatography (0 to 15% gradient of methanol, containing 1% NH3 in dichloromethane) to give the title compound (460 mg, 73%): MS(ES+) m/z 572.2 (M+1); MS(ES−) m/z 570.2 (M−1).
  • Step 5. Preparation of 4-(8-azabicyclo[3.2.1]octan-3-ylmethoxy)-N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluorobenzamideate
  • Figure US20210093618A1-20210401-C00281
  • To a stirred solution of benzyl 3-((4-((azetidin-1-ylsulfonyl)carbamoyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate (0.46 g, 0.81 mmol) in degassed ethyl acetate was added palladium 20% on carbon (0.050 g). The reaction mixture was stirred for 2 hours under an atmosphere of hydrogen. The reaction mixture was then filtered over a plug of silica gel and rinsed (2×15 mL) with a solution of 20% methanol and 2% acetic acid in dichloromethane. The filtrate was concentrated to give the title compound (0.2 g, 56%). 1H NMR (300 MHz, MeO-d4) δ 7.37-7.13 (m, 1H), 6.87-6.61 (m, 1H), 4.33-3.73 (m, 7H), 3.38-3.23 (m, 1H), 2.68-1.64 (m, 12H), 1.03-0.75 (m, 2H), 0.69-0.51 (m, 2H).
  • Step 6. Preparation of N-(azetidin-1-ylsulfonyl)-4-((8-(2-chlorobenzyl)-8-azabicyclo[3.2.1]octan-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00282
  • To a stirred solution of 4-(8-azabicyclo[3.2.1]octan-3-ylmethoxy)-N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluorobenzamideate (50 mg, 0.11 mmol) in tetrahydrofuran (1 mL) under an atmosphere of nitrogen were introduced 2-chlorobenzaldehyde (19 mg, 0.14 mmol) and sodium triacetoxyborohydride (66 mg, 0.21 mmol) and the mixture was stirred for 16 hours. 1N aqueous hydrochloric acid (5 mL) was added and the mixture was extracted with ethyl acetate (3×10 mL) and concentrated. The residue was purified by chromatography eluting with 5% methanol in dichloromethane to give the title compound, which was lyophilized to give a white solid (0.035 g, 29%). 1H NMR (300 MHz, DMSO-d6) d 7.71 (d, J=6.5 Hz, 1H), 7.44 (d, J=7.3 Hz, 1H), 7.40-7.28 (m, 2H), 7.12 (d, J=8.3 Hz, 1H), 6.86 (d, J=12.7 Hz, 1H), 4.00-3.79 (m, 8H), 3.55-3.42 (m, 2H), 2.33-1.94 (m, 6H), 1.83-1.60 (m, 6H), 0.90-0.80 (m, 2H), 0.68-0.56 (m, 2H). MS(ES+) m/z 562.2, 564.2 (M+1); MS(ES−) m/z 560.3, 562.3 (M−1).
  • Example 48 Synthesis of N-(azetidin-1-ylsulfonyl)-4-((8-benzyl-8-azabicyclo[3.2.1]octan-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00283
  • Following the procedure as described in Example 47 step 6, and making variation as required to replace 2-chlorobenzaldehyde with benzaldehyde, the title compound was obtained as a white solid (0.025 g, 41%). 1H NMR (300 MHz, DMSO-d6) d 7.66-7.52 (m, 2H), 7.47-7.36 (m, 3H), 7.22-7.12 (m, 1H), 6.82-6.71 (m, 1H), 4.18-4.01 (m, 2H), 3.97-3.62 (m, 8H), 2.42-2.16 (m, 3H), 2.14-1.71 (m, 9H), 0.91-0.76 (m, 2H), 0.63-0.52 (m, 2H); MS(ES+) m/z 528.2 (M+1).
  • Example 49 Synthesis of N-(azetidin-1-ylsulfonyl)-4-((8-benzhydryl-8-azabicyclo[3.2.1]-octan-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00284
  • To a stirred solution of 4-(8-azabicyclo[3.2.1]octan-3-ylmethoxy)-N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluorobenzamideate (0.05 g, 011 mmol) in acetonitrile (2 mL) under an atmosphere of nitrogen was added (bromomethylene)dibenzene (0.034 g, 0.14 mmol), potassium carbonate (0.038 g, 0.27 mmol) and sodium iodide (0.021 g, 0.14 mmol). The reaction mixture was stirred at reflux for 16 hours and then cooled to ambient temperature. 1N aqueous hydrochloric acid (5 mL) was added and the mixture was extracted with ethyl acetate (3×10 mL) and concentrated. The residue was first purified by column chromatography eluting with 30% ethyl acetate (containing 1% formic acid) in hexanes and then purified by reverse phase chromatography eluting with a gradient of acetonitrile in water (containing 0.1% trifluoroacetic acid) and finally crystallized in isopropyl alcohol to give the title compound (0.03 g, 43%): 1H NMR (300 MHz, DMSO-d6) d 12.18-11.67 (m, 1H), 8.75-8.53 (m, 1H), 7.98-7.76 (m, 4H), 7.61-7.49 (m, 1H), 7.47-7.30 (m, 6H), 6.59 (d, J=14.1 Hz, 1H), 4.77-4.65 (m, 1H), 4.28-4.17 (m, 4H), 4.07-3.98 (m, 2H), 3.97-3.89 (m, 2H), 2.90-2.56 (m, 3H), 2.51-2.34 (m, 3H), 2.24 (m, 2H), 2.12-2.01 (m, 2H), 1.95-1.81 (m, 2H), 0.90-0.76 (m, 2H), 0.67-0.55 (m, 2H); MS(ES+) m/z 564.3 (M+1); MS(ES−) m/z 562.3.
  • Example 50 Synthesis of (5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00285
  • Step 1. Preparation of methyl 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)-piperidin-3-yl)oxy)-2-fluorobenzoate and methyl 5-cyclopropyl-4-(((R)-1-((R)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)oxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00286
  • To a mixture of (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate (0.52 g, 1.77 mmol), potassium carbonate (0.73 g, 5.30 mmol) and sodium iodide (0.26 g, 1.77 mmol) in acetonitrile (50 mL) was added 1,3-dichloro-5-(1-chloroethyl)benzene (0.37 g, 1.77 mmol). The reaction mixture was heated at reflux for 16 hours, and concentrated in vacuo. To the he residue was added 25% aqueous ammonium chloride solution (40 mL) and extracted with ethyl acetate (2×70 mL). The combined organic layer was washed with brine (40 mL), dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by column chromatography (0-20% ethyl acetate in hexanes) afforded the title compound. The first eluting fraction was arbitrarily assigned as methyl 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)oxy)-2-fluorobenzoate (0.18 g, 22%): 1H NMR (300 MHz, CDCl3) δ 7.42 (d, J=8.4 Hz, 1H), 7.22-7.21 (m, 3H), 6.54 (d, J=12.9 Hz, 1H), 4.39-4.37 (m, 1H), 3.87 (s, 3H), 3.47 (q, J=6.6 Hz, 1H), 2.97-2.94 (m, 1H), 2.57-2.54 (m, 1H), 2.35-2.23 (m, 2H), 2.11-1.98 (m, 2H), 1.85-1.77 (m, 1H), 1.65-1.51 (m, 2H), 1.31 (d, J=6.7 Hz, 3H), 0.94-0.90 (m, 2H), 0.68-0.63 (m, 2H); MS(ES+) m/z 466.1, 468.1 (M+1). The second eluting fraction was arbitrarily assigned as methyl 5-cyclopropyl-4-(((R)-1-((R)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)oxy)-2-fluorobenzoate (0.18 g, 22%): 1H NMR (300 MHz, CDCl3) δ 7.42 (d, J=8.4 Hz, 1H), 7.22-7.21 (m, 3H), 6.54 (d, J=12.9 Hz, 1H), 4.39-4.37 (m, 1H), 3.37 (s, 3H), 3.47 (q, J=6.6 Hz, 1H), 2.97-2.94 (m, 1H), 2.57-2.54 (m, 1H), 2.35-2.23 (m, 2H), 2.11-1.98 (m, 2H), 1.85-1.77 (m, 1H), 1.65-1.51 (m, 2H), 1.31 (d, J=6.7 Hz, 3H), 0.94-0.90 (m, 2H), 0.68-0.63 (m, 2H); MS(ES+) m/z 466.1, 468.1 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)-piperidin-3-yl)oxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00287
  • To a mixture of 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)-piperidin-3-yl)oxy)-2-fluorobenzoate (0.20 g, 0.43 mmol) in tetrahydrafurane (30 mL) and water (5 mL) was added lithium hydroxide (0.10 g, 4.3 mmol). The reaction mixture was heated to reflux for 16 hours and adjusted pH to 7 with 1N aqueous hydrochloric acid solution, extracted with ethyl acetate (2×50 mL), the combined organics were washed with 25% aqueous ammonium chloride solution (2×30 mL), dried over anhydrous sodium sulfate and concentrated in vacuo. Purification of the residue by column chromatography (20%-100% ethyl acetate in hexanes) afforded the title compound (0.15 g, 77%): MS(ES+) m/z 452.1, 454.1 (M+1); MS(ES−) m/z 450.2, 452.2 (M−1).
  • Step 3. Preparation of (5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)-piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00288
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)-ethyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid, the title compound was obtained as colorless solid (0.05 g, 33%): 1H NMR (300 MHz, DMSO-d6) δ 11.87 (brs, 1H), 7.46-7.37 (m, 3H), 7.13 (d, J=8.4 Hz, 1H), 6.95 (d, J=13.2 Hz, 1H), 4.59-4.57 (m, 1H), 3.63-3.62 (m, 1H), 3.28 (s, 3H), 2.77-2.73 (m, 1H), 2.43-2.33 (m, 3H), 2.13-2.03 (m, 1H), 2.18-1.73 (m, 2H), 1.55-1.53 (m, 2H), 1.27 (d, J=6.7 Hz, 3H), 0.91-0.88 (m, 2H), 0.73-0.66 (m, 2H); MS(ES+) m/z 529.1, 531.1 (M+1); MS(ES−) m/z 527.2, 529.2 (M−1).
  • Example 51 Synthesis of (5-cyclopropyl-4-(((R)-1-((R)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00289
  • Step 1. Preparation of 5-cyclopropyl-4-(((R)-1-((R)-1-(3,5-dichlorophenyl)ethyl)-piperidin-3-yl)oxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00290
  • Following the procedure as described in Example 50 step 2 and making variations as required to replace 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)oxy)-2-fluorobenzoate with 5-cyclopropyl-4-(((R)-1-((R)-1-(3,5-dichlorophenyl)ethyl)-piperidin-3-yl)oxy)-2-fluorobenzoate, the title compound was obtained as beige color solid (0.18 g, 2%): MS(ES+) m/z 452.2, 454.2 (M+1); MS (ES−) m/z 450.2, 452.2 (M−1).
  • Step 2. Preparation of (5-cyclopropyl-4-(((R)-1-((R)-1-(3,5-dichlorophenyl)ethyl)-piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00291
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((R)-1-((R)-1-(3,5-dichlorophenyl)ethyl)-piperidin-3-yl)oxy)-2-fluorobenzoic acid, the title compound was obtained as colorless solid (0.06 g, 30%): 1H NMR (300 MHz, DMSO-d6) δ 11.87 (brs, 1H), 7.47-7.40 (m, 3H), 7.12 (d, J=8.4 Hz, 1H), 6.96 (d, J=13.2 Hz, 1H), 4.58-4.56 (m, 1H), 3.68 (q, J=6.3 Hz, 1H), 3.29 (s, 3H), 2.80-2.77 (m, 1H), 2.60-2.56 (m, 1H), 2.37-2.20 (m, 2H), 2.08-2.03 (m, 1H), 1.91-1.74 (m, 2H), 1.57-1.46 (m, 2H), 1.27 (d, J=6.7 Hz, 3H), 0.90-0.87 (m, 2H), 0.75-0.63 (m, 2H); MS(ES+) m/z 529.1, 531.1 (M+1); MS(ES−) m/z 527.2, 529.2 (M−1).
  • Example 52 Synthesis of 4-(((3R,6R)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00292
  • Step 1. Preparation of (2R,5R)-benzyl 5-hydroxy-2-methylpiperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00293
  • To a cooled (0° C.) solution of (3R,6R)-6-methylpiperidin-3-ol (1.06 g, 9.19 mmol) (Ian A. O'Neil et al., Synlent, 2000, 5, 695) and triethylamine (1.35 mL, 9.65 mmol) in dichloromethane (60 mL) was added benzyl chloroformate (1.38 mL, 9.65 mmol) dropwise. The reaction mixture was stirred at ambient temperature for 16 h, diluted with aqueous saturated ammonium chloride solution (35 mL), and extracted with ethyl acetate (3×70 mL). The combined organic layers were washed with brine (100 mL), dried over anhydrous magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography eluting with a gradient of ethyl acetate in hexanes (0 to 60%) to give the title compound (1.30 g, 57%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.40-7.29 (m, 5H), 5.14 (s, 2H), 4.57-4.45 (m, 1H), 4.13-4.02 (m, 1H), 3.94 (s, 1H), 3.18-3.03 (m, 1H), 2.19-2.03 (m, 1H), 1.88-1.62 (m, 3H), 1.39-1.26 (m, 1H), 1.19-1.13 (m, 3H); MS(ES+) m/z 250.2 (M+1).
  • Step 2. Preparation of (2R,5R)-benzyl 5-(4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)-2-methylpiperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00294
  • Following the procedure as described in Example 1 step 1, and making variation as required to replace (R)-1-benzylpiperidin-3-ol with (2R,5R)-benzyl 5-hydroxy-2-methylpiperidine-1-carboxylate, the title compound was obtained (1.80 g, 72%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.84-7.77 (m, 1H), 7.32-7.08 (m, 5H), 6.64-6.53 (m, 1H), 5.09-4.92 (m, 2H), 4.69-4.56 (m, 1H), 4.46 (s, 1H), 4.39-4.29 (m, 1H), 3.19-3.07 (m, 1H), 2.32-2.16 (m, 1H), 2.01-1.89 (m, 2H), 1.56 (s, 9H), 1.41-1.31 (m, 1H), 1.24-1.18 (m, 3H); MS(ES+) m/z 478.2 (M+1).
  • Step 3. Preparation of (2R,5R)-benzyl 5-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)-2-methylpiperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00295
  • Following the procedure as described in Example 1 step 2, and making variation as required to replace (R)-tert-butyl 4-((1-benzylpiperidin-3-yl)oxy)-5-chloro-2-fluorobenzoate with (2R,5R)-benzyl 5-(4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)-2-methylpiperidine-1-carboxylate, the title compound was obtained (1.62 g, 89%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.39-7.32 (m, 1H), 7.30-7.03 (m, 5H), 6.52-6.41 (m, 1H), 5.06-4.92 (m, 2H), 4.68-4.55 (m, 1H), 4.46 (s, 1H), 4.42-4.29 (m, 1H), 3.20-3.07 (m, 1H), 2.27-2.08 (m, 1H), 2.04-1.82 (m, 3H), 1.56 (s, 9H), 1.42-1.31 (m, 1H), 1.24-1.19 (m, 3H), 0.83-0.73 (m, 2H), 0.58-0.47 (m, 2H); MS(ES+) m/z 484.3 (M+1).
  • Step 4. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-(((3R,6R)-6-methylpiperidin-3-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C00296
  • To a solution of (2R,5R)-benzyl 5-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)-2-methylpiperidine-1-carboxylate (1.62 g, 3.35 mmol) in ethyl acetate (15 mL) and methanol (30 mL) was added 10% palladium on carbon (0.5 g). The reaction mixture was stirred at ambient temperature under hydrogen atmosphere using a balloon for 1 h and filtered through a pad of Celite. The filtrate was concentrated in vacuo to give the title compound (0.94 g, 80%) as colorless oil: MS(ES+) m/z 350.3 (M+1).
  • Step 5. Preparation of tert-butyl 4-(((3R,6R)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00297
  • Following the procedure as described in Example 34 step 2, and making variations as required to replace (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-(((3R,6R)-6-methylpiperidin-3-yl)oxy)benzoate, and to replace 1-(bromomethyl)-4-fluoro-2-(trifluoromethyl)benzene with 1-(bromomethyl)-2-chloro-4-fluorobenzene, the title compound was obtained (1.29 g, 98%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.58-7.48 (m, 1H), 7.36-7.29 (m, 1H), 7.11-7.03 (m, 1H), 7.00-6.90 (m, 1H), 6.50-6.39 (m, 1H), 4.36-4.23 (m, 1H), 4.05-3.92 (m, 1H), 3.43-3.32 (m, 1H), 3.10-2.99 (m, 1H), 2.58-2.41 (m, 1H), 2.29-2.11 (m, 2H), 2.04-1.83 (m, 2H), 1.64-1.39 (m, 1H), 1.21-1.10 (m, 3H), 0.94-0.80 (m, 2H), 0.65-0.55 (m, 2H); MS(ES+) m/z 492.2, 494.2 (M+1).
  • Step 6. Preparation of 4-(((3R,6R)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00298
  • Following the procedure as described in Example 3 step 3, and making variation as required to replace (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)piperidine-1-carboxylate with of tert-butyl 4-(((3R,6R)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained (1.10 g, 97%) as a colorless solid: MS(ES+) m/z 436.2, 438.2 (M+1).
  • Step 7. Preparation of 4-(((3R,6R)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00299
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with 4-(((3R,6R)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained (0.065 g, 22%) as a colorless solid: 1H NMR (300 MHz, CDCl3) δ 8.80-8.56 (m, 1H), 7.59-7.46 (m, 2H), 7.13-7.05 (m, 1H), 7.01-6.89 (m, 1H), 6.54-6.40 (m, 1H), 4.38-4.26 (m, 1H), 4.06-3.95 (m, 1H), 3.46-3.33 (m, 4H), 3.09-3.00 (m, 1H), 2.59-2.45 (m, 1H), 2.32-2.11 (m, 2H), 2.09-1.86 (m, 2H), 1.70-1.41 (m, 2H), 1.22-1.16 (m, 3H), 0.96-0.85 (m, 2H), 0.67-0.59 (m, 2H); MS(ES+) m/z 513.1, 515.1 (M+1).
  • Example 53 Synthesis of (S)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((3-(3,5-dichlorophenoxy)-piperidin-1-yl)methyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00300
  • Step 1. Preparation of (S)-tert-butyl 3-(3,5-dichlorophenoxy)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00301
  • A mixture of (S)-tert-butyl 3-hydroxypiperidine-1-carboxylate (1.00 g, 4.97 mmol), 3,5-dichloroiodobenzene (1.36 g, 4.97 mmol), copper(I) iodide (0.142 g, 0.75 mmol), 3,4,7,8-tetramethyl-1,10-phenanthroline (0.352 g, 1.49 mmol), molecular sieves 4 Å (1.00 g), and cesium carbonate (4.86 g, 14.9 mmol) in toluene (6 mL) was degassed and then heated to 90° C. for 16 hours. After cooling to ambient temperature, the mixture was filtered through a plug of celite. The filter cake was washed with dichloromethane (100 mL), and the combined filtrate concentrated in vacuo. Purification of the residue by column chromatography (0 to 30% ethyl acetate in hexanes) afforded the title compound as a colorless oil: (1.20 g, 70%): MS(ES+) m/z 346.1, 348.1 (M+1).
  • Step 2. Preparation of (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00302
  • A solution of (S)-tert-butyl 3-(3,5-dichlorophenoxy)piperidine-1-carboxylate (1.17 g, 3.38 mmol) in dichloromethane (30 mL) was treated with trifluoroacetic acid (10 mL). The mixture was stirred at ambient temperature for 1 hour and then concentrated in vacuo to provide the title compound as an oil (1.22 g, quant.): MS(ES+) m/z 246.2, 248.1 (M+1).
  • Step 3. Preparation of (S)-tert-butyl 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00303
  • A mixture of tert-butyl 5-cyclopropyl-2-fluoro-4-(((methylsulfonyl)oxy)methyl)benzoate (0.64 g, 1.86 mmol), (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt (0.74 g, 2.05 mmol), and potassium carbonate (0.64 g, 4.65 mmol) in anhydrous dimethylformamide (15 mL) was stirred at ambient temperature for 18 hours. The reaction mixture was diluted with ethyl acetate (100 mL), washed with water (80 mL), saturated ammonium chloride (2×80 mL), brine (80 mL), dried over anhydrous sodium sulfate, filtered the solid, and concentrated in vacuo. The residue was purified by flash chromatography (0 to 25% ethyl acetate in hexanes) to provide the title compound as an oil (0.70 g, 76%): 1H NMR (300 MHz, CDCl3) δ 7.48 (d, J=7.3 Hz, 1H), 7.15 (d, J=11.8 Hz, 1H), 6.90-6.87 (m, 1H), 6.76-6.73 (m, 2H), 4.35-4.23 (m, 1H), 3.72-3.58 (m, 2H), 2.97-2.88 (m, 1H), 2.71-2.61 (m, 1H), 2.31-2.12 (m, 2H), 2.06-1.88 (m, 2H), 1.85-1.74 (m, 1H), 1.70-1.38 (m, 1H), 0.94-0.82 (m, 2H), 0.64-0.54 (m, 2H); MS(ES+) m/z 494.3, 496.3 (M+1).
  • Step 4. Preparation of (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00304
  • A solution of (S)-tert-butyl 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate (1.04 g, 2.10 mmol) in dichloromethane (30 mL) was treated with trifluoroacetic acid (10 mL). The resulting solution was stirred at ambient temperature for 1 hour and then concentrated in vacuo to provide the title compound as a colorless solid (0.92 g, quant.): MS(ES+) m/z 438.1, 440.1 (M+1).
  • Step 5. Preparation of (S)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00305
  • A mixture of (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid (0.30 g, 0.68 mmol), cyclopropanesulfonamide (0.12 g, 1.02 mmol), 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (0.20 g, 1.02 mmol), and 4-dimethylaminopyridine (0.25 g, 2.04 mmol) in dichloromethane (12 mL) was stirred at ambient temperature for 24 hours. The reaction mixture was treated with acetic acid (1.0 mL) and purified by flash chromatography (0 to 30% ethyl acetate (containing 0.2% acetic acid) in hexanes) to provide the title compound as a colorless solid (0.175 g, 48%): 1H NMR (300 MHz, DMSO-d6) δ 11.93 (br s, 1H), 7.24 (d, J=11.7 Hz, 1H), 7.18 (d, J=7.0 Hz, 1H), 7.09-7.07 (m, 1H), 7.01 (d, J=1.9 Hz, 2H), 4.61-4.51 (m, 1H), 3.69 (s, 2H), 3.08-2.99 (m, 1H), 2.85-2.77 (m, 1H), 2.63-2.52 (m, 1H), 2.41-2.21 (m, 2H), 2.05-1.97 (m, 1H), 1.96-1.84 (m, 1H), 1.78-1.67 (m, 1H), 1.63-1.51 (m, 1H), 1.49-1.34 (m, 1H), 1.11-1.03 (m, 4H), 0.91-0.79 (m, 2H), 0.68-0.56 (m, 2H); MS (ES+) m/z 541.2, 543.2 (M+1).
  • Example 54 Synthesis of (S)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzamide, acetic acid salt
  • Figure US20210093618A1-20210401-C00306
  • Following the procedure as described in Example 53, step 5, and making variation as required to replace cyclopropanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as a colorless solid (0.16 g, 42%): 1H NMR (300 MHz, CDCl3) δ 8.74 (br s, 1H), 7.72 (d, J=7.9 Hz, 1H), 7.35-7.26 (m, 1H), 6.91 (s, 1H), 6.77 (s, 2H), 4.39-4.28 (m, 1H), 4.24 (t, J=7.7 Hz, 4H), 3.77-3.65 (m, 2H), 2.96-2.86 (m, 1H), 2.74-2.62 (m, 1H), 2.39-2.19 (m, 4H), 2.08 (s, 3H), 1.98-1.79 (m, 3H), 1.72-1.44 (m, 3H), 1.00-0.88 (m, 2H), 0.71-0.59 (m, 2H); MS (ES+) m/z 556.2, 558.2 (M+1).
  • Example 55 Synthesis of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00307
  • Step 1. Preparation of (R)-tert-butyl 3-(3,5-dichlorophenoxy)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00308
  • Following the procedure as described in Example 53 step 1 and making variation as required to replace (S)-tert-butyl 3-hydroxypiperidine-1-carboxylate with (R)-tert-butyl 3-hydroxypiperidine-1-carboxylate, the title compound was obtained as a colorless oil (0.461 g, 83%): 1H NMR (300 MHz, CDCl3) δ 6.91-6.87 (m, 1H), 6.76-6.74 (m, 2H), 4.23-4.12 (m, 1H), 3.92-3.03 (m, 4H), 2.01-1.88 (m, 1H), 1.85-1.63 (m, 2H), 1.55-1.27 (m, 10H).
  • Step 2. Preparation of (R)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00309
  • Following the procedure as described in Example 53 step 2, and making variation as required to replace (S)-tert-butyl 3-(3,5-dichlorophenoxy)piperidine-1-carboxylate with (R)-tert-butyl 3-(3,5-dichlorophenoxy)piperidine-1-carboxylate, the title compound was obtained as an oil (0.43 g, quant.): MS (ES+) m/z 246.2, 248.2 (M+1).
  • Step 3. Preparation of (R)-tert-butyl 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00310
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with (R)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt, the title compound was obtained as an oil (0.38 g, 72%): 1H NMR (300 MHz, CDCl3) δ 7.48 (d, J=7.3 Hz, 1H), 7.15 (d, J=11.7 Hz, 1H), 6.90-6.87 (m, 1H), 6.76-6.73 (m, 2H), 4.35-4.24 (m, 1H), 3.72-3.58 (m, 2H), 2.97-2.88 (m, 1H), 2.71-2.61 (m, 1H), 2.31-2.12 (m, 2H), 2.08-1.98 (m, 1H), 1.97-1.88 (m, 1H), 1.85-1.75 (m, 1H), 1.68-1.39 (m, 1H), 0.93-0.84 (m, 2H), 0.64-0.56 (m, 2H); MS (ES+) m/z 494.3, 496.3 (M+1).
  • Step 4. Preparation of (R)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00311
  • Following the procedure as described in Example 53 step 4, and making variation as required to replace (S)-tert-butyl 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate with (R)-tert-butyl 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate, the title compound was obtained as an colorless solid (0.34 g, quant.): MS (ES+) m/z 438.1, 440.1 (M+1).
  • Step 5. Preparation of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((3-(3,5-dichlorophenoxy)-piperidin-1-yl)methyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00312
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with (R)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.12 g, 57%): 1H NMR (300 MHz, CDCl3) δ 8.85-8.67 (m, 1H), 7.72 (d, J=7.7 Hz, 1H), 7.29 (d, J=14.0 Hz, 1H), 6.91 (s, 1H), 6.75 (s, 2H), 4.37-4.26 (m, 1H), 3.78-3.61 (m, 2H), 3.13-3.03 (m, 1H), 2.94-2.85 (m, 1H), 2.72-2.61 (m, 1H), 2.37-2.18 (m, 2H), 2.09-1.98 (m, 1H), 1.97-1.79 (m, 2H), 1.71-1.49 (m, 2H), 1.48-1.41 (m, 2H), 1.18-1.09 (m, 2H), 0.99-0.88 (m, 2H), 0.70-0.59 (m, 2H); MS (ES+) m/z 541.2, 543.2 (M+1).
  • Example 56 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00313
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with (R)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)-piperidin-1-yl)methyl)-2-fluorobenzoic acid and cyclopropanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as a colorless solid (0.30 g, 58%): 1H NMR (300 MHz, CDCl3) δ 8.80-8.62 (m, 1H), 7.73 (d, J=7.3 Hz, 1H), 7.35-7.26 (m, 1H), 6.91 (s, 1H), 6.76 (s, 2H), 4.38-4.28 (m, 1H), 4.23 (t, J=7.7 Hz, 4H), 3.77-3.62 (m, 2H), 2.95-2.86 (m, 1H), 2.72-2.62 (m, 1H), 2.37-2.18 (m, 3H), 2.06-1.99 (m, 1H), 1.97-1.88 (m, 1H), 1.86-1.79 (m, 1H), 1.72-1.45 (m, 3H), 1.01-0.89 (m, 2H), 0.71-0.59 (m, 2H); MS (ES+) m/z 556.2, 558.2 (M+1).
  • Example 57 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((4-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00314
  • Step 1. Preparation of tert-butyl 4-(3,5-dichlorophenoxy)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00315
  • Following the procedure as described in Example 53 step 1, and making variations as required to replace (S)-tert-butyl 3-hydroxypiperidine-1-carboxylate with tert-butyl 4-hydroxypiperidine-1-carboxylate, the title compound was obtained as an oil (0.84 g, 41%): 1H NMR (300 MHz, CDCl3) δ 6.92-6.89 (m, 1H), 6.77-6.74 (m, 2H), 4.44-4.34 (m, 1H), 3.69-3.58 (m, 2H), 3.37-3.25 (m, 2H), 1.93-1.80 (m, 2H), 1.75-1.63 (m, 2H), 1.43 (s, 9H).
  • Step 2. Preparation of 4-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00316
  • Following the procedure as described in Example 53 step 2, and making variation as required to replace (S)-tert-butyl 3-(3,5-dichlorophenoxy)piperidine-1-carboxylate with tert-butyl 4-(3,5-dichlorophenoxy)piperidine-1-carboxylate, the title compound was obtained as an oil (0.88 g, quant.): MS (ES+) m/z 246.2, 248.2 (M+1).
  • Step 3. Preparation of tert-butyl 5-cyclopropyl-4-((4-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00317
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt
  • with 4-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt, the title compound was obtained as an oil (0.74 g, 62%): 1H NMR (300 MHz, CDCl3) δ 7.48 (d, J=7.3 Hz, 1H), 7.17 (d, J=11.8 Hz, 1H), 6.92-6.88 (m, 1H), 6.79-6.74 (m, 2H), 4.35-4.25 (m, 1H), 3.65 (s, 2H), 2.75-2.64 (m, 2H), 2.42-2.30 (m, 2H), 1.77-1.90 (m, 3H), 1.86-1.73 (m, 2H), 1.55 (s, 9H), 0.96-0.87 (m, 2H), 0.65-0.57 (m, 2H); MS (ES+) m/z 494.3, 496.3 (M+1).
  • Step 4. Preparation of 5-cyclopropyl-4-((4-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00318
  • Following the procedure as described in Example 53 step 4, and making variation as required to replace (S)-tert-butyl 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate with tert-butyl 5-cyclopropyl-4-((4-(3,5-dichlorophenoxy)-piperidin-1-yl)methyl)-2-fluorobenzoate, the title compound was obtained as an colorless solid (0.66 g, quant.): MS (ES+) m/z 438.2, 440.2 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((4-(3,5-dichlorophenoxy)-piperidin-1-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00319
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid and purification by reverse phase HPLC, the title compound was obtained as a colorless solid (0.20 g, 49%): 1H NMR (300 MHz, DMSO-d6) δ 12.25 (brs, 1H), 9.76 (brs, 1H), 7.52 (d, J=10.9 Hz, 1H), 7.24 (d, J=6.7 Hz, 1H), 7.20-7.06 (m, 3H), 4.90-4.77 (m, 1H), 4.56 (s, 2H), 3.55-3.41 (m, 1H), 3.34-3.18 (m, 3H), 3.11-3.01 (m, 1H), 2.30-1.92 (m, 4H), 1.86-1.72 (m, 1H), 1.15-1.06 (m, 4H), 1.03-0.95 (m, 2H), 0.80-0.72 (m, 2H); MS (ES+) m/z 541.2, 543.2 (M+1).
  • Example 58 Synthesis of N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((4-(3,5-dichlorophenoxy)piperidin-1-yl)-methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00320
  • Following the procedure as described in Example 53 step 5, and making variations as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid and cyclopropanesulfonamide with azetidine-1-sulfonamide and purification by reverse phase HPLC, the title compound was obtained as a colorless solid (0.19 g, 46%): 1H NMR (300 MHz, DMSO-d6) δ 12.00 (brs, 1H), 9.69 (brs, 1H), 7.52 (d, J=10.8 Hz, 1H), 7.26 (d, J=6.5 Hz, 1H), 7.20-7.07 (m, 3H), 4.89-4.79 (m, 1H), 4.56 (s, 2H), 4.03 (t, J=7.6 Hz, 4H), 3.54-3.42 (m, 1H), 3.39-3.18 (m, 3H), 2.24-2.09 (m, 4H), 2.08-1.98 (m, 2H), 1.87-1.70 (m, 1H), 1.04-0.96 (m, 2H), 0.82-0.74 (m, 2H); MS (ES+) m/z 556.2, 558.2 (M+1).
  • Example 59 Synthesis of 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-chloro-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00321
  • To a solution of (1-benzhydrylazetidin-3-yl)methanol (40.4 mg, 0.159 mmol) and 5-chloro-2,4-difluoro-N-methylsulfonyl-benzamide (43.0 mg, 0.159 mmol) in DMSO (0.80 mL) at rt was added potassium tert-butoxide in 1:10 THF-DMSO (0.38 mL, 0.93 M). The mixture was stirred at rt for 1 hr. LCMS showed major product. Diluted with EtOAc, the contents were washed with 1:4 mixture of 1M HCl and 1 M NaH2PO4 (2×) and brine (1×), dried (Na2SO4). After filtration and concentration, the crude was purified with HPLC (55.7 mg). LCMS (Method D): RT=5.37 min, m/z: 503.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.79 (d, J=7.5 Hz, 1H), 7.47-7.40 (m, 4H), 7.32 (t, J=7.5 Hz, 4H), 7.27-7.15 (m, 3H), 4.78 (s, 1H), 4.29 (d, J=6.1 Hz, 2H), 3.45 (s, 2H), 3.20 (s, 3H), 2.96 (s, 1H).
  • Example 60 Synthesis of 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-((2-(trimethylsilyl)ethyl)sulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00322
  • Step 1: Preparation of tert-butyl 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-chloro-2-fluorobenzoate
  • To solution of (1-benzhydrylazetidin-3-yl)methanol (1.141 g) and tert-butyl 5-chloro-2,4-difluoro-benzoate (1.244 g, ˜90% pure) in DMSO (13.5 mL) at 14° C. (bath) was added potassium tert-butoxide (0.606 g). The mixture was stirred at rt for 1 hr. Diluted with EtOAc, the contents were washed with dilute NaHCO3 (2×) and brine (1×), and dried (Na2SO4). After filtration and concentration, the crude was purified with silica gel flash chromatography (0-40% EtOAc/heptane) to give the product (1.359 g, 63%).
  • Step 2: Preparation of tert-butyl 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • A mixture of tert-butyl 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-chloro-2-fluorobenzoate (1.35 g), cyclopropylboronic acid (506 mg), potassium phosphate (1.52 g), and potassium fluoride (163 mg) in toluene (16.8 mL) and water (0.56 mL) was purge with nitrogen. Tricyclohexylphosphine tetrafluoroborate (213 mg) and palladium acetate (64 mg) were added. The mixture was heated at 90° C. for 7 hours. The mixture was diluted with EtOAc and filtered. The filtrate was concentrated. The residue was purified with silica gel flash chromatography (0-20% EtOAc/heptane with 0.5% Et3N) to give the product (1.092 g, 80%).
  • Step 3: Preparation of 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • A mixture of tert-butyl 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate (248 mg) and potassium hydroxide (228 mg) in DMSO (2.0 mL) was stirred at rt for 16 hr. The contents were acidified with 1M NaH2PO4. Solid was collected with filtration, washed with water, and dried under vacuum (171 mg, 78%).
  • Step 4: Preparation of 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-((2-(trimethylsilyl)ethyl)sulfonyl)benzamide
  • A mixture of 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid (26.2 mg), 2-(trimethylsilyl)ethanesulfonamide (44.0 mg), HBTU (30.9 mg), and DIPEA (0.053 mL) in DCE (0.83 mL) was heated at 40° C. for 16 hr. Acidified with 0.5 M NaH2PO4, the contents were extracted with DCM (2×). The combined extracts were dried (Na2SO4). The crude was purified with HPLC (18.0 mg, 50%). LCMS (Method D): RT=5.47 min, m/z: 595.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.66 (s, 1H), 7.45-7.36 (m, 4H), 7.25 (t, J=7.5 Hz, 4H), 7.19-7.07 (m, 3H), 6.93 (d, J=12.7 Hz, 1H), 4.45 (s, 1H), 4.19 (d, J=6.2 Hz, 2H), 3.38-3.29 (m, 2H), 2.99 (s, 2H), 2.84 (s, 1H), 2.07-1.97 (m, 1H), 0.93-0.81 (m, 4H), 0.66-0.59 (m, 2H), −0.00 (s, 7H), −0.03 (s, 4H).
  • Example 61 Synthesis of 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-((2-methoxyethyl)sulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00323
  • The compound was prepared in a similar manner to Example 60 from 4-((1-benzhydrylazetidin-3-yl)-methoxy)-5-cyclopropyl-2-fluorobenzoic acid and 2-methoxyethanesulfonamide. LCMS (Method D): RT=4.53 min, m/z: 553.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.46-7.37 (m, 4H), 7.33-7.23 (m, 4H), 7.21-7.12 (m, 3H), 6.84 (d, J=12.6 Hz, 1H), 4.48 (s, 1H), 4.18 (d, J=6.1 Hz, 2H), 3.64 (t, J=6.6 Hz, 3H), 3.51 (s, 2H), 3.26 (s, 2H), 3.21 (s, 3H), 3.14 (s, 1H), 3.02 (d, J=6.5 Hz, 2H), 2.92-2.79 (m, 1H), 2.10-1.98 (m, 1H), 1.25 (q, J=7.6, 6.4 Hz, 6H), 0.94-0.83 (m, 2H), 0.66-0.55 (m, 2H).
  • Example 62 Synthesis of 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-cyclopropyl-N-((difluoromethyl)-sulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00324
  • The compound was prepared in a similar manner to Example 60 from 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and difluoromethanesulfonamide. LCMS (Method E): RT=3.95 min, m/z: 545.2 [M+H]+.
  • Example 63 Synthesis of 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-((3,3,3-trifluoropropyl)sulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00325
  • The compound was prepared in a similar manner to Example 60 from 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and 3,3,3-trifluoropropane-1-sulfonamide. LCMS (Method E): RT=5.14 min, m/z: 591.2 [M+H]+. 1H NMR (400 MHz. DMSO-d6) δ 7.44 (d, J=7.2 Hz, 4H), 7.40-7.30 (m, 4H), 7.26 (s, 2H), 7.21 (d, J=8.4 Hz, 1H), 6.88 (d, J=12.7 Hz, 1H), 4.22 (d, J=6.2 Hz, 2H), 3.53 (s, 3H), 2.76-2.60 (m, 2H), 2.09-1.98 (m, 1H), 0.93-0.82 (m, 2H), 0.66-0.57 (m, 2H).
  • Example 64 Synthesis of 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-cyclopropyl-N-((cyclopropylmethyl)-sulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00326
  • The compound was prepared in a similar manner to Example 60 from 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and cyclopropylmethanesulfonamide. LCMS (Method E): RT=4.89 min, m/z: 549.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.84 (s, 1H), 7.46-7.37 (m, 4H), 7.28 (t, J=7.6 Hz, 4H), 7.23-7.10 (m, 3H), 6.95 (d, J=12.8 Hz, 1H), 4.49 (s, 1H), 4.22 (d, J=6.2 Hz, 2H), 3.37 (d, J=7.1 Hz, 2H), 3.02 (s, 2H), 2.94-2.80 (m, 1H), 2.10-1.99 (m, 1H), 1.11-0.97 (m, 1H), 0.94-0.84 (m, 2H), 0.71-0.63 (m, 2H), 0.60-0.52 (m, 2H), 0.37-0.28 (m, 2H). 2H hidden under water
  • Example 65 Synthesis of 4-((1-benzhydrylazetidin-3-yl)methoxy)-N-(butylsulfonyl)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00327
  • The compound was prepared in a similar manner to Example 60 from 4-((1-benzhydrylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and butane-1-sulfonamide. LCMS (Method E): RT=5.08 min, m/z: 551.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.75 (s, 1H), 7.42 (dd, J=8.2, 1.4 Hz, 4H), 7.27 (dd, J=8.3, 6.9 Hz, 4H), 7.21-7.11 (m, 3H), 6.92 (d, J=12.7 Hz, 1H), 4.47 (s, 1H), 4.20 (d, J=6.2 Hz, 2H), 3.37 (t, J=7.9 Hz, 2H), 3.01 (t, J=6.6 Hz, 2H), 2.93-2.81 (m, 1H), 2.09-1.99 (m, 1H), 1.71-1.59 (m, 2H), 1.45-1.34 (m, 2H), 0.94-0.83 (m, 5H), 0.69-0.59 (m, 2H). 2H hidden under water
  • Example 66 Synthesis of 4-((1-benzyl-3-fluoroazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00328
  • Step 1: Preparation of 4-((1-(tert-butoxycarbonyl)-3-fluoroazetidin-3-yl)methoxy)-5-chloro-2-fluorobenzoic acid
  • To a solution of tert-butyl 3-fluoro-3-(hydroxymethyl)azetidine-1-carboxylate (0.161 g, 0.784 mmol) and 5-chloro-2,4-difluoro-benzoic acid (151 mg, 0.784 mmol) in dimethyl sulfoxide (4.00 mL/mmol, 44.1 mmol, 99.8 mass %) at 14° C. (bath) was added potassium tert-butoxide (194 mg, 1.73 mmol). The mixture was stirred at that temp for 5 min then at rt for 30 min. Diluted with EtOAc, the contents were washed with 1:4 mixture of 0.3M HCl and 0.3M NaH2PO4 (3×) and brine, and dried (Na2SO4). After filtration and concentration, the white solid crude (327 mg) was used as-is.
  • Step 2: Preparation of tert-butyl 3-((2-chloro-4-(ethoxycarbonyl)-5-fluorophenoxy)methyl)-3-fluoroazetidine-1-carboxylate
  • To a suspension of product from step 1 (278 mg) and potassium carbonate (185 mg, 1.32 mmol) in N,N-dimethylformamide (2.65 mL) was added iodoethane (156 mg, 0.99 mmol). The mixture was heated at 50° C. for 2 hr. LCMS showed completion. Diluted with EtOAc (50 mL), the contents were washed with diluted NaHCO3 (2×) and brine, and dried (Na2SO4). After filtration and concentration, the residue was purified with silica gel flash chromatography (0-40% EtOAc/heptane) to give the product (141 mg).
  • Step 3: Preparation of ethyl 4-((1-benzyl-3-fluoroazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • A mixture of product from step 2 (57 mg, 0.14 mmol) and trifluoroacetic acid (0.28 mL, 3.6 mmol) in dichloromethane (0.83 mL) was stirred at 0° C. for 30 min then at rt for 2 h. The contents were concentrated and used as-is.
  • Step 4: Preparation of ethyl 4-((1-benzyl-3-fluoroazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • To the residue from step 3 was added dichloromethane (0.83 mL), followed by N,N-diisopropylethylamine (0.19 mL, 1.1 mmol) and benzyl bromide (26 mg, 0.15 mmol). The mixture The mixture was stirred at rt for 16 hr. Dilute aq Na2CO3 was added. The contents were extracted with DCM (2×). The combined extracts were dried (Na2SO4). The crude was purified with silica gel flash chromatography (0-25% EtOAc/heptane) to give the product as viscous oil (43.8 mg).
  • Step 5: Preparation of 4-((1-benzyl-3-fluoroazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • A mixture of product from previous step (41.7 mg, 0.104 mmol) and potassium hydroxide (11.7 mg, 0.208 mmol) in methanol (0.62 mL) and water (0.16 mL) was stirred at rt for 3 hr then heated at 50° C. for 1.5 hr. Diluted with water and acidified with 1M NaH2PO4, the contents were extracted with DCM (3×). The combined extracts were dried (Na2SO4) and concentrated. The crude (37.6 mg) was used as-is.
  • Step 6: Preparation of 4-((1-benzyl-3-fluoroazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • A mixture of product from previous step (37.6 mg, 0.101 mmol), methanesulfonamide (28.7 mg, 0.302 mmol), N,N-diisopropylethylamine (0.089 mL, 0.503 mmol), and HBTU ((51.2 mg, 0.131 mmol) in 1,2-dichloroethane (1 mL) was stirred at 50° C. for 2 hr then at 65° C. for 1 hr. To the mixture was added 1M NaH2PO4. The contents were extracted with DCM (2×). The combined extracts were dried (Na2SO4). The crude was purified with HPLC (23.0 mg, 50.7%). LCMS (Method D): RT=4.24 min, m/z: 451.1 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.39-7.22 (m, 5H), 7.17 (d, J=8.3 Hz, 1H), 7.01 (d, J=12.7 Hz, 1H), 4.43 (d, J=23.8 Hz, 2H), 3.74 (s, 2H), 3.59 (dd, J=13.3, 9.1 Hz, 2H), 3.25 (s, 3H), 2.06-1.95 (m, 1H), 0.92-0.82 (m, 2H), 0.71-0.62 (m, 2H).
  • Example 67 Synthesis of 4-((1-benzyl-3-fluoroazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00329
  • The compound was prepared in a similar manner to Example 66 while in step 3 benzyl bromide being replaced by bromodiphenylmethane and DCM being replaced by DMF. LCMS (Method D): RT=4.67 min, m/z: 427.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.90 (s, 1H), 7.49-7.40 (m, 4H), 7.29 (dd, J=8.4, 6.8 Hz, 4H), 7.23-7.13 (m, 3H), 7.02 (d, J=12.7 Hz, 1H), 4.60 (s, 1H), 4.48 (d, J=23.1 Hz, 2H), 3.49-3.38 (m, 2H), 3.27-3.15 (m, 5H), 2.06-1.91 (m, 1H), 0.90-0.79 (m, 2H), 0.70-0.60 (m, 2H).
  • Example 68 Synthesis of 4-((1-benzhydryl-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00330
  • Step 1: Preparation of tert-butyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)-3-methylazetidine-1-carboxylate
  • The compound was prepared from tert-butyl 3-(hydroxymethyl)-3-methylazetidine-1-carboxylate and tert-butyl 5-chloro-2,4-difluorobenzoate in a similar manner to step 1 of Example 60.
  • Step 2: Preparation of tert-butyl 3-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-3-methylazetidine-1-carboxylate
  • The compound was prepared from tert-butyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)-3-methylazetidine-1-carboxylate in a similar manner to step 2 of Example 60.
  • Step 3: Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-((3-methylazetidin-3-yl)methoxy)benzoate
  • To a solution of tert-butyl 3-[(4-tert-butoxycarbonyl-2-cyclopropyl-5-fluorophenoxy)methyl]-3-methyl-azetidine-1-carboxylate (73.3 mg, 0.168 mmol) in acetonitrile (1.35 mL) at 7° C. (bath) was added p-toluenesulfonic acid hydrate (38.4 mg, 0.202 mmol). After 10 min, the mixture was stirred at rt for 20 hr. Tert-butyl acetate (0.23 mL) and p-toluenesulfonic acid hydrate (16.0 mg, 0.842 mmol) were added. After 1 hr, acetonitrile (3 mL) and K2CO3 was added (500 mg). After well mixing, the contents were diluted with EtOAc and filtered. The filtrated was concentrated. The residue was used as-is.
  • Step 4: Preparation of tert-butyl 4-((1-benzhydryl-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • A mixture of tert-butyl 5-cyclopropyl-2-fluoro-4-[(3-methylazetidin-3-yl)methoxy]benzoate (56.3 mg, 0.168 mmol), bromodiphenylmethane (62.3 mg, 0.252 mmol), and cesium carbonate (164 mg, 0.504 mmol) in acetonitrile (1.68 mL) was heated at 50° C. for 16 hr. The contents were concentrated. The residue was suspended in water and extracted with DCM (2×). The combined extracts were dried (Na2SO4). The crude was purified with silica gel flash chromatography (0-30% EtOAc/heptane) to give the product (96.9 mg).
  • Step 5: Preparation of 4-((1-benzhydryl-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • A mixture of product from previous step (96.9 mg) and potassium hydroxide (86.7 mg, 1.55 mmol) in DMSO (1.93 mL) was stirred at rt for 40 hr. Acidified with 0.5M NaH2PO4, the contents were extracted with DCM (3×). The combined extracts were dried (Na2SO4) and concentrated. The crude was used as-is (103 mg).
  • Step 6: Preparation of 4-((1-benzhydryl-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • The compound was prepared in a similar manner to step 4 of Example 60 from 4-((1-benzhydryl-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and methanesulfonamide. LCMS (Method D): RT=4.49 min, m/z: 523.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.83 (s, 1H), 7.48-7.38 (m, 4H), 7.28 (t, J=7.6 Hz, 4H), 7.23-7.13 (m, 3H), 6.98 (d, J=12.8 Hz, 1H), 4.53 (s, 1H), 4.11 (s, 2H), 3.17 (s, 2H), 2.88 (d, J=11.8 Hz, 2H), 2.12-2.00 (m, 1H), 1.35 (s, 3H), 0.94-0.85 (m, 2H), 0.72-0.62 (m, 2H).
  • Example 69 Synthesis of 4-((1-benzhydryl-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(ethylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00331
  • The compound was prepared in a similar manner to step 4 of Example 60 from 4-((1-benzhydryl-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and ethanesulfonamide. LCMS (Method D): RT=4.63 min, m/z: 537.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.75 (s, 1H), 7.47-7.37 (m, 4H), 7.28 (t, J=7.5 Hz, 4H), 7.18 (t, J=7.3 Hz, 3H), 6.99 (d, J=12.8 Hz, 1H), 4.50 (s, 1H), 4.10 (s, 2H), 3.50-3.38 (m, 2H), 3.15 (s, 2H), 2.95-2.81 (m, 2H), 2.12-1.99 (m, 1H), 1.35 (s, 3H), 1.24 (t, J=7.4 Hz, 3H), 0.94-0.83 (m, 2H), 0.71-0.60 (m, 2H).
  • Example 70 Synthesis of 4-((1-benzhydryl-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00332
  • The compound was prepared in a similar manner to step 4 of Example 60 from 4-((1-benzhydryl-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and cyclopropanesulfonamide. LCMS (Method E): RT=4.69 min, m/z: 549.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.79 (s, 1H), 7.46-7.38 (m, 4H), 7.32-7.23 (m, 4H), 7.22-7.13 (m, 3H), 6.94 (d, J=12.8 Hz, 1H), 4.50 (s, 1H), 4.09 (s, 2H), 3.14 (d, J=7.1 Hz, 2H), 3.07-2.96 (m, 1H), 2.92-2.80 (m, 2H), 2.13-2.00 (m, 1H), 1.30-1.20 (m, 3H), 1.03 (d, J=17.8 Hz, 4H), 0.94-0.83 (m, 2H), 0.69-0.60 (m, 2H).
  • Example 71 Synthesis of N-(azetidin-1-ylsulfonyl)-4-((1-benzhydryl-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00333
  • The compound was prepared in a similar manner to step 4 of Example 60 from 4-((1-benzhydryl-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and azetidine-1-sulfonamide. LCMS (Method D): RT=4.74 min, m/z: 564.2 [M+H]+.
  • Example 72 Synthesis of tert-butyl 3-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)-methyl)azetidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00334
  • Steps 1-2: Preparation of tert-butyl 3-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-azetidine-1-carboxylate
  • The compound was prepared from tert-butyl 3-(hydroxymethyl)azetidine-1-carboxylate and tert-butyl 5-chloro-2,4-difluorobenzoate in a similar manner to steps 1-2 of Example 60.
  • Step 3: Preparation of 4-((1-(tert-butoxycarbonyl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • To a mixture of tert-butyl 3-[(4-tert-butoxycarbonyl-2-cyclopropyl-5-fluorophenoxy)-methyl]azetidine-1-carboxylate (0.711 g, 1.69 mmol) and potassium hydroxide (1.14 g, 20.2 mmol) in methanol (8.43 mL) was slowly added water (0.84 mL). The resulting mixture was heated at 60° C. for 16 hr. LCMS showed completion. The contents were diluted with water and acidified with 1:4 mixture of 1M HCl and 1M NaH2PO4, and extracted with DCM (2×). The combined DCM solutions were dried (Na2SO4). After filtration and concentration, the crude was used as-is.
  • Step 4: Preparation of tert-butyl 3-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)-phenoxy)methyl)azetidine-1-carboxylate
  • The compound was prepared in a similar manner to step 4 of Example 60 from 4-((1-(tert-butoxycarbonyl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and methanesulfonamide. 1H NMR (400 MHz, DMSO-d6) δ 11.88 (s, 1H), 7.17 (d, J=8.3 Hz, 1H), 6.97 (d, J=12.8 Hz, 1H), 4.29-4.15 (m, 2H), 3.96 (s, 2H), 3.85-3.71 (m, 2H), 3.31 (s, 3H), 3.06-2.93 (m, 1H), 2.04-1.89 (m, 1H), 1.36 (s, 9H), 0.93-0.80 (m, 2H), 0.74-0.59 (m, 2H).
  • Example 73 Synthesis of 5-cyclopropyl-2-fluoro-4-((1-(3-fluorobenzyl)azetidin-3-yl)methoxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00335
  • A mixture of tert-butyl 3-[[2-cyclopropyl-5-fluoro-4-(methylsulfonylcarbamoyl)phenoxy]-methyl]azetidine-1-carboxylate (39.2 mg, 0.0753 mmol, Example 77) and trifluoroacetic acid (0.15 mL, 1.9 mmol) in dichloromethane (0.45 mL) was stirred at 0° C. for 10 min then at rt for 1 h. The contents were concentrated. To the residue was added 1, 2-dichloroethane (1.5 mL). The mixture was cooled at 0° C. N, N-diisopropylethylamine (0.158 mL, 0.904 mmol) was added, followed by 3-fluorobenzaldehyde (28.0 mg, 0.226 mmol) and sodium triacetoxyborohydride (63.8 mg, 0.301 mmol). The mixture was stirred at rt for 20 hr. Diluted with 0.5M NaH2PO4, the contents were extracted with 1:5 mixture of IPA-DCM (3×). The combined org solutions were dried (Na2SO4). The crude purified with HPLC (10.9 mg). LCMS (Method E): RT=3.29 min, m/z: 451.1 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.43 (q, J=7.4 Hz, 1H), 7.27-7.12 (m, 4H), 6.85 (d, J=12.7 Hz, 1H), 4.19 (d, J=6.1 Hz, 2H), 3.98 (s, 2H), 3.74 (s, 2H), 3.56 (s, 2H), 3.06 (s, 4H), 2.11-1.97 (m, 1H), 0.94-0.82 (m, 2H), 0.66-0.57 (m, 2H).
  • Example 74 Synthesis of -((1-benzylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00336
  • The compound was prepared in a similar manner to Example 73 from tert-butyl 3-[[2-cyclopropyl-5-fluoro-4-(methylsulfonylcarbamoyl)phenoxy]methyl]azetidine-1-carboxylate and benzaldehyde. LCMS (Method D): RT=3.88 min, m/z: 433.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.49-7.31 (m, 5H), 7.23 (d, J=8.5 Hz, 1H), 6.80 (d, J=12.7 Hz, 1H), 4.18 (d, J=6.1 Hz, 2H), 4.08 (s, 2H), 3.92-3.78 (m, 2H), 3.68 (d, J=8.1 Hz, 2H), 3.18-3.05 (m, 1H), 2.99 (s, 3H), 2.11-1.94 (m, 1H), 0.94-0.81 (m, 2H), 0.65-0.53 (m, 2H).
  • Example 75 Synthesis of 4-((1-(3-chloro-5-fluorobenzyl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00337
  • The compound was prepared in a similar manner to Example 73 from tert-butyl 3-[[2-cyclopropyl-5-fluoro-4-(methylsulfonylcarbamoyl)phenoxy]methyl]azetidine-1-carboxylate and 3-chloro-5-fluorobenzaldehyde. LCMS (Method D): RT=4.15 min, m/z: 485.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) 7.41-7.34 (m, 1H), 7.29 (s, 1H), 7.24-7.15 (m, 2H), 6.90 (d, J=12.8 Hz, 1H), 4.20 (d, J=6.2 Hz, 2H), 3.88 (s, 2H), 3.65 (t, J=8.1 Hz, 2H), 3.44 (t, J=7.4 Hz, 2H), 3.17 (s, 3H), 3.08-2.95 (m, 1H), 2.04 (tt, J=8.6, 5.3 Hz, 1H), 0.94-0.83 (m, 2H), 0.69-0.60 (m, 2H).
  • Example 76 Synthesis of 5-cyclopropyl-2-fluoro-4-((1-(3-fluoro-4-(trifluoromethyl)benzyl)azetidin-3-yl)methoxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00338
  • The compound was prepared in a similar manner to Example 73 from tert-butyl 3-[[2-cyclopropyl-5-fluoro-4-(methylsulfonylcarbamoyl)phenoxy]methyl]azetidine-1-carboxylate and 3-fluoro-4-(trifluoromethyl)benzaldehyde. LCMS (Method D): RT=4.33 min, m/z: 519.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.76 (t, J=7.8 Hz, 1H), 7.45 (d, J=11.9 Hz, 1H), 7.37 (d, J=8.1 Hz, 1H), 7.19 (d, J=8.4 Hz, 1H), 6.91 (d, J=12.8 Hz, 1H), 4.21 (d, J=6.2 Hz, 2H), 3.87 (s, 2H), 3.58 (t, J=7.9 Hz, 2H), 3.18 (s, 3H), 3.05-2.93 (m, 1H), 2.06-1.98 (m, 1H), 0.94-0.85 (m, 2H), 0.68-0.61 (m, 2H).
  • Example 77 Synthesis of 5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)-3-methylazetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00339
  • Steps 1-4: Preparation of tert-butyl 3-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)-phenoxy)methyl)-3-methylazetidine-1-carboxylate
  • The compound was prepared in a similar manner to Example 72 while in step 1 tert-butyl 3-(hydroxymethyl)azetidine-1-carboxylate was replaced by tert-butyl 3-(hydroxymethyl)-3-methylazetidine-1-carboxylate.
  • Step 5: Preparation of 5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)-3-methylazetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was prepared in a similar manner to Example 73 from tert-butyl 3-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)methyl)-3-methylazetidine-1-carboxylate and 3,5-dichlorobenzaldehyde. LCMS (Method D): RT=4.42 min, m/z: 515.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.54 (t, J=2.0 Hz, 1H), 7.39 (d, J=1.9 Hz, 2H), 7.22 (d, J=8.4 Hz, 1H), 6.91 (d, J=12.8 Hz, 1H), 4.08 (s, 2H), 3.84 (s, 2H), 3.49 (s, 2H), 3.17 (s, 3H), 2.09-1.98 (m, 1H), 1.37 (s, 3H), 0.94-0.83 (m, 2H), 0.70-0.59 (m, 2H).
  • Example 78 Synthesis of tert-butyl 4-((2-chloro-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)-methyl)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00340
  • The compound was prepared in a similar manner to Example 59 from tert-butyl 4-(hydroxymethyl)-piperidine-1-carboxylate and 5-chloro-2,4-difluoro-N-methylsulfonylbenzamide. LCMS (Method D): RT=6.67 min, m/z: 409.1 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.77 (d, J=7.7 Hz, 1H), 7.13 (d, J=12.3 Hz, 1H), 4.08-3.88 (m, 4H), 3.13 (s, 3H), 2.74 (d, J=9.9 Hz, 2H), 1.97 (q, J=7.2, 5.8 Hz, 1H), 1.81-1.68 (m, 2H), 1.40 (s, 9H), 1.19 (qd, J=12.4, 4.1 Hz, 2H).
  • Example 79 Synthesis of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-phenylpiperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00341
  • The compound was prepared in a similar manner to Example 60 from (1-phenylpiperidin-4-yl)methanol and 5-chloro-2,4-difluoro-N-methylsulfonyl-benzamide.
  • LCMS (Method E): RT=4.68 min, m/z: 447.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.82 (s, 1H), 7.26-7.11 (m, 3H), 7.00-6.89 (m, 3H), 6.74 (t, J=7.2 Hz, 1H), 4.00 (d, J=6.2 Hz, 2H), 3.79-3.67 (m, 2H), 3.29 (s, 3H), 2.78-2.65 (m, 2H), 2.07-1.92 (m, 2H), 1.87 (d, J=11.9 Hz, 2H), 1.55-1.41 (m, 2H), 0.94-0.83 (m, 2H), 0.72-0.61 (m, 2H).
  • Example 80
  • Figure US20210093618A1-20210401-C00342
  • 5-Cyclopropyl-4-((1-((3,4-dichlorophenyl)(phenyl)methyl)azetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00343
  • Step 1
  • Figure US20210093618A1-20210401-C00344
  • (3,4-Dichlorophenyl)(phenyl)methanol
  • A mixture of (3,4-dichlorophenyl)(phenyl)methanone (2.0 g, 8.0 mmol) and sodium borohydride (456 mg, 12 mmol) in EtOH (10 mL) was stirred at 25° C. for 2 h. After removal of the solvent, the residue was diluted with water (20 mL) and extracted with EtOAc (20 mL×3). The combined organic layers were washed with brine (20 mL), dried over anhydrous sodium sulfate, filtered and concentrated to give the desired product (2.0 g, 100%) as yellow oil. LCMS (ESI) m/z: 251.1 [M−H].
  • Step 2
  • Figure US20210093618A1-20210401-C00345
  • 1,2-Dichloro-4-(chloro(phenyl)methyl)benzene
  • A solution of (3,4-dichlorophenyl)(phenyl)methanol (2.0 g, 7.9 mmol) in thionyl chloride (10 mL) was stirred at 60° C. for 3 h. After cooling to room temperature, the reaction mixture was concentrated and purified by silica gel column (eluting with petroleum ether/ethyl acetate=100/1) to give the desired product (1.6 g, 76%) as yellow oil.
  • Step 3
  • Figure US20210093618A1-20210401-C00346
  • tert-Butyl 5-cyclopropyl-4-((1-((3,4-dichlorophenyl)(phenyl)methyl)-azetidin-3-yl)methoxy)-2-fluorobenzoate
  • A mixture of methyl tert-butyl 4-(azetidin-3-ylmethoxy)-5-cyclopropyl-2-fluorobenzoate (100 mg, 0.31 mmol), 1,2-dichloro-4-(chloro(phenyl)methyl)benzene (126 mg, 0.47 mmo), sodium iodide (93 mg, 0.62 mmol) and potassium carbonate (128 mg, 0.93 mmol) in MeCN (10 mL) was stirred at 80° C. for 16 h. After cooling to room temperature, the reaction mixture was diluted with EtOAc (100 mL) and brine (50 mL). The organic layer was separated and washed with brine (50 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (eluting with petroleum ether/ethyl acetate=4/1) to give the target compound (100 mg, 58%) as a pale yellow oil. LCMS (ESI) m/z: 556.0 [M+H]+.
  • Step 4
  • Figure US20210093618A1-20210401-C00347
  • 5-Cyclopropyl-4-((1-((3,4-dichlorophenyl)(phenyl)methyl)azetidin-3-yl)methoxy)-2-fluorobenzoic acid
  • Trifluroacetic acid (1 mL) was added to a solution of tert-butyl 5-cyclopropyl-4-((1-((3,4-dichlorophenyl)(phenyl)methyl)azetidin-3-yl)methoxy)-2-fluorobenzoate (100 mg, 0.18 mmol) in DCM (2 mL) and the reaction stirred at room temperature for 1 h. The mixture was then concentrated to give the desired product (80 mg, crude) as a pale yellow solid. LCMS (ESI): 500.0 [M−H].
  • Step 5
  • Figure US20210093618A1-20210401-C00348
  • 5-Cyclopropyl-4-((1-((3,4-dichlorophenyl)(phenyl)methyl)azetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • 1. A mixture of 5-cyclopropyl-4-((1-((3,4-dichlorophenyl)(phenyl)methyl)-azetidin-3-yl)methoxy)-2-fluorobenzoic acid (80 mg, 0.16 mmol), methanesulfonamide (23 mg, 0.24 mmol), EDCI (61 mg, 0.32 mmol) and DMAP (39 mg, 0.32 mmol) in DCM (4 mL) was stirred at 25° C. for 16 h. The reaction mixture was diluted with EtOAc (100 mL), washed with HCl (2.0 M, 20 mL) and brine (50 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by reverse phase combiflash (30-40% MeCN in 0.1% NH4HCO3) to give the target product (35 mg, 38%) as an off-white solid. LCMS (ESI) Method A: RT=6.24 min, m/z: 577.2 [M+H]+. 1H NMR (500 MHz, MeOD-d4) δ7.60 (d, J=2.0 Hz, 1H), 7.48-7.24 (m, 8H), 6.85 (d, J=13.0 Hz, 1H), 4.58 (s, 1H), 4.23 (d, J=6.0 Hz, 2H), 3.48-3.42 (m, 2H), 3.32 (s, 3H), 3.27-3.21 (m, 2H), 3.06-3.00 (m, 1H), 2.13-2.09 (m, 1H), 0.97-0.94 (m, 2H), 0.70-0.67 (m, 2H).
  • Example 81
  • Figure US20210093618A1-20210401-C00349
  • (R)-5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(phenyl(pyridin-3-yl)methyl)azetidin-3-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00350
  • Step 1
  • Figure US20210093618A1-20210401-C00351
  • Phenyl(pyridin-3-yl)methanol
  • A mixture of phenyl(pyridin-3-yl)methanone (2.0 g, 11 mmol) and sodium borohydride (623 mg, 16 mmol) in EtOH (30 mL) was stirred at 25° C. for 2 h. The mixture was then concentrated, diluted with water (20 mL) and extracted with EtOAc (20 mL×3). The combined organic layers were washed with brine (20 mL), dried over anhydrous sodium sulfate, filtered and concentrated to give the desired product (2.0 g, 100%) as yellow oil. LCMS (ESI): m/z 184.3 [M+H]+.
  • Step 2
  • Figure US20210093618A1-20210401-C00352
  • 3-(Chloro(phenyl)methyl)pyridine
  • A solution of phenyl(pyridin-3-yl)methanol (1.5 g, 8.1 mmol) in thionyl chloride (10 mL) was stirred at 80° C. for 16 h. The mixture was then cooled to room temperature, concentrated and purified by silica gel chromatography (eluting with DCM/MeOH from 100/1 to 20/1) to give the desired product (1.5 g, 94%) as a brown solid. LCMS (ESI): m/z 204.3 [M+H]+.
  • Step 3
  • Figure US20210093618A1-20210401-C00353
  • tert-butyl 5-Cyclopropyl-2-fluoro-4-((1-(phenyl(pyridin-3-yl)methyl)azetidin-3-yl)methoxy)benzoate
  • The compound was synthesized as described in step 3, Example 80. LCMS (ESI) m/z: 489.1 [M+H]+.
  • Step 4
  • Figure US20210093618A1-20210401-C00354
  • 5-Cyclopropyl-2-fluoro-4-((1-(phenyl(pyridin-3-yl)methyl)azetidin-3-yl)methoxy)benzoic acid
  • The compound was synthesized as described in step 4, Example 80. LCMS (ESI) m/z: 433.1 [M+H]+.
  • Figure US20210093618A1-20210401-C00355
  • (R)-5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(phenyl(pyridin-3-yl)methyl)azetidin-3-yl)methoxy)benzamide
  • The compound was synthesized as described in step 5, Example 80. The enantiomer was separated by chiral SFC from the racemate. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=75:25; flow: 3 mL/min; column temperature: 40° C.; RT=4.83 min). LCMS (ESI) Method B: RT=4.56 min, m/z: 510.2 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 11.90 (s, 1H), 8.66 (s, 1H), 8.43 (s, 1H), 7.80 (d, J=8.0 Hz, 1H), 7.45-7.44 (m, 2H), 7.32-7.29 (m, 3H), 7.22-7.16 (m, 2H), 6.92 (d, J=13.0 Hz, 1H), 4.55 (s, 1H), 4.21 (d, J=6.5 Hz, 2H), 3.29-3.24 (m, 2H), 3.22 (s, 3H), 3.04-3.00 (m, 2H), 2.90-2.84 (m, 1H), 2.08-2.02 (m, 1H), 0.91-0.87 (m, 2H), 0.66-0.63 (m, 2H).
  • Example 82
  • Figure US20210093618A1-20210401-C00356
  • (S)-5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(phenyl(pyridin-3-yl)methyl)azetidin-3-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=75:25; flow: 3 mL/min; column temperature: 40° C.; RT=4.08 min). LCMS (ESI) Method B: RT=4.56 min, m/z: 510.2 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 11.90 (s, 1H), 8.64 (s, 1H), 8.41 (s, 1H), 7.79 (d, J=8.0 Hz, 1H), 7.45-7.44 (m, 2H), 7.32-7.29 (m, 3H), 7.22-7.16 (m, 2H), 6.92 (d, J=13.0 Hz, 1H), 4.55 (s, 1H), 4.21 (d, J=6.5 Hz, 2H), 3.29-3.24 (m, 2H), 3.20 (s, 3H), 3.04-3.00 (m, 2H), 2.90-2.84 (m, 1H), 2.07-2.02 (m, 1H), 0.91-0.87 (m, 2H), 0.66-0.63 (m, 2H).
  • Example 83
  • Figure US20210093618A1-20210401-C00357
  • 4-((1-((5-Chloro-6-isopropoxypyridin-3-yl)methyl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00358
  • Step 1
  • Figure US20210093618A1-20210401-C00359
  • 5-Bromo-3-chloro-2-isopropoxypyridine
  • A mixture of potassium tert-butoxide (10 g, 88.8 mmol) in isopropanol (15 mL) was stirred at 95° C. for 3 h, 5-bromo-2,3-dichloropyridine (5 g, 22.2 mmol) was then added. The reaction mixture was refluxed overnight then partitioned between ethyl acetate and water. The organic layer was washed with water, brine, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica column chromatography (eluting with petroleum ether/ethyl acetate=100/1) to give 5-bromo-3-chloro-2-isopropoxypyridine (3.2 g, 58% yield) as colorless oil. 1H-NMR (500 MHz, DMSO-d6): δ 8.25-8.20 (m, 2H), 5.27-5.23 (m, 1H), 1.32 (d, J=5.5 Hz, 6H).
  • Step 2
  • Figure US20210093618A1-20210401-C00360
  • 5-Chloro-6-isopropoxynicotinaldehyde
  • n-BuLi (2.5 M, 9.6 mL, 24 mmol) was added dropwise to a solution of 5-bromo-2,3-dichloropyridine (3.0 g, 12 mmol) in anhydrous THF (20 mL) at −78° C. The resulting mixture was stirred at this temperature for 10 min then DMF (2.6 g, 36 mmol) was added at −50° C. The mixture was warmed to room temperature and partitioned with EtOAc (100 mL) and 1N HCl (10 mL). The organic layer was washed with saturated brine (50 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (eluting with petroleum ether/ethyl acetate=50/1) to give 5-chloro-6-isopropoxynicotinaldehyde (700 mg, 29% yield) as colorless oil. 1H-NMR (500 MHz, DMSO-d6): δ 9.94 (s, 1H), 8.70 (d, J=1.5 Hz, 1H), 8.24 (d, J=2.0 Hz, 1H) 5.40-5.31 (m, 1H), 1.37 (d, J=6.0 Hz, 6H).
  • Step 3
  • Figure US20210093618A1-20210401-C00361
  • (5-Chloro-6-isopropoxypyridin-3-yl)methanol
  • The compound was synthesized as described in step 1, Example 80. LCMS (ESI) m/z: 200.1 [M−H].
  • Step 4
  • Figure US20210093618A1-20210401-C00362
  • 3-Chloro-5-(chloromethyl)-2-isopropoxypyridine
  • The compound was synthesized as described in step 2, Example 80.
  • Step 5
  • Figure US20210093618A1-20210401-C00363
  • tert-butyl 4-((1-((5-Chloro-6-isopropoxypyridin-3-yl)methyl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • The compound was synthesized as described in step 3, Example 80. LCMS (ESI) m/z: 505.1 [M+H]+.
  • Step 6
  • Figure US20210093618A1-20210401-C00364
  • 4-((1-((5-Chloro-6-isopropoxypyridin-3-yl)methyl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • The compound was synthesized as described in step 4, Example 80. LCMS (ESI) m/z: 449.1 [M+H]+.
  • Step 7
  • Figure US20210093618A1-20210401-C00365
  • 4-((1-((5-Chloro-6-isopropoxypyridin-3-yl)methyl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 5, Example 80. LCMS (ESI) Method A: RT=5.06 min, m/z: 526.2 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.99 (d, J=2.0 Hz, 1H), 7.55 (d, J=2.0 Hz, 1H), 7.23 (d, J=9.0 Hz, 1H), 6.71 (d, J=13.0 Hz, 1H), 5.28-5.26 (m, 1H), 4.11 (d, J=6.0 Hz, 2H), 3.55 (s, 2H), 3.39-3.33 (m, 2H), 3.13-3.11 (m, 2H), 2.86-2.83 (m, 4H), 2.00 (m, 1H), 1.31 (d, J=6.0 Hz, 6H), 0.88-0.85 (m, 2H), 0.56-0.53 (m, 2H).
  • Example 84
  • Figure US20210093618A1-20210401-C00366
  • (S)-5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(1-phenylethyl)azetidin-3-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00367
  • Step 1
  • Figure US20210093618A1-20210401-C00368
  • tert-Butyl 5-chloro-4-((2,2-dimenthyl-1,3-dioxan-5-yl)methoxy)-2-fluorobenzoate
  • Potassium tert-butoxide (7.8 g, 70 mmol) was added to a solution of (2,2-dimethyl-1,3-dioxan-5-yl)methanol (9.3 g, 63.7 mmol) and tert-butyl 5-chloro-2,4-difluorobenzoate (16.6 g, 66.9 mmol) in DMSO (200 mL) at 14° C. After stirring at room temperature for 1 h, the reaction mixture was diluted with water (500 mL) and extracted with EtOAc (200 mL×3). The combined organics were washed with brine, dried over anhydrous sodium sulfate and concentrated. The residue was purified by silica gel chromatography (eluting with petroleum ether/ethylacetate, 5/1) to afford the target compound (16.4 g, yield: 69%) as a white solid.
  • Step 2
  • Figure US20210093618A1-20210401-C00369
  • tert-Butyl 5-cyclopropyl-4-((2,2-dimethyl-1,3-dioxan-5-yl)methoxy)-2-fluorobenzoate
  • Palladium acetate (23 mg, 0.1 mmol) was added to a mixture of tert-butyl 5-chloro-4-((2,2-dimethyl-1,3-dioxan-5-yl)methoxy)-2-fluorobenzoate (375 mg, 1 mmol), cyclopropylboronic acid (176 mg, 2 mmol), potassium phosphate (1.06 g, 5 mmol) and tricyclohexylphosphine tetrafluoroborate (74 mg, 0.2 mmol) in toluene (5 mL) and water (0.25 mL) under a nitrogen atmosphere. The reaction mixture was heated at 100° C. for 16 hours then cooled to room temperature. The mixture was then diluted with water (200 mL) and extracted with ethyl acetate (100 mL×3). The combined organics were washed with brine, dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by silica gel chromatography (eluting with petroleum ether/ethyl acetate=5/1) to afford tert-butyl 5-cyclopropyl-4-((2,2-dimethyl-1,3-dioxan-5-yl)methoxy)-2-fluorobenzoate (350 mg, yield: 92%) as a white solid.
  • Step 3
  • Figure US20210093618A1-20210401-C00370
  • tert-Butyl 5-cyclopropyl-2-fluoro-4-(3-hydroxy-2-(hydroxymethyl)-propoxy)benzoate
  • A solution of tert-butyl 5-cyclopropyl-4-((2,2-dimethyl-1,3-dioxan-5-yl)methoxy)-2-fluorobenzoate (350 mg, 0.92 mmol) in a mixture of THF (10 mL) and HCl (1 M, 10 mL) was stirred at room temperature for 2 h. The reaction mixture was diluted with DCM (20 ml×2) and washed with saturated aqueous NaHCO3 (10 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel column chromatography (eluting with hexanes/ethyl acetate=2/1) to give tert-butyl5-cyclopropyl-2-fluoro-4-(3-hydroxy-2-(hydroxymethyl)propoxy)benzoate (300 mg, yield: 96%) as a yellow solid. LCMS (ESI) m/z: 339.1 [M−H].
  • Step 4
  • Figure US20210093618A1-20210401-C00371
  • (S)-tert-Butyl 5-cyclopropyl-2-fluoro-4-((1-(1-phenylethyl)azetidin-3-yl)methoxy)benzoate
  • Trifluoromethanesulfonic anhydride (200 mg, 0.71 mmol) was added dropwise to a 0° C. mixture of tert-butyl 5-cyclopropyl-2-fluoro-4-(3-hydroxy-2-(hydroxymethyl)-propoxy)benzoate (60 mg, 0.18 mmol) and N,N-diisopropylethylamine (91 mg, 0.71 mmol) in acetonitrile (5 mL). The mixture was stirred at 0° C. for 1 h, then (S)-1-phenylethanamine (21 mg, 0.18 mmol) added, and the solution stirred for a further 1 h at room temperature. The reaction was quenched with water (10 mL) and extracted with ethyl acetate (10 mL×3). The combined organic layers were washed with brine (10 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The crude product was purified by silica column chromatography (eluting with petroleum ether/ethyl acetate=10/1) to give (S)-tert-butyl 5-cyclopropyl-2-fluoro-4-((1-(1-phenylethyl)azetidin-3-yl)methoxy)benzoate (32 mg, 43%) as an oil. LCMS (ESI): m/z: 426.8 [M+H]+.
  • Step 5
  • Figure US20210093618A1-20210401-C00372
  • (S)-5-Cyclopropyl-2-fluoro-4-((1-(1-phenylethyl)azetidin-3-yl)methoxy)benzoic acid
  • The compound was synthesized as described in step 4, Example 80. LCMS (ESI) m/z: 370.1 [M+H]+.
  • Step 6
  • Figure US20210093618A1-20210401-C00373
  • (S)-5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(1-phenylethyl)azetidin-3-yl)methoxy)benzamide
  • The compound was synthesized as described in step 5, Example 80. LCMS (ESI) Method A: RT=4.31 min, m/z: 447.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.37-7.32 (m, 5H), 7.20 (d, J=8.5 Hz, 1H), 6.83 (d, J=12.5 Hz, 1H), 4.17 (d, J=6.5 Hz, 2H), 3.75-3.46 (m, 5H), 3.04 (s, 3H), 3.00-2.98 (m, 1H), 2.03-2.00 (m, 1H), 1.29 (d, J=5.0 Hz, 3H), 0.88-0.87 (m, 2H), 0.62-0.59 (m, 2H).
  • Example 85
  • Figure US20210093618A1-20210401-C00374
  • (R)-5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(1-phenylethyl)azetidin-3-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 5. LCMS (ESI) Method A: RT=4.32 min, m/z: 447.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.39-7.33 (m, 5H), 7.20 (d, J=8.5 Hz, 1H), 6.82 (d, J=12.5 Hz, 1H), 4.17 (d, J=5.5 Hz, 2H), 3.93-3.49 (m, 5H), 3.04 (s, 3H), 3.02-2.98 (m, 1H), 2.04-2.00 (m, 1H), 1.29 (d, J=6.0 Hz, 3H), 0.88-0.85 (m, 2H), 0.62-0.59 (m, 2H).
  • Example 86
  • Figure US20210093618A1-20210401-C00375
  • 5-Cyclopropyl-4-((1-(1-(3,5-difluorophenyl)ethyl)azetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00376
  • The compound was synthesized as described in Example 80. LCMS (ESI) Method A: RT=4.79 min, m/z: 483.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.18-7.07 (m, 4H), 6.91 (d, J=13.0 Hz, 1H), 4.19 (d, J=6.0 Hz, 2H), 3.64-3.63 (m, 1H), 3.52-3.49 (m, 1H), 3.40-3.33 (m, 1H), 3.22-3.17 (m, 5H), 2.90-2.88 (m, 1H), 2.04-2.01 (m, 1H), 1.18 (d, J=6.0 Hz, 3H), 0.89-0.86 (m, 2H), 0.66-0.64 (m, 2H).
  • Example 87
  • Figure US20210093618A1-20210401-C00377
  • 4-((1-Benzylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00378
  • Step 1
  • Figure US20210093618A1-20210401-C00379
  • tert-Butyl 4-((1-benzylpiperidin-4-yl)methoxy)-5-chloro-2-fluorobenzoate
  • Potassium tert-butoxide (135 mg, 1.12 mmol) was added to a mixture of tert-butyl 5-chloro-2,4-difluorobenzoate (300 mg, 0.93 mmol) and (1-benzylpiperidin-4-yl)methanol (230 g, 1.12 mmol) in DMSO (5 mL) at 15° C. After stirring at room temperature for 1 h, the mixture was diluted with EtOAc, washed with brine, dried over Na2SO4, filtered and concentrated. The resulting residue was purified by silica gel column chromatography (eluting with petroleum ether/ethyl acetate=10/1) to give the desired product (105 mg, 26% yield) as an oil. LCMS (ESI): m/z 434.0 [M+H]+.
  • Step 2
  • Figure US20210093618A1-20210401-C00380
  • tert-Butyl 4-((1-benzylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Palladium acetate (8 mg, 0.037 mmol) was added to a solution of tert-butyl 4-((1-benzylpiperidin-4-yl)methoxy)-5-chloro-2-fluorobenzoate (160 mg, 0.37 mmol), cyclopropylboronic acid (47 mg, 0.55 mmol), potassium phosphate (157 mg, 0.74 mmol) and tricyclohexylphosphine tetrafluoroborate (27 mg, 0.074 mmol) in toluene (2 mL) and water (0.1 mL) under a nitrogen atmosphere. The reaction mixture was heated at 100° C. for 18 hours then cooled to room temperature. The mixture was diluted with water (10 mL) and extracted with ethyl acetate (10 mL×3). The combined organic layers were washed with brine (10 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (eluting with petroleum ether/ethyl acetate=10/1) to give the desired product (110 mg, 68% yield) as an oil. LCMS (ESI): m/z 440.0 [M+H]+.
  • Step 3
  • Figure US20210093618A1-20210401-C00381
  • 4-((1-Benzylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • The synthetic procedure was same as the step 4 of Example 80. LCMS (ESI) m/z: 384.0 [M+H]+.
  • Step 4
  • Figure US20210093618A1-20210401-C00382
  • 4-((1-benzylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 5 of Example 80. LCMS (ESI) Method A: RT=4.76 min, m/z: 461.1 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.41-7.35 (m, 5H), 7.19 (d, J=8.5 Hz, 1H), 6.78 (d, J=12.5 Hz, 1H), 3.91 (d, J=6.0 Hz, 2H), 3.89 (s, 2H), 3.13-3.11 (m, 2H), 3.02 (s, 3H), 2.52-2.50 (m, 2H), 2.02-1.97 (m, 1H), 1.93-1.86 (m, 3H), 1.51-1.45 (m, 2H), 0.89-0.85 (m, 2H), 0.60-0.57 (m, 2H).
  • Example 88
  • Figure US20210093618A1-20210401-C00383
  • 4-((1-(3-Fluorobenzyl)piperidin-4-yl)methoxy-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00384
  • Step 1
  • Figure US20210093618A1-20210401-C00385
  • tert-butyl 4-((4-(tert-Butoxycarbonyl)-2-chloro-5-fluorophenoxy)-methyl)piperidine-1-carboxylate
  • Potassium tert-butoxide (6.2 g, 55.6 mmol) was added to a solution of tert-butyl 4-(hydroxymethyl)piperidine-1-carboxylate (10.0 g, 46.3 mmol) and tert-butyl 5-chloro-2,4-difluorobenzoate (12.6 g, 50.9 mmol) in DMSO (200 mL). After stirring at room temperature for 1 h, the reaction mixture was diluted with water (500 mL) and extracted with EtOAc (200 mL×3). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel column chromatography (eluting with petroleum ether/ethyl acetate, from 20/1 to 5/1) to afford the target compound (12.3 g, yield: 60%) as a pale yellow liquid. LCMS (ESI) m/z: 331.9. [M−111]+.
  • Step 2
  • Figure US20210093618A1-20210401-C00386
  • tert-Butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)-methyl)piperidine-1-carboxylate
  • Palladium acetate (672 mg, 3 mmol) was added to a solution of tert-butyl 4-((4-(tert-butoxycarbonyl)cyclohexyl)methoxy)-5-chloro-2-fluorobenzoate (13.3 g, 30 mmol), cyclopropylboronic acid (5.16 g, 60 mmol), potassium phosphate (25.5 g, 120 mmol) and tricyclohexylphosphine tetrafluoroborate (2.2 g, 6 mmol) in toluene (200 mL) and water (10 mL) under a nitrogen atmosphere. The reaction mixture was heated at 100° C. for 16 hours then cooled to room temperature. The mixture was diluted with water (200 mL) was and extracted with ethyl acetate (100 mL×3). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel column chromatography (eluting with petroleum ether/ethyl acetate, from 10/1 to 2/1) to afford the target compound (10.8 g, yield: 80%) as a pale yellow liquid. LCMS (ESI) m/z: 338.0 [M−111]+.
  • Step 3
  • Figure US20210093618A1-20210401-C00387
  • 5-Cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoic acid
  • A solution of tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)piperidine-1-carboxylate (11.0 g, 24.5 mmol) in DCM (20 mL) and TFA (20 mL) was stirred at room temperature for 1 h. The reaction was quenched with saturated aqueous sodium bicarbonate and extracted with DCM (50 mL×3). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated to give target compound (6.5 g, yield: 90%) as a white solid which was used in the next step without further purification. LCMS (ESI) m/z: 294.1 [M+H]+.
  • Figure US20210093618A1-20210401-C00388
  • Step 4 Methyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate
  • Thionyl chloride (8 ml) was added dropwise to a solution of 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoic acid (5.0 g, 17 mmol) in MeOH (80 ml). After stirring at 70° C. for 16 h, the solution was concentrated to give a brown solid, which was recrystallized (petroleum ether/ethyl acetate=5/1) to give the target compound as a gray solid (yield: 80%). LCMS (ESI) m/z: 308.1 [M+H]+.
  • Figure US20210093618A1-20210401-C00389
  • Step 5 Methyl 4-((1-(3-fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • A mixture of methyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate (100 mg, 0.33 mmol), 1-(chloromethyl)-3-fluorobenzene (48 mg, 0.33 mmo), sodium iodide (149 mg, 0.99 mmol) and potassium carbonate (137 mg, 0.99 mmol) in MeCN (10 mL) was stirred at 80° C. for 1 h. The reaction mixture was diluted with EtOAc (100 mL) and brine (50 mL). The organic layer was separated, washed with brine (50 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (eluting with petroleum ether/EtOAc=5/1) to give the target compound (110 mg, 81%) as a pale yellow oil. LCMS (ESI) m/z: 416.0 [M+H]+.
  • Figure US20210093618A1-20210401-C00390
  • Step 6 4-((1-(3-Fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • A mixture of methyl 4-((1-(3-fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate (110 mg, 0.27 mmol) and lithium hydroxide (64 mg, 2.7 mmol) in THF (5 mL) and water (5 mL) was stirred at 50° C. for 3 h. After cooling to room temperature, the mixture was adjusted to a pH of 2-3 with HCl (2M) then extracted with EtOAc (10×2 mL). The combined organic layers were washed with brine (10 mL), dried over anhydrous sodium sulfate, filtered and concentrated to give the product (68 mg, 64%) as a pale yellow solid. LCMS (ESI) m/z: 402.1 [M+H]+.
  • Figure US20210093618A1-20210401-C00391
  • Step 7 4-((1-(3-Fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 5 of Example 80. LCMS (ESI) Method A: RT=5.02 min, m/z: 479.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.43-7.42 (m, 1H), 7.41-7.13 (m, 4H), 6.81 (d, J=12.5 Hz, 1H), 3.92 (d, J=6.0 Hz, 2H), 3.74 (s, 2H), 3.18 (s, 3H), 3.07-2.99 (m, 2H), 2.30-2.28 (m, 2H), 2.04-1.98 (m, 1H), 1.87-1.82 (m, 3H), 1.47-1.24 (m, 2H), 0.89-0.85 (m, 2H), 0.62-0.59 (m, 2H).
  • Example 89
  • Figure US20210093618A1-20210401-C00392
  • 5-Cyclopropyl-4-((1-(1-(3,5-difluorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.39 min, m/z: 511.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.17-7.10 (m, 4H), 6.85 (d, J=13.0 Hz, 1H), 3.91 (d, J=6.0 Hz, 2H), 3.81-3.74 (m, 1H), 3.16 (s, 3H), 3.11-3.08 (m, 1H), 2.92-2.90 (m, 1H), 2.20-2.10 (m, 2H), 2.03-1.97 (m, 1H), 1.85-1.78 (m, 3H), 1.45-1.36 (m, 5H), 0.89-0.85 (m, 2H), 0.64-0.61 (m, 2H).
  • Example 90
  • Figure US20210093618A1-20210401-C00393
  • 5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00394
  • Step 1
  • Figure US20210093618A1-20210401-C00395
  • 2-(3,5-Dichlorophenyl)oxirane
  • Sodium hydride (280 mg, 6.9 mmol) was added to an ice-cooled solution of trimethylsulfonium iodide (1.4 g, 6.9 mmol) in DMSO (40 mL). After stirring at room temperature for 30 min, 3,5-dichlorobenzaldehyde (1 g, 5.7 mmol) was added and mixture stirred further at room temperature for 1 h. The mixture was then quenched with water (40 mL) and extracted with EtOAc (20 mL×3). The combined organic layers were washed with brine (40 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The crude product was used in the next step without further purification.
  • Figure US20210093618A1-20210401-C00396
  • Step 2 1-(3,5-Dichlorophenyl)-2-methoxyethan
  • 2-(3,5-Dichlorophenyl)oxirane (1 g, crude) was added to a solution of sodium (1.2 g, 53 mmol) in methanol (50 mL) and the mixture heated at 60° C. for 1 h. After cooling to room temperature, the mixture was diluted with water (50 mL) and extracted with EtOAc (20 mL×3). The combined organic layers were washed with brine (40 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (eluting with petroleum ether/EtOAc=50/1) to give the target compound (160 mg, 14%) as a pale yellow oil. LCMS (ESI) m/z: 219.0 [M−H].
  • Step 3
  • Figure US20210093618A1-20210401-C00397
  • 1,3-dichloro-5-(1-chloro-2-methoxyethyl)benzene
  • The compound was synthesized as described in step 2 of Example 80.
  • Step 4
  • Figure US20210093618A1-20210401-C00398
  • Methyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate
  • The compound was synthesized as described in step 5 of Example 88. LCMS(ESI) m/z: 510.1 [M+H]+.
  • Step 5
  • Figure US20210093618A1-20210401-C00399
  • 5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid
  • The compound was synthesized as described in step 6 of Example 88. LCMS(ESI) m/z: 496.1 [M+H]+.
  • Step 6
  • Figure US20210093618A1-20210401-C00400
  • 5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 5 of Example 80. LCMS (ESI) Method A: RT=5.78 min, m/z: 572.9 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 11.73 (brs, 1H), 7.50-7.49 (m, 1H), 7.39-7.38 (m, 2H), 7.16 (d, J=8.0 Hz, 1H), 6.82 (d, J=13.0 Hz, 1H), 3.88 (d, J=5.5 Hz, 2H), 3.73-3.65 (m, 3H), 3.22 (s, 3H), 3.14 (s, 3H), 2.99-2.97 (m, 1H), 2.81-2.79 (m, 1H), 2.11-2.07 (m, 1H), 2.02-1.95 (m, 2H), 1.79-1.71 (m, 3H), 1.38-1.28 (m, 2H), 0.89-0.85 (m, 2H), 0.63-0.60 (m, 2H).
  • Example 91
  • Figure US20210093618A1-20210401-C00401
  • 5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)azetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00402
  • Step 1
  • Figure US20210093618A1-20210401-C00403
  • tert-Butyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)-azetidin-3-yl)methoxy)-2-fluorobenzoate
  • The compound was synthesized as described in step 3 of Example 80. LCMS(ESI) m/z: 524.0 [M+H]+.
  • Step 2
  • Figure US20210093618A1-20210401-C00404
  • 5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)azetidin-3-yl)methoxy)-2-fluorobenzoic acid
  • The compound was synthesized as described in step 4 of Example 80. LCMS(ESI) m/z: 467.9 [M+H]+.
  • Step 3
  • Figure US20210093618A1-20210401-C00405
  • 5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)azetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 5 of Example 80. LCMS (ESI) Method A: RT=5.26 min, m/z: 544.8 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.50 (m, 1H), 7.35 (m, 2H), 7.17 (d, J=8.0 Hz, 1H), 6.89 (d, J=13.0 Hz, 1H), 4.16 (d, J=6.0 Hz, 2H), 3.60 (m, 1H), 3.48-3.45 (m, 1H), 3.42-3.32 (m, 3H), 3.20 (s, 3H), 3.18 (s, 3H), 3.15-3.12 (m, 1H), 3.09-3.07 (m, 1H), 2.87-2.85 (m, 1H), 2.04-2.00 (m, 1H), 0.89-0.87 (m, 2H), 0.64-0.63 (m, 2H).
  • Example 92
  • Figure US20210093618A1-20210401-C00406
  • 4-((1-(3-Chlorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.35 min, m/z 494.9 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.42-7.31 (m, 4H), 7.19-7.17 (d, J=8.5 Hz, 1H), 6.81-6.79 (d, J=13.0 Hz, 1H), 3.92-3.91 (m, 2H), 3.68 (br s, 2H), 3.04-2.96 (m, 5H), 2.24-2.22 (m, 2H), 2.02-1.99 (m, 1H), 1.84-1.81 (d, J=12.5 Hz, 3H), 1.43-1.40 (m, 2H), 0.89-0.86 (m, 2H), 0.61-0.58 (m, 2H).
  • Example 93
  • Figure US20210093618A1-20210401-C00407
  • 5-Cyclopropyl-2-fluoro-4-((1-(4-methylbenzyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=4.88 min, m/z 475.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.31-7.29 (d, J=7.5 Hz, 2H), 7.23-7.18 (m, 3H), 6.79-6.77 (d, J=12.5 Hz, 1H), 3.92 (m, 4H), 3.16-3.14 (m, 2H), 3.00 (s, 3H), 2.50 (s, 2H), 2.31 (s, 3H), 2.01-1.87 (m, 4H), 1.50-1.48 (m, 2H), 0.88-0.86 (m, 2H), 0.59-0.58 (m, 2H).
  • Example 94
  • Figure US20210093618A1-20210401-C00408
  • 5-Cyclopropyl-2-fluoro-4-((1-(3-fluoro-4-methoxybenzyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=4.70 min, m/z 509.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.29-7.27 (d, J=12.5 Hz, 1H), 7.19-7.18 (d, J=6.0 Hz, 3H), 6.81-6.78 (d, J=13.0 Hz, 1H), 3.92 (m, 2H), 3.86 (m, 5H), 3.14-3.12 (m, 2H), 3.04 (s, 3H), 2.50 (s, 2H), 2.00-1.86 (m, 4H), 1.50-1.48 (m, 2H), 0.88-0.86 (m, 2H), 0.60-0.59 (m, 2H).
  • Example 95
  • Figure US20210093618A1-20210401-C00409
  • (S)-5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((4-(methylsulfonyl)-phenyl)(phenyl)methyl)azetidin-3-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 81. LCMS (ESI) Method A: RT=4.99 min, m/z 587.3 [M+H]+. 1H NMR (500 MHz, MeOD-d4): δ 7.90 (d, J=8.0 Hz, 2H), 7.73 (d, J=8.5 Hz, 2H), 7.45 (d, J=7.0 Hz, 2H), 7.37-7.25 (m, 3H), 7.23 (d, J=7.0 Hz, 1H), 6.76 (d, J=12.5 Hz, 1H), 4.66 (s, 1H), 4.20 (d, J=6.0 Hz, 2H), 3.47-3.33 (m, 2H), 3.24-3.16 (m, 5H), 3.09 (s, 3H), 3.03-3.00 (m, 1H), 2.10 (t, J=10.5 Hz, 1H), 0.94-0.90 (m, 2H), 0.70-0.67 (m, 2H).
  • Example 96
  • Figure US20210093618A1-20210401-C00410
  • (R)-5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((4-(methylsulfonyl)-phenyl)(phenyl)methyl)azetidin-3-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 81. LCMS (ESI) Method A: RT=4.99 min, m/z 587.2 [M+H]+. 1H NMR (500 MHz, MeOD-d4): δ 7.91 (d, J=8.5 Hz, 2H), 7.74 (d, J=8.0 Hz, 2H), 7.45 (d, J=7.0 Hz, 2H), 7.34-7.31 (m, 3H), 7.26 (d, J=7.0 Hz, 1H), 6.85 (d, J=13.0 Hz, 1H), 4.71 (s, 1H), 4.25 (d, J=6.0 Hz, 2H), 3.50-3.43 (m, 2H), 3.34-3.21 (m, 5H), 3.09 (s, 3H), 3.06-3.04 (m, 1H), 2.10 (t, J=10.5 Hz, 1H), 0.97-0.93 (m, 2H), 0.70-0.67 (m, 2H).
  • Example 97
  • Figure US20210093618A1-20210401-C00411
  • 5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=6.17 min, m/z 543.0 [M+H]+. 1H NMR (500 MHz, MeOD-d4): δ 7.51 (s, 3H), 7.35 (d, J=8.5 Hz, 1H), 6.63 (d, J=12.5 Hz, 1H), 4.14 (s, 1H), 3.82 (s, 2H), 3.54 (d, J=10.0 Hz, 1H), 3.21 (d, J=12.5 Hz, 4H), 2.66-2.62 (m, 2H), 2.09-2.00 (m, 4H), 1.69-1.59 (m, 5H), 0.88 (m, 2H), 0.63 (m, 2H).
  • Example 98
  • Figure US20210093618A1-20210401-C00412
  • 5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)azetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 80. LCMS (ESI) Method A: RT=5.51 min, m/z 515.0 [M+H]+. 1H NMR (500 MHz, MeOD-d4): δ 7.43 (s, 1H), 7.38-7.35 (m, 3H), 6.77 (d, J=13.0 Hz, 1H), 4.20-4.17 (m, 2H), 3.79 (s, 2H), 3.58 (d, J=7.0 Hz, 1H), 3.49 (d, J=4.0 Hz, 2H), 3.25 (s, 3H), 3.11 (t, J=13.0 Hz, 1H), 2.09-2.06 (m, 1H), 1.36 (d, J=6.5 Hz, 3H), 0.94 (m, 2H), 0.68 (m, 2H).
  • Example 99
  • Figure US20210093618A1-20210401-C00413
  • (R)-5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)-benzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate. Chiral HPLC (column: AD-3, 4.6×150 mm, 3 μm; mobile Phase: n-hexane (0.1% DEA)/EtOH 0.1% DEA)=90/10; flow: 1 mL/min; column temperature: 40° C.; RT=6.59 min). LCMS (ESI) Method A: RT=6.13 min, m/z 543.0 [M+H]+. 1H NMR (500 MHz, MeOD-d4): δ 7.51 (s, 1H), 7.40 (d, J=1.5 Hz, 2H), 7.17 (d, J=8.5 Hz, 1H), 6.82 (d, J=12.5 Hz, 1H), 3.91 (d, J=5.5 Hz, 2H), 3.70 (t, J=4.0 Hz, 1H), 3.32 (s, 3H), 3.03 (d, J=8.5 Hz, 1H), 2.86 (t, J=12.0 Hz, 1H), 2.05-1.99 (m, 3H), 1.83-1.76 (m, 3H), 1.40-1.33 (m, 5H), 0.89-0.86 (m, 2H), 0.63-0.59 (m, 2H).
  • Example 100
  • Figure US20210093618A1-20210401-C00414
  • (S)-5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 99. Chiral HPLC (column: AD-3, 4.6×150 mm, 3 μm; mobile Phase: n-hexane (0.1% DEA)/EtOH 0.1% DEA)=90/10; flow: 1 mL/min; column temperature: 40° C.; RT=9.38 min). LCMS (ESI) Method A: RT=6.06 min, m/z 542.9 [M+H]+. 1H NMR (500 MHz, MeOD-d4): δ 7.50 (s, 1H), 7.39 (s, 2H), 7.19 (d, J=8.5 Hz, 1H), 6.78 (d, J=12.5 Hz, 1H), 3.89 (d, J=5.5 Hz, 2H), 3.65 (s, 1H), 3.03-2.99 (m, 4H), 2.84 (d, J=11.0 Hz, 1H), 2.04-1.98 (m, 3H), 1.82-1.75 (m, 3H), 1.38-1.31 (m, 5H), 0.38-0.85 (m, 2H), 0.61-0.57 (m, 2H).
  • Example 101
  • Figure US20210093618A1-20210401-C00415
  • 5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=6.22 min, m/z 557.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.52 (s, 1H), 7.42 (s, 2H), 7.14 (d, J=9.0 Hz, 1H), 6.89 (d, J=12.5 Hz, 1H), 3.92 (d, J=6.0 Hz, 2H), 3.75 (s, 1H), 3.38 (d, J=7.0 Hz, 2H), 3.06 (d, J=10.0 Hz, 1H), 2.89 (d, J=9.5 Hz, 1H), 2.12-1.99 (m, 3H), 1.84-1.77 (m, 3H), 1.40-1.35 (m, 5H), 1.21 (t, J=14.5 Hz, 3H), 0.89-0.85 (m, 2H), 0.65-0.62 (m, 2H).
  • Example 10
  • Figure US20210093618A1-20210401-C00416
  • 5-Cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(1-(3,5-dichlorophenyl)-ethyl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=6.26 min, m/z 569.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 7.52 (s, 1H), 7.41 (s, 2H), 7.14 (d, J=8.0 Hz, 1H), 6.90 (d, J=13.0 Hz, 1H), 3.93 (d, J=5.5 Hz, 2H), 3.73 (s, 1H), 3.06-3.02 (m, 2H), 2.89 (d, J=8.5 Hz, 1H), 2.11-1.99 (m, 3H), 1.84-1.77 (m, 3H), 1.41-1.34 (m, 5H), 1.06-1.01 (m, 4H), 0.90-0.86 (m, 2H), 0.65-0.62 (m, 2H).
  • Example 103
  • Figure US20210093618A1-20210401-C00417
  • N-(Azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-ethyl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=6.34 min: m/z 583.9 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.48 (s, 1H), 7.38 (d, J=1.5 Hz, 2H), 7.19 (d, J=7.5 Hz, 1H), 6.81 (d, J=12.5 Hz, 1H), 3.88 (d, J=22.5 Hz, 6H), 3.61 (d, J=6.5 Hz, 1H), 2.97 (d, J=10.5 Hz, 1H), 2.81 (d, J=10.0 Hz, 1H), 2.08-1.96 (m, 5H), 1.82-1.74 (m, 3H), 1.37-1.30 (m, 5H), 0.88 (m, 2H), 0.61 (m, 2H).
  • Example 104
  • Figure US20210093618A1-20210401-C00418
  • 4-((1-(4-Chlorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.29 min, m/z 494.9 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.41 (d, J=8.0 Hz, 2H), 7.36 (d, J=8.5 Hz, 2H), 7.20 (t, J=8.5 Hz, 1H), 6.74 (d, J=13.0 Hz, 1H), 3.90 (d, J=5.5 Hz, 2H), 3.61 (s, 2H), 2.93 (d, J=9.0 Hz, 5H), 2.16 (s, 2H), 1.99 (d, J=5.5 Hz, 1H), 1.80 (d, J=11.0 Hz, 3H), 1.40 (d, J=11.0 Hz, 2H), 0.87-0.86 (m, 2H), 0.56 (m, 2H).
  • Example 105
  • Figure US20210093618A1-20210401-C00419
  • 4-((1-(2-Chloro-4-fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.69 min m/z 513.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.57 (t, J=15.0 Hz, 1H), 7.45 (t, J=9.0 Hz, 1H), 7.27-7.24 (m, 1H), 7.16 (d, J=8.5 Hz, 1H), 6.89 (d, J=12.5 Hz, 1H), 3.95 (d, J=5.5 Hz, 2H), 3.70 (s, 2H), 3.21 (s, 3H), 2.97 (d, J=10.5 Hz, 2H), 2.28 (t, J=22 Hz, 2H), 2.02 (t, J=10.0 Hz, 1H), 1.87-1.81 (m, 3H), 1.41 (d, J=11.5 Hz, 2H), 0.89 (m, 2H), 0.64 (m, 2H).
  • Example 106
  • Figure US20210093618A1-20210401-C00420
  • 5-Cyclopropyl-4-((1-(2,4-dichlorobenzyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=6.03 min, m/z 528.8 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.61 (s, 1H), 7.54 (d, J=8.0 Hz, 1H), 7.45 (t, J=9.0 Hz, 1H), 7.15 (d, J=8.5 Hz, 1H), 6.90 (d, J=13.0 Hz, 1H), 3.95 (d, J=6.0 Hz, 2H), 3.67 (s, 2H), 3.23 (s, 3H), 2.94 (d, J=10.5 Hz, 2H), 2.24 (t, J=22 Hz, 2H), 2.03-1.99 (m, 1H), 1.86-1.80 (m, 3H), 1.13-1.37 (m, 2H), 0.89 (m, 2H), 0.65 (m, 2H).
  • Example 107
  • Figure US20210093618A1-20210401-C00421
  • 4-((1-(2,5-bis(trifluoromethyl)benzyl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was prepared in a similar manner to Example 73 starting from tert-butyl 4-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)methyl)-4-methylpiperidine-1-carboxylate (Example 73 step 1-2) and 2,5-bis(trifluoromethyl)benzaldehyde. LCMS (Method F): RT=4.76 min, m/z: 577.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.76 (s, 1H), 8.15 (d, J=1.7 Hz, 1H), 7.96 (d, J=8.2 Hz, 1H), 7.85 (dd, J=8.3, 1.5 Hz, 1H), 7.18 (d, J=8.3 Hz, 1H), 6.96 (d, J=12.9 Hz, 1H), 3.86 (s, 2H), 3.77 (s, 2H), 2.64-2.53 (m, 2H), 2.47-2.36 (m, 2H), 2.08-1.98 (m, 1H), 1.81-1.68 (m, 2H), 1.52-1.39 (m, 2H), 1.09 (s, 3H), 0.94-0.83 (m, 2H), 0.71-0.62 (m, 2H).
  • Example 108
  • Figure US20210093618A1-20210401-C00422
  • (S)-4-((1-((3-Cyanophenyl)(phenyl)methyl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=75:25; flow: 2.25 mL/min; column temperature: 36° C.; RT=6.85 min). LCMS (ESI) Method A: RT=5.66, m/z: 534.2 [M+H+]. 1H NMR (500 MHz, MeOD-d4): δ 7.82 (s, 1H), 7.77 (d, J=8.0 Hz, 1H), 7.60 (d, J=7.5 Hz, 1H), 7.52-7.49 (m, 1H), 7.45-7.43 (m, 2H), 7.35-7.32 (m, 3H), 7.27-7.24 (m, 1H), 6.85 (d, J=13.0 Hz, 1H), 4.63 (s, 1H), 4.24 (d, J=6.5 Hz, 2H), 3.47-3.43 (m, 2H), 3.33 (s, 3H), 3.23-3.20 (m, 2H), 3.04-3.02 (m, 1H), 2.13-2.10 (m, 1H), 0.97-0.94 (m, 2H), 0.70-0.67 (m, 2H).
  • Example 109
  • Figure US20210093618A1-20210401-C00423
  • (R)-4-((1-((3-Cyanophenyl)(phenyl)methyl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=75:25; flow: 2.25 mL/min; column temperature: 36° C.; RT=8.24 min). LCMS (ESI) Method A: RT=5.34 min, m/z: 534.3 [M+H+]. 1H NMR (500 MHz, MeOD-d4): δ 7.82 (s, 1H), 7.77 (d, J=8.5 Hz, 1H), 7.60 (d, J=7.5 Hz, 1H), 7.52-7.49 (m, 1H), 7.45-7.43 (m, 2H), 7.35-7.32 (m, 3H), 7.27-7.24 (m, 1H), 6.85 (d, J=12.5 Hz, 1H), 4.63 (s, 1H), 4.24 (d, J=6.0 Hz, 2H), 3.47-3.41 (m, 2H), 3.33 (s, 3H), 3.23-3.20 (m, 2H), 3.04-3.02 (m, 1H), 2.12-2.09 (m, 1H), 0.96-0.94 (m, 2H), 0.69-0.68 (m, 2H).
  • Example 110
  • Figure US20210093618A1-20210401-C00424
  • (S)-4-((1-((4-Cyanophenyl)(phenyl)methyl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=65:35; flow: 1.95 mL/min; column temperature: 40° C.; RT=4.13 min). LCMS (ESI) Method A: RT=5.64 min, m/z: 534.2 [M+H+]. 1H NMR (500 MHz, MeOD-d4): δ 7.69-7.64 (m, 4H), 7.43 (d, J=7.0 Hz, 2H), 7.34-7.31 (m, 3H), 7.26-7.23 (m, 1H), 6.84 (d, J=13.0 Hz, 1H), 4.65 (s, 1H), 4.23 (d, J=6.0 Hz, 2H), 3.48-3.40 (m, 2H), 3.31 (s, 3H), 3.25-3.18 (m, 2H), 3.05-3.01 (m, 1H), 2.12-2.08 (m, 1H), 0.97-0.93 (m, 2H), 0.70-0.67 (m, 2H).
  • Example 111
  • Figure US20210093618A1-20210401-C00425
  • (R)-4-((1-((4-Cyanophenyl)(phenyl)methyl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=65:35; flow: 1.95 mL/min; column temperature: 40° C.; RT=6.36 min). LCMS (ESI) Method A: RT=5.64 min, m/z: 534.2 [M+H+]. 1H NMR (500 MHz, MeOD-d4): δ 7.69-7.64 (m, 4H), 7.43 (d, J=7.5 Hz, 2H), 7.34-7.30 (m, 3H), 7.26-7.23 (m, 1H), 6.82 (d, J=13.0 Hz, 1H), 4.63 (s, 1H), 4.22 (d, J=5.5 Hz, 2H), 3.47-3.39 (m, 2H), 3.29 (s, 3H), 3.24-3.16 (m, 2H), 3.05-3.00 (m, 1H), 2.13-2.07 (m, 1H), 0.96-0.92 (m, 2H), 0.70-0.66 (m, 2H).
  • Example 112
  • Figure US20210093618A1-20210401-C00426
  • (S)-5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(phenyl(4-(trifluoromethoxy)phenyl)-methyl)azetidin-3-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=80:20; flow: 2.4 mL/min; column temperature: 40° C.; RT=3.62 min). LCMS (ESI) Method A: RT=6.36 min, m/z: 593.2 [M+H+]. 1H NMR (500 MHz, MeOD-d4): δ 7.55-7.53 (m, 2H), 7.44-7.42 (m, 2H), 7.34-7.31 (m, 3H), 7.26-7.22 (m, 3H), 6.80 (d, J=12.0 Hz, 1H), 4.63 (s, 1H), 4.21 (d, J=6.0 Hz, 2H), 3.47-3.45 (m, 2H), 3.33-3.31 (m, 5H), 3.10-3.00 (m, 1H), 2.10-2.09 (m, 1H), 0.95-0.92 (m, 2H), 0.68-0.67 (m, 2H).
  • Example 113
  • Figure US20210093618A1-20210401-C00427
  • (R)-5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(phenyl(4-(trifluoromethoxy)phenyl)methyl)-azetidin-3-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC(column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=80:20; flow: 2.4 mL/min; column temperature: 40° C.; RT=4.11 min). LCMS (ESI) Method B: RT=6.38 min, m/z: 593.2 [M+H+]. 1H NMR (500 MHz, MeOD-d4): δ 7.55-7.53 (m, 2H), 7.44-7.42 (m, 2H), 7.36-7.32 (m, 3H), 7.27-7.23 (m, 3H), 6.84 (d, J=12.5 Hz, 1H), 4.71 (s, 1H), 4.23 (d, J=6.0 Hz, 2H), 3.53-3.51 (m, 2H), 3.40-3.20 (m, 5H), 3.08-3.07 (m, 1H), 2.12-2.09 (m, 1H), 0.97-0.93 (m, 2H), 0.70-0.67 (m, 2H).
  • Example 114
  • Figure US20210093618A1-20210401-C00428
  • (S)-4-((1-((5-Chloro-6-isopropoxypyridin-3-yl)(phenyl)methyl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=75:25; flow: 2.25 mL/min; column temperature: 40° C.; RT=4.49 min). LCMS (ESI) Method A: RT=5.88 min, m/z: 602.1 [M+H+]. 1H NMR (500 MHz, MeOD-d4): δ 8.04 (d, J=5.0 Hz, 1H), 7.46 (m, 2H), 7.36-7.25 (m, 5H), 6.84 (d, J=13.0 Hz, 1H), 5.34-5.29 (m, 1H), 5.01 (s, 1H), 4.19 (d, J=5.5 Hz, 2H), 3.53-3.50 (m, 1H), 3.30-3.28 (m, 5H), 3.15-3.12 (m, 1H), 3.04-3.01 (m, 1H), 2.19-2.15 (m, 1H), 1.36 (d, J=6.5 Hz, 3H), 1.32 (d, J=6.5 Hz, 3H), 1.01-0.97 (m, 2H), 0.71-0.70 (m, 2H).
  • Example 115
  • Figure US20210093618A1-20210401-C00429
  • (R)-4-((1-((5-Chloro-6-isopropoxypyridin-3-yl)(phenyl)methyl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=75:25; flow: 2.25 mL/min; column temperature: 40° C.; RT=4.49 min). LCMS (ESI) Method A: RT=5.56 min, m/z: 602.2 [M+H+]. 1H NMR (500 MHz, MeOD-d4): δ 8.04 (d, J=5.0 Hz, 1H), 7.46 (m, 2H), 7.36-7.25 (m, 5H), 6.85 (d, J=13.0 Hz, 1H), 5.34-5.30 (m, 1H), 5.01 (s, 1H), 4.19 (d, J=5.0 Hz, 2H), 3.53-3.50 (m, 1H), 3.32-3.30 (m, 5H), 3.15-3.12 (m, 1H), 3.04-3.01 (m, 1H), 2.19-2.15 (m, 1H), 1.36 (d, J=6.5 Hz, 3H), 1.32 (d, J=6.5 Hz, 3H), 1.01-0.97 (m, 2H), 0.71-0.70 (m, 2H).
  • Figure US20210093618A1-20210401-C00430
  • Example 116 5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(2,2,2-trifluoroethyl)-piperidin-4-yl)methoxy)-benzamide
  • Figure US20210093618A1-20210401-C00431
  • Step 1
  • Figure US20210093618A1-20210401-C00432
  • Methyl 5-cyclopropyl-2-fluoro-4-((1-(2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)benzoate
  • A mixture of methyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate (180 mg, 0.59 mmol), 2,2,2-trifluoroethyl trifluoromethanesulfonate (151 mg, 0.65 mmol) and DIPEA (152 mg, 1.18 mmol) in THF (15 mL) was stirred at 60° C. for 2 h. The reaction mixture was diluted with ethyl acetate (30 mL), washed with brine (50×2 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (eluting with petroleum ether/ethyl acetate=5/1) to give the target compound (160 mg, 69%) as a yellow solid. LCMS (ESI) m/z: 390.2 [M+H]+.
  • Step 2
  • Figure US20210093618A1-20210401-C00433
  • 5-Cyclopropyl-2-fluoro-4-((1-(2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)benzoic acid
  • A mixture of methyl 5-cyclopropyl-2-fluoro-4-((1-(2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)benzoate (160 mg, 0.4 mmol) and lithium hydroxide (250 mg, 10.0 mmol) in THF (10 mL) and H2O (10 mL) was stirred at room temperature for 2 h. The mixture was diluted with EtOAc (50 mL), washed with HCl (2.0 M, 10 mL), brine (50×2 mL), dried over anhydrous sodium sulfate, filtered and concentrated to give the target compound (120 mg) as yellow solid which was used in the next step without further purification. LCMS (ESI) m/z: 376.0 [M+H]+.
  • Step 3
  • Figure US20210093618A1-20210401-C00434
  • 5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(2,2,2-trifluoroethyl)-piperidin-4-yl)methoxy)-benzamide
  • A mixture of 5-cyclopropyl-2-fluoro-4-((1-(2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)benzoic acid (120 mg, 0.32 mmol), methanesulfonamide (45.6 mg, 0.48 mmol), EDCI (92 mg, 0.48 mmol) and DMAP (59 mg, 0.48 mmol) in DCM (20 mL) was stirred at 25° C. for 16 h. The reaction mixture was diluted with EtOAc (100 mL), washed with HCl (2.0 M, 20 mL), brine (50×2 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by reverse phase combiflash (25%-30% MeCN in 0.5% NH4HCO3) to give the target product (65.0 mg, 45%) as a white solid. LCMS (ESI) Method A: RT=5.97 min, m/z: 453.1 [M+H]+. 1H-NMR (500 MHz, MeOH-d4): δ 7.36 (d, J=8.5 Hz, 1H), 6.65 (d, J=12.5 Hz, 1H), 3.90 (d, J=5.5 Hz, 2H), 3.11-3.05 (m, 7H), 2.46-2.42 (m, 2H), 2.08-2.06 (m, 1H), 1.89-1.86 (m, 3H), 1.55-1.52 (m, 2H), 0.91-0.87 (m, 2H), 0.67-0.65 (m, 2H).
  • Example 117
  • Figure US20210093618A1-20210401-C00435
  • 5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(3,3,3-trifluoropropyl) piperidin-4-yl)methoxy)-benzamide
  • The compound was synthesized as described in Example 37. LCMS (ESI) Method A: RT=4.66 min, m/z: 467.0 [M+H]+. 1H-NMR (500 MHz, MeOD-d4): δ 7.24 (d, J=8.5 Hz, 1H), 6.56 (d, J=12.5 Hz, 1H), 3.81 (d, J=5.5 Hz, 2H), 3.01 (s, 3H), 2.96-2.94 (m, 2H), 2.60 (m, 2H), 2.39-2.33 (m, 2H), 2.11-2.07 (m, 2H), 1.97-1.93 (m, 1H), 1.84-1.81 (m, 2H), 1.47-1.42 (m, 2H), 1.22-1.20 (m, 1H), 0.79-0.76 (m, 2H), 0.54-0.53 (m, 2H).
  • Example 118
  • Figure US20210093618A1-20210401-C00436
  • (S)-5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(phenyl(pyridin-2-yl)methyl)azetidin-3-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 81. hiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=75:25; flow: 2.25 mL/min; column temperature: 40° C.; RT=4.55 min). LCMS (ESI) Method A: RT=4.86 min, m/z 510.3 [M+H]+. 1H NMR (500 MHz, CDCl3): δ 8.51 (d, J=3.0 Hz, 1H), 7.62-7.57 (m, 2H), 7.50-7.47 (m, 3H), 7.29-7.22 (m, 4H), 7.11 (s, 1H), 6.61 (d, J=14.5 Hz, 1H), 4.61 (s, 1H), 4.20 (d, J=6.0 Hz, 2H), 3.41 (s, 5H), 3.14 (s, 1H), 3.01 (s, 1H), 2.04 (m, 1H), 0.94 (m, 2H), 0.65 (m, 2H).
  • Example 119
  • Figure US20210093618A1-20210401-C00437
  • (S)-5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(phenyl(pyridin-2-yl)methyl)azetidin-3-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=75:25; flow: 2.25 mL/min; column temperature: 40° C.; RT=5.70 min). LCMS(ESI) Method A: RT=4.86 min m/z: 510.3 [M+H]+. 1H NMR (500 MHz, CDCl3): δ 8.50 (d, J=4.5 Hz, 1H), 7.64-7.57 (m, 2H), 7.50-7.47 (m, 3H), 7.31-7.21 (m, 4H), 7.12-7.10 (m, 1H), 6.60 (d, J=14.5 Hz, 1H), 4.60 (s, 1H), 4.20 (d, J=6.0 Hz, 2H), 3.41 (s, 5H), 3.15 (s, 1H), 3.01 (s, 1H), 2.06-2.01 (m, 1H), 0.93 (m, 2H), 0.65 (m, 2H).
  • Example 120
  • Figure US20210093618A1-20210401-C00438
  • (S)-5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)azetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00439
  • Step 1
  • Figure US20210093618A1-20210401-C00440
  • (S,E)-N-(1-(3,5-Dichlorophenyl)ethylidene)-2-methylpropane-2-sulfinamide
  • Tetraisopropoxytitanium (6.14 g, 21.2 mmol) was added to a solution of 3,5-dichlorophenyl ethanone (1.0 g, 5.3 mmol) and (S)-2-methylpropane-2-sulfinamide (1.28 g, 10.6 mmol) in dry THF (20 mL). After stirring at 80° C. for 16 h, ethyl acetate (15 mL) and brine was added to quench the reaction. The white precipitate was filtered and the filtrate was concentrated and purified by silica gel chromatography (eluting with ethyl acetate/petroleum ether=1/10) to give the target compound as a yellow solid (1.24 g, 80%). LCMS (ESI): m/z 292.0 [M+H]+.
  • Step 2
  • Figure US20210093618A1-20210401-C00441
  • (S)—N—(S)-1-(3,5-Dichlorophenyl)ethyl)-2-methylpropane-2-sulfinamide
  • Sodium borohydride (0.49 g, 12.9 mmol) was added to a solution of (S, E)-N-(1-(3,5-dichlorophenyl)ethylidene)-2-methylpropane-2-sulfinamide (1.24 g, 4.3 mmol) in THF (20 mL, with 2% H2O) at −60° C. After stirring at room temperature for 3 h, the solvent was removed under reduced pressure and the crude product was purified by silica gel chromatography (eluting with ethyl acetate/petroleum ether=1/12) to afford target compound (1.07 g, 85%) as white solid. LCMS (ESI): m/z 294.0 [M+H]+. 1H-NMR (CDCl3, 500 MHz): δ 7.28 (t, J=2.0 Hz, 1H), 7.23 (d, J=2.0 Hz, 2H), 4.48 (m, 1H), 3.41 (d, J=2.5 Hz, 1H), 1.49 (d, J=6.5 Hz, 3H), 1.24 (s, 9H).
  • Step 3
  • Figure US20210093618A1-20210401-C00442
  • (S)-1-(3,5-Dichlorophenyl)ethanamine hydrochloride
  • HCl (1M in MeOH, 10 mL) was added to a solution of (S)—N—(S)-1-(3,5-dichlorophenyl)ethyl)-2-methylpropane-2-sulfinamide (1.07 g, 3.66 mmol) in MeOH (5 ml). After stirring at room temperature for 2 h, the mixture was diluted with ethyl acetate (30 mL). The resultant white precipitate was filtered and washed with ethyl acetate (10 mL) to provide the target compound (820 mg, 99%) as a white solid. LCMS (ESI): m/z 190.0 [M+H]+.
  • Step 4
  • Figure US20210093618A1-20210401-C00443
  • (S)-tert-Butyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)azetidin-3-yl)methoxy)-2-fluorobenzoate
  • The compound was synthesized as described in step 4 of Example 5. LCMS (ESI): m/z 494.1 [M+H]+.
  • Step 5
  • Figure US20210093618A1-20210401-C00444
  • (S)-5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)azetidin-3-yl)methoxy)-2-fluorobenzoic acid
  • The compound was synthesized as described in step 5 of Example 5. LCMS (ESI): m/z 438.1 [M+H]+.
  • Step 6
  • Figure US20210093618A1-20210401-C00445
  • (S)-5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)azetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 6 of Example 5. Chiral HPLC (column: OZ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=65:35; flow: 1.95 mL/min; column temperature: 40° C.; RT=7.28 min). LCMS (ESI) Method A: RT=5.55 min m/z 514.9 [M+H]+. 1H-NMR (CDCl3, 500 MHz): δ 7.58 (d, J=9.0 Hz, 1H), 7.23 (m, 1H), 7.19 (d, J=2.0 Hz, 2H), 6.59 (d, J=14.5 Hz, 1H), 4.17 (m, 2H), 3.38 (m, 4H), 3.30 (m, 2H), 3.07 (m, 2H), 2.92 (m, 1H), 2.02 (m, 1H), 1.18 (d, 3H), 0.94 (m, 2H), 0.66 (m, 2H).
  • Example 121
  • Figure US20210093618A1-20210401-C00446
  • (R)-5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)azetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 41. Chiral HPLC (column: OZ-H, 4.6×250 mm, 5 m; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=65:35; flow: 1.95 mL/min; column temperature: 40° C.; RT=5.37 min). LCMS (ESI) Method A: RT=5.41 min m/z 514.8 [M+H]+. 1H-NMR (CDCl3, 500 MHz): δ 7.58 (d, J=9.0 Hz, 1H), 7.23 (m, 1H), 7.19 (d, J=2.0 Hz, 2H), 6.59 (d, J=14.5 Hz, 1H), 4.17 (m, 2H), 3.38 (m, 4H), 3.30 (m, 2H), 3.07 (m, 2H), 2.92 (m, 1H), 2.02 (m, 1H), 1.18 (d, 3H), 0.94 (m, 2H), 0.66 (m, 2H).
  • Example 122
  • Figure US20210093618A1-20210401-C00447
  • 4-((1-(5-chloro-2-(trifluoromethyl)benzyl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was prepared in a similar manner to Example 73 starting from tert-butyl 4-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)methyl)-4-methylpiperidine-1-carboxylate (Example 73 step 1-2) and 5-chloro-2-(trifluoromethyl)benzaldehyde. LCMS (Method F): RT=4.76 min, m/z: 577.2 [M+H]+.
  • Example 123
  • Figure US20210093618A1-20210401-C00448
  • 5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was prepared in a similar manner to Example 73 starting from tert-butyl 4-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)methyl)-4-methylpiperidine-1-carboxylate (Example 73 step 1-2) and 3,5-dichlorobenzaldehyde. LCMS (Method F): RT=4.64 min, m/z: 543.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ7.54 (t, J=1.9 Hz, 1H), 7.41 (d, J=2.0 Hz, 2H), 7.20 (d, J=8.4 Hz, 1H), 6.90 (d, J=12.9 Hz, 1H), 3.84 (s, 2H), 3.72 (s, 2H), 3.19 (s, 3H), 2.76-2.61 (m, 2H), 2.06-1.96 (m, 1H), 1.76-1.64 (m, 2H), 1.50 (d, J=14.0 Hz, 2H), 1.09 (s, 3H), 0.94-0.83 (m, 2H), 0.69-0.59 (m, 2H).
  • Example 124
  • Figure US20210093618A1-20210401-C00449
  • (S)-5-Cyclopropyl-2-fluoro-4-((1-((2-fluorophenyl)(phenyl)methyl)azetidin-3-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=85:15; flow: 2.25 mL/min; column temperature: 40° C.; RT=14.2 min). LCMS (ESI) Method A: RT=5.48 min, m/z: 527.2 [M+H]+. 1H-NMR (500 MHz, DMSO-d6,): δ7.64-7.62 (m, 1H), 7.43-7.03 (m, 9H), 6.81 (d, J=12.5 Hz, 1H), 5.00 (s, 1H), 4.18 (d, J=5.0 Hz, 2H), 3.55-3.46 (m, 3H), 3.28 (m, 4H), 3.07-3.05 (m, 1H), 2.16-2.13 (m, 1H), 0.98-0.96 (m, 2H), 0.69-0.68 (m, 2H).
  • Example 125
  • Figure US20210093618A1-20210401-C00450
  • (R)-5-Cyclopropyl-2-fluoro-4-((1-((2-fluorophenyl)(phenyl)methyl)azetidin-3-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=85:15; flow: 2.25 mL/min; column temperature: 40° C.; RT=16.3 min). LCMS (ESI) Method A: RT=5.69 min, m/z: 527.2 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ7.64-7.61 (m, 1H), 7.43-7.03 (m, 9H), 6.83 (d, J=13.0 Hz, 1H), 5.05 (s, 1H), 4.19 (d, J=5.5 Hz, 2H), 3.59-3.40 (m, 4H), 3.28 (s, 3H), 3.10-3.08 (m, 1H), 2.17-2.13 (m, 1H), 0.98-0.96 (m, 2H), 0.71-0.68 (m, 2H).
  • Example 126
  • Figure US20210093618A1-20210401-C00451
  • 5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(4-(trifluoromethyl)benzyl)piperidin-4-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.54 min, m/z: 528.9 [M+H]+. 1H-NMR (500 MHz, DMSO-d6,): δ7.74-7.58 (m, 4H), 7.16 (d, J=8.5 Hz, 1H), 6.86 (d, J=12.5 Hz, 1H), 3.94 (d, J=6.0 Hz, 2H), 3.79 (s, 2H), 3.16 (s, 3H), 2.99-2.98 (m, 2H), 2.29-2.26 (m, 2H), 2.02-1.99 (m, 1H), 1.88-1.82 (m, 3H), 1.44-1.42 (m, 2H), 0.89-0.86 (m, 2H), 0.64-0.61 (m, 2H).
  • Example 127
  • Figure US20210093618A1-20210401-C00452
  • 5-Cyclopropyl-2-fluoro-4-((1-(2-fluorobenzyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=4.89 min, m/z: 479.0 [M+H]+. 1H-NMR (500 MHz, MeOH-d4): δ7.46-7.36 (m, 2H), 7.23-7.16 (m, 3H), 6.83 (d, J=12.5 Hz, 1H), 3.92-3.91 (m, 2H), 3.76 (s, 2H), 3.11 (s, 3H), 3.03-3.01 (m, 2H), 2.33-2.30 (m, 2H), 2.02-1.82 (m, 4H), 1.46-1.42 (m, 2H), 0.89-0.86 (m, 2H), 0.62-0.60 (m, 2H).
  • Example 128
  • Figure US20210093618A1-20210401-C00453
  • 4-((1-((5-Chloro-6-isopropoxypyridin-3-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.86 min, m/z: 553.8 [M+H]+. 1H-NMR (500 MHz, DMSO-d6,): δ8.06 (d, J=5.0 Hz, 1H), 7.16-6.88 (m, 3H), 5.30-5.28 (m, 1H), 3.94 (d, J=6.0 Hz, 2H), 3.60 (s, 2H), 3.21 (s, 3H), 2.89-2.87 (m, 2H), 2.16-2.12 (m, 2H), 2.03-2.01 (m, 1H), 1.80-1.78 (m, 3H), 1.41-1.39 (m, 2H), 1.31 (d, J=6.5 Hz, 6H), 0.90-0.87 (m, 2H), 0.66-0.63 (m, 2H).
  • Example 129
  • Figure US20210093618A1-20210401-C00454
  • 5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(phenylsulfonyl)-azetidin-3-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00455
  • Step 1
  • Figure US20210093618A1-20210401-C00456
  • tert-Butyl 5-cyclopropyl-2-fluoro-4-((1-(phenylsulfonyl)azetidin-3-yl)methoxy)benzoate
  • Benzenesulfonyl chloride (54 mg, 0.31 mol) was added to a mixture of tert-butyl 4-(azetidin-3-ylmethoxy)-5-cyclopropyl-2-fluorobenzoate (100 mg, 0.31 mmol) and triethylamine (94 mg, 0.93 mmol) in DCM (10 ml). After stirring at room temperature for 2 h, the mixture was quenched with water (10 ml), extracted with DCM (10 ml×3), dried over sodium sulfate, filtered and concentrated to give target compound as a yellow solid. (112 mg, 78%). LCMS (ESI) m/z: 462.1 [M+H]+.
  • Step 2
  • Figure US20210093618A1-20210401-C00457
  • 5-Cyclopropyl-2-fluoro-4-((1-(phenylsulfonyl)azetidin-3-yl)methoxy)benzoic acid
  • The compound was synthesized as described in step 3 of Example 88.
  • Step 3
  • Figure US20210093618A1-20210401-C00458
  • 5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(phenylsulfonyl)azetidin-3-yl)methoxy)benzamide
  • The compound was synthesized as described in step 5 of Example 80. LCMS (ESI) Method A: RT=4.66 min, m/z: 483.2 [M+H]+. 1H-NMR (500 MHz, DMSO-d6,): δ7.89-7.66 (m, 5H), 7.26 (d, J=8.0 Hz, 1H), 6.76 (d, J=12.5 Hz, 1H), 4.02 (d, J=5.5 Hz, 2H), 3.97-3.94 (m, 2H), 3.83-3.81 (m, 2H), 3.36 (s, 3H), 2.99-2.96 (m, 1H), 1.91-1.88 (m, 1H), 0.91-0.88 (m, 2H), 0.63-0.60 (m, 2H).
  • Example 130
  • Figure US20210093618A1-20210401-C00459
  • 5-cyclopropyl-2-fluoro-4-((1-(4-fluoro-2-(trifluoromethyl)benzyl)-4-methylpiperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was prepared in a similar manner to Example 73 starting from tert-butyl 4-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)methyl)-4-methylpiperidine-1-carboxylate (Example 73 step 1-2) and 4-fluoro-2-trifluoromethylbenzaldehyde. LCMS (Method F): RT=4.62 min, m/z: 561.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.68 (s, 1H), 7.87-7.78 (m, 1H), 7.62-7.49 (m, 2H), 7.18 (d, J=8.3 Hz, 1H), 6.95 (d, J=13.0 Hz, 1H), 3.85 (s, 2H), 3.66 (s, 2H), 3.28 (s, 3H), 2.61-2.52 (m, 2H), 2.46-2.36 (m, 2H), 2.06-1.95 (m, 1H), 1.74-1.61 (m, 2H), 1.47 (d, J=13.3 Hz, 2H), 1.09 (s, 3H), 0.93-0.84 (m, 2H), 0.70-0.61 (m, 2H).
  • Example 131
  • Figure US20210093618A1-20210401-C00460
  • 5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(phenyl(4-(trifluoromethyl)phenyl)methyl)-azetidin-3-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 80. LCMS (ESI) Method A: RT=6.00 min, m/z: 577.3 [M+H]+. 1H NMR (500 MHz, MeOD-d4): δ 7.65-7.60 (m, 4H), 7.44-7.43 (m, 2H), 7.34-7.31 (m, 3H), 7.25-7.23 (m, 1H), 6.81-6.78 (m, 1H), 4.65 (s, 1H), 4.21 (d, J=6.0 Hz, 2H), 3.48-3.41 (m, 2H), 3.29-3.19 (m, 5H), 3.04-3.01 (m, 1H), 2.12-2.08 (m, 1H), 0.96-0.68 (m, 2H), 0.67 (s, 2H).
  • Example 132
  • Figure US20210093618A1-20210401-C00461
  • 5-Cyclopropyl-4-((1-(3,5-dichlorobenzyl)azetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 80. LCMS (ESI) Method A: RT=5.26 min, m/z: 501.1 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.56 (s, 1H), 7.41-7.41 (m, 2H), 7.20-7.18 (m, 1H), 6.90-6.88 (m, 1H), 4.20-4.18 (d, J=6.5 Hz, 2H), 3.85 (s, 2H), 3.63 (s, 2H), 3.42 (s, 2H), 3.14 (s, 3H), 3.02-3.00 (m, 1H), 2.06-2.02 (m, 1H), 0.91-0.87 (m, 2H), 0.65-0.62 (m, 2H).
  • Example 133
  • Figure US20210093618A1-20210401-C00462
  • 4-((1-(4-Chloro-3-fluorobenzyl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 80. LCMS (ESI) Method A: RT=4.81 min, m/z: 485.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.58 (t, J=8.0 Hz, 1H), 7.38 (d, J=9.5, 1H), 7.22-7.19 (m, 2H), 6.86 (d, J=12.5 Hz, 1H), 4.19 (d, J=6.0 Hz, 2H), 3.87 (s, 2H), 3.63 (s, 2H), 3.40 (s, 2H), 3.10 (s, 3H), 3.02-3.00 (m, 1H), 2.04-2.00 (m, 1H), 0.90-0.86 (m, 2H), 0.64-0.61 (m, 2H).
  • Example 134
  • Figure US20210093618A1-20210401-C00463
  • 5-Cyclopropyl-4-((1-(3,5-dichlorobenzoyl)azetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00464
  • Step 1
  • Figure US20210093618A1-20210401-C00465
  • tert-Butyl 5-cyclopropyl-4-((1-(3,5-dichlorobenzoyl)azetidin-3-yl)methoxy)-2-fluorobenzoate
  • A mixture of 3,5-dichlorobenzoic acid (100 mg, 0.52 mmol), tert-butyl 4-(azetidin-3-ylmethoxy)-5-cyclopropyl-2-fluorobenzoate (140 mg, 0.44 mmol), EDCI (140 mg, 0.72 mmol) and DMAP (27 mg, 0.22 mmol) in DCM (5 mL) was stirred at room temperature for 18 h. The mixture was diluted with DCM (10 mL) and washed with HCl (2 N, 15 mL×2). The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (eluting with petroleum ether/EtOAc=4/1) to give the target compound (200 mg, 92%) as a white solid. LCMS (ESI) m/z: 437.9 [M+H−56]+.
  • Step 2
  • Figure US20210093618A1-20210401-C00466
  • 5-Cyclopropyl-4-((1-(3,5-dichlorobenzoyl)azetidin-3-yl)methoxy)-2-fluorobenzoic acid
  • The compound was synthesized as described in step 3 of Example 88. LCMS (ESI) m/z: 438.0 [M+H]+.
  • Step 3
  • Figure US20210093618A1-20210401-C00467
  • 5-Cyclopropyl-4-((1-(3,5-dichlorobenzoyl)azetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 5 of Example 80. LCMS (ESI) Method A: RT=4.65 min, m/z: 515.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 11.90 (s, 1H), 7.80 (t, J=1.5 Hz, 1H), 7.58 (d, J=2.0 Hz, 2H), 7.15 (d, J=8.0 Hz, 1H), 6.96 (d, J=12.5 Hz, 1H), 4.52 (t, J=8.5 Hz, 1H), 4.27-4.16 (m, 4H), 3.99-3.97 (m, 1H), 3.28 (s, 3H), 3.12-3.09 (m, 1H), 1.95-1.89 (m, 1H), 0.89-0.84 (m, 1H), 0.76-0.60 (m, 3H).
  • Example 135
  • Figure US20210093618A1-20210401-C00468
  • 5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(4-(trifluoromethoxy) benzyl)piperidin-4-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.55 min, m/z: 544.8 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.51 (d, J=8.5 Hz, 2H), 7.38 (d, J=8.0 Hz, 2H), 7.17 (d, J=8.5 Hz, 1H), 6.83 (d, J=12.5 Hz, 1H), 3.92 (d, J=6.5 Hz, 2H), 3.827 (s, 2H), 3.11 (s, 3H), 3.05 (d, J=11.0 Hz, 2H), 2.41-2.37 (m, 2H), 2.03-1.98 (m, 1H), 1.90-1.85 (m, 3H), 1.48-1.42 (m, 2H), 0.89-0.85 (m, 2H), 0.63-0.60 (m, 2H).
  • Example 136
  • Figure US20210093618A1-20210401-C00469
  • 4-((1-(3-Chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=6.15 min, m/z: 578.8 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.48 (s, 2H), 7.35 (s, 1H), 7.15 (d, J=8.0 Hz, 1H), 6.87 (d, J=13.5 Hz, 1H), 3.93 (d, J=5.5 Hz, 2H), 3.67 (s, 2H), 3.18 (s, 3H), 2.90 (d, J=10 Hz, 2H), 2.20-2.15 (m, 2H), 2.07-1.98 (m, 1H), 1.88-1.80 (m, 3H), 1.44-1.36 (m, 2H), 0.89-0.86 (m, 2H), 0.65-0.62 (m, 2H).
  • Example 137
  • Figure US20210093618A1-20210401-C00470
  • 4-((1-(3-Chloro-5-(trifluoromethyl)benzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=6.06 min, m/z: 562.8 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.76 (s, 2H), 7.73 (s, 1H), 7.67 (s, 1H), 7.18 (d, J=8.5 Hz, 1H), 6.82 (d, J=11.5 Hz, 1H), 3.93 (d, J=5.5 Hz, 2H), 3.67 (s, 2H), 3.10 (s, 3H), 2.89 (d, J=10.5 Hz, 2H), 2.16-2.12 (m, 2H), 2.03-1.99 (m, 1H), 1.84-1.79 (m, 3H), 1.43-1.36 (m, 2H), 0.89-0.86 (m, 2H), 0.63-0.60 (m, 2H).
  • Example 138
  • Figure US20210093618A1-20210401-C00471
  • 4-((1-(4-Chloro-3-fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=4.72 min, m/z: 513.2 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 8 7.56-7.23 (m, 1H), 7.60-7.58 (m, 1H), 7.38 (d, J=8.0 Hz, 1H), 7.13 (d, J=8.0 Hz, 1H), 6.97 (d, J=12.5 Hz, 1H), 4.32 (s, 2H), 3.98 (s, 2H), 3.42-3.34 (m, 2H), 3.33 (s, 3H), 2.97 (s, 2H), 2.06-1.97 (m, 4), 1.58-1.56 (m, 2H), 0.90-0.86 (m, 2H), 0.70-0.67 (m, 2H).
  • Example 139
  • Figure US20210093618A1-20210401-C00472
  • 5-Cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.75 min, m/z: 528.8 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.53 (s, 1H), 7.40 (s, 2H), 7.16 (d, J=8.5 Hz, 1H), 6.84 (d, J=12.0 Hz, 1H), 3.93 (d, J=5.5 Hz, 2H), 3.64-3.61 (m, 2H), 3.14 (s, 3H), 2.93-2.91 (m, 2H), 2.17-2.16 (m, 2H), 2.03-2.00 (m, 1H), 1.82-1.80 (m, 3H), 1.41-1.39 (m, 2H), 0.90-0.86 (m, 2H), 0.63-0.62 (d, 2H).
  • Example 140
  • Figure US20210093618A1-20210401-C00473
  • 4-((1-(3-chloro-5-(trifluoromethyl)benzyl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was prepared in a similar manner to Example 73 starting from tert-butyl 4-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)methyl)-4-methylpiperidine-1-carboxylate (Example 73 step 1-2) and 3-chloro-5-(trifluoromethyl)benzaldehyde. LCMS (Method G): RT=5.81 min, m/z: 577.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.81-7.65 (m, 3H), 7.20 (d, J=8.4 Hz, 1H), 6.90 (d, J=12.9 Hz, 1H), 3.84 (s, 2H), 3.76 (s, 2H), 3.20 (s, 3H), 2.72-2.58 (m, 2H), 2.07-1.96 (m, 1H), 1.78-1.65 (m, 2H), 1.56-1.43 (m, 2H), 1.09 (s, 3H), 0.92-0.83 (m, 2H), 0.68-0.59 (m, 2H).
  • Example 141
  • Figure US20210093618A1-20210401-C00474
  • 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was prepared in a similar manner to Example 73 starting from tert-butyl 4-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)methyl)-4-methylpiperidine-1-carboxylate (Example 73 step 1-2) and 3-chloro-2-fluoro-5-(trifluoromethyl)benzaldehyde. LCMS (Method G): RT=6.67 min, m/z: 595.14 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.58 (s, 1H), 8.02 (dd, J=6.4, 2.3 Hz, 1H), 7.80 (dd, J=5.9, 2.3 Hz, 1H), 7.19 (d, J=8.5 Hz, 1H), 6.91 (d, J=12.9 Hz, 1H), 3.84 (s, 2H), 3.75 (s, 2H), 3.24 (s, 3H), 2.72-2.57 (m, 2H), 2.08-1.96 (m, 1H), 1.77-1.62 (m, 2H), 1.53-1.40 (m, 2H), 1.07 (s, 3H), 0.93-0.82 (m, 2H), 0.69-0.59 (m, 2H).
  • Example 142
  • Figure US20210093618A1-20210401-C00475
  • (S)-5-Cyclopropyl-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)azetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC(column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=65:35; flow: 1.95 mL/min; column temperature: 40° C.; RT=4.15 min). LCMS (ESI) Method A: RT=6.20 min, m/z: 577.2 [M+H]+. 1H-NMR (500 MHz, MeOD-d4): δ7.30-7.28 (m, 4H), 7.23-7.20 (m, 3H), 7.17-7.12 (m, 2H), 6.70 (d, J=12.5 Hz, 1H), 4.42 (s, 1H), 4.10 (d, J=7.0 Hz, 2H), 3.33-3.26 (m, 2H), 3.16 (s, 3H), 3.10-3.05 (m, 2H), 2.90-2.87 (m, 1H), 2.00-1.96 (m, 1H), 0.86-0.80 (m, 2H), 0.56-0.54 (m, 2H).
  • Example 143
  • Figure US20210093618A1-20210401-C00476
  • (R)-5-Cyclopropyl-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)azetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=65:35; flow: 1.95 mL/min; column temperature: 40° C.; RT=5.47 min). LCMS (ESI) Method A: RT=6.19 min, m/z: 577.2 [M+H]+. 1H-NMR (500 MHz, MeOD-d4): δ7.30-7.28 (m, 4H), 7.23-7.20 (m, 3H), 7.17-7.12 (m, 2H), 6.70 (d, J=12.5 Hz, 1H), 4.42 (s, 1H), 4.10 (d, J=7.0 Hz, 2H), 3.33-3.26 (m, 2H), 3.16 (s, 3H), 3.10-3.05 (m, 2H), 2.90-2.87 (m, 1H), 2.00-1.96 (m, 1H), 0.86-0.80 (m, 2H), 0.56-0.54 (m, 2H).
  • Example 144
  • Figure US20210093618A1-20210401-C00477
  • (S)-5-Cyclopropyl-2-fluoro-4-((1-((4-fluorophenyl)(phenyl)methyl)azetidin-3-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=75:25; flow: 2.25 mL/min; column temperature: 40° C.; RT=5.77 min). LCMS (ESI) Method A: RT=4.83 min, m/z: 527.2 [M+H]+. 1H-NMR (500 MHz, MeOH-d4): δ 7.35-7.29 (m, 4H), 7.24-7.20 (m, 3H), 7.16-7.12 (m, 1H), 6.97-6.93 (m, 2H), 6.67 (d, J=13.0 Hz, 1H), 4.63 (s, 1H), 4.08 (d, J=6.0 Hz, 2H), 3.45-3.43 (m, 2H), 3.25-3.22 (m, 2H), 3.15 (s, 3H), 2.98-2.95 (m, 1H), 1.99-1.95 (m, 1H), 0.84-0.79 (m, 2H), 0.56-0.54 (m, 2H).
  • Example 145
  • Figure US20210093618A1-20210401-C00478
  • (R)-5-Cyclopropyl-2-fluoro-4-((1-((4-fluorophenyl)(phenyl)methyl)-azetidin-3-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=75:25; flow: 2.25 mL/min; column temperature: 40° C.; RT=6.50 min). LCMS (ESI) Method A: RT=4.79 min, m/z: 527.2 [M+H]+. 1H-NMR (500 MHz, MeOH-d4): δ 7.35-7.29 (m, 4H), 7.24-7.20 (m, 3H), 7.16-7.12 (m, 1H), 6.97-6.93 (m, 2H), 6.67 (d, J=13.0 Hz, 1H), 4.63 (s, 1H), 4.08 (d, J=6.0 Hz, 2H), 3.45-3.43 (m, 2H), 3.25-3.22 (m, 2H),
  • 3.15 (s, 3H), 2.98-2.95 (m, 1H), 1.99-1.95 (m, 1H), 0.84-0.79 (m, 2H), 0.56-0.54 (m, 2H).
  • Example 146
  • Figure US20210093618A1-20210401-C00479
  • 5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(1-phenylethyl)-piperidin-4-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=4.70 min, m/z: 476.2 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ 7.42-7.36 (m, 5H), 7.18 (d, J=8.0 Hz, 1H), 6.78 (d, J=13.0 Hz, 1H), 4.04 (brs, 1H), 3.90 (d, J=5.0 Hz, 2H), 3.32 (s, 3H), 3.02 (m, 4H), 2.02-1.97 (m, 1H), 1.90-1.84 (m, 3H), 1.50-1.49 (m, 5H), 0.88-0.83 (m, 2H), 0.60-0.57 (m, 2H).
  • Example 147
  • Figure US20210093618A1-20210401-C00480
  • 5-Cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.75 min, m/z: 528.9 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ 7.64-7.63 (m, 2H), 7.37-7.36 (m, 1H), 7.17-7.16 (m, 1H), 6.85 (d, J=13.0 Hz, 1H), 3.94 (s, 2H), 3.72 (s, 2H), 3.15 (s, 3H), 3.00-2.98 (m, 2H), 2.29 (s, 2H), 2.02-2.01 (m, 1H), 1.85-1.82 (m, 3H), 1.44-1.42 (m, 2H), 0.88-0.87 (m, 2H), 0.63 (s, 2H).
  • Example 148
  • Figure US20210093618A1-20210401-C00481
  • 4-((1-(1-(3-Chlorophenyl)ethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.52 min, m/z: 508.9 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ 7.46-7.31 (m, 4H), 7.17 (d, J=8.5 Hz, 1H), 6.83 (d, J=12.5 Hz, 1H), 3.92-3.91 (m, 3H), 3.31-3.27 (m, 4H), 3.17-3.16 (m, 1H), 2.98-2.96 (m, 1H), 2.27-2.26 (m, 1H), 2.02-1.98 (m, 1H), 1.88-1.80 (m, 3H), 1.46-1.41 (m, 5H), 0.89-0.85 (m, 2H), 0.63-0.60 (m, 2H).
  • Example 149
  • Figure US20210093618A1-20210401-C00482
  • 4-((1-(2-Cyanobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=4.86 min, m/z: 486.0 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ 7.83-7.81 (m, 1H), 7.71-7.67 (m, 1H), 7.60-7.59 (m, 1H), 7.50-7.47 (m, 1H), 7.15 (d, J=8.0 Hz, 1H), 6.91 (d, J=12.5 Hz, 1H), 3.94 (d, J=6.0 Hz, 2H), 3.70 (s, 2H), 3.25 (s, 3H), 2.90-2.88 (m, 2H), 2.19-2.15 (m, 2H), 2.03-2.00 (m, 1H), 1.84-1.78 (m, 3H), 1.42-1.34 (m, 2H), 0.90-0.86 (m, 2H), 0.66-0.63 (m, 2H).
  • Example 150
  • Figure US20210093618A1-20210401-C00483
  • (S)-4-((1-((2-Chlorophenyl)(phenyl)methyl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=65:35; flow: 1.95 mL/min; column temperature: 40° C.; RT=4.38 min). LCMS (ESI) Method A: RT=6.04 min, m/z: 543.2 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 11.89 (s, 1H), 7.81 (d, J=6.6 Hz, 1H), 7.39 (dd, J=19.1, 7.6 Hz, 4H), 7.29 (t, J=7.6 Hz, 2H), 7.23 (dd, J=13.4, 7.6 Hz, 2H), 7.16 (d, J=8.3 Hz, 1H), 6.95 (d, J=12.6 Hz, 1H), 4.88 (s, 1H), 4.18 (d, J=5.7 Hz, 2H), 3.30-3.29 (m, 1H), 3.29-3.23 (m, 3H), 3.15 (s, 2H), 2.93 (s, 2H), 2.10 (s, 1H), 0.91 (t, J=8.9 Hz, 2H), 0.69 (s, 2H).
  • Example 151
  • Figure US20210093618A1-20210401-C00484
  • (R)-4-((1-((2-Chlorophenyl)(phenyl)methyl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC(column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=65:35; flow: 1.95 mL/min; column temperature: 40° C.; RT=5.23 min). LCMS (ESI) Method A: RT=6.11 min, m/z: 543.2 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 11.89 (s, 1H), 7.81 (d, J=6.6 Hz, 1H), 7.39 (dd, J=19.1, 7.6 Hz, 4H), 7.29 (t, J=7.6 Hz, 2H), 7.23 (dd, J=13.4, 7.6 Hz, 2H), 7.16 (d, J=8.3 Hz, 1H), 6.95 (d, J=12.6 Hz, 1H), 4.88 (s, 1H), 4.18 (d, J=5.7 Hz, 2H), 3.30-3.29 (m, 1H), 3.29-3.23 (m, 3H), 3.15 (s, 2H), 2.93 (s, 2H), 2.10 (s, 1H), 0.91 (t, J=8.9 Hz, 2H), 0.69 (s, 2H).
  • Example 152
  • Figure US20210093618A1-20210401-C00485
  • (S)-5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(phenyl(pyridin-4-yl)methyl)azetidin-3-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=65:35; flow: 1.95 mL/min; column temperature: 40° C.; RT=4.20 min). LCMS (ESI) Method A: RT=4.72 min, m/z: 510.3 [M+H]+. 1H NMR (500 MHz, MeOD-d4) δ 8.46 (d, J=5.1 Hz, 2H), 7.54 (d, J=5.9 Hz, 2H), 7.44 (d, J=7.3 Hz, 2H), 7.33 (t, J=7.5 Hz, 3H), 7.26 (t, J=7.3 Hz, 1H), 6.83 (d, J=12.8 Hz, 1H), 4.59 (s, 1H), 4.23 (d, J=6.0 Hz, 2H), 3.49 (t, J=7.7 Hz, 1H), 3.39 (t, J=7.6 Hz, 1H), 3.30 (s, 3H), 3.26-3.22 (m, 1H), 3.17 (t, J=6.9 Hz, 1H), 3.06-3.00 (m, 1H), 2.13-2.05 (m, 1H), 0.97-0.92 (m, 2H), 0.68 (d, J=4.3 Hz, 2H).
  • Example 153
  • Figure US20210093618A1-20210401-C00486
  • (R)-5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(phenyl(pyridin-4-yl)methyl)azetidin-3-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 81. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=65:35; flow: 1.95 mL/min; column temperature: 40° C.; RT=7.60 min). LCMS (ESI) Method B: RT=4.70 min, m/z: 510.3 [M+H]+. 1H NMR (500 MHz, MeOD-d4) δ 8.34 (d, J=4.6 Hz, 2H), 7.41 (d, J=5.8 Hz, 2H), 7.32 (d, J=7.3 Hz, 2H), 7.21 (t, J=7.5 Hz, 3H), 7.13 (t, J=7.3 Hz, 1H), 6.70 (d, J=12.8 Hz, 1H), 4.47 (s, 1H), 4.11 (d, J=6.1 Hz, 2H), 3.37 (t, J=7.7 Hz, 1H), 3.27 (t, J=7.7 Hz, 1H), 3.17 (s, 3H), 3.14-3.10 (m, 2H), 3.07-3.03 (m, 1H), 2.02-1.92 (m, 1H), 0.86-0.78 (m, 2H), 0.55 (d, J=4.3 Hz, 2H).
  • Example 154
  • Figure US20210093618A1-20210401-C00487
  • 5-Cyclopropyl-2-fluoro-4-((1-((3-fluorophenyl)(phenyl)methyl)azetidin-3-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 80. LCMS (ESI) Method B: RT=5.84 min, m/z: 527.2 [M+H]+. 1H NMR (500 MHz, MeOD-d4) δ 7.43 (d, J=7.3 Hz, 2H), 7.34 (dd, J=7.9, 5.0 Hz, 4H), 7.26 (dd, J=7.4, 4.4 Hz, 2H), 7.19 (d, J=9.9 Hz, 1H), 6.98 (t, J=8.5 Hz, 1H), 6.83 (d, J=12.9 Hz, 1H), 4.66 (s, 1H), 4.22 (d, J=5.9 Hz, 2H), 3.56-3.45 (m, 2H), 3.32-3.32 (m, 2H), 3.30 (s, 3H), 3.06 (s, 1H), 2.11 (t, J=6.9 Hz, 1H), 0.98-0.91 (m, 2H), 0.69 (q, J=5.9 Hz, 2H).
  • Example 155
  • Figure US20210093618A1-20210401-C00488
  • 5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)propyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=6.40 min, m/z: 556.8 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 7.52 (s, 1H), 7.34 (s, 2H), 7.16 (d, J=8.4 Hz, 1H), 6.80 (d, J=12.8 Hz, 1H), 3.87 (d, J=5.9 Hz, 2H), 3.51 (s, 1H), 3.10 (s, 3H), 3.03 (s, 1H), 2.91 (s, 1H), 1.99 (s, 2H), 1.88 (s, 2H), 1.76 (d, J=14.0 Hz, 4H), 1.35 (m, 2H), 0.89-0.81 (m, 2H), 0.72 (t, J=7.2 Hz, 3H), 0.60 (d, J=4.1 Hz, 2H).
  • Example 156
  • Figure US20210093618A1-20210401-C00489
  • 5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(1-(4-(trifluoromethoxy)-phenyl)ethyl)piperidin-4-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.68 min, m/z: 558.9 [M+H]+. 1H NMR (500 MHz, MeOD-d4) δ 7.63 (s, 2H), 7.37 (m, 3H), 6.58 (s, 1H), 4.33 (s, 1H), 3.70 (m, 3H), 3.16 (s, 3H), 2.76 (s, 2H), 2.00 (m, 4H), 1.85-1.47 (m, 6H), 0.86 (s, 2H), 0.63 (s, 2H).
  • Example 157
  • Figure US20210093618A1-20210401-C00490
  • 5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(1-(4-(trifluoromethoxy)-phenyl)ethyl)azetidin-3-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 80. LCMS (ESI) Method A: RT=5.24 min, m/z: 516.9 [M+H]+. 1H NMR (500 MHz, MeOD-d4) δ 7.50 (d, J=8.6 Hz, 2H), 7.28 (m, 3H), 6.49 (d, J=12.3 Hz, 1H), 4.92 (m, 2H), 4.05 (m, 1H), 3.77 (m, 2H), 3.44-3.35 (m, 2H), 3.26 (m, 1H), 3.22 (s, 3H), 2.12 (m, 1H), 1.35 (d, J=6.5 Hz, 3H), 0.98-0.88 (m, 2H), 0.68 (m, 2H).
  • Example 158
  • Figure US20210093618A1-20210401-C00491
  • 5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)propyl)azetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 80. LCMS (ESI) Method A: RT=5.74 min, m/z: 529.0 [M+H]+. 1H NMR (500 MHz, MeOD-d4) δ 7.50-7.41 (m, 1H), 7.40-7.30 (m, 3H), 6.83-6.69 (m, 1H), 4.18 (s, 2H), 3.76 (m, 1H), 3.47 (m, 4H), 3.24 (s, 3H), 3.09 (m, 1H), 2.08 (m, 1H), 1.88 (m, 1H), 1.56 (m, 1H), 0.93 (m, 2H), 0.76 (m, 3H), 0.68 (s, 2H).
  • Example 159
  • Figure US20210093618A1-20210401-C00492
  • 5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(2-(trifluoromethyl)-benzyl)piperidin-4-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.94 min, m/z: 529.0 [M+H]+. 1H NMR (500 MHz, MeOD-d4) δ 7.88 (d, J=7.8 Hz, 1H), 7.73 (d, J=7.9 Hz, 1H), 7.66 (t, J=7.6 Hz, 1H), 7.50 (t, J=7.6 Hz, H), 7.35 (s, 1H), 6.72 (d, J=12.9 Hz, 1H), 3.93 (m, 4H), 3.22 (m, 3H), 3.12 (m, 2H), 2.43 (m, 2H), 2.07 (m, 1H), 2.01 (m, 1H), 1.95 (m, 2H), 1.68-1.55 (m, 2H), 0.91 (m, 2H), 0.65 (m, 2H).
  • Example 160
  • Figure US20210093618A1-20210401-C00493
  • 5-Cyclopropyl-4-((1-(3,4-difluorobenzyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=4.46 min, m/z: 497.2 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 7.43 (m, 2H), 7.25-7.13 (m, 2H), 6.83 (d, J=12.8 Hz, 1H), 3.93 (d, J=5.9 Hz, 2H), 3.70 (s, 2H), 3.11 (s, 3H), 2.99 (m, 2H), 2.28 (m, 2H), 2.05-1.96 (m, 1H), 1.83 (m, 3H), 1.42 (m, 2H), 0.87 (m, 2H), 0.61 (m, 2H).
  • Example 161
  • Figure US20210093618A1-20210401-C00494
  • 5-Cyclopropyl-2-fluoro-4-((1-(4-fluorobenzyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=4.90 min, m/z: 479.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 7.46-7.39 (m, 2H), 7.20 (m, 3H), 6.80 (d, J=12.8 Hz, 1H), 3.92 (d, J=6.0 Hz, 2H), 3.80 (m, 2H), 3.04 (m, 5H), 2.40 (m, 2H), 2.00 (m, 1H), 1.86 (m, 3H), 1.45 (m, 2H), 0.87 (m, 2H), 0.59 (m, 2H).
  • Example 162
  • Figure US20210093618A1-20210401-C00495
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00496
  • Step 1
  • Figure US20210093618A1-20210401-C00497
  • 2-(3,5-Dichlorophenyl)oxirane
  • The compound was synthesized as described in step of Example 90.
  • Step 2
  • Figure US20210093618A1-20210401-C00498
  • 1-(3,5-Dichlorophenyl)-2-methoxyethanol
  • The compound was synthesized as described in step 2 of Example 90.
  • Step 3
  • Figure US20210093618A1-20210401-C00499
  • 1,3-Dichloro-5-(1-chloro-2-methoxyethyl)benzene
  • The compound was synthesized as described in step 2 of Example 80.
  • Step 4
  • Figure US20210093618A1-20210401-C00500
  • (R)-methyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate
  • The compound was synthesized as described in step 5 of Example 88. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-methyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: EtOH, A:B=85:15; flow: 3 mL/min; column temperature: 40° C.; RT=3.89 min). LCMS(ESI) m/z: 510.1 [M+H]+.
  • Step 5
  • Figure US20210093618A1-20210401-C00501
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid
  • The compound was synthesized as described in step 6 of Example 88. LCMS(ESI) m/z: 496.1 [M+H]+.
  • Step 6
  • Figure US20210093618A1-20210401-C00502
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 5 of Example 80. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=85:15; flow: 2.55 mL/min; column temperature: 39.8° C.; RT=6.09 min). LCMS (ESI) Method A: RT=5.79 min, m/z: 572.8 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 11.65 (brs, 1H), 7.51-7.50 (m, 1H), 7.41-7.40 (m, 2H), 7.14 (d, J=9.0 Hz, 1H), 6.88 (d, J=13.0 Hz, 1H), 3.91 (d, J=5.5 Hz, 2H), 3.78-3.67 (m, 3H), 3.25 (s, 3H), 3.23 (s, 3H), 3.03-3.01 (m, 1H), 2.84-2.82 (m, 1H), 2.16-2.12 (m, 1H), 2.06-1.97 (m, 2H), 1.80-1.73 (m, 3H), 1.41-1.31 (m, 2H), 0.89-0.86 (m, 2H), 0.66-0.63 (m, 2H).
  • Example 163
  • Figure US20210093618A1-20210401-C00503
  • (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 162. The enantiomer was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=85:15; flow: 2.55 mL/min; column temperature: 40.6° C.; RT=6.48 min). LCMS (ESI) Method A: RT=5.79 min, m/z: 572.8 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 11.63 (brs, 1H), 7.52-7.51 (m, 1H), 7.41-7.40 (m, 2H), 7.14 (d, J=8.5 Hz, 1H), 6.89 (d, J=12.5 Hz, 1H), 3.91 (d, J=6.0 Hz, 2H), 3.79-3.68 (m, 3H), 3.25 (s, 3H), 3.23 (s, 3H), 3.03-3.02 (m, 1H), 2.85-2.82 (m, 1H), 2.17-2.13 (m, 1H), 2.05-1.97 (m, 2H), 1.80-1.73 (m, 3H), 1.41-1.31 (m, 2H), 0.89-0.86 (m, 2H), 0.66-0.63 (m, 2H).
  • Example 164
  • Figure US20210093618A1-20210401-C00504
  • (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in Example 162. The enantiomer was arbitrarily assigned as (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl) piperidin-4-yl)methoxy)-2-fluorobenzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=80:20; flow: 2.4 mL/min; column temperature: 38.0° C.; RT=13.16 min). LCMS (ESI) Method A: RT=6.27 min, m/z: 598.8 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ11.67 (brs, 1H), 7.50 (s, 1H), 7.39 (s, 2H), 7.13 (d, J=8.0 Hz, 1H), 6.89 (d, J=12.5 Hz, 1H), 3.91 (d, J=5.5 Hz, 2H), 3.74-3.67 (m, 3H), 3.23 (s, 3H), 3.06-2.98 (m, 2H), 2.82-2.80 (m, 1H), 2.12-2.08 (m, 1H), 2.03-1.97 (m, 2H), 1.79-1.72 (m, 3H), 1.39-1.23 (m, 2H), 1.08-1.03 (m, 4H), 0.89-0.86 (m, 2H), 0.65-0.64 (m, 2H).
  • Example 165
  • Figure US20210093618A1-20210401-C00505
  • (S)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in Example 163. The enantiomer was arbitrarily assigned as (S)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl) piperidin-4-yl)methoxy)-2-fluorobenzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=80:20; flow: 2.4 mL/min; column temperature: 39.7° C.; RT=11.96 min). LCMS (ESI) Method A: RT=6.19 min, m/z: 598.9 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 11.69 (brs, 1H), 7.50 (s, 1H), 7.39 (s, 2H), 7.13 (d, J=8.0 Hz, 1H), 6.89 (d, J=13.0 Hz, 1H), 3.90 (d, J=6.0 Hz, 2H), 3.73-3.67 (m, 3H), 3.22 (s, 3H), 3.06-2.98 (m, 2H), 2.82-2.80 (m, 1H), 2.11-2.07 (m, 1H), 2.03-1.96 (m, 2H), 1.79-1.72 (m, 3H), 1.37-1.23 (m, 2H), 1.07-1.02 (m, 4H), 0.89-0.85 (m, 2H), 0.65-0.62 (m, 2H).
  • Example 166
  • Figure US20210093618A1-20210401-C00506
  • (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in Example 162. The enantiomer was arbitrarily assigned as (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl) piperidin-4-yl)methoxy)-2-fluorobenzamide. Chiral HPLC (column: (s,s-whelk-ol, 4.6×250 mm, 5 μm; mobile Phase: A: n-hexane, B: MeOH, A:B=80:20; flow: 1 mL/min; column temperature: 40° C.; RT=11.97 min). LCMS (ESI) Method A: RT=6.34 min, m/z: 614.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 11.52 (brs, 1H), 7.50-7.49 (m, 1H), 7.39-7.38 (m, 2H), 7.15 (d, J=8.5 Hz, 1H), 6.87 (d, J=12.5 Hz, 1H), 3.97-3.94 (m, 4H), 3.90 (d, J=6.5 Hz, 2H), 3.74-3.66 (m, 3H), 3.22 (s, 3H), 2.99-2.97 (m, 1H), 2.81-2.79 (m, 1H), 2.15-2.06 (m, 3H), 2.02-1.94 (m, 2H), 1.79-1.69 (m, 3H), 1.37-1.28 (m, 2H), 0.89-0.86 (m, 2H), 0.66-0.63 (m, 2H).
  • Example 167
  • Figure US20210093618A1-20210401-C00507
  • (S)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl) methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in Example 163. The enantiomer was arbitrarily assigned as (S)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl) piperidin-4-yl)methoxy)-2-fluorobenzamide. Chiral HPLC (column: (s,s-whelk-ol, 4.6×250 mm, 5 μm; mobile Phase: A: n-hexane, B: MeOH, A:B=80:20; flow: 1 mL/min; column temperature: 40° C.; RT=12.14 min). LCMS (ESI) Method A: RT=6.36 min, m/z: 614.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.49-7.48 (m, 1H), 7.38-7.37 (m, 2H), 7.18 (d, J=9.0 Hz, 1H), 6.87 (d, J=12.5 Hz, 1H), 3.88-3.85 (m, 6H), 3.72-3.65 (m, 3H), 3.21 (s, 3H), 2.98-2.96 (m, 1H), 2.80-2.78 (m, 1H), 2.09-1.92 (m, 5H), 1.79-1.71 (m, 3H), 1.37-1.28 (m, 2H), 0.89-0.86 (m, 2H), 0.62-0.59 (m, 2H).
  • Example 168
  • Figure US20210093618A1-20210401-C00508
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 162. The enantiomer was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide. LCMS (ESI) Method A: RT=5.99 min, m/z: 587.3 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 7.49-7.48 (m, 1H), 7.38-7.37 (m, 2H), 7.16 (d, J=8.8 Hz, 1H), 6.77 (d, J=12.8 Hz, 1H), 3.87 (d, J=6.0 Hz, 2H), 3.73-3.65 (m, 3H), 3.21-3.19 (m, 5H), 2.98-2.95 (m, 1H), 2.80-2.77 (m, 1H), 2.06-1.94 (m, 3H), 1.79-1.70 (m, 3H), 1.36-1.26 (m, 2H), 1.15 (t, J=7.4 Hz, 3H), 0.89-0.84 (m, 2H), 0.61-0.57 (m, 2H).
  • Example 169
  • Figure US20210093618A1-20210401-C00509
  • (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 163. The enantiomer was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide. LCMS (ESI) Method A: RT=5.99 min, m/z: 587.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 7.49-7.48 (m, 1H), 7.38-7.37 (m, 2H), 7.16 (d, J=8.4 Hz, 1H), 6.77 (d, J=12.8 Hz, 1H), 3.87 (d, J=6.0 Hz, 2H), 3.73-3.65 (m, 3H), 3.24-3.19 (m, 5H), 2.98-2.95 (m, 1H), 2.80-2.77 (m, 1H), 2.09-1.91 (m, 3H), 1.79-1.67 (m, 3H), 1.36-1.26 (m, 2H), 1.16 (t, J=7.4 Hz, 3H), 0.89-0.84 (m, 2H), 0.61-0.57 (m, 2H).
  • Example 170
  • Figure US20210093618A1-20210401-C00510
  • (R)-5-cyclopropyl-2-fluoro-4-((1-(1-(3-fluoro-5-(trifluoromethyl)phenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-2-fluoro-4-((1-(1-(3-fluoro-5-(trifluoromethyl)phenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide. Chiral HPLC (column: IC-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=75:25; flow: 2.25 mL/min; column temperature: 40° C.; RT=4.46 min). LCMS (ESI) Method A: RT=6.13 min, m/z: 575.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 11.45 (brs, 1H), 7.58-7.54 (m, 3H), 7.20 (d, J=8.4 Hz, 1H), 6.87 (d, J=13.2 Hz, 1H), 3.80 (m, 3H), 3.18 (s, 3H), 2.68-2.66 (m, 1H), 2.56-2.54 (m, 2H), 2.39-2.33 (m, 1H), 2.04-1.97 (m, 1H), 1.71-1.66 (m, 2H), 1.50-1.44 (m, 2H), 1.37 (d, J=6.8 Hz, 3H), 1.04 (s, 3H), 0.89-0.85 (m, 2H), 0.65-0.61 (m, 2H).
  • Example 171
  • Figure US20210093618A1-20210401-C00511
  • (S)-5-cyclopropyl-2-fluoro-4-((1-(1-(3-fluoro-5-(trifluoromethyl)phenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 170. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-2-fluoro-4-((1-(1-(3-fluoro-5-(trifluoromethyl)phenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide. Chiral HPLC (column: IC-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=75:25; flow: 2.25 mL/min; column temperature: 39.9° C.; RT=4.96 min). LCMS (ESI) Method A: RT=6.11 min, m/z: 575.3 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ7.58-7.54 (m, 3H), 7.19 (d, J=8.4 Hz, 1H), 6.87 (d, J=12.8 Hz, 1H), 3.80 (m, 3H), 3.17 (s, 3H), 2.71-2.67 (m, 1H), 2.56-2.54 (m, 2H), 2.38-2.32 (m, 1H), 2.04-1.97 (m, 1H), 1.71-1.66 (m, 2H), 1.49-1.44 (m, 2H), 1.37 (d, J=6.8 Hz, 3H), 1.04 (s, 3H), 0.89-0.85 (m, 2H), 0.64-0.61 (m, 2H).
  • Example 172
  • Figure US20210093618A1-20210401-C00512
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00513
  • Step 1
  • Figure US20210093618A1-20210401-C00514
  • 2-(4-((2-Cyclopropyl-5-fluoro-4-(methoxycarbonyl)phenoxy)methyl)-4-methylpiperidin-1-yl)-2-(3,5-dichlorophenyl)acetic acid
  • A mixture of methyl 5-cyclopropyl-2-fluoro-4-((4-methylpiperidin-4-yl)methoxy)benzoate (1.8 g, 5.6 mmol), 3,5-dichlorophenylboronic acid (1.6 g, 8.4 mmol), 2-oxoacetic acid (638 mg, 8.4 mmol) and 1.8 g of 4A molecular sieve in toluene (30 mL) was stirred at 100° C. for 2 h. The mixture was then filtered, washed with DCM (20 mL) and concentrated. The residue was purified by silica gel chromatography (eluting with DCM/MeOH from 100/1 to 10/1) to afford the target compound (2.8 g, 96%) as a white solid. LCMS (ESI) m/z: 524.0 [M+H]+.
  • Step 2
  • Figure US20210093618A1-20210401-C00515
  • (R)-methyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-hydroxyethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluorobenzoate
  • A mixture of 2-(4-((2-cyclopropyl-5-fluoro-4-(methoxycarbonyl)phenoxy)methyl)-4-methylpiperidin-1-yl)-2-(3,5-dichlorophenyl)acetic acid (2.0 g, 3.8 mmol) in borane-THF (20 mL) was stirred at room temperature for 2 h, quenched with MeOH (20 mL) and concentrated. The residue was purified by silica gel chromatography (eluting with DCM/MeOH from 300/1 to 100/1) to afford the racemate (2.8 g, 96%) as anoil. The enantiomer was separated by chiral SFC from the racemate. The enantiomer was arbitrarily assigned as (R)-methyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-hydroxyethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluorobenzoate. Chiral HPLC (column: OZ-H, 4.6×250 mm, 5 μm; mobile Phase: A: n-Hexane, B: EtOH, A:B=85:15; flow: 1 mL/min; column temperature: 40° C.; RT=6.83 min). LCMS(ESI) m/z: 510.1 [M+H]+.
  • Step 3
  • Figure US20210093618A1-20210401-C00516
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluorobenzoic acid
  • To a solution of (R)-methyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-hydroxyethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluorobenzoate (100 mg, 0.2 mmol) in THF (5 mL) was added sodium hydride (39 mg, 0.98 mmol) at 0° C. The mixture was stirred at room temperature for 30 min, then methyl iodide (56 mg, 0.39 mmol) was added. The mixture was stirred for another 16 h, quenched with water (15 mL), acidified with HCl (1 M) to pH 2-3, and extracted with EtOAc (20 mL×3). The combined organic layers were washed with brine (20 mL) and dried over anhydrous sodium sulfate. The solvent was distilled off under reduce pressure to afford a yellow solid. LCMS(ESI) m/z: 510.1 [M+H]+.
  • Step 4
  • Figure US20210093618A1-20210401-C00517
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 5 of Example 80. Chiral HPLC (column: OZ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=65:35; flow: 1.95 mL/min; column temperature: 40° C.; RT=5.13 min). LCMS (ESI) Method A: RT=6.28 min, m/z: 587.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 11.69 (brs, 1H), 7.50 (s, 1H), 7.41 (s, 2H), 7.18 (d, J=8.4 Hz, 1H), 6.90 (d, J=12.8 Hz, 1H), 3.79-3.69 (m, 5H), 3.23 (s, 3H), 3.22 (s, 3H), 2.67-2.66 (m, 1H), 2.58-2.50 (m, 1H), 2.50-2.35 (m, 2H), 2.03-1.97 (m, 1H), 1.68-1.62 (m, 2H), 1.49-1.37 (m, 2H), 1.01 (s, 3H), 0.90-0.86 (m, 2H), 0.65-0.62 (m, 2H).
  • Example 173
  • Figure US20210093618A1-20210401-C00518
  • (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 172. The enantiomer was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide Chiral HPLC (column: OZ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=65:35; flow: 1.95 mL/min; column temperature: 40.1° C.; RT=4.52 min). LCMS (ESI) Method A: RT=6.28 min, m/z: 587.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 11.64 (brs, 1H), 7.50 (s, 1H), 7.41 (s, 2H), 7.18 (d, J=8.4 Hz, 1H), 6.89 (d, J=12.8 Hz, 1H), 3.78-3.66 (m, 5H), 3.22 (s, 6H), 2.67-2.66 (m, 1H), 2.58-2.50 (m, 1H), 2.45-2.33 (m, 2H), 2.03-1.97 (m, 1H), 1.68-1.62 (m, 2H), 1.49-1.37 (m, 2H), 1.01 (s, 3H), 0.90-0.86 (m, 2H), 0.65-0.62 (m, 2H).
  • Example 174
  • Figure US20210093618A1-20210401-C00519
  • 5-Cyclopropyl-4-((1-(3-(3,5-dichlorophenyl)oxetan-3-yl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00520
  • Step 1
  • Figure US20210093618A1-20210401-C00521
  • 3-(3,5-Dichlorophenyl)oxetan-3-ol
  • To a solution of 1-bromo-3,5-dichlorobenzene (1.0 g, 4.5 mmol) in dry THF (20 mL) was added n-BuLi (2.2 mL, 5.4 mmol) dropwise and the mixture stirred 30 min at −78° C. Oxetan-3-one (386 mg, 5.4 mmol) was then added and the mixture was left to warm to room temperature. The mixture was then quenched with aqueous ammonium chloride (20 mL) and extracted with EtOAc (20 mL×3). The combined organic layers were washed with brine (20 mL), dried over anhydrous sodium sulfate and concentrated. The residue was purified by silica gel chromatography (eluting with ethyl acetate/petroleum ether=1/10) to afford the target compound (0.7 g, 71%) as anoil. LCMS(ESI) m/z: 217.1 [M−H].
  • Step 2
  • Figure US20210093618A1-20210401-C00522
  • Methyl 5-cyclopropyl-4-((1-(3-(3,5-dichlorophenyl)oxetan-3-yl)piperidin-4-yl)methoxy)-2fluorobenzoate
  • To solution of 3-(3,5-dichlorophenyl)oxetan-3-ol (400 mg, 1.8 mmol) and DIPEA (1.4 g, 11 mmol) in DCM (10 mL), trifluoromethanesulfonic anhydride (0.9 mL, 5.5 mmol) was added dropwise at −20° C. The mixture was then stirred at room temperature for 3 h, and methyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate (280 mg, 0.92 mmol) in acetonitrile (10 mL) was added. Then the reaction mixture was stirred at room temperature for another 16 h. The mixture was then concentrated in vacuo and the residue purified by silica gel chromatography (eluting with ethyl acetate/petroleum ether=1/3) to afford the target compound (320 mg, 69%) as anoil. LCMS(ESI) m/z: 508.1 [M+H]+.
  • Step 3
  • Figure US20210093618A1-20210401-C00523
  • 5-Cyclopropyl-4-((1-(3-(3,5-dichlorophenyl)oxetan-3-yl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid
  • The compound was synthesized as described in step 6 of Example 88. LCMS(ESI) m/z: 494.1 [M+H]+.
  • Step 4
  • Figure US20210093618A1-20210401-C00524
  • 5-Cyclopropyl-4-((1-(3-(3,5-dichlorophenyl)oxetan-3-yl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 5 of Example 80. LCMS (ESI) Method A: RT=5.76 min, m/z: 571.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 11.82 (brs, 1H), 7.47-7.44 (m, 2H), 7.39-7.37 (m, 1H), 7.15 (d, J=8.4 Hz, 1H), 6.88 (d, J=13.2 Hz, 1H), 3.90 (d, J=6.0 Hz, 2H), 3.24 (m, 1H), 3.23 (s, 3H), 3.02-2.94 (m, 2H), 2.87-2.79 (m, 3H), 2.15-2.08 (m, 2H), 2.02-1.98 (m, 1H), 1.75-1.69 (m, 3H), 1.33-1.30 (m, 2H), 0.90-0.85 (m, 2H), 0.66-0.62 (m, 2H).
  • Example 175
  • Figure US20210093618A1-20210401-C00525
  • 5-Cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(3-(3,5-dichlorophenyl)oxetan-3-yl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in Example 174. LCMS (ESI) Method A: RT=5.91 min, m/z: 597.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 11.79 (brs, 1H), 7.47-7.44 (m, 2H), 7.39-7.35 (m, 1H), 7.15 (d, J=8.4 Hz, 1H), 6.85 (d, J=12.8 Hz, 1H), 3.89 (d, J=5.6 Hz, 2H), 3.23-3.22 (m, 1H), 3.01-2.93 (m, 3H), 2.87-2.79 (m, 3H), 2.12-2.07 (m, 2H), 2.01-1.97 (m, 1H), 1.72-1.69 (m, 3H), 1.33-1.30 (m, 2H), 1.03-0.97 (m, 4H), 0.90-0.85 (m, 2H), 0.65-0.61 (m, 2H).
  • Example 176
  • Figure US20210093618A1-20210401-C00526
  • N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((1-(3-(3,5-dichlorophenyl)oxetan-3-yl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in Example 174. LCMS (ESI) Method A: RT=6.06 min, m/z: 612.5 [M+H]+. 1H NMR (400 MHz, MeOD-d4): δ7.41-7.38 (m, 2H), 7.34-7.30 (m, 2H), 6.75 (d, J=13.2 Hz, 1H), 4.12-3.91 (m, 4H), 3.91 (d, J=6.0 Hz, 2H), 3.31 (m, 1H), 3.16-3.07 (m, 2H), 2.93-2.91 (m, 3H), 2.28-2.20 (m, 4H), 2.09-2.05 (m, 1H), 1.86-1.80 (m, 3H), 1.52-1.49 (m, 2H), 0.95-0.90 (m, 2H), 0.68-0.64 (m, 2H).
  • Example 177
  • Figure US20210093618A1-20210401-C00527
  • 5-Cyclopropyl-4-((1-(3-(3,5-dichlorophenyl)oxetan-3-yl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 174. LCMS (ESI) Method A: RT=6.86 min, m/z: 585.2 [M+H]+. 1H NMR (400 MHz, MeOD-d4): δ7.42-7.39 (m, 2H), 7.34-7.28 (m, 2H), 6.87 (d, J=13.2 Hz, 1H), 3.92 (d, J=6.0 Hz, 2H), 3.51-3.45 (m, 2H), 3.35 (s, 1H), 3.21-3.13 (m, 2H), 2.98-2.92 (m, 3H), 2.34-2.67 (m, 2H), 2.09-2.05 (m, 1H), 1.90-1.82 (m, 3H), 1.57-1.51 (m, 2H), 1.37 (d, J=7.4 Hz, 3H), 0.95-0.90 (m, 2H), 0.68-0.64 (m, 2H).
  • Example 178
  • Figure US20210093618A1-20210401-C00528
  • 5-Cyclopropyl-4-((1-(3-(3,5-dichlorophenyl)oxetan-3-yl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized in a similar manner to Example 174 from methyl 5-cyclopropyl-2-fluoro-4-((4-methylpiperidin-4-yl)methoxy)benzoate and 3-(3,5-Dichlorophenyl)oxetan-3-ol. LCMS (ESI) Method A: RT=5.91 min, m/z: 585.3 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ7.47-7.44 (m, 2H), 7.39-7.35 (m, 1H), 7.23-7.19 (m, 1H), 6.84 (d, J=10.8 Hz, 1H), 3.76 (s, 2H), 3.23-3.22 (m, 1H), 3.12 (s, 3H), 2.87-2.76 (m, 3H), 2.69-2.61 (m, 2H), 2.45-2.39 (m, 2H), 2.03-1.95 (m, 1H), 1.66-1.61 (m, 2H), 1.38-1.33 (m, 2H), 1.03 (s, 3H), 0.88-0.85 (m, 2H), 0.61-0.60 (m, 2H).
  • Example 179
  • Figure US20210093618A1-20210401-C00529
  • (R)-5-cyclopropyl-4-(1-(2-(diisopropylamino)-2-oxoethyl)piperidin-3-yloxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00530
  • Step 1
  • Figure US20210093618A1-20210401-C00531
  • (R)-tert-butyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate
  • To a solution of (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)piperidine-1-carboxylate (1.0 g, 2.3 mmol) in tert-butylacetate (4 ml-) was added sulfuric acid (0.6 mL, 11.5 mmol) at room temperature. The reaction mixture was stirred for 2 h, quenched with aqueous ammonium bicarbonate (10 ml) and extracted with ethyl acetate (20 mL×3). The combined organic layers were distilled off under reduced pressure to afford the target compound (500 mg, 65%) as a pale yellow oil. LCMS (ESI) m/z: 336.0 [M+H]+.
  • Step 2
  • Figure US20210093618A1-20210401-C00532
  • 2-Bromo-N,N-diisopropylacetamide
  • Diisopropylamine (1.0 g, 5.0 mmol) was added to a solution of 2-bromoacetyl bromide (1.0 g, 10.0 mmol) in DCM (30 mL) at 0° C. The reaction mixture was left to warm to room temperature and stirred for 1 h, then quenched with saturated ammonium chloride, extracted with DCM (20 mL×3), washed with brine (20 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (eluting with petroleum ether/ethyl acetate=10/1) to afford the target compound (810 mg, 81%) as a pale yellow oil. LCMS (ESI) m/z: 222.0 [M+H]+. 1H NMR (500 MHz, CDCl3-d) δ3.98-3.95 (m, 1H), 3.81 (s, 2H), 3.45-3.42 (m, 1H), 1.40-1.38 (m, 6H), 1.28-1.25 (m, 6H).
  • Step 3
  • Figure US20210093618A1-20210401-C00533
  • (R)-tert-butyl 5-cyclopropyl-4-(1-(2-(diisopropylamino)-2-oxoethyl)piperidin-3-yloxy)-2-fluorobenzoate
  • A mixture of (R)-tert-butyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate (56 mg, 0.17 mmol), 2-bromo-N,N-diisopropylacetamide (44 mg, 0.20 mmol) and potassium carbonate (69 mg, 0.50 mmol) in acetonitrile (2 mL) was heated at 80° C. for 16 h. The reaction mixture was filtered, washed with ethyl acetate (10 mL) and concentrated. The residue was purified by silica gel chromatography (eluting with petroleum ether/ethyl acetate=5/1) to afford the target compound (61 mg, 75%) as a pale yellow oil. LCMS (ESI) m/z: 477.0 [M+H]+.
  • Step 4
  • Figure US20210093618A1-20210401-C00534
  • (R)-5-cyclopropyl-4-(1-(2-(diisopropylamino)-2-oxoethyl)piperidin-3-yloxy)-2-fluorobenzoic acid
  • The compound was synthesized as described in step 4, Example 80. LCMS (ESI) m/z: 421.1 [M+H]+.
  • Step 5
  • Figure US20210093618A1-20210401-C00535
  • (R)-5-cyclopropyl-4-(1-(2-(diisopropylamino)-2-oxoethyl)piperidin-3-yloxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 5, Example 80. LCMS (ESI) Method A: RT=4.61 min, m/z: 498.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 7.14 (d, J=8.5 Hz, 1H), 6.92 (d, J=13.0 Hz, 1H), 4.58 (m, 1H), 4.09 (m, 1H), 3.41-3.38 (m, 3H), 3.15 (s, 3H), 2.97 (m, 1H), 2.70-2.63 (m, 2H), 2.49-2.46 (m, 1H), 2.07 (m, 1H), 1.95 (m, 1H), 1.83 (m, 1H), 1.64-1.57 (m, 2H), 1.28-1.24 (m, 6H), 1.14-1.10 (m, 6H), 0.89-0.85 (m, 2H), 0.68-0.61 (m, 2H).
  • Example 180
  • Figure US20210093618A1-20210401-C00536
  • 5-Cyclopropyl-4-((1-(2-(diisopropylamino)-2-oxoethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00537
  • Step 1
  • Figure US20210093618A1-20210401-C00538
  • Methyl 5-cyclopropyl-4-((1-(2-(diisopropylamino)-2-oxoethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate
  • The compound was synthesized as described in step 3 of Example 179. LCMS(ESI) m/z: 449.1 [M+H]+.
  • Step 2
  • Figure US20210093618A1-20210401-C00539
  • 5-Cyclopropyl-4-((1-(2-(diisopropylamino)-2-oxoethyl)piperidin-4-yl)methoxy)-2-fluorobenz acid
  • The compound was synthesized as described in step 6 of Example 88. LCMS(ESI) m/z: 435.1 [M+H]+.
  • Step 3
  • Figure US20210093618A1-20210401-C00540
  • 5-Cyclopropyl-4-((1-(2-(diisopropylamino)-2-oxoethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 5 of Example 80. LCMS (ESI) Method A: RT=4.52 min, m/z: 512.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 7.21 (d, J=8.5 Hz, 1H), 6.77 (d, J=12.0 Hz, 1H), 3.93-3.77 (m, 5H), 3.51-3.49 (m, 1H), 3.23 (m, 2H), 2.96 (s, 3H), 2.75-2.57 (m, 2H), 2.04-1.88 (m, 4H), 1.69-1.56 (m, 2H), 1.33-1.32 (m, 6H), 1.16-1.15 (m, 6H), 0.89-0.85 (m, 2H), 0.60-0.57 (m, 2H).
  • Example 181
  • Figure US20210093618A1-20210401-C00541
  • (R)-4-((1-(1-(3-chloro-4-fluorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 172. The enantiomer was arbitrarily assigned as (R)-4-((1-(1-(3-chloro-4-fluorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=75:25; flow: 2.25 mL/min; column temperature: 41.7° C.; RT=2.97 min). LCMS (ESI) Method A: RT=5.51 min, m/z: 557.3 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 11.58 (brs, 1H), 7.55 (d, J=6.0 Hz, 1H), 7.41-7.36 (m, 2H), 7.15 (d, J=8.4 Hz, 1H), 6.85 (d, J=12.8 Hz, 1H), 3.89 (d, J=6.0 Hz, 2H), 3.78-3.70 (m, 3H), 3.23 (s, 3H), 3.17 (s, 3H), 3.05-3.03 (m, 1H), 2.85-2.82 (m, 1H), 2.15-2.12 (m, 1H), 2.03-1.97 (m, 2H), 1.80-1.72 (m, 3H), 1.41-1.31 (m, 2H), 0.89-0.85 (m, 2H), 0.64-0.60 (m, 2H).
  • Example 182
  • Figure US20210093618A1-20210401-C00542
  • (S)-4-((1-(1-(3-chloro-4-fluorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 172. The enantiomer was arbitrarily assigned as (S)-4-((1-(1-(3-chloro-4-fluorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=75:25; flow: 2.25 mL/min; column temperature: 39.5° C.; RT=3.58 min). LCMS (ESI) Method A: RT=5.50 min, m/z: 557.3 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 11.60 (brs, 1H), 7.55 (d, J=6.8 Hz, 1H), 7.41-7.36 (m, 2H), 7.15 (d, J=8.4 Hz, 1H), 6.85 (d, J=12.8 Hz, 1H), 3.89 (d, J=5.6 Hz, 2H), 3.78-3.70 (m, 3H), 3.23 (s, 3H), 3.17 (s, 3H), 3.05-3.03 (m, 1H), 2.85-2.82 (m, 1H), 2.20-2.12 (m, 1H), 2.03-1.97 (m, 2H), 1.80-1.72 (m, 3H), 1.41-1.31 (m, 2H), 0.89-0.85 (m, 2H), 0.64-0.60 (m, 2H).
  • Example 183
  • Figure US20210093618A1-20210401-C00543
  • 4-((1-(3-Chloro-4-methoxybenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.08 min, m/z: 525.2 [M+H]+. 1H NMR (400 MHz, MeOD-d4) δ10.51 (brs, 1H), 7.48 (s, 1H), 7.35-7.33 (m, 1H), 7.20-7.16 (m, 2H), 6.89 (d, J=12.8 Hz, 1H), 3.92 (d, J=5.6 Hz, 2H), 3.86 (s, 3H), 3.82 (s, 2H), 3.11-3.08 (m, 2H), 3.01 (s, 3H), 2.50-2.39 (m, 2H), 2.03-1.97 (m, 1H), 1.91-1.85 (m, 3H), 1.48-1.45 (m, 2H), 0.89-0.85 (m, 2H), 0.61-0.57 (m, 2H).
  • Example 184
  • Figure US20210093618A1-20210401-C00544
  • 5-Cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=6.34 min, m/z: 543.2 [M+H]+. 1H NMR (400 MHz, MeOD-d4) δ11.47 (brs, 1H), 7.54-7.52 (m, 1H), 7.40-7.39 (m, 2H), 7.15-7.13 (m, 1H), 6.90-6.87 (m, 1H), 3.93 (d, J=6.0 Hz, 2H), 3.62 (m, 2H), 3.35-3.32 (m, 2H), 2.93-2.90 (m, 2H), 2.19-1.99 (m, 3H), 1.82-1.79 (m, 3H), 1.44-1.38 (m, 2H), 1.22-1.18 (m, 3H), 0.90-0.85 (m, 2H), 0.61-0.57 (m, 2H).
  • Example 185
  • Figure US20210093618A1-20210401-C00545
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-3-methylazetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 81. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-3-methylazetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OZ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.5% DEA), A:B=70:30; flow: 3 mL/min; column temperature: 38.5° C.; RT=5.7 min). LCMS (ESI) Method C: RT=5.48 min, m/z: 528.8 [M+H]+. 1H NMR (400 MHz, MeOD-d4) δ7.44 (s, 1H), 7.39-7.35 (m, 3H), 6.81 (d, J=12.4 Hz, 1H), 4.10-4.04 (m, 2H), 3.83-3.81 (m, 1H), 3.65-3.59 (m, 2H), 3.40-3.38 (m, 1H), 3.27-3.25 (m, 4H), 2.10-2.07 (m, 1H), 1.48 (s, 3H), 1.37-1.35 (m, 3H), 0.95-0.93 (m, 2H), 0.69-0.68 (m, 2H).
  • Example 186
  • Figure US20210093618A1-20210401-C00546
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-3-methylazetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 81. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-3-methylazetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OZ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.5% DEA), A:B=70:30; flow: 3 mL/min; column temperature: 38.5° C.; RT=8.13 min). LCMS (ESI) Method C: RT=5.42 min, m/z: 528.7 [M−H]. 1H NMR (400 MHz, MeOD-d4) δ 7.42 (s, 1H), 7.38-7.36 (m, 3H), 6.81 (d, J=12.8 Hz, 1H), 4.10-4.03 (m, 2H), 3.79-3.77 (m, 1H), 3.60-3.50 (m, 2H), 3.34-3.32 (m, 1H), 3.25-3.23 (m, 4H), 2.09-2.05 (m, 1H), 1.47 (s, 3H), 1.35-1.30 (m, 3H), 0.97-0.91 (m, 2H), 0.68-0.66 (m, 2H).
  • Example 187
  • Figure US20210093618A1-20210401-C00547
  • (R)-5-cyclopropyl-2-fluoro-4-((1-(1-(4-fluoro-3-(trifluoromethyl)phenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 172. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-2-fluoro-4-((1-(1-(4-fluoro-3-(trifluoromethyl)phenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=80:20; flow: 3 mL/min; column temperature: 39.5° C.; RT=3.55 min). LCMS (ESI) Method C: RT=4.82 min, m/z 591.0 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.72-7.70 (m, 2H), 7.51-7.46 (m, 1H), 7.15 (d, J=8.4 Hz, 1H), 6.87 (d, J=12.8 Hz, 1H), 3.91-3.84 (m, 5H), 3.28-3.27 (m, 1H), 3.22-3.21 (m, 5H), 3.06-3.03 (m, 1H), 2.83-2.81 (m, 1H), 2.16-1.96 (m, 3H), 1.77-1.72 (m, 3H), 1.40-1.30 (m, 2H), 0.89-0.84 (m, 2H), 0.65-0.61 (m, 2H).
  • Example 188
  • Figure US20210093618A1-20210401-C00548
  • (S)-5-cyclopropyl-2-fluoro-4-((1-(1-(4-fluoro-3-(trifluoromethyl)phen)-2-methoxyethyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 172. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-2-fluoro-4-((1-(1-(4-fluoro-3-(trifluoromethyl)phenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=80:20; flow: 3 mL/min; column temperature: 39.5° C.; RT=6.51 min). LCMS (ESI) Method C: RT=4.83 min, m/z 591.1 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.72-7.70 (m, 2H), 7.51-7.46 (m, 1H), 7.15 (d, J=8.4 Hz, 1H), 6.87 (d, J=13.2 Hz, 1H), 3.91-3.72 (m, 4H), 3.29-3.28 (m, 1H), 3.23-3.21 (m, 5H), 3.05-3.02 (m, 1H), 2.83-2.81 (m, 2H), 2.02-1.96 (m, 3H), 1.81-1.72 (m, 3H), 1.40-1.30 (m, 2H), 0.89-0.84 (m, 2H), 0.66-0.62 (m, 2H).
  • Example 189
  • Figure US20210093618A1-20210401-C00549
  • 5-Cyclopropyl-2-fluoro-4-((1-(4-fluoro-3-(trifluoromethyl)benzyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method C: RT=3.95 min, m/z: 547.0 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.73-7.72 (m, 2H), 7.52-7.47 (m, 1H), 7.18 (d, J=8.8 Hz, 1H), 6.80 (d, J=12.8 Hz, 1H), 3.92 (d, J=5.6 Hz, 2H), 3.68 (s, 2H), 3.04 (s, 3H), 2.94-2.91 (m, 2H), 2.03-1.99 (m, 3H), 1.83-1.80 (m, 3H), 1.44-1.38 (m, 2H), 0.89-0.86 (m, 2H), 0.60-0.59 (m, 2H).
  • Example 190
  • Figure US20210093618A1-20210401-C00550
  • 4-((1-((5-Chloro-6-(2,2,2-trifluoroethoxy)pyridin-3-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00551
  • Step 1
  • Figure US20210093618A1-20210401-C00552
  • 5-Chloro-6-(2,2,2-trifluoroethoxy)nicotinic acid
  • A mixture of 2,2,2-trifluoroethanol (1.0 g, 5.2 mmol) and potassium hydroxide (874 mg, 15.6 mmol) in DMSO (15 mL) was stirred at 120° C. for 24 h. The reaction mixture was acidified with HCl (1M), extracted with DCM (30 mL×3), dried over anhydrous sodium sulfate and concentrated. The crude compound (960 mg) was used in next step without further purification. LCMS(ESI) m/z: 255.8 [M+H]+.
  • Step 2
  • Figure US20210093618A1-20210401-C00553
  • (5-Chloro-6-(2,2,2-trifluoroethoxy)pyridin-3-yl)methanol
  • The compound was synthesized as described in step 2 of Example 172. LCMS(ESI) m/z: 241.9 [M+H]+.
  • Step 3
  • Figure US20210093618A1-20210401-C00554
  • 3-Chloro-5-(chloromethyl)-2-(2,2,2-trifluoroethoxy)pyridine
  • The compound was synthesized as described in step 2 of Example 80.
  • Step 4
  • Figure US20210093618A1-20210401-C00555
  • Methyl 4-((1-((5-chloro-6-(2,2,2-trifluoroethoxy)pyridin-3-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • The compound was synthesized as described in step 3 of Example 80. LCMS(ESI) m/z: 531.0 [M+H]+.
  • Step 5
  • Figure US20210093618A1-20210401-C00556
  • 4-((1-((5-Chloro-6-(2,2,2-trifluoroethoxy)pyridin-3-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • The compound was synthesized as described in step 6 of Example 88. LCMS(ESI) m/z: 517.0 [M+H]+.
  • Step 6
  • Figure US20210093618A1-20210401-C00557
  • 4-((1-((5-Chloro-6-(2,2,2-trifluoroethoxy)pyridin-3-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 5 of Example 80. LCMS (ESI) Method A: RT=5.70 min, m/z 594.0 [M+H]+. 1H NMR (500 MHz, MeOD-d4) δ 8.14-8.11 (m, 1H), 7.97-7.94 (m, 1H), 7.35-7.34 (m, 1H), 6.70-6.66 (m, 1H), 5.0-4.94 (m, 2H), 3.90-3.71 (m, 4H), 3.30-3.15 (m, 5H), 2.50-2.49 (m, 2H), 2.07-1.93 (m, 4H), 1.61-1.55 (m, 2H), 0.90-0.89 (m, 2H), 0.65-0.63 (m, 2H).
  • Example 191
  • Figure US20210093618A1-20210401-C00558
  • 4-((1-(2-Chlorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.67 min, m/z: 495.0 [M+H]+. 1H NMR (500 MHz, MeOD-d4): δ 7.58-7.57 (m, 1H), 7.47-7.46 (m, 1H), 7.36-7.33 (m, 3H), 6.68 (d, J=12.0 Hz, 1H), 3.94-3.90 (m, 4H), 3.27-3.12 (m, 5H), 2.54-2.47 (m, 1H), 2.08-1.95 (m, 4H), 1.63-1.60 (m, 2H), 1.28-1.25 (m, 1H), 0.91-0.87 (m, 2H), 0.67-0.64 (m, 2H).
  • Example 192
  • Figure US20210093618A1-20210401-C00559
  • 5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(2,2,3,3-tetrafluoropropyl)piperidin-4-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 116. LCMS (ESI) Method A: RT=5.34 min, m/z: 485.1 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 11.87 (s, 1H), 7.15 (d, J=9.0 Hz, 1H), 6.90 (d, J=13.0 Hz, 1H), 6.58-6.37 (m, 1H), 3.92 (d, J=6.0 Hz, 2H), 3.23 (s, 3H), 3.0-2.89 (m, 4H), 2.32-2.27 (m, 2H), 2.03-2.0 (m, 1H), 1.78-1.74 (m, 3H), 1.40-1.32 (m, 2H), 0.91-0.87 (m, 2H), 0.66-0.63 (m, 2H).
  • Example 193
  • Figure US20210093618A1-20210401-C00560
  • 5-Cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(3,3,3-trifluoropropyl)piperidin-4-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 116. LCMS (ESI) Method A: RT=4.98 min, m/z: 493.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ7.15 (d, J=8.0 Hz, 1H), 6.88 (d, J=12.5 Hz, 1H), 3.94 (d, J=5.5 Hz, 2H), 3.04-3.00 (m, 3H), 2.65-2.63 (m, 2H), 2.56-2.50 (m, 2H), 2.17-2.12 (m, 2H), 2.04-1.99 (m, 1H), 1.82-1.79 (m, 3H), 1.42-1.35 (m, 2H), 1.06-0.97 (m, 4H), 0.90-0.87 (m, 2H), 0.65-0.62 (m, 2H).
  • Example 194
  • Figure US20210093618A1-20210401-C00561
  • N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluoro-4-((1-(3,3,3-trifluoropropyl)piperidin-4-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 116. LCMS (ESI) Method A: RT=5.13 min, m/z: 508.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 7.17 (d, J=8.5 Hz, 1H), 6.87 (d, J=13.0 Hz, 1H), 3.94-3.93 (m, 6H), 2.98-2.96 (m, 2H), 2.61-2.58 (m, 2H), 2.52-2.50 (m, 1H), 2.49-2.48 (m, 1H), 2.12-2.01 (m, 5H), 1.38-1.35 (m, 3H), 0.90-0.87 (m, 2H), 0.90-0.87 (m, 2H), 0.65-0.62 (m, 2H).
  • Example 195
  • Figure US20210093618A1-20210401-C00562
  • 4-((1-(3-Chlorobenzoyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step Example 134. LCMS (ESI) Method A: RT=4.61 min, m/z: 509.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 11.87 (s, 1H), 7.53-7.43 (m, 3H), 7.34 (d, J=8.0 Hz, 1H), 7.15 (d, J=8.5 Hz, 1H), 6.96 (d, J=10.4 Hz, 1H), 4.51-4.49 (m, 1H), 3.99 (d, J=4.4 Hz, 2H), 3.57-3.51 (m, 1H), 3.28 (s, 3H), 3.12-3.04 (m, 1H), 2.89-2.81 (m, 1H), 2.13-1.72 (m, 4H), 1.32-1.23 (m, 2H), 0.91-0.84 (m, 2H), 0.68-0.64 (m, 2H).
  • Example 196
  • Figure US20210093618A1-20210401-C00563
  • 4-((1-(3-Chlorobenzoyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in step Example 134. LCMS (ESI) Method A: RT=4.74 min, m/z: 535.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 11.87 (s, 1H), 7.53-7.43 (m, 3H), 7.34 (d, J=8.0 Hz, 1H), 7.15 (d, J=8.5 Hz, 1H), 6.96 (d, J=12.5 Hz, 1H), 4.52-4.50 (m, 1H), 4.00 (d, J=5.0 Hz, 2H), 3.58-3.32 (m, 1H), 3.13-3.00 (m, 2H), 2.85-2.83 (m, 1H), 2.14-1.90 (m, 4H), 1.34-1.33 (m, 2H), 1.24-1.22 (m, 4H), 0.91-0.87 (m, 2H), 0.69-0.66 (m, 2H).
  • Example 197
  • Figure US20210093618A1-20210401-C00564
  • 4-((1-Benzoylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step Example 134. LCMS (ESI) Method A: RT=4.17 min, m/z: 475.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 11.87 (s, 1H), 7.45-7.44 (m, 3H), 7.38-7.36 (m, 2H), 7.15 (d, J=8.5 Hz, 1H), 6.96 (d, J=13.0 Hz, 1H), 4.0-3.99 (m, 1H), 3.99 (d, J=4.4 Hz, 2H), 3.62-3.60 (m, 1H), 3.32 (s, 3H), 3.17-3.09 (m, 1H), 3.02-3.01 (m, 1H), 2.13-1.76 (m, 4H), 1.32-1.24 (m, 2H), 0.91-0.84 (m, 2H), 0.69-0.63 (m, 2H).
  • Example 198
  • Figure US20210093618A1-20210401-C00565
  • 4-((1-Benzoylpiperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in step Example 134. LCMS (ESI) Method A: RT=4.38 min, m/z: 501.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ11.81 (s, 1H), 7.45-7.44 (m, 3H), 7.38-7.36 (m, 2H), 7.15 (d, J=8.0 Hz, 1H), 6.93 (d, J=13.0 Hz, 1H), 4.52-4.51 (m, 1H), 3.98 (d, J=4.8 Hz, 2H), 3.62-3.60 (m, 1H), 3.09-3.01 (m, 2H), 2.83-2.81 (m, 1H), 2.14-1.71 (m, 4H), 1.32-1.31 (m, 2H), 1.07-1.03 (m, 4H), 0.90-0.84 (m, 2H), 0.66-0.61 (m, 2H).
  • Example 199
  • Figure US20210093618A1-20210401-C00566
  • 5-Cyclopropyl-2-fluoro-4-((1-((1R,2S)-2-hydroxy-2,3-dihydro-1H-inden-1-yl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00567
    Figure US20210093618A1-20210401-C00568
  • Step 1
  • Figure US20210093618A1-20210401-C00569
  • tert-Butyl 5-chloro-4-(cyclopent-3-en-1-ylmethoxy)-2-fluorobenzoate
  • A mixture of cyclopent-3-enylmethanol (0.9 g, 9.2 mmol), tert-butyl 5-chloro-2,4-difluorobenzoate (2.3 g, 9.3 mmol) and cesium carbonate (6.0 g, 18.4 mmol) in DMSO (20 mL) was stirred at 80° C. for 10 h. The reaction mixture was diluted with EtOAc (50 mL) and brine (100 mL). The organic layer was washed by brine (30 mL×3), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by flash column (petroleum ether) to afford the title compound as a white solid (2.1 g, 70%).
  • Step 2
  • Figure US20210093618A1-20210401-C00570
  • tert-Butyl 5-chloro-2-fluoro-4-(4-hydroxy-2-(2-hydroxyethyl)butoxy)benzoate
  • Ozone was bubbled into a solution of tert-butyl 5-chloro-4-(cyclopent-3-enylmethoxy)-2-fluorobenzoate (1.63 g, 5 mmol) in dry DCM (50 mL) at −78° C. until the solution turned blue. Then the reaction was purged with nitrogen gas until the reaction mixture turned colorless. Sodium borohydride (0.76 g, 20 mmol) and methanol (50 mL) was then added and the resultant mixture allowed to warm to room temperature and stirred for 5 h. The mixture was then concentrated in vacuo and the residue purified by silica gel chromatography (eluting with 50% ethyl acetate in petroleum ether) to afford the title compound as a colorless oil (1.63 g, 90%).
  • Step 3
  • Figure US20210093618A1-20210401-C00571
  • tert-Butyl 5-cyclopropyl-2-fluoro-4-(4-hydroxy-2-(2-hydroxyethyl)butoxy)benzoate
  • A mixture of tert-butyl 5-chloro-2-fluoro-4-(4-hydroxy-2-(2-hydroxyethyl)butoxy)benzoate (1.09 g, 3 mmol), cyclopropylboronic acid (0.515 g, 6 mmol), diacetoxypalladium (0.067 g, 0.3 mmol) and potassium phosphate (1.3 g, 6 mmol) in toluene (30 mL) and H2O (1.5 mL) was stirred at 90° C. for 16 h. The reaction mixture was filtered, concentrated in vacuo and the residue purified by silica gel chromatography (eluting with 40% ethyl acetate in petroleum ether) to afford the target compound as a colorless oil (0.77 g, 70%).
  • Step 4
  • Figure US20210093618A1-20210401-C00572
  • tert-Butyl 4-(4-bromo-2-(2-bromoethyl)butoxy)-5-cyclopropyl-2-fluorobenzoate
  • A mixture of tert-butyl5-cyclopropyl-2-fluoro-4-(4-hydroxy-2-(2-hydroxyethyl)butoxy)benzoate (0.73 g, 2 mmol), triphenylphosphine (2.1 g, 8 mmol), carbon tetrabromide (2.65 g, 8 mmol) in DCM (30 mL) was stirred at room temperature for 20 h. The mixture was concentrated in vacuo and the residue purified by silica gel chromatography (eluting with 10% ethyl acetate in petroleum ether) to afford the target compound as a pale yellow oil (0.84 g, 85%).
  • Step 5
  • Figure US20210093618A1-20210401-C00573
  • tert-butyl 5-cyclopropyl-2-fluoro-4-((1-((1R,2S)-2-hydroxy-2,3-dihydro-1H-inden-1-yl)piperidin-4-yl)methoxy)benzoate
  • A mixture of tert-butyl 4-(4-bromo-2-(2-bromoethyl)butoxy)-5-cyclopropyl-2-fluorobenzoate (0.84 g, 1.7 mmol), (1R,2S)-1-amino-2,3-dihydro-1H-inden-2-ol (0.253 g, 1.7 mmol), potassium carbonate (0.47 g, 3.4 mmol) and sodium iodide (0.026 g, 0.17 mmol) in acetonitrile (10 mL) was stirred at 80° C. for 8 h. The reaction mixture was quenched with brine (40 mL), extracted with ethyl acetate (10 mL×3), dried over anhydrous sodium sulfate, and concentrated. The residue was purified by silica gel chromatography (eluting with 15% ethyl acetate in petroleum ether) to afford the target compound as a white solid (0.712 g, 87%). MS(ESI): m/z: 482.3 [M+1]+.
  • Step 6
  • Figure US20210093618A1-20210401-C00574
  • 5-Cyclopropyl-2-fluoro-4-((1-((1R,2S)-2-hydroxy-2,3-dihydro-1H-inden-1-yl)piperidin-4-yl)methoxy)benzoic acid
  • The compound was synthesized as described in step 3 of Example 88. LCMS (ESI) m/z: 426.2 [M+H]+.
  • Step 7
  • Figure US20210093618A1-20210401-C00575
  • 5-Cyclopropyl-2-fluoro-4-((1-((1R,2S)-2-hydroxy-2,3-dihydro-1H-inden-1-yl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 5 of Example 80. LCMS (ESI): Method A: RT=4.71 min, m/z: 503.2 [M+H]+. 1HNMR (500 MHz, DMSO-d6) δ 7.43 (d, J=7.6 Hz, 1H), 7.33-7.21 (m, 3H), 7.21 (d, J=8.4 Hz, 1H), 6.72 (d, J=2.8 Hz, 1H), 4.65-4.60 (m, 1H), 4.32 (s, 1H), 3.88 (d, J=5.6 Hz, 2H), 3.27-3.25 (m, 2H), 3.13-3.04 (m, 3H), 2.91-2.83 (m, 4H), 2.03-1.96 (m, 1H), 1.88-1.80 (m, 3H), 1.57-1.48 (m, 2H), 0.88-0.83 (m, 2H), 0.58-0.54 (m, 2H).
  • Example 200
  • Figure US20210093618A1-20210401-C00576
  • 5-Cyclopropyl-2-fluoro-4-((1-((1R,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 199. LCMS (ESI) Method A: RT=4.30 min, m/z: 503.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ7.35-7.33 (m, 1H), 7.25-7.24 (m, 3H), 7.17 (d, J=8.4 Hz, 1H), 6.85 (d, J=12.8 Hz, 1H), 5.18-5.16 (m, 1H), 4.60-4.58 (m, 1H), 4.19-4.17 (m, 1H), 3.93 (d, J=6.0 Hz, 1H), 3.31-3.29 (m, 1H), 3.26-3.12 (m, 5H), 2.77-2.66 (m, 3H), 2.05-2.00 (m, 1H), 1.89-1.79 (m, 3H), 1.48-1.36 (m, 2H), 0.90-0.82 (m, 2H), 0.64-0.60 (m, 2H).
  • Example 201
  • Figure US20210093618A1-20210401-C00577
  • (R)-5-cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)-1-methoxypropan-2-yl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00578
    Figure US20210093618A1-20210401-C00579
  • Step 1
  • Figure US20210093618A1-20210401-C00580
  • Methyl 2-bromo-2-(3,5-dichlorophenyl)acetate
  • To a solution of methyl 2-(3,5-dichlorophenyl)acetate (0.43 g, 1.96 mmol) and N-bromo-succinimide (0.72 g, 4 mmol) in carbon tetrachloride (10 mL) was added benzoyl peroxide (0.048 g, 0.2 mmol). The mixture was stirred at 80° C. for 8 h, cooled to ambient temperature, filtered, and concentrated. The residue was purified by silica gel chromatography(eluting with 15% ethyl acetate in petroleum ether) to give the title compound as a yellow oil (0.46 g, 80%). MS(EI) m/z: 295.9 [M]+.
  • Step 2
  • Figure US20210093618A1-20210401-C00581
  • Methyl 2-(3,5-dichlorophenyl)-2-(4-(hydroxymethyl)piperidin-1-yl)acetate
  • To a solution of methyl 2-bromo-2-(3,5-dichlorophenyl)acetate (0.46 g, 1.57 mmol) in acetonitrile (10 mL) was added potassium carbonate (0.65 g, 4.7 mmol) and piperidin-4-yl-methanol (0.37 g, 3.2 mmol). The reaction mixture was stirred at 80° C. for 4 h, diluted with dichloromethane (30 mL) and washed with brine (20 mL×3). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product as a colorless oil (0.51 g) which was used directly without further purification. LCMS(ESI) m/z: 332.1 [M+1]+.
  • Step 3
  • Figure US20210093618A1-20210401-C00582
  • Methyl 2-(4-(((tert-butyldimethylsilyl)oxy)methyl)piperidin-1-yl)-2-(3,5-dichlorophenyl)acetate
  • To a solution of methyl 2-(3,5-dichlorophenyl)-2-(4-(hydroxymethyl)piperidin-1-yl)acetate (0.51 g, 1.54 mmol, crude) in dichloromethane (20 mL) was added imidazole (0.35 g, 5.14 mmol) and tert-butylchlorodimethylsilane (0.47 g, 3.1 mmol). The mixture was stirred at room temperature for 2 h, then filtered, concentrated and purified by silica gel chromatography(eluting with 5% ethyl acetate in petroleum ether) to give the title compound (0.6 g, 86%) as a colorless oil. LCMS(ESI) m/z: 446.1 [M+1]+.
  • Step 4
  • Figure US20210093618A1-20210401-C00583
  • Methyl 2-(4-(((tert-butyldimethylsilyl)oxy)methyl)piperidin-1-yl)-2-(3,5-dichlorophenyl)propanoate
  • To a solution of methyl 2-(4-(((tert-butyldimethylsilyl)oxy)methyl)piperidin-1-yl)-2-(3,5-dichlorophenyl)acetate (0.58 g, 1.3 mmol) in dry THF (10 mL) at −78° C., was added sodium bis(trimethylsilyl) amide (1M in THF, 2.6 mL). The resultant mixture was maintained at −78° C. and stirred for 1 hour. Methyl iodide (0.55 g, 3.9 mmol) was then added and the mixture allowed to warm to room temperature overnight. The mixture was diluted with EtOAc (15 mL) and brine (30 mL), extracted with EtOAc (10 mL×3), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography(eluting with 5% EtOAc in petroleum ether) to afford the title compound as a colorless oil (0.49 g, 82%). LCMS(ESI) m/z: 460.1 [M+1]+.
  • Step 5
  • Figure US20210093618A1-20210401-C00584
  • 2-(4-(((tert-Butyldimethylsilyl)oxy)methyl)piperidin-1-yl)-2-(3,5-dichlorophenyl)propan-1-ol
  • To a solution of methyl 2-(4-((tert-butyldimethylsilyloxy)methyl)piperidin-1-yl)-2-(3,5-dichlorophenyl)propanoate (0.49 g, 1.06 mmol) in THF (20 mL) at −78° C., diisobutyl aluminium hydride (1M in THF, 4.3 mL) was added dropwise. The resultant mixture was allowed to warm to room temperature and stirred for 16 h. The mixture was quenched with brine and the white precipitate filtered and washed with EtOAc (30 mL). The combined organic layers were dried over anhydrous sodium sulfate and concentrated to give the title compound which was used in next step without further purification. LCMS(ESI) m/z: 432.1 [M+1]+.
  • Step 6
  • Figure US20210093618A1-20210401-C00585
  • 4-(((tert-Butyldimethylsilyl)oxy)methyl)-1-(2-(3,5-dichlorophenyl)-1-methoxypropan-2-yl)piperidine
  • To a solution of 2-(4-((tert-butyldimethylsilyloxy)methyl)piperidin-1-yl)-2-(3,5-dichlorophenyl)propan-1-ol (0.46 g, 1.06 mmol, crude) in dry THF (20 mL) was added sodium hydride (60% in mineral oil, 0.4 g, 10 mmol) under N2 atmosphere at room temperature. Methyl iodide (1.41 g, 10 mmol) was added after 2 h and the resultant mixture was stirred overnight. The mixture was quenched with water (20 mL), extracted with EtOAc(10 mL×3), dried over sodium sulfate and concentrated. The residue was purified by silica gel chromatography (eluting with 8% EtOAc in petroleum ether) to afford the title compound as a viscous oil (0.4 g, 85%). LCMS(ESI) m/z: 446.1 [M+1]+.
  • Step 7
  • Figure US20210093618A1-20210401-C00586
  • (1-(2-(3,5-Dichlorophenyl)-1-methoxypropan-2-yl)piperidin-4-yl)methanol
  • To a solution of 4-((tert-butyldimethylsilyloxy)methyl)-1-(2-(3,5-dichlorophenyl)-1-methoxypropan-2-yl)piperidine (0.4 g, 0.9 mmol) in DCM (20 mL), HCl in methanol (4M, 2 mL) was added dropwise. The mixture was stirred at room temperature for 2 h and concentrated in vacuo to give the title compound as a pale yellow oil. LCMS(ESI) m/z: 332.1 [M+1]+.
  • Step 8
  • Figure US20210093618A1-20210401-C00587
  • (R)-methyl 5-cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)-1-methoxypropan-2-yl)piperidin-4-yl)methoxy)-2-fluorobenzoate
  • A mixture of (1-(2-(3,5-dichlorophenyl)-1-methoxypropan-2-yl)piperidin-4-yl)methanol (0.298 g, 0.9 mmol), methyl 5-cyclopropyl-2-fluoro-4-hydroxybenzoate (0.19 g, 0.9 mmol), triphenylphosphine (0.472 g, 1.8 mmol) and diisopropyl azodiformate (0.365 g, 1.8 mmol) in dry THF (10 mL) was stirred under an N2 atmosphere for 24 h. The reaction mixture was filtered, concentrated in vacuo, and the residue was purified by silica gel chromatography(eluting with 10% EtOAc in petroleum ether) to give the racemate (0.33 g, 70%). The enantiomer was separated by chiral SFC from the racemate. The enantiomer was arbitrarily assigned as (R)-methyl 5-cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)-1-methoxypropan-2-yl)piperidin-4-yl)methoxy)-2-fluorobenzoate. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=90:10 flow: 3 mL/min; column temperature: 38.9° C., RT=4.36 min). LCMS(ESI) m/z: 524.1 [M+1]+.
  • Step 9
  • Figure US20210093618A1-20210401-C00588
  • (R)-5-cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)-1-methoxypropan-2-yl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid
  • The compound was synthesized as described in step 6 of Example 88. LCMS(ESI) m/z: 510.1 [M+1]+.
  • Step 10
  • Figure US20210093618A1-20210401-C00589
  • (R)-5-cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)-1-methoxypropan-2-yl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 5 of Example 80. The enantiomer was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)-1-methoxypropan-2-yl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. LCMS (ESI): Method A: RT=6.39 min, m/z: 587.3 [M+1]+. 1HNMR (400 MHz, DMSO-d6) δ 7.49 (d, J=1.6 Hz, 2H), 7.44 (m, 1H), 7.19 (d, J=8.8 Hz, 1H), 6.82 (d, J=12.4 Hz, 1H), 3.91 (d, J=5.6 Hz, 2H), 3.53-3.40 (m, 2H), 3.18 (s, 3H), 3.10 (s, 3H), 2.88 (d, J=9.6 Hz, 1H), 2.57 (m, 1H), 2.28-2.13 (m, 2H), 2.01-2.02 (m, 1H), 1.80-1.70 (m, 3H), 1.37-1.24 (m, 5H), 0.89-0.85 (m, 2H), 0.63-0.60 (m, 2H).
  • Example 202
  • Figure US20210093618A1-20210401-C00590
  • (S)-5-cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)-1-methoxypropan-2-yl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 201. The enantiomer was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)-1-methoxypropan-2-yl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. LCMS (ESI): Method A: RT=6.52 min, m/z: 587.2 [M+1]+. 1HNMR (400 MHz, DMSO-d6) δ 7.49 (d, J=2.0 Hz, 2H), 7.44 (m, 1H), 7.19 (d, J=8.8 Hz, 1H), 6.82 (d, J=12.8 Hz, 1H), 3.91 (d, J=6.0 Hz, 2H), 3.53-3.40 (m, 2H), 3.18 (s, 3H), 3.10 (s, 3H), 2.88 (d, J=9.6 Hz, 1H), 2.57 (m, 1H), 2.28-2.13 (m, 2H), 2.02-2.00 (m, 1H), 1.80-1.70 (m, 3H), 1.37-1.24 (m, 5H), 0.89-0.85 (m, 2H), 0.63-0.60 (m, 2H).
  • Example 203
  • Figure US20210093618A1-20210401-C00591
  • (S)-5-cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)-1-methoxypropan-2-yl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 201. The enantiomer was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)-1-methoxypropan-2-yl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide. LCMS (ESI): Method A: RT=6.19 min, m/z: 601.3 [M+1]+. 1HNMR (400 MHz, DMSO-d6) δ 7.49 (d, J=2.0 Hz, 2H), 7.44 (m, 1H), 7.19 (d, J=8.8 Hz, 1H), 6.82 (d, J=12.8 Hz, 1H), 3.91 (d, J=6.0 Hz, 2H), 3.53-3.40 (m, 2H), 3.18 (s, 3H), 3.10 (s, 3H), 3.08-3.06 (m, 2H), 2.88 (d, J=9.6 Hz, 1H), 2.58-2.56 (m, 1H), 2.28-2.13 (m, 2H), 2.02-2.00 (m, 1H), 1.80-1.70 (m, 3H), 1.37-1.24 (m, 5H), 0.89-0.85 (m, 2H), 0.63-0.60 (m, 2H).
  • Example 204
  • Figure US20210093618A1-20210401-C00592
  • (S)-5-cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)-1-methoxypropan-2-yl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 201. The enantiomer was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)-1-methoxypropan-2-yl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide. LCMS (ESI): Method A: RT=6.21 min, m/z: 601.2 [M+1]+. 1HNMR (400 MHz, DMSO-d6) δ 7.49 (d, J=2.0 Hz, 2H), 7.44 (m, 1H), 7.19 (d, J=8.8 Hz, 1H), 6.82 (d, J=12.8 Hz, 1H), 3.91 (d, J=6.0 Hz, 2H), 3.53-3.40 (m, 2H), 3.18 (s, 3H), 3.10 (s, 3H), 3.08-3.06 (m, 2H), 2.88 (d, J=9.6 Hz, 1H), 2.58-2.56 (m, 1H), 2.28-2.13 (m, 2H), 2.02-2.00 (m, 1H), 1.80-1.70 (m, 3H), 1.37-1.24 (m, 5H), 0.89-0.85 (m, 2H), 0.63-0.60 (m, 2H).
  • Example 205
  • Figure US20210093618A1-20210401-C00593
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxy-2-methylpropyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00594
  • Step 1
  • Figure US20210093618A1-20210401-C00595
  • 1-(4-(((tert-Butyldimethylsilyl)oxy)methyl)piperidin-1-yl)-1-(3,5-dichlorophenyl)-2-methylpropan-2-ol
  • To a solution of methyl 2-(4-((tert-butyldimethylsilyloxy)methyl)piperidin-1-yl)-2-(3,5-dichlorophenyl)acetate (0.58 g, 1.3 mmol) in dry THF (10 mL) at −78° C. was added methylmagnesium bromide (3M in THF, 2.6 mL). The resultant mixture was allowed to warm to room temperature and stirred overnight, quenched with water (20 mL), extracted with EtOAc (10 mL×3), dried over sodium sulfate, filtered and concentrated in vacuo. The residue was purified by silica gel chromatography(eluting with 5% EtOAc in petroleum ether) to afford title compound as a colorless oil (0.47 g, 81%). LCMS(ESI) m/z: 445.1 [M+1]+.
  • Step 2
  • Figure US20210093618A1-20210401-C00596
  • 4-(((tert-Butyldimethylsilyl)oxy)methyl)-1-(1-(3,5-dichlorophenyl)-2-methoxy-2-methylpropyl)piperidine
  • The compound was synthesized as described in step 6 of Example 201. LCMS(ESI) m/z: 460.2 [M+1]+.
  • Step 3
  • Figure US20210093618A1-20210401-C00597
  • (1-(1-(3,5-Dichlorophenyl)-2-methoxy-2-methylpropyl)piperidin-4-yl)methanol
  • The compound was synthesized as described in step 7 of Example 201. LCMS(ESI) m/z: 346.1 [M+1]+.
  • Step 4
  • Figure US20210093618A1-20210401-C00598
  • (R)-methyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxy-2-methylpropyl)piperidin-4-yl)methoxy)-2-fluorobenzoate
  • The compound was synthesized as described in step 8 of Example 201. The enantiomer was separated by chiral SFC from the racemate, the enantiomer was arbitrarily assigned as (R)-methyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxy-2-methylpropyl)piperidin-4-yl)methoxy)-2-fluorobenzoate. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=85:15; flow: 3 mL/min; column temperature: 40.4° C., RT=2.85 min). LCMS(ESI) m/z: 538.1 [M+1]+.
  • Step 5
  • Figure US20210093618A1-20210401-C00599
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxy-2-methylpropyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid
  • The compound was synthesized as described in step 9 of Example 201. LCMS(ESI) m/z: 524.1 [M+1]+.
  • Step 6
  • Figure US20210093618A1-20210401-C00600
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxy-2-methylpropyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 9 of Example 201. The enantiomer was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxy-2-methylpropyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. LCMS (ESI): Method A: RT=6.95 min, m/z: 601.3 [M+1]+. 1HNMR (400 MHz, DMSO-d6) δ 11.83 (brs, 1H), 7.50-7.44 (m, 3H), 7.15-7.13 (m, 1H), 6.86 (d, J=12.8 Hz, 1H), 3.86-3.85 (m, 2H), 3.46-3.44 (m, 2H), 3.29 (s, 1H), 3.24 (s, 3H), 3.16 (s, 3H), 2.82 (d, J=10.8 Hz, 1H), 2.00-1.95 (m, 2H), 1.72-1.71 (m, 3H), 1.55-1.54 (m, 1H), 1.40-1.23 (m, 4H), 0.93 (s, 3H), 0.88-0.83 (m, 2H), 0.65-0.61 (m, 2H).
  • Example 206
  • Figure US20210093618A1-20210401-C00601
  • (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxy-2-methylpropyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 205. The enantiomer was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxy-2-methylpropyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. LCMS (ESI): Method A: RT=6.95 min, m/z: 601.3 [M+1]+. 1HNMR (400 MHz, DMSO-d6) δ 11.83 (brs, 1H), 7.50-7.44 (m, 3H), 7.15-7.13 (m, 1H), 6.86 (d, J=12.8 Hz, 1H), 3.86-3.85 (m, 2H), 3.46-3.44 (m, 2H), 3.29 (s, 1H), 3.24 (s, 3H), 3.16 (s, 3H), 2.82 (d, J=10.8 Hz, 1H), 2.00-1.95 (m, 2H), 1.72-1.71 (m, 3H), 1.55-1.54 (m, 1H), 1.40-1.23 (m, 4H), 0.93 (s, 3H), 0.88-0.83 (m, 2H), 0.65-0.61 (m, 2H).
  • Example 207
  • Figure US20210093618A1-20210401-C00602
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxy-2-methylpropyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 205. The enantiomer was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxy-2-methylpropyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide. LCMS (ESI): Method A: RT=7.04 min, m/z: 615.3 [M+1]+. 1HNMR (400 MHz, DMSO-d6) δ 7.49 (d, J=2.0 Hz, 2H), 7.44 (m, 1H), 7.19 (d, J=8.8 Hz, 1H), 6.82 (d, J=12.8 Hz, 1H), 3.91 (d, J=6.0 Hz, 2H), 3.53-3.40 (m, 2H), 3.42-3.37 (m, 2H), 3.18 (s, 3H), 3.10 (s, 3H), 3.07 (m, 2H), 2.88 (d, J=9.6 Hz, 1H), 2.57-2.56 (m, 1H), 2.28-2.13 (m, 2H), 2.01-2.00 (m, 1H), 1.80-1.70 (m, 3H), 1.37-1.24 (m, 5H), 0.89-0.85 (m, 2H), 0.63-0.60 (m, 2H).
  • Example 208
  • Figure US20210093618A1-20210401-C00603
  • (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxy-2-methylpropy)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 205. The enantiomer was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-methoxy-2-methylpropyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide. LCMS (ESI): Method A: RT=7.12 min, m/z: 615.2 [M+1]+. 1HNMR (400 MHz, DMSO-d6) δ 7.49 (d, J=2.0 Hz, 2H), 7.44 (m, 1H), 7.19 (d, J=8.8 Hz, 1H), 6.82 (d, J=12.8 Hz, 1H), 3.91 (d, J=6.0 Hz, 2H), 3.53-3.40 (m, 2H), 3.42-3.37 (m, 2H), 3.18 (s, 3H), 3.10 (s, 3H), 3.07-3.06 (m, 2H), 2.88 (d, J=9.6 Hz, 1H), 2.58-2.56 (m, 1H), 2.28-2.13 (m, 2H), 2.01-2.00 (m, 1H), 1.80-1.70 (m, 3H), 1.37-1.24 (m, 5H), 0.89-0.85 (m, 2H), 0.63-0.60 (m, 2H).
  • Example 209
  • Figure US20210093618A1-20210401-C00604
  • 5-Cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)propan-2-yl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00605
  • Step 1
  • Figure US20210093618A1-20210401-C00606
  • Methyl 5-cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)propan-2-yl)piperidin-4-yl)methoxy)-2-fluorobenzoate
  • To a solution of methyl 5-cyclopropyl-4-((1-(3,5-dichlorobenzoyl)piperidin-4-yl)methoxy)-2-fluorobenzoate (0.81 g, 1.7 mmol) and 2,6-di-tert-butyl-4-methylpyridine (1.4 g, 6.8 mmol) in dry THF (15 mL) under N2 atmosphere, was added trifluoromethanesulfonic anhydride (0.4 mL) dropwise at −78° C. The mixture was stirred at −40° C. for 3 h followed by the addition of MeLi (3M in THF, 2.3 mL). The reaction mixture was allowed to warm to room temperature and stirred overnight, quenched with water (10 mL), extracted with EtOAc (10 mL×3), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography(eluting with 15% ethyl acetate in petroleum ether) to afford the target compound as a white solid (0.17 g, 20%). LCMS(ESI): m/z: 494.2 [M+1]+.
  • Step 2
  • Figure US20210093618A1-20210401-C00607
  • 5-Cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)propan-2-yl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid
  • The compound was synthesized as described in step 6 of Example 88. LCMS(ESI) m/z: 480.2 [M+1]+.
  • Step 3
  • Figure US20210093618A1-20210401-C00608
  • 5-Cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)propan-2-yl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 5 of Example 80. LCMS (ESI): Method A: RT=7.01 min, m/z: 557.0 [M+1]+. 1HNMR (500 MHz, DMSO-d6) δ 7.51 (s, 2H), 7.44 (s, 1H), 7.21 (d, J=8.5 Hz, 1H), 6.76 (d, J=13.0 Hz, 1H), 3.90 (d, J=5.5 Hz, 2H), 3.00 (s, 3H), 2.75-2.73 (m, 2H), 2.12-2.10 (m, 2H), 2.01-1.98 (m, 1H), 1.78-1.76 (m, 3H), 1.35-1.23 (m, 8H), 0.89-0.85 (m, 2H), 0.60-0.57 (m, 2H).
  • Example 210
  • Figure US20210093618A1-20210401-C00609
  • 5-Cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)propan-2-yl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 209. LCMS (ESI): Method A: RT=6.81 min, m/z: 571.2 [M+1]+. 1HNMR (400 MHz, DMSO-d6) δ 7.51 (s, 2H), 7.44 (s, 1H), 7.17 (d, J=8.8 Hz, 1H), 6.81 (d, J=12.8 Hz, 1H), 3.92 (d, J=5.2 Hz, 2H), 3.29-3.24 (m, 2H), 2.76-2.67 (m, 2H), 2.14-2.09 (m, 2H), 2.03-1.96 (m, 1H), 1.77-1.76 (m, 3H), 1.37-1.24 (m, 8H), 1.17 (t, J=7.6 Hz, 3H), 0.89-0.85 (m, 2H), 0.63-0.59 (m, 2H).
  • Example 211
  • Figure US20210093618A1-20210401-C00610
  • (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 170. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: IC 4.6×150 mm 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=70:30; flow: 3.0 mL/min; column temperature: 39.9° C.; RT=6.78 min). LCMS (ESI) Method A: RT=5.50 min, m/z: 556.7 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ7.53-7.43 (m, 3H), 7.20 (d, J=8.4 Hz, 1H), 6.89 (d, J=12.4 Hz, 1H), 3.80 (s, 3H), 3.14 (s, 3H), 3.21-3.16 (m, 2H), 2.42-2.40 (m, 1H), 2.01-1.99 (m, 1H), 1.69-1.68 (m, 2H), 1.47-1.35 (m, 6H), 1.04 (s, 3H), 0.89-0.86 (m, 2H), 0.62-0.61 (m, 2H).
  • Example 212
  • Figure US20210093618A1-20210401-C00611
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 170. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: IC 4.6×150 mm 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=70:30; flow: 3.0 mL/min; column temperature: 39.9° C.; RT=5.75 min). LCMS (ESI) Method A: RT=5.46 min, m/z: 556.7 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ7.53-7.43 (m, 3H), 7.20 (d, J=8.4 Hz, 1H), 6.89 (d, J=12.4 Hz, 1H), 3.80 (s, 3H), 3.14 (s, 3H), 3.21-3.16 (m, 2H), 2.44-2.40 (m, 1H), 2.01-1.99 (m, 1H), 1.69-1.68 (m, 2H), 1.47-1.35 (m, 6H), 1.04 (s, 3H), 0.90-0.85 (m, 2H), 0.64-0.60 (m, 2H).
  • Example 213
  • Figure US20210093618A1-20210401-C00612
  • 5-Cyclopropyl-4-((1-(2,4-dichlorobenzyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=6.25 min, m/z: 542.8 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ7.60-7.51 (m, 3H), 7.13 (d, J=8.4 Hz, 1H), 6.91 (d, J=12.8 Hz, 1H), 3.94 (d, J=6.0 Hz, 2H), 3.62 (s, 2H), 3.40-3.37 (m, 2H), 2.92-2.90 (m, 2H), 2.20-1.79 (m, 6H), 1.42-1.37 (m, 2H), 1.23-1.19 (m, J=7.4 Hz, 3H), 0.89-0.86 (m, 2H), 0.66-0.63 (m, 2H).
  • Example 214
  • Figure US20210093618A1-20210401-C00613
  • (R)-5-cyclopropyl-4-((1-(1-(3,4-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(3,4-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=70:30; flow: 3.0 mL/min; column temperature: 37.7° C.; RT=6.44 min). LCMS (ESI) Method A: RT=6.11 min, m/z: 542.9 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ7.63-7.62 (m, 2H), 7.39-7.38 (m, 1H), 7.17 (d, J=6.4 Hz, 1H), 6.80 (d, J=10.4 Hz, 1H), 3.90 (d, J=4.4 Hz, 3H), 3.08 (s, 3H), 2.86-2.84 (m, 2H), 2.01-1.98 (m, 3H), 1.85-1.78 (m, 3H), 1.39-1.35 (m, 5H), 0.88-0.86 (m, 2H), 0.62-0.59 (m, 2H).
  • Example 215
  • Figure US20210093618A1-20210401-C00614
  • (S)-5-cyclopropyl-4-((1-(1-(3,4-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(3,4-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=70:30; flow: 3.0 mL/min; column temperature: 37.7° C.; RT=10.00 min). LCMS (ESI) Method A: RT=6.11 min, m/z: 542.9 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ7.64-7.62 (m, 2H), 7.38-7.36 (m, 1H), 7.17 (d, J=6.8 Hz, 1H), 6.80 (d, J=10.4 Hz, 1H), 3.91 (d, J=4.4 Hz, 3H), 3.10 (s, 3H), 2.92-2.91 (m, 2H), 2.19-1.17 (m, 2H), 2.01-1.78 (m, 4H), 1.42-1.35 (m, 5H), 0.88-0.86 (m, 2H), 0.64-0.61 (m, 2H).
  • Example 216
  • Figure US20210093618A1-20210401-C00615
  • 4-((1-(3-Chloro-5-(trifluoromethyl)benzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=6.31 min, m/z: 576.8 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ7.77-7.67 (m, 3H), 7.14 (d, J=8.4 Hz, 1H), 6.88 (d, J=12.8 Hz, 1H), 3.94 (d, J=5.6 Hz, 2H), 3.68 (s, 2H), 3.35-3.33 (m, 2H), 2.91-2.88 (m, 2H), 2.14-1.79 (m, 6H), 1.40-1.38 (m, 2H), 1.20 (t, J=7.4 Hz, 3H), 0.89-0.86 (m, 2H), 0.66-0.63 (m, 2H).
  • Example 217
  • Figure US20210093618A1-20210401-C00616
  • 4-((1-((5-Chloro-6-isopropoxypyridin-3-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 190. LCMS (ESI) Method A: RT=5.88 min, m/z: 553.8 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ8.06 (d, J=4.0 Hz, 1H), 7.15 (d, J=9.6 Hz, 1H), 7.10 (d, J=4.4 Hz, 1H), 6.89 (d, J=10.4 Hz, 1H), 5.30-5.28 (m, 1H), 3.95-3.94 (m, 2H), 3.60 (s, 2H), 3.21 (s, 3H), 2.89-2.87 (m, 2H), 2.16-2.11 (m, 2H), 2.03-2.01 (m, 1H), 1.80-1.78 (m, 3H), 1.41-1.39 (m, 2H), 1.31 (d, J=5.2 Hz, 6H), 0.91-0.87 (m, 2H), 0.66-0.63 (m, 2H).
  • Example 218
  • Figure US20210093618A1-20210401-C00617
  • (R)-5-cyclopropyl-4-((1-(1-(3,4-dichlorophenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 170. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(3,4-dichlorophenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OJ-H (4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=75:25; flow: 3.0 mL/min; column temperature: 40.0° C.; RT=4.18 min). LCMS (ESI) Method A: RT=6.25 min, m/z: 556.8 [M+H]+. 1H NMR (300 MHz, DMSO-d6): δ7.65-7.63 (m, 2H), 7.40-7.38 (m, 1H), 7.20 (d, J=8.1 Hz, 1H), 6.84 (d, J=12.9 Hz, 1H), 3.79-3.78 (m, 2H), 3.11 (s, 3H), 2.57-2.56 (m, 1H), 2.45-2.42 (m, 3H), 2.01-1.99 (m, 1H), 1.69-1.37 (m, 8H), 1.04 (s, 3H), 0.89-0.85 (m, 2H), 0.62-0.60 (m, 2H).
  • Example 219
  • Figure US20210093618A1-20210401-C00618
  • (S)-5-cyclopropyl-4-((1-(1-(3,4-dichlorophenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 170. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(3,4-dichlorophenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OJ-H (4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=75:25; flow: 3.0 mL/min; column temperature: 40.0° C.; RT=6.43 min). LCMS (ESI) Method A: RT=6.26 min, m/z: 556.8 [M+H]+. 1H NMR (300 MHz, DMSO-d6): δ7.65-7.63 (m, 2H), 7.40-7.38 (m, 1H), 7.20 (d, J=8.1 Hz, 1H), 6.83 (d, J=12.9 Hz, 1H), 3.79-3.78 (m, 2H), 3.11 (s, 3H), 2.57-2.56 (m, 1H), 2.45-2.42 (m, 3H), 2.01-1.99 (m, 1H), 1.69-1.37 (m, 8H), 1.04 (s, 3H), 0.88-0.86 (m, 2H), 0.62-0.60 (m, 2H).
  • Example 220
  • Figure US20210093618A1-20210401-C00619
  • 4-((1-(3-Chloro-4-(trifluoromethyl)benzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=6.25 min, m/z: 562.8 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 7.86-7.84 (m, 1H), 7.69-7.52 (m, 2H), 7.15 (d, J=8.4 Hz, 1H), 6.88 (d, J=12.8 Hz, 1H), 3.94 (d, J=6.0 Hz, 2H), 3.72 (s, 2H), 3.20 (s, 3H), 2.95-2.92 (m, 2H), 2.20-1.80 (m, 6H), 1.43-1.40 (m, 2H), 0.90-0.86 (m, 2H), 0.66-0.63 (m, 2H).
  • Example 221
  • Figure US20210093618A1-20210401-C00620
  • (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzoyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step Example 134. LCMS (ESI) Method A: RT=4.69 min, m/z: 528.8 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.74-7.28 (m, 3H), 7.17 (d, J=8.0 Hz, 1H), 6.78 (d, J=12.5 Hz, 1H), 4.68-4.67 (m, 1H), 4.19-4.16 (m, 1H), 3.68-3.50 (m, 2H), 3.28-3.14 (m, 4H), 2.02-1.60 (m, 5H), 0.93-0.92 (m, 2H), 0.71-0.68 (m, 2H).
  • Example 222
  • Figure US20210093618A1-20210401-C00621
  • (R)-5-cyclopropyl-2-fluoro-4-((1-(2-methoxy-1-phenylethyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 172. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-2-fluoro-4-((1-(2-methoxy-1-phenylethyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 min; mobile Phase: A: supercritical CO2, B: MeOH, A:B=75:25; flow: 3.0 mL/min; column temperature: 40.2° C.; RT=3.78 min). LCMS (ESI) Method A: RT=4.83 min, m/z: 505.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ7.36-7.32 (m, 5H), 7.16 (d, J=8.0 Hz, 1H), 6.82 (d, J=13.5 Hz, 1H), 3.90-3.71 (m, 5H), 3.29-3.25 (m, 4H), 3.11-2.90 (m, 4H), 2.35-1.75 (m, 6H), 1.49-1.38 (m, 2H), 0.88-0.85 (m, 2H), 0.61-0.60 (m, 2H).
  • Example 223
  • Figure US20210093618A1-20210401-C00622
  • (S)-5-cyclopropyl-2-fluoro-4-((1-(2-methoxy-1-phenylethyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 172. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-2-fluoro-4-((1-(2-methoxy-1-phenylethyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=75:25; flow: 3.0 mL/min; column temperature: 40.2° C.; RT=5.20 min). LCMS (ESI) Method A: RT=4.83 min, m/z: 504.9 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ7.36-7.32 (m, 5H), 7.16 (d, J=9.0 Hz, 1H), 6.82 (d, J=13.0 Hz, 1H), 3.90-3.69 (m, 5H), 3.31 (s, 3H), 3.11-2.90 (m, 5H), 2.01-1.75 (m, 6H), 1.49-1.38 (m, 2H), 0.88-0.85 (m, 2H), 0.62-0.59 (m, 2H).
  • Example 224
  • Figure US20210093618A1-20210401-C00623
  • (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2,2-difluoroethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00624
  • Step 1
  • Figure US20210093618A1-20210401-C00625
  • 1-(3,5-Dichlorophenyl)-2,2-difluoroethanol
  • A mixture of 3,5-dichlorobenzaldehyde (800 mg, 4.6 mmol), (difluoromethyl)trimethylsilane (850 mg, 6.8 mmol) and CsF (441 mg, 2.3 mmol) in DMF (20 mL) was stirred for 36 h at room temperature. The reaction mixture was diluted with ethyl acetate (50 mL), washed with brine (30 mL×3), dried over anhydrous sodium sulfate and concentrated. The residue was purified by silica gel chromatography (eluting with petroleum ether/ethyl acetate=10/1) to afford the title compound as a pale yellow oil. (500 mg, 48%). LCMS(ESI) m/z: 225.0 [M−H].
  • Step 2
  • Figure US20210093618A1-20210401-C00626
  • Methyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2,2-difluoroethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate
  • To a mixture of 1-(3,5-dichlorophenyl)-2,2-difluoroethanol (200 mg, 0.9 mmol) and DIPEA (270 mg, 2.7 mmol) in DCM (20 mL) was added trifluoromethanesulfonic anhydride (507 mg, 1.8 mmol) at 0° C., and the mixtures stirred for 2 h. Methyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate (277 mg, 0.9 mmol) was then added at 0° C. and the mixture left to warm to room temperature and stirred for 16 h. The reaction was quenched with ethyl acetate (40 mL) and water (40 mL), extracted with ethyl acetate (20 mL×3), dried over anhydrous sodium sulfate and concentrated. The residue was purified by silica gel chromatography (eluting with petroleum ether/ethyl acetate=5/1) to afford the title compound as a pale yellow oil. (230 mg, 20%).
  • Step 3
  • Figure US20210093618A1-20210401-C00627
  • 5-Cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2,2-difluoroethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid
  • The compound was synthesized as described in step 6 of Example 88. LCMS(ESI) m/z: 502.1 [M+H]+.
  • Step 4
  • Figure US20210093618A1-20210401-C00628
  • (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2,2-difluoroethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in step 5 of Example 80. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2,2-difluoroethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=85:15; flow: 3.0 mL/min; column temperature: 40.1° C.; RT=15.85 min). LCMS (ESI) Method A: RT=6.16 min, m/z: 579.0 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ7.62-7.47 (m, 3H), 7.14 (d, J=8.4 Hz, 1H), 6.89-6.65 (m, 2H), 4.04-3.89 (m, 3H), 3.29-3.24 (m, 3H), 2.98-2.92 (m, 2H), 2.17-2.15 (m, 1H), 2.00-1.73 (m, 5H), 1.35-1.32 (m, 2H), 0.89-0.84 (m, 2H), 0.66-0.62 (m, 2H).
  • Example 225
  • Figure US20210093618A1-20210401-C00629
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2,2-difluoroethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 224. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2,2-difluoroethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO0, B: MeOH, A:B=85:15; flow: 3.0 mL/min; column temperature: 40.1° C.; RT=13.82 min). LCMS (ESI) Method A: RT=6.16 min, m/z: 579.0 [M+H]+. 1H NMR (400 MHz. DMSO-d6): δ7.62-7.42 (m, 3H), 7.14 (d, J=8.4 Hz, 1H), 6.77-6.65 (m, 2H), 4.04-3.85 (m, 3H), 3.29-3.27 (m, 1H), 3.02-2.92 (m, 4H), 2.16-2.14 (m, 1H), 2.00-1.68 (m, 5H), 1.39-1.29 (m, 2H), 0.88-0.83 (m, 2H), 0.60-0.58 (m, 2H).
  • Example 226
  • Figure US20210093618A1-20210401-C00630
  • (S)-5-cyclopropyl-4-((1-(3,5-dichlorophenyl)-2,2-difluoroethyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 224. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2,2-difluoroethyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=85:15; flow: 3.0 mL/min; column temperature: 42.0° C.; RT=13.5 min). LCMS (ESI) Method A: RT=6.15 min, m/z: 593.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ7.62-7.61 (m, 1H), 7.47-7.46 (m, 2H), 7.12 (d, J=8.4 Hz, 1H), 6.90-6.58 (m, 2H), 4.08-3.89 (m, 3H), 3.39-3.37 (m, 2H), 3.01-2.92 (m, 2H), 2.15-2.13 (m, 1H), 1.98-1.72 (m, 4H), 1.35-1.19 (m, 6H), 0.87-0.84 (m, 2H), 0.62-0.60 (m, 2H).
  • Example 227
  • Figure US20210093618A1-20210401-C00631
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2,2-difluoroethyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 224. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2,2-difluoroethyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH, A:B=85:15; flow: 3.0 mL/min; column temperature: 42.0° C.; RT=12.33 min). LCMS (ESI) Method A: RT=6.15 min, m/z: 593.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ7.62-7.61 (m, 1H), 7.47-7.46 (m, 2H), 7.12 (d, J=8.4 Hz, 1H), 6.90-6.58 (m, 2H), 4.08-3.89 (m, 3H), 3.39-3.37 (m, 2H), 3.01-2.94 (m, 2H), 2.15-1.91 (m, 3H), 1.76-1.68 (m, 3H), 1.35-1.32 (m, 2H), 1.21 (t, J=7.4 Hz, 3H), 0.89-0.84 (m, 2H), 0.66-0.63 (m, 2H).
  • Example 228
  • Figure US20210093618A1-20210401-C00632
  • 5-Cyclopropyl-2-fluoro-4-((1-(3-fluoro-5-(trifluoromethyl)benzyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.71 min, m/z 546.9 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ11.34 (s, 1H), 7.62-7.53 (m, 3H), 7.16 (d, J=9.0 Hz, 1H), 6.89 (d, J=13.0 Hz, 1H), 3.95 (d, J=6.0 Hz, 2H), 3.77 (s, 2H), 3.21 (s, 3H), 2.97-2.95 (m, 2H), 2.27-2.23 (m, 2H), 2.04-2.00 (m, 1H), 1.87-1.82 (m, 3H), 1.46-1.40 (m, 2H), 0.90-0.86 (m, 2H), 0.66-0.63 (m, 2H).
  • Example 229
  • Figure US20210093618A1-20210401-C00633
  • 4-((1-(4-Chloro-3-(trifluoromethyl)benzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.88 min, m/z 563.0 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ11.24 (brs, 1H), 7.83 (s, 1H), 7.75 (d, J=8.0 Hz, 1H), 7.67 (d, J=8.0 Hz, 1H), 7.17 (d, J=8.5 Hz, 1H), 6.85 (d, J=12.5 Hz, 1H), 3.93 (d, J=6.0 Hz, 2H), 3.74 (s, 2H), 3.14 (s, 3H), 2.97-2.95 (m, 2H), 2.24 (s, 2H), 2.04-1.98 (m, 1H), 1.86-1.77 (m, 3H), 1.45-1.38 (m, 2H), 0.89-0.86 (m, 2H), 0.64-0.61 (m, 2H).
  • Example 230
  • Figure US20210093618A1-20210401-C00634
  • (R)-4-((1-(1-(3-chloro-5-fluorophenyl)ethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-4-((1-(1-(3-chloro-5-fluorophenyl)ethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=70:30; flow: 2.1 mL/min; column temperature: 40° C.; RT=4.01 min). LCMS (ESI) Method A: RT=5.99 min, m/z 527.2 [M+H]+. 1H-NMR (400 MHz, DMSO-d6): δ7.35 (d, J=8.8 Hz, 1H), 7.30 (s, 1H), 7.21 (d, J=9.2 Hz, 1H), 7.17 (d, J=8.4 Hz, 1H), 6.83 (d, J=12.4 Hz, 1H), 3.91 (d, J=5.6 Hz, 2H), 3.74 (brs, 1H), 3.11 (s, 3H), 3.07-3.03 (m, 1H), 2.91-2.87 (m, 1H), 2.12-2.09 (m, 2H), 2.03-1.98 (m, 1H), 1.84-1.77 (m, 3H), 1.41-1.34 (m, 5H), 0.89-0.85 (m, 2H), 0.63-0.59 (m, 2H).
  • Example 231
  • Figure US20210093618A1-20210401-C00635
  • (S)-4-((1-(1-(3-chloro-5-fluorophenyl)ethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (R)-4-((1-(1-(3-chloro-5-fluorophenyl)ethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=70:30; flow: 2.1 mL/min; column temperature: 40° C.; RT=4.83 min). LCMS (ESI) Method A: RT=5.99 min, m/z 527.2 [M+H]+. 1H-NMR (400 MHz, DMSO-d6): δ7.35 (d, J=8.8 Hz, 1H), 7.30 (s, 1H), 7.21 (d, J=9.2 Hz, 1H), 7.17 (d, J=8.4 Hz, 1H), 6.83 (d, J=12.4 Hz, 1H), 3.91 (d, J=5.6 Hz, 2H), 3.74 (brs, 1H), 3.11 (s, 3H), 3.07-3.03 (m, 1H), 2.91-2.87 (m, 1H), 2.12-2.09 (m, 2H), 2.03-1.98 (m, 1H), 1.84-1.77 (m, 3H), 1.41-1.34 (m, 5H), 0.89-0.85 (m, 2H), 0.63-0.59 (m, 2H).
  • Example 232
  • Figure US20210093618A1-20210401-C00636
  • 5-Cyclopropyl-4-((1-(3,4-dichlorobenzoyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 134. LCMS (ESI) Method A: RT=5.03 min, m/z 542.8 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ11.89 (s, 1H), 7.72 (d, J=8.0 Hz, 1H), 7.66 (d, J=2.0 Hz, 1H), 7.39-7.37 (m, 1H), 7.15 (d, J=9.0 Hz, 1H), 6.95 (d, J=12.5 Hz, 1H), 4.48 (brs, 1H), 3.98 (d, J=6.0 Hz, 2H), 3.56 (brs, 1H), 3.29 (s, 3H), 3.18-3.12 (m, 1H), 2.84-2.76 (m, 1H), 2.13-2.10 (m, 1H), 2.05-1.99 (m, 1H), 1.89-1.76 (m, 2H), 1.33 (brs, 2H), 0.91-0.87 (m, 2H), 0.68-0.65 (m, 2H).
  • Example 233
  • Figure US20210093618A1-20210401-C00637
  • 5-Cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(3,4-dichlorobenzoyl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in Example 134. LCMS (ESI) Method A: RT=5.18 min, m/z 568.8 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ11.81 (s, 1H), 7.72 (d, J=8.5 Hz, 1H), 7.66 (d, J=2.0 Hz, 1H), 7.39-7.37 (m, 1H), 7.14 (d, J=8.0 Hz, 1H), 6.97 (d, J=12.5 Hz, 1H), 4.48 (brs, H), 3.99 (d, J=5.0 Hz, 2H), 3.56 (brs, 1H), 3.12-3.04 (m, 2H), 2.84 (s, 1H), 2.13-2.12 (m, 1H), 2.04-1.99 (m, 1H), 1.89 (s, 1H), 1.77 (s, 1H), 1.33 (s, 2H), 1.12-1.07 (m, 4H), 0.91-0.87 (m, 2H), 0.68-0.65 (m, 2H).
  • Example 234
  • Figure US20210093618A1-20210401-C00638
  • (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)-2-oxopiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00639
  • Step 1
  • Figure US20210093618A1-20210401-C00640
  • 1-(3,5-Dichlorobenzyl)-2-oxopiperidine-4-carboxylic acid
  • A mixture of methyl 2-oxopiperidine-4-carboxylate (1.00 g, 6.36 mmol), 1,3-dichloro-5-(chloromethyl)benzene (1.49 g, 7.63 mmol) and potassium hydroxide (1.79 g, 31.8 mmol) in DMSO (30 mL) was stirred at room temperature for 4 h. The reaction was quenched with HCl (3.0 M, 50 mL) and ethyl acetate (150 mL). The organic layer was separated and washed with brine (50 mL×3), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (eluting with 2% ethyl acetate in petroleum ether) to afford target compound as white solid (1.65 g, 85%). LCMS (ESI) m/z: 302.0 [M+H]+.
  • Step 2
  • Figure US20210093618A1-20210401-C00641
  • Methyl 1-(3,5-dichlorobenzyl)-2-oxopiperidine-4-carboxylate
  • A solution of 1-(3,5-dichlorobenzyl)-2-oxopiperidine-4-carboxylic acid (1.65 g, 5.46 mmol) in thionyl chloride (30 mL) was refluxed for 2 h, Then the solution was added dropwise to methanol (100 mL) at 0° C. and the mixture stirred at room temperature for 2 h The mixture was concentrated in vacuo to afford the target compound as brown oil which was used without further purification. LCMS (ESI) m/z: 316.0 [M+H]+.
  • Step 3
  • Figure US20210093618A1-20210401-C00642
  • 1-(3,5-Dichlorobenzyl)-4-(hydroxymethyl)piperidin-2-one
  • A mixture of methyl 1-(3,5-dichlorobenzyl)-2-oxopiperidine-4-carboxylate (1.80 g, 5.69 mmol) and sodium borohydride(1.08 g, 28.5 mmol) in THF (20 mL) and MeOH (10 mL) was stirred at room temperature for 16 h. The solvent was removed and the residue was purified by reverse phase chromatography (eluting with 25-30% CH3CN in 0.5% NH4HCO3) to give target compound as brown oil (630 mg, 38%). LCMS (ESI) m/z: 288.0 [M+H]+.
  • Step 4
  • Figure US20210093618A1-20210401-C00643
  • (1-(3,5-Dichlorobenzyl)-2-oxopiperidin-4-yl)methyl 4-methylbenzenesulfonate
  • A mixture of 1-(3,5-dichlorobenzyl)-4-(hydroxymethyl)piperidin-2-one (630 mg, 2.19 mmol) and sodium hydride (437 mg, 10.9 mmol) in THF (30 mL) was stirred at room temperature for 30 min. Tosyl chloride (500 mg, 2.62 mmol) in THF (10 mL) was then added and the resulting mixture was stirred at room temperature for 16 h. The react was quenched with ice water, extracted with ethyl acetate (100 mL), washed with brine (50 mL×2), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by reverse phase chromatography (eluting with 50-60% CH3CN in 0.5% NH4HCO3) to afford the target compound as brown oil (380 mg, 39%). LCMS (ESI) m/z: 442.0 [M+H]+.
  • Step 5
  • Figure US20210093618A1-20210401-C00644
  • (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)-2-oxopiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • A mixture of (1-(3,5-dichlorobenzyl)-2-oxopiperidin-4-yl)methyl 4-methylbenzenesulfonate (380 mg, 0.859 mmol), potassium carbonate (1.19 g, 8.61 mmol) and 5-cyclopropyl-2-fluoro-4-hydroxy-N-(methylsulfonyl)benzamide (352 mg, 1.29 mmol), in DMF (20 mL) was stirred at 85° C. for 16 h. The reaction was quenched with ethyl acetate (100 mL) and HCl (2.0 M, 40 mL), washed with brine (50 mL×2), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by reverse phase chromatography (eluting with 25-40% CH3CN in 0.5% NH4HCO3) to afford the racemate as a white solid. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)-2-oxopiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AS-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=75:25; flow: 2.25 mL/min; column temperature: 40° C.; RT=5.59 min). LCMS (ESI) Method A: RT=5.14 min, m/z: 542.80 [M+H]+. 1H-NMR (400 MHz, DMSO-d6): δ11.92 (s, 1H), 7.53-7.52 (m, 1H), 7.31-7.29 (m, 2H), 7.15 (d, J=8.4 Hz, 1H), 6.95 (d, J=12.8 Hz, 1H), 4.56-4.47 (m, 2H), 4.00 (d, J=6.4 Hz, 2H), 3.32-3.30 (m, 2H), 3.28 (s, 3H), 2.57-2.51 (m, 1H), 2.44-2.39 (m, 1H), 2.30-2.24 (m, 1H), 2.07-1.98 (m, 2H), 1.69-1.63 (m, 1H), 0.92-0.87 (m, 2H), 0.69-0.65 (m, 2H).
  • Example 235
  • Figure US20210093618A1-20210401-C00645
  • (S)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)-2-oxopiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 234. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)-2-oxopiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AS-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=75:25; flow: 2.25 mL/min; column temperature: 40° C.; RT=7.28 min). LCMS (ESI) Method A: RT=5.12 min, m/z: 542.80 [M+H]+. 1H-NMR (400 MHz, DMSO-d6): δ11.92 (s, 1H), 7.53-7.52 (m, 1H), 7.31-7.29 (m, 2H), 7.15 (d, J=8.4 Hz, 1H), 6.95 (d, J=12.8 Hz, 1H), 4.56-4.47 (m, 2H), 4.00 (d, J=6.4 Hz, 2H), 3.32-3.30 (m, 2H), 3.28 (s, 3H), 2.57-2.51 (m, 1H), 2.44-2.39 (m, 1H), 2.30-2.24 (m, 1H), 2.07-1.98 (m, 2H), 1.69-1.63 (m, 1H), 0.92-0.87 (m, 2H), 0.69-0.65 (m, 2H).
  • Example 236
  • Figure US20210093618A1-20210401-C00646
  • (S)-5-cyclopropyl-4-((1-(1-(3,5-dichloro-2-fluorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(3,5-dichloro-2-fluorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1 DEA), A:B=65:35; flow: 1.95 mL/min; column temperature: 40.8° C.; RT=3.74 min). LCMS (ESI) Method A: RT=6.22 min, m/z: 561.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.69 (dd, J=6.1, 2.6 Hz, 1H), 7.47 (dd, J=5.3, 2.6 Hz, 1H), 7.16 (d, J=8.5 Hz, 1H), 6.83 (d, J=12.8 Hz, 1H), 3.90-3.89 (m, 3H), 3.14 (s, 3H), 3.03-3.02 (m, 1H), 2.87-2.85 (m, 1H), 2.01-2.00 (m, 2H), 1.94-1.68 (m, 4H), 1.42-1.26 (m, 5H), 0.91-0.82 (m, 2H), 0.61 (d, J=5.1 Hz, 2H).
  • Example 237
  • Figure US20210093618A1-20210401-C00647
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichloro-2-fluorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(3,5-dichloro-2-fluorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1 DEA), A:B=65:35; flow: 1.95 mL/min; column temperature: 40.8° C.; RT=3.11 min). LCMS (ESI) Method A: RT=5.83 min, m/z: 561.0 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.69 (dd, J=6.1, 2.6 Hz, 1H), 7.47 (dd, J=5.3, 2.5 Hz, 1H), 7.16 (d, J=8.5 Hz, 1H), 6.82 (d, J=12.7 Hz, 1H), 3.88-3.91 (m, 3H), 3.12 (s, 3H), 3.03 (d, J=9.7 Hz, 1H), 2.86-2.85 (m, 1H), 1.99-1.97 (m, 2H), 1.93-1.69 (m, 4H), 1.40-1.25 (m, 5H), 0.86-0.84 (m, 2H), 0.61-0.60 (m, 2H).
  • Example 238
  • Figure US20210093618A1-20210401-C00648
  • (S)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AS-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=75:25; flow: 2.25 mL/min; column temperature: 38.1° C.; RT=4.08 min). LCMS (ESI) Method A: RT=6.43 min, m/z: 542.9 [M+H]+. 1H NMR (500 MHz, MeOD-d4) δ 7.56 (d, J=8.5 Hz, 1H), 7.44 (d, J=2.1 Hz, 1H), 7.33 (dd, J=8.4, 2.1 Hz, 1H), 7.22 (d, J=8.3 Hz, 1H), 6.52 (d, J=12.8 Hz, 1H), 4.34 (brs, 1H), 3.74 (s, 2H), 3.45 (s, 1H), 3.06-3.04 (m, 3H), 2.97-2.96 (m, 1H), 2.52-2.29 (m, 2H), 1.91-1.90 (m, 3H), 1.80-1.79 (m, 1H), 1.56-1.55 (m, 1H), 1.42-1.40 (m, 4H), 0.80-0.73 (m, 2H), 0.51-0.50 (m, 2H).
  • Example 239
  • Figure US20210093618A1-20210401-C00649
  • (R)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AS-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=75:25; flow: 2.25 mL/min; column temperature: 41.5° C.; RT=2.87 min). LCMS (ESI) Method A: RT=6.48 min, m/z: 542.9 [M+H]+. 1H NMR (500 MHz, MeOD-d4) δ 7.56 (d, J=8.5 Hz, 1H), 7.44 (d, J=2.1 Hz, 1H), 7.33 (dd, J=8.4, 2.1 Hz, 1H), 7.22 (d, J=8.3 Hz, 1H), 6.52 (d, J=12.8 Hz, 1H), 4.34-4.33 (m, 1H), 3.74 (brs, 2H), 3.45-3.44 (m, 1H), 3.06 (s, 3H), 2.97-2.96 (m, 1H), 2.52-2.29 (m, 2H), 1.91-1.90 (m, 3H), 1.80 (m, 1H), 1.56 (m, 1H), 1.42 (m, 4H), 0.75 (m, 2H), 0.51 (m, 2H).
  • Example 240
  • Figure US20210093618A1-20210401-C00650
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)propyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)propyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OZ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.5% DEA), A:B=70:30; flow: 2.1 mL/min; column temperature: 41.0° C.; RT=10.67 min). LCMS (ESI) Method A: RT=6.42 min, m/z: 557.3 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.52 (m, 1H), 7.34 (d, J=1.8 Hz, 2H), 7.16 (d, J=8.5 Hz, 1H), 6.81 (d, J=12.9 Hz, 1H), 3.88 (d, J=6.0 Hz, 2H), 3.53 (m, 1H), 3.13 (s, 3H), 3.05 (m, 1H), 2.93 (m, 1H), 2.01 (m, 4H), 1.76 (m, 4H), 1.34 (m, 2H), 0.86 (m, 2H), 0.72 (m, 3H), 0.60 (m, 2H).
  • Example 241
  • Figure US20210093618A1-20210401-C00651
  • (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)propyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)propyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OZ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.5% DEA), A:B=70:30; flow: 2.1 mL/min; column temperature: 39.3° C.; RT=9.34 min). LCMS (ESI) Method A: RT=6.35 min, m/z: 557.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.52 (m, 1H), 7.34 (d, J=1.8 Hz, 2H), 7.16 (d, J=8.5 Hz, 1H), 6.81 (d, J=12.9 Hz, 1H), 3.88 (d, J=6.0 Hz, 2H), 3.53 (m, 1H), 3.13 (s, 3H), 3.05 (m, 1H), 2.93 (m, 1H), 2.01 (m, 4H), 1.76 (m, 4H), 1.34 (m, 2H), 0.85 (m, 2H), 0.72 (m, 3H), 0.61 (m, 2H).
  • Example 242
  • Figure US20210093618A1-20210401-C00652
  • 5-Cyclopropyl-4-((1-(3,5-dichloro-2-fluorobenzyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.98 min, m/z: 547.0 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.72 (dd, J=6.1, 2.6 Hz, 1H), 7.47 (dd, J=5.5, 2.6 Hz, 1H), 7.16 (d, J=8.5 Hz, 1H), 6.85 (d, J=12.9 Hz, 1H), 3.92 (d, J=5.8 Hz, 2H), 3.63 (s, 2H), 3.16 (s, 3H), 2.89 (m, 2H), 2.12 (m, 2H), 2.01 (m, 1H), 1.79 (m, 3H), 1.38 (m, 2H), 0.85 (m, 2H), 0.63 (m, 2H).
  • Example 243
  • Figure US20210093618A1-20210401-C00653
  • (S)-4-((1-(1-(2-chloro-4-fluorophenyl)ethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-4-((1-(1-(2-chloro-4-fluorophenyl)ethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=70:30; flow: 2.1 mL/min; column temperature: 41.6° C.; RT=5.88 min). LCMS (ESI) Method A: RT=5.88 min, m/z: 526.9 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 7.61 (dd, J=8.6, 6.6 Hz, 1H), 7.41 (dd, J=8.8, 2.5 Hz, 1H), 7.24 (m, 1H), 7.16 (d, J=8.5 Hz, 1H), 6.84 (d, J=12.8 Hz, 1H), 3.91 (m, 3H), 3.15 (m, 4H), 2.75 (m, 1H), 2.12 (m, 1H), 2.01 (m, 2H), 1.75 (m, 3H), 1.39 (m, 1H), 1.28 (m, 4H), 0.87 (m, 2H), 0.62 (m, 2H).
  • Example 244
  • Figure US20210093618A1-20210401-C00654
  • (R)-4-((1-(1-(2-chloro-4-fluorophenyl)ethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-4-((1-(1-(2-chloro-4-fluorophenyl)ethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=70:30; flow: 2.1 mL/min; column temperature: 38.1° C.; RT=3.41 min). LCMS (ESI) Method A: RT=5.88 min, m/z: 526.9 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 7.65 (dd, J=8.6, 6.6 Hz, 1H), 7.43 (dd, J=8.8, 2.5 Hz, 1H), 7.27 (m, 1H), 7.15 (d, J=8.4 Hz, 1H), 6.88 (d, J=12.9 Hz, 1H), 4.03 (m, 3H), 3.21 (m, 4H), 2.81 (m, 1H), 2.17 (m, 2H), 2.01 (m, 1H), 1.81 (m, 3H), 1.44 (m, 1H), 1.33 (m, 4H), 0.88 (m, 2H), 0.64 (m, 2H).
  • Example 245
  • Figure US20210093618A1-20210401-C00655
  • (S)-4-((1-(1-(2-chloro-4-fluorophenyl)ethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-4-((1-(1-(2-chloro-4-fluorophenyl)ethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(ethylsulfonyl)-2-fluorobenzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=65:35; flow: 1.95 mL/min; column temperature: 39.6° C.; RT=3.31 min). LCMS (ESI) Method A: RT=5.85 min, m/z: 541.3 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.46 (s, 1H), 7.61 (dd, J=8.7, 6.5 Hz, 1H), 7.41 (dd, J=8.9, 2.6 Hz, 1H), 7.25 (m, 1H), 7.14 (d, J=8.4 Hz, 1H), 6.90 (d, J=12.9 Hz, 1H), 3.92 (d, J=6.1 Hz, 3H), 3.40 (m, 2H), 3.18 (m, 1H), 2.77 (m, 1H), 2.15 (s, 1H), 2.01 (m, 2H), 1.84 (m, 2H), 1.72 (m, 1H), 1.40 (m, 1H), 1.29 (m, 4H), 1.21 (t, J=7.4 Hz, 3H), 0.85 (m, 2H), 0.64 (m, 2H).
  • Example 246
  • Figure US20210093618A1-20210401-C00656
  • (R)-4-((1-(1-(2-chloro-4-fluorophenyl)ethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-4-((1-(1-(2-chloro-4-fluorophenyl)ethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(ethylsulfonyl)-2-fluorobenzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=65:35; flow: 1.95 mL/min; column temperature: 40° C.; RT=2.62 min). LCMS (ESI) Method A: RT=5.86 min, m/z: 541.3 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.46 (s, 1H), 7.61 (dd, J=8.7, 6.5 Hz, 1H), 7.41 (dd, J=8.9, 2.6 Hz, 1H), 7.25 (m, 1H), 7.14 (d, J=8.4 Hz, 1H), 6.90 (d, J=12.9 Hz, 1H), 3.92 (d, J=6.1 Hz, 3H), 3.40 (m, 2H), 3.18 (m, 1H), 2.77 (m, 1H), 2.15 (m, 1H), 2.01 (m, 2H), 1.84 (m, 2H), 1.72 (m, 1H), 1.40 (m, 1H), 1.29 (m, 4H), 1.21 (t, J=7.4 Hz, 3H), 0.85 (m, 2H), 0.64 (m, 2H).
  • Example 247
  • Figure US20210093618A1-20210401-C00657
  • 5-cyclopropyl-2-fluoro-4-((1-(3-fluoro-4-(trifluoromethyl)benzyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.77 min, m/z: 547.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.78 (m, 1H), 7.45 (m, 2H), 7.17 (d, J=8.4 Hz, 1H), 6.88 (d, J=12.9 Hz, 1H), 3.94 (d, J=5.9 Hz, 2H), 3.74 (s, 2H), 3.19 (s, 3H), 2.95 (m, 2H), 2.23 (m, 2H), 2.02 (m, 1H), 1.84 (m, 3H), 1.43 (m, 2H), 0.88 (m, 2H), 0.65 (m, 2H).
  • Example 248
  • Figure US20210093618A1-20210401-C00658
  • (S)-5-cyclopropyl-2-fluoro-4-((4-methyl-1-(1-(4-(trifluoromethoxy)phenyl)ethyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 170. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-2-fluoro-4-((4-methyl-1-(1-(4-(trifluoromethoxy)phenyl)ethyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=80:20; flow: 2.4 mL/min; column temperature: 40.1° C.; RT=4.93 min). LCMS (ESI) Method A: RT=5.98 min, m/z: 573.3 [M+H]+. 1H NMR (400 MHz, DMSO-dA) δ 7.52 (d, J=8.1 Hz, 2H), 7.37 (d, J=8.1 Hz, 2H), 7.21 (d, J=8.5 Hz, 1H), 6.80 (d, J=12.8 Hz, 1H), 3.79 (brs, 2H), 3.30 (m, 1H), 3.04 (s, 3H), 2.61 (m, 1H), 2.49 (s, 3H), 1.99 (m, 1H), 1.70 (m, 2H), 1.46 (m, 5H), 1.04 (s, 3H), 0.87 (m, 2H), 0.59 (m, 2H).
  • Example 249
  • Figure US20210093618A1-20210401-C00659
  • (R)-5-cyclopropyl-2-fluoro-4-((4-methyl-1-(1-(4-(trifluoromethoxy)phenyl)ethyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 170. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-2-fluoro-4-((4-methyl-1-(1-(4-(trifluoromethoxy)phenyl)ethyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=80:20; flow: 2.4 mL/min; column temperature: 39.9° C.; RT=2.52 min). LCMS (ESI) Method A: RT=5.95 min, m/z: 573.3 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.52 (m, 2H), 7.37 (m, 2H), 7.21 (d, J=8.5 Hz, 1H), 6.80 (d, J=12.8 Hz, 1H), 3.79 (brs, 2H), 3.31 (m, 1H), 3.04 (s, 3H), 2.61 (m, 1H), 2.49 (s, 3H), 1.99 (m, 1H), 1.70 (m, 2H), 1.46 (m, 5H), 1.04 (s, 3H), 0.87 (m, 2H), 0.59 (m, 2H).
  • Example 250
  • Figure US20210093618A1-20210401-C00660
  • (R)-5-cyclopropyl-2-fluoro-4-((1-(1-(3-fluorophenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 170. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-2-fluoro-4-((1-(1-(3-fluorophenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=80:20; flow: 2.4 mL/min; column temperature: 38.8° C.; RT=4.89 min). LCMS (ESI) Method A: RT=5.42 min, m/z: 507.3 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.43 (m, 1H), 7.29 (m, 2H), 7.23 (d, J=8.6 Hz, 1H), 7.16 (m, 1H), 6.80 (d, J=12.8 Hz, 1H), 3.95 (m, 1H), 3.79 (s, 2H), 3.03 (s, 3H), 2.91 (m, 1H), 2.70 (m, 2H), 2.59 (m, 1H), 2.03 (m, 1H), 1.76 (m, 2H), 1.50 (m, 5H), 1.05 (s, 3H), 0.88 (m, 2H), 0.60 (m, 2H).
  • Example 251
  • Figure US20210093618A1-20210401-C00661
  • (S)-5-cyclopropyl-2-fluoro-4-((1-(1-(3-fluorophenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 170. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-2-fluoro-4-((1-(1-(3-fluorophenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=80:20; flow: 2.4 mL/min; column temperature: 40.6° C.; RT=6.92 min). LCMS (ESI) Method A: RT=5.42 min, m/z: 507.3 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.43 (m, 1H), 7.29 (m, 2H), 7.23 (d, J=8.6 Hz, 1H), 7.16 (m, 1H), 6.80 (d, J=12.8 Hz, 1H), 3.95 (m, 1H), 3.79 (s, 2H), 3.03 (s, 3H), 2.91 (m, 1H), 2.70 (m, 2H), 2.59 (m, 1H), 2.03 (m, 1H), 1.76 (m, 2H), 1.50 (m, 5H), 1.05 (s, 3H), 0.85 (m, 2H), 0.60 (m, 2H).
  • Example 252
  • Figure US20210093618A1-20210401-C00662
  • 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((1-(trifluoromethyl)cyclopropyl)methyl)piperidin-4-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method B: RT=5.42 min, m/z: 492.9 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 7.16 (d, J=8.4 Hz, 1H), 6.90 (d, J=12.9 Hz, 1H), 3.94 (d, J=5.8 Hz, 2H), 3.24 (s, 3H), 3.01 (m, 2H), 2.59 (s, 2H), 2.03 (m, 3H), 1.79 (m, 3H), 1.37 (m, 2H), 0.99 (m, 2H), 0.88 (m, 2H), 0.76 (m, 2H), 0.66 (m, 2H).
  • Example 253
  • Figure US20210093618A1-20210401-C00663
  • 5-Cyclopropyl-4-((1-(3,5-dichlorobenzoyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 134. LCMS (ESI) Method A: RT=4.92 min, m/z 542.8 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 7.71 (s, 1H), 7.45 (s, 2H), 7.15 (d, J=8.5 Hz, 1H), 6.92 (d, J=13.0 Hz, 1H), 4.49-4.47 (m, 1H), 3.97 (d, J=4.5 Hz, 2H), 3.53-3.50 (m, 1H), 3.26 (s, 3H), 3.15-3.12 (m, 1H), 2.85-2.84 (m, 1H), 2.14-2.10 (m, 1H), 2.05-1.99 (m, 1H), 1.89-1.88 (m, 1H), 1.78-1.75 (m, 1H), 1.35-1.32 (m, 2H), 0.89-0.88 (m, 2H), 0.66-0.65 (m, 2H).
  • Example 254
  • Figure US20210093618A1-20210401-C00664
  • 5-Cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(3,5-dichlorobenzoyl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in Example 134. LCMS (ESI) Method A: RT=5.28 min, m/z: 569.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 11.80 (s, 1H), 7.71 (s, 1H), 7.40 (m, 2H), 7.16 (d, J=8.0 Hz, 1H), 6.92 (d, J=12.1 Hz, 1H), 4.47 (m, 1H), 3.97 (s, 2H), 3.51 (m, 1H), 3.08 (m, 2H), 2.84 (m, 1H), 2.07 (m, 2H), 1.82 (m, 2H), 1.34 (m, 2H), 1.01 (m, 4H), 0.89 (m, 2H), 0.62 (m, 2H).
  • Example 255
  • Figure US20210093618A1-20210401-C00665
  • 5-Cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(2-(trifluoromethyl)benzoyl)piperidin-4-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 134. LCMS (ESI) Method A: RT=4.54 min, m/z: 542.9 [M+H]+. 1H NMR (500 MHz, MeOD-d4) δ 7.82 (d, J=7.9 Hz, 1H), 7.75 (m, 1H), 7.67 (d, J=7.4 Hz, 1H), 7.46 (m, 1H), 7.31 (m, 1H), 6.82 (m, 1H), 4.77 (m, 1H), 4.01 (d, J=5.2 Hz, 2H), 3.43 (m, 1H), 3.33 (s, 3H), 3.17 (m, 1H), 2.96 (m, 1H), 2.20 (m, 1H), 2.07 (m, 2H), 1.81 (m, 1H), 1.42 (m, 2H), 0.94 (m, 2H), 0.66 (m, 2H).
  • Example 256
  • Figure US20210093618A1-20210401-C00666
  • 5-Cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(2-(trifluoromethyl)benzoyl)piperidin-4-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 134. LCMS (ESI) Method A: RT=4.69 min, m/z: 568.9 [M+H]+. 1H NMR (500 MHz, MeOD-d4) δ 7.82 (m, 1H), 7.76 (m, 1H), 7.67 (m, 1H), 7.46 (m, 1H), 7.30 (m, 1H), 6.82 (dd, J=12.8, 4.8 Hz, 1H), 4.77 (m, 1H), 4.01 (m, 2H), 3.43 (m, 1H), 3.17 (m, 2H), 2.96 (m, 1H), 2.20 (m, 1H), 2.02 (m, 2H), 1.81 (m, 1H), 1.47 (m, 2H), 1.29 (m, 2H), 1.13 (m, 2H), 0.92 (m, 2H), 0.66 (m, 2H).
  • Example 257
  • Figure US20210093618A1-20210401-C00667
  • 5-Cyclopropyl-4-((1-(2,4-dichlorobenzoyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 134. LCMS (ESI) Method A: RT=4.82 min, m/z 542.8 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 7.73-7.72 (m, 1H), 7.53-7.49 (m, 1H), 7.43-7.37 (m, 1H), 7.15 (d, J=8.5 Hz, 1H), 6.91 (d, J=13.0 Hz, 1H), 4.57-4.52 (m, 1H), 3.99-3.95 (m, 2H), 3.30-3.28 (m, 1H), 2.25 (s, 3H), 3.13-3.03 (m, 1H), 2.85-2.82 (m, 1H), 2.13-1.97 (m, 2H), 1.92-1.89 (m, 1H), 1.75-1.72 (m, 1H), 1.43-1.25 (m, 2H), 0.89-0.85 (m, 2H), 0.67-0.63 (m, 2H).
  • Example 258
  • Figure US20210093618A1-20210401-C00668
  • 5-Cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(2,4-dichlorobenzoyl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in Example 134. LCMS (ESI) Method A: RT=5.00 min, m/z 568.8 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 7.73 (s, 1H), 7.53-7.49 (m, 1H), 7.43-7.37 (m, 1H), 7.14 (d, J=8.5 Hz, 1H), 6.94 (d, J=13.0 Hz, 1H), 4.57-4.52 (m, 1H), 3.99-3.96 (m, 2H), 3.13-3.04 (m, 2H), 2.87-2.83 (m, 1H), 2.12-1.89 (m, 3H), 1.75-1.72 (m, 1H), 1.42-1.23 (m, 3H), 1.10-1.06 (m, 4H), 0.89-0.86 (m, 2H), 0.69-0.63 (m, 2H).
  • Example 259
  • Figure US20210093618A1-20210401-C00669
  • 5-Cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(3,5-dichlorobenzyl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=6.21 min, m/z 555.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 7.52 (s, 1H), 7.39 (s, 2H), 7.14 (d, J=8.0 Hz, 1H), 6.89 (d, J=13.0 Hz, 1H), 3.94 (d, J=5.5 Hz, 2H), 3.62 (s, 2H), 3.05-2.90 (m, 1H), 2.91 (d, J=11.5 Hz, 2H), 2.16 (t, J=11.3 Hz, 2H), 2.03-1.99 (m, 1H), 1.82-1.79 (m, 3H), 1.43-1.37 (m, 2H), 1.05-0.99 (m, 4H), 0.90-0.86 (m, 2H), 0.65-0.62 (m, 2H).
  • Example 260
  • Figure US20210093618A1-20210401-C00670
  • N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=6.47 min, m/z 570.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6) δ 7.52 (s, 1H), 7.39 (s, 2H), 7.15 (d, J=8.0 Hz, 1H), 6.90 (d, J=12.5 Hz, 1H), 3.98-3.94 (m, 6H), 3.60 (s, 2H), 2.90 (d, J=11.0 Hz, 2H), 2.15-2.11 (m, 4H), 2.03-2.01 (m, 1H), 1.82-1.79 (m, 3H), 1.43-1.37 (m, 2H), 0.90-0.87 (m, 2H), 0.66-0.64 (m, 2H).
  • Example 261
  • Figure US20210093618A1-20210401-C00671
  • 4-((1-(3-Chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=6.34 min, m/z 593.3 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.48 (s, 2H), 7.35 (s, 1H), 7.14 (d, J=8.4 Hz, 1H), 6.90 (d, J=12.8 Hz, 1H), 3.95 (d, J=6.0 Hz, 2H), 3.67 (s, 2H), 3.40-3.32 (m, 2H), 2.92 (d, J=10.4 Hz, 2H), 2.20-2.15 (m, 2H), 2.03-1.98 (m, 1H), 1.82-1.79 (m, 3H), 1.45-1.37 (m, 2H), 1.21 (t, J=7.4 Hz, 3H), 0.90-0.86 (m, 2H), 0.65-0.62 (m, 2H).
  • Example 262
  • Figure US20210093618A1-20210401-C00672
  • (R)-4-((1-(1-(3-chlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 172. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-4-((1-(1-(3-chlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=75:25; flow: 3 mL/min; column temperature: 40° C.; RT=3.05 min). LCMS (ESI) Method A: RT=5.47 min, m/z 538.9 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 7.41-7.30 (m, 4H), 7.15 (d, J=8.4 Hz, 1H), 6.86 (d, J=12.8 Hz, 1H), 3.89 (d, J=5.6 Hz, 2H), 3.81-3.78 (m, 1H), 3.73-3.71 (m, 2H), 3.23 (s, 3H), 3.18 (s, 3H), 3.09-3.06 (m, 1H), 2.87-2.84 (m, 1H), 2.22-2.16 (m, 1H), 2.10-2.06 (m, 1H), 2.03-2.96 (m, 1H), 1.81-1.73 (m, 3H), 1.45-1.26 (m, 2H), 0.89-0.84 (m, 2H), 0.65-0.61 (m, 2H).
  • Example 263
  • Figure US20210093618A1-20210401-C00673
  • (S)-4-((1-(1-(3-chlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 172. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-4-((1-(1-(3-chlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=75:25; flow: 3 mL/min; column temperature: 40° C.; RT=4.35 min). LCMS (ESI) Method A: RT=5.46 min, m/z 539.0 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 7.41-7.30 (m, 4H), 7.15 (d, J=8.4 Hz, 1H), 6.86 (d, J=12.8 Hz, 1H), 3.89 (d, J=5.6 Hz, 2H), 3.81-3.78 (m, 1H), 3.73-3.71 (m, 2H), 3.23 (s, 3H), 3.18 (s, 3H), 3.09-3.06 (m, 1H), 2.87-2.84 (m, 1H), 2.22-2.16 (m, 1H), 2.10-2.06 (m, 1H), 2.03-2.96 (m, 1H), 1.81-1.73 (m, 3H), 1.45-1.26 (m, 2H), 0.89-0.84 (m, 2H), 0.65-0.61 (m, 2H).
  • Example 264
  • Figure US20210093618A1-20210401-C00674
  • (R)-5-cyclopropyl-4-((1-(1-(3,4-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 172. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(3,4-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=75:25; flow: 3 mL/min; column temperature: 40° C.; RT=3.71 min). LCMS (ESI) Method A: RT=5.74 min, m/z 573.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.60-7.58 (m, 2H), 7.32 (d, J=8.5 Hz, 1H), 7.15 (d, J=8.0 Hz, 1H), 6.83 (d, J=13.0 Hz, 1H), 3.89 (d, J=6 Hz, 2H), 3.74-3.68 (m, 3H), 3.22 (s, 3H), 3.15 (s, 3H), 3.01-3.00 (m, 1H), 2.82-2.78 (m, 1H), 2.14-2.09 (m, 1H), 2.02-1.96 (m, 2H), 1.79-1.71 (m, 3H), 1.38-1.28 (m, 2H), 0.88-0.85 (m, 2H), 0.63-0.60 (m, 2H).
  • Example 265
  • Figure US20210093618A1-20210401-C00675
  • (S)-5-cyclopropyl-4-((1-(1-(3,4-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 172. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(3,4-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=75:25; flow: 3 mL/min; column temperature: 40° C.; RT=5.12 min). LCMS (ESI) Method A: RT=5.71 min, m/z 573.0 [M+H]+. 1H NMR (500 MHz, DMSO-d6): δ 7.60-7.58 (m, 2H), 7.32 (d, J=8.5 Hz, 1H), 7.15 (d, J=8.0 Hz, 1H), 6.83 (d, J=13.0 Hz, 1H), 3.89 (d, J=6 Hz, 2H), 3.74-3.68 (m, 3H), 3.22 (s, 3H), 3.15 (s, 3H), 3.01-3.00 (m, 1H), 2.82-2.78 (m, 1H), 2.14-2.09 (m, 1H), 2.02-1.96 (m, 2H), 1.79-1.71 (m, 3H), 1.38-1.28 (m, 2H), 0.88-0.85 (m, 2H), 0.63-0.60 (m, 2H).
  • Example 266
  • Figure US20210093618A1-20210401-C00676
  • ((R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-hydroxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00677
  • Step 1
  • Figure US20210093618A1-20210401-C00678
  • Methyl 2-bromo-2-(3,5-dichlorophenyl)acetate
  • A mixture of methyl 2-(3,5-dichlorophenyl)acetate (2.0 g, 9.11 mol), N-bromosuccinimide (6.5 g, 36.51 mmol) and 2,2′-azobis(2-methylpropionitrile) (600 mg, 3.64 mmol) in carbon tetrachloride (50 mL) was stirred at 80° C. for 16 h. The reaction mixture was diluted with dichloromethane (200 mL) and brine (50 mL). The organic layer was separated, washed with brine (50 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (eluting with 10% ethylacetate in petroleum ether) to afford the target compound (2.5 g, 92%) as a pale yellow oil.
  • Step 2
  • Figure US20210093618A1-20210401-C00679
  • Methyl 2-(4-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)methyl)piperidin-1-yl)-2-(3,5-dichlorophenyl)acetate
  • The compound was synthesized as described in step 5 of Example 88. LCMS (ESI) m/z: 587.2 [M+H]+.
  • Step 3
  • Figure US20210093618A1-20210401-C00680
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-hydroxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • A mixture of methyl 2-(4-((2-cyclopropyl-5-fluoro-4-(methylsulfonylcarbamoyl)phenoxy)methyl)piperidin-1-yl)-2-(3,5-dichlorophenyl)acetate (200 mg, 0.37 mmol) and sodium borohydride (142 mg, 3.7 mmol) in MeOH (5 mL) was stirred at 25° C. for 2 h. The mixture was then concentrated, diluted with water (20 mL) and extracted with DCM (20 mL×3). The combined organic layers were washed with brine (20 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by reverse phase chromatography (eluting with 30-40% MeCN in 0.1% NH4HCO3) to afford the racemate (100 mg, 48.3%) as an white solid. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-hydroxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=80:20; flow: 3 mL/min; column temperature: 40° C.; RT=5.25 min). LCMS (ESI) Method A: RT=5.28 min, m/z 559.0 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 7.52 (s, 1H), 7.42 (s, 2H), 7.15 (d, J=8.4 Hz, 1H), 6.85 (d, J=12.8 Hz, 1H), 4.77 (brs, 1H), 3.90 (d, J=5.6 Hz, 2H), 3.78 (s, 2H), 3.65-3.61 (m, 1H), 3.17-3.11 (m, 4H), 2.86-2.85 (m, 1H), 2.20-1.97 (m, 3H), 1.82-1.74 (m, 3H), 1.44-1.16 (m, 2H), 0.89-85 (m, 2H), 0.65-0.61 (m, 2H).
  • Example 267
  • Figure US20210093618A1-20210401-C00681
  • (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-hydroxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 266. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-hydroxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: OJ-H, 4.6×250 mm, 5 min; mobile Phase: A: supercritical CO2, B: MeOH (0.1% DEA), A:B=80:20; flow: 3 mL/min; column temperature: 40° C.; RT=6.45 min). LCMS (ESI) Method A: RT=5.35 min, m/z 559.1 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 7.52 (s, 1H), 7.42 (s, 2H), 7.15 (d, J=8.4 Hz, 1H), 6.85 (d, J=12.8 Hz, 1H), 4.77 (br, 1H), 3.90 (d, J=5.6 Hz, 2H), 3.78 (s, 2H), 3.65-3.61 (m, 1H), 3.17-3.11 (m, 4H), 2.86-2.85 (m, 1H), 2.20-1.97 (m, 3H), 1.82-1.74 (m, 3H), 1.44-1.16 (m, 2H), 0.89-85 (m, 2H), 0.65-0.61 (m, 2H).
  • Example 268
  • Figure US20210093618A1-20210401-C00682
  • 4-((1-(3-Chloro-5-fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. LCMS (ESI) Method A: RT=5.75 min, m/z: 513.0 [M+H]+. 1H NMR (400 MHz, DMSO-d6): δ 7.35-7.34 (m, 1H), 7.28-7.27 (m, 1H), 7.20-7.16 (m, 2H), 6.86-6.83 (m, 1H), 3.94-3.92 (d, J=5.0 Hz, 2H), 3.63 (s, 2H), 3.13 (s, 3H), 2.94-2.91 (m, 2H), 2.19-2.15 (m, 2H), 2.01 (m, 1H), 1.82-1.80 (m, 3H), 1.42-1.40 (m, 2H), 0.89-0.86 (m, 2H), 0.64-0.62 (m, 2H).
  • Example 269
  • Figure US20210093618A1-20210401-C00683
  • (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00684
  • Step 1
  • Figure US20210093618A1-20210401-C00685
  • (R)-methyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate
  • The compound was synthesized as described in step 5 of Example 88. The enantiomer was separated by chiral SFC from the racemate, the enantiomer was arbitrarily assigned as (R)-methyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2. B: MeOD (0.1% DEA), A:B=80:20; flow: 2.4 mL/min; column temperature: 39.9° C.; RT=4.49 min). LCMS (ESI) m/z: 480.1 [M+H]+.
  • Step 2
  • Figure US20210093618A1-20210401-C00686
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid
  • The compound was synthesized as described in step 6 of Example 88. LCMS (ESI) m/z: 466.0 [M+H]+.
  • Step 3
  • Figure US20210093618A1-20210401-C00687
  • (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in step 5 of Example 80. The enantiomer was arbitrarily assigned as (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzamide. LCMS (ESI) Method A: RT=6.52 min, m/z: 569.0 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ 7.52 (m, 1H), 7.41 (m, 2H), 7.15-7.13 (d, J=5.0 Hz, 1H), 6.91-6.88 (d, J=13.0 Hz, 1H), 3.93-3.73 (m, 2H), 3.72-3.70 (m, 1H), 3.05-3.03 (m, 2H), 2.89-2.87 (m, 1H), 2.36-2.00 (m, 3H), 1.84-1.77 (m, 3H), 1.42-1.30 (m, 5H), 1.06-1.02 (m, 4H), 0.91-0.83 (m, 2H), 0.71-0.62 (m, 2H).
  • Example 270
  • Figure US20210093618A1-20210401-C00688
  • (S)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in Example 269. The enantiomer was arbitrarily assigned as (S)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzamide. LCMS (ESI) Method A: RT=6.51 min, m/z: 569.0 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ 7.52 (m, 1H), 7.41 (m, 2H), 7.15-7.13 (d, J=5.0 Hz, 1H), 6.90-6.88 (d, J=13.0 Hz, 1H), 3.93-3.73 (m, 2H), 3.72-3.71 (m, 1H), 3.05-3.03 (m, 2H), 2.89-2.87 (m, 1H), 2.21-1.98 (m, 3H), 1.84-1.77 (m, 3H), 1.42-1.30 (m, 5H), 1.29-0.98 (m, 4H), 0.91-0.83 (m, 2H), 0.71-0.62 (m, 2H).
  • Example 271
  • Figure US20210093618A1-20210401-C00689
  • (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in Example 269. The enantiomer was arbitrarily assigned as (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzamide. LCMS (ESI) Method A: RT=6.66 min, m/z: 584.0 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ 7.49 (s, 1H), 7.39-7.38 (d, J=1.0 Hz, 2H), 7.19-7.17 (d, J=7.5 Hz, 1H), 6.86-6.83 (d, J=13.0 Hz, 1H), 3.91-3.90 (m, 6H), 3.64-3.63 (m, 1H), 2.98 (m, 1H), 2.84-2.82 (m, 1H), 2.11-1.98 (m, 5H), 1.82-1.75 (m, 3H), 1.36-1.31 (m, 5H), 0.88-0.86 (m, 2H), 0.63-0.62 (m, 2H).
  • Example 272
  • Figure US20210093618A1-20210401-C00690
  • (S)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in Example 269. The enantiomer was arbitrarily assigned as (S)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzamide. LCMS (ESI) Method A: RT=6.67 min, m/z: 584.0 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ 7.49 (s, 1H), 7.39-7.38 (d, J=1.0 Hz, 2H), 7.19-7.17 (d, J=7.5 Hz, 1H), 6.83-6.80 (d, J=13.0 Hz, 1H), 3.91-3.86 (m, 6H), 3.64-3.63 (m, 1H), 2.98 (m, 1H), 2.82-2.80 (m, 1H), 2.11-1.98 (m, 5H), 1.82-1.75 (m, 3H), 1.36-1.31 (m, 5H), 0.88-0.86 (m, 2H), 0.63-0.62 (m, 2H).
  • Example 273
  • Figure US20210093618A1-20210401-C00691
  • 5-Cyclopropyl-4-((1-((3,5-dichlorophenyl)sulfonyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 129. LCMS (ESI) Method A: RT=5.54 min, m/z: 579.0 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ11.87 (brs, 1H), 8.13 (s, 1H), 8.04 (d, J=5.0 Hz, 2H), 7.14 (d, J=8.5 Hz, 1H), 6.90 (d, J=10.0 Hz, 1H), 3.94 (d, J=5 Hz, 2H), 3.75-3.74 (m, 2H), 3.26-3.22 (m, 3H), 3.46-3.36 (m, 2H), 1.99-1.85 (m, 4H), 1.42-1.35 (m, 2H), 0.89-0.83 (m, 2H), 0.67-0.62 (m, 2H).
  • Example 274
  • Figure US20210093618A1-20210401-C00692
  • 5-Cyclopropyl-4-((1-((3,5-dichlorophenyl)sulfonyl)azetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 129. LCMS (ESI) Method A: RT=5.01 min, m/z: 551.0 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ11.90 (brs, 1H), 8.09 (s, 1H), 7.84-7.83 (d, J=1.5 Hz, 2H), 7.15-7.13 (d, J=8.5 Hz, 1H), 6.89-6.87 (d, J=13.0 Hz, 1H), 4.08-4.06 (m, 2H), 3.96-3.92 (m, 2H), 3.78-3.75 (m, 2H), 3.24 (s, 3H), 3.02-2.96 (m, 1H), 1.81-1.76 (m, 1H), 0.83-0.79 (m, 2H), 0.63-0.61 (m, 2H).
  • Example 275
  • Figure US20210093618A1-20210401-C00693
  • 5-Cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-((3,5-dichlorophenyl)sulfonyl)piperidin-4-yl)methoxy)-2-fluorobenzamide
  • The compound was synthesized as described in Example 129. LCMS (ESI) Method A: RT=5.68 min, m/z: 604.8 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ8.05 (s, 1H), 7.76 (d, J=2.5 Hz, 2H), 7.14-7.12 (d, J=8.5 Hz, 1H), 6.91-6.88 (d, J=13.0 Hz, 1H), 3.94-3.93 (d, J=5.0 Hz, 2H), 3.75-3.73 (m, 2H), 3.05-3.02 (m, 1H), 2.50-2.42 (m, 2H), 1.98-1.85 (m, 4H), 1.42-1.37 (m, 2H), 0.87-0.85 (m, 4H), 0.66-0.64 (m, 2H), 0.62-0.56 (m, 2H).
  • Example 276
  • Figure US20210093618A1-20210401-C00694
  • (R)-4-((1-(1-(3-chloro-5-(trifluoromethyl)phenyl)ethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-4-((1-(1-(3-chloro-5-(trifluoromethyl)phenyl)ethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOD (0.1% DEA), A:B=80:20; flow: 2.4 mL/min; column temperature: 40.1° C.; RT=5.80 min). LCMS (ESI) Method A: RT=6.43 min, m/z: 577.0 [M+H]+. 1H-NMR (400 MHz, MeOD-d4): δ 7.80 (s, 1H), 7.73 (s, 2H), 7.34-7.32 (m, 1H), 6.67-6.64 (d, J=12.8 Hz, 1H), 4.05-4.03 (m, 1H), 3.86-3.85 (m, 2H), 3.44-3.42 (m, 1H), 3.21 (s, 3H), 3.11-3.08 (m, 1H), 2.49-2.44 (m, 2H), 2.05-1.93 (m, 4H), 1.66-1.54 (m, 5H), 0.91-0.87 (m, 2H), 0.83-0.80 (m, 2H).
  • Example 277
  • Figure US20210093618A1-20210401-C00695
  • (S)-4-((1-(1-(3-chloro-5-(trifluoromethyl)phenyl)ethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-4-((1-(1-(3-chloro-5-(trifluoromethyl)phenyl)ethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOD (0.1% DEA), A:B=80:20; flow: 2.4 mL/min; column temperature: 40.1° C.; RT=7.02 min). LCMS (ESI) Method A: RT=6.42 min, m/z: 577.0 [M+H]+. 1H-NMR (400 MHz, MeOD-d4): δ 7.79 (s, 1H), 7.74 (s, 2H), 7.34-7.32 (m, 1H), 6.71-6.65 (m, 1H), 4.11-4.05 (m, 1H), 3.88-3.83 (m, 2H), 3.46-3.45 (m, 1H), 3.23 (s, 3H), 3.15-3.11 (m, 1H), 2.51-2.48 (m, 2H), 2.04-1.93 (m, 4H), 1.69-1.51 (m, 5H), 0.91-0.86 (m, 2H), 0.73-0.68 (m, 2H).
  • Example 278
  • Figure US20210093618A1-20210401-C00696
  • (R)-4-((1-(1-(3-chloro-5-(trifluoromethyl)phenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 170. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-4-((1-(1-(3-chloro-5-(trifluoromethyl)phenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOD (0.1% DEA), A:B=80:20; flow: 2.4 mL/min; column temperature: 40.0° C.; RT=5.35 min). LCMS (ESI) Method A: RT=6.42 min. m/z: 591.2 [M+H]+. 1H-NMR (400 MHz, MeOD-d4): δ 7.77-7.72 (m, 3H), 7.36-7.34 (d, J=8.8 Hz, 1H), 6.76-6.68 (m, 1H), 4.00-3.95 (m, 1H), 3.81-3.78 (s, 2H), 3.23-3.22 (s, 3H), 3.10-3.02 (m, 1H), 2.78-2.67 (m, 3H), 2.08-2.02 (m, 1H), 1.94-1.84 (m, 2H), 1.68-1.55 (m, 5H), 1.16 (s, 3H), 0.92-0.88 (m, 2H), 0.67-0.63 (m, 2H).
  • Example 279
  • Figure US20210093618A1-20210401-C00697
  • (S)-4-((1-(1-(3-chloro-5-(trifluoromethyl)phenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 170. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (S)-4-((1-(1-(3-chloro-5-(trifluoromethyl)phenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOD (0.1% DEA), A:B=80:20; flow: 2.4 mL/min; column temperature: 40.0° C.; RT=4.69 min). LCMS (ESI) Method A: RT=6.42 min, m/z: 591.3 [M+H]+. 1H-NMR (400 MHz, MeOD-d4): δ 7.79-7.72 (m, 3H), 7.36-7.34 (d, J=8.8 Hz, 1H), 6.76-6.68 (m, 1H), 4.00-3.95 (m, 1H), 3.81-3.78 (s, 2H), 3.23-3.22 (s, 3H), 3.07-3.05 (m, 1H), 2.78-2.67 (m, 3H), 2.08-2.02 (m, 1H), 1.94-1.84 (m, 2H), 1.69-1.53 (m, 5H), 1.16 (s, 3H), 0.92-0.88 (m, 2H), 0.67-0.63 (m, 2H).
  • Example 280
  • Figure US20210093618A1-20210401-C00698
  • (S)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 170. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOD (0.1% DEA), A:B=70:30; flow: 2.4 mL/min; column temperature: 39.9° C.; RT=3.89 min). LCMS (ESI) Method A: RT=6.46 min, m/z: 557.2 [M+H]+. 1H-NMR (400 MHz, MeOD-d4): δ 7.68-7.66 (d, J=11.5 Hz, 1H), 7.57-7.56 (d, J=2.5 Hz, 1H), 7.46-7.42 (m, 1H), 7.38-7.36 (d, J=8.5 Hz, 1H), 6.75-6.72 (d, J=13.0 Hz, 1H), 4.47-4.46 (m, 1H), 3.82 (s, 2H), 3.20-3.17 (m, 4H), 2.90-2.79 (m, 3H), 2.06-2.04 (m, 1H), 1.94-1.88 (m, 2H), 1.66 (s, 2H), 1.54-1.53 (d, J=7.0 Hz, 3H), 1.18 (s, 3H), 0.93-0.89 (m, 2H), 0.67-0.63 (m, 2H).
  • Example 281
  • Figure US20210093618A1-20210401-C00699
  • (R)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 170. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)ethyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AD-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOD (0.1% DEA), A:B=70:30: flow: 2.4 mL/min; column temperature: 39.9° C.; RT=5.67 min). LCMS (ESI) Method A: RT=6.46 min, m/z: 557.2 [M+H]+. 1H-NMR (400 MHz, MeOD-d4): δ 7.70-7.68 (d, J=11.5 Hz, 1H), 7.57-7.56 (d, J=2.5 Hz, 1H), 7.47-7.45 (m, 1H), 7.36-7.34 (d, J=8.5 Hz, 1H), 6.72-6.69 (d, J=13.0 Hz, 1H), 4.47-4.46 (m, 1H), 3.82 (s, 2H), 3.20-3.17 (m, 4H), 2.88-2.82 (m, 3H), 2.06-2.04 (m, 1H), 1.96-1.85 (m, 2H), 1.66 (s, 2H), 1.54-1.53 (d, J=7.0 Hz, 3H), 1.18 (s, 3H), 0.93-0.89 (m, 2H), 0.67-0.63 (m, 2H).
  • Example 282
  • Figure US20210093618A1-20210401-C00700
  • (S)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 172. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AS-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOD (0.1% DEA), A:B=75:25; flow: 2.25 mL/min; column temperature: 40.3° C.; RT=2.95 min). LCMS (ESI) Method A: RT=6.00 min, m/z: 573.1 [M+H]+. 1H-NMR (400 MHz, MeOD-d4): δ7.69-7.66 (m, 1H), 7.55-7.54 (d, J=2.0 Hz, 1H), 7.41-7.39 (m, 1H), 7.33-7.31 (d, J=8.4 Hz, 1H), 6.75-6.71 (m, 1H), 4.41 (m, 1H), 3.94-3.92 (m, 2H), 3.77 (s, 2H), 3.43-3.32 (m, 4H), 3.24 (s, 3H), 2.98 (m, 1H), 2.55-2.41 (m, 2H), 2.08-1.86 (m, 4H), 1.67-1.51 (m, 2H), 0.93-0.89 (m, 2H), 0.66-0.64 (d, J=4.8 Hz, 2H).
  • Example 283
  • Figure US20210093618A1-20210401-C00701
  • (R)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 172. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide. Chiral HPLC (column: AS-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOD (0.1% DEA), A:B=75:25; flow: 2.25 mL/min; column temperature: 40.3° C.; RT=3.85 min). LCMS (ESI) Method A: RT=6.01 min, m/z: 573.1 [M+H]+. 1H-NMR (400 MHz, MeOD-d4): δ7.69-7.66 (m, 1H), 7.55-7.54 (d, J=2.0 Hz, 1H), 7.41-7.39 (m, 1H), 7.33-7.31 (d, J=8.4 Hz, 1H), 6.75-6.71 (m, 1H), 4.21 (m, 1H), 3.81-3.78 (m, 2H), 3.77 (s, 2H), 3.43-3.32 (m, 4H), 3.24 (s, 3H), 2.98 (m, 1H), 2.55-2.41 (m, 2H), 2.08-1.86 (m, 4H), 1.67-1.51 (m, 2H), 0.93-0.89 (m, 2H), 0.66-0.64 (m, 2H).
  • Example 284
  • Figure US20210093618A1-20210401-C00702
  • (R)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide. Chiral HPLC (column: AS-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOD (0.1% DEA), A:B=75:25; flow: 2.25 mL/min; column temperature: 37.7° C.; RT=4.46 min). LCMS (ESI) Method A: RT=6.28 min, m/z: 557.1 [M+H]+. 1H-NMR (400 MHz, MeOD-d4): δ7.69-7.64 (m, 1H), 7.55-7.54 (m, 1H), 7.44-7.42 (d, J=8.4 Hz, 1H), 7.31-7.29 (d, J=8.4 Hz, 1H), 6.73-6.70 (d, J=12.8 Hz, 1H), 4.36-4.35 (m, 1H), 3.92-3.86 (m, 2H), 3.53-3.50 (m, 1H), 3.34-3.32 (m, 2H), 3.06-3.03 (m, 1H), 2.49-2.41 (m, 2H), 2.08-1.89 (m, 4H), 1.68-1.65 (m, 1H), 1.54-1.49 (m, 4H), 1.38-1.33 (s, 3H), 0.93-0.82 (m, 2H), 0.61-0.59 (m, 2H).
  • Example 285
  • Figure US20210093618A1-20210401-C00703
  • (S)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 88. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide. Chiral HPLC (column: AS-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOD (0.1% DEA), A:B=75:25; flow: 2.25 mL/min; column temperature: 37.7° C.; RT=2.99 min). LCMS (ESI) Method A: RT=6.29 min, m/z: 557.2 [M+H]+. 1H-NMR (400 MHz, MeOD-d4): δ7.71-7.65 (m, 1H), 7.56-7.55 (m, 1H), 7.46-7.42 (d, J=8.4 Hz, 1H), 7.31-7.30 (d, J=8.4 Hz, 1H), 6.73-6.70 (d, J=12.8 Hz, 1H), 4.49 (m, 1H), 3.89-3.86 (m, 2H), 3.58-3.55 (m, 1H), 3.34-3.32 (m, 2H), 3.06-3.03 (m, 1H), 2.49-2.41 (m, 2H), 2.08-1.89 (m, 4H), 1.68-1.65 (m, 1H), 1.54-1.49 (m, 4H), 1.38-1.33 (s, 3H), 0.93-0.82 (m, 2H), 0.61-0.59 (m, 2H).
  • Example 286
  • Figure US20210093618A1-20210401-C00704
  • (S)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 172. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide. Chiral HPLC (column: AS-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOD (0.1% DEA), A:B=75:25; flow: 2.25 mL/min; column temperature: 40.5° C.; RT=2.87 min). LCMS (ESI) Method A: RT=6.10 min, m/z: 587.0 [M+H]+. 1H-NMR (400 MHz, DMSO-d6): δ7.58-7.54 (m, 2H), 7.43-7.40 (m, 1H), 7.16-7.13 (d, J=10.5 Hz, 1H), 6.86-6.83 (d, J=12.8 Hz, 1H), 4.05-4.02 (m, 1H), 3.90-3.88 (m, 2H), 3.68-3.58 (m, 2H), 3.29-3.28 (m, 2H), 3.19 (s, 3H), 3.10-3.08 (m, 1H), 2.73-2.69 (m, 1H), 2.19-2.13 (m, 1H), 2.03-1.97 (m, 2H), 1.81-1.67 (m, 3H), 1.35-1.18 (m, 5H), 0.95-0.82 (m, 2H), 0.72-0.61 (m, 2H).
  • Example 287
  • Figure US20210093618A1-20210401-C00705
  • (R)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 172. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(2,4-dichlorophenyl)-2-methoxyethyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide. Chiral HPLC (column: AS-H, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOD (0.1% DEA), A:B=75:25; flow: 2.25 mL/min; column temperature: 40.5° C.; RT=3.66 min). LCMS (ESI) Method A: RT=6.10 min, m/z: 587.0 [M+H]+. 1H-NMR (400 MHz, DMSO-d6): δ7.58-7.54 (m, 2H), 7.43-7.40 (m, 1H), 7.16-7.14 (d, J=10.5 Hz, 1H), 6.86-6.82 (d, J=12.8 Hz, 1H), 4.05-4.02 (m, 1H), 3.90-3.88 (m, 2H), 3.67-3.58 (m, 2H), 3.30-3.28 (m, 2H), 3.19 (s, 3H), 3.10-3.08 (m, 1H), 2.71-2.69 (m, 1H), 2.18-2.13 (m, 1H), 2.03-1.97 (m, 2H), 1.81-1.67 (m, 3H), 1.35-1.18 (m, 5H), 0.89-0.81 (m, 2H), 0.61-0.59 (m, 2H).
  • Example 288
  • Figure US20210093618A1-20210401-C00706
  • (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-3-methylazetidin-3-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 68. The enantiomer was separated by chiral SFC from the racemate, the first eluting fraction was arbitrarily assigned as (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-3-methylazetidin-3-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide. Chiral HPLC (column: IC, 4.6×150 mm, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOD (0.1% DEA), A:B=65:35; flow: 1.95 mL/min; column temperature: 39.9° C.; RT=2.73 min). LCMS (ESI) Method A: RT=6.04 min, m/z: 543.1 [M+H]+. 1H-NMR (400 MHz, MeOD-d4): δ7.42-7.33 (m, 4H), 6.83-6.76 (m, 1H), 4.10-4.04 (m, 2H), 3.81 (m, 1H), 3.64-3.45 (m, 2H), 3.43-3.36 (m, 2H), 3.36-3.35 (m, 1H), 3.12-3.22 (m, 1H), 2.09-2.06 (m, 1H), 1.47 (s, 3H), 1.39-1.30 (m, 6H), 0.94-0.92 (m, 2H), 0.70-0.65 (m, 2H).
  • Example 289
  • Figure US20210093618A1-20210401-C00707
  • (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-3-methylazetidin-3-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • The compound was synthesized as described in Example 68. The enantiomer was separated by chiral SFC from the racemate, the second eluting fraction was arbitrarily assigned as (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-3-methylazetidin-3-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide. Chiral HPLC (column: IC, 4.6×150 mm, 4.6×250 mm, 5 μm; mobile Phase: A: supercritical CO2, B: MeOD (0.1% DEA), A:B=65:35; flow: 1.95 mL/min; column temperature: 39.9° C.; RT=3.22 min). LCMS (ESI) Method A: RT=6.04 min, m/z: 543.1 [M+H]+. 1H-NMR (400 MHz, MeOD-d4): δ7.40-7.33 (m, 4H), 6.84-6.76 (m, 1H), 4.10-4.04 (m, 2H), 3.72 (m, 1H), 3.55-3.43 (m, 2H), 3.45-3.33 (m, 2H), 3.36-3.35 (m, 1H), 3.12-3.22 (m, 1H), 2.09-2.06 (m, 1H), 1.47 (s, 3H), 1.39-1.30 (m, 6H), 0.94-0.92 (m, 2H), 0.71-0.65 (m, 2H).
  • Example 290
  • Figure US20210093618A1-20210401-C00708
  • 5-Cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-phenylpiperidin-4-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 79. LCMS (ESI) Method A: RT=5.51 min, m/z: 473.1 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ7.27-7.23 (m, 1H), 7.25-7.23 (d, J=7 Hz, 2H), 7.04-7.03 (d, J=8.0 Hz, 2H), 6.87-6.84 (m, 1H), 6.78-6.75 (d, J=12.5 Hz, 1H), 4.00-3.99 (d, J=6.0 Hz, 2H), 3.77-3.75 (m, 2H), 3.26 (s, 1H), 2.82-1.72 (m, 2H), 2.09-1.99 (m, 4H), 1.71-1.65 (m, 2H), 1.23 (m, 2H), 1.06-1.05 (m, 2H), 0.93-0.66 (m, 2H), 0.65 (m, 2H).
  • Example 291
  • Figure US20210093618A1-20210401-C00709
  • N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluoro-4-((1-phenylpiperidin-4-yl)methoxy)benzamide
  • The compound was synthesized as described in Example 79. LCMS (ESI) Method A: RT=5.40 min, m/z: 488.0 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ7.23-7.18 (m, 3H), 6.95-6.94 (m, 2H), 6.75-6.69 (m, 2H), 3.93-3.92 (d, J=6.0 Hz, 2H), 3.75-3.73 (m, 2H), 3.68-3.65 (m, 4H), 2.72-2.68 (m, 2H), 2.01-1.89 (m, 6H), 1.49-1.46 (m, 2H), 0.87-0.84 (m, 2H), 0.54-0.52 (m, 2H).
  • Example 292
  • Figure US20210093618A1-20210401-C00710
  • 5-Cyclopropyl-4-((1-(3,5-dichlorophenyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 79. LCMS (ESI) Method A: RT=6.07 min, m/z: 514.8 [M+H]+. 1H-NMR (500 MHz, CDCl3-d4): δ7.20-7.19 (d, J=8.5 Hz, 1H), 6.93 (d, J=1.5 Hz, 2H), 6.82-6.79 (m, 2H), 3.95-3.94 (d, J=6.5 Hz, 2H), 3.86-3.83 (m, 2H), 3.04 (s, 3H), 2.82 (m, 2H), 1.98 (m, 2H), 1.84-1.82 (m, 2H), 1.43 (m, 2H), 0.86-0.84 (m, 2H), 0.60-0.59 (m, 2H).
  • Example 293
  • Figure US20210093618A1-20210401-C00711
  • 4-((1-(2-Chlorophenyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 79. LCMS (ESI) Method A: RT=5.53 min, m/z: 480.9 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ7.41-7.39 (m, 1H), 7.39-7.27 (m, 1H), 7.21-7.16 (m, 2H), 7.04-7.01 (m, 1H), 6.85-6.82 (m, 1H), 4.00-3.99 (d, J=5.5 Hz, 2H), 3.32 (m, 2H), 3.05-3.01 (m, 3H), 2.71-2.54 (m, 2H), 2.05-1.90 (m, 4H), 1.58-1.50 (m, 2H), 0.91-0.89 (m, 2H), 0.62-0.61 (m, 2H).
  • Example 294
  • Figure US20210093618A1-20210401-C00712
  • 4-((1-(3-Chlorophenyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was synthesized as described in Example 79. LCMS (ESI) Method A: RT=5.55 min, m/z: 480.9 [M+H]+. 1H-NMR (500 MHz, DMSO-d6): δ7.20-7.17 (m, 2H), 6.94-6.90 (m, 3H), 6.74-6.72 (d, J=7.5 Hz 1H), 3.97-3.95 (d, J=6.5 Hz, 2H), 3.80-3.78 (m, 2H), 3.12-3.11 (s, 3H), 2.78-2.74 (m, 2H), 2.00-1.98 (m, 2H), 1.87-1.84 (m, 2H), 1.45-1.43 (m, 2H), 0.87-0.85 (m, 2H), 0.62-0.61 (m, 2H).
  • Example 295 Synthesis of 4-(((R)-1-((S)-1-(2-chloro-4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00713
  • Step 1. Preparation of methyl 4-(((R)-1-((S)-1-(2-chloro-4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate and methyl 4-(((R)-1-((R)-1-(2-chloro-4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00714
  • Following the procedure as described in Example 50 step 1, and making variations as required to replace 1,3-dichloro-5-(1-chloroethyl)benzene with 2-chloro-1-(1-chloroethyl)-4-fluorobenzene. The first eluting fraction was arbitrarily assigned as methyl 4-(((R)-1-((S)-1-(2-chloro-4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate was obtained as a colorless solid (0.17 g, 15%): 1H NMR (300 MHz, CDCl3) δ7.50-7.42 (m, 2H), 7.06 (dd, J=2.6 Hz, 8.6 Hz, 1H), 6.87 (dt, J=2.5 Hz, 8.4 Hz, 1H), 6.52 (d, J=12.9 Hz, 1H), 4.38-4.36 (m, 1H), 3.92 (q, J=6.6 Hz, 1H), 3.88 (s, 3H), 3.07-3.04 (m, 1H), 2.55-2.51 (m, 1H), 2.39-2.28 (m, 2H), 2.13-2.01 (m, 2H), 1.84-1.77 (m, 1H), 1.67-1.56 (m, 3H), 1.27 (d, J=6.5 Hz, 3H), 0.96-0.89 (m, 2H), 0.69-0.65 (m, 2H); MS(ES+) m/z 450, 452 (M+1).
  • The second eluting fraction was arbitrarily assigned as methyl 4-(((R)-1-((R)-1-(2-chloro-4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate as a colorless solid (0.26 g, 22%): 1H NMR (300 MHz, CDCl3) δ7.56-7.51 (m, 1H), 7.38 (d, J=8.4 Hz, 1H), 7.06-6.95 (m, 2H), 6.46 (d, J=13.0 Hz, 1H), 4.32-4.26 (m, 1H), 3.94 (q, J=6.6 Hz, 1H), 3.86 (s, 3H), 2.96-2.89 (m, 2H), 2.39-1.83 (m, 6H), 1.68-1.45 (m, 2H), 1.27 (d, J=6.6 Hz, 3H), 0.90-0.84 (m, 2H), 0.64-0.59 (m, 2H); MS(ES+) m/z 450.2, 452.2 (M+1).
  • Step 2. Preparation of 4-(((R)-1-((S)-1-(2-chloro-4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00715
  • Following the procedure as described in Example 50 step 2, and making variations as required to replace methyl 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)-piperidin-3-yl)oxy)-2-fluorobenzoate with methyl 4-(((R)-1-((S)-1-(2-chloro-4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.04 g, 24%): MS(ES+) m/z 436.2, 438.2 (M+1); MS(ES−) m/z 434.3, 436.3 (M−1).
  • Step 3. Preparation of 4-(((R)-1-((S)-1-(2-chloro-4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00716
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 4-(((R)-1-((S)-1-(2-chloro-4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.01 g, 32%): 1H NMR (300 MHz, DMSO-d6) δ 11.85 (br s, 1H), 7.51 (dd, J=6.6 Hz, 8.6 Hz, 1H), 7.37 (dd, J=2.6 Hz, 8.9 Hz, 1H), 7.14 (d, J=8.4 Hz, 1H), 7.05 (dt, J=2.6 Hz, 8.6 Hz, 1H), 6.92 (d, J=13.1 Hz, 1H), 4.56-4.55 (m, 1H), 3.91-3.89 (m, 1H), 3.32 (s, 3H), 2.78-2.74 (m, 2H), 2.47-2.42 (m, 2H), 2.15-2.06 (m, 1H), 1.87-1.77 (m, 2H), 1.59-1.46 (m, 2H), 1.23 (d, J=6.4 Hz, 3H), 0.93-0.90 (m, 2H), 0.70-0.67 (m, 2H); MS(ES+) m/z 513.2, 515.1 (M+1); MS(ES−) m/z 511.2, 513.2 (M−1).
  • Example 296 Synthesis of 4-(((R)-1-((R)-1-(2-chloro-4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00717
  • Step 1. Preparation of 4-(((R)-1-((R)-1-(2-chloro-4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00718
  • Following the procedure as described in Example 50 step 2 and making variations as required to replace methyl 5-cyclopropyl-4-(((R)-1-((5)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)oxy)-2-fluorobenzoate with methyl 4-(((R)-1-((R)-1-(2-chloro-4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a beige color solid (0.23 g, 99%): MS(ES+) m/z 436.2, 438.1 (M+1); MS(ES−) m/z 434.2, 436.2 (M−1).
  • Step 2. Preparation of 4-(((R)-1-((R)-1-(2-chloro-4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00719
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 4-(((R)-1-((R)-1-(2-chloro-4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.17 g, 48%): 1H NMR (300 MHz, DMSO-d6) δ 11.82 (br s, 1H), 7.61 (dd, J=6.5 Hz, 8.7 Hz, 1H), 7.38 (dd, J=2.4 Hz, 8.8 Hz, 1H), 7.22 (dt, J=2.6 Hz, 8.5 Hz, 1H), 7.09 (d, J=8.4 Hz, 1H), 6.91 (d, J=13.1 Hz, 1H), 4.55-4.50 (m, 1H), 3.92 (q, J=6.3 Hz, 1H), 3.32 (s, 3H), 2.77-2.74 (m, 2H), 2.36-2.19 (m, 2H), 2.08-1.94 (m, 2H), 1.81-1.75 (m, 1H), 1.59-1.46 (m, 2H), 1.23 (d, J=6.6 Hz, 3H), 0.89-0.85 (m, 2H), 0.70-0.65 (m, 2H); MS(ES+) m/z 513.2, 515.1 (M+1); MS(ES−) m/z 511.2, 513.2 (M−1).
  • Example 297 and Example 298 Synthesis of 4-(((R)-1-((R)-1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00720
  • And 4-(((R)-1-((S)-1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00721
  • Step 1. Preparation of 1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl trifluoromethanesulfonate
  • Figure US20210093618A1-20210401-C00722
  • To a solution of 1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethanol (1.14 g, 5.00 mmol) and 2,6-dimethylpyridine (0.86 g, 8.00 mmol) in cyclohexane (10 mL) was added dropwise trifluoromethanesulfonic anhydride (2.12 g, 7.50 mmol) at 10° C. The reaction mixture was stirred at ambient temperature for 5 hours, and diluted with hexanes (200 mL). The organic layer was washed with 1N aqueous hydrochloric acid solution (30 mL), 25% aqueous ammonium chloride solution (2×40 mL); dried over anhydrous sodium sulfate and concentrated in vacuo to afford the title compound as a colorless oil (1.30 g, 72%): 1H NMR (300 MHz, CDCl3) δ7.66-7.61 (m, 1H), 7.26-7.22 (m, 1H), 7.19-7.12 (m, 1H), 6.46 (q, J=5.6 Hz, 1H).
  • Step 2. Preparation of methyl 4-(((3R)-1-(1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00723
  • To a mixture of (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate (1.07 g, 3.66 mmol) and potassium carbonate (0.69 g, 4.99 mmol) in cyclohexane (10 mL) was added 1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl trifluoromethanesulfonate (1.20 g, 3.33 mmol). The reaction mixture was heated at 70° C. for 72 hours, cooled to ambient temperature and diluted with ethyl acetate (250 mL). The organic layer was washed with 1N aqueous hydrochloric acid solution (30 mL) and 25% aqueous ammonium chloride solution (2×40 mL); dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by column chromatography (0-25% ethyl acetate in hexanes) afforded the title compound as a colorless oil (1.20 g, 71%): MS(ES+) m/z 504.1, 506.1 (M+1);
  • Step 3. Preparation of 4-(((3R)-1-(1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00724
  • Following the procedure as described in Example 50 step 2 and making variations as required to replace methyl 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)-piperidin-3-yl)oxy)-2-fluorobenzoate and methyl with methyl 4-(((3R)-1-(1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless oil (0.98 g, 92%): 1H NMR (300 MHz, CDCl3) δ7.53-7.43 (m, 2H), 7.25-7.21 (m, 0.5H), 7.17-7.13 (m, 0.5H), 7.03-6.95 (m, 1H), 6.47 (d, J=12.9 Hz, 0.5H), 6.37 (d, J=12.9 Hz, 0.5H), 4.76-4.66 (m, 1H), 4.38-4.31 (m, 0.5H), 4.27-4.20 (m, 0.5H), 3.14-3.10 (m, 1H), 2.94-2.84 (m, 1H), 2.75-2.60 (m, 2H), 2.05-1.96 (m, 2H), 1.91-1.80 (m, 1H), 1.70-1.52 (m, 2H), 0.91-0.85 (m, 2H), 0.70-0.57 (m, 2H); MS(ES+) m/z 490.2, 492.2 (M+1); MS(ES−) m/z 488.2, 490.2 (M−1).
  • Step 4. Preparation of 4-(((R)-1-((R)-1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00725
  • And 4-(((R)-1-((S)-1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00726
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 4-(((3R)-1-(1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid. The residue was purified by preparative-HPLC, the first eluting fraction was arbitrarily assigned as 4-(((R)-1-((R)-1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide as a colorless solid (0.02 g, 4%): 1H NMR (300 MHz, CDCl3) δ8.69 (d, J=16.0 Hz, 1H), 7.52-7.46 (m, 2H), 7.12 (dd, J=2.6 Hz, 8.4 Hz, 1H), 7.02-6.95 (m, 1H), 6.44 (d, J=14.6 Hz, 1H), 4.70 (q, J=8.8 Hz, 1H), 4.37-4.32 (m, 1H), 3.42 (s, 3H), 3.13-3.08 (m, 1H), 2.93-2.89 (m, 1H), 2.75-2.69 (m, 2H), 2.10-1.85 (m, 3H), 1.72-1.53 (m, 2H), 0.95-0.87 (m, 2H), 0.72-0.66 (m, 1H), 0.62-0.56 (m, 1H); MS(ES+) m/z 567.1, 569.1 (M+1); MS(ES−) m/z 565.1, 567.1 (M−1).
  • The second eluting fraction was arbitrarily assigned as 4-(((R)-1-((S)-1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide as a colorless solid (0.01 g, 2%): 1H NMR (300 MHz, CDCl3) δ8.68 (d, J=16.0 Hz, 1H), 7.57-7.51 (m, 2H), 7.26-7.22 (m, 1H), 7.04-6.97 (m, 1H), 6.38 (d, J=14.6 Hz, 1H), 4.73 (q, J=8.8 Hz, 1H), 4.31-4.23 (m, 1H), 3.41 (s, 3H), 3.16-3.12 (m, 1H), 2.91-2.85 (m, 1H), 2.78-2.60 (m, 2H), 2.09-1.99 (m, 2H), 1.70-1.54 (m, 3H), 0.94-0.91 (m, 2H), 0.67-0.63 (m, 2H); MS(ES+) m/z 567.1, 569.1 (M+1); MS(ES−) m/z 565.1, 567.1 (M−1).
  • Example 299 Synthesis of 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00727
  • Step 1. Preparation of 1-(3,5-dichlorophenyl)-2,2,2-trifluoroethyl trifluoromethanesulfonate
  • Figure US20210093618A1-20210401-C00728
  • Following the procedure as described in Example 297 step 1, and making variation as required to replace 1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethanol with 1-(3,5-dichlorophenyl)-2,2,2-trifluoroethanol, the title compound was obtained as a colorless oil (1.30 g, 72%): 1H NMR (300 MHz, CDCl3) δ7.66-7.61 (m, 1H), 7.19-7.12 (m, 2H), 6.46 (q, J=5.6 Hz, 1H).
  • Step 2. Preparation of tert-butyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00729
  • Following the procedure as described in Example 297 step 2, and making variations as required to replace (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate and to replace 1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl trifluoromethanesulfonate with 1-(3,5-dichlorophenyl)-2,2,2-trifluoroethyl trifluoromethanesulfonate, the title compound was obtained as a colorless oil (1.20 g, 90%): 1H NMR (300 MHz, CDCl3) δ7.37-7.29 (m, 4H), 6.47 (d, J=12.6 Hz, 1H), 4.49-4.01 (m, 1H), 3.80 (d, J=5.9 Hz, 2H), 2.99-2.93 (m, 2H), 2.47-2.29 (m, 2H), 2.01-1.92 (m, 1H), 1.84-1.81 (m, 3H), 1.55 (s, 9H), 1.50-1.33 (m, 2H), 0.89-0.83 (m, 2H), 0.63-0.57 (m, 2H).
  • Step 3. Preparation of 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00730
  • To a solution of tert-butyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate (1.10 g, 1.91 mmol) in dichloromethane (30 mL) was added trifluoroacetic acid (10 mL). The resulting solution was stirred at ambient temperature for 1 hour and then concentrated in vacuo to provide the title compound as a gummy solid (1.0 g, 99%): MS(ES+) m/z 520.1, 522.1 (M+1); MS(ES−) m/z 518.1, 520.1 (M−1).
  • Step 4. Preparation of 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00731
  • Following the procedure as described in Example 3 step 5, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, and to replace cyclopropylsulfonamide with methanesulfonamide, the title compound was obtained as a colorless solid (0.35 g, 50%), 1H NMR (300 MHz, DMSO-d6) δ 11.88 (br s, 1H), 7.72 (s, 1H), 7.45-7.44 (m, 2H), 7.12 (d, J=8.3 Hz, 1H), 6.93 (d, J=13.0 Hz, 1H), 4.77 (q, J=9.3 Hz, 1H), 3.91 (d, J=5.7 Hz, 2H), 3.33 (s, 3H), 3.00-2.99 (m, 2H), 2.33-2.25 (m, 1H), 2.04-1.95 (m, 2H), 1.79-1.70 (m, 3H), 1.41-1.30 (m, 2H), 0.90-0.84 (m, 2H), 0.69-0.64 (m, 2H); MS(ES+) m/z 597.1, 599.0 (M+1).
  • Example 300 Synthesis of 4-((1-(1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00732
  • Step 1. Preparation of methyl 4-((1-(1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00733
  • Following the procedure as described in Example 297 step 2, and making variation as required to replace (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate, the title compound was obtained as a colorless solid (0.80 g, 47%): 1H NMR (300 MHz, CDCl3) δ7.59-7.54 (m, 1H), 7.43 (d, J=8.3 Hz, 1H), 7.20 (dd, J=2.6 Hz, 8.4 Hz, 1H), 7.03 (dt, J=2.6 Hz, 8.3 Hz, 1H), 6.51 (d, J=12.7 Hz, 1H), 4.69 (q, J=8.7 Hz, 1H), 3.87 (s, 3H), 3.81 (d, J=6.0 Hz, 2H), 3.13-3.09 (m, 1H), 3.00-2.96 (m, 1H), 2.52 (t, J=11.2 Hz, 1H), 2.30 (t, J=11.1 Hz, 1H), 2.03-1.94 (m, 1H), 1.83-1.77 (m, 3H), 1.48-1.31 (m, 2H), 0.90-1.85 (m, 2H), 0.65-0.59 (m, 2H); MS(ES+) m/z 518.1, 520.1 (M+1).
  • Step 2. Preparation of 4-((1-(1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00734
  • Following the procedure as described in Example 50 step 2 and making variations as required to replace methyl 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)oxy)-2-fluorobenzoate with methyl 4-((1-(1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.75 g, 96%): 1H NMR (300 MHz, DMSO-d6) δ12.82 (s, 1H), 7.65-7.59 (m, 2H), 7.36-7.28 (m, 2H), 6.87 (d, J=13.1 Hz, 1H), 4.84 (q, J=9.1 Hz, 1H), 3.90 (d, J=5.7 Hz, 2H), 3.07-2.95 (m, 2H), 2.49-2.40 (m, 1H), 2.20-2.13 (m, 1H), 2.02-1.93 (m, 1H), 1.77-1.74 (m, 3H), 1.33-1.27 (m, 2H), 0.93-0.83 (m, 2H), 0.59-0.54 (m, 2H); MS(ES+) m/z 504.1, 506.1 (M+1);
  • Step 3. Preparation of 4-((1-(1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00735
  • Following the procedure as described in Example 3 step 5, and making variation as required to replace (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 4-((1-(1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and to replace cyclopropylsulfonamide with methanesulfonamide, the title compound was obtained as a colorless solid (0.32 g, 56%): 1H NMR (300 MHz, DMSO-d6) δ11.88 (br s, 1H), 7.65-7.59 (m, 2H), 7.33 (dt, J=2.7 Hz, 8.5 Hz, 1H), 7.12 (d, J=8.3 Hz, 1H), 6.93 (d, J=13.0 Hz, 1H), 4.84 (q, J=9.0 Hz, 1H), 3.91 (d, J=5.6 Hz, 2H), 3.33 (s, 3H), 3.01 (dd, J=11.1 Hz, 27.2 Hz, 2H), 2.49-2.40 (m, 1H), 2.16 (t, J=10.9 Hz, 1H), 2.03-1.94 (m, 1H), 1.77-1.74 (m, 3H), 1.38-1.27 (m, 2H), 0.90-0.83 (m, 2H), 0.68-0.63 (m, 2H); MS(ES+) m/z 581.2, 583.2 (M+1); MS(ES−) m/z 579.2, 581.2 (M−1).
  • Example 301 Synthesis of 4-((1-(1-(3-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00736
  • Step 1. Preparation of 1-(3-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl trifluoromethanesulfonate
  • Figure US20210093618A1-20210401-C00737
  • Following the procedure as described in Example 297 step 1, and making variation as required to replace 1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethanol with 1-(3-chloro-4-fluorophenyl)-2,2,2-trifluoroethanol, the title compound was obtained as a brown oil (4.60 g, 76%): 1H NMR (300 MHz, CDCl3) δ7.58-7.55 (m, 1H), 7.42-7.37 (m, 1H), 7.29-7.24 (m, 1H), 5.78 (q, J=5.7 Hz, 1H).
  • Step 2. Preparation of tert-butyl 4-((1-(1-(3-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00738
  • Following the procedure as described in Example 297 step 2, and making variation as required to replace (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate and to replace 1-(2-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl trifluoromethanesulfonate with 1-(3-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl trifluoromethanesulfonate, the title compound was obtained as a pale yellow oil (0.70 g, 54%): 1H NMR (300 MHz, CDCl3) δ7.47-7.44 (m, 1H), 7.36 (d, J=8.4 Hz, 1H), 7.29-7.24 (m, 1H), 7.13 (t, J=8.6 Hz, 1H), 6.46 (d, J=12.6 Hz, 1H), 4.05 (q, J=8.7 Hz, 1H), 3.79 (d, J=5.9 Hz, 2H), 2.98-2.95 (m, 2H), 2.41 (t, J=11.2 Hz, 1H), 2.27 (t, J=11.4 Hz, 1H), 2.01-1.91 (m, 1H), 1.83-1.79 (m, 3H), 1.54 (m, 9H), 1.48-1.33 (m, 2H), 0.88-0.82 (m, 2H), 0.62-0.57 (m, 2H); MS(ES+) m/z 506.0, 508.0 (M+1).
  • Step 3. Preparation of 4-((1-(1-(3-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00739
  • Following the procedure as described in Example 299 step 3, and making variation as required to replace tert-butyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate with tert-butyl 4-((1-(1-(3-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.55 g, 87%): MS(ES+) m/z 504.1, 506.0 (M+1); MS(ES−) m/z 502.1, 504.1 (M−1).
  • Step 4. Preparation of 4-((1-(1-(3-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00740
  • Following the procedure as described in Example 3 step 5, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 4-((1-(1-(3-chloro-4-fluorophenyl)-2,2,2-trifluoroethyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and to replace cyclopropylsulfonamide with methanesulfonamide, the title compound was obtained as a colorless solid (0.23 g, 39%): 1H NMR (300 MHz, DMSO-d6) δ11.88 (br s, 1H), 7.63-7.60 (m, 1H), 7.53-7.41 (m, 2H), 7.12 (d, J=8.3 Hz, 1H), 6.93 (d, J=13.0 Hz, 1H), 4.72 (q, J=9.4 Hz, 1H), 3.91 (d, J=5.9 Hz, 2H), 3.33 (s, 3H), 3.01-2.98 (m, 2H), 2.31-2.24 (m, 1H), 2.05-1.94 (m, 2H), 1.78-1.66 (m, 3H), 1.42-1.29 (m, 2H), 0.90-0.84 (m, 2H), 0.69-0.63 (m, 2H); MS(ES+) m/z 581.1, 583.1 (M+1); MS(ES−) m/z 579.1, 581.0 (M−1).
  • Example 302 Synthesis of 5-cyclopropyl-4-(2-(1-(3,5-dichlorobenzyl)piperidin-4-yl)ethoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00741
  • Step 1. Preparation of tert-butyl 4-(2-(4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)ethyl)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00742
  • Following the procedure as described in Example 3 step 1, and making variation as required to replace (R)-tert-butyl 3-hydroxypiperidine-1-carboxylate with tert-butyl 4-(2-hydroxyethyl)piperidine-1-carboxylate, the title compound was obtained as a colorless oil. (3.80 g, 95%): MS(ES+) m/z 458.2, 460.2 (M+1).
  • Step 2. Preparation of tert-butyl 4-(2-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)ethyl)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00743
  • Following the procedure as described in Example 3 step 2, and making variation as required to replace (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)piperidine-1-carboxylate with tert-butyl 4-(2-(4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)ethyl)piperidine-1-carboxylate, the title compound was obtained as a light yellow oil (1.90 g, 95%): 1H NMR (300 MHz, CDCl3) δ7.34 (d, J=8.4 Hz, 1H), 6.48 (d, J=12.7 Hz, 1H), 4.10-3.99 (m, 4H), 2.67 (t, J=12.4 Hz, 2H), 2.01-1.92 (m, 1H), 1.80-1.63 (m, 5H), 1.53 (s, 9H), 1.42 (s, 9H), 1.22-1.11 (m, 2H), 0.89-0.82 (m, 2H), 0.62-0.57 (m, 2H); MS(ES+) m/z 464.3 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-2-fluoro-4-(2-(piperidin-4-yl)ethoxy)benzoic acid
  • Figure US20210093618A1-20210401-C00744
  • Following the procedure as described in Example 3 step 3, and making variation as required to replace (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)-piperidine-1-carboxylate with tert-butyl 4-(2-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)ethyl)piperidine-1-carboxylate, the title compound was obtained as trifluoroacetic acid salt (1.72 g, 99%): MS(ES+) m/z 308.1 (M+1).
  • Step 4. Preparation of 5-cyclopropyl-4-(2-(1-(3,5-dichlorobenzyl)piperidin-4-yl)ethoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00745
  • Following the procedure as described in Example 3 step 4, and making variation as required to replace (R)-5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoic acid with 5-cyclopropyl-2-fluoro-4-(2-(piperidin-4-yl)ethoxy)benzoic acid, the title compound was obtained (1.37 g, 56%): 1H NMR (300 MHz, DMSO-d6) δ12.87 (brs, 1H), 9.62 (br, 1H), 7.76 (s, 1H), 7.61-7.60 (m, 2H), 7.31 (d, J=8.5 Hz, 1H), 6.92 (d, J=13.1 Hz, 1H), 4.29-4.12 (m, 4H), 3.40-3.36 (m, 2H), 2.95-2.88 (m, 2H), 2.02-1.74 (m, 6H), 1.48-1.37 (m, 2H), 0.92-0.86 (m, 2H), 0.62-0.57 (m, 2H); MS(ES+) m/z 466.1, 468.0 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-4-(2-(1-(3,5-dichlorobenzyl)piperidin-4-yl)ethoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00746
  • Following the procedure as described in Example 3 step 5, and making variation as required to replace (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 5-cyclopropyl-4-(2-(1-(3,5-dichlorobenzyl)piperidin-4-yl)ethoxy)-2-fluorobenzoic acid and cyclopropylsulfonamide with methanesulfonamide, the title compound was obtained as a colorless solid (0.02 g, 10%): 1H NMR (300 MHz, DMSO-d6) δ11.87 (br s, 1H), 9.55 (br s, 1H), 7.74-7.72 (m, 1H), 7.58-7.57 (m, 2H), 7.09 (d, J=8.3 Hz, 1H), 6.95 (d, J=13.0 Hz, 1H), 4.26 (s, 2H), 4.10-4.08 (m, 2H), 3.37-3.33 (m, 2H), 3.30 (s, 3H), 2.94-2.86 (m, 2H), 2.01-1.89 (m, 3H), 1.72-1.68 (m, 3H), 1.45-1.37 (m, 2H), 0.88-0.82 (m, 2H), 0.67-0.62 (m, 2H); MS(ES+) m/z 543.0, 545.0 (M+1).
  • Example 303 Synthesis of 5-cyclopropyl-4-(2-(1-(3,5-dichlorobenzyl)piperidin-4-yl)ethoxy)-N-(ethylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00747
  • Following the procedure as described in Example 3 step 5, and making variation as required to replace (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 5-cyclopropyl-4-(2-(1-(3,5-dichlorobenzyl)piperidin-4-yl)ethoxy)-2-fluorobenzoic acid and to replace cyclopropylsulfonamide with ethanesulfonamide, the title compound was obtained as a colorless solid (0.06 g, 34%): 1H NMR (300 MHz, DMSO-d6) δ11.78 (br s, 1H), 9.73 (br s, 1H), 7.73-7.72 (m, 1H), 7.58-7.57 (m, 2H), 7.09 (d, J=8.3 Hz, 1H), 6.94 (d, J=13.0 Hz, 1H), 4.26 (s, 2H), 4.10-4.08 (m, 2H), 3.44 (q, J=7.3 Hz, 2H), 3.37-3.33 (m, 2H), 2.94-2.86 (m, 2H), 2.01-1.88 (m, 3H), 1.72-1.68 (m, 3H), 1.45-1.37 (m, 2H), 1.21 (t, J=7.3 Hz, 3H), 0.88-0.82 (m, 2H), 0.67-0.62 (m, 2H); MS(ES+) m/z 557.0, 559.0 (M+1).
  • Example 304 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-(2-(1-(3,5-dichlorobenzyl)piperidin-4-yl)ethoxy)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00748
  • Following the procedure as described in Example 3 step 5, and making variation as required to replace (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 5-cyclopropyl-4-(2-(1-(3,5-dichlorobenzyl)piperidin-4-yl)ethoxy)-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.10 g, 56%): 1H NMR (300 MHz, DMSO-d6) δ11.81 (br s, 1H), 9.75 (br s, 1H), 7.73-7.72 (m, 1H), 7.58-7.57 (m, 2H), 7.09 (d, J=8.3 Hz, 1H), 6.95 (d, J=13.0 Hz, 1H), 4.26 (s, 2H), 4.10-4.08 (m, 2H), 3.37-3.33 (m, 2H), 3.08-3.00 (m, 1H), 2.94-2.86 (m, 2H), 2.01-1.89 (m, 3H), 1.72-1.68 (m, 3H), 1.45-1.37 (m, 2H), 1.10-1.05 (m, 4H), 0.88-0.82 (m, 2H), 0.67-0.62 (m, 2H); MS(ES+) m/z 568.9, 570.9 (M+1).
  • Example 305 Synthesis of (R)-5-cyclopropyl-4-((1-((6-cyclopropyl-4-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00749
  • Following the procedure as described in Example 50 step 1, and making variations as required to replace (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate with (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-(piperidin-3-yloxy)benzamide and to replace 1,3-dichloro-5-(1-chloroethyl)benzene with 2-(chloromethyl)-6-cyclopropyl-4-(trifluoromethyl)pyridine, the title compound was obtained as a colorless solid (0.17 g, 28%): 1H NMR (300 MHz, DMSO-d6) δ 11.71 (br s, 1H), 7.54 (s, 1H), 7.47 (s, 1H), 7.13 (d, J=8.4 Hz, 1H), 6.99 (d, J=13.2 Hz, 1H), 4.66 (br s, 1H), 3.79-3.67 (m, 2H), 3.29 (s, 3H), 2.87-2.84 (m, 1H), 2.59-2.55 (m, 2H), 2.46-2.43 (m, 1H), 2.28-2.19 (m, 1H), 2.12-2.03 (m, 1H), 1.91-1.80 (m, 2H), 1.63-1.58 (m, 2H), 1.03-0.82 (m, 6H), 0.74-0.65 (m, 2H); MS(ES+) m/z 556.1 (M+1); MS(ES−) m/z 554.1 (M−1).
  • Example 306 Synthesis of 5-cyclopropyl-4-((1-((6-cyclopropyl-4-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00750
  • Step 1. Preparation of tert-butyl 5-cyclopropyl-4-((1-((6-cyclopropyl-4-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00751
  • Following the procedure as described in Example 50 step 1, and making variations as required to replace (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate and to replace 1,3-dichloro-5-(1-chloroethyl)benzene with 2-(chloromethyl)-6-cyclopropyl-4-(trifluoromethyl)pyridine, the title compound was obtained as a colorless solid (1.00 g, 64%): 1H NMR (300 MHz, CDCl3) δ7.40-7.35 (m, 2H), 7.19 (s, 1H), 6.49 (d, J=12.7 Hz, 1H), 3.85 (d, J=5.9 Hz, 2H), 3.76 (s, 2H), 3.08-3.04 (m, 2H), 2.29-2.21 (m, 2H), 2.13-1.97 (m, 2H), 1.88-1.84 (m, 3H), 1.63-1.50 (m, 1H), 1.05-1.02 (m, 4H), 0.91-0.85 (m, 2H), 0.64-0.59 (m, 2H); MS(ES+) m/z 549.2 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-4-((1-((6-cyclopropyl-4-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00752
  • Following the procedure as described in Example 3 step 3, and making variation as required to replace (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)-piperidine-1-carboxylate with tert-butyl 5-cyclopropyl-4-((1-((6-cyclopropyl-4-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)-2-fluorobenzoate, the title compound was obtained as a colorless oil (1.31 g, 99%): MS(ES+) m/z 493.0 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-4-((1-((6-cyclopropyl-4-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00753
  • Following the procedure as described in Example 3 step 5, and making variation as required to replace (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 5-cyclopropyl-4-((1-((6-cyclopropyl-4-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid and to replace cyclopropylsulfonamide with methanesulfonamide, the title compound was obtained as a colorless solid (0.10 g, 28%): 1H NMR (300 MHz, DMSO-d6) δ 11.00 (br s, 1H), 7.60 (s, 1H), 7.48 (s, 1H), 7.13 (d, J=8.4 Hz, 1H), 6.83 (d, J=12.9 Hz, 1H), 3.92-3.87 (m, 4H), 3.11 (s, 3H), 3.05-3.01 (m, 2H), 2.45-2.37 (m, 2H), 2.28-2.23 (m, 1H), 2.01-1.96 (m, 1H), 1.83-1.80 (m, 3H), 1.51-1.39 (m, 2H), 1.02-0.96 (m, 4H), 0.88-0.81 (m, 2H), 0.62-0.57 (m, 2H); MS(ES+) m/z 570.0 (M+1); MS(ES−) m/z 568.0 (M−1).
  • Example 307 Synthesis of 5-cyclopropyl-4-((1-((6-cyclopropyl-4-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00754
  • Following the procedure as described in Example 3 step 5, and making variation as required to replace (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 5-cyclopropyl-4-((1-((6-cyclopropyl-4-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid and to replace cyclopropylsulfonamide with ethanesulfonamide, the title compound was obtained as a colorless solid (0.14 g, 39%): 1H NMR (300 MHz, DMSO-d6) δ 11.15 (br s, 1H), 7.62 (s, 1H), 7.50 (s, 1H), 7.15 (d, J=8.4 Hz, 1H), 6.88 (d, J=12.9 Hz, 1H), 3.96-3.94 (m, 2H), 3.85 (s, 2H), 3.37-3.30 (m, 2H), 3.05-3.01 (m, 2H), 2.41-2.24 (m, 3H), 2.06-1.97 (m, 1H), 1.85-1.82 (m, 3H), 1.52-1.41 (m, 2H), 1.20 (t, J=7.3 Hz, 3H), 1.04-0.99 (m, 4H), 0.91-0.85 (m, 2H), 0.66-0.61 (m, 2H); MS(ES+) m/z 584.0 (M+1); MS(ES−) m/z 582.1 (M−1).
  • Example 308 Synthesis of 5-cyclopropyl-4-((1-((6-cyclopropyl-4-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00755
  • Following the procedure as described in Example 3 step 5, and making variation as required to replace (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 5-cyclopropyl-4-((1-((6-cyclopropyl-4-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.13 g, 36%): 1H NMR (300 MHz, DMSO-d6) δ 11.22 (br s, 1H), 7.61 (s, 1H), 7.49 (s, 1H), 7.15 (d, J=8.4 Hz, 1H), 6.89 (d, J=12.9 Hz, 1H), 3.95 (d, J=5.8 Hz, 2H), 3.83 (s, 2H), 3.04-2.99 (m, 3H), 2.38-2.24 (m, 3H), 2.07-1.97 (m, 1H), 1.85-1.81 (m, 3H), 1.52-1.41 (m, 2H), 1.04-0.99 (m, 8H), 0.91-0.85 (m, 2H), 0.66-0.61 (m, 2H); MS(ES+) m/z 596.1 (M+1): MS(ES−) m/z 594.2 (M−1).
  • Example 309 Synthesis of 4-(((R)-1-((R)-1-(5-chloro-6-cyclopropylpyridin-2-yl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide (Arbitrarily Assigned)
  • Figure US20210093618A1-20210401-C00756
  • Step 1. Preparation of methyl 4-(((R)-1-((R)-1-(5-chloro-6-cyclopropylpyridin-2-yl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate and methyl 4-(((R)-1-((S)-1-(5-chloro-6-cyclopropylpyridin-2-yl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00757
  • Following the procedure as described in Example 50 step 1 and making variations as required to replace 1,3-dichloro-5-(1-chloroethyl)benzene with 3-chloro-6-(1-chloroethyl)-2-cyclopropylpyridine. The residue was purified by preparative-HPLC, the first eluting fraction was arbitrarily assigned as methyl 4-(((R)-1-((R)-1-(5-chloro-6-cyclopropylpyridin-2-yl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate (0.36 g, 50%): 1H NMR (300 MHz, CDCl3) δ 7.44 (d, J=8.2 Hz, 1H), 7.38 (d, J=8.4 Hz, 1H), 7.01 (d, J=8.2 Hz, 1H), 6.52 (d, J=12.9 Hz, 1H), 4.36-4.28 (m, 1H), 3.84 (s, 3H), 3.63 (q, J=6.8 Hz, 1H), 2.99-2.95 (m, 1H), 2.66-2.62 (m, 1H), 2.45-2.40 (m, 1H), 2.29-2.15 (m, 2H), 2.05-1.96 (m, 2H), 1.80-1.74 (m, 1H), 1.60-1.42 (m, 2H), 1.29 (d, J=6.8 Hz, 3H), 1.07-0.84 (m, 6H), 0.63-0.58 (m, 2H); MS(ES+) m/z 473.1, 475.1 (M+1).
  • The second eluting fraction was arbitrarily assigned as methyl 4-(((R)-1-((S)-1-(5-chloro-6-cyclopropylpyridin-2-yl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate (0.36 g, 50%): 1H NMR (300 MHz, CDCl3) δ 7.45 (d, J=8.2 Hz, 1H), 7.41 (d, J=8.4 Hz, 1H), 7.04 (d, J=7.5 Hz, 1H), 6.53 (d, J=12.8 Hz, 1H), 4.35-4.29 (m, 1H), 3.85 (s, 3H), 3.67 (q, J=6.8 Hz, 1H), 3.039-3.00 (m, 1H), 2.72-2.68 (m, 1H), 2.49-2.41 (m, 1H), 2.28-2.13 (m, 2H), 2.05-1.96 (m, 2H), 1.82-1.77 (m, 1H), 1.64-1.38 (m, 2H), 1.31 (d, J=6.8 Hz, 3H), 1.06-0.86 (m, 6H), 0.65-0.60 (m, 2H); MS(ES+) m/z 473.1, 475.1 (M+1).
  • Step 2. Preparation of 4-(((R)-1-((R)-1-(5-chloro-6-cyclopropylpyridin-2-yl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00758
  • Following the procedure as described in Example 50 step 2 and making variations as required to replace methyl 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)oxy)-2-fluorobenzoate with methyl 4-(((R)-1-((R)-1-(5-chloro-6-cyclopropylpyridin-2-yl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a pale yellow oil (0.06 g, 17%): MS(ES+) m/z 459.1, 461.1 (M+1); MS(ES−) m/z 457.1, 459.1 (M−1).
  • Step 3. Preparation of 4-(((R)-1-((R)-1-(5-chloro-6-cyclopropylpyridin-2-yl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00759
  • Following the procedure as described in Example 3 step 5, and making variation as required to replace (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 4-(((R)-1-((R)-1-(5-chloro-6-cyclopropylpyridin-2-yl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid and to replace cyclopropylsulfonamide with methanesulfonamide, the title compound was obtained as a colorless solid (0.01 g, 50%): 1H NMR (300 MHz, CDCl3) δ 8.77 (br s, 1H), 7.67 (d, J=7.9 Hz, 1H), 7.53 (d, J=8.8 Hz, 1H), 7.10 (d, J=7.8 Hz, 1H), 6.87 (d, J=13.5 Hz, 1H), 4.86-4.82 (m, 1H), 4.66-4.64 (m, 1H), 3.95-3.92 (m, 1H), 3.68-3.64 (m, 1H), 3.38 (s, 3H), 2.95-2.86 (m, 1H), 2.60-2.55 (m, 2H), 2.36-2.31 (m, 1H), 2.13-2.07 (m, 2H), 1.92-1.87 (m, 1H), 1.69 (d, J=6.4 Hz, 3H), 1.62-1.51 (m, 1H), 1.10-0.86 (m, 6H), 0.62-0.60 (m, 2H); MS(ES+) m/z 536.1, 538.1 (M+1).
  • Example 310 Synthesis of 4-(((R)-1-((S)-1-(5-chloro-6-cyclopropylpyridin-2-yl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00760
  • Step 1. Preparation of 4-(((R)-1-((S)-1-(5-chloro-6-cyclopropylpyridin-2-yl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00761
  • Following the procedure as described in Example 50 step 2 and making variations as required to replace methyl 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)oxy)-2-fluorobenzoate with methyl 4-(((R)-1-((S)-1-(5-chloro-6-cyclopropylpyridin-2-yl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.17 g, 49%): MS(ES+) m/z 459.1, 461.0 (M+1); MS(ES−) m/z 457.1, 459.1 (M−1).
  • Step 2. Preparation of 4-(((R)-1-((S)-1-(5-chloro-6-cyclopropylpyridin-2-yl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00762
  • Following the procedure as described in Example 3 step 5, and making variation as required to replace (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 4-(((R)-1-((S)-1-(5-chloro-6-cyclopropylpyridin-2-yl)ethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid and to replace cyclopropylsulfonamide with methanesulfonamide, the title compound was obtained as a colorless solid (0.05 g, 44%): 1H NMR (300 MHz, CDCl3) δ 8.77 (br s, 1H), 7.67 (d, J=7.7 Hz, 1H), 7.57 (d, J=8.0 Hz, 1H), 7.08 (d, J=7.4 Hz, 1H), 6.89 (d, J=13.6 Hz, 1H), 4.95-4.89 (m, 1H), 4.67-4.66 (m, 1H), 3.92-3.89 (m, 1H), 3.62-3.59 (m, 1H), 3.39 (s, 3H), 3.05-2.97 (m, 1H), 2.62-2.50 (m, 2H), 2.38-2.34 (m, 1H), 2.05-1.93 (m, 3H), 1.67 (d, J=4.4 Hz, 3H), 1.51-1.45 (m, 1H), 1.10-0.90 (m, 6H), 0.65-0.63 (m, 2H); MS(ES+) m/z 536.1, 538.1 (M+1).
  • Example 311 Synthesis of (R)-4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00763
  • Following the procedure as described in Example 3 step 4, and making variation as required to replace (R)-5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoic acid trifluoroacetate with (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-(piperidin-3-yloxy)benzamide and to replace 3,5-dichlorobenzaldehyde with 3-chloro-2-fluoro-5-(trifluoromethyl)benzaldehyde, the title compound was obtained as a colorless solid (0.18 g, 35%): 1H NMR (300 MHz, DMSO-d6) δ 11.80 (br s, 1H), 7.98 (dd, J=1.9 Hz, 6.3 Hz, 1H), 7.79 (dd, J=1.9 Hz, 5.6 Hz, 1H), 7.12 (d, J=8.4 Hz, 1H), 7.02 (d, J=13.2 Hz, 1H), 4.65-4.63 (m, 1H), 3.71 (d, J=2.0 Hz, 2H), 3.32 (s, 3H), 2.83-2.79 (m, 1H), 2.56-2.54 (m, 2H), 2.41-2.36 (m, 1H), 2.10-2.00 (m, 1H), 1.90-1.77 (m, 2H), 1.60-1.55 (m, 2H), 0.89-0.84 (m, 2H), 0.73-0.67 (m, 2H); MS(ES+) m/z 567.2, 569.0 (M+1); MS(ES−) m/z 565.1, 567.1 (M−1).
  • Example 312 Synthesis of (R)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00764
  • Following the procedure as described in Example 3 step 5, and making variation as required to replace (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid and to replace cyclopropylsulfonamide with methanesulfonamide, the title compound was obtained as a colorless solid (0.05 g, 60%): 1H NMR (300 MHz, DMSO-d6) δ 11.79 (br s, 1H), 7.55-7.50 (m, 1H), 7.42-7.38 (m, 1H), 7.17-7.11 (m, 2H), 7.00 (d, J=13.2 Hz, 1H), 4.62-4.60 (m, 1H), 3.60 (s, 2H), 3.31 (s, 3H), 2.82-2.79 (m, 1H), 2.60-2.55 (m, 1H), 2.49-2.39 (m, 2H), 2.12-2.03 (m, 1H), 1.94-1.91 (m, 1H), 1.83-1.79 (m, 1H), 1.61-1.57 (m, 2H), 0.91-0.85 (m, 2H), 0.72-0.68 (m, 2H); MS(ES+) m/z 499.2, 501.2 (M+1); MS(ES−) m/z 497.3, 499.3 (M−1).
  • Example 313 Synthesis of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(3-fluoro-4-methoxybenzyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00765
  • Following the procedure as described in Example 3 step 5, and making variation as required to replace (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(3-fluoro-4-methoxybenzyl)piperidin-3-yl)oxy)benzoic acid, the title compound was obtained as a colorless solid (0.03 g, 23%): 1H NMR (300 MHz, CDCl3) δ 7.55 (d, J=9.1 Hz, 1H), 7.11-6.86 (m, 3H), 6.60 (d, J=18.1 Hz, 1H), 4.50 (s, 1H), 3.88 (s, 3H), 3.53 (s, 2H), 3.12-3.05 (m, 1H), 3.02-2.91 (m, 1H), 2.83-2.66 (m, 1H), 2.44-2.20 (m, 2H), 2.15-1.98 (m, 2H), 1.95-1.82 (m, 2H), 1.66-1.53 (m, 2H), 1.48-1.42 (m, 2H), 1.17-1.13 (m, 2H), 0.96-0.88 (m, 2H), 0.69-0.64 (m, 2H); MS(ES+) m/z 521.2 (M+1), MS(ES−+) m/z 519.3 (M−1).
  • Example 314 Synthesis of (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(methylsulfonyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00766
  • Following the procedure as described in Example 3 step 5, and making variation as required to replace (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(methylsulfonyl)piperidin-3-yl)oxy)benzoic acid and to replace cyclopropylsulfonamide with methanesulfonamide, the title compound was obtained as a colorless solid (0.07 g, 40%) 1H NMR (300 MHz, CDCl3) δ 8.72 (d, J=15.9 Hz, 1H), 7.59 (d, J=9.0 Hz, 1H), 6.65 (d, J=14.2 Hz, 1H), 4.49 (brs, 1H), 3.74 (d, J=14.2 Hz, 1H), 3.51-3.45 (m, 1H), 3.41 (s, 3H), 3.25-3.12 (m, 2H), 2.83 (s, 3H), 2.11-2.01 (m, 3H), 1.85-1.79 (m, 2H), 0.94 (d, J=8.4 Hz, 2H), 0.66 (d, J=5.2 Hz, 2H); MS(ES+) m/z 435.1 (M+1); MS(ES−) m/z 433.2 (M−1).
  • Example 315 Synthesis of 5-cyclopropyl-2-fluoro-4-(((R)-1-((S)-1-(4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00767
  • Step 1. Preparation of methyl 5-cyclopropyl-2-fluoro-4-(((R)-1-((S)-1-(4-fluorophenyl)ethyl)piperidin-3-yl)oxy)benzoate and methyl 5-cyclopropyl-2-fluoro-4-(((R)-1-((R)-1-(4-fluorophenyl)ethyl)piperidin-3-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C00768
  • Following the procedure as described in Example 50 step 1, and making variations as required to replace 1,3-dichloro-5-(1-chloroethyl)benzene with 1-(1-chloroethyl)-4-fluorobenzene, the first eluting fraction was arbitrarily assigned as methyl 5-cyclopropyl-2-fluoro-4-(((R)-1-((S)-1-(4-fluorophenyl)ethyl)piperidin-3-yl)oxy)benzoate (0.50 g, 38%): 1H NMR (300 MHz, CDCl3) δ7.41 (d, J=8.4 Hz, 1H), 7.27-7.22 (m, 2H), 6.95 (t, J=8.7 Hz, 2H), 6.53 (d, J=13 Hz, 1H), 4.39-4.32 (m, 1H), 3.86 (s, 3H), 3.54-3.46 (m, 1H), 3.02-3.00 (m, 1H), 2.62-2.59 (m, 1H), 2.25-1.96 (m, 4H), 1.83-1.76 (m, 1H), 1.63-1.43 (m, 2H), 1.32 (d, J=6.8 Hz, 3H), 0.91-0.88 (m, 2H), 0.66-0.62 (m, 2H); MS(ES+) m/z 416.2 (M+1).
  • The second eluting fraction was arbitrarily assigned as methyl 5-cyclopropyl-2-fluoro-4-(((R)-1-((R)-1-(4-fluorophenyl)ethyl)piperidin-3-yl)oxy)benzoate (0.50 g, 38%): 1H NMR (300 MHz, CDCl3) δ 7.36 (d, J=8.4 Hz, 1H), 7.23-7.21 (m, 2H), 6.94 (t, J=8.9 Hz, 2H), 6.46 (d, J=12.9 Hz, 1H), 4.32-4.24 (m, 1H), 3.82 (s, 3H), 3.50 (q, J=6.7 Hz, 1H), 2.94-2.91 (m, 1H), 2.77-2.73 (m, 1H), 2.15-1.93 (m, 4H), 1.88-1.76 (m, 1H), 1.65-1.37 (m, 2H), 1.30 (d, J=6.8 Hz, 3H), 0.85-0.81 (m, 2H), 0.61-0.57 (m, 2H); MS(ES+) m/z 416.2 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-4-(((R)-1-((S)-1-(4-fluorophenyl)ethyl)piperidin-3-yl)oxy)benzoic acid
  • Figure US20210093618A1-20210401-C00769
  • Following the procedure as described in Example 50 step 2, and making variations as required to replace methyl 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)-piperidin-3-yl)oxy)-2-fluorobenzoate with methyl 5-cyclopropyl-2-fluoro-4-(((R)-1-((S)-1-(4-fluorophenyl)ethyl)piperidin-3-yl)oxy)benzoate, the title compound was obtained as a colorless solid (0.16 g, 33%): MS(ES+) m/z 402.2 (M+1); MS(ES−) m/z 400.2 (M−1).
  • Step 3. Preparation of 5-cyclopropyl-2-fluoro-4-(((R)-1-((S)-1-(4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00770
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-(((R)-1-((S)-1-(4-fluorophenyl)ethyl)piperidin-3-yl)oxy)benzoic acid, the title compound was obtained as a colorless solid (0.12 g, 62%): 1H NMR (300 MHz, CDCl3) δ 8.99-8.66 (m, 1H), 7.56 (d, J=8.6 Hz, 1H), 7.45-7.42 (m, 2H), 7.19 (t, J=8.0 Hz, 2H), 6.96 (d, J=12.9 Hz, 1H), 5.01-4.86 (m, 1H), 4.61-4.47 (m, 1H), 4.06-3.92 (m, 1H), 3.59-3.46 (m, 1H), 3.41 (s, 3H), 2.59-2.42 (m, 2H), 2.39-2.28 (m, 1H), 2.23-2.00 (m, 2H), 1.97-1.87 (m, 1H), 1.81 (d, J=5.3 Hz, 3H), 1.64-1.46 (m, 1H), 0.93-0.88 (m, 2H), 0.64-0.60 (m, 2H); MS(ES+) m/z 479.1 (M+1); MS(ES−) m/z 477.2 (M−1).
  • Example 316 Synthesis of 5-cyclopropyl-2-fluoro-4-(((R)-1-((R)-1-(4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00771
  • Step 1. Preparation of 5-cyclopropyl-2-fluoro-4-(((R)-1-((R)-1-(4-fluorophenyl)ethyl)piperidin-3-yl)oxy)benzoic acid
  • Figure US20210093618A1-20210401-C00772
  • Following the procedure as described in Example 50 step 2 and making variations as required to replace methyl 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)oxy)-2-fluorobenzoate with methyl 5-cyclopropyl-2-fluoro-4-(((R)-1-((R)-1-(4-fluorophenyl)ethyl)piperidin-3-yl)oxy)benzoate, the title compound was obtained as a beige color solid (0.23 g, 99%): MS(ES−) m/z 400.2 (M−1); MS(ES+) m/z 402.2 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-4-(((R)-1-((R)-1-(4-fluorophenyl)ethyl)piperidin-3-yl)oxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00773
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-(((R)-1-((R)-1-(4-fluorophenyl)ethyl)piperidin-3-yl)oxy)benzoic acid, the title compound was obtained as a colorless solid (0.04 g, 15%) 1H NMR (300 MHz, CDCl3) δ 9.07-8.61 (m, 1H), 7.54 (d, J=8.7 Hz, 1H), 7.45-7.41 (m, 2H), 7.18 (t, J=8.26 Hz, 2H), 7.02-6.89 (m, 1H), 5.10-4.91 (m, 1H), 4.63-4.46 (m, 1H), 3.82-3.56 (m, 2H), 3.40 (s, 3H), 2.63-2.41 (m, 2H), 2.40-2.28 (m, 1H), 2.25-1.87 (m, 3H), 1.80 (d, J=6.3 Hz, 3H), 1.63-1.43 (m, 1H), 0.95-0.87 (m, 2H), 0.67-0.59 (m, 2H); MS(ES+) m/z 479.1 (M+1); MS(ES−) m/z 477.2 (M−1).
  • Example 317 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-(((R)-1-((R)-1-(4-fluorophenyl)ethyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00774
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-(((R)-1-((R)-1-(4-fluorophenyl)ethyl)piperidin-3-yl)oxy)benzoic acid and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.01 g, 6%) 1H NMR (300 MHz, CDCl3) δ 8.91-8.63 (m, 1H), 7.61-7.51 (m, 1H), 7.49-7.38 (m, 2H), 7.19-7.12 (m, 2H), 7.04-6.89 (m, 1H), 5.12-4.88 (m, 1H), 4.63-4.46 (m, 1H), 3.86-3.52 (m, 2H), 3.17-3.02 (m, 1H), 2.69-2.28 (m, 3H), 2.23-1.89 (m, 3H), 1.89-1.85 (m, 3H), 1.50-1.41 (m, 3H), 1.21-1.10 (m, 2H), 0.96-0.85 (m, 2H), 0.69-0.58 (m, 2H); MS(ES+) m/z 505.2 (M+1); MS(ES−) m/z 503.2 (M−1).
  • Example 318 Synthesis of (R)-5-cyclopropyl-2-fluoro-4-((1-(5-fluoro-2-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00775
  • Step 1. Preparation of (R)-methyl 5-cyclopropyl-2-fluoro-4-((1-(5-fluoro-2-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C00776
  • Following the procedure as described in Example 50 step 1, and making variations as required to replace 1,3-dichloro-5-(1-chloroethyl)benzene with 2-(bromomethyl)-4-fluoro-1-(trifluoromethyl)benzene, the title compound was obtained as a colorless oil (0.20 g, 99%): MS(ES+) m/z 470.2 (M+1).
  • Step 2. Preparation of (R)-5-cyclopropyl-2-fluoro-4-((1-(5-fluoro-2-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)benzoic acid
  • Figure US20210093618A1-20210401-C00777
  • Following the procedure as described in Example 50 step 2 and making variations as required to replace methyl 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)oxy)-2-fluorobenzoate with (R)-methyl 5-cyclopropyl-2-fluoro-4-((1-(5-fluoro-2-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)benzoate, the title compound was obtained as a colorless oil (0.12 g, 59%): MS(ES+) m/z 456.1 (M+1); MS(ES−) m/z 454.2 (M−1).
  • Step 3. Preparation of (R)-5-cyclopropyl-2-fluoro-4-((1-(5-fluoro-2-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00778
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(5-fluoro-2-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)benzoic acid, the title compound was obtained as a colorless solid (0.03 g, 18%): 1H NMR (300 MHz, CDCl3) δ 8.99-8.55 (m, 1H), 7.78-7.74 (m, 2H), 7.56-7.53 (d, J=8.6 Hz, 1H), 7.27-7.22 (m, 1H), 4.97-4.83 (m, 1H), 4.61-4.56 (m, 1H), 4.37-4.33 (m, 1H), 3.81-3.57 (m, 1H), 3.38 (s, 3H), 3.35-3.25 (m, 1H), 3.03-2.78 (m, 2H), 2.37-2.22 (m, 1H), 2.17-1.98 (m, 3H), 1.87-1.69 (m, 1H), 0.92 (d, J=8.1 Hz, 2H), 0.68-0.56 (m, 2H); MS(ES+) m/z 533.2 (M+1); MS(ES−) m/z 531.2 (M−1).
  • Example 319 Synthesis of (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(3-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00779
  • Step 1. Preparation of (R)-methyl 5-cyclopropyl-2-fluoro-4-((1-(3-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C00780
  • Following the procedure as described in Example 50 step 1, and making variations as required to replace 1,3-dichloro-5-(1-chloroethyl)benzene with 1-(chloromethyl)-3-(trifluoromethyl)benzene, the title compound was obtained as a colorless oil (0.24 g, 28%): MS(ES+) m/z 452.2 (M+1).
  • Step 2. Preparation of (R)-5-cyclopropyl-2-fluoro-4-((1-(3-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)benzoic acid
  • Figure US20210093618A1-20210401-C00781
  • Following the procedure as described in Example 50 step 2 and making variations as required to replace methyl 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)oxy)-2-fluorobenzoate with (R)-methyl 5-cyclopropyl-2-fluoro-4-((1-(3-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)benzoate, the title compound was obtained as colorless oil (0.25 g, 99%): MS(ES+) m/z 438.2 (M+1); MS(ES−) m/z 436.2 (M−1).
  • Step 3. Preparation of (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(3-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00782
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-(3-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)benzoic acid, the title compound was obtained as a colorless solid (0.04 g, 16%): 1H NMR (300 MHz, CDCl3) δ 9.03-8.68 (m, 1H), 7.76-7.67 (m, 4H), 7.56-7.54 (m, 1H), 6.95-6.71 (m, 1H), 4.96-4.78 (m, 1H), 4.47-4.23 (m, 2H), 4.02-3.72 (m, 1H), 3.40 (s, 3H), 2.96-2.58 (m, 2H), 2.43-2.26 (m, 1H), 2.21-1.91 (m, 3H), 1.83-1.56 (m, 2H), 0.98-0.80 (m, 2H), 0.68-0.51 (m, 2H); MS(ES+) m/z 515.1 (M+1).
  • Example 320 Synthesis of 4-((2-(2-chloro-4-fluorobenzyl)-2-azaspiro[3.3]heptan-6-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00783
  • Step 1. Preparation of tert-butyl 6-(4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)-2-azaspiro[3.3]heptane-2-carboxylate
  • Figure US20210093618A1-20210401-C00784
  • Following the procedure as described in Example 3 step 1, and making variation as required to replace (R)-tert-butyl 3-hydroxypiperidine-1-carboxylate with tert-butyl 6-hydroxy-2-azaspiro[3.3]heptane-2-carboxylate, the title compound was obtained as a colorless solid (2.36 g, 53%): 1H NMR (300 MHz, CDCl3) δ7.85 (d, J=7.6 Hz, 1H), 6.42 (d, J=11.9 Hz, 1H), 4.64-4.55 (m, 1H), 3.95 (d, J=11.2 Hz, 4H), 2.78-2.71 (m, 2H), 2.44-2.37 (m, 2H), 1.55 (s, 9H), 1.42 (s, 9H); MS(ES+) m/z 442.1, 444.0 (M+1).
  • Step 2. Preparation of tert-butyl 6-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)-2-azaspiro[3.3]heptane-2-carboxylate
  • Figure US20210093618A1-20210401-C00785
  • Following the procedure as described in Example 3 step 2, and making variation as required to replace (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)piperidine-1-carboxylate with tert-butyl 6-(4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)-2-azaspiro[3.3]heptane-2-carboxylate, the title compound was obtained as a colorless oil (0.96 g, 95%): 1H NMR (300 MHz, CDCl3) δ 7.31 (d, J=8.3 Hz, 1H), 6.28 (d, J=12.4 Hz, 1H), 4.61-4.52 (m, 1H), 3.94 (d, J=12.2 Hz, 4H), 2.75-2.68 (m, 2H), 2.37-2.30 (m, 2H), 2.01-1.93 (m, 1H), 1.54 (s, 9H), 1.41 (s, 9H), 0.90-0.82 (m, 2H), 0.63-0.57 (m, 2H); MS(ES+) m/z 448.2 (M+1).
  • Step 3. Preparation of 4-(2-azaspiro[3.3]heptan-6-yloxy)-5-cyclopropyl-2-fluorobenzoic acid, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00786
  • Following the procedure as described in Example 3 step 3, and making variation as required to replace (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)-piperidine-1-carboxylate with tert-butyl 6-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)-2-azaspiro[3.3]heptane-2-carboxylate, the title compound was obtained (0.86 g, 99%): MS(ES+) m/z 292.2 (M+1); MS(ES−) m/z 290.3 (M−1).
  • Step 4. Preparation of 4-((2-(2-chloro-4-fluorobenzyl)-2-azaspiro[3.3]heptan-6-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00787
  • Following the procedure as described in Example 3 step 4, and making variation as required to replace (R)-5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoic acid with 4-(2-azaspiro[3.3]heptan-6-yloxy)-5-cyclopropyl-2-fluorobenzoic acid and to replace 3,5-dichlorobenzaldehyde with 2-chloro-4-fluorobenzaldehyde, the title compound was obtained as colorless solid (0.30 g, 37%): 1H NMR (300 MHz, DMSO-d6) δ 12.87 (br s, 1H), 10.35 (br s, 1H), 7.70-7.62 (m, 2H), 7.42-7.36 (m, 1H), 7.27 (d, J=8.4 Hz, 1H), 6.72 (d, J=12.9 Hz, 1H), 4.79-4.70 (m, 1H), 4.51-4.49 (m, 2H), 4.32-4.10 (m, 4H), 2.92-2.80 (m, 2H), 2.39-2.30 (m, 2H), 2.04-1.95 (m, 1H), 0.93-0.86 (m, 2H), 0.62-0.57 (m, 2H); MS(ES+) m/z 434.1, 436.1 (M+1); MS(ES−) m/z 432.2, 434.1 (M−1).
  • Step 5. Preparation of 4-((2-(2-chloro-4-fluorobenzyl)-2-azaspiro[3.3]heptan-6-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00788
  • Following the procedure as described in Example 3 step 5, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 4-((2-(2-chloro-4-fluorobenzyl)-2-azaspiro[3.3]heptan-6-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid and to replace cyclopropylsulfonamide with methanesulfonamide, the title compound was obtained as colorless solid (0.04 g, 22%): 1H NMR (300 MHz, CDCl3) δ 8.73 (br s, 1H), 7.59-7.52 (m, 2H), 7.25-7.21 (m, 1H), 7.14-7.08 (m, 1H), 6.31 (d, J=13.8 Hz, 1H), 4.66-4.62 (m, 1H), 4.52-4.40 (m, 4H), 3.95-3.93 (m, 2H), 3.40 (s, 3H), 3.06-3.00 (m, 1H), 2.86-2.80 (m, 1H), 2.60-2.45 (m, 2H), 2.02-1.93 (m, 1H), 0.96-0.90 (m, 2H), 0.66-0.61 (m, 2H); MS(ES+) m/z 511.1, 513.1 (M+1); MS(ES−) m/z 509.2, 511.2 (M−1).
  • Example 321 Synthesis of 4-((2-(2-chloro-4-fluorobenzyl)-2-azaspiro[3.3]heptan-6-yl)oxy)-5-cyclopropyl-2-fluoro-N-((3-fluoroazetidin-1-yl)sulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00789
  • Following the procedure as described in Example 3 step 5, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with 4-((2-(2-chloro-4-fluorobenzyl)-2-azaspiro[3.3]heptan-6-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid and to replace cyclopropylsulfonamide with 3-fluoroazetidine-1-sulfonamide, the title compound was obtained as colorless solid (0.08 g, 39%): 1H NMR (300 MHz, DMSO-d6) δ 11.48 (br s, 1H), 7.69-7.62 (m, 2H), 7.39 (dt, J=2.6 Hz, 8.4 Hz, 1H), 7.11 (d, J=8.2 Hz, 1H), 6.79 (d, J=12.7 Hz, 1H), 5.48-5.42 (m, 0.5H), 5.29-5.23 (m, 0.5H), 4.80-4.71 (m, 1H), 4.50 (s, 2H), 4.43-4.12 (m, 8H), 2.86 (br s, 2H), 2.37-2.30 (m, 2H), 2.06-1.97 (m, 1H), 0.93-0.86 (m, 2H), 0.71-0.66 (m, 2H); MS(ES+) m/z 570.1, 572.1 (M+1); MS(ES−) m/z 568.1, 570.1 (M−1).
  • Example 322 Synthesis of N-(azetidin-1-ylsulfonyl)-4-(((3R,6R)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00790
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with 4-(((3R,6R)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace methanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as a colorless solid (0.07 g, 23%): 1H NMR (300 MHz, CDCl3) δ8.70-8.55 (m, 1H), 7.59-7.48 (m, 2H), 7.13-7.04 (m, 1H), 6.99-6.89 (m, 1H), 6.52-6.43 (m, 1H), 4.40-4.14 (m, 5H), 4.06-3.94 (m, 1H), 3.45-3.32 (m, 1H), 3.09-3.00 (m, 1H), 2.60-2.46 (m, 1H), 2.33-2.13 (m, 4H), 2.09-1.87 (m, 2H), 1.69-1.42 (m, 2H), 1.22-1.14 (m, 3H), 0.97-0.86 (m, 2H), 0.69-0.60 (m, 2H): MS(ES+) m/z 554.2, 556.2 (M+1).
  • Example 323 Synthesis of 4-(((3R,6R)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00791
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with 4-(((3R,6R)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as a colorless solid (0.14 g, 44%): 1H NMR (300 MHz, CDCl3) δ8.75-8.57 (m, 1H), 7.58-7.47 (m, 2H), 7.13-7.03 (m, 1H), 7.00-6.88 (m, 1H), 6.53-6.41 (m, 1H), 4.39-4.25 (m, 1H), 4.07-3.93 (m, 1H), 3.44-3.33 (m, 1H), 3.14-2.99 (m, 2H), 2.57-2.46 (m, 1H), 2.31-2.11 (m, 2H), 2.08-1.85 (m, 2H), 1.69-1.37 (m, 5H), 1.22-1.08 (m, 4H), 0.96-0.84 (m, 2H), 0.69-0.56 (m, 2H); MS(ES+) m/z 539.2, 541.2 (M+1).
  • Example 324 Synthesis of 4-(((3R,6S)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00792
  • Step 1. Preparation of (2S,5R)-benzyl 5-hydroxy-2-methylpiperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00793
  • Following the procedure as described in Example 52 step 1, and making variations as required to replace (3R,6R)-6-methylpiperidin-3-ol with (3R,6S)-6-methylpiperidin-3-ol (Ian A. O'Neil et al., Synlett, 2000, 5, 695), the title compound was obtained (1.45 g, 27%) as a colorless oil: MS(ES+) m/z 250.2 (M+1).
  • Step 2. Preparation of (2S,5R)-benzyl 5-(4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)-2-methylpiperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00794
  • Following the procedure as described in Example 1 step 1, and making variation as required to replace (R)-1-benzylpiperidin-3-ol with (2S,5R)-benzyl 5-hydroxy-2-methylpiperidine-1-carboxylate, the title compound was obtained as a colorless oil (1.63 g, 59%): 1H NMR (300 MHz, CDCl3) δ 7.91-7.84 (m, 1H), 7.43-7.28 (m, 5H), 6.78-6.61 (m, 1H), 5.23-5.06 (m, 2H), 4.61-4.09 (m, 3H), 3.07-2.88 (m, 1H), 2.17-1.99 (m, 1H), 1.96-1.50 (m, 12H), 1.31-1.17 (m, 3H); MS(ES+) m/z 478.2, 480.2 (M+1).
  • Step 3. Preparation of (2S,5R)-benzyl 5-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)-2-methylpiperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00795
  • Following the procedure as described in Example 1 step 2, and making variation as required to replace (R)-tert-butyl 4-((1-benzylpiperidin-3-yl)oxy)-5-chloro-2-fluorobenzoate with (2S,5R)-benzyl 5-(4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)-2-methylpiperidine-1-carboxylate, the title compound was obtained as a colorless oil (1.35 g, 82%): 1H NMR (300 MHz, CDCl3) δ 7.43-7.28 (m, 6H), 6.64-6.53 (m, 1H), 5.23-5.07 (m, 2H), 4.63-4.10 (m, 3H), 3.01-2.82 (m, 1H), 2.14-1.94 (m, 2H), 1.89-1.75 (m, 2H), 1.73-1.62 (m, 1H), 1.57 (s, 9H), 1.28-1.19 (m, 3H), 0.94-0.84 (m, 2H), 0.67-0.58 (m, 2H); MS(ES+) m/z 484.3 (M+1).
  • Step 4. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-(((3R,6S)-6-methylpiperidin-3-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C00796
  • Following the procedure as described in Example 52 step 4, and making variation as required to replace (2R,5R)-benzyl 5-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)-2-methylpiperidine-1-carboxylate with (2S,5R)-benzyl 5-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)-2-methylpiperidine-1-carboxylate, the title compound was obtained as a colorless oil (0.97 g, 99%): MS(ES+) m/z 350.3 (M+1).
  • Step 5. Preparation of tert-butyl 4-(((3R,6S)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00797
  • Following the procedure as described in Example 34 step 2, and making variations as required to replace (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-(((3R,6S)-6-methylpiperidin-3-yl)oxy)benzoate, and to replace 1-(bromomethyl)-4-fluoro-2-(trifluoromethyl)benzene with 1-(bromomethyl)-2-chloro-4-fluorobenzene, the title compound was obtained as a colorless oil (1.10 g, 82%): 1H NMR (300 MHz, CDCl3) δ 7.53-7.43 (m, 1H), 7.41-7.34 (m, 1H), 7.08-6.99 (m, 1H), 6.86-6.73 (m, 1H), 6.48-6.36 (m, 1H), 4.48-4.34 (m, 1H), 3.93-3.76 (m, 1H), 3.50-3.36 (m, 1H), 2.97-2.81 (m, 1H), 2.79-2.65 (m, 1H), 2.58-2.42 (m, 1H), 2.22-2.04 (m, 1H), 2.01-1.66 (m, 4H), 1.57 (s, 9H), 1.19-1.09 (m, 3H), 0.97-0.87 (m, 2H), 0.75-0.62 (m, 2H); MS(ES+) m/z 492.3, 494.3 (M+1).
  • Step 6. Preparation of 4-(((3R,6S)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00798
  • Following the procedure as described in Example 3 step 3, and making variation as required to replace (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)piperidine-1-carboxylate with tert-butyl 4-(((3R,6S)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.94 g, 96%): MS(ES+) m/z 436.2, 438.2 (M+1).
  • Step 7. Preparation of 4-(((3R,6S)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00799
  • Following the procedure as described in Example 17 step 2, and making variation as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with 4-(((3R,6S)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.03 g, 9%): 1H NMR (300 MHz, CDCl3) δ8.77-8.58 (m, 1H), 7.62-7.53 (m, 1H), 7.48-7.40 (m, 1H), 7.08-6.99 (m, 1H), 6.82-6.72 (m, 1H), 6.49-6.38 (m, 1H), 4.47-4.37 (m, 1H), 3.92-3.79 (m, 1H), 3.49-3.35 (m, 4H), 2.96-2.81 (m, 1H), 2.80-2.67 (m, 1H), 2.56-2.43 (m, 1H), 2.20-2.05 (m, 1H), 2.03-1.66 (m, 4H), 1.19-1.07 (m, 3H), 1.02-0.87 (m, 2H), 0.78-0.60 (m, 2H); MS(ES+) m/z 513.2, 515.2 (M+1).
  • Example 325 Synthesis of N-(azetidin-1-ylsulfonyl)-4-(((3R,6S)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00800
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with 4-(((3R,6S)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace methanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as a colorless solid (0.08 g, 27%): 1H NMR (300 MHz, CDCl3) δ8.69-8.55 (m, 1H), 7.63-7.57 (m, 1H), 7.50-7.41 (m, 1H), 7.08-6.99 (m, 1H), 6.83-6.73 (m, 1H), 6.50-6.39 (m, 1H), 4.48-4.38 (m, 1H), 4.34-4.15 (m, 4H), 3.92-3.81 (m, 1H), 3.48-3.36 (m, 1H), 2.94-2.83 (m, 1H), 2.78-2.67 (m, 1H), 2.54-2.45 (m, 1H), 2.34-2.20 (m, 2H), 2.19-2.08 (m, 1H), 2.04-1.67 (m, 4H), 1.20-1.10 (m, 3H), 1.01-0.89 (m, 2H), 0.80-0.64 (m, 2H); MS(ES+) m/z 554.0, 556.0 (M+1).
  • Example 326 Synthesis of 4-(((3R,6S)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00801
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with 4-(((3R,6S)-1-(2-chloro-4-fluorobenzyl)-6-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as a colorless solid (0.11 g, 35%): 1H NMR (300 MHz, CDCl3) δ8.72-8.60 (m, 1H), 7.62-7.54 (m, 1H), 7.50-7.41 (m, 1H), 7.07-6.99 (m, 1H), 6.84-6.72 (m, 1H), 6.50-6.38 (m, 1H), 4.49-4.37 (m, 1H), 3.93-3.80 (m, 1H), 3.49-3.36 (m, 1H), 3.17-3.03 (m, 1H), 2.95-2.84 (m, 1H), 2.79-2.67 (m, 1H), 2.55-2.45 (m, 1H), 2.21-2.06 (m, 1H), 2.02-1.67 (m, 4H), 1.49-1.39 (m, 2H), 1.19-1.11 (m, 5H), 0.99-0.92 (m, 2H), 0.77-0.64 (m, 2H); MS(ES+) m/z 539.1, 541.1 (M+1).
  • Example 327 Synthesis of (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((1-(trifluoromethyl)cyclopentyl)methyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00802
  • Step 1. Preparation of (R)-methyl 5-cyclopropyl-2-fluoro-4-((1-((1-(trifluoromethyl)cyclopentyl)methyl)piperidin-3-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C00803
  • To a stirred solution of (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate (1.84 g, 6.26 mmol) in acetone (31 mL) was added triethylamine (4.36 mL, 31.30 mmol), followed by addition of (1-(trifluoromethyl)cyclopentyl)methyl trifluoromethanesulfonate (1.84 g, 6.26 mmol) (A. Wolniewicz et al., Journal of Fluorine Chemistry, 2001, 109, 95-102). The reaction mixture was stirred at reflux for 48 hours, cooled to ambient temperature, and concentrated in vacuo. The residue was diluted with ethyl acetate (70 mL), and washed with saturated aqueous sodium bicarbonate solution (30 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (2×70 mL). The combined organic layers were washed with brine (80 mL), dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was purified by column chromatography eluting with a gradient of ethyl acetate in hexanes (0 to 25%) to give the title compound as a colorless oil (0.84 g, 30%): MS(ES+) m/z 444.4 (M+1).
  • Step 2. Preparation of (R)-5-cyclopropyl-2-fluoro-4-((1-((1-(trifluoromethyl)cyclopentyl)methyl)piperidin-3-yl)oxy)benzoic acid
  • Figure US20210093618A1-20210401-C00804
  • Following the procedure as described in Example 50 step 2, and making variations as required to replace methyl 4-((1-(3-fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with (R)-methyl 5-cyclopropyl-2-fluoro-4-((1-((1-(trifluoromethyl)cyclopentyl)methyl)piperidin-3-yl)oxy)benzoate, the title compound was obtained as a colorless solid (0.78 g, 96%): MS(ES+) m/z 430.2 (M+1).
  • Step 3. Preparation of (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((1-(trifluoromethyl)cyclopentyl)methyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00805
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-((1-(trifluoromethyl)cyclopentyl)methyl)piperidin-3-yl)oxy)benzoic acid, the title compound was obtained as a colorless solid (0.11 g, 17%): 1H NMR (300 MHz, CDCl3) δ8.71 (s, 1H), 7.60-7.52 (m, 1H), 6.66-6.54 (m, 1H), 4.45-4.29 (m, 1H), 3.41 (s, 3H), 3.08-2.98 (m, 1H), 2.76-2.63 (m, 1H), 2.60-2.38 (m, 4H), 2.12-1.94 (m, 2H), 1.91-1.55 (m, 1H), 0.98-0.86 (m, 2H), 0.72-0.60 (m, 2H); MS(ES+) m/z 507.2 (M+1).
  • Example 328 Synthesis of (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((1-(trifluoromethyl)cyclobutyl)methyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00806
  • Step 1. Preparation of (R)-methyl 5-cyclopropyl-2-fluoro-4-((1-((1-(trifluoromethyl)cyclobutyl)methyl)piperidin-3-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C00807
  • To a mixture of (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate (1.51 g, 5.15 mmol), (1-(trifluoromethyl)cyclobutyl)methyl trifluoromethanesulfonate (1.34 g, 4.68 mmol) (A. Wolniewicz et al., Journal of Fluorine Chemistry, 2001, 109, 95-102), and potassium carbonate (0.97 g, 7.02 mmol) in cyclohexane (35 mL) was stirred at reflux for 96 hours. The mixture was cooled to ambient temperature, diluted with hexanes (100 mL), washed with saturated aqueous sodium bicarbonate solution (30 mL), brine (40 mL), dried over anhydrous magnesium sulfate, filtered and concentrated. The residue was purified by column chromatography eluting with a gradient of ethyl acetate in hexanes (0 to 25%) to give the title compound as a colorless oil (0.90 g, 39%): MS(ES+) m/z 430.2 (M+1).
  • Step 2. Preparation of (R)-5-cyclopropyl-2-fluoro-4-((1-((1-(trifluoromethyl)cyclobutyl)methyl)piperidin-3-yl)oxy)benzoic acid
  • Figure US20210093618A1-20210401-C00808
  • Following the procedure as described in Example 50 step 2, and making variations as required to replace methyl 4-((1-(3-fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with (R)-methyl 5-cyclopropyl-2-fluoro-4-((1-((1-(trifluoromethyl)cyclobutyl)methyl)piperidin-3-yl)oxy)benzoate, the title compound was obtained as a colorless solid (0.58 g, 67%): MS(ES+) m/z 416.2 (M+1).
  • Step 3. Preparation of (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((1-(trifluoromethyl)cyclobutyl)methyl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C00809
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-2-fluoro-4-((1-((1-(trifluoromethyl)cyclobutyl)methyl)piperidin-3-yl)oxy)benzoic acid, the title compound was obtained as a colorless solid (0.24 g, 35%): 1H NMR (300 MHz, CDCl3) δ8.70 (s, 1H), 7.61-7.50 (m, 1H), 6.67-6.52 (m, 1H), 4.49-4.31 (m, 1H), 3.41 (s, 3H), 3.05-2.96 (m, 1H), 2.75-2.64 (m, 1H), 2.59 (s, 2H), 2.53-2.32 (m, 2H), 2.29-2.15 (m, 2H), 2.11-1.93 (m, 5H), 1.92-1.80 (m, 2H), 1.73-1.58 (m, 2H), 0.99-0.85 (m, 2H), 0.71-0.60 (m, 2H); MS(ES+) m/z 493.2 (M+1).
  • Example 329 Synthesis of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((1-(trifluoromethyl)cyclopentyl)methyl)piperidin-4-yl)methoxy)benzamide trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00810
  • Step 1. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-((1-((1-(trifluoromethyl)cyclopentyl)methyl)piperidin-4-yl)methoxy)benzoate
  • Figure US20210093618A1-20210401-C00811
  • Following the procedure as described in Example 328 step 1, and making variations as required to replace (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate, and to replace (1-(trifluoromethyl)cyclobutyl)methyl trifluoromethanesulfonate with (1-(trifluoromethyl)cyclopentyl)methyl trifluoromethanesulfonate, the title compound was obtained as a colorless oil (0.42 g, 54%): MS(ES+) m/z 500.3 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-4-((1-((1-(trifluoromethyl)cyclopentyl)methyl)piperidin-4-yl)methoxy)benzoic acid
  • Figure US20210093618A1-20210401-C00812
  • Following the procedure as described in Example 3 step 3, and making variations as required to replace (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)piperidine-1-carboxylate with tert-butyl 5-cyclopropyl-2-fluoro-4-((1-((1-(trifluoromethyl)cyclopentyl)methyl)piperidin-4-yl)methoxy)benzoate, the title compound was obtained as a colorless solid (0.36 g, 97%): MS(ES+) m/z 444.3 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((1-(trifluoromethyl)cyclopentyl)methyl)piperidin-4-yl)methoxy)benzamide trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00813
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((1-(trifluoromethyl)cyclopentyl)methyl)piperidin-4-yl)methoxy)benzoic acid, the title compound was obtained as a colorless solid (0.04 g, 17%): 1H NMR (300 MHz, CDCl3) δ8.82-8.64 (m, 1H), 7.64-7.53 (m, 1H), 6.63-6.49 (m, 1H), 4.00-3.68 (m, 4H), 3.42 (s, 3H), 3.28 (s, 2H), 3.06-2.70 (m, 2H), 2.28-1.69 (m, 14H), 1.01-0.88 (m, 2H), 0.71-0.59 (m, 2H); MS(ES+) m/z 521.2 (M+1).
  • Example 330 Synthesis of 5-cyclopropyl-4-(((2S,3S)-1-(3,5-dichlorobenzyl)-2-methylpiperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00814
  • Step 1. Preparation of tert-butyl 4-(((2S,3S)-1-benzyl-2-methylpiperidin-3-yl)oxy)-5-chloro-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00815
  • Following the procedure as described in Example 1 step 1, and making variation as required to replace (R)-1-benzylpiperidin-3-ol with (2S,3S)-1-benzyl-2-methylpiperidin-3-ol (Peter H. Huy et al., Org. Lett., 2013, 15, 5178), the title compound was obtained as a pale yellow oil (0.15 g, 11%): MS(ES+) m/z 434.2, 436.2 (M+1).
  • Step 2. tert-butyl 4-(((2S,3S)-1-benzyl-2-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00816
  • Following the procedure as described in Example 1 step 2, and making variation as required to replace (R)-tert-butyl 4-((1-benzylpiperidin-3-yl)oxy)-5-chloro-2-fluorobenzoate with tert-butyl 4-(((2S,3S)-1-benzyl-2-methylpiperidin-3-yl)oxy)-5-chloro-2-fluorobenzoate, the title compound was obtained (0.343 g, 96%) as a colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.39-7.18 (m, 6H), 6.57-6.48 (m, 1H), 4.51-4.38 (m, 1H), 3.74-3.52 (m, 2H), 3.32-3.18 (m, 1H), 2.59-2.32 (m, 2H), 2.04-1.93 (m, 1H), 1.91-1.58 (m, 4H), 1.54 (s, 9H), 1.07 (d, J=6.6 Hz, 3H), 0.91-0.79 (m, 2H), 0.67-0.52 (m, 2H).
  • Step 3. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-(((2S,3S)-2-methylpiperidin-3-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C00817
  • To a mixture of tert-butyl 4-(((2S,3S)-1-benzyl-2-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate (0.34 g, 0.78 mmol) and ammonium formate (0.49 g, 7.74 mmol) in methanol (16 mL) was added 10% palladium on carbon (0.04 g). The reaction mixture was stirred at reflux for 1 hour, cooled to ambient temperature, and filtered through a pad of diatomaceous earth. The filtrate was concentrated. The residue was diluted with ethyl acetate (100 mL), washed with aqueous saturated sodium bicarbonate solution (25 mL), water (25 mL), and brine (40 mL); dried over anhydrous magnesium sulfate; filtered and concentrated in vacuo to give the title compound as a colorless solid (0.22 g, 81%): MS(ES+) m/z 349.9 (M+1).
  • Step 4. Preparation of tert-butyl 5-cyclopropyl-4-(((2S,3S)-1-(3,5-dichlorobenzyl)-2-methylpiperidin-3-yl)oxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00818
  • Following the procedure as described in Example 50 step 1, and making variations as required to replace (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate with tert-butyl 4-(((2S,3S)-1-benzyl-2-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate, and to replace 1,3-dichloro-5-(1-chloroethyl)benzene with 1,3-dichloro-5-(chloromethyl)benzene, the title compound was obtained as a colorless oil (0.27 g, 84%): MS(ES+) m/z 508.1, 510.1 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-4-(((2S,3S)-1-(3,5-dichlorobenzyl)-2-methylpiperidin-3-yl)oxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00819
  • Following the procedure as described in Example 3 step 3, and making variation as required to replace (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)piperidine-1-carboxylate with tert-butyl 5-cyclopropyl-4-(((2S,3S)-1-(3,5-dichlorobenzyl)-2-methylpiperidin-3-yl)oxy)-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.24 g, 99%): MS(ES+) m/z 452.1, 454.0 (M+1).
  • Step 6. Preparation of 5-cyclopropyl-4-(((2S,3S)-1-(3,5-dichlorobenzyl)-2-methylpiperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00820
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((2S,3S)-1-(3,5-dichlorobenzyl)-2-methylpiperidin-3-yl)oxy)-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.06 g, 36%): 1H NMR (300 MHz, CDCl3) δ8.93-8.61 (m, 1H), 7.70-7.53 (m, 1H), 7.50-7.35 (m, 3H), 6.89-6.67 (m, 1H), 5.02-4.82 (m, 1H), 4.46-4.12 (m, 2H), 4.09-3.85 (m, 1H), 3.47-3.33 (m, 3H), 3.31-2.87 (m, 2H), 2.18-1.86 (m, 5H), 1.62-1.39 (m, 3H), 1.03-0.83 (m, 2H), 0.73-0.54 (m, 2H); MS(ES+) m/z 529.1, 531.1 (M+1).
  • Example 331 Synthesis of 5-cyclopropyl-4-(((2S,3R)-1-(3,5-dichlorobenzyl)-2-methylpiperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00821
  • Step 1. Preparation of tert-butyl 4-(((2S,3R)-1-benzyl-2-methylpiperidin-3-yl)oxy)-5-chloro-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00822
  • Following the procedure as described in Example 1 step 1, and making variation as required to replace (R)-1-benzylpiperidin-3-ol with (2S,3R)-1-benzyl-2-methylpiperidin-3-ol (Peter H. Huy et al., Org. Lett., 2013, 15, 5178), the title compound was obtained as a colorless oil (0.26 g, 37%): MS(ES+) m/z 434.1, 436.1 (M+1).
  • Step 2. Preparation of tert-butyl 4-(((2S,3R)-1-benzyl-2-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00823
  • Following the procedure as described in Example 1 step 2, and making variation as required to replace (R)-tert-butyl 4-((1-benzylpiperidin-3-yl)oxy)-5-chloro-2-fluorobenzoate with tert-butyl 4-(((2S,3R)-1-benzyl-2-methylpiperidin-3-yl)oxy)-5-chloro-2-fluorobenzoate, the title compound was obtained as a pale yellow oil (0.21 g, 80%): MS(ES+) m/z 440.4 (M+1).
  • Step 3. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-(((2S,3R)-2-methylpiperidin-3-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C00824
  • Following the procedure as described in Example 330 step 3, and making variations as required to replace tert-butyl 4-(((2S,3S)-1-benzyl-2-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate with tert-butyl 4-(((2S,3R)-1-benzyl-2-methylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless oil (0.16 g, 95%): MS(ES+) m/z 350.3 (M+1).
  • Step 4. Preparation of tert-butyl 5-cyclopropyl-4-(((2S,3R)-1-(3,5-dichlorobenzyl)-2-methylpiperidin-3-yl)oxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00825
  • Following the procedure as described in Example 50 step 1, and making variations as required to replace (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-(((2S,3R)-2-methylpiperidin-3-yl)oxy)benzoate, and to replace 1,3-dichloro-5-(1-chloroethyl)benzene with 1,3-dichloro-5-(chloromethyl)benzene, the title compound was obtained as a colorless oil (0.15 g, 68%): MS(ES+) m/z 508.1, 510.1 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-4-(((2S,3R)-1-(3,5-dichlorobenzyl)-2-methylpiperidin-3-yl)oxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00826
  • Following the procedure as described in Example 3 step 3, and making variation as required to replace (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)piperidine-1-carboxylate with tert-butyl 5-cyclopropyl-4-(((2S,3R)-1-(3,5-dichlorobenzyl)-2-methylpiperidin-3-yl)oxy)-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.08 g, 64%): MS(ES+) m/z 452.1, 454.0 (M+1).
  • Step 6. Preparation of 5-cyclopropyl-4-(((2S,3R)-1-(3,5-dichlorobenzyl)-2-methylpiperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00827
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((2S,3R)-1-(3,5-dichlorobenzyl)-2-methylpiperidin-3-yl)oxy)-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.03 g, 27%): 1H NMR (300 MHz, CDCl3) δ8.88-8.66 (m, 1H), 7.67-7.58 (m, 1H), 7.52-7.36 (m, 3H), 6.79-6.64 (m, 1H), 4.89-4.58 (m, 2H), 4.12-3.90 (m, 1H), 3.54-3.21 (m, 5H), 3.00-2.75 (m, 1H), 2.44-1.93 (m, 5H), 1.84-1.64 (m, 3H), 1.06-0.90 (m, 2H), 0.80-0.54 (m, 2H); MS(ES+) m/z 529.1, 531.1 (M+1).
  • Example 332 Synthesis of (R)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00828
  • Step 1. Preparation of (R)-tert-butyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00829
  • Following the procedure as described in Example 1 step 1, and making variation as required to replace (R)-1-benzylpiperidin-3-ol with (R)-tert-butyl 3-(hydroxymethyl)piperidine-1-carboxylate, the title compound was obtained (13.11 g, 79%) as a colorless oil: MS(ES+) m/z 444.2, 446.2 (M+1).
  • Step 2. Preparation of (R)-tert-butyl 3-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00830
  • Following the procedure as described in Example 1 step 2, and making variation as required to replace (R)-tert-butyl 4-((1-benzylpiperidin-3-yl)oxy)-5-chloro-2-fluorobenzoate with (R)-tert-butyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)piperidine-1-carboxylate, the title compound was obtained as a colorless solid (8.61 g, 65%): MS(ES+) m/z 450.3 (M+1).
  • Step 3. Preparation of (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-ylmethoxy)benzoate
  • Figure US20210093618A1-20210401-C00831
  • Following the procedure as described in Example 34 step 1, and making variations as required to replace (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)piperidine-1-carboxylate with (R)-tert-butyl 3-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)piperidine-1-carboxylate, the title compound was obtained as a colorless oil (5.89 g, 99%): MS(ES+) m/z 308.2 (M+1).
  • Step 4. Preparation of (R)-methyl 4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00832
  • Following the procedure as described in Example 34 step 2, and making variations as required to replace (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate with (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-ylmethoxy)benzoate, and to replace 1-(bromomethyl)-4-fluoro-2-(trifluoromethyl)benzene with 1-(bromomethyl)-2-chloro-4-fluorobenzene, the title compound was obtained as a colorless oil (4.06 g, 94%): MS(ES+) m/z 450.1, 452.1 (M+1).
  • Step 5. Preparation of (R)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00833
  • Following the procedure as described in Example 50 step 2, and making variations as required to replace methyl 4-((1-(3-fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with (R)-methyl 4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (3.80 g, 97%): MS(ES+) m/z 436.1, 438.1 (M+1).
  • Step 6. Preparation of (R)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00834
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with (R)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.25 g, 35%): 1H NMR (300 MHz, CDCl3) δ11.53 (br s, 1H), 7.59-7.48 (m, 1H), 7.47-7.39 (m, 1H), 7.25-7.09 (m, 2H), 6.96-6.85 (m, 1H), 4.09-3.85 (m, 2H), 3.78-3.54 (m, 2H), 3.26 (s, 3H), 3.01-2.78 (m, 2H), 2.36-2.02 (m, 3H), 1.91-1.47 (m, 4H), 1.29-1.12 (m, 1H), 0.86-0.68 (m, 2H), 0.64-0.52 (m, 2H); MS(ES+) m/z 513.2, 515.1 (M+1).
  • Example 333 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00835
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with (R)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace methanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as a colorless solid (0.14 g, 19%): 1H NMR (300 MHz, CDCl3) δ 8.65 (s, 1H), 7.62-7.55 (m, 1H), 7.47-7.38 (m, 1H), 7.12-7.04 (m, 1H), 6.96-6.86 (m, 1H), 6.61-6.51 (m, 1H), 4.33-4.14 (m, 4H), 4.01-3.82 (m, 2H), 3.64-3.49 (m, 2H), 3.00-2.86 (m, 1H), 2.83-2.69 (m, 1H), 2.37-2.03 (m, 5H), 1.99-1.61 (m, 4H), 1.37-1.17 (m, 1H), 0.97-0.75 (m, 2H), 0.71-0.53 (m, 2H); MS(ES+) m/z 554.2, 556.2 (M+1).
  • Example 334 Synthesis of (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00836
  • Step 1. Preparation of (R)-methyl 5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00837
  • Following the procedure as described in Example 50 step 1, and making variations as required to replace (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate with (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-ylmethoxy)benzoate, and to replace 1,3-dichloro-5-(1-chloroethyl)benzene with 1,3-dichloro-5-(chloromethyl)benzene, the title compound was obtained as a colorless oil (0.68 g, 89%): MS(ES+) m/z 466.2, 468.1 (M+1).
  • Step 2. Preparation of (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)methoxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00838
  • Following the procedure as described in Example 50 step 2, and making variations as required to replace methyl 4-((1-(3-fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with (R)-methyl 5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)methoxy)-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.60 g, 91%): MS(ES+) m/z 452.1, 454.1 (M+1).
  • Step 3. Preparation of (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00839
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)methoxy)-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.14 g, 39%): 1H NMR (300 MHz, CDCl3) δ8.68 (s, 1H), 7.59-7.53 (m, 1H), 7.25-7.18 (m, 3H), 6.59-6.52 (m, 1H), 3.96-3.82 (m, 2H), 3.53-3.35 (m, 5H), 2.96-2.84 (m, 1H), 2.81-2.67 (m, 1H), 2.33-2.06 (m, 2H), 2.05-1.63 (m, 5H), 1.36-1.16 (m, 1H), 0.95-0.75 (m, 2H), 0.69-0.51 (m, 2H); MS(ES+) m/z 529.1, 531.1 (M+1).
  • Example 335 Synthesis of (S)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00840
  • Step 1. Preparation of (S)-tert-butyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00841
  • Following the procedure as described in Example 1 step 1, and making variation as required to replace (R)-1-benzylpiperidin-3-ol with (S)-tert-butyl 3-(hydroxymethyl)piperidine-1-carboxylate, the title compound was obtained as a colorless oil (12.94 g, 78%): MS(ES+) m/z 444.2, 446.2 (M+1).
  • Step 2. Preparation of (S)-tert-butyl 3-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00842
  • Following the procedure as described in Example 1 step 2, and making variation as required to replace (R)-tert-butyl 4-((1-benzylpiperidin-3-yl)oxy)-5-chloro-2-fluorobenzoate with (S)-tert-butyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)piperidine-1-carboxylate, the title compound was obtained as a colorless solid (10.22 g, 78%): MS(ES+) m/z 450.3 (M+1).
  • Step 3. Preparation of (S)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-ylmethoxy)benzoate
  • Figure US20210093618A1-20210401-C00843
  • Following the procedure as described in Example 34 step 1, and making variations as required to replace (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)piperidine-1-carboxylate with (R)-tert-butyl 3-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)piperidine-1-carboxylate, the title compound was obtained as a pale yellow oil (6.99 g, 99%): MS(ES+) m/z 308.2 (M+1).
  • Step 4. Preparation of (S)-methyl 4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00844
  • Following the procedure as described in Example 34 step 2, and making variations as required to replace (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate with (S)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-ylmethoxy)benzoate, and to replace 1-(bromomethyl)-4-fluoro-2-(trifluoromethyl)benzene with 1-(bromomethyl)-2-chloro-4-fluorobenzene, the title compound was obtained as a colorless oil (1.85 g, 42%): MS(ES+) m/z 450.2, 452.2 (M+1).
  • Step 5. Preparation of (S)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00845
  • Following the procedure as described in Example 50 step 2, and making variations as required to replace methyl 4-((1-(3-fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with (S)-methyl 4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (1.78 g, 99%): MS(ES+) m/z 436.2,
  • 438.1 (M+1).
  • Step 6. Preparation of (S)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00846
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with (S)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.19 g, 37%): 1H NMR (300 MHz, DMSO-d6) δ11.53 (br s, 1H), 7.58-7.48 (m, 1H), 7.47-7.38 (m, 1H), 7.24-7.09 (m, 2H), 6.96-6.86 (m, 1H), 4.08-3.85 (m, 2H), 3.79-3.56 (m, 2H), 3.26 (s, 3H), 3.01-2.78 (m, 2H), 2.34-2.21 (m, 1H), 2.20-2.02 (m, 2H), 1.92-1.50 (m, 4H), 1.31-1.12 (m, 1H), 0.85-0.69 (m, 2H), 0.65-0.53 (m, 2H); MS(ES+) m/z 513.2, 515.2 (M+1).
  • Example 336 Synthesis of (S)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00847
  • Step 1. Preparation of (S)-methyl 5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00848
  • Following the procedure as described in Example 50 step 1, and making variations as required to replace (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate with (S)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-ylmethoxy)benzoate, and to replace 1,3-dichloro-5-(1-chloroethyl)benzene with 1,3-dichloro-5-(chloromethyl)benzene, the title compound was obtained as a colorless oil (0.65 g, 86%): MS(ES+) m/z 466.2, 468.2 (M+1).
  • Step 2. Preparation of (S)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)methoxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00849
  • Following the procedure as described in Example 50 step 2, and making variations as required to replace methyl 4-((1-(3-fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with (S)-methyl 5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)methoxy)-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.52 g, 83%): MS(ES+) m/z 452.1, 454.2 (M+1).
  • Step 3. Preparation of (S)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00850
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with (S)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)methoxy)-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.07 g, 20%): 1H NMR (300 MHz, CDCl3) δ8.78 (s, 1H), 7.60-7.50 (m, 1H), 7.24-7.20 (m, 3H), 6.61-6.50 (m, 1H), 3.99-3.82 (m, 2H), 3.55-3.32 (m, 5H), 2.97-2.83 (m, 1H), 2.82-2.67 (m, 1H), 2.32-2.05 (m, 2H), 2.05-1.60 (m, 5H), 1.33-1.15 (m, 1H), 0.95-0.75 (m, 2H), 0.68-0.48 (m, 2H); MS(ES+) m/z 529.1, 531.1 (M+1).
  • Example 337 and Example 338 Synthesis of 5-cyclopropyl-4-(((S)-1-((R)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00851
  • and 5-cyclopropyl-4-(((S)-1-((S)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00852
  • Step 1. Preparation of methyl 5-cyclopropyl-4-(((3S)-1-(1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00853
  • Following the procedure as described in Example 50 step 1, and making variations as required to replace (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate with (S)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-ylmethoxy)benzoate, the title compound was obtained as a pale yellow oil (1.92 g, 75%): MS(ES+) m/z 480.2, 482.2 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-4-(((3S)-1-(1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)methoxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00854
  • Following the procedure as described in Example 50 step 2, and making variations as required to replace methyl 4-((1-(3-fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with methyl 5-cyclopropyl-4-(((3S)-1-(1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)methoxy)-2-fluorobenzoate, the title compound was obtained as a colorless solid (1.72 g, 92%): MS(ES+) m/z 452.1, 454.2 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-4-(((S)-1-((R)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00855
  • And 5-cyclopropyl-4-(((S)-1-((S)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00856
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((3S)-1-(1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)methoxy)-2-fluorobenzoic acid, a mixture of diastereomers was obtained. The mixture of diastereomers was then purified by preparative HPLC. The first eluting fraction was arbitrarily assigned as 5-cyclopropyl-4-(((S)-1-((R)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt (0.03 g, 4%): 1H NMR (300 MHz, DMSO-d6, 1 drop of D2O) δ7.80-7.75 (m, 1H), 7.68-7.63 (m, 2H), 7.19-7.12 (m, 1H), 6.98-6.90 (m, 1H), 4.62-4.51 (m, 1H), 4.11-4.04 (m, 1H), 3.94-3.84 (m, 1H), 3.79-3.67 (m, 1H), 3.36-3.28 (m, 4H), 2.85-2.63 (m, 2H), 2.36-2.20 (m, 1H), 2.04-1.91 (m, 1H), 1.88-1.73 (m, 2H), 1.73-1.58 (m, 4H), 1.39-1.26 (m, 1H), 0.80-0.51 (m, 4H); MS(ES+) m/z 543.2, 545.1 (M+1).
  • The second eluting fraction was arbitrarily assigned as 5-cyclopropyl-4-(((S)-1-((S)-1-(3,5-dichlorophenyl)ethyl)piperidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt (0.03 g, 4%): 1H NMR (300 MHz, CDCl3) δ13.00 (br s, 1H), 8.81-8.64 (m, 1H), 7.66-7.57 (m, 1H), 7.50-7.43 (m, 1H), 7.37-7.30 (m, 2H), 6.58-6.49 (m, 1H), 4.51-4.36 (m, 1H), 4.07-3.77 (m, 3H), 3.64-3.52 (m, 1H), 3.41 (s, 3H), 2.83-2.65 (m, 1H), 2.58-2.39 (m, 2H), 2.26-2.09 (m, 1H), 2.08-1.91 (m, 2H), 1.91-1.71 (m, 4H), 1.50-1.32 (m, 1H), 0.92-0.76 (m, 2H), 0.71-0.50 (m, 2H); MS(ES+) m/z 543.2, 545.1 (M+1).
  • Example 339 Synthesis of (S)—N-(azetidin-1-ylsulfonyl)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00857
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with (S)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace methanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as a colorless solid (0.05 g, 7%): 1H NMR (300 MHz, CDCl3) δ12.89 (br s, 1H), 8.79-8.49 (m, 1H), 7.79-7.69 (m, 1H), 7.67-7.58 (m, 1H), 7.24-7.17 (m, 1H), 7.17-7.06 (m, 1H), 6.60-6.45 (m, 1H), 4.43 (s, 2H), 4.32-4.16 (m, 4H), 4.08-3.84 (m, 2H), 3.81-3.57 (m, 2H), 2.83-2.63 (m, 2H), 2.34-1.82 (m, 7H), 1.66-1.39 (m, 1H), 0.98-0.81 (m, 2H), 0.73-0.55 (m, 2H); MS(ES+) m/z 554.1, 556.1 (M+1).
  • Example 340 Synthesis of (S)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00858
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with (S)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as a colorless solid (0.17 g, 33%): 1H NMR (300 MHz, CDCl3) δ13.17 (br s, 1H), 8.78-8.58 (m, 1H), 7.80-7.70 (m, 1H), 7.64-7.56 (m, 1H), 7.22-7.16 (m, 1H), 7.14-7.05 (m, 1H), 6.58-6.44 (m, 1H), 4.41 (s, 2H), 4.05-3.81 (m, 2H), 3.77-3.55 (m, 2H), 3.14-3.01 (m, 1H), 2.82-2.60 (m, 3H), 2.22-1.79 (m, 4H), 1.58-1.36 (m, 3H), 1.20-1.05 (m, 2H), 0.96-0.79 (m, 2H), 0.72-0.50 (m, 2H); MS(ES+) m/z 539.2, 541.2 (M+1).
  • Example 341 Synthesis of 5-cyclopropyl-4-(((3R,6R)-1-(3,5-dichlorobenzyl)-6-methylpiperidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00859
  • Step 1. Preparation of (2R,5R)-benzyl 5-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)-2-methylpiperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00860
  • Following the procedure as described in Example 1 step 1, and making variations as required to replace (R)-1-benzylpiperidin-3-ol with (2R,5R)-benzyl 5-(hydroxymethyl)-2-methylpiperidine-1-carboxylate (WO 2010/048010 A1), the title compound was obtained as a colorless oil (1.61 g, 66%): MS(ES+) m/z 492.2, 494.1 (M+1).
  • Step 2. Preparation of (2R,5R)-benzyl 5-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-2-methylpiperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00861
  • Following the procedure as described in Example 1 step 2, and making variations as required to replace (R)-tert-butyl 4-((1-benzylpiperidin-3-yl)oxy)-5-chloro-2-fluorobenzoate with(2R,5R)-benzyl 5-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)-2-methylpiperidine-1-carboxylate, the title compound was obtained as a colorless solid (1.46 g, 90%): MS(ES+) m/z 498.3 (M+1).
  • Step 3. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-(((3R,6R)-6-methylpiperidin-3-yl)methoxy)benzoate
  • Figure US20210093618A1-20210401-C00862
  • Following the procedure as described in Example 52 step 4, and making variation as required to replace (2R,5R)-benzyl 5-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)-2-methylpiperidine-1-carboxylate with (2R,5R)-benzyl 5-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-2-methylpiperidine-1-carboxylate, the title compound was obtained as a colorless oil (1.00 g, 94%): MS(ES+) m/z 364.3 (M+1).
  • Step 4. Preparation of tert-butyl 5-cyclopropyl-4-(((3R,6R)-1-(3,5-dichlorobenzyl)-6-methylpiperidin-3-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00863
  • Following the procedure as described in Example 50 step 1, and making variations as required to replace (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-(((3R,6R)-6-methylpiperidin-3-yl)methoxy)benzoate, and to replace 1,3-dichloro-5-(1-chloroethyl)benzene with 1,3-dichloro-5-(chloromethyl)benzene, the title compound was obtained as a colorless oil (0.71 g, 98%): MS(ES+) m/z 522.2, 524.2 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-4-(((3R,6R)-1-(3,5-dichlorobenzyl)-6-methylpiperidin-3-yl)methoxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00864
  • Following the procedure as described in Example 3 step 3, and making variations as required to replace (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)piperidine-1-carboxylate with tert-butyl 5-cyclopropyl-4-(((3R,6R)-1-(3,5-dichlorobenzyl)-6-methylpiperidin-3-yl)methoxy)-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.56 g, 88%): MS(ES+) m/z 466.1, 468.1 (M+1).
  • Step 6. Preparation of 5-cyclopropyl-4-(((3R,6R)-1-(3,5-dichlorobenzyl)-6-methylpiperidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00865
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((3R,6R)-1-(3,5-dichlorobenzyl)-6-methylpiperidin-3-yl)methoxy)-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.09 g, 40%): 1H NMR (300 MHz, DMSO-d6) δ8.82-8.62 (m, 1H), 7.67-7.52 (m, 1H), 7.51-7.42 (m, 1H), 7.42-7.34 (m, 2H), 6.57-6.42 (m, 1H), 4.76-4.57 (m, 1H), 4.03-3.76 (m, 3H), 3.53-3.44 (m, 1H), 3.41 (s, 3H), 3.04-2.71 (m, 2H), 2.55-2.37 (m, 1H), 2.28-2.10 (m, 1H), 2.09-1.95 (m, 2H), 1.80-1.61 (m, 4H), 1.56-1.42 (m, 1H), 0.87-0.75 (m, 2H), 0.66-0.49 (m, 2H) MS(ES+) m/z 543.2, 545.2 (M+1).
  • Example 342 Synthesis of 5-cyclopropyl-4-(((3R,6R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide trifluoroacetic acid salt (Arbitrarily Assigned)
  • Figure US20210093618A1-20210401-C00866
  • Step 1. Preparation of tert-butyl 5-cyclopropyl-4-(((3R,6R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00867
  • And tert-butyl 5-cyclopropyl-4-(((3R,6R)-1-((R)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00868
  • Following the procedure as described in Example 50 step 1, and making variations as required to replace (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-(((3R,6R)-6-methylpiperidin-3-yl)methoxy)benzoate. The mixture of diastereomers was separated by column chromatography eluting with a gradient of methanol in dichloromethane (0 to 5%). The first eluting fraction was arbitrarily assigned as tert-butyl 5-cyclopropyl-4-(((3R,6R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-2-fluorobenzoate (0.23 g, 32%) as a pale yellow oil: MS(ES+) m/z 536.0, 538.2 (M+1). The second eluting fraction was arbitrarily assigned as tert-butyl 5-cyclopropyl-4-(((3R,6R)-1-((R)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-2-fluorobenzoate (0.23 g, 32%) as a pale yellow oil: MS(ES+) m/z 536.1, 538.1 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-4-(((3R,6R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00869
  • Following the procedure as described in Example 3 step 3, and making variations as required to replace (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)piperidine-1-carboxylate with tert-butyl 5-cyclopropyl-4-(((3R,6R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.20 g, 99%): MS(ES+) m/z 480.1, 482.1 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-4-(((3R,6R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00870
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((3R,6R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.05 g, 38%): 1H NMR (300 MHz, CDCl3) δ12.12 (br s, 1H), 8.91-8.53 (m, 1H), 7.65-7.57 (m, 1H), 7.53-7.48 (m, 2H), 7.45-7.39 (m, 1H), 6.56-6.44 (m, 1H), 5.05-4.92 (m, 1H), 4.02-3.76 (m, 2H), 3.41 (s, 3H), 3.27-3.08 (m, 2H), 2.88-2.71 (m, 1H), 2.72-2.56 (m, 2H), 2.36-2.20 (m, 1H), 2.09-1.92 (m, 2H), 1.83-1.49 (m, 7H), 0.94-0.75 (m, 2H), 0.71-0.50 (m, 2H); MS(ES+) m/z 557.0, 559.0 (M+1).
  • Example 343 Synthesis of 5-cyclopropyl-4-(((3R,6R)-1-((R)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00871
  • Step 1. Preparation of 5-cyclopropyl-4-(((3R,6R)-1-((R)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00872
  • Following the procedure as described in Example 3 step 3, and making variations as required to replace (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)piperidine-1-carboxylate with tert-butyl 5-cyclopropyl-4-(((3R,6R)-1-((R)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.21 g, 99%): MS(ES+) m/z 480.1, 482.1 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-4-(((3R,6R)-1-((R)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00873
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((3R,6R)-1-((R)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.05 g, 28%): 1H NMR (300 MHz, CDCl3) δ13.00 (br s, 1H), 8.91-8.59 (m, 1H), 7.72-7.59 (m, 1H), 7.54-7.45 (m, 1H), 7.31-7.27 (m, 2H), 6.61-6.51 (m, 1H), 5.04-4.91 (m, 1H), 4.14-3.90 (m, 2H), 3.85-3.73 (m, 1H), 3.42 (s, 3H), 2.96-2.64 (m, 2H), 2.60-2.42 (m, 1H), 2.26-2.06 (m, 1H), 2.04-1.65 (m, 9H), 1.56-1.36 (m, 1H), 0.87-0.73 (m, 2H), 0.67-0.54 (m, 2H); MS(ES+) m/z 557.0, 559.0 (M+1).
  • Example 344 Synthesis of 5-cyclopropyl-4-(((3R,6R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00874
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((3R,6R)-1-((S)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-2-fluorobenzoic acid, and to replace methanesulfonamide with ethanesulfonamide, the title compound was obtained as a colorless solid (0.05 g, 31%): 1H NMR (300 MHz, DMSO-d6) δ11.80 (br s, 1H), 9.19-9.02 (m, 1H), 7.84-7.64 (m, 3H), 7.21-7.10 (m, 1H), 6.98-6.84 (m, 1H), 5.16-4.95 (m, 1H), 4.16-3.95 (m, 1H), 3.87-3.68 (m, 1H), 3.50-3.37 (m, 2H), 3.11-2.85 (m, 2H), 2.30-1.89 (m, 3H), 1.83-1.29 (m, 10H), 1.25-1.14 (m, 3H), 0.79-0.35 (m, 4H); MS(ES+) m/z 571.1, 573.1 (M+1).
  • Example 345 Synthesis of 5-cyclopropyl-4-(((3R,6R)-1-((R)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-N-(ethylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00875
  • Following the procedure as described in Example 17 step 2, and making variations as required to replace (R)-5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)piperidin-3-yl)-oxy)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((3R,6R)-1-((R)-1-(3,5-dichlorophenyl)ethyl)-6-methylpiperidin-3-yl)methoxy)-2-fluorobenzoic acid, and to replace methanesulfonamide with ethanesulfonamide, the title compound was obtained as a colorless solid (0.02 g, 17%): 1H NMR (300 MHz, DMSO-d6) δ11.84 (br s, 1H), 9.71-9.51 (m, 1H), 7.86-7.60 (m, 3H), 7.24-7.14 (m, 1H), 7.03-6.90 (m, 1H), 5.21-4.98 (m, 1H), 4.15-3.99 (m, 2H), 3.94-3.81 (m, 1H), 3.52-3.39 (m, 2H), 2.97-2.80 (m, 1H), 2.47-2.22 (m, 2H), 2.04-1.35 (m, 1H), 1.29-1.18 (m, 3H), 0.82-0.55 (m, 4H); MS(ES+) m/z 571.1, 573.1 (M+1).
  • Example 346 Synthesis of 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00876
  • Step 1. Preparation of tert-Butyl 4-fluoro-4-(hydroxymethyl)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00877
  • To a solution of 1-(tert-butoxycarbonyl)-4-fluoropiperidine-4-carboxylic acid (5.00 g, 20.20 mmol) in tetrahydrofuran (100 mL) was added a solution of borane tetrahydrofuran complex (30.3 mL, 30.30 mmol, 1.0 M solution in tetrahydrofuran). The reaction mixture was refluxed for 16 hours, and then another 24 mL of borane tetrahydrofuran complex was added and continued to reflux for another 16 hours. After cooling to ambient temperature the reaction mixture poured onto ice-cold water (50 mL) and saturated ammonium chloride (100 mL), and extracted with ethyl acetate (3×100 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated to afford the title compound (4.60 g, 98%). Which was used in the next step without further purification: MS (ES+) m/z 234.1 (M+1).
  • Step 2. Preparation of tert-butyl 4-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)-4-fluoropiperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00878
  • To a mixture of tert-butyl 4-fluoro-4-(hydroxymethyl)piperidine-1-carboxylate (4.60 g, 19.70 mmol) and tert-butyl 5-chloro-2,4-difluorobenzoate (4.89 g, 19.70 mmol) in dimethyl sulfoxide (50 mL) was added cesium carbonate (9.65 g, 29.60 mmol) and the reaction mixture was heated at 80° C. for 4 hours. After cooling to an ambient temperature, water (50 mL) was added, and then extracted with ethyl acetate (3×100 mL). The organic layer was washed with brine (2×50 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo and the residue was purified by silica gel column chromatography eluting with gradient of 0-30% ethyl acetate in hexanes to afford the title compound as a colorless gum (6.60 g, 73%): 1H NMR (300 MHz, CDCl3) δ 7.82 (d, J=7.6 Hz, 1H), 6.58 (d, J=11.8 Hz, 1H), 3.90-4.10 (m, 3H), 3.07 (t, J=12.4 Hz, 2H), 1.98-1.89 (m, 3H), 1.84-1.56 (m, 2H), 1.51 (s, (H), 1.40 (s, 9H); MS (ES+) m/z 464.1, 462.1 (M+1).
  • Step 3. Preparation of tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-4-fluoropiperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C00879
  • To a mixture of tert-butyl 4-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)-4-fluoropiperidine-1-carboxylate (6.60 g, 14.30 mmol), cyclopropylboronic acid (3.07 g, 35.80 mmol), potassium phosphate (12.2 g, 57.3 mmol) and tricyclohexylphosphine tetrafluoroborate (0.79 g, 2.15 mmol) in toluene (120 mL) and water (12 mL) under a nitrogen atmosphere was added palladium acetate (0.32 g, 1.43 mmol). The reaction mixture was heated at 100° C. for 16 hours and cooled to ambient temperature. To the reaction mixture was added water (20 mL) and extracted with ethyl acetate (3×100 mL). The combined organic extracts was washed with brine, dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo and the residue was purified by column chromatography eluting with 5% ethyl acetate in hexanes to afford the title compound as a colorless gum (4.00 g, 60%): MS (ES+) m/z 468.6 (M+1).
  • Step 4. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-fluoropiperidin-4-yl)methoxy)benzoate hydrochloride
  • Figure US20210093618A1-20210401-C00880
  • To a solution of tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-4-fluoropiperidine-1-carboxylate (4.00 g, 8.50 mmol) in dioxane (12 mL) was added a solution of hydrogen chloride in dioxane (4M, 4.0 mL, 16.00 mmol). The reaction solution was stirred at an ambient temperature for 3 hours. The title compound precipitated out from solution was collected by filtration. The filtrate was concentrated to afford another portion of product (1.90 g in total, 61%) as a pale yellow solid: 1H NMR (300 MHz, CDCl3) δ 8.97 (br s, 1H), 7.26 (d, J=8.4 Hz, 1H), 6.93 (d, J=12.9 Hz, 1H), 4.23 (d, J=19.9 Hz, 2H), 3.31-3.20 (m 2H), 3.11-2.92 (m, 2H), 2.15-2.06 (m, 2H), 2.04-1.92 (m, 2H), 1.47 (s, 9H), 0.91-0.85 (m, 2H), 0.60-0.54 (m, 2H); MS (ES+) m/z 368.2 (M+1).
  • Step 5. Preparation of tert-butyl 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00881
  • A mixture of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-fluoropiperidin-4-yl)methoxy)benzoate hydrochloride (0.29 g, 0.70 mmol), 1-chloro-3-(chloromethyl)-2-fluoro-5-(trifluoromethyl)benzene (0.18 g, 0.70 mmol) and potassium carbonate (0.24 g, 2.10 mmol) in N,N-dimethylformamide (2 mL) was heated at 90° C. for 16 hours. The solid was filtered off and the filtrate was subjected to column chromatography eluting with 40% ethyl acetate in hexanes to afford the title compound as a gum (0.29 g, 71%): MS (ES+) m/z 578.2, 580.2 (M+1).
  • Step 6. Preparation of 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00882
  • To a solution of tert-butyl 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate (0.29 g, 0.50 mmol) in dichloromethane (5 mL) was added trifluoroacetic acid (2 mL). The reaction mixture was stirred for 3 hours and concentrated invacuo to afford the title compound as a colorless solid (0.20 g, 76%): MS (ES−) m/z 520.2, 518.2 (M−1).
  • Step 7. Preparation of 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00883
  • To a mixture of 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid (0.10 g, 0.19 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (0.068 g, 0.44 mmol), 4-dimethylaminopyridine (0.054 g, 0.44 mmol) was added methanesulfonamide (0.027 g, 0.29 mmol) in dichloromethane (3 mL). After stirring at ambient temperature for 16 hours, the reaction mixture was diluted with ethyl acetate (5 mL), washed with brine (10 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo and the residue was purified by preparative-HPLC to afford the title compound as a colorless solid (0.05 g, 44%): 1H NMR (300 MHz, DMSO-d6) δ 11.91 (br s, 1H), 10.24 (br s, 1H), 8.22 (d, J=3 Hz, 1H), 8.00 (d, J=3 Hz, 1H), 7.13 (d, J=9 Hz, 1H), 6.98 (d, J=12 Hz, 1H), 4.65-4.10 (m, 5H), 3.53-3.01 (m, 6H), 2.32-1.81 (m, 5H), 0.94-0.78 (m, 2H), 0.72-0.56 (m, 2H); MS (ES+) m/z 599.1, 601.3 (M+1).
  • Example 347 Synthesis of 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00884
  • Following the procedure as described in Example 346 step 7 and making non-critical variation as required to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.04 g, 35%): 1H NMR (300 MHz, DMSO-d6) δ 11.89 (br s, 1H), 10.10 (br s, 1H), 8.28 (d, J=6 Hz, 1H), 8.05 (d, J=6 Hz, 1H), 7.15 (d, J=9 Hz, 1H), 7.02 (d, J=15 Hz, 1H), 4.60-4.20 (m, 5H), 3.59-3.16 (m, 4H), 3.14-2.99 (m, 1H), 2.37-1.88 (m, 5H), 1.18-1.04 (m, 3H), 0.96-0.83 (m, 2H), 0.74-0.64 (m, 2H); MS (ES+) m/z 625.1, 627.3 (M+1).
  • Example 348 Synthesis of 4-((1-(3-chloro-4-(trifluoromethoxy)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00885
  • Step 1. Preparation of tert-butyl 4-((1-(3-chloro-4-(trifluoromethoxy)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00886
  • To a solution of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-fluoropiperidin-4-yl)methoxy)benzoate (0.250 g, 0.62 mmol) and 3-chloro-4-(trifluoromethoxy)benzaldehyde (0.17 g, 0.74 mmol) in tetrahydrofuran (5 mL) was added sodium triacetoxyborohydride (0.30 g, 1.40 mmol). The reaction mixture was stirred at ambient temperature for 16 hours and concentrated invacuo. The residue was subjected to column chromatography to afford the title compound as a colorless gum(0.10 g, 23%): MS (ES+) m/z 576.2, 578.2 (M+1).
  • Step 2. Preparation of 4-((1-(3-chloro-4-(trifluoromethoxy)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00887
  • Following the procedure as described in Example 346 step 6, and making non-critical variation as required to replace tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-4-fluoropiperidine-1-carboxylate with tert-butyl 4-((1-(3-chloro-4-(trifluoromethoxy)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.12 g, quant. yield): MS (ES+) m/z 522.2, 520.2 (M+1).
  • Step 3. Preparation of 4-((1-(3-chloro-4-(trifluoromethoxy)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00888
  • Following the procedure as described in Example 346 step 7 and making non-critical variation as required to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.02 g, 14%): 1H NMR (300 MHz, DMSO-d6) δ 11.89 (br s, 1H), 10.00 (br s, 1H), 7.90 (s, 1H), 7.75-7.56 (m, 2H), 7.15 (d, J=9 Hz, 1H), 7.03 (d, J=12 Hz, 1H), 4.54-4.2 (m, 4H), 3.25-2.97 (m, 2H), 2.34-1.88 (m, 3H), 2.32-1.85 (m, 5H), 1.21-1.03 (m, 4H), 0.95-0.83 (m, 2H), 0.75-0.61 (m, 2H); MS (ES+) m/z 625.0, 623.1 (M+1).
  • Example 348 Synthesis of 4-((1-(5-chloro-2-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00889
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-(5-chloro-2-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.02 g, 23%): 1H NMR (300 MHz, DMSO-d6) δ 11.95 (br, s, 1H), 8.13 (br, s, 1H), 7.96-7.79 (m, 2H), 7.16 (d, J=6 Hz, 1H), 7.02 (d, J=15 Hz, 1H), 4.68-4.41 (m, 2H), 4.39-4.18 (m, 3H), 3.46-3.23 (m, 2H), 3.34 (s, 3H), 2.33-1.93 (m, 6H), 0.95-0.85 (m, 2H), 0.74-0.65 (m, 2H); MS (ES+) m/z 583.1, 581.2 (M+1).
  • Example 349 Synthesis of (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-fluoropiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00890
  • Step 1. Preparation of (S)-tert-butyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-fluoropiperidin-4-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00891
  • Following the procedure as described in Example 346 step 5 and making non-critical variations as required to replace 1-chloro-3-(chloromethyl)-2-fluoro-5-(trifluoromethyl)benzene with (R)-1-(3,5-dichlorophenyl)ethyl 4-methylbenzenesulfonate, the title compound was obtained as a colorless solid (0.40 g, 60%): MS (ES+) m/z 542.2, 540.2 (M+1).
  • Step 2. Preparation of (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-fluoropiperidin-4-yl)methoxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00892
  • Following the procedure as described in Example 346 step 6, and making non-critical variations as required to replace tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-4-fluoropiperidine-1-carboxylate with (R)-tert-butyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-fluoropiperidin-4-yl)methoxy)-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.20 g, 41%): 1H NMR (300 MHz, CDCl3) δ 12.9 (brs, 1H), 7.73 (s, 1H), 7.61 (s, 2H), 7.30 (d, J=8.4 Hz, 1H), 6.93 (d, J=12.9 Hz, 1H), 4.73-4.53 (m, 1H), 4.23 (d, J=20.3 HZ, 2H), 3.81-3.3.63 (m, 1H), 3.26, 3.14 (m, 1H), 3.09-2.90 (m, 2H), 2.15-2.06 (m, 2H), 2.04-1.92 (m, 2H), 1.64 (brs, 3H), 0.89-0.83 (m, 2H), 0.60-0.55 (m 2H); MS(ES+) m/z 486.3, 484.1 (M+1).
  • Step 3. Preparation of (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-fluoropiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00893
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with (S)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-fluoropiperidin-4-yl)methoxy)-2-fluorobenzoic acid, the title compound (0.05 g, 42% yield) was obtained as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 11.95 (br s, 1H), 7.87-7.54 (m, 3H), 7.16 (d, J=9 Hz, 1H), 7.02 (d, J=12 Hz, 1H), 4.57 (br, s, 1H), 4.39-4.18 (m, 2H), 3.52 (br, s, 6H), 2.36-1.85 (m, 8H), 1.33-1.14 (m, 1H), 0.89-0.80 (m, 2H), 0.74-0.61 (m, 2H); MS (ES+) m/z 563.3, 561.1 (M+1).
  • Example 350 Synthesis of (S)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-fluoropiperidin-4-yl)methoxy)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00894
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-fluoropiperidin-4-yl)methoxy)-2-fluorobenzoic acid and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.07 g, 57%): 1H NMR (300 MHz, DMSO-d6) δ 11.85, (br s, 1H), 10.01 (br s, 1H), 7.73 (s, 1H), 7.615 (d, J=3.0 Hz, 2H), 7.12 (d, J=6.0 Hz, 1H), 6.99 (d, J=15.0 Hz, 1H), 4.6 (brs, 1H), 4.24 (d, J=18.0 Hz, 2H), 3.81-3.62 (m, 1H), 3.27-3.11 (m, 1H), 3.09-2.89 (m, 2H), 2.36-1.83 (m, 5H), 1.73-1.51 (m, 3H), 1.16-1.01 (m, 3H), 0.91-0.78 (m, 2H), 0.71-0.60 (m, 2H); MS(ES+) m/z 589.3, 587.1 (M+1).
  • Example 351 Synthesis of (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-fluoropiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid
  • Figure US20210093618A1-20210401-C00895
  • Step 1. Preparation of (R)-tert-butyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-fluoropiperidin-4-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00896
  • Following the procedure as described in Example 346 step 5 and making non-critical variations as required to replace 1-chloro-3-(chloromethyl)-2-fluoro-5-(trifluoromethyl)benzene with (S)-1-(3,5-dichlorophenyl)ethyl 4-methylbenzenesulfonate, the title compound was obtained (0.04 g, 60%): MS(ES+) m/z 542.2, 540.2 (M+1).
  • Step 2. Preparation of (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-fluoropiperidin-4-yl)methoxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00897
  • Following the procedure as described in Example 346 step 6 and making non-critical variations as required to replace tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-4-fluoropiperidine-1-carboxylate with (S)-tert-butyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-fluoropiperidin-4-yl)methoxy)-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.12 g, quant. yield): MS(ES+) m/z 484.1, 486.3 (M+1).
  • Step 3. Preparation of (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-fluoropiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00898
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with (R)-5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)ethyl)-4-fluoropiperidin-4-yl)methoxy)-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.01 g, 7%): 1H NMR (300 MHz, DMSO-d6) δ 11.94 (br s, 1H), 7.87-7.54 (m, 3H), 7.16 (d, J=9.0 Hz, 1H), 7.02 (d, J=12.0 Hz, 1H), 4.57 (brs, 1H), 4.39-4.18 (m, 2H), 3.52 (brs, 6H), 2.36-1.85 (m, 8H), 1.33-1.14 (m, 1H), 0.89-0.80 (m, 2H), 0.74-0.61 (m, 2H); MS(ES+) m/z 563.3, 561.1 (M+1).
  • Example 352 Synthesis of 4-((1-(bis(3-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00899
  • Step 1. Preparation of tert-butyl 4-((1-(bis(3-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00900
  • Following the procedure as described in Example 346 step 5 and making non-critical variations as required to replace of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-fluoropiperidin-4-yl)methoxy)benzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate and 1-chloro-3-(chloromethyl)-2-fluoro-5-(trifluoromethyl)benzene with 3,3′-(bromomethylene)bis(chlorobenzene), the title compound was obtained as a colorless solid (0.58 g, 35%): MS(ES+) m/z 586.1, 584.1 (M+1).
  • Step 2. Preparation of 4-((1-(bis(3-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00901
  • Following the procedure as described in Example 346 step 6, and making non-critical variations as required to replace tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-4-fluoropiperidine-1-carboxylate with tert-butyl 4-((1-(bis(3-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.31 g, 54%): MS(ES+) m/z 530.1, 528.1 (M+1).
  • Step 3. Preparation of 4-((1-(bis(3-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00902
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-(bis(3-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.01 g, 38%): 1H NMR (300 MHz, DMSO-d6+1% D2O) δ 7.72 (s, 2H), 7.63-7.61 (m, 2H), 7.54-7.46 (m, 4H), 7.10 (d, J=8.3 Hz, 1H), 6.93 (d, J=12.9 Hz, 1H), 5.67 (s, 1H), 3.98 (d, J=4.6 Hz, 2H), 3.30 (s, 3H), 3.25-3.21 (m, 2H), 3.09-2.98 (m, 2H), 2.21-2.08 (m, 1H), 2.04-1.97 (m, 3H), 1.72-1.64 (m, 2H), 0.89-0.83 (m, 2H), 0.65-0.60 (m, 2H); MS(ES+) m/z 605.1, 607.1 (M+1).
  • Example 353 Synthesis of 5-cyclopropyl-4-(((1R,3S,5S)-8-((R)-1-(3,5-dichlorophenyl)ethyl)-8-azabicyclo[3.2.1]octan-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00903
  • Following the procedure as described in Example 346 step 5 and making non-critical variations as required to replace of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-fluoropiperidin-4-yl)methoxy)benzoate with 4-((1R,3S,5S)-8-azabicyclo[3.2.1]octan-3-ylmethoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide and to replace 1-chloro-3-(chloromethyl)-2-fluoro-5-(trifluoromethyl)benzene with (S)-1,3-dichloro-5-(1-chloroethyl)benzene, the title compound was obtained as a colorless solid (0.03 g, 54%): 1H NMR (300 MHz, DMSO-d6) δ11.89 (br s, 1H), 9.58 (br s, 1H), 7.84-7.74 (m, 2H), 7.73-7.68 (m, 1H), 7.09 (d, J=8.2 Hz, 1H), 6.98 (d, J=12.9 Hz, 1H), 4.54-4.36 (m, 1H), 4.31-4.17 (m, 1H), 4.16-4.06 (m, 1H), 3.96-3.80 (m, 2H), 3.73-3.42 (m, 3H), 3.43-3.34 (m, 1H), 2.39-2.22 (m, 1H), 2.17-1.73 (m, 7H), 1.72-1.52 (m, 4H), 0.91-0.79 (m, 2H), 0.70-0.59 (m, 2H); MS(ES+) m/z 570.1, 571.1 (M+1).
  • Example 354 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-((2-methylthiazol-4-yl)methyl)piperidin-4-yl)methoxy)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00904
  • Step 1. Preparation of methyl 5-cyclopropyl-2-fluoro-4-((1-((2-methylthiazol-4-yl)methyl)piperidin-4-yl)methoxy)benzoate
  • Figure US20210093618A1-20210401-C00905
  • Following the procedure as described in Example 346 step 5 and making non-critical variations as required to replace tert-butyl 5-cyclopropyl-2-fluoro-4-((4-fluoropiperidin-4-yl)methoxy)benzoate with methyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate hydrochloride and to replace 1-chloro-3-(chloromethyl)-2-fluoro-5-(trifluoromethyl)benzene with 4-(chloromethyl)-2-methylthiazole, the title compound was obtained as a colorless solid (0.20 g, 66%): MS(ES+) m/z 419.2 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-4-((1-((2-methylthiazol-4-yl)methyl)piperidin-4-yl)methoxy)benzoic acid
  • Figure US20210093618A1-20210401-C00906
  • To a solution of methyl 5-cyclopropyl-2-fluoro-4-((1-((2-methylthiazol-4-yl)methyl)piperidin-4-yl)methoxy)benzoate (0.20 g, 0.48 mmol) in tetrahydrofuran (10 mL) was a added a solution of lithium hydroxide (0.11 g, 4.80 mmol) in water (5 mL). The reaction mixture was refluxed for 5 hours, cooled to ambient temperature, and acidified with 1N hydrochloric acid solution. The reaction mixture was extracted with ethyl acetate (3×10 mL), dried over anhydrous sodium sulfate, filtered.
  • The filtrate was concentrated invacuo to afford the title compound as a colorless gum (0.14 g, 72% yield): MS(ES+) m/z 405.2 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-((2-methylthiazol-4-yl)methyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00907
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((2-methylthiazol-4-yl)methyl)piperidin-4-yl)methoxy)benzoic acid and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.03 g, 20%): 1H NMR (300 MHz, DMSO-d6) δ 11.86 (br s, 1H), 9.85 (br s, 1H), 7.72 (s, 1H), 7.12 (d, J=9.0 Hz, 1H), 6.98 (d, J=12.8 Hz, 1H), 4.36 (s, 2H), 4.01-3.91 (m, 2H), 3.56-3.39 (m, 2H), 3.13-2.92 (m, 3H), 2.70 (s, 3H), 2.16-1.82 (m, 4H), 1.77-1.52 (m, 2H), 1.18-1.03 (m, 4H), 0.95-0.82 (m, 2H), 0.74-0.60 (m, 2H); MS(ES+) m/z 508.2 (M+1).
  • Example 355 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-((2-isopropylthiazol-4-yl)methyl)piperidin-4-yl)methoxy)benzamide trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00908
  • Step 1. Preparation of methyl 5-cyclopropyl-2-fluoro-4-((1-((2-isopropylthiazol-4-yl)methyl)piperidin-4-yl)methoxy)benzoate
  • Figure US20210093618A1-20210401-C00909
  • Following the procedure as described in Example 346 step 5 and making non-critical variations as required to replace tert-butyl 5-cyclopropyl-2-fluoro-4-((4-fluoropiperidin-4-yl)methoxy)benzoate with methyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate hydrochloride and to replace 1-chloro-3-(chloromethyl)-2-fluoro-5-(trifluoromethyl)benzene with 4-(chloromethyl)-2-isopropylthiazole, the title compound was obtained as a colorless gum (0.23 g, 70%): MS(ES+) m/z 447.2 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-4-((1-((2-isopropylthiazol-4-yl)methyl)piperidin-4-yl)methoxy)benzoic acid
  • Figure US20210093618A1-20210401-C00910
  • Following the procedure as described in Example 354 step 2 and making non-critical variations as required to replace methyl 5-cyclopropyl-2-fluoro-4-((1-((2-methylthiazol-4-yl)methyl)piperidin-4-yl)methoxy)benzoate with methyl 5-cyclopropyl-2-fluoro-4-((1-((2-isopropylthiazol-4-yl)methyl)piperidin-4-yl)methoxy)benzoate, the title compound was obtained as a colorless solid (0.15 g, 77%): MS(ES+) m/z 432.2 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-((2-isopropylthiazol-4-yl)methyl)piperidin-4-yl)methoxy)benzamide 2,2,2-trifluoroacetate
  • Figure US20210093618A1-20210401-C00911
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((2-isopropylthiazol-4-yl)methyl)piperidin-4-yl)methoxy)benzoic acid and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.08 g, 47%): 1H NMR (300 MHz, DMSO-dl) 11.85 (br s, 1H), 9.81 (s, 1H), 7.76 (s, 1H), 7.12 (d, J=8.2 Hz, 1H), 6.98 (d, J=12.9 Hz, 1H), 4.38 (s, 2H), 4.07-3.86 (m, 2H), 3.41-3.19 (m, 3H), 3.16-2.90 (m, 3H), 2.16-1.84 (m, 4H), 1.75-1.47 (m, 2H), 1.42-1.26 (m, 6H), 1.19-1.00 (m, 4H), 0.95-0.79 (m, 2H), 0.73-0.59 (m, 2H); MS (ES+) m/z 536.2 (M+1).
  • Example 356 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(5-fluoro-2-(isopropylamino)benzyl)piperidin-4-yl)methoxy)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00912
  • Step 1. Preparation of methyl 4-((1-(2-amino-5-fluorobenzoyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00913
  • To a mixture of 2-amino-5-fluorobenzoic acid (0.16 g, 1.00 mmol), benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) (0.70 g, 1.50 mmol) and N,N-diisopropylethylamine (0.71 g, 4.00 mmol) in dichloromethane (2 mL) was added methyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate (0.52 g, 1.50 mmol). After stirring at an ambient temperature for 16 hours, the reaction mixture was diluted with dichloromethane (10 mL), washed with saturated solution of ammonium chloride (3×5 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and the residue was purified by column chromatography eluting with ethyl acetate in hexane to afford the title compound as a colorless solid (0.05 g, 11%): MS(ES+) m/z 445.2 (M+1).
  • Step 2. Preparation of methyl 4-((1-(2-amino-5-fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00914
  • To a solution of methyl 4-((1-(2-amino-5-fluorobenzoyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate (0.18 g, 0.40 mmol) in anhydrous tetrahydrofuran (4 mL), was added borane dimethyl sulfide complex (1.5 mL, 150 mmol). After stirring at ambient temperature for 1 hour, the reaction mixture was added slowly to methanol (50 mL), followed by addition of hydrogen chloride (4.0M in dioxane solution, 5 mL), and then concentrated invacuo to afford the title compound as a colorless solid (0.10 g, 58%): MS(ES+) m/z 431.2 (M+1).
  • Step 3. Preparation of methyl 5-cyclopropyl-2-fluoro-4-((1-(5-fluoro-2-(isopropylamino)benzyl)piperidin-4-yl)methoxy)benzoate
  • Figure US20210093618A1-20210401-C00915
  • To a 20 mL microwave vial was added methyl 4-((1-(2-amino-5-fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate (0.20 g, 0.50 mmol), methanol (5 mL), sodium cyanoborohydride (0.20 g, 3.00 mmol), acetone (1 mL) and acetic acid (1 mL). The reaction mixture was heated at 130° C. for 15 minutes. After cooling to ambient temperature, the reaction mixture was concentrated and basified with sodium bicarbonate solution, extracted with ethyl acetate (2×20 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to afford the title compound as a gum (0.12 g, 51%). Which was used in next step without further purification: MS(ES+) m/z 473.2 (M+1).
  • Step 4. Preparation of 5-cyclopropyl-2-fluoro-4-((1-(5-fluoro-2-(isopropylamino)benzyl)piperidin-4-yl)methoxy)benzoic acid
  • Figure US20210093618A1-20210401-C00916
  • Following the procedure as described in Example 354 step 2 and making non-critical variations as required to replace methyl 5-cyclopropyl-2-fluoro-4-((1-((2-methylthiazol-4-yl)methyl)piperidin-4-yl)methoxy)benzoate with methyl 5-cyclopropyl-2-fluoro-4-((1-(5-fluoro-2-(isopropylamino)benzyl)piperidin-4-yl)methoxy)benzoate, the title compound was obtained as a gum (0.04 g, 34%). Which was used in next step without further purification: MS(ES+) m/z 459.6 (M+1).
  • Step 4. Preparation of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(5-fluoro-2-(isopropylamino)benzyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00917
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-(5-fluoro-2-(isopropylamino)benzyl)piperidin-4-yl)methoxy)benzoic acid and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.01 g, 23%): 1H NMR (300 MHz, DMSO-d6) δ 11.86 (br s, 1H), 7.33 (s, 1H), 7.23-7.06 (m, 3H), 7.04-6.94 (m, 1H), 6.76-6.68 (m, 1H), 4.30 (s, 2H), 3.98 (s, 2H), 3.70-3.54 (m, 1H), 3.50-3.34 (m, 2H), 3.19-2.97 (m, 3H), 2.54 (s, 4H), 2.18-1.92 (m, 3H), 1.75-1.57 (m, 2H), 1.22-1.07 (m, 8H), 0.95-0.85 (m, 2H), 0.73-0.63 (m, 2H); MS (ES+) m/z 562.2 (M+1).
  • Example 357 Synthesis of 4-((1-((5-chloro-1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00918
  • Step 1. Preparation of methyl 4-((1-((5-chloro-1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00919
  • To a mixture of methyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate (0.12 g, 0.40 mmol), 5-chloro-1-methyl-3-(trifluoromethyl)-1H-pyrazole-4-carbaldehyde (0.08 g, 0.40 mmol) in dichloroethane (2 mL) was added sodium triacetoxyborohydride (0.25 g, 1.20 mmol) and acetic acid (0.07 g, 1.20 mmol). After stirring at ambient temperature for 16 hours, the reaction mixture was quenched by addition aqueous ammonium hydroxide solution (28%, 3 mL) and extracted with dichloromethane, dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo to afford the title compound as a colorless gum (0.01 g, 50%). Which was used in next step without further purification: MS(ES+) m/z 506.2, 504.2 (M+1).
  • Step 2. Preparation of 4-((1-((5-chloro-1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00920
  • Following the procedure as described in Example 354 step 2 and making non-critical variations as required to replace methyl 5-cyclopropyl-2-fluoro-4-((1-((2-methylthiazol-4-yl)methyl)piperidin-4-yl)methoxy)benzoate with methyl 4-((1-((5-chloro-1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.10 g, quant. yield): MS (ES+) m/z 492.3, 490.1 (M+1).
  • Step 3. Preparation of 4-((1-((5-chloro-1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide 2,2,2-trifluoroacetate
  • Figure US20210093618A1-20210401-C00921
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-((5-chloro-1-methyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.01 g, 10%): 1H NMR (300 MHz, DMSO-d6) δ 11.85 (br s, 1H), 7.3 (s, 1H), 7.12 (s, 1H), 6.98 (s, 1H), 4.21-4.03 (m, 1H), 3.95 (s, 3H), 3.80-3.20 (m, 6H), 3.1-2.8 (m, 2H), 2.1-1.8 (m, 4H), 1.61-1.42 (m, 2H), 1.21-1.01 (m, 4H), 0.95-0.85 (m, 2H), 0.72-0.55 (m, 2H); MS (ES+) m/z 595.1, 593.2 (M+1).
  • Example 358 Synthesis of 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-fluoroethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00922
  • Step 1. Preparation of tert-butyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-hydroxyethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00923
  • To a mixture of tert-butyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate (1.31 g, 3.75 mmol), glyoxylic acid monohydrate (0.55 g, 5.99 mmol) and 4 Å molecular sieves (1.0 g) in anhydrous toluene (15 mL) was added 3,5-dichlorophenyl)boronic acid (0.79 g, 4.12 mmol). The reaction mixture was refluxed for 16 hours, cooled to ambient temperature and filtered off the solid. The filtrated was concentrated and the residue was redissolved in anhydrous tetrahydrofuran (10 mL). A boron tetrahydrofuran complex (1.0 M in tetrahydrofuran, 25 mL, 25.00 mmol) was added to the solution and stirred at ambient temperature for 16 hours. The reaction mixture was quenched with 1N hydrochloric acid solution (15 mL) and extracted with ethyl acetate (3×25 mL). The combined organic layer was dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated and the residue was purified by column chromatography eluting with ethyl acetate in hexanes to afford the title compound as a gum (0.95 g, 48%). Which was used in the next step without further purification: MS (ES+) m/z 540.2, 538.2 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-fluoroethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00924
  • To a solution of tert-butyl 5-cyclopropyl-4-((1-(1-(3,5-dichlorophenyl)-2-hydroxyethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate (0.95 g, 1.77 mmol) in dichloromethane (15 mL) was added methoxyethyl)aminosulfur trifluoride (BAST) (0.57 g, 3.54 mmol). The reaction mixture was stirred at ambient temperature for 16 hours and washed with aqueous sodium bicarbonate solution (3×5 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated invacuo and the residue was redissolved in dichloromethane (15 mL). To this solution was added trifluoroacetic acid (5 mL), after stirring at ambient temperature for 3 hours, the reaction mixture was concentrated invacuo. The residue was redissolved in anhydrous tetrahydrofuran (15 mL). To this solution was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (0.43 g, 3.54 mmol), 4-dimethylaminopyridine (1.08 g, 8.85 mmol) and methanesulfonamide (0.34 g, 3.54 mmol). After stirring at a ambient temperature for 16 hours. The reaction mixture was diluted with ethyl acetate (15 mL), washed with brine (10 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated in vacuo and the residue was purified by preparative HPLC to afford the title compound as a colorless solid (0.06 g, 6% in 3 steps): 1H NMR (300 MHz, CDCl3) δ 11.84 (br s, 1H), 10.06 (br s, 1H), 7.72 (dd, J=1.79, 1.79 Hz, 1H), 7.54 (s, 2H), 7.11 (d, J=8.31 Hz, 1H), 6.96 (d, J=12.93 Hz, 1H), 6.33-6.03 (m, 1H), 4.11-3.37 (m, 8H), 3.22-2.95 (m, 2H), 2.50 (s, 3H), 2.17-1.87 (m, 2H), 1.83-1.58 (m, 2H), 0.94-0.78 (m, 2H), 0.71-0.61 (m, 2H); MS (ES+) m/z (M+1) 563.1
  • Example 359 Synthesis of (S)—N-(cyclopropylsulfonyl)-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-5-methylbenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00925
  • Step 1. Preparation of tert-butyl 4-((1-benzylpiperidin-4-yl)methoxy)-2-fluoro-5-methylbenzoate
  • Figure US20210093618A1-20210401-C00926
  • Following the procedure as described in Example 346 step 2 and making non-critical variations as required to replace tert-butyl 4-fluoro-4-(hydroxymethyl)piperidine-1-carboxylate with (1-benzylpiperidin-4-yl)methanol and to replace tert-butyl 5-chloro-2,4-difluorobenzoate with tert-butyl 2,4-difluoro-5-methylbenzoate, the title compound was obtained as a colorless foam (0.85 g, 43%): MS (ES+) m/z 416.1, 414.2 (M+1).
  • Step 2. Preparation of tert-butyl 2-fluoro-5-methyl-4-(piperidin-4-ylmethoxy)benzoate
  • Figure US20210093618A1-20210401-C00927
  • To a mixture of tert-butyl 4-((1-benzylpiperidin-4-yl)methoxy)-2-fluoro-5-methylbenzoate (0.63 g, 1.52 mmol), ammonium formate (0.12 g, 1.82 mmol) was added 10% Pd/C (0.21 g) in methanol (15 mL). The reaction mixture was refluxed for 1 hour cooled to ambient temperature, filtered through a pad of diatomaceous earth, and washed with methanol. The filtrate was concentrated in vacuo and the residue was directly used in the next step: MS (ES+) m/z 324.2 (M+1).
  • Step 3. Preparation of (S)-tert-butyl 4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-5-methylbenzoate
  • Figure US20210093618A1-20210401-C00928
  • Following the procedure as described in Example 345 step 5 and making non-critical variations as required to replace tert-butyl 5-cyclopropyl-2-fluoro-4-((4-fluoropiperidin-4-yl)methoxy)benzoate hydrochloride with tert-butyl 2-fluoro-5-methyl-4-(piperidin-4-ylmethoxy)benzoate, and to replace 1-chloro-3-(chloromethyl)-2-fluoro-5-(trifluoromethyl)benzene with (R)-1-(3,5-dichlorophenyl)ethyl 4-methylbenzenesulfonate, the title compound was obtained as a colorless foam (0.30 g, 82%): MS (ES+) m/z 498.1, 496.2 (M+1).
  • Step 4. Preparation of (S)-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-5-methylbenzoic acid
  • Figure US20210093618A1-20210401-C00929
  • Following the procedure as described in Example 346 step 6, and making non-critical variations as required to replace tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-4-fluoropiperidine-1-carboxylate with (S)-tert-butyl 4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-5-methylbenzoate, the title compound was obtained as a gum (0.25 g, 95%). Which was used in the next step without further purification: MS (ES−) m/z 438.1, 437.0 (M−1).
  • Step 5. Preparation of (S)—N-(cyclopropylsulfonyl)-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-5-methylbenzamide trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00930
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with (S)-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-5-methylbenzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.01 g, 6%): 1H NMR (300 MHz, DMSO-d6) δ 11.83 (br s, 1H), 9.49 (br s, 1H), 7.76 (brs, 1H), 7.65 (br s, 2H), 7.49 (d, J=9.0 Hz, 1H), 6.97 (d, J=12.0 Hz, 1H), 4.55 (br s, 1H), 4.00-3.91 (m, 2H), 3.17-3.01 (m, 2H), 2.94-2.75 (m, 2H), 2.31-2.24 (m, 1H), 2.13 (s, 3H), 2.08-1.89 (m, 3H), 1.72-1.48 (m, 5H), 1.19-1.05 (m, 4H); MS (ES+) m/z 545.1, 543.1 (M+1)
  • Example 360 Synthesis of (S)-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-5-methyl-N-(methylsulfonyl)benzamide, trifluoroacetic acid
  • Figure US20210093618A1-20210401-C00931
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with (S)-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-5-methylbenzoic acid, the title compound was obtained as a colorless solid (0.04 g, 63%): 1H NMR (300 MHz, DMSO-d6) δ 11.89 (br s, 1H), 9.60 (br s, 1H), 7.76 (s, 1H), 7.65 (d, J=3.0 Hz, 2H), 7.50 (d, J=9.0 Hz, 1H), 6.97 (d, J=12.0 Hz, 1H), 4.62-4.49 (m, 1H), 4.01-3.89 (m, 2H), 3.73-3.63 (m, 1H), 3.41-3.33 (m, 1H), 3.34 (s, 3H), 2.92-2.75 (m, 2H), 2.13 (s, 3H), 2.08-1.89 (m, 3H), 1.73-1.53 (m, 5H); MS (ES+) m/z 519.1, 517.1 (M+1).
  • Example 361 Synthesis of 4-((1-(bis(2-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00932
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-(bis(2-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.07 g, 39%): 1H NMR (300 MHz, DMSO-d6+1% D2O) δ 7.76-7.73 (m, 2H), 7.57-7.40 (m, 6H), 7.09 (d, J=8.3 Hz, 1H), 6.91 (d, J=12.9 Hz, 1H), 6.05 (s, 1H), 3.99-3.92 (m, 2H), 3.29 (s, 3H), 3.27-3.18 (m, 2H), 3.17-3.08 (m, 2H), 2.22-2.09 (m, 1H), 2.05-1.94 (m, 3H), 1.69-1.54 (m, 2H), 0.90-0.84 (m, 2H), 0.64-0.59 (m, 2H); MS (ES+) m/z 605.2, 607.1 (M+1).
  • Example 362 Synthesis of 4-((1-(bis(4-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00933
  • Step 1. Preparation of tert-butyl 4-((1-(bis(4-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00934
  • Following the procedure as described in Example 346 step 5 and making non-critical variations as required to replace tert-butyl 5-cyclopropyl-2-fluoro-4-((4-fluoropiperidin-4-yl)methoxy)benzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate, and to replace 1-chloro-3-(chloromethyl)-2-fluoro-5-(trifluoromethyl)benzene with 4,4′-(bromomethylene)bis(chlorobenzene), the title compound was obtained as a colorless foam (0.59 g, 95%): 1H NMR (300 MHz, CDCl3) δ 7.37-7.21 (m, 9H), 6.48 (d, J=12.7 Hz, 1H), 4.23 (s, 1H), 3.81 (d, J=6.3 Hz, 2H), 2.87 (d, J=12.7 Hz, 2H), 1.99-1.74 (m, 6H), 1.54 (s, 9H), 1.54-1.38 (m, 2H), 0.88-0.81 (m, 2H), 0.62-0.57 (m 2H); MS (ES+) m/z 554.2, 552.2 (M+1).
  • Step 2. Preparation of 4-((1-(bis(4-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00935
  • Following the procedure as described in Example 346 step 6, and making non-critical variations as required to replace tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-4-fluoropiperidine-1-carboxylate with tert-butyl 4-((1-(bis(4-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a gum (0.25 g, 95%). Which was used directly in the next step with our further purification: MS (ES−) m/z 438.1, 437.0 (M−1).
  • Step 3. Preparation of 4-((1-(bis(4-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00936
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-(his(4-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.06 g, 36%): 1H NMR (300 MHz, DMSO-d+1% D2O) δ 7.64-7.61 (m, 4H), 7.55-7.52 (m, 4H), 7.09 (d, J=8.3 Hz, 1H), 6.92 (d, J=12.9 Hz, 1H), 5.53 (s, 1H), 3.97-3.96 (m, 2H), 3.30 (s, 3H), 3.25-3.18 (m, 2H), 3.08-2.96 (m, 2H), 2.18-2.06 (m, 1H), 2.04-1.90 (m, 3H), 1.71-1.55 (m, 2H), 0.89-0.83 (m, 2H), 0.64-0.59 (m, 2H) (acidic protons were not observed); MS (ES+) m/z 604.9, 606.9 (M+1).
  • Example 363 Synthesis of 4-((1-(bis(4-fluorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00937
  • Step 1. Preparation of tert-butyl 4-((1-(bis(4-fluorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C00938
  • Following the procedure as described in Example 346 step 5 and making non-critical variations as required to replace tert-butyl 5-cyclopropyl-2-fluoro-4-((4-fluoropiperidin-4-yl)methoxy)benzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate, and to replace 1-chloro-3-(chloromethyl)-2-fluoro-5-(trifluoromethyl)benzene with 4,4′-(bromomethylene)bis(fluorobenzene), the title compound was obtained as a colorless foam (0.59 g, 95%): MS (ES+) m/z 554.2, 552.2 (M+1).
  • Step 2. Preparation of 4-((1-(bis(4-fluorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00939
  • Following the procedure as described in Example 346 step 6, and making non-critical variations as required to replace tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-4-fluoropiperidine-1-carboxylate with tert-butyl 4-((1-(bis(4-fluorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a gum (0.57 g, quant. yield). Which was used directly in the next step without further purification: MS(ES−) m/z 493.1, 492.1 (M−1).
  • Step 3. Preparation of 4-((1-(bis(4-fluorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00940
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-(bis(4-fluorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.02 g, 5%): 1H NMR (300 MHz, DMSO-d6) δ 11.82 (br s, 1H), 9.99 (br s, 1H), 7.76-7.62 (m, 2H), 7.38-7.27 (m, 2H), 7.12-6.94 (m, 4H), 6.84-6.72 (m, 2H), 4.02-3.99 (m, 4H), 3.30-3.18 (m, 2H), 3.08-3.00 (m, 1H), 2.07-1.93 (m, 3H), 1.87-1.78 (m, 2H), 1.17-1.04 (m, 4H), 0.87-0.77 (m, 2H), 0.66-0.61 (m, 2H); MS(ES+) m/z 600.1, 599.2 (M+1).
  • Example 364 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-((3-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00941
  • Step 1. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-((1-((3-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)benzoate
  • Figure US20210093618A1-20210401-C00942
  • Following the procedure as described in Example 346 step 5 and making non-critical variations as required to replace tert-butyl 5-cyclopropyl-2-fluoro-4-((4-fluoropiperidin-4-yl)methoxy)benzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate, and to replace 1-chloro-3-(chloromethyl)-2-fluoro-5-(trifluoromethyl)benzene with 2-(chloromethyl)-3-(trifluoromethyl)pyridine, the title compound was obtained as a colorless foam (0.55 g, 95%): MS(ES+) m/z 510.1, 509.0 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-4-((1-((3-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)benzoic acid
  • Figure US20210093618A1-20210401-C00943
  • Following the procedure as described in Example 346 step 6, and making non-critical variations as required to replace tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-4-fluoropiperidine-1-carboxylate with tert-butyl 5-cyclopropyl-2-fluoro-4-((1-((3-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)benzoate, the title compound was obtained as a gum (0.49 g, quant. yield). Which was used directly in the next step without further purification: MS(ES−) m/z 493.1, 492.1 (M−1).
  • Step 3. Preparation of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-((3-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00944
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((3-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)benzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.07 g, 24%): 1H NMR (300 MHz, DMSO-d6) δ 11.83 (br s, 1H), 9.49 (br s, 1H), 8.95 (d, J=4.7 Hz, 1H), 8.32 (d, J=8.2 Hz, 1H), 7.71 (dd, J=7.9, 4.9 Hz, 1H), 7.10 (d, J=8.3 Hz, 1H), 6.97 (d, J=12.9 Hz, 1H), 4.69 (s, 2H), 3.97 (d, J=5.2 Hz, 2H) 1H), 3.64-3.39 (m, 2H), 3.30-3.18 (m, 2H), 3.08-3.00 (m, 1H), 2.07-1.93 (m, 3H), 1.87-1.78 (m, 2H), 1.19-1.05 (m, 4H), 0.92-0.82 (m, 2H), 0.68-0.63 (m, 2H); MS(ES+) m/z 557.1, 556.1 (M+1).
  • Example 365 Synthesis of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((3-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C00945
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((3-(trifluoromethyl)pyridin-2-yl)methyl)piperidin-4-yl)methoxy)benzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.06 g, 23%): 1H NMR (300 MHz, DMSO-d6) δ 11.89 (br s, 1H), 9.98 (b rs, 1H), 8.95 (d, J=4.8 Hz, 1H), 8.32 (d, J=7.7 Hz, 1H), 7.71 (dd, J=8.0, 4.9 Hz, 1H), 7.11 (d, J=8.3 Hz, 1H), 6.97 (d, J=12.9 Hz, 1H), 4.69 (s, 2H), 3.97 (d, J=5.1 Hz, 2H) 1H), 3.60-3.48 (m, 2H), 3.30-3.18 (m, 2H), 3.08-3.00 (m, 1H), 2.07-1.93 (m, 3H), 1.87-1.78 (m, 2H), 1.19-1.05 (m, 4H), 0.92-0.82 (m, 2H), 0.68-0.63 (m, 21); MS(ES+) m/z 531.0, 530.0 (M+1).
  • Example 366 Synthesis of 4-((1-((4-bromo-5-chloro-2-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00946
  • Step 1. Preparation of 4-((1-((4-bromo-5-chloro-2-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00947
  • To a mixture of tert-butyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate (0.50 g, 1.43 mmol) and triethylamine (0.4 mL) in anhydrous tetrahydrofuran (5 mL) was added 4-bromo-5-chloro-2-fluorobenzene-1-sulfonyl chloride (0.66 g, 2.15 mmol). After stirring at ambient temperature for 16 hours, the reaction mixture was diluted with ethyl acetate (5 mL), washed with 1M aqueous hydrochloric acid solution (3×2 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated invacuo and the residue was redissolved in dichloromethane (5 mL) and trifluoroacetic acid (2 mL). The reaction mixture was stirred at ambient temperature for 3 hours and concentrated invacuo. The residue was triturated with ether to afford the title compound as a colorless solid (0.30 g, 37%). Which was used directly in the next step without any further purification: MS(ES+) m/z 567.1, 565.1 (M+1).
  • Step 2. Preparation of 4-((1-((4-bromo-5-chloro-2-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)
  • Figure US20210093618A1-20210401-C00948
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-((4-bromo-5-chloro-2-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.06 g, 36%): 1H NMR (300 MHz, CDCl3) δ 8.70 (d, J=15.0 Hz, 1H), 7.93 (d, J=6.0 Hz, 1H), 7.62-7.49 (m, 2H), 6.56 (d, J=15.0 Hz, 1H), 4.03-3.93 (m, 2H), 3.93-3.86 (m, 2H), 3.41 (s, 3H), 2.73-2.60 (m, 2H), 2.03-1.79 (m, 4H), 1.48-1.27 (m, 2H), 0.95-0.81 (m, 2H), 0.71-0.59 (m, 2H); MS (ES+) m/z 645.0, 643.0 (M+1).
  • Example 367 Synthesis of 4-((1-((4-bromo-5-chloro-2-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00949
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-((4-bromo-5-chloro-2-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.01 g, 6%): 1H NMR (300 MHz, DMSO-d6) δ 11.82, (br s, 1H), 8.16 (d, J=12.0 Hz, 1H), 7.91 (d, J=12.0 Hz, 1H), 7.12 (d, J=6.0 Hz, 1H), 6.94 (d, J=6.0 Hz, 1H), 4.02-3.91 (m, 2H), 3.80-3.68 (m, 2H), 3.13-2.99 (m, 1H), 2.75-2.60 (m, 2H), 2.05-1.79 (m, 2H), 1.44-1.18 (m, 4H), 1.17-1.03 (m, 4H), 0.93-0.79 (m, 2H), 0.71-0.6 (m, 2H); MS(ES+) m/z 671.0, 669.0 (M+1).
  • Example 368 Synthesis of 4-((1-((4-bromo-3-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00950
  • Step 1. Preparation of 4-((1-((4-bromo-3-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00951
  • Following the procedure as described in Example 366 step 1 and making non-critical variations as required to replace 4-bromo-5-chloro-2-fluorobenzene-1-sulfonyl chloride with 4-bromo-3-fluorobenzene-1-sulfonyl chloride, the title compound was obtained as a colorless solid (0.30 g, 75%): MS(ES−) m/z 528.1, 526.1 (M−1).
  • Step 2. Preparation of 4-((1-((4-bromo-3-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00952
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-((4-bromo-3-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.05 g, 30%): 1H NMR (300 MHz, DMSO-d6) δ 11.85 (s, 1H), 7.98 (dd, J=8.3, 6.8 Hz, 1H), 7.72 (dd, J=8.2, 1.9 Hz, 1H), 7.49 (d, J=8.3, 1.8 Hz, 1H), 7.09 (d, J=8.3 Hz, 1H), 6.88 (d, J=12.9 Hz, 1H), 3.93 (d, J=5.9 Hz, 2H), 3.74 (d, J=12.2 Hz, 2H), 3.29 (s, 3H), 2.40-2.32 (m, 2H), 1.99-1.89 (m, 2H), 1.89-1.76 (m, 2H), 1.42-1.30 (m, 2H), 0.89-0.80 (m, 2H), 0.64-0.59 (m, 2H); MS(ES+) m/z 609.1, 607.0 (M+1).
  • Example 369 Synthesis of 4-((1-((4-bromo-3-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00953
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-((4-bromo-3-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.08 g, 46%): 1H NMR (300 MHz, DMSO-d6) δ 11.79 (br s, 1H), 7.98 (dd, J=8.3, 6.4 Hz, 1H), 7.72 (dd, J=8.2, 1.9 Hz, 1H), 7.49 (d, J=8.3, 1.8 Hz, 1H), 7.08 (d, J=8.3 Hz, 1H), 6.89 (d, J=12.9 Hz, 1H), 3.90 (d, J=5.4 Hz, 2H), 3.70 (d, J=11.4 Hz, 2H), 3.07-2.98 (m, 1H), 2.36 (t, J=10.9, 10.9, 2H), 1.98-1.87 (m, 1H), 1.43-1.27 (m, 2H), 1.11-1.04 (m, 3H), 0.88-0.78 (m, 4H), 0.64-0.59 (m, 2H); MS(ES+) m/z 635.1, 633.1 (M+1).
  • Example 370 Synthesis of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((2-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00954
  • Step 1. Preparation of 5-cyclopropyl-2-fluoro-4-((1-((2-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid
  • Figure US20210093618A1-20210401-C00955
  • Following the procedure as described in Example 366 step 1 and making non-critical variations as required to replace 4-bromo-5-chloro-2-fluorobenzene-1-sulfonyl chloride with 2-(trifluoromethyl)benzene-1-sulfonyl chloride, the title compound (0.24 g, 59% yield) was obtained as a colorless solid: MS(ES−) m/z 500.1 (M−1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((2-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)
  • Figure US20210093618A1-20210401-C00956
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((2-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid, the title compound was obtained as a colorless solid (0.06 g, 36%): 1H NMR (300 MHz, DMSO-d6) δ 11.86 (br s, 1H), 8.05-7.98 (m, 2H), 7.98-7.84 (m, 2H), 7.09 (d, J=8.3 Hz, 1H), 6.91 (d, J=13.0 Hz, 1H), 3.93 (d, J=5.9 Hz, 2H), 3.74 (d, J=12.2 Hz, 21), 3.28 (s, 3H), 2.81-2.69 (m, 2H), 1.98-1.89 (m, 2H), 1.85-1.76 (m, 2H), 1.42-1.27 (m, 2H), 0.87-0.80 (m, 2H), 0.65-0.60 (m, 2H); MS(ES+) m/z 579.1 (M+1).
  • Example 371 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-((2-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00957
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((2-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.10 g, 66%): 1H NMR (300 MHz, DMSO-d6) δ 11.80 (br s, 1H), 8.05-7.98 (m, 2H), 7.90-7.87 (m, 2H), 7.09 (d, J=8.3 Hz, 1H), 6.91 (d, J=13.0 Hz, 1H), 6.75 (brs, 1H), 3.94 (d, J=5.9 Hz, 2H), 3.70 (d, J=11.1 Hz, 2H), 3.74 (d, J=12.4 Hz, 2H), 3.07-2.91 (m, 1H), 2.82-2.71 (m, 2H), 2.35-1.89 (m, 2H), 1.89-1.77 (m, 2H), 1.42-1.26 (m, 2H), 1.11-1.02 (m, 3H), 0.89-0.78 (m, 4H), 0.66-0.58 (m, 2H); MS(ES+) m/z 605.2, 607.1 (M+1).
  • Example 372 Synthesis of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((4-(trifluoromethyl)phenyl)sulphonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00958
  • Step 1. Preparation of 5-cyclopropyl-2-fluoro-4-((1-((4-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid
  • Figure US20210093618A1-20210401-C00959
  • Following the procedure as described in Example 366 step 1 and making non-critical variations as required to replace 4-bromo-5-chloro-2-fluorobenzene-1-sulfonyl chloride with 4-(trifluoromethyl)benzene-1-sulfonyl chloride, the title compound was obtained as a colorless solid (0.27 g, 66%): MS(ES+) m/z 502.1 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((4-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00960
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((4-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid, the title compound was obtained as a colorless solid (0.05 g, 29%): 1H NMR (300 MHz, DMSO-d6) δ 11.85 (br s, 1H), 8.01 (d, J=8.5 Hz, 2H), 7.93 (d, J=8.4 Hz, 2H), 7.08 (d, J=8.3 Hz, 1H), 6.89 (d, J=13.0 Hz, 1H), 3.89 (d, J=5.4 Hz, 2H), 3.69 (d, J=11.4 Hz, 2H), 3.29 (s, 3H), 2.38-2.27 (m, 2H), 1.98-1.88 (m, 1H), 1.87-1.74 (m, 3H), 1.44-1.26 (m, 2H), 0.86-0.78 (m, 2H), 0.64-0.59 (m, 2H); MS(ES+) m/z 579.1 (M+1).
  • Example 373 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-((4-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzamide (
  • Figure US20210093618A1-20210401-C00961
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((4-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.09 g, 58%): 1H NMR (300 MHz, DMSO-d6) δ 11.78 (br s, 1H), 8.00 (d, J=8.6 Hz, 2H), 7.94 (d, J=8.4 Hz, 21), 7.08 (d, J=8.3 Hz, 1H), 6.89 (d, J=12.9 Hz, 1H), 6.75 (s, 1H), 3.89 (d, J=5.4 Hz, 2H), 3.70 (d, J=11.1 Hz, 2H), 3.07-2.98 (m, 1H), 2.42-2.26 (m, 2H), 1.98-1.89 (m, 1H), 1.88-1.72 (m, 2H), 1.44-1.28 (m, 2H), 1.11-1.02 (m, 3H), 0.89-0.78 (m, 4H), 0.67-0.58 (m, 2H); MS(ES+) m/z 605.2, 607.1 (M+1).
  • Example 374 Synthesis of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((3-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00962
  • Step 1. Preparation of 5-cyclopropyl-2-fluoro-4-((1-((3-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid
  • Figure US20210093618A1-20210401-C00963
  • Following the procedure as described in Example 366 step 1 and making non-critical variations as required to replace 4-bromo-5-chloro-2-fluorobenzene-1-sulfonyl chloride with 3-(trifluoromethyl)benzene-1-sulfonyl chloride, the title compound was obtained as a colorless solid (0.21 g, 52%): MS(ES−) m/z 500.1 (M−1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((3-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00964
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((3-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid, the title compound was obtained as a colorless solid (0.08 g, 50%): 1H NMR (300 MHz, DMSO-d6) δ 11.89 (br s, 1H), 8.18-8.06 (m, 2H), 8.00-7.88 (m, 2H), 7.11 (d, J=9.0 Hz, 1H), 6.92 (d, J=15.0 Hz, 1H), 3.97-3.88 (m, 2H), 3.82-3.70 (m, 2H), 3.33 (s, 3H), 2.41-2.28 (m, 2H), 2.02-1.91 (m, 1H), 1.88-1.75 (m, 3H), 1.49-1.30 (m, 2H), 0.9-0.8 (m, 2H), 0.7-0.6 (m, 2H); MS(ES−) m/z 577.2 (M−1).
  • Example 375 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-((3-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00965
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((3-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.04 g, 70%): 1H NMR (300 MHz, DMSO-d6) δ 11.82 (br s, 1H), 8.18-8.04 (m, 3H), 8.00-7.88 (m, 2H), 7.10 (d, J=9.0 Hz, 1H), 6.91 (d, J=15.0 Hz, 1H), 3.98-3.87 (m, 2H), 3.82-3.70 (m, 2H), 3.12-3.00 (m, 1H), 2.42-2.29 (m, 2H), 2.01-1.91 (m, 1H), 1.91-1.76 (m, 2H), 1.48-1.30 (m, 2H), 1.28-1.04 (m, 4H), 0.93-0.81 (m, 2H), 0.70-0.60 (m, 2H); MS(ES+) m/z 605.2 (M+1).
  • Example 376 Synthesis of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((tetrahydro-2H-pyran-4-yl)sulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00966
  • Step 1. Preparation of 5-cyclopropyl-2-fluoro-4-((1-((tetrahydro-2H-pyran-4-yl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid
  • Figure US20210093618A1-20210401-C00967
  • Following the procedure as described in Example 366 step 1 and making non-critical variations as required to replace 4-bromo-5-chloro-2-fluorobenzene-1-sulfonyl chloride with tetrahydro-2H-pyran-4-sulfonyl chloride, the title compound (0.10 g, 26% yield) was obtained as a colorless gum: MS(ES−) m/z 400.2 (M−1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((tetrahydro-2H-pyran-4-yl)sulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00968
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((tetrahydro-2H-pyran-4-yl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid, the title compound was obtained as a colorless solid (0.05 g, 76%): 1H NMR (300 MHz, DMSO-d6) δ 11.87 (br s, 1H), 7.10 (d, J=8.3 Hz, 1H), 6.93 (d, J=13.0 Hz, 1H), 3.96 (d, J=6.1 Hz, 2H), 3.90-3.85 (m, 2H), 3.67-3.63 (m, 2H), 3.43-3.25 (m, 6H), 2.97-2.89 (m, 2H), 2.02-1.93 (m, 2H), 1.83-1.79 (m, 4H), 1.57 (ddd, J=12.4, 12.4, 4.7 Hz, 2H), 1.37-1.23 (m, 2H), 0.89-0.82 (m, 2H), 0.67-0.61 (m, 2H); MS(ES+) m/z 519.1 (M+1).
  • Example 377 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-((tetrahydro-2H-pyran-4-yl)sulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00969
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((tetrahydro-2H-pyran-4-yl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.04 g, 68%): 1H NMR (300 MHz, DMSO-d6) δ 11.80 (br s, 1H), 7.10 (d, J=8.3 Hz, 1H), 6.93 (d, J=13.0 Hz, 1H), 3.96 (d, J=6.1 Hz, 2H), 3.90-3.85 (m, 2H), 3.67-3.63 (m, 2H), 3.43-3.25 (m, 3H), 3.08-2.89 (m, 3H), 2.02-1.93 (m, 2H), 1.83-1.79 (m, 4H), 1.57 (ddd, J=4.6, 12.4, 12.4 Hz, 2H), 1.37-1.23 (m, 2H), 1.09-1.05 (m, 4H), 0.89-0.82 (m, 2H), 0.66-0.61 (m, 2H); MS(ES+) m/z 545.1 (M+1).
  • Example 378 Synthesis of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((4-(trifluoromethoxy)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00970
  • Step 1. Preparation of 5-cyclopropyl-2-fluoro-4-((1-((4-(trifluoromethoxy)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid
  • Figure US20210093618A1-20210401-C00971
  • Following the procedure as described in Example 366 step 1 and making non-critical variations as required to replace 4-bromo-5-chloro-2-fluorobenzene-1-sulfonyl chloride with 4-(trifluoromethoxy)benzene-1-sulfonyl chloride, the title compound was obtained as a colorless gum (0.25 g, 60%): MS(ES−) m/z 516.2 (M−1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((4-(trifluoromethoxy)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00972
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((4-(trifluoromethoxy)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid, the title compound was obtained as a colorless solid (0.06 g, 36%): 1H NMR (300 MHz, DMSO-d6) δ 11.85 (br s, 1H), 7.86 (d, J=8.5 Hz, 2H), 7.60 (d, J=8.5 Hz, 2H), 7.09 (d, J=8.3 Hz, 1H), 6.88 (d, J=12.9 Hz, 1H), 3.89 (d, J=5.1 Hz, 2H), 3.70-3.66 (m, 2H), 3.27 (s, 3H), 2.34-2.26 (m, 2H), 1.98-1.89 (m, 1H), 1.84-1.80 (m, 3H), 1.41-1.29 (m, 2H), 0.86-0.80 (m, 2H), 0.64-0.59 (m, 2H); MS(ES+) m/z 595.0 (M+1).
  • Example 379 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-((4-(trifluoromethoxy)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00973
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((4-(trifluoromethoxy)phenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.01 g, 6%): 1H NMR (300 MHz, DMSO-d6) δ11.79 (br s, 1H), 7.88-7.84 (m, 2H), 7.62-7.59 (m, 2H), 7.08 (d, J=8.3 Hz, 1H), 6.89 (d, J=13.0 Hz, 1H), 3.90 (d, J=5.4 Hz, 2H), 3.70-3.66 (m, 2H), 3.07-2.98 (m, 1H), 2.33-2.26 (m, 2H), 1.98-1.89 (m, 1H), 1.84-1.80 (m, 3H), 1.41-1.28 (m, 2H), 1.08-1.04 (m, 4H), 0.86-0.80 (m, 2H), 0.64-0.59 (m, 2H); MS(ES+) m/z 621.0 (M+1).
  • Example 380 Synthesis of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((3,4,5-trifluorophenyl)sulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00974
  • Step 1. Preparation of 5-cyclopropyl-2-fluoro-4-((1-((3,4,5-trifluorophenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid
  • Figure US20210093618A1-20210401-C00975
  • Following the procedure as described in Example 366 step 1 and making non-critical variations as required to replace 4-bromo-5-chloro-2-fluorobenzene-1-sulfonyl chloride with 3,4,5-trifluorobenzene-1-sulfonyl chloride, the title compound was obtained as a colorless gum (0.23 g, 59%): MS(ES+) m/z 488.1 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-((3,4,5-trifluorophenyl)sulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00976
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((3,4,5-trifluorophenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid, the title compound was obtained as a colorless solid (0.08 g, 49%): 1H NMR (300 MHz, DMSO-d6) δ 11.89 (br s, 1H), 7.86-7.71 (m, 2H), 7.13 (d, J=9.0 Hz, 1H), (d, J=12.0 Hz, 1H), 4.00-3.89 (m, 2H), 3.77-3.64 (m, 2H), 2.47-2.36 (m, 2H), 2.03-1.91 (m, 2H), 1.90-1.74 (m, 3H), 1.48-1.20 (m, 4H), 0.92-0.81 (m, 2H), 0.70-0.62 (m, 2H).
  • Example 381 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-((3,4,5-trifluorophenyl)sulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00977
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((3,4,5-trifluorophenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.05 g, 31%): 1H NMR (300 MHz, DMSO-d6) δ 11.82 (br s, 1H), 7.88-7.75 (m, 2H), 7.11 (d, J=9.0 Hz, 1H), 6.94 (d, J=15.0 Hz, 1H), 3.98-3.89 (m, 2H), 3.77-3.66 (m, 2H), 3.11-3.00 (m, 1H), 2.47-2.37 (m, 3H), 2.04-1.92 (m, 1H), 1.90-1.76 (m, 3H), 1.47-1.31 (m, 2H), 1.16-1.04 (m, 3H), 0.90-0.80 (m, 2H), 0.71-0.61 (m, 2H); MS(ES+) m/z 591.2 (M+1).
  • Example 382 Synthesis of 4-((1-((3-chloro-4-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00978
  • Step 1. Preparation of 4-((1-((3-chloro-4-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00979
  • Following the procedure as described in Example 366 step 1 and making non-critical variations as required to replace 4-bromo-5-chloro-2-fluorobenzene-1-sulfonyl chloride with 3-chloro-4-fluorobenzene-1-sulfonyl chloride, the title compound was obtained as a colorless gum (0.23 g, 59%): MS(ES−) m/z 488.1, 486.1 (M−1).
  • Step 2. Preparation of 4-((1-((3-chloro-4-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00980
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-((3-chloro-4-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.03 g, 17%): 1H NMR (300 MHz, DMSO-d6) δ 11.88 (br s, 1H), 7.93 (dd, J=2.0, 6.8 Hz, 1H), 7.78-7.64 (m, 2H), 7.09 (d, J=8.3 Hz, 1H), 6.87 (d, J=12.9 Hz, 1H), 3.90 (d, J=5.1 Hz, 2H), 3.70-3.66 (m, 2H), 3.25 (s, 3H), 2.38-2.30 (m, 2H), 1.96-1.80 (m, 4H), 1.41-1.27 (m, 2H), 0.86-0.80 (m, 2H), 0.64-0.59 (m, 2H); MS(ES−) m/z 561.1 (M−1).
  • Example 383 Synthesis of 4-((1-((3-chloro-4-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00981
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-((3-chloro-4-fluorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.04 g, 25%): 1H NMR (300 MHz, DMSO-d6) δ 11.78 (br s, 1H), 7.93 (dd, J=2.1, 6.8 Hz, 1H), 7.78-7.64 (m, 2H), 7.08 (d, J=8.3 Hz, 1H), 6.90 (d, J=13.0 Hz, 1H), 3.90 (d, J=5.3 Hz, 2H), 3.70-3.66 (m, 2H), 3.07-2.99 (m, 1H), 2.37-2.30 (m, 2H), 1.98-1.80 (m, 4H), 1.41-1.29 (m, 2H), 1.09-1.05 (m, 4H), 0.86-0.80 (m, 2H), 0.64-0.59 (m, 2H); MS(ES+) m/z 589.0, 591.0 (M+1).
  • Example 384 Synthesis of 4-((1-((2-chloro-4-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00982
  • Step 1. Preparation of 4-((1-((2-chloro-4-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00983
  • Following the procedure as described in Example 366 step 1 and making non-critical variations as required to replace 4-bromo-5-chloro-2-fluorobenzene-1-sulfonyl chloride with 2-chloro-4-(trifluoromethyl)benzene-1-sulfonyl chloride, the title compound was obtained as a colorless gum: (0.26 g, 61%) MS(ES−) m/z 534.0, 532.1 (M−1).
  • Step 2. Preparation of 4-((1-((2-chloro-4-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00984
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-((2-chloro-4-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.08 g, 49%): 1H NMR (300 MHz, DMSO-d6) δ 11.86 (br s, 1H), 8.16-8.15 (m, 1H), 8.07-8.04 (m, 1H), 7.94 (d, J=8.3 Hz, 1H), 7.09 (d, J=8.3 Hz, 1H), 6.91 (d, J=13.0 Hz, 1H), 3.93 (d, J=5.8 Hz, 2H), 3.80-3.76 (m, 2H), 3.30 (s, 3H), 2.86-2.79 (m, 2H), 1.98-1.80 (m, 4H), 1.39-1.26 (m, 2H), 0.86-0.80 (m, 2H), 0.65-0.60 (m, 2H); MS(ES+) m/z 613.0, 615.0 (M+1).
  • Example 385 Synthesis of 4-((1-((2-chloro-4-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00985
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-((2-chloro-4-(trifluoromethyl)phenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.03 g, 14%): 1H NMR (300 MHz, DMSO-d6) δ 11.79 (br s, 1H), 8.16-8.15 (m, 1H), 8.07-8.04 (m, 1H), 7.94 (d, J=8.3 Hz, 1H), 7.08 (d, J=8.3 Hz, 1H), 6.91 (d, J=13.0 Hz, 1H), 3.93 (d, J=5.8 Hz, 2H), 3.80-3.76 (m, 2H), 3.07-2.99 (m, 1H), 2.86-2.79 (m, 2H), 1.98-1.80 (m, 4H), 1.39-1.26 (m, 2H), 1.09-1.056 (m, 4H), 0.86-0.80 (m, 2H), 0.64-0.59 (m, 2H); MS(ES+) m/z 639.0, 641.0 (M+1).
  • Example 386 Synthesis of 5-cyclopropyl-2-fluoro-4-((1-((4-fluoro-2-methylphenyl)sulfonyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00986
  • Step 1. Preparation of 5-cyclopropyl-2-fluoro-4-((1-((4-fluoro-2-methylphenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid
  • Figure US20210093618A1-20210401-C00987
  • Following the procedure as described in Example 366 step 1 and making non-critical variations as required to replace 4-bromo-5-chloro-2-fluorobenzene-1-sulfonyl chloride with 4-fluoro-2-methylbenzene-1-sulfonyl chloride, the title compound was obtained as a colorless gum (0.28 g, 75%): MS(ES−) m/z 464.1 (M−1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-4-((1-((4-fluoro-2-methylphenyl)sulfonyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00988
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((4-fluoro-2-methylphenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid, the title compound was obtained as a colorless solid (0.06 g, 36%): 1H NMR (300 MHz, DMSO-d6) δ 11.86 (br s, 1H), 7.84 (dd, J=8.8, 5.9 Hz, 1H), 7.33 (dd, J=10.0, 2.6 Hz, 1H), 7.23 (ddd, J=8.6, 8.6, 2.8 Hz, 1H), 7.09 (d, J=8.3 Hz, 1H), 6.91 (d, J=13.0 Hz, 1H), 3.92 (d, J=5.8, 2H), 3.62 (d, J=12.0, 2H), 3.30 (s, 3H), 2.68-154 (m, 2H), 2.53 (s, 3H), 1.99-1.75 (m, 4H), 1.40-1.26 (m, 2H), 0.87-0.81 (m, 2H), 0.65-0.60 (m, 2H); MS(ES−) m/z 542.0, 541.0 ((M−1).
  • Example 387 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-((4-fluoro-2-methylphenyl)sulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00989
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-((4-fluoro-2-methylphenyl)sulfonyl)piperidin-4-yl)methoxy)benzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.01 g, 6%): 1H NMR (300 MHz, DMSO-d6) δ 11.79 (br s, 1H), 7.84 (dd, J=8.8, 5.9 Hz, 1H), 7.33 (dd, J=10.0, 2.6 Hz, 1H), 7.23 (ddd, J=8.5, 8.5, 2.7 Hz, 1H), 7.08 (d, J=8.3 Hz, 1H), 6.92 (d, J=12.9 Hz, 1H), 3.92 (d, J=5.8, 2H), 3.63 (d, J=12.1, 2H), 3.30 (s, 3H), 3.08-2.99 (m, 1H), 2.68-154 (m, 2H), 2.53 (s, 3H), 1.99-1.75 (m, 4H), 1.41-1.22 (m, 2H), 1.11-1.01 (m, 4H), 0.87-0.81 (m, 2H), 0.65-0.60 (m, 2H); MS(ES+) m/z 570.0, 569.0 ((M−1).
  • Example 388 Synthesis of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(naphthalen-2-ylsulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00990
  • Step 1. Preparation of 5-cyclopropyl-2-fluoro-4-((1-(naphthalen-2-ylsulfonyl)piperidin-4-yl)methoxy)benzoic acid
  • Figure US20210093618A1-20210401-C00991
  • Following the procedure as described in Example 366 step 1 and making non-critical variations as required to replace 4-bromo-5-chloro-2-fluorobenzene-1-sulfonyl chloride with 4-fluoro-2-methylbenzene-1-sulfonyl chloride, the title compound was obtained as a colorless gum (0.28 g, 72%): MS(ES−) m/z 482.1 (M−1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(naphthalen-2-ylsulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00992
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-(naphthalen-2-ylsulfonyl)piperidin-4-yl)methoxy)benzoic acid, the title compound was obtained as a colorless solid (0.06 g, 36%): 1H NMR (300 MHz, DMSO-d6) δ 11.84 (br s, 1H), 8.41 (s, 1H), 8.19-8.12 (m, 2H), 8.06-8.04 (m, 1H), 7.75-7.63 (m, 3H), 7.07 (d, J=8.3 Hz, 1H), 6.87 (d, J=13.0 Hz, 1H), 3.87 (d, J=5.6 Hz, 2H), 3.77-3.73 (m, 2H), 3.28 (s, 3H), 2.34-2.27 (m, 2H), 1.93-1.78 (m, 4H), 1.44-1.30 (m, 2H), 0.83-0.76 (m, 2H), 0.62-0.57 (m, 2H); MS(ES+) m/z 561.1 (M+1).
  • Example 389 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(naphthalen-2-ylsulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C00993
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-(naphthalen-2-ylsulfonyl)piperidin-4-yl)methoxy)benzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.01 g, 6%): 1H NMR (300 MHz, DMSO-d6) δ 11.77 (br s, 1H), 8.41 (s, 1H), 8.19-8.12 (m, 2H), 8.06-8.03 (m, 1H), 7.75-7.63 (m, 3H), 7.06 (d, J=8.3 Hz, 1H), 6.87 (d, J=13.0 Hz, 1H), 3.87 (d, J=5.5 Hz, 2H), 3.77-3.74 (m, 2H), 3.07-2.98 (m, 1H), 2.34-2.27 (m, 2H), 1.93-1.73 (m, 4H), 1.43-1.32 (m, 2H), 1.09-1.05 (m, 4H), 0.82-0.76 (m, 2H), 0.62-0.56 (m, 2H); MS(ES+) m/z 585.1 (M+1).
  • Example 390 Synthesis of 4-((1-((4-bromo-3-chlorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00994
  • Step 1. Preparation of 4-((1-((4-bromo-3-chlorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C00995
  • Following the procedure as described in Example 366 step 1 and making non-critical variations as required to replace 4-bromo-5-chloro-2-fluorobenzene-1-sulfonyl chloride with 4-bromo-3-chlorobenzene-1-sulfonyl chloride, the title compound was obtained as a colorless gum (0.34 g, 78%): MS(ES−) m/z 544.0, 542.1 (M−1).
  • Step 2. Preparation of 4-((1-((4-bromo-3-chlorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C00996
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-((4-bromo-3-chlorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.06 g, 36%): 1H NMR (300 MHz, d6-DMSO) δ 11.89 (br s, 1H), 8.07 (d, J=9.0 Hz, 1H), 7.95-7.89 (d, J=3.0 Hz, 1H), 7.62 (dd, J=12.0, 3.0 Hz, 1H), 7.13 (d, J=9.0, 1H), 6.93 (d, J=12.0 Hz, 1H), 3.98-3.87 (m, 2H), 3.77-3.64 (m, 2H), 3.31 (s, 3H), 2.46-2.32 (m, 2H), 2.03-1.92 (m, 1H), 1.91-1.76 (m, 3H), 1.49-1.30 (m, 2H), 0.94-0.81 (m, 2H), 0.71-0.61 (m, 2H); MS(ES+) m/z 625.0, 627.0 (M+1)
  • Example 391 Synthesis of 4-((1-((4-bromo-3-chlorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C00997
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-((4-bromo-3-chlorophenyl)sulfonyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.01 g, 6%): 1H NMR (300 MHz, DMSO-d6) δ 11.82 (br s, 1H), 8.06 (d, J=9 Hz, 1H), 7.92 (d, J=3 Hz, 1H), 7.62 (dd, J=12 Hz, 3 Hz, 1H), 7.11 (d, J=9 Hz, 1H), 6.93 (d, J=12 Hz, 1H), 3.99-3.89 (m, 2H), 3.76-3.63 (m, 2H), 3.12-2.99 (m, 1H), 2.43-2.32 (m, 3H), 2.01-1.91 (m, 1H), 1.91-1.74 (m, 4H), 1.48-1.29 (m, 2H), 1.16-1.05 (m, 2H), 0.93-0.82 (m, 2H), 0.70-0.61 (m, 2H); MS(ES+) m/z 653.0, 651.0 (M+1).
  • Example 392 Synthesis of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(oxetan-3-ylsulfonyl)piperidin-4-yl)methoxy)benzamide (
  • Figure US20210093618A1-20210401-C00998
  • Step 1. Preparation of 5-cyclopropyl-2-fluoro-4-((1-(oxetan-3-ylsulfonyl)piperidin-4-yl)methoxy)benzoic acid
  • Figure US20210093618A1-20210401-C00999
  • Following the procedure as described in Example 366 step 1 and making non-critical variations as required to replace 4-bromo-5-chloro-2-fluorobenzene-1-sulfonyl chloride with oxetane-3-sulfonyl chloride, the title compound was obtained as a colorless gum (0.14 g, 39%): MS(ES−) m/z 512.1 (M−1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(oxetan-3-ylsulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C01000
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-(oxetan-3-ylsulfonyl)piperidin-4-yl)methoxy)benzoic acid, the title compound was obtained as a colorless solid (0.03 g, 35%): 1H NMR (300 MHz, DMSO-d6) δ 11.86 (br s, 1H), 7.10 (d, J=8.3 Hz, 1H), 6.92 (d, J=13.0 Hz, 1H), 4.80-4.66 (m, 5H), 3.94 (d, J=6.0 Hz, 2H), 3.62-3.58 (m, 2H), 3.29 (s, 3H), 2.80-2.72 (m, 2H), 2.02-1.80 (m, 4H), 1.34-1.20 (m, 2H), 0.89-0.82 (m, 2H), 0.66-0.61 (m, 2H); MS(ES−) m/z 489.1 (M−1).
  • Example 393 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(oxetan-3-ylsulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C01001
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-(oxetan-3-ylsulfonyl)piperidin-4-yl)methoxy)benzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.07 g, 76%): 1H NMR (300 MHz, DMSO-d6) δ 11.79 (br s, 1H), 7.09 (d, J=8.3 Hz, 1H), 6.93 (d, J=13.0 Hz, 1H), 4.80-4.66 (m, 5H), 3.95 (d, J=6.0 Hz, 2H), 3.62-3.58 (m, 2H), 3.08-3.00 (m, 1H), 2.80-2.73 (m, 2H), 2.02-1.80 (m, 4H), 1.35-1.20 (m, 2H), 1.10-1.06 (m, 4H), 0.89-0.83 (m, 2H), 0.66-0.61 (m, 2H); MS(ES−) m/z 515.2 (M−1).
  • Example 394 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(methylsulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C01002
  • Step 1. Preparation of methyl 5-cyclopropyl-2-fluoro-4-((1-(methylsulfonyl)piperidin-4-yl)methoxy)benzoate
  • Figure US20210093618A1-20210401-C01003
  • To a cooled (0° C.) solution of 4-bromo-2-chlorobenzyl alcohol (0.75 g, 3.40 mmol) in anhydrous tetrahydrofuran (20 mL) was added methanesulfonyl chloride (0.66 mL, 8.50 mmol) and N,N-diisopropylethylamine (1.5 mL, 8.50 mmol). After stirring at 0° C. under a nitrogen atmosphere for 40 minutes, the reaction mixture was diluted with ethyl acetate (100 mL), washed with 1 M hydrochloric acid solution (100 mL) and brine (100 mL), dried over anhydrous magnesium sulfate, filtered and concentrated invacuo. The residue was dissolved in anhydrous N,N-dimethylformamide (15 mL), and methyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate hydrochloride (0.98 g, 3.2 mmol) and potassium carbonate (1.52 g, 11.0 mmol) were added to this solution. The reaction mixture was heated at 90° C. under a nitrogen atmosphere for 17 hours, cooled to ambient temperature, diluted with brine (200 mL) and extracted with ethyl acetate (2×150 mL). The combined organic layers were dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by column chromatography, eluting with a 0-50% gradient of ethyl acetate with 10% isopropanol, 10% triethylamine in hexanes to afford the title compound as a colorless solid (0.30 g, 25%): 1H NMR (300 MHz, CDCl3) δ 7.43 (d, J=8.2 Hz, 1H), 6.52 (d, J=12.6 Hz, 1H), 3.89-3.83 (m, 7H), 2.78 (s, 3H), 2.75-2.67 (m, 2H), 2.02-1.94 (m, 4H), 1.63-1.50 (m, 2H), 0.92-0.87 (m, 2H), 0.65-0.60 (m, 2H); MS(ES+) m/z 386.1 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-4-((1-(methylsulfonyl)piperidin-4-yl)methoxy)benzoic acid
  • Figure US20210093618A1-20210401-C01004
  • To a solution of methyl 5-cyclopropyl-2-fluoro-4-((1-(methylsulfonyl)piperidin-4-yl)methoxy)benzoate (0.30 g, 0.77 mmol) in tetrahydrofuran (10 mL), water (5 mL) was added lithium hydroxide (0.40 g, 17.00 mmol). The mixture was refluxed for 4.5 hours, cooled to ambient temperature. The reaction mixture was acidified with 1 M hydrochloric acid solution (100 mL), extracted with ethyl acetate (100 mL) and dichloromethane (2×100 mL). The combined organic layers were dried over anhydrous magnesium sulfate, filtered and concentrated in vacuo to afford the title compound as a colorless solid (0.16 g, 57%). The aqueous layer contained solid that was filtered, washed with water (50 mL) and diethyl ether (30 mL) to afford additional amount of the title compound as a colorless solid (0.05 g, 18%): MS(ES−) m/z 370.1 (M−1).
  • Step 3. Preparation of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(methylsulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C01005
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-(methylsulfonyl)piperidin-4-yl)methoxy)benzoic acid and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.06 g, 45%): 1H NMR (300 MHz, DMSO-d6) δ 11.80 (br s, 1H), 7.09 (d, J=8.3 Hz, 1H), 6.94 (d, J=13.0 Hz, 1H), 3.97 (d, J=5.8 Hz, 2H), 3.58-3.54 (m, 2H), 3.08-3.00 (m, 1H), 2.82 (s, 3H), 2.75-2.67 (m, 2H), 2.02-1.84 (m, 4H), 1.43-1.30 (m, 2H), 1.09-1.05 (m, 4H), 0.90-0.83 (m, 2H), 0.67-0.62 (m, 2H); MS(ES+) m/z 475.1 (M+1).
  • Example 395 Synthesis of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(methylsulfonyl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C01006
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((1-(methylsulfonyl)piperidin-4-yl)methoxy)benzoic acid, the title compound was obtained as a colorless solid (0.03 g, 25%): 1H NMR (300 MHz, DMSO-d6) δ 11.87 (br s, 1H), 7.10 (d, J=8.3 Hz, 1H), 6.94 (d, J=13.0 Hz, 1H), 3.96 (d, J=5.8 Hz, 2H), 3.58-3.54 (m, 2H), 3.30 (s, 3H), 2.82 (s, 3H), 2.75-2.67 (m, 2H), 2.04-1.84 (m, 4H), 1.42-1.30 (m, 2H), 0.90-0.83 (m, 2H), 0.67-0.62 (m, 2H); MS(ES+) m/z 449.0 (M+1).
  • Example 396 Synthesis of 4-(((1R,3S,5S)-8-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-8-azabicyclo[3.2.1]octan-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01007
  • Step 1. Preparation of (1R, 3S, 5S)-benzyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate
  • Figure US20210093618A1-20210401-C01008
  • Following the procedure as described in Example 346 step 2 and making non-critical variations as required to replace of tert-butyl 4-fluoro-4-(hydroxymethyl)piperidine-1-carboxylate (4.60 g, 19.70 mmol) with (1R, 3S, 5S)-benzyl 3-(hydroxymethyl)-8-azabicyclo[3.2.1]octane-8-carboxylate, the title compound was obtained as a colorless gum (7.10 g, 98%): MS(ES+) m/z 506.2, 504.2 (M+1).
  • Step 2. Preparation of (1R,3S,5S)-benzyl 3-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate
  • Figure US20210093618A1-20210401-C01009
  • Following the procedure as described in Example 346 step 3 and making non-critical variations as required to replace of tert-butyl 4-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)-4-fluoropiperidine-1-carboxylate with (1R,3S,5S)-benzyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate, the title compound was obtained as a colorless solid (5.7 g, 80%): 1H NMR (300 MHz, DMSO-d6) δ 7.34-7.27 (m, 6H), 6.44 (d, J=12.6 Hz, 1H), 5.12 (s, 2H), 4.05 (br s, 2H), 3.75 (d, J=4.8 Hz, 2H), 2.49-2.34 (m, 1H), 2.03-1.88 (m, 3H), 1.76-1.64 (m, 5H), 1.55 (s, 9H), 0.91-0.80 (m, 2H), 0.66-0.61 (m, 2H).
  • Step 3. Preparation of 4-(((1R,3S,5S)-8-((benzyloxy)carbonyl)-8-azabicyclo[3.2.1]octan-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01010
  • Following the procedure as described in Example 346 step 6, and making non-critical variations as required to replace tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-4-fluoropiperidine-1-carboxylate with (1R,3S,5S)-benzyl 3-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate, the title compound was obtained as a colorless solid (1.30 g, 27%): MS(ES+) m/z 455.1, 454.1 (M+1).
  • Step 4. Preparation of (1R,3S,5S)-benzyl 3-((2-cyclopropyl-4-((cyclopropylsulfonyl)carbamoyl)-5-fluorophenoxy)methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate
  • Figure US20210093618A1-20210401-C01011
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-(((1R,3S,5S)-8-((benzyloxy)carbonyl)-8-azabicyclo[3.2.1]octan-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (1.19 g, quant. yield): MS(ES+) m/z 556.2, 555.2 (M+1).
  • Step 5. Preparation of 4-((1R,3S,5S)-8-azabicyclo[3.2.1]octan-3-ylmethoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01012
  • A mixture of (1R,3S,5S)-benzyl 3-((2-cyclopropyl-4-((cyclopropylsulfonyl)carbamoyl)-5-fluorophenoxy)methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate (1.70 g, 3.01 mmol), Pd/C (0.080 g) and acetic acid (0.10 g) in ethanol (60 mL) was stirred at ambient temperature under hydrogen balloon for 2 hours. The solid was filtered and the solvent was concentrated invacuo to afford the title compound as a beige solid (1.19 g, 94%): MS(ES+) m/z 423.1 (M+1).
  • Step 6. Preparation of 4-(((1R,3S,5S)-8-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-8-azabicyclo[3.2.1]octan-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01013
  • Following the procedure as described in Example 346 step 5 and making non-critical variations as required to replace of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-fluoropiperidin-4-yl)methoxy)benzoate with 4-((1R,3S,5S)-8-azabicyclo[3.2.1]octan-3-ylmethoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, the title compound was obtained as a colorless solid (0.09 g, 5%): 1H NMR (300 MHz, DMSO-d6) δ 11.81 (br s, 1H), 9.88 (br s, 1H), 8.25 (d, J=4.9 Hz, 1H), 8.06 (d, J=5.5 Hz, 1H), 7.07 (d, J=8.3 Hz, 1H), 6.98 (d, J=12.9 Hz, 1H), 4.33 (s, 2H), 4.05 (brs, 2H), 3.86 (d, J=6.2 Hz, 2H), 3.08-2.99 (m, 2H), 2.41-2.27 (m, 2H), 2.06-1.96 (m, 3H), 1.83-1.67 (m, 2H), 1.11-1.03 (m, 4H), 0.88-0.80 (m, 2H), 0.66-0.61 (m, 2H); MS(ES+) m/z 634.0, 633.0 (M+1).
  • Example 397 Synthesis of 4-(((1R,3S,5S)-8-(2-chloro-5-(trifluoromethyl)benzyl)-8-azabicyclo[3.2.1]octan-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01014
  • Following the procedure as described in Example 346 step 5 and making non-critical variations as required to replace of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-fluoropiperidin-4-yl)methoxy)benzoate with 4-((1R,3s,5S)-8-azabicyclo[3.2.1]octan-3-ylmethoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, and to replace 1-chloro-3-(chloromethyl)-2-fluoro-5-(trifluoromethyl)benzene with 1-chloro-2-(chloromethyl)-4-(trifluoromethyl)benzene, the title compound was obtained as a colorless solid (0.01 g, 6%): 1H NMR (300 MHz, DMSO-d6) δ 11.80 (br s, 1H), 9.36 (br s, 1H), 8.19 (s, 1H), 7.09 (d, J=8.3 Hz, 1H), 6.91 (d, J=12.9 Hz, 1H), 6.05 (s, 1H), 3.99-3.92 (m, 2H), 3.29 (s, 3H), 3.27-3.18 (m, 2H), 3.17-3.08 (m, 2H), 2.22-2.09 (m, 1H), 2.05-1.94 (m, 3H), 1.69-1.54 (m, 2H), 0.90-0.84 (m, 2H), 0.64-0.59 (m, 2H); MS(ES+) m/z 617.1, 615.1 (M+1).
  • Example 398 Synthesis of 4-(((1R,3S,5S)-8-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-8-azabicyclo[3.2.1]octan-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01015
  • Step 1. Preparation of (1R,3S,5S)-benzyl 3-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate
  • Figure US20210093618A1-20210401-C01016
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-(((1R,3S,5S)-8-((benzyloxy)carbonyl)-8-azabicyclo[3.2.1]octan-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.45 g, 14%): 1H NMR (300 MHz, CDCl3) δ 11.86 (br s, 1H), 7.39-7.25 (m, 5H), 7.10 (d, J=8.3 Hz, 1H), 6.89 (d, J=12.9 Hz, 1H), 5.03 (s, 2H), 4.22-4.14 (m, 2H), 3.85 (d, J=5.1 Hz, 2H), 3.29 (s, 3H), 2.41-2.31 (m, 1H), 1.94-1.84 (m 3H), 1.72-1.44 (m, 6H), 0.85-0.76 (m, 2H), 0.65-0.59 (m, 2H); MS(ES+) m/z 532.1, 531.1 (M+1).
  • Step 2. Preparation of 4-((1R,3S,5S)-8-azabicyclo[3.2.1]octan-3-ylmethoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01017
  • Following the procedure as described in Example 396 step 5 and making non-critical variations as required to replace (1R,3S,5S)-benzyl 3-((2-cyclopropyl-4-((cyclopropylsulfonyl)carbamoyl)-5-fluorophenoxy)methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate with (1R,3S,5S)-benzyl 3-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate, title compound was obtained as a beige solid (1.10 g, 88%): MS(ES+) m/z 398.1, 397.1 (M+1).
  • Step 3. Preparation of 4-(((1R,3S,5S)-8-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-8-azabicyclo[3.2.1]octan-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01018
  • Following the procedure as described in Example 346 step 5 and making non-critical variations as required to replace of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-fluoropiperidin-4-yl)methoxy)benzoate with 4-((1R,3S,5S)-8-azabicyclo[3.2.1]octan-3-ylmethoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, the title compound was obtained as a colorless solid (0.02 g, 14%): 1H NMR (300 MHz, DMSO-d6+1% D2O) δ 8.21-8.18 (m, 1H), 8.03-8.01 (m, 1H), 7.08 (d, J=8.2 Hz, 1H), 6.92 (d, J=12.9 Hz, 1H), 4.31 (brs, 2H), 4.04-3.96 (m, 2H), 3.91-3.82 (m, 2H), 3.29 (s, 3H), 2.42-2.27 (m, 3H), 2.04-1.84 (m, 3H), 1.95-1.88 (m, 2H), 1.78-1.67 (m, 2H), 0.90-0.84 (m, 2H), 0.64-0.59 (m, 2H); MS(ES+) m/z 609.0, 607.0 (M+1).
  • Example 399 Synthesis of 4-(((1R,3S,5S)-8-(2-chloro-5-(trifluoromethyl)benzyl)-8-azabicyclo[3.2.1]octan-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01019
  • Following the procedure as described in Example 346 step 5 and making non-critical variations as required to replace of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-fluoropiperidin-4-yl)methoxy)benzoate with 4-((1R,3S,5S)-8-azabicyclo[3.2.1]octan-3-ylmethoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide and to replace 1-chloro-3-(chloromethyl)-2-fluoro-5-(trifluoromethyl)benzene with 1-chloro-2-(chloromethyl)-4-(trifluoromethyl)benzene, the title compound was obtained as a colorless solid (0.04 g, 29%): 1H NMR (300 MHz, DMSO-d6+1% D2O) δ 8.10 (s, 1H), 7.97-7.76 (m, 2H), 7.04 (d, J=8.1 Hz, 1H), 6.87 (d, J=12.9 Hz, 1H), 4.31 (s, 2H), 4.04-3.94 (m, 2H), 3.92-3.82 (m, 2H), 3.25 (s, 3H), 2.46-2.29 (m, 3H), 2.07-1.95 (m, 3H), 1.94-1.84 (m, 2H), 1.78-1.64 (m, 2H), 0.87-0.81 (m, 2H), 0.59-53 (m, 2H); MS(ES+) m/z 591.0, 589.0 (M+1).
  • Example 400 Synthesis of 4-((1-(bis(4-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01020
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-(bis(4-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.07 g, 55%): 1H NMR (300 MHz, DMSO-d6+1% D2O) δ 7.63-7.60 (m, 4H), 7.54-7.51 (m, 4H), 7.07 (d, J=8.3 Hz, 1H), 6.91 (d, J=12.9 Hz, 1H), 5.51 (s, 1H), 4.02-3.96 (m, 2H), 3.27-3.19 (m, 2H), 3.06-2.98 (m, 3H), 2.18-2.06 (m, 1H), 2.03-1.94 (m, 3H), 1.71-1.56 (m, 2H), 1.11-1.08 (m, 4H), 0.89-0.83 (m, 2H), 0.62-0.57 (m, 2H); MS(ES+) m/z 631.1, 633.1 (M+1).
  • Example 401 Synthesis of 4-((1-(bis(3-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01021
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-(bis(4-chlorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace methanesulfonamide with cyclopropylsulfonamide, the title compound was obtained as a colorless solid (0.06 g, 34%): 1H NMR (300 MHz, DMSO-d6+1% D2O) δ 7.70 (br s, 2H), 7.61-7.59 (m, 2H), 7.54-7.45 (m, 4H), 7.08 (d, J=8.3 Hz, 1H), 6.92 (d, J=12.9 Hz, 1H), 5.51 (s, 1H), 3.98-3.96 (m, 2H), 3.24-3.21 (m, 2H), 3.07-2.98 (m, 3H), 2.19-2.07 (m, 1H), 2.04-1.95 (m, 3H), 1.73-1.57 (m, 2H), 1.11-1.06 (m, 4H), 0.90-0.83 (m, 2H), 0.63-0.58 (m, 2H); MS (ES+) m/z 631.0, 633.0 (M+1).
  • Example 402 Synthesis of (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01022
  • Step 1. Preparation of (S)-tert-butyl 5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01023
  • To a solution of tert-butyl 5-chloro-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate hydrochloride (0.13 g, 0.33 mmol) in anhydrous N,N-dimethylformamide (5 mL) was added (R)-1-(3,5-dichlorophenyl)ethyl 4-methylbenzenesulfonate (0.14 g, 0.39 mmol) and potassium carbonate (0.16 g, 1.1 mmol). The reaction mixture was heated to 90° C. under a nitrogen atmosphere for 15 hours, then cooled and diluted with water (100 mL). The mixture was extracted with ethyl acetate (2×100 mL) and the combined organic layers were dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by column chromatography eluting with a gradient of 0-50% ethyl acetate containing 10% isopropanol and 10% triethylamine in hexanes to afford the title compound as a colorless syrup (0.13 g, 73%): 1H NMR (300 MHz, CDCl3) δ 7.84 (d, J=7.7 Hz, 1H), 7.20-7.19 (m, 3H), 6.59 (d, J=12.2 Hz, 1H), 4.84 (q, J=6.5 Hz, 1H), 3.83 (d, J=6.1 Hz, 2H), 3.40-3.33 (m, 1H), 3.03-3.00 (m, 1H), 2.81-2.77 (m, 1H), 2.04-1.76 (m, 6H), 1.55 (s, 9H), 1.31 (d, J=6.5 Hz, 3H); MS(ES+) m/z 516.0, 518.0, 520.0 (M+1).
  • Step 2. Preparation of (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01024
  • To a solution of (S)-tert-butyl 5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate (0.13 g, 0.24 mmol) in dichloromethane (6 mL) was added trifluoroacetic acid (3 mL). The reaction mixture was stirred at ambient temperature for 40 minutes and concentrated in vacuo to afford the title compound as a colorless syrup that was used directly in the next step: MS(ES+) m/z 460.0, 462.0 (M+1).
  • Step 3. Preparation of (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01025
  • To a solution of (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt in anhydrous dichloromethane (10 mL) was added N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (0.09 g, 0.48 mmol), 4-(dimethylamino)pyridine (0.07 g, 0.54 mmol), and methanesulfonamide (0.04 g, 0.41 mmol). The reaction mixture was stirred at ambient temperature for 16 hours, and then diluted with ethyl acetate (100 mL). The mixture was washed with saturated aqueous ammonium chloride (100 mL), brine (2×100 mL), dried over anhydrous magnesium sulfate, filtered and concentrated invacuo. The residue was purified by reverse-phase HPLC, eluting with a gradient of 20-80% acetonitrile in water with 0.1% trifluoroacetic acid to afford the title compound as a colorless solid (0.01 g, 15% in 2 steps): 1H NMR (300 MHz, DMSO-d6) δ 12.11 (br s, 1H), 9.42 (br s, 1H), 7.76-7.72 (m, 2H), 7.60 (s, 2H), 7.22 (d, J=12.4 Hz, 1H), 4.50 (brs, 1H), 4.02-4.00 (m, 2H), 3.66-3.59 (m, 1H), 3.34 (brs, 1H), 3.29 (s, 3H), 2.86-2.69 (m, 2H), 2.05-1.89 (m, 3H), 1.61-1.47 (m, 5H); MS(ES+) m/z 537.0, 539.0, 541.0 (M+1).
  • Example 403 Synthesis of (S)-5-chloro-N-(cyclopropylsulfonyl)-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01026
  • Following the procedure as described in Example 402 Step 3 and making non-critical variations as required to replace methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as a colorless solid (0.01 g, 13% in 2 steps): 1H NMR (300 MHz, DMSO-d6) δ 12.03 (br s, 1H), 9.42 (br s, 1H), 7.75-7.72 (m, 2H), 7.60 (s, 2H), 7.23 (d, J=12.4 Hz, 1H), 4.51 (brs, 1H), 4.02-4.00 (m, 2H), 3.67-3.60 (m, 1H), 3.45 (brs, 1H), 3.08-2.99 (m, 1H), 2.86-2.76 (m, 2H), 2.05-1.89 (m, 3H), 1.62-1.47 (m, 5H), 1.10-1.07 (m, 4H); MS(ES+) m/z 563.1, 565.1, 567.0 (M+1).
  • Example 404 Synthesis of (R)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid
  • Figure US20210093618A1-20210401-C01027
  • Step 1. Preparation of (R)-tert-butyl 5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01028
  • Following the procedure as described in Example 402 step 1 and making non-critical variations to replace (R)-1-(3,5-dichlorophenyl)ethyl 4-methylbenzenesulfonate with (S)-1-(3,5-dichlorophenyl)ethyl 4-methylbenzenesulfonate, the title compound was obtained as a colorless syrup (0.10 g, 62%): 1H NMR (300 MHz, CDCl3) δ 7.84 (d, J=7.6 Hz, 1H), 7.20-7.19 (m, 3H), 6.59 (d, J=12.1 Hz, 1H), 4.83 (q, J=6.5, 6.5, 6.4 Hz, 1H), 3.83 (d, J=5.9 Hz, 2H), 3.40-3.34 (m, 1H), 3.03-3.00 (m, 1H), 2.81-2.77 (m, 1H), 2.04-1.76 (m, 6H), 1.55 (s, 9H), 1.31 (d, J=6.2 Hz, 3H); MS(ES+) m/z 516.0, 518.0, 520.0 (M+1).
  • Step 2. Preparation of (R)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01029
  • Following the procedure as described in Example 402 step 2 and making non-critical variations as required to replace (S)-tert-butyl 5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate with (R)-tert-butyl 5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate, the title compound was obtained as a colorless syrup (0.11 g, quant. yield) that was used directly in the next step: MS(ES+) m/z 460.0, 462.0 (M+1).
  • Step 3. Preparation of (R)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01030
  • Following the procedure as described in Example 402 step 3 and making non-critical variations as required to (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with (R)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt, the title compound was obtained as a colorless solid (0.01 g, 20% in 2 steps): 1H NMR (300 MHz, DMSO-d6) δ 12.08 (br s, 1H), 9.46 (br s, 1H), 7.76-7.72 (m, 2H), 7.60 (s, 2H), 7.21 (d, J=12.4 Hz, 1H), 4.48 (br s, 1H), 4.02-4.00 (m, 2H), 3.64-3.57 (m, 1H), 3.32 (br s, 1H), 3.27 (s, 3H), 2.83-2.73 (m, 2H), 2.04-1.88 (m, 3H), 1.60-1.46 (m, 5H); MS(ES+) m/z 537.0, 539.0, 541.0 (M+1).
  • Example 405 Synthesis of (R)-5-chloro-N-(cyclopropylsulfonyl)-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01031
  • Following the procedure as described in Example 402 step 3 and making non-critical variations as required to replace (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with (R)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt and to replace methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as a colorless solid (0.01 g, 13% over 2 steps): 1H NMR (300 MHz, DMSO-d6) δ 12.01 (br s, 1H), 9.48 (br s, 1H), 7.75-7.70 (m, 2H), 7.58 (s, 2H), 7.21 (d, J=12.4 Hz, 1H), 4.44 (br s, 1H), 4.02-4.00 (m, 2H), 3.62-3.53 (m, 1H), 3.44 (br s, 1H), 3.06-2.97 (m, 1H), 2.77-2.69 (m, 2H), 2.01-1.87 (m, 3H), 1.58-1.45 (m, 5H), 1.08-1.04 (m, 4H); MS(ES+) m/z 563.2, 565.3 (M+1).
  • Example 406 Synthesis of 5-chloro-4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01032
  • Step 1. Preparation of 3-chloro-5-(trifluoromethoxy)benzyl 4-methylbenzenesulfonate
  • Figure US20210093618A1-20210401-C01033
  • To a cooled (0° C.) solution of 3-chloro-5-(trifluoromethoxy)benzaldehyde (0.45 g, 2.00 mmol) in anhydrous methanol (10 mL) was added sodium borohydride (0.15 g, 4.00 mmol). After stirring at 0° C. under a nitrogen atmosphere for 1 hour, the reaction mixture was quenched with saturated aqueous ammonium chloride (3 mL), diluted with ethyl acetate (100 mL), washed with 1 M hydrochloric acid solution (2×75 mL), dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo. The residue was dissolved in anhydrous dichloromethane (20 mL) and to this solution was added 4-methylbenzene-1-sulfonyl chloride (0.47 g, 2.5 mmol), triethylamine (1.4 mL, 9.9 mmol), and 4-dimethylaminopyridine (0.031 g, 0.25 mmol). The reaction mixture was stirred at ambient temperature for 2.5 hours, then diluted with dichloromethane (100 mL), washed with water (100 mL) and brine (100 mL), dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo. The residue was purified by column chromatography, eluting with a gradient of 0-10% ethyl acetate in hexanes to afford the title compound as a colorless syrup (0.25 g, 33%): 1H NMR (300 MHz, CDCl3) δ 7.75 (d, J=8.1 Hz, 2H), 7.31 (d, J=8.1 Hz, 2H), 7.14 (br s, 2H), 6.96 (br s, 1H), 5.01 (s, 2H), 2.42 (s, 3H).
  • Step 2. Preparation of tert-butyl 5-chloro-4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01034
  • Following the procedure as described in Example 402 step 1 and making non-critical variations to replace (R)-1-(3,5-dichlorophenyl)ethyl 4-methylbenzenesulfonate with 3-chloro-5-(trifluoromethoxy)benzyl 4-methylbenzenesulfonate, the title compound was obtained as a colorless syrup (0.27 g, 83%): 1H NMR (300 MHz, CDCl3) δ 7.85 (d, J=7.7 Hz, 1H), 7.26 (br s, 1H), 7.10 (brs, 2H), 6.60 (d, J=12.1 Hz, 1H), 3.85 (d, J=6.3 Hz, 2H), 3.47 (s, 2H), 2.89-2.85 (m, 2H), 2.07-2.00 (m, 2H), 1.90-1.82 (m, 3H), 1.56 (s, 9H), 1.48-1.39 (m, 2H); MS(ES+) m/z 552.0, 554.0 (M+1).
  • Step 3. Preparation of 5-chloro-4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01035
  • Following the procedure as described in Example 402 Step 2 and making non-critical variations as required to replace (S)-tert-butyl 5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate with tert-butyl 5-chloro-4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-2-fluorobenzoate, the title compound was obtained as a light yellow syrup (0.29 g, 98%) that was used directly in the next reaction: MS(ES+) m/z 498.0, 496.0 (M+1).
  • Step 4. Preparation of 5-chloro-4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01036
  • Following the procedure as described in Example 402 step 3 and making non-critical variations as required to replace (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with 5-chloro-4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt, the title compound (0.05 g, 41% in 2 steps) was obtained as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 11.90 (br s, 1H), 9.80 (br s, 1H), 7.75 (d, J=7.5 Hz, 1H), 7.67-7.64 (m, 2H), 7.52 (s, 1H), 7.21 (d, J=12.4 Hz, 1H), 4.27 (brs, 2H), 4.04-4.02 (m, 2H), 3.32 (brs, 2H), 3.27 (s, 3H), 2.97-2.85 (m, 2H), 2.06-1.90 (m, 3H), 1.59-1.46 (m, 2H); MS(ES+) m/z 573.0, 575.0 (M+1).
  • Example 407 Synthesis of 5-chloro-4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01037
  • Following the procedure as described in Example 402 step 3 and making non-critical variations as required to replace (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with 5-chloro-4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt and to replace methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as a colorless solid (0.05 g, 46% over 2 steps): 1H NMR (300 MHz, DMSO-d6) δ 12.04 (br s, 1H), 9.75 (br s, 1H), 7.74 (d, J=7.5 Hz, 1H), 7.69-7.66 (m, 2H), 7.54 (s, 1H), 7.24 (d, J=12.4 Hz, 1H), 4.33 (brs, 2H), 4.04-4.02 (m, 2H), 3.43-3.40 (m, 2H), 3.08-2.93 (m, 3H), 2.07-1.92 (m, 3H), 1.60-1.47 (m, 2H), 1.11-1.08 (m, 4H); MS(ES+) m/z 599.3, 601.0 (M+1).
  • Example 408 Synthesis of N-(azetidin-1-ylsulfonyl)-5-chloro-4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01038
  • Following the procedure as described in Example 402 step 3 and making non-critical variations as required to replace (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with 5-chloro-4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt and to replace methanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as a colorless solid (0.06 g, 53% in 2 steps): 1H NMR (300 MHz, DMSO-d6) δ 11.82 (br s, 1H), 9.57 (br s, 1H), 7.77 (d, J=7.4 Hz, 1H), 7.70-7.66 (m, 2H), 7.54 (s, 1H), 7.24 (d, J=12.2 Hz, 1H), 4.32 (br s, 2H), 4.04-3.99 (m, 6H), 3.43-3.39 (m, 2H), 3.01-2.92 (m, 2H), 2.19-1.93 (m, 5H), 1.58-1.45 (m, 2H); MS(ES+) m/z 613.9, 615.9 (M+1).
  • Example 409 Synthesis of 4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-5-cyano-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01039
  • Step 1. Preparation of tert-butyl 4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-5-cyano-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01040
  • Following the procedure as described in Example 402 step 1 and making non-critical variations as required to replace tert-butyl 5-chloro-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate hydrochloride with tert-butyl 5-cyano-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate, trifluoroacetic acid salt and to replace (R)-1-(3,5-dichlorophenyl)ethyl 4-methylbenzenesulfonate with 3-chloro-5-(trifluoromethoxy)benzyl 4-methylbenzenesulfonate, the title compound was obtained as a colorless syrup (0.03 g, 7%): 1H NMR (300 MHz, CDCl3) δ 8.12 (d, J=8.0 Hz, 1H), 7.26 (br s, 1H), 7.09 (br s, 2H), 6.65 (d, J=12.1 Hz, 1H), 3.90 (d, J=6.6 Hz, 2H), 3.47 (s, 2H), 2.89-2.85 (m, 2H), 2.07-1.84 (m, 5H), 1.56 (s, 9H), 1.45-1.32 (m, 2H); MS(ES+) m/z 543.3, 545.1 (M+1).
  • Step 2. Preparation of 4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-5-cyano-2-fluorobenzoic acid, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01041
  • Following the procedure as described in Example 402 step 2 and making non-critical variations as required to replace (S)-tert-butyl 5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoate with tert-butyl 4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-5-cyano-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.03 g, quant. yield) that was used directly in the next step: MS(ES+) m/z 487.0 (M+1).
  • Step 3. Preparation of 4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-5-cyano-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01042
  • Following the procedure as described in Example 402 step 3 and making non-critical variations as required to replace (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with 4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-4-yl)methoxy)-5-cyano-2-fluorobenzoic acid, trifluoroacetic acid salt and to replace methanesulfonamide with cyclopropanesulfonamide, the title compound (0.02 g, 43% in 2 steps) was obtained as a colorless solid: 1H NMR (300 MHz, DMSO-d6+5% D2O) δ 8.12 (d, J=7.8 Hz, 1H), 7.67-7.64 (m, 2H), 7.52 (s, 1H), 7.31 (d, J=12.6 Hz, 1H), 4.31 (s, 2H), 4.09-4.07 (m, 2H), 3.43-3.39 (m, 2H), 3.06-2.93 (m, 3H), 2.11-1.03 (m, 1H), 1.96-1.92 (m, 2H), 1.57-1.44 (m, 2H), 1.10-1.07 (m, 4H); MS(ES+) m/z 592.0, 590.0 (M+1).
  • Example 410 Synthesis of 4-((1-((3-(2-chlorophenyl)-1,2,4-oxadiazol-5-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01043
  • Step 1. Preparation of methyl 4-((1-((3-(2-chlorophenyl)-1,2,4-oxadiazol-5-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01044
  • Following the procedure as described in Example 402 step 1 and making non-critical variations as required to replace tert-butyl 5-chloro-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate hydrochloride with methyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate hydrochloride and to replace (R)-1-(3,5-dichlorophenyl)ethyl 4-methylbenzenesulfonate with 5-(chloromethyl)-3-(2-chlorophenyl)-1,2,4-oxadiazole and adding tetra-n-butylammonium iodide to the reaction mixture, the title compound was obtained as a colorless syrup (1.13 g, 85%): 1H NMR (300 MHz, CDCl3) δ7.92 (dd, J=2.0, 7.4 Hz, 1H), 7.52 (dd, J=1.3, 7.8 Hz, 1H), 7.46-7.34 (m, 3H), 6.52 (d, J=12.7 Hz, 1H), 3.97 (s, 2H), 3.86-3.83 (m, 5H), 3.09-3.05 (m, 2H), 2.37-2.29 (m, 2H), 2.05-1.96 (m, 1H), 1.89-1.86 (m, 3H), 1.61-1.47 (m, 2H), 0.92-0.85 (m, 2H), 0.64-0.59 (m, 2H); MS (ES+) m/z 500.0, 502.0 (M+1).
  • Step 2. Preparation of 4-((1-((3-(2-chlorophenyl)-1,2,4-oxadiazol-5-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01045
  • Following the procedure as described in Example 354 step 2 and making non-critical variations as required to replace 5-cyclopropyl-2-fluoro-4-((1-((2-methylthiazol-4-yl)methyl)piperidin-4-yl)methoxy)benzoate with methyl 4-((1-((3-(2-chlorophenyl)-1,2,4-oxadiazol-5-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained following trituration in diethyl ether (10 mL) as a colorless solid (0.43 g, 39%): MS(ES+) m/z 488.0, 486.0 (M+1).
  • Step 3. Preparation of 4-((1-((3-(2-chlorophenyl)-1,2,4-oxadiazol-5-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01046
  • Following the procedure as described in Example 402 step 3 and making non-critical variations as required to replace (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with 4-((1-((3-(2-chlorophenyl)-1,2,4-oxadiazol-5-yl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.08 g, 39%): 1H NMR (300 MHz, DMSO-d6) δ 11.76 (br s, 2H), 7.93 (dd, J=1.8, 7.6 Hz, 1H), 7.70-7.52 (m, 3H), 7.10 (d, J=8.3 Hz, 1H), 6.94 (d, J=13.0 Hz, 1H), 4.68 (br s, 2H), 3.97 (d, J=5.1 Hz, 2H), 3.53-3.48 (m, 2H), 3.30 (s, 3H), 3.03-2.92 (m, 2H), 2.05-1.92 (m, 4H), 1.66-1.54 (m, 2H), 0.89-0.83 (m, 2H), 0.67-0.62 (m, 2H); MS(ES+) m/z 562.9, 564.9 (M+1).
  • Example 411 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)piperidin-4-yl)methoxy)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01047
  • Step 1. Preparation of methyl 5-cyclopropyl-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)piperidin-4-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01048
  • Following the procedure as described in Example 402 step 1 and making non-critical variations as required to replace tert-butyl 5-chloro-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate hydrochloride with methyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate hydrochloride and to replace (R)-1-(3,5-dichlorophenyl)ethyl 4-methylbenzenesulfonate with 1-(bromo(phenyl)methyl)-3,5-dichlorobenzene and adding tetra-n-butylammonium iodide to the reaction mixture, the title compound was obtained as a colorless syrup (0.66 g, 70%): 1H NMR (300 MHz, CDCl3) δ 7.42 (d, J=8.3 Hz, 1H), 7.33-7.21 (m, 7H), 7.16-7.15 (m, 1H), 6.52 (d, J=12.8 Hz, 1H), 4.21 (s, 1H), 3.86-3.82 (m, 5H), 2.92-2.84 (m, 2H), 2.02-1.76 (m, 6H), 1.54-1.37 (m, 2H), 0.90-0.84 (m, 2H), 0.64-0.58 (m, 2H); MS(ES+) m/z 544.0, 542.0 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01049
  • To a solution of methyl 5-cyclopropyl-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)piperidin-4-yl)methoxy)-2-fluorobenzoate (0.66 g, 1.20 mmol) in tetrahydrofuran (20 mL) and water (5 mL) was added lithium hydroxide (0.30 g, 12.00 mmol). The reaction mixture was refluxed for 16 hours, then cooled to ambient temperature, diluted with 1 M hydrochloric acid solution (100 mL) and extracted with dichloromethane (100 mL). The solid present in the organic layer was filtered and washed with diethyl ether (20 mL) to afford the title compound as a colorless solid (0.25 g, 39%). The aqueous layer was further extracted with dichloromethane (2×75 mL). The organic layers were combined with the filtrate from the previous filtration, dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo to afford additional amount of the title compound as a colorless solid (0.32 g, 50%): MS (ES+) m/z 528.1, 530.0 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)piperidin-4-yl)methoxy)-2-fluorobenzamide trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01050
  • Following the procedure as described in Example 402 step 3 and making non-critical variations as required to replace (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with 5-cyclopropyl-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, and to replace methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as a colorless solid (0.09 g, 30%): 1H NMR (300 MHz, DMSO-d6+5% D2O) δ 7.69 (s, 2H), 7.61-7.56 (m, 3H), 7.47-7.35 (m, 3H), 7.06 (d, J=8.3 Hz, 1H), 6.91 (d, J=12.9 Hz, 1H), 5.44 (br s, 1H), 3.96-3.94 (m, 2H), 3.29-3.11 (m, 2H), 3.05-2.86 (m, 3H), 2.10-1.92 (m, 4H), 1.66-1.54 (m, 2H), 1.08-1.02 (m, 4H), 0.86-0.80 (m, 2H), 0.61-0.56 (m, 2H); MS(ES+) m/z 631.1, 633.0 (M+1).
  • Example 412 Synthesis of 5-cyclopropyl-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01051
  • Following the procedure as described in Example 402 step 3 and making non-critical variations as required to replace (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with 5-cyclopropyl-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.03 g, 11%): 1H NMR (300 MHz, DMSO-d6+5% D2O) δ 7.69 (s, 2H), 7.62-7.57 (m, 3H), 7.48-7.35 (m, 3H), 7.07 (d, J=8.3 Hz, 1H), 6.92 (d, J=12.9 Hz, 1H), 5.44 (brs, 1H), 3.96-3.95 (m, 2H), 3.28 (s, 3H), 3.19-2.28 (m, 4H), 2.07-1.92 (m, 4H), 1.65-1.55 (m, 2H), 0.86-0.80 (m, 2H), 0.63-0.58 (m, 2H); MS(ES+) m/z 605.1, 607.1 (M+1).
  • Example 413 Synthesis of 4-((1-(4-bromo-2-chlorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01052
  • Step 1. Preparation of methyl 4-((1-(4-bromo-2-chlorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01053
  • Following the procedure as described in Example 402 step 1 and making non-critical variations as required to replace tert-butyl 5-chloro-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate hydrochloride with methyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate hydrochloride and to replace (R)-1-(3,5-dichlorophenyl)ethyl 4-methylbenzenesulfonate with 4-bromo-2-chloro-1-(chloromethyl)benzene and adding tetra-n-butylammonium iodide to the reaction mixture, the title compound was obtained as a light yellow solid (1.55 g, 86%): 1H NMR (300 MHz, CDCl3) δ 7.49 (br s, 1H), 7.44-7.35 (m, 3H), 6.52 (dd, J=2.5, 12.8 Hz, 1H), 3.87-3.82 (m, 5H), 3.55 (d, J=2.5 Hz, 2H), 2.93-2.89 (m, 2H), 2.16-1.81 (m, 6H), 1.50-1.38 (m, 2H), 0.92-0.85 (m, 2H), 0.65-0.61 (m, 2H); MS(ES+) m/z 514.0, 512.0, 510.0 (M+1).
  • Step 2. Preparation of 4-((1-(4-bromo-2-chlorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01054
  • Following the procedure as described in Example 411 step 2 and making non-critical variations as required to replace methyl 4-((1-(bis(4-fluorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with methyl 4-((1-(4-bromo-2-chlorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained following trituration in diethyl ether (10 mL) as a light pink solid (0.10 g, 22%): MS(ES+) m/z 500.0, 498.2, 496.0 (M+1).
  • Step 3. Preparation of 4-((1-(4-bromo-2-chlorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01055
  • Following the procedure as described in Example 402 step 3 and making non-critical variations as required to replace (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with 4-((1-(4-bromo-2-chlorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.02 g, 21%): 1H NMR (300 MHz, DMSO-d6) δ 11.86 (br s, 1H), 9.48 (br s, 1H), 7.89 (d, J=1.7 Hz, 1H), 7.70 (dd, J=1.7, 8.3 Hz, 1H), 7.60 (d, J=8.3 Hz, 1H), 7.10 (d, J=8.3 Hz, 1H), 6.94 (d, J=12.9 Hz, 1H), 4.35 (s, 2H), 3.94 (brs, 2H), 3.40 (br s, 2H), 3.30 (s, 3H), 3.14-3.04 (m, 2H), 2.08-1.92 (m, 4H), 1.62-1.47 (m, 2H), 0.88-0.82 (m, 2H), 0.68-0.62 (m, 2H); MS(ES+) m/z 577.0, 575.0, 573.0 (M+1).
  • Example 414 Synthesis of 4-((1-(4-bromo-2-chlorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01056
  • Following the procedure as described in Example 402 step 3 and making non-critical variations as required to replace (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with 4-((1-(4-bromo-2-chlorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as a colorless solid (0.02 g, 26%): 1H NMR (300 MHz, DMSO-d6) δ 11.80 (br s, 1H), 9.46 (br s, 1H), 7.89 (d, J=1.6 Hz, 1H), 7.70 (dd, J=1.6, 8.3 Hz, 1H), 7.60 (d, J=8.3 Hz, 1H), 7.09 (d, J=8.3 Hz, 1H), 6.95 (d, J=12.9 Hz, 1H), 4.35 (s, 2H), 3.95-3.94 (m, 2H), 3.39 (br s, 2H), 3.13-2.99 (m, 3H), 2.04-1.93 (m, 4H), 1.61-1.46 (m, 2H), 1.09-1.06 (m, 4H), 0.89-0.82 (m, 2H), 0.67-0.62 (m, 2H); MS (ES+) m/z 603.0, 601.0, 599.0 (M+1).
  • Example 415 Synthesis of 4-((1-(2-chloro-4-cyclopropylbenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01057
  • Step 1. Preparation of methyl 4-((1-(2-chloro-4-cyclopropylbenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01058
  • To a solution of methyl 4-((1-(4-bromo-2-chlorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate (1.03 g, 2.02 mmol) in anhydrous 1,4-dioxane (15 mL) was added cyclopropylboronic acid (1.06 g, 12.30 mmol), tribasic potassium phosphate (1.74 g, 8.22 mmol), and tetrakis(triphenylphosphine)palladium(0) (0.48 g, 0.42 mmol). The suspension was degassed with argon and heated at 100° C. for 30 minutes in a microwave reactor. After cooling to ambient temperature, the reaction mixture was diluted with ethyl acetate (100 mL), washed with saturated aqueous ammonium chloride (2×100 mL), dried over anhydrous magnesium sulfate, filtered and concentrated in vacuo. The residue was purified by column chromatography eluting with a 0-20% gradient of ethyl acetate with 10% isopropanol, 10% triethylamine in hexanes to afford the title compound as a yellow syrup (0.94 g, 99%): 1H NMR (300 MHz, CDCl3) δ 7.42 (d, J=8.3 Hz, 1H), 7.31 (d, J=7.9 Hz, 1H), 7.02 (d, J=1.6 Hz, 1H), 6.92 (dd, J=1.6, 7.9 Hz, 1H), 6.52 (d, J=12.8 Hz, 1H), 3.86-3.81 (m, 5H), 3.57 (s, 2H), 2.96-2.92 (m, 2H), 2.13-1.96 (m, 3H), 1.87-1.80 (m, 4H), 1.49-1.37 (m, 2H), 0.98-0.85 (m, 4H), 0.55-0.50 (m, 4H); MS(ES+) m/z 474.1, 472.1 (M+1).
  • Step 2. Preparation of 4-((1-(2-chloro-4-cyclopropylbenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01059
  • To a solution of methyl 4-((1-(2-chloro-4-cyclopropylbenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate (0.93 g, 2.00 mmol) in tetrahydrofuran (25 mL) and water (7 mL) was added lithium hydroxide (0.48 g, 20.00 mmol). The mixture was refluxed for 15 hours and cooled to ambient temperature. The reaction mixture was acidified with 1 M aqueous hydrochloric acid solution (10 mL), diluted with saturated aqueous ammonium chloride (150 mL) and extracted with ethyl acetate (2×150 mL). The combined organic layers were dried over anhydrous magnesium sulfate, filtered and concentrated in vacuo. The residue was triturated in diethyl ether (15 mL) to afford the title compound as a colorless solid (0.16 g, 18%). The aqueous layer contained white solid that was filtered, washed with water (100 mL) and diethyl ether (40 mL) to afford additional amount of the title compound as a colorless solid (0.24 g, 27%): 1H NMR (300 MHz, DMSO-d6) δ 10.25 (br s, 1H), 7.70 (d, J=7.9 Hz, 1H), 7.27-7.25 (m, 2H), 7.11 (d, J=7.9 Hz, 1H), 6.88 (d, J=13.0 Hz, 1H), 4.31 (d, J=3.7 Hz, 2H), 3.92 (d, J=5.4 Hz, 2H), 3.40-3.31 (m, 5H), 3.11-3.00 (m, 2H), 2.06-1.90 (m, 5H), 1.76-1.68 (m, 2H), 1.01-0.95 (m, 2H), 0.89-0.83 (m, 2H), 0.75-0.70 (m, 2H), 0.57-0.52 (m, 2H); MS(ES+) m/z 460.0, 558.2 (M+1).
  • Step 3. Preparation of 4-((1-(2-chloro-4-cyclopropylbenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01060
  • Following the procedure as described in Example 402 Step 3 and making non-critical variations as required to replace (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with 4-((1-(2-chloro-4-cyclopropylbenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.06 g, 36%): 1H NMR (300 MHz, DMSO-d6) δ 11.84 (br s, 1H), 9.57 (br s, 1H), 7.51 (d, J=8.0 Hz, 1H), 7.28-7.27 (m, 1H), 7.14-7.08 (m, 2H), 6.94 (d, J=12.9 Hz, 1H), 4.33 (s, 2H), 3.94 (s, 2H), 3.39 (br s, 2H), 3.30 (s, 3H), 3.12-3.04 (m, 2H), 2.10-1.92 (m, 5H), 1.64-1.55 (m, 2H), 1.02-0.96 (m, 2H), 0.88-0.82 (m, 2H), 0.75-0.70 (m, 2H), 0.67-0.62 (m, 2H); MS(ES+) m/z 537.1, 535.1 (M+1).
  • Example 416 Synthesis of 4-((1-(2-chloro-4-cyclopropylbenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01061
  • Following the procedure as described in Example 402 step 3 and making non-critical variations as required to replace (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with 4-((1-(2-chloro-4-cyclopropylbenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and to replace methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as a colorless solid (0.05 g, 26%): 1H NMR (300 MHz, DMSO-d6) δ 11.81 (br s, 1H), 9.47 (br s, 1H), 7.51 (d, J=8.0 Hz, 1H), 7.29-7.28 (m, 1H), 7.14-7.07 (m, 2H), 6.95 (d, J=13.0 Hz, 1H), 4.33 (s, 2H), 3.94-3.93 (m, 2H), 3.43-3.40 (m, 2H), 3.13-2.99 (m, 3H), 2.07-1.92 (m, 5H), 1.62-1.50 (m, 2H), 1.09-1.06 (m, 4H), 1.02-0.96 (m, 2H), 0.88-0.82 (m, 2H), 0.75-0.70 (m, 2H), 0.67-0.62 (m, 2H); MS(ES+) m/z 563.1, 561.2 (M+1).
  • Example 417 Synthesis of N-(azetidin-1-ylsulfonyl)-4-((1-(2-chloro-4-cyclopropylbenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01062
  • Following the procedure as described in Example 402 step 3 and making non-critical variations as required to replace (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with 4-((1-(2-chloro-4-cyclopropylbenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and to replace methanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as a colorless solid (0.06 g, 23%): 1H NMR (300 MHz, DMSO-d6) δ 11.59 (br s, 1H), 9.38 (br s, 1H), 7.51 (d, J=8.0 Hz, 1H), 7.29-7.28 (m, 1H), 7.15-7.07 (m, 2H), 6.95 (d, J=12.8 Hz, 1H), 4.33 (s, 2H), 4.01 (t, J=7.7 Hz, 4H), 3.94-3.93 (m, 2H), 3.44-3.40 (m, 2H), 3.12-3.04 (m, 2H), 2.18-1.91 (m, 7H), 1.62-1.50 (m, 2H), 1.02-0.96 (m, 2H), 0.89-0.82 (m, 2H), 0.75-0.70 (m, 2H), 0.68-0.63 (m, 2H); MS(ES+) m/z 578.0, 576.0 (M+1).
  • Example 418 Synthesis of 4-((1-(bis(4-fluorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01063
  • Step 1. Preparation of methyl 4-((1-(bis(4-fluorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01064
  • Following the procedure as described in Example 402 step 1 and making non-critical variations as required to replace tert-butyl 5-chloro-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate hydrochloride with methyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate hydrochloride and to replace (R)-1-(3,5-dichlorophenyl)ethyl 4-methylbenzenesulfonate with 4,4′-(bromomethylene)bis(fluorobenzene) and adding tetra-n-butylammonium iodide to the reaction mixture, the title compound was obtained as a light yellow syrup (0.19 g, 18%): 1H NMR (300 MHz, CDCl3) δ 7.42 (d, J=8.3 Hz, 1H), 7.36-7.29 (m, 4H), 6.98-6.92 (m, 4H), 6.52 (d, J=12.8 Hz, 1H), 4.26 (s, 1H), 3.86 (s, 3H), 3.83 (d, J=6.1 Hz, 2H), 2.90-2.86 (m, 2H), 2.01-1.96 (m, 1H), 1.91-1.77 (m, 5H), 1.49-1.38 (m, 2H), 0.90-0.83 (m, 2H), 0.64-0.58 (m, 2H); MS(ES+) m/z 510.2 (M+1).
  • Step 2. Preparation of 4-((1-(bis(4-fluorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01065
  • To a solution of methyl 4-((1-(bis(4-fluorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate (0.19 g, 0.38 mmol) in tetrahydrofuran (10 mL) and water (3 mL) was added lithium hydroxide (0.10 g, 4.10 mmol). The mixture was refluxed for 6 hours, and then cooled to ambient temperature. The mixture was diluted with 1 M hydrochloric acid solution (100 mL) and extracted with ethyl acetate (2×100 mL). The combined organic layers were dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo to afford the title compound as a colorless syrup (0.19 g, quant. yield) that was used directly in the next reaction: MS(ES+) m/z 496.0 (M+1).
  • Step 3. Preparation of 4-((1-(bis(4-fluorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01066
  • Following the procedure as described in Example 402 Step 3 and making non-critical variations as required to replace (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with 4-((1-(bis(4-fluorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.04 g, 27% in 2 steps): 1H NMR (300 MHz, DMSO-d6) δ 11.88 (br s, 1H), 9.98 (br s, 1H), 7.67 (br s, 4H), 7.31 (brs, 4H), 7.09 (d, J=8.2 Hz, 1H), 6.95 (d, J=13.0 Hz, 1H), 5.62-5.59 (m, 1H), 3.95 (d, J=5.0 Hz, 2H), 3.30 (s, 3H), 3.26-3.22 (m, 2H), 3.04-2.95 (m, 2H), 2.05-1.96 (m, 3H), 1.84-1.81 (m, 1H), 1.60-1.55 (m, 2H), 0.87-0.82 (m, 2H), 0.66-0.61 (m, 2H); MS(ES+) m/z 573.1 (M+1).
  • Example 419 Synthesis of N-(azetidin-1-ylsulfonyl)-4-((1-(his(4-fluorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01067
  • Following the procedure as described in Example 402 Step 3 and making non-critical variations as required to replace (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with 4-((1-(bis(4-fluorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace methanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as a colorless solid (0.04 g, 28%): 1H NMR (300 MHz, DMSO-d6) δ 11.59 (br s, 1H), 10.24 (br s, 1H), 7.72 (br s, 4H), 7.31 (br s, 4H), 7.09 (d, J=8.2 Hz, 1H), 6.96 (d, J=12.5 Hz, 1H), 4.01 (t, J=7.7, 7.7 Hz, 4H), 3.95 (d, J=4.4 Hz, 2H), 3.26-3.22 (m, 2H), 3.04-2.96 (m, 2H), 2.15-1.97 (m, 4H), 1.85-1.65 (m, 2H), 1.14 (t, J=7.3, 7.3 Hz, 2H), 0.87-0.82 (m, 2H), 0.66-0.61 (m, 2H); MS(ES+) m/z 614.1 (M+1).
  • Example 420 Synthesis of 5-cyclopropyl-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)-3-methylazetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01068
  • Step 1. Preparation of methyl 5-cyclopropyl-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)-3-methylazetidin-3-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01069
  • Following the procedure as described in Example 402 step 1 and making non-critical variations as required to replace tert-butyl 5-chloro-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate hydrochloride with methyl 5-cyclopropyl-2-fluoro-4-((3-methylazetidin-3-yl)methoxy)benzoate hydrochloride, and to replace (R)-1-(3,5-dichlorophenyl)ethyl 4-methylbenzenesulfonate with 1-(bromo(phenyl)methyl)-3,5-dichlorobenzene and adding tetra-n-butylammonium iodide to the reaction mixture, the title compound was obtained as a light yellow syrup (0.56 g, 62%): 1H NMR (300 MHz, CDCl3) δ 7.47 (d, J=8.3 Hz, 1H), 7.37-7.20 (m, 7H), 7.16-7.15 (m, 1H), 6.61 (d, J=12.6 Hz, 1H), 4.32 (s, 1H), 4.02 (s, 2H), 3.88 (s, 3H), 3.21 (dd, J=7.4, 12.0 Hz, 2H), 2.89 (dd, J=7.4, 9.8 Hz, 2H), 2.06-1.97 (m, 1H), 1.38 (s, 3H), 0.92-0.86 (m, 2H), 0.67-0.62 (m, 2H); MS(ES+) m/z 530.0, 528.0 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)-3-methylazetidin-3-yl)methoxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01070
  • Following the procedure as described in Example 402 step 2 and making non-critical variations as required to replace methyl 4-((1-(bis(4-fluorophenyl)methyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with methyl 5-cyclopropyl-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)-3-methylazetidin-3-yl)methoxy)-2-fluorobenzoate, the title compound was obtained following trituration in diethyl ether (15 mL) (0.44 g, 80%) as a colorless solid: MS(ES+) m/z 516.1, 514.1 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)-3-methylazetidin-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01071
  • Following the procedure as described in Example 402 step 3 and making non-critical variations as required to replace (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with 5-cyclopropyl-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)-3-methylazetidin-3-yl)methoxy)-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.11 g, 37%): 1H NMR (300 MHz, DMSO-d6+5% D2O) δ 7.60 (s, 1H), 7.52-7.51 (m, 2H), 7.45-7.35 (m, 5H), 7.13 (d, J=8.3 Hz, 1H), 6.91 (d, J=12.8 Hz, 1H), 5.50 (br s, 1H), 4.13 (br s, 2H), 3.89-3.57 (m, 4H), 3.29 (s, 3H), 2.04-1.95 (m, 1H), 1.40 (s, 3H), 0.85-0.78 (m, 2H), 0.65-0.56 (m, 2H); MS(ES+) m/z 592.9, 590.9 (M+1).
  • Example 421 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)-3-methylazetidin-3-yl)methoxy)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01072
  • Following the procedure as described in Example 402 step 3 and making non-critical variations as required to replace (S)-5-chloro-4-((1-(1-(3,5-dichlorophenyl)ethyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid, trifluoroacetic acid salt with 5-cyclopropyl-4-((1-((3,5-dichlorophenyl)(phenyl)methyl)-3-methylazetidin-3-yl)methoxy)-2-fluorobenzoic acid and to replace methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as a colorless solid (0.14 g, 47%): 1H NMR (300 MHz, DMSO-d6+5% D2O) δ 7.61 (s, 1H), 7.54-7.53 (m, 2H), 7.47-7.35 (m, 5H), 7.12 (d, J=8.3 Hz, 1H), 6.91 (d, J=12.8 Hz, 1H), 5.60 (br s, 1H), 4.14 (br s, 2H), 3.98-3.91 (m, 2H), 3.82-3.76 (m, 2H), 3.06-2.98 (m, 1H), 2.04-1.94 (m, 1H), 1.42 (s, 3H), 1.09-1.06 (m, 4H), 0.84-0.78 (m, 2H), 0.62-0.57 (m, 2H); MS(ES+) m/z 616.9, 618.9 (M+1).
  • Example 422 Synthesis of (R)-4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01073
  • Step 1. Preparation of (R)-4-((1-(tert-butoxycarbonyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01074
  • To a solution of (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)piperidine-1-carboxylate (3.50 g, 8.05 mmol) in dichloromethane (20 mL) trifluoroacetic acid (5 mL) was added. The mixture was stirred for 1.5 hours and then a saturated aqueous solution of sodium bicarbonate (25 mL) was added followed by di-tert-butyl dicarbonate (1.93 g, 8.85 mmol). The reaction mixture was stirred for 1 hour, acidified with 1M aqueous hydrochloric acid solution to pH=1 and then extracted with dichloromethane (2×20 mL). The organic layers were combined, dried over anhydrous sodium sulfate, filtered and concentrated to give the title compound as a colorless solid (3.05 g, quant. yield): MS(ES+) m/z 380.2 (M+1).
  • Step 2. Preparation of (R)-tert-butyl 3-(2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01075
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with (R)-4-((1-(tert-butoxycarbonyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid and the residue was purified by column chromatography eluting with gradient of 0% to 10% methanol containing 1% ammonia in dichloromethane, the title compound was obtained as a colorless solid (2.76 g, 75%): 1H NMR (300 MHz, CDCl3) δ 8.89-8.45 (brs, 1H), 7.56 (d, J=9.0 Hz, 1H), 6.61 (d, J=14.5 Hz, 1H), 4.41-4.25 (m, 1H), 3.81-3.25 (m, 7H), 2.10-1.75 (m, 4H), 1.66-1.17 (m, 10H), 0.96-0.81 (m, 2H), 0.75-0.52 (m, 2H).
  • Step 3. Preparation of (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-(piperidin-3-yloxy)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01076
  • Following the procedure as described in Example 346 step 6, and making non-critical variations as required to replace tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-4-fluoropiperidine-1-carboxylate with (R)-tert-butyl 3-(2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)piperidine-1-carboxylate, the title compound was obtained as a colorless solid (2.75 g, quant. yield): MS(ES+) m/z 357.1 (M+1).
  • Step 4. (R)-4-((1-(3-chloro-5-(trifluoromethoxy)benzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01077
  • To a stirred solution of (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-(piperidin-3-yloxy)benzamide trifluoroacetate (0.05 g, 0.10 mmol) and 3-chloro-5-(trifluoromethoxy)benzaldehyde (0.033 g, 0.15 mmol) in tetrahydrofuran (1 mL) was added sodium triacetoxyborohydride (0.073 g, 0.23 mmol). After stirring at ambient temperature for 16 hours, the reaction was quenched by adding In aqueous hydrochloric acid solution (0.4 mL) and the mixture was purified by column chromatography eluting with 5% methanol in dichloromethane to give an oil, which was further purified by preparative HPLC to afford the title compound as a colorless solid (0.03 g, 45%): 1H NMR (300 MHz, DMSO-d6) δ 12.19-11.69 (m, 1H), 10.04-9.66 (m, 1H), 7.76-7.62 (m, 2H), 7.61-7.49 (m, 1H), 7.14-7.01 (m, 2H), 5.01-4.58 (m, 1H), 4.57-4.18 (m, 2H), 3.67-2.77 (m, 7H), 2.42-1.49 (m, 5H), 0.96-0.76 (m, 2H), 0.73-0.60 (m, 2H); MS(ES+) m/z 567.0, 565.0 (M+1).
  • Example 423 Synthesis of (R)-5-cyclopropyl-4-((1-(2,4-dimethylbenzyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01078
  • Following the procedure as described in Example 422 step 4, and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with 2,4-dimethylbenzaldehyde, the title compound was obtained as a colorless solid (0.02 g, 50%): 1H NMR (300 MHz, DMSO-d6) δ 12.21-11.69 (m, 1H), 9.97-8.99 (m, 1H), 7.45-7.28 (m, 1H), 7.20-6.98 (m, 4H), 4.98-4.62 (m, 1H), 4.45-4.22 (m, 2H), 3.74-2.86 (m, 7H), 2.42-2.28 (m, 3H), 2.25 (s, 3H), 2.21-1.42 (m, 5H), 0.94-0.79 (m, 2H), 0.75-0.59 (m, 2H); MS(ES+) m/z 475.2 (M+1).
  • Example 424 Synthesis of (R)-4-((1-(2-chloro-4-methylbenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01079
  • Following the procedure as described in Example 422 step 4 and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with 2-chloro-4-methylbenzaldehyde, the title compound was obtained as a colorless solid (0.03 g, 61%): 1H NMR (300 MHz, DMSO-d6) δ 12.24-11.69 (m, 1H), 9.78-9.46 (m, 1H), 7.57 (d, J=7.41 Hz, 1H), 7.41 (s, 1H), 7.25 (d, J=8.00 Hz, 1H), 7.18-7.01 (m, 2H), 5.03-4.65 (m, 1H), 4.54-4.37 (m, 2H), 3.75-3.35 (m, 2H), 3.31 (s, 3H), 3.28-2.89 (m, 2H), 2.30 (s, 3H), 2.25-1.51 (m, 5H), 0.94-0.79 (m, 2H), 0.74-0.60 (m, 2H); MS(ES+) m/z 497.0, 495.0 (M+1).
  • Example 425 Synthesis of (R)-4-((1-(4-(tert-butyl)benzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01080
  • Following the procedure as described in Example 422 step 4 and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with 4-(tert-butyl)benzaldehyde, the title compound was obtained as a colorless solid (0.03 g, 61%): 1H NMR (300 MHz, DMSO-d4) δ 12.14-11.80 (m, 1H), 9.96-9.16 (m, 1H), 7.52-7.33 (m, 4H), 7.17-6.98 (m, 2H), 4.99-4.58 (m, 1H), 4.46-4.17 (m, 2H), 3.72-3.37 (m, 2H), 3.36-2.78 (m, 5H), 2.42-1.49 (m, 5H), 1.25 (s, 9H), 0.94-0.80 (m, 2H), 0.74-0.59 (m, 2H); MS(ES+) m/z 503.2 (M+1).
  • Example 426 Synthesis of (R)-4-((1-([1,1′-biphenyl]-4-ylmethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01081
  • Following the procedure as described in Example 422 step 4 and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with [1,1′-biphenyl]-4-carbaldehyde, the title compound was obtained as a colorless solid (0.02 g, 36%): 1H NMR (300 MHz, DMSO-d6) δ 12.14-11.77 (m, 1H), 10.15-9.40 (m, 1H), 7.76 (d, J=8.1 Hz, 2H), 7.67 (d, J=7.3 Hz, 2H), 7.64-7.54 (m, 2H), 7.46 (t, J=7.5 Hz, 2H), 7.41-7.33 (m, 1H), 7.19-7.01 (m, 2H), 5.02-4.61 (m, 1H), 4.55-4.29 (m, 2H), 3.76-3.44 (m, 2H), 3.40-2.86 (m, 5H), 2.42-1.53 (m, 5H), 0.95-0.79 (m, 2H), 0.72-0.61 (m, 2H); MS (ES+) m/z 523.2 (M+1).
  • Example 427 Synthesis of (R)-4-((1-(5-chloro-2-hydroxybenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01082
  • Following the procedure as described in Example 422 step 4 and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with 5-chloro-2-hydroxybenzaldehyde, the title compound was obtained as a colorless solid (0.04 g, 59%): 1H NMR (300 MHz, DMSO-d6) δ 12.10-11.77 (m, 1H), 10.72-10.50 (m, 1H), 10.16-9.18 (m, 1H), 7.58-7.47 (m, 1H), 7.30 (dd, J=8.6, 2.1 Hz, 1H), 7.17-7.03 (m, 2H), 6.93 (d, J=8.4 Hz, 1H), 5.01-4.68 (m, 1H), 4.35-4.21 (m, 2H), 3.70-2.85 (m, 7H), 2.41-1.56 (m, 5H), 0.95-0.79 (m, 2H), 0.72-0.61 (m, 2H); MS(ES+) m/z 499.1, 497.1 (M+1).
  • Example 428 Synthesis of (R)-5-cyclopropyl-4-((1-(2,4-diethoxybenzyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01083
  • Following the procedure as described in Example 422 step 4 and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with 2,4-diethoxybenzaldehyde, the title compound was obtained as a colorless solid (0.04 g, 77%): 1H NMR (300 MHz, DMSO-d6) δ12.13-11.74 (m, 1H), 9.87-9.15 (m, 1H), 7.34 (dd, J=8.7, 8.7 Hz, 1H), 7.18-7.02 (m, 2H), 6.62-6.52 (m, 2H), 5.02-4.65 (m, 1H), 4.38-4.16 (m, 2H), 4.11-3.96 (m, 4H), 3.69-2.82 (m, 7H), 2.43-2.09 (m, 1H), 2.08-1.56 (m, 4H), 1.38-1.22 (m, 6H), 0.93-0.78 (m, 2H), 0.76-0.57 (m, 2H); MS(ES+) m/z 535.1 (M+1).
  • Example 429 Synthesis of (R)-5-cyclopropyl-4-((1-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01084
  • Following the procedure as described in Example 422 step 4 and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with 2,3-dihydrobenzo[b][1,4]dioxine-6-carbaldehyde, the title compound was obtained as a colorless solid (0.03 g, 64%): 1H NMR (300 MHz, DMSO-d6) δ 12.09-11.82 (m, 1H), 9.90-9.22 (m, 1H), 7.18-6.99 (m, 3H), 6.98-6.87 (m, 2H), 4.98-4.60 (m, 1H), 4.39-4.09 (m, 6H), 3.69-2.75 (m, 7H), 2.38-1.49 (m, 5H), 0.95-0.79 (m, 2H), 0.75-0.60 (m, 2H); MS(ES+) m/z 505.1 (M+1).
  • Example 430 Synthesis of (R)-5-cyclopropyl-4-((1-(3,4-dimethoxybenzyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01085
  • Following the procedure as described in Example 422 step 4 and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with 3,4-dimethoxybenzaldehyde, the title compound was obtained as a colorless solid (0.03 g, 71%): 1H NMR (300 MHz, DMSO-d6) δ 12.09-11.81 (m, 1H), 9.95-9.19 (m, 1H), 7.18-6.94 (m, 5H), 4.97-4.62 (m, 1H), 4.43-4.13 (m, 2H), 3.80-3.68 (m, 6H), 3.67-3.36 (m, 2H), 3.31 (s, 3H), 3.25-2.82 (m, 2H), 2.39-2.10 (m, 1H), 2.09-1.52 (m, 4H), 0.97-0.76 (m, 2H), 0.74-0.61 (m, 2H); MS(ES+) m/z 507.1 (M+1).
  • Example 431 Synthesis of (R)-5-cyclopropyl-2-fluoro-4-((1-(4-fluoro-2-methylbenzyl)piperidin-3-yl)oxy)-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01086
  • Following the procedure as described in Example 422 step 4 and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with 4-fluoro-2-methylbenzaldehyde, the title compound was obtained as a colorless solid (0.03 g, 82%): 1H NMR (300 MHz, DMSO-d6) δ 12.13-11.78 (m, 1H), 9.82-9.03 (m, 1H), 7.63-7.43 (m, 1H), 7.23-7.00 (m, 4H), 4.96-4.62 (m, 1H), 4.44-4.27 (m, 2H), 3.71-2.91 (m, 7H), 2.43-2.13 (m, 4H), 2.13-1.47 (m, 4H), 0.94-0.79 (m, 2H), 0.75-0.60 (m, 2H); MS(ES+) m/z 479.0 (M+1).
  • Example 432 Synthesis of (R)-4-((1-(2-chloro-4-methoxybenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01087
  • Following the procedure as described in Example 422 step 4 and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with 2-chloro-4-methoxybenzaldehyde, the title compound was obtained as a colorless solid (0.03 g, 67%): 1H NMR (300 MHz, DMSO-d6) δ 12.17-11.73 (m, 1H), 9.99-9.27 (m, 1H), 7.67-7.52 (m, 1H), 7.20-6.97 (m, 4H), 5.03-4.60 (m, 1H), 4.48-4.34 (m, 2H), 3.78 (s, 3H), 3.67-2.88 (m, 7H), 2.42-1.51 (m, 5H), 0.95-0.78 (m, 2H), 0.76-0.61 (m, 2H); MS(ES+) m/z 513.1, 511.1 (M+1).
  • Example 433 Synthesis of (R)-4-((1-(3-chloro-4-(trifluoromethyl)benzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01088
  • Following the procedure as described in Example 422 step 4 and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with 3-chloro-4-(trifluoromethyl)benzaldehyde, the title compound was obtained as a colorless solid (0.03 g, 69%): 1H NMR (300 MHz, DMSO-d6) δ 12.19-11.63 (m, 1H), 9.79-9.50 (m, 1H), 8.12-7.95 (m, 1H), 7.91-7.69 (m, 2H), 7.16-6.98 (m, 2H), 5.00-4.58 (m, 1H), 4.56-4.27 (m, 2H), 3.70-2.77 (m, 7H), 2.42-1.48 (m, 5H), 0.97-0.76 (m, 2H), 0.75-0.59 (m, 2H); MS(ES+) m/z 551.0, 549.0 (M+1).
  • Example 434 Synthesis of (R)-5-cyclopropyl-2-fluoro-4-((1-(4-methoxy-2-methylbenzyl)piperidin-3-yl)oxy)-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01089
  • Following the procedure as described in Example 422 step 4 and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with 4-methoxy-2-methylbenzaldehyde, the title compound was obtained as a colorless solid (0.03 g, 71%): 1H NMR (300 MHz, DMSO-d6) δ 12.09-11.80 (m, 1H), 9.72-8.85 (m, 1H), 7.41 (dd, J=16.1, 8.6 Hz, 1H), 7.17-7.00 (m, 2H), 6.89-6.78 (m, 2H), 4.96-4.63 (m, 1H), 4.39-4.20 (m, 2H), 3.72 (s, 3H), 3.68-3.36 (m, 2H), 3.31 (s, 3H), 3.24-2.91 (m, 2H), 2.34 (s, 3H), 2.27-1.51 (m, 5H), 0.94-0.79 (m, 2H), 0.74-0.58 (m, 2H); MS(ES+) m/z 491.2 (M+1).
  • Example 435 Synthesis of (R)-4-((1-(3-Chloro-4-methylbenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01090
  • Following the procedure as described in Example 422 step 4 and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with 3-chloro-4-methylbenzaldehyde, the title compound was obtained as a colorless solid (0.04 g, 91%): 1H NMR (300 MHz, DMSO-d6) δ 12.16-11.76 (m, 1H), 9.74-9.43 (m, 1H), 7.58-7.43 (m, 2H), 7.41-7.28 (m, 1H), 7.19-7.01 (m, 2H), 4.97-4.64 (m, 1H), 4.44-4.20 (m, 2H), 3.70-3.39 (m, 2H), 3.31 (s, 3H), 3.26-2.85 (m, 2H), 2.31 (s, 3H), 2.26-1.46 (m, 5H), 0.95-0.77 (m, 2H), 0.73-0.61 (m, 2H); MS(ES+) m/z 497.1, 495.1 (M+1).
  • Example 436 Synthesis of (R)-5-cyclopropyl-4-((1-(3,5-dimethylbenzyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01091
  • Following the procedure as described in Example 422 step 4 and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with 3,5-dimethylbenzaldehyde, the title compound was obtained as a colorless solid (0.02 g, 51%): 1H NMR (300 MHz, DMSO-d6) δ 12.21-11.75 (m, 1H), 10.27-9.47 (m, 1H), 7.20-6.96 (m, 5H), 5.00-4.62 (m, 1H), 4.43-4.12 (m, 2H), 3.70-3.37 (m, 2H), 3.31 (s, 3H), 3.27-2.85 (m, 2H), 2.42-2.11 (m, 7H), 2.07-1.54 (m, 4H), 0.94-0.77 (m, 2H), 0.75-0.57 (m, 2H); MS(ES+) m/z 475.2 (M+1).
  • Example 437 Synthesis of (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(3-(trifluoromethoxy)benzyl)piperidin-3-yl)oxy)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01092
  • Following the procedure as described in Example 422 step 4 and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with 3-(trifluoromethoxy)benzaldehyde, the title compound was obtained as a colorless solid (0.02 g, 33%): 1H NMR (300 MHz, DMSO-d6) δ 12.23-11.62 (m, 1H), 9.77-9.45 (m, 1H), 7.68-7.39 (m, 3H), 7.20-6.98 (m, 2H), 5.03-4.59 (m, 1H), 4.59-4.26 (m, 2H), 3.67-2.77 (m, 7H), 2.42-1.48 (m, 5H), 1.20-0.57 (m, 4H); MS(ES+) m/z 531.1 (M+1).
  • Example 438 Synthesis of (R)-5-cyclopropyl-2-fluoro-4-((1-(2-methoxy-4-(trifluoromethoxy)benzyl)piperidin-3-yl)oxy)-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01093
  • Following the procedure as described in Example 422 step 4 and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with 2-methoxy-4-(trifluoromethoxy)benzaldehyde, the title compound was obtained as a colorless solid (0.04 g, 60%): 1H NMR (300 MHz, DMSO-d6) δ 12.18-11.73 (m, 1H), 9.25-9.01 (m, 1H), 7.63-7.49 (m, 1H), 7.19-6.98 (m, 4H), 5.00-4.61 (m, 1H), 4.41-4.24 (m, 2H), 3.90-3.77 (m, 3H), 3.74-2.83 (m, 7H), 2.42-1.53 (m, 5H), 0.95-0.79 (m, 2H), 0.74-0.61 (m, 2H); MS(ES+) m/z 561.1 (M+1).
  • Example 439 Synthesis of (R)-5-cyclopropyl-4-((1-(3,4-dimethylbenzyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01094
  • Following the procedure as described in Example 426 step 4 and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with 3,4-dimethylbenzaldehyde, the title compound was obtained as a colorless solid (0.03 g, 60%): 1H NMR (300 MHz, DMSO-d6) δ 12.09-11.80 (m, 1H), 10.35-9.35 (m, 1H), 7.34-7.16 (m, 3H), 7.16-6.98 (m, 2H), 4.98-4.67 (m, 1H), 4.42-4.12 (m, 2H), 3.69-3.36 (m, 2H), 3.31 (s, 3H), 3.27-2.79 (m, 2H), 2.42-2.12 (m, 7H), 2.06-1.51 (m, 4H), 0.95-0.78 (m, 2H), 0.73-0.59 (m, 2H); MS(ES+) m/z 475.2 (M+1).
  • Example 440 Synthesis of (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01095
  • Following the procedure as described in Example 422 step 4 and making variation as required to replace 3-chloro-5-(trifluoromethoxy)benzaldehyde with 3,5-dichlorobenzaldehyde and to purify the residue using column chromatography eluting with 5% methanol containing 0.5% ammonia in dichloromethane, the title compound was obtained as a colorless solid (0.12 g, 72%): 1H NMR (300 MHz, CDCl3) δ 7.53 (d, J=9.1 Hz, 1H), 7.27-7.16 (m, 3H), 6.55 (d, J=14.5 Hz, 1H), 4.50-4.36 (m, 1H), 3.56-3.41 (m, 2H), 3.39 (s, 3H), 2.86 (d, J=10.4 Hz, 1H), 2.67-2.56 (m, 1H), 2.45-2.33 (m, 1H), 2.32-2.21 (m, 1H), 2.13-1.97 (m, 2H), 1.94-1.78 (m, 1H), 1.74-1.54 (m, 2H), 1.00-0.87 (m, 2H), 0.73-0.59 (m, 2H); MS(ES+) m/z: 515.0, 517.0 (M+1).
  • Example 441 Synthesis of (R)-4-((1-(2-chloro-4-(methylsulfonyl)benzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01096
  • To a stirred solution of (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-(piperidin-3-yloxy)benzamide trifluoroacetate (0.05 g, 0.14 mmol) and 1-(bromomethyl)-2-chloro-4-(methylsulfonyl)benzene (0.06 g, 0.21 mmol) in acetonitrile (2 mL) was added potassium carbonate (0.05 g, 0.34 mmol) and potassium iodide (0.03 g, 0.17 mmol). The reaction mixture was stirred at reflux for 16 hours, cooled to ambient temperature, and then 1N aqueous hydrochloric acid solution (5 mL) was added; extracted with ethyl acetate (3×10 mL) and concentrated invacuo. The residue was purified by column chromatography eluting with gradient of 0% to 30% ethyl acetate containing 1% formic acid in hexanes to obtained an oil, which was further purified by preparative HPLC (gradient of acetonitrile in water) to afford the title compound (0.04 g, 44%) as a colorless solid: 1H NMR (300 MHz, DMSO-d6) δ 7.90 (s, 1H), 7.78-7.71 (m, 2H), 7.16 (d, J=8.70 Hz, 1H), 6.85-6.67 (m, 1H), 4.57-4.45 (m, 1H), 3.66 (m, 2H), 3.22 (s, 3H), 2.85-2.72 (m, 2H), 2.62-2.50 (m, 1H), 2.40-2.29 (m, 1H), 2.10-1.97 (m, 1H), 1.97-1.85 (m, 1H), 1.84-1.72 (m, 1H), 1.63-1.44 (m, 2H), 0.90-0.79 (m, 2H), 0.63-0.51 (m, 2H); MS(ES+) m/z: 559.0, 561.0 (M+1).
  • Example 442 Synthesis of (R)-4-((1-([1,1′-biphenyl]-2-ylmethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01097
  • Following the procedure as described in Example 441 and making variation as required to replace 1-(bromomethyl)-2-chloro-4-(methylsulfonyl)benzene with 2-(bromomethyl)-1,1′-biphenyl, the title compound was obtained as a colorless solid (0.02 g, 28%): 1H NMR (300 MHz, DMSO-d6) δ 12.22-11.69 (m, 1H), 9.66-8.78 (m, 1H), 7.80-7.62 (m, 1H), 7.57-7.21 (m, 8H), 7.17-7.04 (m, 1H), 6.96 (d, J=12.9 Hz, 1H), 4.89-4.11 (m, 5H), 3.41-2.87 (m, 5H), 2.42-1.38 (m, 5H), 0.96-0.77 (m, 2H), 0.76-0.59 (m, 2H); MS(ES+) m/z 523.2 (M+1).
  • Example 443 Synthesis of (R)-4-((1-([1,1′-biphenyl]-3-ylmethyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01098
  • Following the procedure as described in Example 441, and making variation as required to replace 1-(bromomethyl)-2-chloro-4-(methylsulfonyl)benzene with 3-(bromomethyl)-1,1′-biphenyl, the title compound was obtained as a colorless solid (0.01 g, 8%): 1H NMR (300 MHz, DMSO-d6) δ 12.06-11.82 (m, 1H), 10.20-9.29 (m, 1H), 7.92-7.60 (m, 2H), 7.60-7.42 (m, 6H), 7.42-7.34 (m, 1H), 7.17-6.98 (m, 2H), 4.99-4.62 (m, 1H), 4.60-4.27 (m, 2H), 3.75-3.43 (m, 2H), 3.39-2.89 (m, 5H), 2.41-1.50 (m, 5H), 0.93-0.54 (m, 4H); MS(ES+) m/z 523.2 (M+1).
  • Example 444 Synthesis of (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(spiro[3.5]nonan-7-ylmethyl)piperidin-3-yl)oxy)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01099
  • Step 1. Preparation of spiro[3.5]nonan-7-ylmethyl methanesulfonate
  • Figure US20210093618A1-20210401-C01100
  • To a solution of spiro[3.5]nonan-7-ylmethanol (0.77 g, 5.00 mmol) and triethylamine (1.05 mL, 7.50 mmol) in dichloromethane (20 mL) was added dropwise methanesulfonyl chloride (0.42 mL, 5.5 mmol) at 0° C. The mixture was stirred for 1.5 hours, and then saturated aqueous solution of ammonium chloride (10 mL) was added and the mixture was extracted with dichloromethane (2×20 mL). The combined organic layers were washed with brine (15 mL), dried over anhydrous sodium sulfate, filtered and concentrated invacuo to afford the title compound (1.16 g, quant. yield), which was used in the next step without further purification.
  • Step 2. Preparation of (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(spiro[3.5]nonan-7-ylmethyl)piperidin-3-yl)oxy)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01101
  • Following the procedure as described in Example 441, and making variation as required to replace 1-(bromomethyl)-2-chloro-4-(methylsulfonyl)benzene with spiro[3.5]nonan-7-ylmethyl methanesulfonate, the title compound was obtained as a colorless solid (0.02 g, 31%): 1H NMR (300 MHz, DMSO-d6) δ 12.09-11.80 (m, 1H), 9.28-8.58 (m, 1H), 7.18-7.01 (m, 2H), 5.03-4.62 (m, 1H), 3.74-3.59 (m, 2H), 3.31 (s, 3H), 3.14-2.81 (m, 4H), 2.43-2.11 (m, 2H), 2.06-1.85 (m, 2H), 1.85-1.44 (m, 12H), 1.30-1.12 (m, 2H), 1.07-0.79 (m, 4H), 0.78-0.56 (m, 2H); MS(ES+) m/z 493.2 (M+1).
  • Example 445 (Synthesis of (R)-4-((1-(2-chloro-4-fluorobenzyl)-5,5-difluoropiperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide (
  • Figure US20210093618A1-20210401-C01102
  • Step 1. Preparation of (R)-3-((tert-butyldimethylsilyl)oxy)-1-(4-methoxybenzyl)piperidine-2,6-dione
  • Figure US20210093618A1-20210401-C01103
  • To a solution of (R)-3-hydroxy-1-(4-methoxybenzyl)piperidine-2,6-dione (prepared accordingly to Yuan-Ping et al., Chirality, 2005, 17, 595-599) (3.50 g, 14.00 mmol) in dichloromethane (20 mL) was added tert-butylchlorodimethylsilane (2.30 g, 15.50 mmol) and imidazole (1.30 g, 19.70 mmol). After stirring at ambient temperature for 1 hour, the reaction mixture was quenched with saturated aqueous ammonium chloride solution (25 mL and extracted with dichloromethane (2×40 mL), washed with brine (30 mL), dried over anhydrous sodium sulfate, filtered and concentrated invacuo. The residue was purified by column chromatography (0% to 15% ethyl acetate in hexanes) to give the title compound (2.80 g, 55% 0): MS(ES+) m/z 364.1 (M+1).
  • Step 2. Preparation of (5R)-5-((tert-butyldimethylsilyl)oxy)-6-hydroxy-1-(4-methoxybenzyl)piperidin-2-one
  • Figure US20210093618A1-20210401-C01104
  • To a solution of (R)-3-((tert-butyldimethylsilyl)oxy)-1-(4-methoxybenzyl)piperidine-2,6-dione (2.80 g, 7.70 mmol) in methanol (10 mL) and dichloromethane (10 mL) under nitrogen atmosphere at −30° C. was added sodium borohydride (1.40 g, 38.50 mmol). After stirring for 30 minutes at −30° C., the reaction mixture was warmed to 0° C. over 30 minutes and quenched with saturated aqueous ammonium chloride solution (20 mL) and extracted with dichloromethane (2×15 mL). The combined extracts were dried over anhydrous sodium sulfate, filtered and concentrated invacuo to give an oil (2.70 g, 76%) which was used in the next step without further purification: MS (ES+) m/z 366.2 (M+1).
  • Step 3. Preparation of (R)-5-((tert-butyldimethylsilyl)oxy)-1-(4-methoxybenzyl)piperidin-2-one
  • Figure US20210093618A1-20210401-C01105
  • To a solution of (5R)-5-((tert-butyldimethylsilyl)oxy)-6-hydroxy-1-(4-methoxybenzyl)piperidin-2-one (2.70 g, 7.60 mmol) and triethylsilane (11.50 g, 77.10 mmol) in dry dichloromethane (20 mL) was added boron trifluoride diethyl ether complex (2.9 mL, 23.00 mmol) at −78° C. under nitrogen atmosphere. After stirring for 30 minutes at −78° C., the reaction mixture was warmed up slowly to 0° C. and stirred at this temperature for 2 hours before it was quenched with saturated aqueous solution of sodium bicarbonate solution (5 mL) and extracted with dichloromethane (2×10 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated invacuo to afford the title compound as an oil (1.26 g, 47%): 1H NMR (300 MHz, CDCl3) δ 7.16 (d, J=8.5 Hz, 2H), 6.82 (d, J=8.6 Hz, 2H), 4.71 (d, J=14.6 Hz, 1H), 4.27 (d, J=14.6 Hz, 1H), 4.08-3.98 (m, 1H), 3.77 (s, 3H), 3.24 (dd, J=12.4, 3.7 Hz, 1H), 3.05 (dd, J=12.3, 4.5 Hz, 1H), 2.68 (m, 1H), 2.39 (td, J=17.6, 5.7 Hz, 1H), 1.91-1.78 (m, 2H), 0.81 (s, 9H), 0.00 (s, 3H), −0.06 (s, 3H).
  • Step 4. Preparation of (R)-5-hydroxy-1-(4-methoxybenzyl)piperidin-2-one
  • Figure US20210093618A1-20210401-C01106
  • To a solution of (R)-5-((tert-butyldimethylsilyl)oxy)-1-(4-methoxybenzyl)piperidin-2-one (1.25 g, 3.58 mmol) in tetrahydrofuran (10 mL) was added tetra-butylammonium fluoride (1.0M in THF, 5.3 mL, 5.3 mmol) under nitrogen atmosphere. After stirring at ambient temperature for 30 minutes, the reaction mixture was quenched with saturated aqueous ammonium chloride solution (2.5 mL) and extracted with dichloromethane (2×10 mL). The combined extracts were concentrated invacuo and filtered over a plug of silica gel eluting with 10% hexanes in ethyl acetate followed by ethyl acetate to afford the title compound as oil (0.84 g, quant. yield): MS(ES+) m/z 236.2 (M+1).
  • Step 5. Preparation of (R)-tert-butyl 5-chloro-2-fluoro-4-((1-(4-methoxybenzyl)-6-oxopiperidin-3-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C01107
  • To a solution of (R)-5-hydroxy-1-(4-methoxybenzyl)piperidin-2-one (0.84 g, 3.58 mmol) and tert-butyl 5-chloro-2,4-difluorobenzoate (0.98 g, 3.95 mmol) in dimethylsulfoxide (10 mL) was added cesium carbonate (1.52 g, 10.7 mmol). After stirring for 48 hours at 80° C., the reaction mixture was quenched with saturated aqueous solution of ammonium chloride solution (20 mL) and extracted with dichloromethane (2×10 mL). The organic layers were concentrated under reduced pressure and the residue was purified by chromatography eluting with a gradient of ethyl acetate in hexanes (50% to 100%) to afford the title compound as a gum (1.38 g, 83%): 1H NMR (300 MHz, CDCl3) δ 7.80 (d, J=7.7 Hz, 1H), 7.08 (d, J=8.6 Hz, 2H), 6.71 (d, J=8.6 Hz, 2H), 6.46 (d, J=11.9 Hz, 1H), 4.79 (d, J=14.6 Hz, 1H), 4.71-4.62 (m, 1H), 4.17 (d, J=14.6 Hz, 1H), 3.69 (s, 3H), 3.43-3.37 (m, 2H), 2.71 (ddd, J=17.6, 11.1, 6.6 Hz, 1H), 2.46 (ddd, J=17.7, 6.2, 3.7 Hz, 1H), 2.26-2.13 (m, 1H), 2.12-2.00 (m, 1H), 1.52 (s, 9H); MS(ES+) m/z 466.1, 464.1 (M+1).
  • Step 6. Preparation of (R)-tert-butyl 5-cyclopropyl-2-fluoro-4-((1-(4-methoxybenzyl)-6-oxopiperidin-3-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C01108
  • Following the procedure as described in Example 346 step 3 and making variation as required to replace tert-butyl 4-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)-4-fluoropiperidine-1-carboxylate with (R)-tert-butyl 5-chloro-2-fluoro-4-((1-(4-methoxybenzyl)-6-oxopiperidin-3-yl)oxy)benzoate and the reaction mixture was heated at 150° C. for 1 hour under microwave irradiation, the title compound was obtained as a colorless oil (0.90 g, 64%): 1H NMR (300 MHz, CDCl3) δ 7.32 (d, J=8.4 Hz, 1H), 7.15-7.09 (m, 2H), 6.77-6.70 (m, 2H), 6.39 (d, J=12.4 Hz, 1H), 4.73-4.64 (m, 2H), 4.35-4.28 (m, 1H), 3.72 (s, 3H), 3.47-3.42 (m, 2H), 2.75-2.59 (m, 1H), 2.55-2.42 (m, 1H), 2.30-2.17 (m, 1H), 2.12-2.01 (m, 1H), 1.89-1.76 (m, 1H), 1.53 (s, 9H), 0.89-0.78 (m, 2H), 0.60-0.49 (m, 2H).
  • Step 7. Preparation of (R)-tert-butyl 5-cyclopropyl-4-((5,5-difluoro-1-(4-methoxybenzyl)-6-oxopiperidin-3-yl)oxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01109
  • To a solution of diisopropyl amine (0.10 mL, 0.75 mmol) in anhydrous tetrahydrofuran (1 mL) under nitrogen was added butyl lithium solution (1.5M solution in hexanes, 0.46 mL, 0.69 mmol) at −78° C. After stirring at −78° C. for 1 hour, a solution of (R)-tert-butyl 5-cyclopropyl-2-fluoro-4-((1-(4-methoxybenzyl)-6-oxopiperidin-3-yl)oxy)benzoate (0.25 g, 0.53 mmol) in tetrahydrofuran (1.5 mL) was added, stirring was continued at −78° C. for another 1 hour. To this reaction mixture, was added a solution of N-fluorobenzenesulfonimide (0.39 g, 0.75 mmol) in tetrahydrofuran (2 mL) slowly over 10 minutes. The reaction mixture was stirred for 30 minutes at −78° C. and then slowly warmed up to −30° C. over 1 hour. The reaction mixture was cooled to −78° C. again and lithium bis(trimethylsilyl)amide (1.0 M solution in toluene, 0.8 mL, 0.8 mmol) was added. The reaction mixture was stirred for 30 min at −78° C., a solution of N-fluorobenzenesulfonimide (0.39 g, 0.75 mmol) in tetrahydrofuran (2 mL) was added and the reaction mixture was slowly warmed up to −30° C. over 1 hour and then quenched with a saturated aqueous solution of ammonium chloride solution(10 mL), extracted with ethyl acetate (2×15 mL) and concentrated. The residue was purified by column chromatography eluting with a gradient of 30% to 80% ethyl acetate in hexanes to afford the title compound (0.05 g, 20%): H NMR (300 MHz, CDCl3) δ 7.92 (d, J=7.0 Hz, 1H), 7.62-7.45 (m, 2H), 7.22-7.12 (m, 2H), 6.77 (d, J=8.6 Hz, 2H), 6.40-6.16 (m, 1H), 4.94-4.82 (m, 1H), 4.76-4.64 (m, 1H), 4.47-4.28 (m, 1H), 3.75 (s, 3H), 3.70-3.54 (m, 2H), 2.72 (dt, J=14.6, 4.8 Hz, 1H), 1.88-1.59 (m, 2H), 1.54 (s, 9H), 0.90-0.72 (m, 2H), 0.61-0.47 (m, 2H); MS (ES+) m/z 450.1 (M−t-Bu+1).
  • Step 8. Preparation of (R)-tert-butyl 5-cyclopropyl-4-((5,5-difluoro-1-(4-methoxybenzyl)piperidin-3-yl)oxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01110
  • To a solution of (R)-tert-butyl 5-cyclopropyl-4-((5,5-difluoro-1-(4-methoxybenzyl)-6-oxopiperidin-3-yl)oxy)-2-fluorobenzoate (0.05 g, 0.10 mmol) in tetrahydrofuran (1 mL), borane (1.0M in tetrahydrofuran, 0.3 mL, 0.3 mmol,) was added. The reaction mixture was stirred for 2 hours at ambient temperature and then quenched with methanol (1 mL). The reaction mixture was concentrated and the residue was purified by column chromatography eluting with a gradient of 0% to 20% ethyl acetate in hexanes to afford the title compound as an oil (0.03 g, 61%): 1H NMR (300 MHz, CDCl3) δ 7.35 (d, J=8.3 Hz, 1H), 7.21 (d, J=8.5 Hz, 2H), 6.85 (d, J=8.5 Hz, 2H), 6.52 (d, J=12.4 Hz, 1H), 4.64-4.49 (m, 1H), 3.78 (s, 3H), 3.68 (d, J=13.1 Hz, 1H), 3.61 (d, J=13.1 Hz, 1H), 3.20-3.09 (m, 1H), 3.08-2.92 (m, 1H), 2.68-2.22 (m, 3H), 2.01-1.89 (m, 2H), 1.55 (s, 9H), 0.85-0.78 (m, 2H), 0.65-0.55 (m, 2H); MS(ES+) m/z 492.1 (M+1).
  • Step 9. Preparation of (R)-tert-butyl 5-cyclopropyl-4-((5,5-difluoropiperidin-3-yl)oxy)-2-fluorobenzoate trifluoroacetate
  • Figure US20210093618A1-20210401-C01111
  • To a stirred solution of 4(R)-tert-butyl 5-cyclopropyl-4-((5,5-difluoro-1-(4-methoxybenzyl)piperidin-3-yl)oxy)-2-fluorobenzoate (0.23 g, 0.47 mmol)) in degassed ethyl acetate (5 mL) and trifluoroacetic acid (0.2 mL) was added 10% palladium on carbon (20 mg) and the flask was put under 1 atm of hydrogen gas. The reaction mixture was stirred for 4 hours at ambient temperature, and then filtered over diatomaceous earth and rinsed with ethyl acetate (2×20 mL). The filtrate was concentrated to afford the title compound (0.23 g, quant. yield): MS(ES+) m/z 372.2 (M+1).
  • Step 10. Preparation of (R)-4-((1-(2-chloro-4-fluorobenzyl)-5,5-di fluoropiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid hydrochloric acid
  • Figure US20210093618A1-20210401-C01112
  • To a stirred solution of (R)-tert-butyl 5-cyclopropyl-4-((5,5-difluoropiperidin-3-yl)oxy)-2-fluorobenzoate trifluoroacetate (0.23 g, 0.47 mmol) in dichloromethane (1 mL) was added trifluoroacetic acid (1 mL). After stirring at ambient temperature for 2 hours, the reaction mixture was concentrated in vacuo. The residue was dissolved in tetrahydrofuran (1 mL), and to the solution was added 2-chloro-4-fluorobenzaldehyde (0.07 g, 0.50 mmol) and sodium triacetoxyborohydride (0.24 g, 0.74 mmol). The reaction mixture was stirred for 16 hours at ambient temperature, quenched with 1N aqueous hydrochloric acid solution (5 mL) and extracted with ethyl acetate (3×10 mL), and concentrated in vacuo. The residue was purified by column chromatography eluting with 40% ethyl acetate (plus 0.5% trifluoroacetic acid) in hexanes to afford the title compound as a colorless solid (0.16 g, 81%): 1H NMR (300 MHz, CDCl3) δ 7.55-7.41 (m, 2H), 7.10 (dd, J=8.4, 2.6 Hz, 1H), 6.96 (dt, J=8.4, 2.6 Hz, 1H), 6.57 (d, J=12.5 Hz, 1H), 6.47-6.12 (brs, 2H), 4.63 (m, 1H), 3.77 (s, 2H), 3.13 (dd, J=11.4, 3.1 Hz, 1H), 3.02 (dd, J=20.3, 9.1 Hz, 1H), 2.72-2.48 (m, 3H), 2.15-2.05 (m, 1H), 2.01-1.96 (m, 1H), 0.88-0.79 (m, 2H), 0.66-0.58 (m, 2H).
  • Step 11. Preparation of (R)-4-((1-(2-chloro-4-fluorobenzyl)-5,5-difluoropiperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01113
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with (R)-4-((1-(2-chloro-4-fluorobenzyl)-5,5-difluoropiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid hydrochloric acid, the title compound was obtained as a colorless solid (0.02 g, 41%): 1H NMR (300 MHz, DMSO-d6) δ 8.68 (d, J=15.8 Hz, 1H), 7.56 (d, J=9.0 Hz, 1H), 7.46 (dd, J=8.5, 6.2 Hz, 1H), 7.11 (dd, J=8.4, 2.5 Hz, 1H), 6.96 (dt, J=8.3, 2.5 Hz, 1H), 6.57 (d, J=14.1 Hz, 1H), 4.71-4.57 (m, 1H), 3.77 (s, 2H), 3.39 (s, 3H), 3.18-2.94 (m, 2H), 2.75-2.49 (m, 3H), 2.19-1.98 (m, 2H), 0.98-0.83 (m, 2H), 0.68-0.59 (m, 2H); MS(ES+) m/z 537.2, 535.2 (M+1).
  • Example 446 Synthesis of (R)-4-((1-(2-chloro-4-fluorobenzyl)-5,5-difluoropiperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01114
  • Step 1. Preparation of N-(2-chloro-4-fluorobenzyl)-5-oxotetrahydrofuran-2-carboxamide
  • Figure US20210093618A1-20210401-C01115
  • A mixture of (R)-5-oxotetrahydrofuran-2-carboxylic acid (10.0 g, 76.9 mmol) and thionyl chloride (20.0 g, 307.0 mmol) was refluxed for 10 hours, and then the excess thionyl chloride was removed under reduced pressure. The residue was redissolved in anhydrous dichloromethane (150 mL) and cooled to 0° C. To this solution was added triethylamine (10.1 g, 100.0 mmol) and (2-chloro-4-fluorophenyl)methanamine (12.2 g, 76.9 mmol) successively. After stirring at 0° C. for 3 hours, the reaction mixture was directly poured on a silica column and eluted with 20% to 70% ethyl acetate in hexanes to afford the title compound as a colorless solid (20.80 g, quant. yield): 1H NMR (300 MHz, CDCl3) δ 7.34 (dd, J=8.5, 6.0 Hz, 1H), 7.13 (dd, J=8.4, 2.6 Hz, 1H), 6.95 (dt, J=8.3, 2.6 Hz, 1H), 6.82-6.68 (m, 1H), 4.86 (t, J=7.4 Hz, 1H), 4.51 (d, J=6.0 Hz, 2H), 2.72-2.50 (m, 3H), 2.41-2.28 (m, 1H).
  • Step 2. Preparation of (R)-3-((tert-butyldimethylsilyl)oxy)-1-(2-chloro-4-fluorobenzyl)piperidine-2,6-dione
  • Figure US20210093618A1-20210401-C01116
  • To a solution of N-(2-chloro-4-fluorobenzyl)-5-oxotetrahydrofuran-2-carboxamide (20.8 g, 77.0 mmol) in anhydrous tetrahydrofuran (200 mL) was added a cooled 1.0 M solution of potassium tert-butoxide in anhydrous tetrahydrofuran (46.0 mL, 46.0 mmol) at −78° C. under nitrogen atmosphere. After 10 minutes of stirring at −78° C., the temperature was allowed to arise to −60° C. over 10 min, and then the reaction mixture was stirred at −60° C. for 1.5 hours. Another portion of potassium tert-butoxide (46.0 mL, 46.0 mmol) was added and the reaction mixture was stirred for another 1.5 hours at −45° C. and then a solution of tert-butyldimethylsilyl chloride (12.80 g, 85.70 mmol) in tetrahydrofuran (20 mL) was added dropwise and stirring was continued for 30 minutes at −45° C. The reaction mixture was quenched with saturated aqueous ammonium chloride solution (25 mL) at −45° C., and extracted with ethyl acetate (2×100 mL). The combined extracts were washed with brine (50 mL), dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography eluting with a gradient of 0 to 15% ethyl acetate in hexanes to give the title compound (28.1 g, 93%): 1H NMR (300 MHz, CDCl3) δ 7.03 (dd, J=8.4, 2.4 Hz, 1H), 6.89 (dd, J=8.5, 6.1 Hz, 1H), 6.79 (dt, J=8.5, 2.4 Hz, 1H), 4.94 (d, J=15.7 Hz, 1H), 4.88 (d, J=15.7 Hz, 1H), 4.35 (dd, J=6.3, 3.7 Hz, 1H), 2.94 (ddd, J=17.8, 8.9, 5.7 Hz, 1H), 2.62 (td, J=17.8, 5.7 Hz, 1H), 2.13-1.97 (m, 2H), 0.85 (s, 9H), 0.08 (s, 3H), 0.05 (s, 3H).
  • Step 3. Preparation of (5R)-5-((tert-butyldimethylsilyl)oxy)-1-(2-chloro-4-fluorobenzyl)-6-hydroxypiperidin-2-one
  • Figure US20210093618A1-20210401-C01117
  • Following the procedure as described in Example 445 step 2 and step 3, and making variation as required to replace (R)-3-((tert-butyldimethylsilyl)oxy)-1-(4-methoxybenzyl)piperidine-2,6-dione with (R)-3-((tert-butyldimethylsilyl)oxy)-1-(2-chloro-4-fluorobenzyl)piperidine-2,6-dione, the title compound was obtained (0.68 g, 79% in 2 steps) and used without further purification: MS(ES+) m/z 390.1, 388.1 (M+1).
  • Step 4. Preparation of (R)-5-((tert-butyldimethylsilyl)oxy)-1-(2-chloro-4-fluorobenzyl)piperidin-2-one
  • Figure US20210093618A1-20210401-C01118
  • To a cooled solution (−78° C.) of (5R)-5-((tert-butyldimethylsilyl)oxy)-6-hydroxy-1-(4-methoxybenzyl)piperidin-2-one (2.70 g, 7.60 mmol) and triethylsilane (11.50 g, 77.10 mmol) in anhydrous dichloromethane (20 mL) under nitrogen atmosphere was added boron trifluoride diethyl ether complex (2.9 mL, 23 mmol). The reaction mixture was stirred for 30 minutes at −78° C., and then warmed up slowly to 0° C. and stirred at this temperature for 2 hours. The reaction mixture was quenched with a saturated aqueous solution of sodium bicarbonate (5 mL) and extracted with dichloromethane (2×10 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to give the title compound as an oil (1.26 g, 47%): 1H NMR (300 MHz, CDCl3) δ 7.16 (d, J=8.5 Hz, 2H), 6.82 (d, J=8.6 Hz, 2H), 4.71 (d, J=14.6 Hz, 1H), 4.27 (d, J=14.6 Hz, 1H), 4.08-3.98 (m, 1H), 3.77 (s, 3H), 3.24 (dd, J=12.4, 3.7 Hz, 1H), 3.05 (dd, J=12.3, 4.5 Hz, 1H), 2.68 (m, 1H), 2.39 (td, J=17.6, 5.7 Hz, 1H), 1.91-1.78 (m, 2H), 0.81 (s, 9H), 0.00 (s, 3H), −0.06 (s, 3H).
  • Step 4. Preparation of (5R)-5-((tert-butyldimethylsilyl)oxy)-1-(2-chloro-4-fluorobenzyl)-3-fluoropiperidin-2-one
  • Figure US20210093618A1-20210401-C01119
  • To a stirred solution of diisopropylamine (0.068 g, 0.67 mmol) in tetrahydrofuran (2 mL) at −78° C. was added n-butyllithium(0.5 M solution in hexanes, 0.41 mL, 0.62 mmol). After stirring for 45 minutes at −78° C., a solution of (R)-5-((tert-butyldimethylsilyl)oxy)-1-(2-chloro-4-fluorobenzyl)piperidin-2-one (0.18 g, 0.48 mmol) in tetrahydrofuran (2 mL) was added dropwise and the reaction mixture was stirred for 40 minutes at −78° C. A solution of N-fluorobenzenesulfonimide (0.21 g, 0.67 mmol) in tetrahydrofuran (1.5 mL) was added via syringe pump over a 10 minutes period and the reaction mixture was stirred at −78° C. for 5 hours and then slowly warmed up to −40° C. The reaction mixture was quenched by addition of saturated aqueous solution of ammonium chloride (10 mL), and extracted with ethyl acetate (2×10 mL). The combined organic phases were washed with water (10 mL) and brine (10 mL), dried over sodium sulfate, filtered and concentrated invacuo. To the residue was added dichloromethane and methyl tert-butylether (10 mL, 1/1, v/v) the resulting precipitate was removed by filtration. The filtrate was concentrated to give a light yellow residue which was purified by silica gel chromatography using a gradient (0 to 30%) of ethyl acetate in hexanes to give the title compound as a gum (0.08 g, 39%): 1H NMR (300 MHz, CDCl3) δ 7.29 (dd, J=8.6, 6.1 Hz, 1H), 7.10 (dd, J=8.4, 2.6 Hz, 1H), 6.92 (dt, J=8.4, 2.6 Hz, 1H), 5.18 (ddd, J=47.6, 10.1, 6.1 Hz, 1H), 4.99 (d, J=15.5 Hz, 1H), 4.37 (d, J=15.5 Hz, 1H), 4.29-4.20 (m, 1H), 3.44 (dd, J=12.6, 3.3 Hz, 1H), 3.18-3.09 (m, 1H), 2.51-2.35 (m, 1H), 2.23-2.07 (m, 1H), 0.83 (s, 9H), 0.06 (s, 3H), −0.03 (s, 3H).
  • Step 5. Preparation of (R)-5-((tert-butyldimethylsilyl)oxy)-1-(2-chloro-4-fluorobenzyl)-3,3-di fluoropiperidin-2-one
  • Figure US20210093618A1-20210401-C01120
  • Following the procedure as described in Example 445 step 4, and making variation as required to replace (R)-5-((tert-butyldimethylsilyl)oxy)-1-(2-chloro-4-fluorobenzyl)piperidin-2-one with (5R)-5-((tert-butyldimethylsilyl)oxy)-1-(2-chloro-4-fluorobenzyl)-3-fluoropiperidin-2-one, the title compound was obtained as a colorless solid (0.075 g, 99%): 1H NMR (300 MHz, CDCl3) δ 7.35 (dd, J=8.6, 6.1 Hz, 1H), 7.12 (dd, J=8.4, 2.6 Hz, 1H), 6.96 (dt, J=8.4, 8.3, 2.6 Hz, 1H), 4.83 (d, J=15.3 Hz, 1H), 4.56 (d, J=15.2 Hz, 1H), 4.23-4.13 (m, 1H), 3.44 (dd, J=12.4, 4.0 Hz, 1H), 3.21 (dd, J=12.5, 6.3 Hz, 1H), 2.62-2.27 (m, 2H), 0.82 (s, 9H), 0.05 (s, 3H), −0.01 (s, 3H); MS(ES+) m/z 410.2, 408.2 (M+1).
  • Step 6. Preparation of (R)-1-(2-chloro-4-fluorobenzyl)-5,5-difluoropiperidin-3-ol
  • Figure US20210093618A1-20210401-C01121
  • To a solution of (R)-5-((tert-butyldimethylsilyl)oxy)-1-(2-chloro-4-fluorobenzyl)-3,3-difluoropiperidin-2-one (0.015 g, 0.04 mmol) in tetrahydrofuran (1 mL) was added borane (1.0 M solution in tetrahydrofuran, 0.9 mL, 0.9 mmol) under nitrogen atmosphere. After 30 minutes stirring, the reaction mixture was quenched by addition of 6 N hydrochloric acid solution (2.5 mL) and stirring was continued for 2.5 hours. The solution was neutralized by addition of a saturated aqueous solution of sodium bicarbonate and extracted with dichloromethane (2×10 mL). The combined organic extracts were concentrated under reduced pressure and filtered over a plug of silica gel eluting with 10% ethyl acetate in hexanes followed by 100% ethyl acetate to give the title compound as a colorless oil (0.01 g, 85%): 1H NMR (300 MHz, CDCl3) δ 7.38 (dd, J=8.5, 6.2 Hz, 1H), 7.11 (dd, J=8.5, 2.6 Hz, 1H), 6.97 (dt, J=8.3, 2.6 Hz, 1H), 4.05-3.96 (m, 1H), 3.72-3.67 (m, 2H), 2.98-2.83 (m, 1H), 2.82-2.71 (m, 1H), 2.60-2.45 (m, 2H), 2.24-1.90 (m, 2H); MS(ES+) m/z 282.1, 280.1 (M+1).
  • Step 7. Preparation of (R)-tert-butyl 5-chloro-4-((1-(2-chloro-4-fluorobenzyl)-5,5-difluoropiperidin-3-yl)oxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01122
  • Following the procedure as described in Example 445 step 4 and making variation as required to replace (R)-5-hydroxy-1-(4-methoxybenzyl)piperidin-2-one with (R)-1-(2-chloro-4-fluorobenzyl)-5,5-difluoropiperidin-3-ol, the title compound was obtained as a colorless solid (0.01 g, 67%): 1H NMR (300 MHz, CDCl3) δ 7.87 (d, J=7.7 Hz, 1H), 7.47 (dd, J=8.6, 6.3 Hz, 1H), 7.10 (dd, J=8.5, 2.6 Hz, 1H), 6.97 (dt, J=8.3, 8.3, 2.6 Hz, 1H), 6.64 (d, J=11.8 Hz, 1H), 4.65-4.51 (m, 1H), 3.75 (s, 2H), 3.19-2.96 (m, 2H), 2.69-2.42 (m, 3H), 2.12-2.03 (m, 1H), 1.56 (s, 9H); MS(ES+) m/z 510.0, 508.0 (M+1).
  • Step 8. Preparation of (R)-4-((1-(2-chloro-4-fluorobenzyl)-5,5-difluoropiperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01123
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with with (R)-tert-butyl 5-chloro-4-((1-(2-chloro-4-fluorobenzyl)-5,5-difluoropiperidin-3-yl)oxy)-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.004 g, 32%): 1H NMR (300 MHz, CDCl3) δ 7.77 (d, J=7.4 Hz, 1H), 7.63 (dd, J=8.6, 6.3 Hz, 1H), 7.19 (dd, J=8.7, 2.6 Hz, 1H), 7.09-6.97 (m, 2H), 4.84-4.75 (m, 1H), 3.86-3.79 (m, 2H), 3.33 (s, 3H), 3.09-2.79 (m, 3H), 2.77-2.64 (m, 1H), 2.59-2.41 (m, 1H), 2.33-2.14 (m, 1H); MS(ES+) m/z 531.1, 529.1 (M+1).
  • Example 447 Synthesis of 5-cyclopropyl-4-(((R)-1-((R)-1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01124
  • Step 1. Preparation of 2-((R)-3-(2-cyclopropyl-5-fluoro-4-(methoxycarbonyl)phenoxy)piperidin-1-yl)-2-(3,5-dichlorophenyl)acetic acid
  • Figure US20210093618A1-20210401-C01125
  • To a stirred solution of (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate (0.59 g, 2.00 mmol) in toluene (8 mL) under an atmosphere of nitrogen were added 50% glyoxylic acid in water (0.24 g, 3.20 mmol), molecular sieve 4 Å (0.5 g) and (3,5-dichlorophenyl)boronic acid (0.420 g, 2.20 mmol). The reaction mixture was stirred at 100° C. for 2 hours, cooled to ambient temperature and filtered to remove the molecular sieve. The filtrate was concentrated. The residue (0.15 g, 15%) was used directly in the next step without further purification.
  • Step 2. Preparation of methyl 5-cyclopropyl-4-(((R)-1-((R)-1-(3,5-dichlorophenyl)-2-hydroxyethyl)piperidin-3-yl)oxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01126
  • To a stirred solution of 2-((R)-3-(2-cyclopropyl-5-fluoro-4-(methoxycarbonyl)phenoxy)piperidin-1-yl)-2-(3,5-dichlorophenyl)acetic acid (0.15 g, 0.30 mmol) in tetrahydrofuran (3 mL) under an atmosphere of nitrogen was added borane in tetrahydrofuran (1.0 M solution in tetrahydrofuran, 1 mL, 1.00 mmol). After stirring at ambient temperature for 16 hours, the reaction mixture was quenched by addition of methanol (2 mL), and concentrated. The residue was purified by chromatography eluting with a gradient (0 to 30%) of ethyl acetate in hexanes to give the title compound (0.09 g, 55%): 1H NMR (300 MHz, CDCl3) δ 7.43 (d, J=8.4 Hz, 1H), 7.29 (t, J=1.8 Hz, 1H), 7.06 (d, J=1.9 Hz, 2H), 6.54 (d, J=12.8 Hz, 1H), 4.50-4.39 (m, 1H), 3.93-3.82 (m, 4H), 3.69-3.58 (m, 2H), 2.72-2.57 (m, 3H), 2.40-2.27 (m, 1H), 2.01-1.49 (m, 5H), 0.87-0.78 (m, 2H), 0.68-0.57 (m, 2H). The other diastereoisomer methyl 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)-2-hydroxyethyl)piperidin-3-yl)oxy)-2-fluorobenzoate was also isolated (0.07 g, 45%). 1H NMR (300 MHz, CDCl3) δ 7.42 (d, J=8.4 Hz, 1H), 7.33-7.29 (m, 1H), 7.10-7.07 (m, 2H), 6.52 (d, J=12.7 Hz, 1H), 4.48-4.35 (m, 1H), 3.96-3.82 (m, 4H), 3.73-3.58 (m, 2H), 2.97-2.88 (m, 1H), 2.61-2.39 (m, 3H), 1.94-1.53 (m, 5H), 0.85-0.79 (m, 2H), 0.67-0.56 (m, 2H).
  • Step 3. Preparation of methyl 5-cyclopropyl-4-(((R)-1-((R)-1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-3-yl)oxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01127
  • To a stirred solution of methyl 5-cyclopropyl-4-(((R)-1-((R)-1-(3,5-dichlorophenyl)-2-hydroxyethyl)piperidin-3-yl)oxy)-2-fluorobenzoate (0.08 g, 0.14 mmol) in dimethoxyethane (1 mL) under an atmosphere of nitrogen was added sodium hydride (60% in mineral oil, 0.03 g, 0.69 mmol) and the reaction mixture was stirred for 30 minutes. Methyl iodide (0.030 g, 0.21 mmol) was added to the reaction mixture. After stirring for 16 hours, water (10 mL) was added and the reaction mixture was extracted with dichloromethane (2×10 mL), the combined organic layers were concentrated. The residue was purified by chromatography eluting with a gradient of methanol in dichloromethane (0 to 5%) to give the title compound (0.04 g, 58%): MS(ES+) m/z 498.1, 496.1 (M+1).
  • Step 4. Preparation of 5-cyclopropyl-4-(((R)-1-((R)-1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01128
  • To a stirred solution of methyl 5-cyclopropyl-4-(((3R)-1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-3-yl)oxy)-2-fluorobenzoate (0.075 g, 0.15 mmol) in DMSO (1 mL) under an atmosphere of nitrogen were added lithium hydroxide (0.036 g, 1.52 mmol) and the mixture was stirred for 1 hour at 70° C. and then quenched with 1N aqueous hydrochloric acid solution (5 mL) and extracted with dichloromethane (3×10 mL), dried over anhydrous sodium sulfate, filtered and concentrated to give the title compound (0.06 g, 76%) as a colorless solid: MS(ES+) m/z 484.2, 482.2 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-4-(((R)-1-((R)-1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01129
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 5-cyclopropyl-4-(((3R)-1-(1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid hydrochloride (0.06 g, 0.12 mmol), the title compound was obtained as a colorless solid (0.006 g, 9%): 1H NMR (300 MHz, CDCl3) δ 8.86-8.62 (m, 1H), 7.56 (d, J=8.9 Hz, 1H), 7.52-7.42 (m, 2H), 6.94-6.83 (m, 1H), 5.06-4.92 (m, 1H), 4.48-4.36 (m, 1H), 4.48-4.36 (m, 1H), 4.20-4.08 (m, 1H), 4.06-3.34 (m, 1H), 2.94-2.73 (m, 1H), 2.33-1.94 (m, 3H), 1.77-1.58 (m, 1H), 0.96-0.86 (m, 2H), 0.69-0.59 (m, 2H); MS(ES+) m/z 561.1, 559.1 (M+1).
  • Example 448 Synthesis of 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-3-yl)oxy)-2-fluoro-N methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01130
  • Step 1. Preparation of 2-((R)-3-(2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)piperidin-1-yl)-2-(3,5-dichlorophenyl)acetic acid
  • Figure US20210093618A1-20210401-C01131
  • To a stirred solution of (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-(piperidin-3-yloxy)benzamide (1.50 g, 3.31 mmol) in toluene (10 mL) under an atmosphere of nitrogen was introduced 50% glyoxylic acid in water (0.39 g, 5.30 mmol), molecular sieve 4 Å (0.5 g) and (3,5-dichlorophenyl)boronic acid (0.69 g, 3.64 mmol). The reaction mixture was stirred at 100° C. for 2 hours, cooled to ambient temperature and filtered to remove the molecular sieve. The filtrate was concentrated to give the title compound as a colorless solid (2.16 g, 99%): 1H NMR (300 MHz, DMSO-d6) δ 11.90-11.82 (m, 1H), 7.70-7.58 (m, 1H), 7.52-7.42 (m, 2H), 7.10 (t, J=7.9 Hz, 1H), 6.98 (dd, J=13.0, 6.0 Hz, 1H), 4.78-4.56 (m, 2H), 3.30 (s, 3H), 3.04-2.92 (m, 1H), 2.90-2.77 (m, 1H), 2.76-2.63 (m, 1H), 2.62-2.51 (m, 1H), 2.19-1.97 (m, 1H), 1.98-1.77 (m, 2H), 1.74-1.47 (m, 2H), 0.95-0.78 (m, 2H), 0.76-0.58 (m, 2H); MS(ES+) m/z 561.0, 559.0 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-4-(((3R)-1-(1-(3,5-dichlorophenyl)-2-hydroxyethyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01132
  • To a stirred solution of 2-((R)-3-(2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)piperidin-1-yl)-2-(3,5-dichlorophenyl)acetic acid (0.80 g, 1.43 mmol) in tetrahydrofuran (8 mL) was added carbonyl diimidazole (0.26 g, 1.57 mmol) under nitrogen. The reaction mixture was reflux for 1 hour and cooled to ambient temperature. To the reaction mixture was added sodium borohydride (0.064 g, 2.0 mmol). After stirring for 2 hours, the reaction mixture was quenched by addition of 1N aqueous hydrochloric acid solution (10 mL) and extracted with dichloromethane (3×20 mL). The combined organics was concentrated, the residue was purified by chromatography eluting with a gradient of 5 to 10% dichloromethane in methanol containing 2% ammonia to afford the title compound as a colorless solid (0.13 g, 14%): 1H NMR (300 MHz, DMSO-d6) δ 7.47-7.40 (m, 1H), 7.38-7.33 (m, 2H), 7.18-7.09 (m, 1H), 6.86-6.67 (m, 1H), 4.64-4.53 (m, 1H), 4.51-4.37 (m, 1H), 3.80-3.59 (m, 2H), 3.58-3.48 (m, 1H), 3.06-2.57 (m, 5H), 2.38-2.11 (m, 2H), 2.07-1.93 (m, 1H), 1.93-1.77 (m, 1H), 1.76-1.61 (m, 1H), 1.59-1.29 (m, 2H), 0.90-0.76 (m, 2H), 0.65-0.48 (m, 2H); MS(ES+) m/z 547.1, 545.1 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-4-(((R)-1-((S)-1-(3,5-dichlorophenyl)-2-methoxyethyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01133
  • To a solution of 5-cyclopropyl-4-(((3R)-1-(1-(3,5-dichlorophenyl)-2-hydroxyethyl)piperidin-3-yl)oxy)-2-fluoro-N-(methylsulfonyl)benzamide (0.08 g, 0.12 mmol) in dimethoxyethane (1 mL) was added sodium hydride (60% in mineral oil, 0.025 g, 0.62 mmol). The reaction mixture was stirred for 30 minutes and methyl iodide (0.026 g, 0.19 mmol) was added. After stirring for 16 hours, the reaction mixture was quenched by addition of water (10 mL) and extracted with dichloromethane (2×10 mL). The combined organic layers was concentrated and the residue purified by preparative HPLC eluting with a gradient of acetonitrile in water containing 0.1% trifluoroacetic acid to afford the title compound as a colorless solid (0.011 g, 14%): 1H NMR (300 MHz, CDCl3) δ 8.82-8.64 (m, 1H), 7.55 (d, J=8.8 Hz, 1H), 7.47-7.38 (m, 3H), 6.88 (d, J=14.4 Hz, 1H), 4.92-4.81 (m, 1H), 4.26-4.19 (m, 1H), 4.12-4.02 (m, 1H), 3.92-3.79 (m, 2H), 3.39 (s, 3H), 3.36 (s, 3H), 3.35-3.28 (m, 1H), 2.79-2.65 (m, 2H), 2.28-2.18 (m, 1H), 2.09-1.96 (m, 2H), 1.71-1.56 (m, 2H), 0.96-0.87 (m, 2H), 0.67-0.59 (m, 2H); MS(ES+) m/z 561.1, 559.1 (M+1).
  • Example 449 Synthesis of 5-cyclopropyl-4-(((1R,3R,5S)-8-(3,5-dichlorobenzyl)-8-azabicyclo[3.2.1]octan-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01134
  • Step 1. Preparation of benzyl 3-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate
  • Figure US20210093618A1-20210401-C01135
  • Following the procedure as described in Example 346 Step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((8-((benzyloxy)carbonyl)-8-azabicyclo[3.2.1]octan-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.75 g, 72%): MS(ES+) m/z 531.1 (M+1).
  • Step 2. Preparation of 4-(8-azabicyclo[3.2.1]octan-3-ylmethoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01136
  • Following the procedure as described in Example 396 step 5 and making non-critical variations as required to replace (1R,3S,5S)-benzyl 3-((2-cyclopropyl-4-((cyclopropylsulfonyl)carbamoyl)-5-fluorophenoxy)methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate with (1R,3S,5S)-benzyl 3-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)methyl)-8-azabicyclo[3.2.1]octane-8-carboxylate, the title compound was obtained (0.55 g, 98%): MS(ES+) m/z 367.1 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-4-(((1R,3r,5S)-8-(3,5-dichlorobenzyl)-8-azabicyclo[3.2.1]octan-3-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01137
  • Following the procedure as described in Example 441, and making variation as required to replace 4-(8-azabicyclo[3.2.1]octan-3-ylmethoxy)-N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluorobenzamideate with 4-(8-azabicyclo[3.2.1]octan-3-ylmethoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide and to replace (bromomethylene)dibenzene with 1,3-dichloro-5-(chloromethyl)benzene, the title compound was obtained (0.04 g, 41%). 1H NMR (300 MHz, DMSO-d6) δ 7.67-7.44 (m, 3H), 7.14 (d, J=8.4 Hz, 1H), 6.79 (d, J=12.9 Hz, 1H), 3.92-3.73 (m, 4H), 3.54-3.36 (m, 2H), 3.05 (s, 3H), 2.33-1.55 (m, 10H), 0.91-0.77 (m, 2H), 0.63-0.53 (m, 2H); MS(ES+) m/z 557.1, 555.1 (M+1).
  • Example 450 Synthesis of 4-(((1R,4S,6R)-2-((S)-1-(2-chloro-4-fluorophenyl)ethyl)-2-azabicyclo[2.2.1]heptan-6-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01138
  • Step 1. Preparation of tert-butyl 5-chloro-2-fluoro-4-(((1R,4S,6R)-2-((S)-1-phenylethyl)-2-azabicyclo[2.2.1]heptan-6-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C01139
  • Following the procedure as described in Example 445 step 4 and making variation as required to replace (R)-5-hydroxy-1-(4-methoxybenzyl)piperidin-2-one with (1R,4S,6R)-2-((S)-1-phenylethyl)-2-azabicyclo[2.2.1]heptan-6-ol, and purifying the compound by column chromatography eluting with a gradient of ethyl acetate in hexanes (50% to 100%), the title compound was obtained (2.76 g, 49%). MS(ES+) m/z: 448.1, 446.1 (M+1).
  • Step 2. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-(((1R,4S,6R)-2-((S)-1-phenylethyl)-2-azabicyclo[2.2.1]heptan-6-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C01140
  • Following the procedure as described in Example 445 step 5, and making variation as required to replace (R)-tert-butyl 5-chloro-2-fluoro-4-((1-(4-methoxybenzyl)-6-oxopiperidin-3-yl)oxy)benzoate with tert-butyl 5-chloro-2-fluoro-4-(((1R,4S,6R)-2-((S)-1-phenylethyl)-2-azabicyclo[2.2. I]heptan-6-yl)oxy)benzoate, the title compound was obtained as a colorless gum (1.82 g, 66%): MS(ES+) m/z 452.2 (M+1).
  • Step 3. Preparation of tert-butyl 4-((1R,4S,6R)-2-azabicyclo[2.2.1]heptan-6-yloxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01141
  • To a stirred solution of tert-butyl 5-cyclopropyl-2-fluoro-4-(((1R,4S,6R)-2-((S)-1-phenylethyl)-2-azabicyclo[2.2.1]heptan-6-yl)oxy)benzoate (1.75 g, 3.88 mmol) and ammonium formate (7.3 g, 116 mmol) in methanol (50 mL) and water (5 mL) was added 10% palladium on carbon (0.05 g). After stirring for 2 hours at reflux, the reaction mixture was filtered over diatomaceous earth and rinsed with methanol (2×30 mL). The filtrate was concentrated, basified with saturated sodium bicarbonate solution and extracted with dichloromethane (2×40 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated to afford the title compound (1.22 g, 80%): MS(ES+) m/z 348.2 (M+1).
  • Step 4. Preparation of tert-butyl 4-(((1R,4S,6R)-2-((S)-1-(2-chloro-4-fluorophenyl)ethyl)-2-azabicyclo[2.2.1]heptan-6-yl)oxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01142
  • And tert-butyl 4-(((1R,4S,6R)-2-((R)-1-(2-chloro-4-fluorophenyl)ethyl)-2-azabicyclo[2.2. I]heptan-6-yl)oxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01143
  • To a stirred solution of tert-butyl 4-((1R,4S,6R)-2-azabicyclo[2.2.1]heptan-6-yloxy)-5-cyclopropyl-2-fluorobenzoate (1.22 g, 3.51 mmol) in acetonitrile (15 mL) under a nitrogen atmosphere was added 2-chloro-1-(1-chloroethyl)-4-fluorobenzene (0.87 g, 4.55 mmol), potassium carbonate (1.38 g, 10 mmol) and potassium iodide (0.165 g, 1 mmol). After stirring at reflux for 16 hours, the reaction mixture was was cooled to ambient temperature, quenched with water (15 mL) and extracted with ethyl acetate (3×20 mL). The combined organic layers was concentrated and the residue was purified by column chromatography (0% to 30% ethyl acetate in hexanes) to give the title compound (0.28 g, 16%). MS(ES+) m/z 504.1 (M+1); its diastereoisomer tert-butyl 4-(((1R,4S,6R)-2-((R)-1-(2-chloro-4-fluorophenyl)ethyl)-2-azabicyclo[2.2.1]heptan-6-yl)oxy)-5-cyclopropyl-2-fluorobenzoate was also isolated (0.25 g, 14%): MS(ES+) m/z 504.1 (M+1).
  • Step 5. Preparation of 4-(((1R,4S,6R)-2-((S)-1-(2-Chloro-4-fluorophenyl)ethyl)-2-azabicyclo[2.2.1]heptan-6-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01144
  • To a stirred solution of tert-butyl 4-(((1R,4S,6R)-2-((S)-1-(2-chloro-4-fluorophenyl)ethyl)-2-azabicyclo[2.2.1]heptan-6-yl)oxy)-5-cyclopropyl-2-fluorobenzoate (0.13 g, 0.26 mmol) in dichloromethane (2 mL) was added trifluoroacetic acid (1 mL). After stirring at ambient temperature for 30 minutes, the reaction mixture was concentrated and co-concentrated with toluene (2×10 mL). The residue was dissolved in dichloromethane (0.5 mL), and to this solution was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (0.11 g, 0.44 mmol), 4-dimethylaminopyridine (0.09 g, 0.78 mmol) and methanesulfonamide (0.03 g, 0.34 mmol). After stirring at at ambient temperature for 16 hours, the reaction mixture was quenched with aqueous hydrochloric acid solution (6N, 0.2 mL), diluted with acetonitrile (0.5 mL) and purified by preparative HPLC (gradient of acetonitrile in water+0.1% trifluoroacetic acid) to afford the title compound as a colorless solid (0.06 g, 71%): 1H NMR (300 MHz, DMSO-d6) δ 12.30-11.64 (br s, 1H), 11.36-10.08 (br s, 1H), 7.99-7.84 (m, 1H), 7.67-7.51 (m, 1H), 7.49-7.38 (m, 1H), 7.23-6.98 (m, 1H), 6.91-6.00 (m, 1H), 5.25-4.47 (m, 2H), 3.86-2.51 (m, 7H), 2.29-2.06 (m, 1H), 2.06-1.79 (m, 3H), 1.78-1.41 (m, 4H), 0.95-0.48 (m, 4H); MS(ES+) m/z 527.1, 525.1 (M+1).
  • Example 451 Synthesis of 4-(((1R,4S,6R)-2-((R)-1-(2-chloro-4-fluorophenyl)ethyl)-2-azabicyclo[2.2.1]heptan-6-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01145
  • Following the procedure as described in Example 450 step 5 and making variation as required to replace tert-butyl 4-(((1R,4S,6R)-2-((S)-1-(2-chloro-4-fluorophenyl)ethyl)-2-azabicyclo[2.2. I]heptan-6-yl)oxy)-5-cyclopropyl-2-fluorobenzoate with its diastereoisomer tert-butyl 4-(((1R,4S,6R)-2-((R)-1-(2-chloro-4-fluorophenyl)ethyl)-2-azabicyclo[2.2.1]heptan-6-yl)oxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.04 g, 51%): 1H NMR (300 MHz, DMSO-d6) δ12.14-11.78 (br s, 1H), 10.49-10.27 (br s, 1H), 8.15-8.00 (m, 1H), 7.64-7.53 (m, 1H), 7.52-7.39 (m, 1H), 7.11-7.03 (m, 1H), 6.36-6.22 (m, 1H), 5.01-4.80 (m, 2H), 3.64-2.64 (m, 7H), 2.30-1.99 (m, 2H), 1.96-1.78 (m, 2H), 1.75-1.46 (m, 4H), 0.87-0.72 (m, 2H), 0.65-0.53 (m, 2H); MS(ES+) m/z 527.1, 525.1 (M+1).
  • Example 452 Synthesis of 4-(((R)-1-((R)-1-(2-chloro-4-fluorophenyl)ethyl)-5,5-dimethylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01146
  • Step 1. Preparation of (R)-tert-butyl 4-((1-benzyl-5,5-dimethylpiperidin-3-yl)oxy)-5-chloro-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01147
  • Following the procedure as described in Example 422 step 1 and making variation as required to replace (R)-1-benzylpiperidin-3-ol with (R)-1-benzyl-5,5-dimethylpiperidin-3-ol (prepared accordingly to Ma Y.; Lahue B. R. et al.; U.S. patent 2008/0004287 A1), the title compound was obtained as a colorless solid (0.73 g, 68%): MS(ES+) m/z 450.2, 448.2 (M+1).
  • Step 2. Preparation of (R)-tert-butyl 4-((1-benzyl-5,5-dimethylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01148
  • Following the procedure as described in Example 422 step 2 and making variation as required to replace (R)-tert-butyl 4-((1-benzylpiperidin-3-yl)oxy)-5-chloro-2-fluorobenzoate with (R)-tert-butyl 4-((1-benzyl-5,5-dimethylpiperidin-3-yl)oxy)-5-chloro-2-fluorobenzoate, the title compound was obtained as oil (0.47 g, 63%): MS(ES+) m/z 454.1 (M+1).
  • Step 3. Preparation of (R)-tert-butyl 5-cyclopropyl-4-((5,5-dimethylpiperidin-3-yl)oxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01149
  • Following the procedure as described in Example 450 step 3, and making variation as required to replace tert-butyl 5-cyclopropyl-2-fluoro-4-(((1R,4S,6R)-2-((S)-1-phenylethyl)-2-azabicyclo[2.2.1]heptan-6-yl)oxy)benzoate with (R)-tert-butyl 4-((1-benzyl-5,5-dimethylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as an oil (0.38 g, 96%): MS(ES+) m/z 364.2 (M+1).
  • Step 4. Preparation of tert-butyl 4-(((3R)-1-(1-(2-chloro-4-fluorophenyl)ethyl)-5,5-dimethylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01150
  • Following the procedure as described in Example 450 step 4, and making variation as required to replace tert-butyl 4-((1R,4S,6R)-2-azabicyclo[2.2.1]heptan-6-yloxy)-5-cyclopropyl-2-fluorobenzoate with (R)-tert-butyl 5-cyclopropyl-4-((5,5-dimethylpiperidin-3-yl)oxy)-2-fluorobenzoate, the title compound was obtained as an oil (0.22 g, 43%): MS(ES+) m/z 522.1, 520.1 (M+1).
  • Step 5. Preparation of 4-(((R)-1-((R)-1-(2-Chloro-4-fluorophenyl)ethyl)-5,5-dimethylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01151
  • Following the procedure as described in Example 450 step 5, and making variation as required to replace tert-butyl 4-(((1R,4S,6R)-2-((S)-1-(2-chloro-4-fluorophenyl)ethyl)-2-azabicyclo[2.2.1]heptan-6-yl)oxy)-5-cyclopropyl-2-fluorobenzoate with tert-butyl 4-(((3R)-1-(1-(2-chloro-4-fluorophenyl)ethyl)-5,5-dimethylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.02 g, 15%): 1H NMR (300 MHz, DMSO-d6) δ7.61 (dd, J=8.7, 6.5 Hz, 1H), 7.35 (dd, J=8.9, 2.6 Hz, 1H), 7.25-7.02 (m, 3H), 6.65-6.50 (m, 2H), 4.56-4.39 (m, 1H), 3.87 (q, J=6.3 Hz, 1H), 3.06-2.74 (m, 4H), 2.39 (d, J=10.7 Hz, 1H), 2.19-2.01 (m, 1H), 2.00-1.85 (m, 2H), 1.80-1.67 (m, 1H), 1.32-1.17 (m, 4H), 0.97 (s, 3H), 0.93 (s, 3H), 0.86-0.73 (m, 2H), 0.60-0.44 (m, 2H); MS(ES+) m/z 543.1, 541.1 (M+1).
  • Example 453 Synthesis of 5-cyclopropyl-4-((1-(2,4-dichloro-5-fluorobenzyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01152
  • Step 1. Preparation of 4-((1-benzylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01153
  • To a solution of tert-butyl 4-((1-benzylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate (1.55 g, 3.54 mmol) in dichloromethane (10 mL) was added trifluoroacetic acid (5 mL). The reaction mixture was stirred for 1.5 h and the solvent was concentration invacuo. The residue was redissolved in anhydrous dichloromethane (10 mL). To this solution, was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (1.37 g, 5.30 mmol), 4-dimethylaminopyridine (1.08 g, 8.84 mmol) and methanesulfonamide (0.37 g, 3.89 mmol). The reaction mixture was stirred at ambient temperature for 16 hours, and then diluted with dichloromethane (20 mL), washed with 1N aqueous hydrochloric acid solution (10 mL), the aqueous layer was extracted with dichloromethane (20 mL). The combined organic layer dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by column chromatography (0% to 10% methanol (1% ammonia) in dichloromethane) to afford the title compound as a gum (1.32 g, 81%): 1H NMR (300 MHz, CDCl3) δ 7.55 (d, J=9.04 Hz, 1H), 7.44-7.36 (m, 5H), 6.52 (d, J=14.25 Hz, 1H), 4.16-4.02 (m, 2H), 3.94-3.86 (m, 2H), 3.64-3.43 (m, 2H), 3.39 (s, 3H), 2.68-2.43 (m, 2H), 2.09-1.87 (m, 6H), 0.97-0.85 (m, 2H), 0.65-0.55 (m, 2H).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-(piperidin-4-ylmethoxy)benzamide hydrochloride
  • Figure US20210093618A1-20210401-C01154
  • To a stirred solution of 4-((1-benzylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide (1.25 g, 2.72 mmol)) in degassed ethyl acetate (5 mL) was added 10% palladium on carbon (0.02 g) and the flask was put under 1 atm of hydrogen. The reaction mixture was stirred for 24 hours at ambient temperature, then filtered over diatomaceous earth and rinsed with a 1:1 mixture of methanol and 1 M aqueous hydrochloric acid solution (2×20 mL). The filtrate was concentrated to give the title compound (0.55 g, 55%). MS(ES+) m/z 371.1 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-4-((1-(2,4-dichloro-5-fluorobenzyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide trifluoroacetate
  • Figure US20210093618A1-20210401-C01155
  • To a stirred solution of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-(piperidin-4-ylmethoxy)benzamide hydrochloride (0.05 g, 0.12 mmol) in acetonitrile (2 mL) under a nitrogen atmosphere was added 1,5-dichloro-2-(chloromethyl)-4-fluorobenzene (0.04 g, 0.18 mmol), potassium carbonate (0.04 g, 0.30 mmol) and potassium iodide (0.024 g, 0.15 mmol). The reaction mixture was stirred at reflux for 16 hours, cooled to ambient temperature, 1N aqueous hydrochloric acid solution (5 mL) was added and the mixture was extracted with ethyl acetate (3×10 mL), concentrated and purified by column chromatography (0% to 30% ethyl acetate (+1% formic acid) in hexanes) to give an oil which was further purified by preparative HPLC (gradient of acetonitrile in water+0.1% trifluoroacetic acid) to give the title compound as a colorless solid (0.04, 43%). 1H NMR (300 MHz, DMSO-d6) δ 12.15-11.63 (m, 1H), 9.91-9.31 (m, 1H), 7.99 (d, J=6.88 Hz, 1H), 7.77 (d, J=9.55 Hz, 1H), 7.10 (d, J=8.24 Hz, 1H), 6.95 (d, J=13.00 Hz, 1H), 4.44-4.31 (m, 2H), 4.01-3.90 (m, 2H), 3.53-3.40 (m, 2H), 3.30 (s, 3H), 3.21-3.00 (m, 2H), 2.17-1.88 (m, 4H), 1.68-1.46 (m, 2H), 0.93-0.79 (m, 2H), 0.72-0.60 (m, 2H); MS(ES+) m/z: 547.1, 549.1 (M+1).
  • Example 454 Synthesis of 5-cyclopropyl-4-((1-(3,5-dichloro-4-fluorobenzyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01156
  • Following the procedure as described in Example 453 step 3 and making variation as required to replace 1,5-dichloro-2-(chloromethyl)-4-fluorobenzene with 1,3-dichloro-5-(chloromethyl)-2-fluorobenzene, the title compound was obtained as a colorless solid (0.03 g, 33%): 1H NMR (300 MHz, DMSO-d6) δ 12.12-11.60 (m, 1H), 9.87-9.63 (m, 1H), 7.83-7.62 (m, 2H), 7.14-7.06 (m, 1H), 6.98-6.90 (m, 1H), 4.35-4.21 (m, 2H), 4.00-3.91 (m, 2H), 3.52-3.36 (m, 2H), 3.30 (s, 3H), 3.04-2.85 (m, 2H), 2.15-1.80 (m, 4H), 1.67-1.45 (m, 2H), 0.92-0.79 (m, 2H), 0.71-0.60 (m, 2H); MS(ES+) m/z 547.0, 549.0 (M+1).
  • Example 455 Synthesis of 4-((1-(5-chloro-2,4-difluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01157
  • Following the procedure as described in Example 453 step 3, and making variation as required to replace 1,5-dichloro-2-(chloromethyl)-4-fluorobenzene with 1-chloro-5-(chloromethyl)-2,4-difluorobenzene, the title compound was obtained as a colorless solid (0.02 g, 23%): 1H NMR (300 MHz, DMSO-d6) δ 12.06-11.74 (m, 1H), 9.65-9.36 (m, 1H), 7.87 (dd, J=7.9, 7.9 Hz, 1H), 7.71 (dd, J=9.6, 9.6 Hz, 1H), 7.10 (d, J=8.2 Hz, 1H), 6.94 (d, J=12.9 Hz, 1H), 4.35-4.22 (m, 2H), 3.99-3.91 (m, 2H), 3.50-3.42 (m, 2H), 3.30 (s, 3H), 3.11-2.93 (m, 2H), 2.13-1.88 (m, 4H), 1.62-1.43 (m, 2H), 0.92-0.80 (m, 2H), 0.70-0.61 (m, 2H); MS(ES+) m/z 533.1, 531.1 (M+1).
  • Example 456 Synthesis of 4-((1-(3-chloro-4,5-difluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01158
  • Following the procedure as described in Example 453 step 3, and making variation as required to replace 1,5-dichloro-2-(chloromethyl)-4-fluorobenzene with 1-chloro-5-(chloromethyl)-2,3-difluorobenzene, the title compound was obtained as a colorless solid (0.03, 31%): 1H NMR (300 MHz, DMSO-d6) δ 11.40-11.06 (m, 1H), 7.50-7.35 (m, 2H), 7.12 (d, J=8.4 Hz, 1H), 6.85 (d, J=12.9 Hz, 1H), 3.91 (d, J=6.0 Hz, 2H), 3.67-3.59 (m, 2H), 3.16 (s, 3H), 2.99-2.82 (m, 2H), 2.23-2.06 (m, 2H), 2.04-1.91 (m, 1H), 1.86-1.72 (m, 3H), 1.46-1.27 (m, 2H), 0.90-0.80 (m, 2H), 0.66-0.55 (m, 2H); MS(ES+) m/z 533.2, 531.2 (M+1).
  • Example 457 Synthesis of 4-((1-(5-chloro-2-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01159
  • Step 1. Preparation of tert-butyl 4-((1-(5-chloro-2-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01160
  • Following the procedure as described in Example 346 step 5 and making non-critical variations as required to replace 1-chloro-3-(chloromethyl)-2-fluoro-5-(trifluoromethyl)benzene with 5-chloro-2-(trifluoromethyl)benzyl methanesulfonate, the title compound was obtained as a colorless gum (0.45 g, 69%): MS(ES+) m/z 562.1, 560.1 (M+1)
  • Step 2. Preparation of 4-((1-(5-chloro-2-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01161
  • Following the procedure as described in Example 346 step 6, and making non-critical variations as required to replace tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-4-fluoropiperidine-1-carboxylate with tert-butyl 4-((1-(5-chloro-2-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate to afford the title compound as a colorless solid (0.36 g, 88%): MS(ES+) m/z 506.2, 504.0 (M+1)
  • Step 3. Preparation of 4-((1-(5-chloro-2-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01162
  • Following the procedure as described in Example 346 step 7 and making non-critical variations as required to replace 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid with 4-((1-(5-chloro-2-(trifluoromethyl)benzyl)-4-fluoropiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and to replace methanesulfonamide with cyclopropanesulfonamide the title compound was obtained as a colorless solid (0.03 g, 28%): 1H NMR (300 MHz, DMSO-d6) δ 11.87 (br s, 1H), 9.99 (br s, 1H), 8.13 (br s, 1H), 7.61 (br s, 2H), 7.15 (d, J=8.3 Hz, 1H), 7.03 (d, J=12.8 Hz, 1H), 4.80-4.42 (m, 2H), 4.28 (d, J=20.6 Hz, 2H), 3.60-3.17 (m, 4H), 3.12-3.03 (m, 1H), 2.31-2.17 (m, 2H), 2.08-1.99 (m 3H), 1.14-1.09 (m, 4H), 0.94-0.87 (m, 2H), 0.73-0.67 (m, 2H); MS(ES+) m/z 506.2, 504.0 (M+1).
  • Example 458 Synthesis of (R)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01163
  • Step 1. Preparation of (R)-1-chloro-3-(3,4-dichlorophenyl)propan-2-ol
  • Figure US20210093618A1-20210401-C01164
  • A 50 mL flask charged with magnesium turnings (0.32 g, 13.33 mmol) was heated via heat gun under hi-vac. The flask was cooled to ambient temperature and flushed with argon before freshly distilled diethyl ether (1 mL) and 1,2-dibromoethane (2 drops) were added. The flask was equipped with a condenser before a solution of 4-bromo-1,2-dichlorobenzene (1.68 mL, 13.00 mmol) in diethyl ether (14 mL) was added dropwise so as to maintain a gentle reflux. The cloudy solution was stirred for 1 hour at ambient temperature. After cooling to 0° C., copper iodide (0.21 g, 1.08 mmol) was added. After 10 minutes stirring, a solution of (R)-epichlorohydrin (0.85 mL, 10.80 mmol) in diethyl ether (14 mL) was added dropwise. The reaction mixture was slowly warmed to ambient temperature and stirred overnight, quenched with saturated aqueous ammonium chloride solution (10 mL) at 0° C., and then poured into water (40 mL). The biphasic mixture was stirred until all solids dissolved. The blue aqueous layer was isolated and extracted with ethyl acetate (3×30 mL). The combined organic layers were washed with brine (150 mL); dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified using flash chromatography [0% to 5% to 10% ethyl acetate in hexanes] to yield the title compound as a colourless oil (2.50 g, 80%): 1H NMR (300 MHz, CDCl3) δ57.38 (d, J=8.2 Hz, 1H), 7.35 (d, J=2.0 Hz, 1H), 7.09 (dd, J=2.0, 8.2 Hz, 1H), 4.06-3.99 (m, 1H), 3.62 (dd, J=3.9, 11.2 Hz, 1H), 3.49 (dd, J=6.3, 11.2 Hz, 1H), 2.84 (d, J=5.8 Hz, 1H), 2.83 (d, J=7.1 Hz, 1H), 2.22 (br s, 1H).
  • Step 2. Preparation of (R)-2-(3,4-dichlorobenzyl)morpholine
  • Figure US20210093618A1-20210401-C01165
  • To a solution of sodium hydroxide (2.50 g, 62.40 mmol) in water (5 mL) was added a solution of (R)-1-chloro-3-(3,4-dichlorophenyl)propan-2-ol (2.50 g, 10.40 mmol) in methanol (11 mL). After 5 minutes, 2-aminoethyl hydrogen sulfate (5.86 g, 41.60 mmol) was added in portions (4×1.47 g). The resulting suspension was heated at 40° C. for 5 hours. Toluene (25 mL) and powdered sodium hydroxide (2.50 g, 62.40 mmol) were added. The reaction mixture was stirred overnight at 65° C. After cooling to ambient temperature, the reaction mixture was quenched with water (300 mL). The aqueous layer was isolated and extracted with toluene (2×150 mL). The combined organics were washed with water (50 mL) and brine (50 mL), and concentrated. The residue was purified using flash chromatography [0% to 100% (80:10:10 ethyl acetate/isopropanol/triethylamine) in hexanes] to yield the title compound as a colourless oil (0.83 g, 32%): MS(ES+) m/z 246.1, 248.1 (M+1).
  • Step 3. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-(iodomethyl)benzoate
  • Figure US20210093618A1-20210401-C01166
  • To a suspension of polymer bound triphenylphosphine (2.60 g, 7.80 mmol) in dichloromethane (60 mL) was added imidazole (0.53 g, 7.80 mmol) and iodine (2.00 g, 7.80 mmol). After 5 minutes, tert-butyl 5-cyclopropyl-2-fluoro-4-(hydroxymethyl)benzoate (1.60 g, 6.0 mmol) was added and the reaction mixture was stirred at ambient temperature overnight. The reaction mixture was filtered and the filtrate was washed with saturated aqueous sodium bisulfate solution (50 mL) and water (50 mL). The organic layer was dried over sodium sulfate, decanted and concentrated. The residue was dissolved in ethyl acetate (100 mL) and washed with saturated aqueous sodium bisulfate solution (20 mL), 1N hydrochloric acid solution (20 mL) and brine (20 mL). The organic layer was dried over sodium sulfate, decanted and concentrated to yield the title compound as a yellow solid (2.14 g, 94%): 1H NMR (300 MHz, CDCl3) δ 7.50 (d, J=7.3 Hz, 1H), 7.05 (d, J=10.9 Hz, 1H), 4.58 (m, 2H), 1.97-1.84 (m, 1H), 1.58 (s, 9H), 1.08-0.99 (m, 2H), 0.78-0.70 (m, 2H).
  • Step 4. Preparation of (R)-tert-butyl 5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino) methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01167
  • A suspension of tert-butyl 5-cyclopropyl-2-fluoro-4-(iodomethyl)benzoate (0.46 g, 1.22 mmol), (R)-2-(3,4-dichlorobenzyl)morpholine (0.60 g, 2.44 mmol), potassium phosphate (0.52 g, 2.44 mmol) in N,N-dimethyl formamide (22 mL) was heated at 80° C. for 2 hours. The reaction mixture was cooled to ambient temperature, and diluted with water (400 mL) and ethyl acetate (200 mL). The aqueous layer was isolated and extracted with ethyl acetate (3×100 mL). The combined organics were concentrated and the residue was purified by flash chromatography (0% to 10% ethyl acetate in hexanes) to yield the title compound (0.59 g, 97%): 1H NMR (300 MHz, CDCl3) δ 7.49 (d, J=7.2 Hz, 1H), 7.33 (d, J=8.2 Hz, 1H), 7.32 (d, J=2.0 Hz, 1H), 7.15 (d, J=11.7 Hz, 1H), 7.05 (dd, J=2.0, 8.2 Hz, 1H), 3.84 (d, J=10.6 Hz, 1H), 3.77-3.67 (m, 1H), 3.67-3.54 (m, 3H), 2.80-2.58 (m, 4H), 2.30-2.16 (m, 1H), 2.07-1.90 (m, 2H), 1.58 (s, 9H), 1.00-0.87 (m, 2H), 0.70-0.58 (m, 2H); MS(ES+) m/z 494.2, 496.1 (M+1).
  • Step 5. Preparation of (R)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01168
  • A solution of (R)-tert-butyl 5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoate (0.17 g, 0.34 mmol) and hydrogenchloride (4.0 N solution in 1,4-dioxane, 1.72 mL, 6.88 mmol) in 1,4-dioxane (5 mL) was stirred overnight at ambient temperature, and then heated at 60° C. for 2 hours. The reaction mixture was cooled to ambient temperature and diluted with toluene (10 mL) and concentrated to yield the title compound (0.17 g, quant. yield), which was used without purification: MS(ES+) m/z 438.1, 440.0 (M+1); MS(ES−) m/z 436.1, 438.1 (M−1).
  • Step 6. Preparation of (R)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01169
  • To a solution of (R)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride (0.17 g, 0.36 mmol) in dichloromethane (10 mL) was added 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (0.10 g, 0.54 mmol), and 4-dimethylaminopyridine (0.10 g, 0.82 mmol). The reaction was stirred at ambient temperature for 10 minutes, methanesulfonamide (0.06 g, 0.58 mmol) was added and stirring was continued at ambient temperature overnight. The reaction mixture was concentrated, diluted with ethyl acetate (20 mL) and washed with 5% aqueous hydrochloric acid solution (10 mL). The organic layer was separated, washed with water and brine, dried over anhydrous sodium sulfate and concentrated. The residue was purified by flash chromatography (0% to 50% ethyl acetate in hexanes) to yield the title compound as a colorless solid (0.09 g, 50%): 1H NMR (300 MHz, CDCl3) δ 8.94-8.69 (m, 1H), 7.73 (d, J=7.8 Hz, 1H), 7.36-7.31 (m, 3H), 7.05 (d, J=8.1 Hz, 1H), 3.87 (d, J=11.2 Hz, 1H), 3.81-3.57 (m, 4H), 3.42 (s, 3H), 2.83-2.58 (m, 4H), 2.34-2.19 (m, 1H), 2.12-1.99 (m, 1H), 1.99-1.88 (m, 1H), 1.02-0.92 (m, 2H), 0.70-0.59 (m, 2H); MS(ES+) m/z 515.1, 517.1 (M+1), MS(ES−) m/z 513.2, 515.1 (M−1).
  • Example 459 Preparation of (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl) morpholino)methyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01170
  • Following the procedure as described in Example 458 step 6 and making non-critical variations as required to replace methanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as a colorless solid (0.08 g, 41%): 1H NMR (300 MHz, CDCl3) δ 8.73 (d, J=15.7 Hz, 1H), 7.74 (d, J=7.8 Hz, 1H), 7.36-7.31 (m, 3H), 7.06 (dd, J=2.0, 8.2 Hz, 1H), 4.26 (t, J=7.7 Hz, 4H), 3.89-3.85 (m, 1H), 3.79-3.58 (m, 4H), 2.81-2.58 (m, 4H), 2.33-2.20 (m, 3H), 2.11-1.91 (m, 2H), 1.00-0.92 (m, 2H), 0.71-0.63 (m, 2H); MS(ES+) m/z 556.1, 558.1 (M+1), MS(ES−) m/z 554.2, 556.1 (M−1).
  • Example 460 Preparation of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((2-(3,4-dichlorobenzyl) morpholino)methyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01171
  • Following the procedure as described in Example 458 step 6 and making non-critical variations as required to replace methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as a colorless solid (0.07 g, 35%): 1H NMR (300 MHz, CDCl3) δ 8.78 (d, J=15.0 Hz, 1H), 7.74 (d, J=7.8 Hz, 1H), 7.36-7.31 (m, 3H), 7.05 (dd, J=1.9, 8.2 Hz, 1H), 3.91-3.85 (m, 1H), 3.81-3.57 (m, 4H), 3.16-3.02 (m, 1H), 2.83-2.52 (m, 4H), 2.32-2.19 (m, 1H), 2.08-1.85 (m, 2H), 1.51-1.38 (m, 2H), 1.20-1.06 (m, 2H), 1.00-0.87 (m, 2H), 0.70-0.56 (m, 2H); MS(ES+) m/z 541.1, 543.1 (M+1), MS(ES−) m/z 539.1, 541.1 (M−1).
  • Example 461 Synthesis of (S)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01172
  • Step 1. Preparation of (S)-1-chloro-3-(3,4-dichlorophenyl)propan-2-ol
  • Figure US20210093618A1-20210401-C01173
  • Following the procedure as described in Example 458 step 1 and making non-critical variations as required to replace (R)-epichlorohydrin with (S)-epichlorohydrin, the title compound was obtained as a colorless oil (2.70 g, 87%): 1H NMR (300 MHz, CDCl3) δ 7.39 (d, J=8.2 Hz, 1H), 7.35 (d, J=2.0 Hz, 1H), 7.09 (dd, J=2.0, 8.2 Hz, 1H), 4.10-3.98 (m, 1H), 3.62 (dd, J=3.9, 11.2 Hz, 1H), 3.49 (dd, J=6.3, 11.2 Hz, 1H), 2.85-2.82 (m, 2H), 2.20 (br s, 1H).
  • Step 2. Preparation of (S)-2-(3,4-dichlorobenzyl)morpholine
  • Figure US20210093618A1-20210401-C01174
  • Following the procedure as described in Example 458 step 2 and making non-critical variations as required to replace (R)-1-chloro-3-(3,4-dichlorophenyl)propan-2-ol with (S)-1-chloro-3-(3,4-dichlorophenyl)propan-2-ol, the title compound was obtained as a colorless oil (1.04 g, 37%): MS(ES+) m/z 246.1, 248.1 (M+1).
  • Step 3. Preparation of (S)-tert-butyl 5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino) methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01175
  • Following the procedure as described in Example 458 step 4 and making non-critical variations as required to replace (R)-2-(3,4-dichlorobenzyl)morpholine with (S)-2-(3,4-dichlorobenzyl)morpholine, the title compound was obtained (0.46 g, 98%): 1H NMR (300 MHz, CDCl3) δ 7.50 (d, J=7.3 Hz, 1H), 7.34 (d, J=8.2 Hz, 1H), 7.31 (d, J=2.0 Hz, 1H), 7.14 (d, J=11.7 Hz, 1H), 7.05 (dd, J=2.0, 8.2 Hz, 1H), 3.85 (d, J=10.6 Hz, 1H), 3.78-3.66 (m, 1H), 3.66-3.55 (m, 3H), 2.80-2.57 (m, 4H), 2.22 (dt, J=3.0, 11.2 Hz, 1H), 2.05-1.92 (m, 2H), 1.58 (s, 9H), 0.97-0.89 (m, 2H), 0.67-0.59 (m, 2H); MS(ES+) m/z 494.0, 496.0 (M+1).
  • Step 4. Preparation of (S)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01176
  • Following the procedure as described in Example 458 step 5 and making non-critical variations as required to replace (R)-tert-butyl 5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino) methyl)-2-fluorobenzoate with (S)-tert-butyl 5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino) methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.43 g, 98%): MS(ES+) m/z 438.1, 440.0 (M+1); MS(ES−) m/z 436.1, 438.1 (M−1).
  • Step 5. Preparation of (S)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01177
  • Following the procedure as described in Example 458 step 6 and making non-critical variations as required to replace (R)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride with (S)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride, the title compound was obtained as a colorless solid (0.04 g, 20%): 1H NMR (300 MHz, CDCl3) δ 8.94-8.69 (m, 1H), 7.73 (d, J=7.8 Hz, 1H), 7.36-7.31 (m, 3H), 7.05 (d, J=8.1 Hz, 1H), 3.87 (d, J=11.2 Hz, 1H), 3.81-3.57 (m, 4H), 3.42 (s, 3H), 2.83-2.58 (m, 4H), 2.34-2.19 (m, 1H), 2.12-1.99 (m, 1H), 1.99-1.88 (m, 1H), 1.02-0.92 (m, 2H), 0.70-0.59 (m, 2H); MS(ES+) m/z 515.1, 517.1 (M+1), MS(ES−) m/z 513.2, 515.2 (M−1).
  • Example 462 Preparation of (S)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((2-(3,4-dichlorobenzyl) morpholino)methyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01178
  • Following the procedure as described in Example 458 step 6 and making non-critical variations as required to replace (R)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride with (5)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride, ane to replace methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as a colorless solid (0.02 g, 11%): 1H NMR (300 MHz, CDCl3) δ 8.78 (d, J=13.5 Hz, 1H), 7.74 (d, J=7.8 Hz, 1H), 7.38-7.23 (m, 3H), 7.07-7.04 (m, 1H), 3.94-3.82 (m, 1H), 3.82-3.57 (m, 4H), 3.16-3.04 (m, 1H), 2.83-2.55 (m, 4H), 2.37-2.21 (m, 1H), 2.12-1.88 (m, 2H), 1.53-1.42 (m, 2H), 1.22-1.10 (m, 2H), 1.03-0.92 (m, 2H), 0.72-0.61 (m, 2H); MS(ES+) m/z 541.1, 543.1 (M+1), MS(ES−) m/z 539.2, 541.2 (M−1).
  • Example 463 Synthesis of (R)-5-cyclopropyl-4-((2-(3,5-dichlorobenzyl)morpholino)methyl)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01179
  • Step 1. Preparation of (R)-1-chloro-3-(3,5-dichlorophenyl)propan-2-ol
  • Figure US20210093618A1-20210401-C01180
  • Following the procedure as described in Example 458 step 1 and making non-critical variations as required to replace 4-bromo-1,2-dichlorobenzene with 1-bromo-3,5-dichlorobenzene, the title compound was obtained as a colorless oil (12.93 g, 83%): 1H NMR (300 MHz, CDCl3) δ 7.27-7.24 (m, 1H), 7.18-7.12 (m, 2H), 4.09-3.98 (m, 1H), 3.62 (dd, J=3.9, 11.2 Hz, 1H), 3.49 (dd, J=6.3, 11.2 Hz, 1H), 2.87-2.79 (m, 2H), 2.22 (br s, 1H).
  • Step 2. Preparation of (R)-2-(3,5-dichlorobenzyl)morpholine
  • Figure US20210093618A1-20210401-C01181
  • Following the procedure as described in Example 458 step 2 and making non-critical variations as required to replace (R)-1-chloro-3-(3,4-dichlorophenyl)propan-2-ol with (R)-1-chloro-3-(3,5-dichlorophenyl)propan-2-ol, the title compound was obtained as a colorless oil (6.98 g, 53%): MS(ES+) m/z 246.1, 248.1 (M+1).
  • Step 3. Preparation of (R)-tert-butyl 5-cyclopropyl-4-((2-(3,5-dichlorobenzyl)morpholino) methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01182
  • To a microwave vial was charged with tert-butyl 5-cyclopropyl-2-fluoro-4-(iodomethyl)benzoate (0.14 g, 0.37 mmol), (R)-2-(3,5-dichlorobenzyl)morpholine (0.18 g, 0.75 mmol), potassium phosphate (0.16 mg, 0.75 mmol) and N,N-dimethyl formamide (8 mL). The suspension was heated in the microwave reactor at 80° C. for 2 hours. The reaction mixture was cooled to ambient temperature and diluted with water (200 mL) and ethyl acetate (100 mL). The aqueous layer was isolated and extracted with ethyl acetate (3×50 mL). The combined organics were concentrated and the residue was purified by flash chromatography (0% to 10% ethyl acetate in hexanes) to yield the title compound (0.18 g, 98%): MS(ES+) m/z 494.2, 496.2 (M+1).
  • Step 4. Preparation of (R)-5-cyclopropyl-4-((2-(3,5-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01183
  • Following the procedure as described in Example 458 step 5 and making non-critical variations as required to replace (R)-tert-butyl 5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino) methyl)-2-fluorobenzoate with (R)-tert-butyl 5-cyclopropyl-4-((2-(3,5-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.08 g, 49%): MS(ES+) m/z 437.9, 439.9 (M+1); MS(ES−) m/z 436.0, 438.0 (M−1).
  • Step 5. Preparation of (R)-5-cyclopropyl-4-((2-(3,5-dichlorobenzyl)morpholino)methyl)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01184
  • Following the procedure as described in Example 458 step 6 and making non-critical variations as required to replace (R)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride with (R)-5-cyclopropyl-4-((2-(3,5-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride, the title compound was obtained as a colorless solid (0.05 g, 24%): 1H NMR (300 MHz, CDCl3) δ 8.95-8.69 (m, 1H), 7.73 (d, J=7.8 Hz, 1H), 7.34-7.20 (m, 2H), 7.14-7.11 (m, 2H), 3.92-3.83 (m, 1H), 3.81-3.31 (m, 2H), 3.67 (s, 2H), 3.42 (s, 3H), 2.82-2.59 (m, 4H), 2.27 (dt, J=3.1, 11.2 Hz, 1H), 2.11-1.89 (m, 2H), 1.02-0.92 (m, 2H), 0.70-0.59 (m, 2H); MS(ES+) m/z 515.1, 517.1 (M+1), MS(ES−) m/z 513.1, 515.1 (M+1).
  • Example 464 Preparation of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((2-(3,5-dichlorobenzyl) morpholino)methyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01185
  • Following the procedure as described in Example 458 step 6 and making non-critical variations as required to replace (R)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride with (R)-5-cyclopropyl-4-((2-(3,5-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride, ane to replace methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as a colorless solid (0.03 g, 22%): 1H NMR (300 MHz, CDCl3) δ 8.78 (d, J=15.7 Hz, 1H), 7.74 (d, J=7.8 Hz, 1H), 7.33-7.19 (m, 2H), 7.11-7.07 (m, 2H), 3.92-3.85 (m, 1H), 3.81-3.71 (m, 1H), 3.67 (s, 2H), 3.65-3.60 (m, 1H), 3.16-3.04 (m, 1H), 2.82-2.62 (m, 4H), 2.27 (dt, J=3.1, 11.2 Hz, 1H), 2.05 (t, J=10.4 Hz, 2H), 2.01-1.90 (m, 1H), 1.51-1.44 (m, 2H), 1.21-1.11 (m, 2H), 1.01-0.94 (m, 2H), 0.71-0.64 (m, 2H); MS(ES+) m/z 541.1, 543.0 (M+1), MS(ES−) m/z 539.1, 541.1 (M−1).
  • Example 465 Preparation of (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-4-((2-(3,5-dichlorobenzyl)morpholino)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01186
  • Following the procedure as described in Example 458 step 6 and making non-critical variations as required to replace (R)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride with (R)-5-cyclopropyl-4-((2-(3,5-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride, and to replace methanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained by reverse-phase HPLC purification as a colorless solid (0.04 g, 37%): 1H NMR (300 MHz, CDCl3) δ 7.77 (d, J=7.4 Hz, 1H), 7.43 (d, J=11.5 Hz, 1H), 7.27-7.26 (m, 1H), 7.07 (s, 2H), 4.49 (s, 2H), 4.25 (t, J=7.7 Hz, 4H), 4.15-3.88 (m, 3H), 3.55 (d, J=11.1 Hz, 2H), 2.97-2.77 (m, 2H), 2.75-2.64 (m, 1H), 2.63-2.49 (m, 1H), 2.36-2.22 (m, 2H), 1.51-1.44 (m, 2H), 1.93-1.79 (m, 1H), 1.17-1.03 (m, 2H), 0.84-0.70 (m, 2H); MS(ES+) m/z 556.1, 558.1 (M+1), MS(ES−) m/z 554.2, 556.2 (M−1).
  • Example 466 Synthesis of (R)-4-((2-(2-chloro-4-fluorobenzyl)morpholino)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01187
  • Step 1. Preparation of (R)-1-chloro-3-(2-chloro-4-fluorophenyl)propan-2-ol
  • Figure US20210093618A1-20210401-C01188
  • Following the procedure as described in Example 458 step 1 and making non-critical variations as required to replace 4-bromo-1,2-dichlorobenzene with 1-bromo-2-chloro-4-fluorobenzene, the title compound was obtained as a colorless oil (3.22 g, 55%): 1H NMR (300 MHz, CDCl3) δ 7.28 (dd, J=6.2, 8.5 Hz, 1H), 7.12 (dd, J=2.6, 8.5 Hz, 2H), 6.95 (dt, J=2.6, 8.3 Hz, 1H), 4.19-4.09 (m, 1H), 3.72-3.66 (m, 1H), 3.59-3.50 (m, 1H), 3.06-2.90 (m, 2H), 2.17 (br s, 1H).
  • Step 2. Preparation of (R)-2-(2-chloro-4-fluorobenzyl)morpholine
  • Figure US20210093618A1-20210401-C01189
  • Following the procedure as described in Example 458 step 2 and making non-critical variations as required to replace (R)-1-chloro-3-(3,4-dichlorophenyl)propan-2-ol with (R)-1-chloro-3-(2-chloro-4-fluorophenyl)propan-2-ol, the title compound was obtained as a colorless oil (0.66 g, 20%): MS(ES+) m/z 230.2, 232.2 (M+1).
  • Step 3. Preparation of (R)-tert-butyl 5-cyclopropyl-4-((2-(2-chloro-4-fluorobenzyl)morpholino) methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01190
  • Following the procedure as described in Example 458 step 4 and making non-critical variations as required to replace (R)-2-(3,4-dichlorobenzyl)morpholine with (R)-2-(2-chloro-4-fluorobenzyl)morpholine, the title compound was obtained
  • (0.47 g, quant. yield): MS(ES+) m/z 478.2, 480.2 (M+1).
  • Step 4. Preparation of (R)-4-((2-(2-chloro-4-fluorobenzyl)morpholino)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01191
  • Following the procedure as described in Example 458 step 5 and making non-critical variations as required to replace (R)-tert-butyl 5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino) methyl)-2-fluorobenzoate with (R)-tert-butyl 5-cyclopropyl-4-((2-(2-chloro-4-fluorobenzyl)morpholino)methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.45 g, 97%): MS(ES+) m/z 422.0, 424.0 (M+1); MS(ES−) m/z 420.1, 422.1 (M−1).
  • Step 5. Preparation of (R)-4-((2-(2-chloro-4-fluorobenzyl)morpholino)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01192
  • Following the procedure as described in Example 458 step 6 and making non-critical variations as required to replace (R)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride with (R)-4-((2-(2-chloro-4-fluorobenzyl)morpholino)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, the title compound was obtained as a colorless solid (0.07 g, 38%): 1H NMR (300 MHz, CDCl3) δ 7.71 (d, J=7.7 Hz, 1H), 7.38 (d, J=11.5 Hz, 1H), 7.27-7.16 (m, 1H), 7.14-7.07 (m, 1H), 6.98-6.90 (m, 1H), 4.51 (s, 2H), 4.19-4.09 (m, 1H), 4.09-3.88 (m, 2H), 3.57 (dd, J=11.5, 26.0 Hz, 2H), 3.39 (s, 3H), 3.02-2.88 (m, 3H), 2.68 (t, J=11.0 Hz, 1H), 1.94-1.83 (m, 1H), 1.16-1.06 (m, 2H), 0.82-0.75 (m, 2H); MS(ES+) m/z 499.1, 501.1 (M+1); MS(ES−) m/z 497.1, 499.1 (M−1).
  • Example 467 Preparation of (R)-4-((2-(2-chloro-4-fluorobenzyl)morpholino)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01193
  • Following the procedure as described in Example 458 step 6 and making non-critical variations as required to replace (R)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride with (R)-4-((2-(2-chloro-4-fluorobenzyl)morpholino)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, ane to replace methanesulfonamide with cyclopropanesulfonamide, the title compound was obtained as a colorless solid (0.06 g, 32%): 1H NMR (300 MHz, CDCl3) δ 7.73 (d, J=7.3 Hz, 1H), 7.37 (d, J=11.5 Hz, 1H), 7.20 (dd, J=6.2, 8.4 Hz, 1H), 7.11 (dd, J=2.3, 8.4 Hz, 1H), 6.94 (dt, J=2.4, 8.2 Hz, 1H), 4.52 (s, 2H), 4.21-3.81 (m, 3H), 3.59 (dd, J=11.2, 26.5 Hz, 2H), 3.14-2.95 (m, 1H), 3.01-2.93 (m, 3H), 2.70 (t, J=10.8 Hz, 1H), 1.95-1.80 (m, 1H), 1.49-1.37 (m, 2H), 1.23-1.37 (m, 4H), 0.80-0.68 (m, 2H); MS (ES+) m/z 525.1, 527.1 (M+1); MS(ES−) m/z 523.1, 525.1 (M−1).
  • Example 468 Preparation of (R)—N-(azetidin-1-ylsulfonyl)-4-((2-(2-chloro-4-fluorobenzyl)morpholino)methyl)-5-cyclopropyl-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01194
  • Following the procedure as described in Example 458 step 6 and making non-critical variations as required to replace (R)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride with (R)-4-((2-(2-chloro-4-fluorobenzyl)morpholino)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, ane to replace methanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as a colorless solid (0.06 g, 37%): 1H NMR (300 MHz, CDCl3) δ 7.77 (d, J=7.2 Hz, 1H), 7.42 (d, J=11.6 Hz, 1H), 7.25-7.20 (m, 1H), 7.14-7.10 (m, 1H), 6.98-6.91 (m, 1H), 4.49 (s, 2H), 4.25 (t, J=7.7 Hz, 4H), 4.20-4.15 (m, 1H), 4.05-3.92 (m, 2H), 3.55 (dd, J=11.2, 26.5 Hz, 2H), 3.02-2.82 (m, 3H), 2.65 (t, J=10.6 Hz, 1H), 2.37-2.22 (m, 21), 1.96-1.82 (m, 1H), 1.16-1.03 (m, 2H), 0.82-0.69 (m, 2H); MS(ES+) m/z 540.1, 542.1 (M+1); MS(ES−) m/z 538.1, 540.1 (M−1).
  • Example 469 Synthesis of (R)-5-cyclopropyl-4-((2-(3,5-dichlorobenzyl)-5,5-dimethylmorpholino)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01195
  • Step 1. Preparation of (R)-1-amino-3-(3,5-dichlorophenyl)propan-2-ol
  • Figure US20210093618A1-20210401-C01196
  • To a solution of (R)-1-chloro-3-(3,5-dichlorophenyl)propan-2-ol (1.44 g, 6.01 mmol) in N,N-dimethyl formamide (45 mL) was added sodium azide (1.95 g, 30.05 mmol) and sodium iodide (0.54 g, 3.60 mmol). The resulting suspension was heated at 75° C. overnight, cooled to ambient temperature, diluted with ethyl acetate (150 mL) and washed with water (50 mL), 5% aqueous lithium chloride solution (50 mL) and brine (50 mL). The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated. The residue was dissolved in tetrahydrofuran (55 mL) and water (18 mL), and to this solution was added triphenylphosphine (1.85 g, 7.07 mmol). The resulting reaction mixture was heated at 50° C. for 24 hours. Upon cooling to ambient temperature, the reaction mixture was diluted with dichloromethane (200 mL) and 10% aqueous sodium bicarbonate solution (100 mL). The aqueous layer was isolated and extracted with dichloromethane (2×100 mL). The combined organics were washed with brine (100 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by flash chromatography [0% to 100% (85:14:1 dichloromethane/ethanol/ammonium hydroxide) in dichloromethane] to yield the title compound (0.93 g, 70% over 2 steps): MS(ES+) m/z 220.1, 222.1 (M+1).
  • Step 2. Preparation of (R)-2-chloro-N-(3-(3,5-dichlorophenyl)-2-hydroxypropyl)acetamide
  • Figure US20210093618A1-20210401-C01197
  • To a cooled (0° C.) solution of (R)-1-amino-3-(3,5-dichlorophenyl)propan-2-ol (0.86 g, 3.91 mmol) and triethylamine (0.718 mL, 5.08 mmol) in 9:1 dichloromethane/acetonitrile (60 mL) was added 2-chloroacetyl chloride (340 μL, 4.29 mmol) dropwise. The resulting solution was stirred at 0° C. for 1.5 hours, and then warmed to ambient temperature and stirred for 30 minutes. The reaction mixture was re-cooled (0° C.) and quenched with 5% aqueous hydrochloric acid solution (15 mL). The aqueous layer was isolated and extracted with dichloromethane (2×30 mL). The combined organics were washed with brine (20 mL), dried over sodium sulfate, filtered and concentrated. The residue was triturated with diethyl ether to yield the title compound as a colorless solid (0.87 g, 75%): 1H NMR (300 MHz, CDCl3) δ 7.27-7.26 (m, 2H), 7.13-7.11 (m, 1H), 6.98 (br s, 1H), 4.09 (s, 2H), 4.05-3.95 (m, 1H), 3.64-3.53 (m, 1H), 3.33-3.21 (m, 1H), 2.84-2.64 (m, 2H), 1.58 (br s, 1H); MS(ES+) m/z 296.0, 298.0 (M+1).
  • Step 3. Preparation of (R)-6-(3,5-dichlorobenzyl)morpholin-3-one
  • Figure US20210093618A1-20210401-C01198
  • To a cooled (0° C.) solution of (R)-2-chloro-N-(3-(3,5-dichlorophenyl)-2-hydroxypropyl) acetamide (0.31 g, 1.03 mmol) in isopropanol (2 mL) and toluene (1 mL) was added a solution of potassium tert-butoxide (0.32 g, 2.88 mmol) in isopropanol (3 mL). The reaction was stirred at 0° C. for 1 hour, and then slowly warmed to ambient temperature and stirred overnight. The reaction mixture was neutralized to pH=6 with 5% aqueous hydrochloric acid solution, and then concentrated. The aqueous residue was diluted with toluene (75 mL) and saturated aqueous sodium bicarbonate solution (25 mL). The toluene layer was isolated, washed with brine (20 mL) and then concentrated. The combined aqueous layers were extracted with ethyl acetate (2×50 mL). The combined organics were dried over sodium sulfate, filtered and concentrated. The residue was purified using flash chromatography [0% to 5% methanol in dichloromethane] to yield the title compound as a colorless solid (0.23 g, 87%): 1H NMR (300 MHz, CDCl3) δ 7.32-7.12 (m, 2H), 7.11 (s, 1H), 6.32 (br s, 1H), 4.29 (d, J=16.9 Hz, 1H), 4.13 (d, J=16.9 Hz, 1H), 3.96-3.82 (m, 1H), 3.41-3.22 (m, 2H), 2.88 (dd, J=7.4, 14.2 Hz, 1H), 2.74 (dd, J=5.1, 14.2 Hz, 1H), 1.87 (br s, 1H).
  • Step 4. Preparation of (R)-6-(3,5-dichlorobenzyl)-4-(4-methoxybenzyl)morpholin-3-one
  • Figure US20210093618A1-20210401-C01199
  • To a cooled (0° C.) solution of (R)-6-(3,5-dichlorobenzyl)morpholin-3-one (0.23 g, 0.89 mmol) in N,N-dimethyl formamide (3 mL) was added sodium hydride (60% dispersion, 0.04 g, 1.08 mmol). The resulting suspension was warmed to ambient temperature and stirred for 15 minutes. The pink slurry was re-cooled (0° C.) before 4-methoxybenzylchloride (0.15 mL, 1.08 mmol) was added dropwisely. At this point the slurry was too thick to stir and N,N-dimethyl formamide (2 mL) was added before the reaction mixture was slowly warmed to ambient temperature and stirred overnight. The reaction was cooled (0° C.), quenched with saturated aqueous ammonium chloride solution (5 mL) and diluted with ethyl acetate (50 mL). The aqueous layer was isolated and extracted with ethyl acetate (2×20 mL). The combined organics were washed with brine (20 mL), dried over sodium sulfate, filtered and concentrated. The residue was purified using flash chromatography [0% to 20% to 40% ethyl acetate in hexanes] to yield the title compound as a colourless oil (0.27 g, 79%): 1H NMR (300 MHz, CDCl3) δ7.28-7.16 (m, 3H), 7.08-7.03 (m, 2H), 6.91-6.84 (m, 2H), 4.62 (d, J=14.5 Hz, 1H), 4.43 (d, J=14.5 Hz, 1H), 4.19-4.07 (m, 1H), 3.94-3.81 (m, 1H), 3.80 (s, 3H), 3.24-3.02 (m, 2H), 2.96 (s, 1H), 2.88 (s, 1H), 2.77 (dd, J=7.8, 14.3 Hz, 1H), 2.67 (dd, J=4.6, 14.3 Hz, 1H).
  • Step 5. Preparation of (R)-2-(3,5-dichlorobenzyl)-4-(4-methoxybenzyl)-5,5-dimethylmorpholine
  • Figure US20210093618A1-20210401-C01200
  • To a cooled (−10° C.) solution of (R)-6-(3,5-dichlorobenzyl)-4-(4-methoxybenzyl)morpholin-3-one (0.27 g, 0.71 mmol) in tetrahydrofuran (1.5 mL) was added anhydrous zirconium(IV) chloride (0.17 g, 0.72 mmol). After 30 minutes, a solution of methylmagnesium bromide (3.0M in diethyl ether, 1.4 mL, 4.26 mmol) was added dropwisely. After 1 hour at −10° C., the slurry was too thick to stir, so tetrahydrofuran (2 mL) was added. The resulting suspension was stirred at −10° C. for an additional 1 hour, and then slowly warmed to ambient temperature and stirred overnight. The reaction was cooled (0° C.), diluted with diethyl ether (10 mL) and saturated aqueous sodium/potassium tartarate solution (5 mL). The thick slurry was stirred for 15 minutes, resulting in a cloudy yellow biphasic solution. The solid was removed by filtration and rinsed with ethyl acetate and water. The organic layer was isolated and the aqueous layer was extracted with ethyl acetate (2×50 mL). The combined organics were washed with water (20 mL) then brine (20 mL), dried over sodium sulfate, and concentrated.
  • The residue was purified using flash chromatography [0% to 15% to 30% ethyl acetate in hexanes] to yield the title compound as a colourless oil (0.13 g, 46%): MS(ES+) m/z 394.0, 396.0 (M+1).
  • Step 6. Preparation of (R)-2-(3,5-dichlorobenzyl)-5,5-dimethylmorpholine
  • Figure US20210093618A1-20210401-C01201
  • To a solution of (R)-2-(3,5-dichlorobenzyl)-4-(4-methoxybenzyl)-5,5-dimethylmorpholine (0.13 g, 0.32 mmol) in water/acetonitrile (1:1, v/v, 7 mL) was added a solution of ceric ammonium nitrate (535 mg, 0.975 mmol) in methanol (56 mL). The resulting orange solution was stirred at ambient temperature overnight, quenched with 5% aqueous hydrochloric acid solution (20 mL), and then extracted with diethyl ether (3×20 mL). The combined aqueous layer was basified with solid sodium bicarbonate to pH=9 and extracted with ethyl acetate (3×75 mL). The combined ethyl acetate extracts were washed with brine (20 mL), dried over sodium sulfate, filtered and concentrated to give the title compound as a colorless solid (0.08 g, 98%): MS(ES+) m/z 274.1, 276.1 (M+1).
  • Step 7. Preparation of (R)-tert-butyl 5-cyclopropyl-4-((2-(3,5-dichlorobenzyl)-5,5-dimethyl morpholino)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01202
  • To a suspension of (R)-2-(3,5-dichlorobenzyl)-5,5-dimethylmorpholine (0.08 g, 0.30 mmol) and potassium carbonate (0.05 g, 0.34 mmol) in N,N-dimethyl formamide (2 mL) was added tert-butyl 5-cyclopropyl-2-fluoro-4-(((methylsulfonyl)oxy)methyl) benzoate (0.12 g, 0.34 mmol). The suspension was stirred at ambient temperature overnight, diluted with water (30 mL) and ethyl acetate (75 mL). The aqueous layer was isolated and extracted with ethyl acetate (3×50 mL). The combined organics were washed with brine (50 mL), and concentrated. The residue was purified by flash chromatography [0% to 10% ethyl acetate in hexanes] to yield the title compound (0.08 g, 54%): MS(ES+) m/z 522.1, 524.1 (M+1).
  • Step 8. Preparation of (R)-5-cyclopropyl-4-((2-(3,5-dichlorobenzyl)-5,5-dimethylmorpholino)methyl)-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01203
  • Following the procedure as described in Example 458 step 5 and making non-critical variations as required to replace (R)-tert-butyl 5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino) methyl)-2-fluorobenzoate with (R)-tert-butyl 5-cyclopropyl-4-((2-(3,5-dichlorobenzyl)-5,5-dimethyl morpholino)methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.08 g, quant. yield): MS(ES+) m/z 466.0, 468.0 (M+1); MS(ES−) m/z 464.1, 466.1 (M−1).
  • Step 9. Preparation of (R)-5-cyclopropyl-4-((2-(3,5-dichlorobenzyl)-5,5-dimethylmorpholino)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid
  • Figure US20210093618A1-20210401-C01204
  • Following the procedure as described in Example 458 step 6 and making non-critical variations as required to replace (R)-5-cyclopropyl-4-((2-(3,4-dichlorobenzyl)morpholino)methyl)-2-fluorobenzoic acid hydrochloride with (R)-5-cyclopropyl-4-((2-(3,5-dichlorobenzyl)-5,5-dimethylmorpholino)methyl)-2-fluorobenzoic acid hydrochloride, the title compound was obtained by reverse-phase HPLC purification as a colorless solid (0.06 g, 56%): 1H NMR (300 MHz, CDCl3) δ 7.46 (d, J=7.0 Hz, 1H), 7.31-7.19 (m, 2H), 7.09-7.03 (m, 2H), 4.58 (d, J=13.2 Hz, 1H), 4.06-3.96 (m, 1H), 3.91 (d, J=13.2 Hz, 1H), 3.84 (d, J=12.7 Hz, 1H), 3.58 (d, J=12.6 Hz, 1H), 3.36 (s, 3H), 3.20 (d, J=11.9 Hz, 1H), 2.78 (dd, J=3.5, 14.5 Hz, 1H), 1.90-1.77 (m, 1H), 1.50 (s, 3H), 1.42 (s, 3H), 1.10-0.94 (m, 2H), 0.88-0.79 (m, 2H), 0.61-0.51 (m, 2H); MS (ES+) m/z 543.0, 545.0 (M+1); MS(ES−) m/z 541.0, 543.0 (M−1).
  • Example 470 Synthesis of 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01205
  • Step 1. Preparation of (1R,3s,5S)-tert-butyl 3-((methylsulfonyl)oxy)-8-azabicyclo[3.2.1]octane-8-carboxylate
  • Figure US20210093618A1-20210401-C01206
  • To a cold (0° C.) mixture of (1R,3s,5S)-tert-butyl 3-hydroxy-8-azabicyclo[3.2.1]octane-8-carboxylate (7.68 g, 33.80 mmol) and triethylamine (7.1 mL, 50.70 mmol) in anhydrous dichloromethane (100 mL) was added methanesulfonyl chloride (3.1 mL, 40.60 mmol) and the reaction mixture was stirred for 1 hour at 0° C. The organic phase was washed with hydrochloric acid solution (1 N, 10 mL), water (20 mL), and brine (20 mL); dried over anhydrous sodium sulfate. Filtration and concentration of the filtrate in vacuo provided the title compound as a yellowish solid (10.40 g, quant. yield): 1H NMR (300 MHz, CDCl3) δ 5.09-4.96 (m, 1H), 4.29-4.17 (m, 2H), 2.97 (s, 3H), 2.10-1.93 (m, 4H), 1.90-1.75 (m, 2H), 1.68-1.59 (m, 2H), 1.44 (s, 9H).
  • Step 2. Preparation of (1R,3r,5S)-tert-butyl 3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octane-8-carboxylate
  • Figure US20210093618A1-20210401-C01207
  • To a mixture of (1R,3s,5S)-tert-butyl 3-hydroxy-8-azabicyclo[3.2.1]octane-8-carboxylate (1.44 g, 4.70 mmol) in anhydrous dimethylformamide (10 mL) was added cesium carbonate (3.06 g, 9.40 mmol) and 3-chloro-2-fluoro-5-(trifluoromethyl)phenol (1.10 g, 4.70 mmol) and the reaction mixture was heated at 80° C. for 16 hours. After cooling to ambient temperature, the reaction mixture was diluted with ethyl acetate (150 mL) and water (20 mL). The organic phase was washed with water (2×15 mL), brine (15 mL), and dried over anhydrous sodium sulfate. After filtration and concentration of the filtrate in vacuo, the residue was purified by flash chromatography (0 to 30% ethyl acetate in hexanes) to afford the title compound as a colorless oil (2.00 g, quant. yield): 1H NMR (300 MHz, CDCl3) δ 7.19 (d, J=6.5 Hz, 1H), 6.98-6.93 (m, 1H), 4.71-4.65 (m, 1H), 4.25-4.19 (m, 2H), 2.24-2.09 (m, 4H), 2.06-1.90 (m, 4H), 1.46 (s, 9H); MS(ES+) m/z 368.0, 370.0 (M−55).
  • Step 3. Preparation of (1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octane
  • Figure US20210093618A1-20210401-C01208
  • To a mixture of (1R,3r,5S)-tert-butyl 3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octane-8-carboxylate (2.00 g, 4.70 mmol) in dichloromethane (10 mL) was added trifluoroacetic acid (2 mL) and the reaction mixture was stirred at ambient temperature for 16 hours. After evaporation of all volatiles in vacuo, the residue was dissolved in dichloromethane (100 mL). The organic phase was washed with sodium hydroxide solution (1 N, 10 mL), water (10 mL), and brine (10 mL), and dried over anhydrous sodium sulfate. Filtration and concentration of the filtrate in vacuo yielded the title compound as a colorless oil (1.50 g, quant. yield): MS (ES+) m/z 324.1, 326.1 (M+1).
  • Step 4. Preparation of tert-butyl 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)-phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01209
  • To a mixture of (1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octane (1.50 g, 4.70 mmol) in anhydrous dimethylformamide (10 mL) was added potassium carbonate (1.30 g, 9.40 mmol) and tert-butyl 5-cyclopropyl-2-fluoro-4-(((methylsulfonyl)oxy)methyl)benzoate (1.62 g, 4.70 mmol) and the reaction mixture was stirred at ambient temperature for 16 hours. After dilution with ethyl acetate (150 mL) and addition of water (20 mL), the organic phase was washed with water (2×15 mL), brine (15 mL), and dried over anhydrous sodium sulfate. Filtration and concentration of the filtrate in vacuo gave a residue which was purified by flash chromatography (0 to 20% ethyl acetate in hexanes) to afford the title compound as a colorless oil (1.30 g, 48%): 1H NMR (300 MHz, CDCl3) δ 7.48 (d, J=7.2 Hz, 1H), 7.35-7.28 (m, 1H), 7.24-7.20 (m, 1H), 4.68-4.60 (m, 1H), 6.98-6.94 (m, 1H), 3.73-3.61 (m, 2H), 3.25-3.08 (m, 2H), 2.27-1.85 (m, 9H), 1.57 (s, 9H), 0.95-0.85 (m, 2H), 0.64-0.58 (m, 2H); MS(ES+) m/z 572.1, 574.1 (M+1).
  • Step 5. 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01210
  • A mixture of tert-butyl 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)-phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoate (1.30 g, 2.27 mmol) and concentrated hydrochloric acid (3 mL) in dioxane (20 mL) was stirred at ambient temperature for 16 hours. Concentration of the reaction mixture in vacuo followed by co-evaporation with toluene (2×10 mL) provided the title compound as an off-white solid containing traced of toluene (1.30 g, quant. yield): MS(ES+) m/z 514.1, 516.1 (M+1).
  • Step 6. Preparation of 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01211
  • A mixture of 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride (0.63 g, 1.10 mmol), cyclopropanesulfonamide (0.34 g, 3.60 mmol), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (0.69 g, 3.60 mmol), and 4-dimethylaminopyridine (0.88 g, 7.20 mmol) in anhydrous dichloromethane (10 mL) was stirred at ambient temperature for 16 hours. The reaction mixture was diluted with ethyl acetate (150 mL) and washed with aqueous hydrochloric acid solution (1 M, 10 mL), water (10 mL) and brine (10 mL). The organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate concentrated in vacuo. The residue was purified by reverse phase HPLC (acetonitrile in water with 0.1% trifluoroacetic acid) to give the title compound as a colorless solid (0.38 g, 47%): 1H NMR (300 MHz, DMSO-d6) δ 12.24 (br s, 1H), 9.58 (brs, 1H), 7.67-7.53 (m, 3H), 7.27 (d, J=7.1 Hz, 1H), 5.00-4.92 (m, 1H), 4.42 (brs, 2H), 4.01 (br s, 2H), 3.12-2.99 (m, 1H), 2.46-2.23 (m, 6H), 2.22-2.05 (m, 3H), 1.15-1.05 (m, 4H), 1.04-0.94 (m, 2H), 0.82-0.73 (m, 2H); MS(ES−) m/z 617.1, 619.1 (M−1).
  • Example 471 Synthesis of 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide 2,2,2-trifluoroacetate
  • Figure US20210093618A1-20210401-C01212
  • Following the procedure as described in Example 470 step 6, and making variation as required to replace cyclopropanesulfonamide with methanesulfonamide, the title compound was obtained as a colorless solid (0.35 g, 45%): 1H NMR (300 MHz, DMSO-d6) δ 12.32 (br s, 1H), 9.46 (br s, 1H), 7.67-7.51 (m, 3H), 7.29 (d, J=7.2 Hz, 1H), 4.97 (s, 1H), 4.42 (s, 2H), 4.01 (s, 2H), 3.34 (s, 3H), 2.44-2.26 (m, 6H), 2.22-2.06 (m, 3H), 1.03-0.96 (m, 2H), 0.81-0.74 (m, 2H); MS(ES−) m/z 591.1, 593.1 (M−1).
  • Example 472 Synthesis of 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-4-methylpiperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01213
  • Step 1. Preparation of tert-butyl 4-(bromomethyl)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01214
  • To a cold (0° C.) mixture of tert-butyl 5-cyclopropyl-2-fluoro-4-(hydroxymethyl)benzoate (1.0 g, 3.80 mmol) and triphenylphosphine (1.48 g, 5.60 mmol) in anhydrous tetrahydrofuran (20 mL) was added tetrabromomethane (1.87 g, 5.60 mmol) and the reaction mixture was stirred for 3 hours at 0° C. After concentration in vacuo, the residue was purified by flash chromatography (0 to 20% ethyl acetate in hexanes) to afford the title compound as an off-white solid (1.24 g, quant. yield): 1H NMR (300 MHz, CDCl3) δ7.52 (d, J=7.2 Hz, 1H), 7.06 (d, J=10.8 Hz, 1H), 4.62 (s, 2H), 2.04-1.92 (m, 1H), 1.56 (s, 9H), 1.04-0.96 (m, 2H), 0.74-0.67 (m, 2H).
  • Step 2. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-hydroxy-4-methylpiperidin-1-yl)methyl)benzoate
  • Figure US20210093618A1-20210401-C01215
  • Following the procedure as described in Example 470 step 4, and making variations as required to replace (1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]-octane with 4-hydroxy-methylpiperidine, and to replace tert-butyl 5-cyclopropyl-2-fluoro-4-(((methylsulfonyl)oxy)methyl)benzoate with tert-butyl 4-(bromomethyl)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as an orange oil (1.10 g, 81%): 1H NMR (300 MHz, CDCl3) δ 7.47 (d, J=7.2 Hz, 1H), 7.17 (d, J=11.9 Hz, 1H), 3.64 (s, 2H), 2.59-2.49 (m, 2H), 2.47-2.36 (m, 2H), 1.99-1.88 (m, 1H), 1.73-1.51 (m, 14H), 1.24 (s, 3H), 0.93-0.85 (m, 2H), 0.63-0.57 (m, 2H).
  • Step 3. Preparation of tert-butyl 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-4-methylpiperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01216
  • To a mixture of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-hydroxy-4-methylpiperidin-1-yl)methyl)benzoate (1.08 g, 2.96 mmol) and 2,5-dichloro-4-(trifluoromethyl)pyridine (0.96 g, 4.40 mmol) in anhydrous tetrahydrofuran (5 mL) was added lithium bis(trimethylsilyl)amide (1.0 M in tetrahydrofuran, 4.4 mL, 4.4 mmol) and the reaction mixture was heated at 80-100° C. for 48 hours. After cooling to ambient temperature, the reaction mixture was diluted with ethyl acetate (100 mL). The organic phase was washed with 1 M aqueous hydrochloric acid solution (10 ml), water (2×10 mL), brine (10 mL), and dried over anhydrous sodium sulfate. Filtration and concentration of the filtrate provided a residue which was purified by flash chromatography (0 to 20% ethyl acetate in hexanes) to afford the title compound as a colorless oil (0.19 g, 12%): 1H NMR (300 MHz, CDCl3) δ8.16 (s, 1H), 7.47 (d, J=7.3 Hz, 1H), 7.17 (d, J=11.8 Hz, 1H), 6.98 (s, 1H), 3.62 (s, 2H), 2.62-2.53 (m, 2H), 2.43-2.30 (m, 4H), 1.99-1.88 (m, 1H), 1.83-1.71 (m, 2H), 1.60 (s, 3H), 1.58 (d, J=13.7 Hz, 9H), 0.93-0.85 (m, 2H), 0.63-0.57 (m, 2H); MS(ES+) m/z 543.2, 545.2 (M+1).
  • Step 4. Preparation of 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-4-methylpiperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01217
  • Following the procedure as described in Example 470 step 5, and making variation as required to replace tert-butyl 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)-phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoate with tert-butyl 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-4-methylpiperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a yellowish solid (0.17 g, quant. yield): MS(ES+) m/z 485.2, 487.1 (M+1).
  • Step 5. Preparation of 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-4-methylpiperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide 2,2,2-trifluoroacetate
  • Figure US20210093618A1-20210401-C01218
  • Following the procedure as described in Example 470 Step 6, and making variation as required to replace 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-4-methylpiperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.07 mg, 31%): 1H NMR (300 MHz, DMSO-d6) δ 12.47 (br s, 1H), 9.24 (br s, 1H), 8.22 (s, 1H), 7.74 (d, J=7.4 Hz, 1H), 7.49 (d, J=11.8 Hz, 1H), 7.03 (s, 1H), 4.46 (s, 2H), 3.58-3.44 (m, 2H), 3.12-2.97 (m, 3H), 2.78-2.67 (m, 2H), 2.28-2.11 (m, 2H), 1.91-1.80 (m, 1H), 1.59 (s, 3H), 1.48-1.40 (m, 2H), 1.19-1.11 (m, 2H), 1.10-1.02 (m, 2H), 0.76-0.69 (m, 2H); MS(ES−) m/z 588.1, 590.0 (M−1).
  • Example 473 Synthesis of 4-((4-((5-bromo-3-chloropyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01219
  • Step 1. Preparation of tert-butyl 4-((5-bromo-3-chloropyridin-2-yl)oxy)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01220
  • To a mixture of sodium hydride (60% dispersion in mineral oil, 0.44 g, 10.00 mmol) in anhydrous dimethylformamide (20 mL) was added 1-Boc-4-hydroxypiperidine (2.00 g, 10.00 mmol). The reaction mixture was stirred for 1 hour at ambient temperature, after which 5-bromo-2,3-dichloropyridine (2.27 g, 10.00 mmol) was added. The reaction mixture was heated to 70° C. for 16 hours. After cooling to ambient temperature, the reaction mixture was partitioned between water (50 mL) and ethyl acetate (200 mL). The organic phase was washed with brine (20 mL), dried over anhydrous sodium sulfate, and filtered. Concentration of the filtrate in vacuo provided the title compound as yellowish oil (3.90 g, quant. yield), which was used without further purification: MS(ES+) m/z 335.0, 337.0 (M−55).
  • Step 2. Preparation of 5-bromo-3-chloro-2-(piperidin-4-yloxy)pyridine
  • Figure US20210093618A1-20210401-C01221
  • Following the procedure as described in Example 470 step 3, and making variation as required to replace (1R,3r,5S)-tert-butyl 3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octane-8-carboxylate with tert-butyl 4-((5-bromo-3-chloropyridin-2-yl)oxy)piperidine-1-carboxylate, the title compound was isolated as a yellowish oil (2.90 g, quant. yield): MS (ES+) m/z 291.0, 293.0, 295.0 (M+1).
  • Step 3. Preparation of tert-butyl 4-((4-((5-bromo-3-chloropyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01222
  • Following the procedure as described in Example 470 Step 4, and making variation as required to replace (1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]-octane with 5-bromo-3-chloro-2-(piperidin-4-yloxy)pyridine, the title compound was obtained as a yellowish solid (2.70 g, quant. yield): MS(ES+) m/z 539.2, 541.2 (M+1).
  • Step 4: Preparation of 4-((4-((5-bromo-3-chloropyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01223
  • Following the procedure as described in Example 470 step 5, and making variation as required to replace tert-butyl 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)-phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoate with tert-butyl 4-((4-((5-bromo-3-chloropyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate, the title compound was isolated as an off-white solid (1.09 g, quant. yield): MS(ES+) m/z 483.0, 485.0 (M+1).
  • Step 5: Preparation of 4-((4-((5-bromo-3-chloropyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01224
  • To a mixture of 4-((4-((5-bromo-3-chloropyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride (1.09 g, 2.10 mmol) in anhydrous tetrahydrofuran (10 mL) was added 1,1′-carbonyldiimidazole (0.68 g, 4.20 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (0.63 mL, 4.20 mmol) and the reaction mixture was heated at 70° C. for 30 minutes. After cooling to ambient temperature, cyclopropanesulfonamide (0.51 g, 4.20 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (0.63 mL, 4.20 mmol) was added and the reaction mixture was heated at 70° C. for 4 hours. After cooling to ambient temperature, the reaction mixture was diluted with ethyl acetate (200 mL). The organic phase washed with hydrochloric acid (1 N, 10 mL), water (10 mL), brine (10 mL), and dried over anhydrous sodium sulfate. Filtration and concentration of the filtrate in vacuo provided the crude product (0.78 g). Half of the crude material (0.39 g) was purified by reverse phase preparative HPLC to give the title compound as a colorless solid (0.20 g, 14%): 1H NMR (300 MHz, DMSO-d6) δ 12.38 (br s, 1H), 9.38 (br s, 1H), 8.07 (s, 1H), 7.79 (d, J=2.1 Hz, 1H), 7.74 (d, J=7.3 Hz, 1H), 7.47 (d, J=11.8 Hz, 1H), 5.45 (s, 1H), 4.52 (s, 2H), 3.61-3.45 (m, 2H), 3.27-3.11 (m, 2H), 3.11-3.00 (m, 1H), 2.43-2.27 (m, 2H), 2.27-2.14 (m, 2H), 1.95-1.83 (m, 1H), 1.48-1.38 (m, 2H), 1.18-1.05 (m, 4H), 0.79-0.72 (m, 2H); MS(ES−) m/z 584.0, 586.0, 588.0 (M−1).
  • Example 474 Synthesis of 4-((4-((3-chloro-5-cyclopropylpyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide hydrochloride
  • Figure US20210093618A1-20210401-C01225
  • To a mixture of 4-((4-((5-bromo-3-chloropyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide (0.39 g, 0.67 mmol), cyclopropylboronic acid (0.17 g, 2.00 mmol), potassium phosphate tribasic (0.57 g, 2.7 mmol) in dioxane (10 mL) was added tetrakis(triphenylphosphine)palladium(0) (0.08 g, 0.07 mmol). The reaction mixture was degassed by passing a stream of argon through it and then heated at 110° C. in a sealed vial for 16 hours. After cooling to ambient temperature, the reaction mixture was filtered over diatomaceous earth. The filter cake was washed with dichloromethane (50 mL), and the combined filtrate was concentrated in vacuo. The residue was purified by reverse phase HPLC (acetonitrile in water with 0.1% ammonium hydroxide). The combined fractions were adjusted to pH 1-2 with 1 N hydrochloric acid, and extracted with dichloromethane (3×30 mL). The organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate concentrated in vacuo to give the title compound as an off-white solid (0.1 g, 29%): 1H NMR (300 MHz, DMSO-d6) δ 12.66 (br s, 1H), 9.22 (br s, 1H), 8.15 (d, J=11.6 Hz, 1H), 7.83 (d, J=2.0 Hz, 1H), 7.78 (d, J=7.5 Hz, 1H), 7.29 (d, J=2.1 Hz, 1H), 5.40 (s, 1H), 4.39 (s, 2H), 3.37-3.00 (m, 5H), 2.70-2.50 (m, 2H), 2.24-2.07 (m, 2H), 2.01-1.88 (m, 1H), 1.86-1.75 (m, 1H), 1.50-1.40 (m, 2H), 1.19-1.03 (m, 4H), 1.00-0.92 (m, 2H), 0.77-0.70 (m, 2H), 0.64-0.57 (m, 2H); MS(ES+) m/z 548.2, 550.2 (M+1).
  • Example 475 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-(((1R,3r,5S)-3-(3,5-dichlorophenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-2-fluorobenzamide hydrochloride
  • Figure US20210093618A1-20210401-C01226
  • Step 1. Preparation of (1R,3r,5S)-tert-butyl 3-(3,5-dichlorophenoxy)-8-azabicyclo[3.2.1]octane-8-carboxylate
  • Figure US20210093618A1-20210401-C01227
  • To a mixture of (1R,3r,5S)-tert-butyl 3-hydroxy-8-azabicyclo[3.2.1]octane-8-carboxylate (5.00 g, 22.00 mmol) in toluene (50 mL) was added 3,5-dichloroiodobenzene (6.00 g, 22.00 mmol), cesium carbonate (21.50 g, 66.00 mmol), copper(I) iodide (0.63 g, 3.30 mmol), 3,4,7,8-tetramethyl-1,10-phenantroline (1.60 g, 6.60 mmol) and molecular sieves (4A, 5.00 g). The reaction mixture was degassed by passing a stream of argon through it and then heated at 80° C. in a sealed vial for 120 hours. After cooling to ambient temperature, the reaction mixture was diluted with ethyl acetate (150 mL) and filtered over diatomaceous earth. Concentration of the filtrate in vacuo gave a residue which was purified by flash chromatography (0 to 20% ethyl acetate in hexanes) to afford the title compound as a yellowish oil (3.80 g, 46%): 1H NMR (300 MHz, CDCl3) δ6.93-6.90 (m, 1H), 6.71-6.69 (m, 2H), 4.59-4.53 (m, 1H), 4.28-4.09 (m, 2H), 2.24-1.85 (m, 8H), 1.45 (s, 9H); MS(ES+) m/z 316.1, 318.1 (M−55).
  • Step 2. Preparation of (1R,3r,5S)-3-(3,5-dichlorophenoxy)-8-azabicyclo[3.2.1]octane
  • Figure US20210093618A1-20210401-C01228
  • Following the procedure as described in Example 470 Step 3, and making variation as required to replace (1R,3r,5S)-tert-butyl 3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octane-8-carboxylate with (1R,3r,5S)-tert-butyl 3-(3,5-dichlorophenoxy)-8-azabicyclo[3.2.1]octane-8-carboxylate, the title compound was isolated as an off-white solid (2.80 g, quant. yield): MS (ES+) m/z 272.1, 274.1 (M+1).
  • Step 3. Preparation of tert-butyl 5-cyclopropyl-4-(((1R,3r,5S)-3-(3,5-dichlorophenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01229
  • Following the procedure as described in Example 470 step 4, and making variation as required to replace (1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]-octane with (1R,3r,5S)-3-(3,5-dichlorophenoxy)-8-azabicyclo[3.2.1]octane, the title compound was obtained as an off-white foam (4.50 g, 86%): 1H NMR (300 MHz, CDCl3) δ7.47 (d, J=7.3 Hz, 1H), 7.32 (d, J=12.1 Hz, 1H), 6.92-6.89 (m, 1H), 6.72-6.69 (m, 2H), 4.54-4.46 (m, 1H), 3.65 (s, 2H), 3.14 (s, 2H), 2.19-2.09 (m, 2H), 2.07-1.99 (m, 4H), 1.95-1.85 (m, 3H), 1.57 (s, 9H), 0.93-0.85 (m, 2H), 0.64-0.58 (m, 2H); MS(ES+) m/z 520.2, 522.2 (M+1).
  • Step 4. Preparation of 5-cyclopropyl-4-(((1R,3r,5S)-3-(3,5-dichlorophenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01230
  • Following the procedure as described in Example 470 Step 5, and making variation as required to replace tert-butyl 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)-phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoate with tert-butyl 5-cyclopropyl-4-(((1R,3r,5S)-3-(3,5-dichlorophenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid after trituration with diethyl ether (4.40 g, quant. yield): 1H NMR (300 MHz, DMSO-d6) δ13.43 (br s, 1H), 10.56 (br s, 1H), 7.92 (d, J=11.6 Hz, 1H), 7.49 (d, J=7.3 Hz, 1H), 7.17-7.09 (m, 3H), 4.84-4.78 (m, 1H), 4.48-4.38 (m, 2H), 3.98 (s, 2H), 2.77-2.65 (m, 2H), 2.40-2.02 (m, 7H), 1.07-0.97 (m, 2H), 0.76-0.66 (m, 2H); MS(ES+) m/z 464.1, 466.1 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-(((1R,3r,5S)-3-(3,5-dichlorophenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-2-fluorobenzamide hydrochloride
  • Figure US20210093618A1-20210401-C01231
  • A mixture of 5-cyclopropyl-4-(((1R,3r,5S)-3-(3,5-dichlorophenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-2-fluorobenzoic acid hydrochloride (4.00 g, 8.00 mmol), cyclopropanesulfonamide (1.16 g, 9.60 mmol), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (1.84 g, 9.60 mmol), and 4-dimethylaminopyridine (3.52 g, 28.80 mmol) in anhydrous dichloromethane (50 mL) and anhydrous tetrahydrofuran (50 mL) was stirred at ambient temperature for 16 hours. Additional cyclopropanesulfonamide (1.16 g, 9.60 mmol), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (1.84 g, 9.60 mmol), and 4-dimethylaminopyridine (3.52 g, 28.80 mmol) was added and the reaction mixture was stirred for another 16 hours at ambient temperature. The reaction mixture was partitioned between ethyl acetate (300 mL) and 1M aqueous hydrochloric acid solution (20 mL). The organic phase was washed with hydrochloric acid (1 N, 20 mL), water (20 mL) and brine (2×10 mL), dried over anhydrous sodium sulfate and filtered. After concentration of the filtrate in vacuo, the obtained solid residue was triturated with acetonitrile (100 mL) and filtered off. The solid was re-dissolved in dichloromethane (50 mL), filtered and concentrated in vacuo. The residue was dryed in vacuo at 40-50° C. provided the title compound as a colorless solid (2.45 g, 51%): 1H NMR (300 MHz, CDCl3/CD3OD) δ 8.42 (d, J=12.3 Hz, 1H), 7.73 (d, J=7.4 Hz, 1H), 6.97 (t, J=1.6, 1H), 6.71 (d, J=1.7 Hz, 2H), 4.73-4.67 (m, 1H), 4.45 (s, 2H), 3.84 (br s, 2H), 3.33-3.21 (m, 2H), 3.12-3.02 (m, 1H), 2.52-2.42 (m, 2H), 2.33-2.21 (m, 2H), 2.18-2.09 (m, 2H), 1.93-1.82 (m, 1H), 1.50-1.42 (m, 2H), 1.19-1.10 (m, 2H), 1.10-1.01 (m, 2H), 0.78-0.70 (m, 2H); MS(ES−) m/z 567.1, 569.0 (M+1).
  • Example 476 Synthesis of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((4-((5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01232
  • Step 1. Preparation of tert-butyl 4-((5-(trifluoromethyl)pyridin-2-yl)oxy)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01233
  • Following the procedure as described in Example 470 step 1, and making variation as required to replace 5-bromo-2,3-dichloropyridine with 2-chloro-5-trifluoromethylpyridine, the title compound was isolated as a colorless solid (3.65 g, quant. yield): MS(ES+) m/z 291.1 (M−55).
  • Step 2. Preparation of 2-(piperidin-4-yloxy)-5-(trifluoromethyl)pyridine
  • Figure US20210093618A1-20210401-C01234
  • Following the procedure as described in Example 470 step 3, and making variation as required to replace (1R,3r,5S)-tert-butyl 3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octane-8-carboxylate with tert-butyl 4-((5-(trifluoromethyl)pyridin-2-yl)oxy)piperidine-1-carboxylate, the title compound was obtained as an off-white solid (2.40 g, quant. yield): 1H NMR (300 MHz, CDCl3) δ8.38 (d, J=0.7 Hz, 1H), 7.75 (dd, J=8.7, 2.4 Hz, 1H), 6.78 (d, J=8.7 Hz, 1H), 6.48 (s, 1H), 5.36-5.22 (m, 1H), 3.30-3.16 (m, 2H), 3.06-2.93 (m, 2H), 2.22-2.10 (m, 2H), 1.97-1.83 (m, 2H); MS (ES+) m/z 247.2 (M+1).
  • Step 3. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-((5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)benzoate
  • Figure US20210093618A1-20210401-C01235
  • Following the procedure as described in Example 470 step 4, and making variation as required to replace (1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]-octane with 2-(piperidin-4-yloxy)-5-(trifluoromethyl)pyridine, the title compound was obtained as light yellowish oil (2.50 g, quant. yield): MS(ES+) m/z 495.2 (M+1).
  • Step 4. Preparation of 5-cyclopropyl-2-fluoro-4-((4-((5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin 1-yl)methyl)benzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01236
  • Following the procedure as described in Example 470 step 5, and making variation as required to replace tert-butyl 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)-phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-((4-((5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)benzoate, the title compound was obtained as a colorless solid (1.10 g, 95%): MS(ES+) m/z 439.1 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((4-((5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01237
  • Following the procedure as described in Example 470 Step 6, and making variations as required to replace 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with 5-cyclopropyl-2-fluoro-4-((4-((5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)benzoic acid hydrochloride and cyclopropanesulfonamide with methanesulfonamide, the title compound was obtained as a colorless solid (0.24 g, 33%): 1H NMR (300 MHz, DMSO-d6) δ 12.44 (br s, 1H), 9.94 (br s, 1H), 8.40 (s, 1H), 7.80 (dd, J=8.7, 1.9 Hz, 1H), 7.68 (d, J=7.3 Hz, 1H), 7.48 (d, J=11.7 Hz, 1H), 6.83 (d, J=8.7 Hz, 1H), 5.46 (s, 1H), 4.52 (s, 2H), 3.81-3.42 (m, 2H), 3.37 (s, 3H), 3.31-2.88 (m, 2H), 2.44-2.29 (m, 2H), 2.29-2.14 (m, 2H), 1.96-1.84 (m, 1H), 1.16-1.02 (m, 2H), 0.80-0.71 (m, 2H); MS(ES−) m/z 514.2 (M−1).
  • Example 477 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((4-((5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01238
  • Following the procedure as described in Example 470 step 6, and making variation as required to replace 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with 5-cyclopropyl-2-fluoro-4-((4-((5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)benzoic acid hydrochloride, the title compound was obtained as a colorless solid (0.31 g, 40%): 1H NMR (300 MHz, DMSO-d6) δ12.88 (br s, 1H), 9.49 (br s, 1H), 8.40 (s, 1H), 7.80 (dd, J=8.7, 2.1 Hz, 1H), 7.72 (d, J=7.4 Hz, 1H), 7.49 (d, J=11.9 Hz, 1H), 6.83 (d, J=8.7 Hz, 1H), 5.45 (s, 1H), 4.50 (s, 2H), 3.75-3.31 (m, 2H), 3.28-2.83 (m, 3H), 2.46-2.29 (m, 2H), 2.28-2.14 (m, 2H), 1.98-1.83 (m, 1H), 1.47-1.37 (m, 2H), 1.19-1.04 (m, 4H), 0.79-0.71 (m, 2H); MS(ES−) m/z 540.2 (M−1).
  • Example 478 Synthesis of 4-((4-((2-chloro-4-fluorobenzyl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01239
  • Step 1. Preparation of tert-butyl 4-((2-chloro-4-fluorobenzyl)oxy)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01240
  • To a mixture of 1-Boc-4-hydroxypiperidine (2.00 g, 10.00 mmol) in anhydrous dimethylformamide (20 mL) was added sodium hydride (60% dispersion in mineral oil, 0.40 g, 10.10 mmol) at 0° C. The reaction mixture was allowed to warm to ambient temperature and stirred for 1 hour. To this reaction mixture was added 2-chloro-4-fluorobenzylbromide (2.45 g, 11.00 mmol) and tetrabutylammonium iodide (0.37 g, 1.00 mmol) and the reaction mixture was stirred for 48 hours at ambient temperature. After addition of water (20 mL) and dilution with ethyl acetate (200 mL), the organic phase was washed with water (3×20 mL), brine (20 mL), and dried over anhydrous sodium sulfate. Filtration and concentration of the filtrate in vacuo provided the title compound as yellowish oil (3.50 g, quant. yield), which was used without further purification: MS(ES+) m/z 288.1, 290.1 (M−55).
  • Step 2. Preparation of 4-((2-chloro-4-fluorobenzyl)oxy)piperidine
  • Figure US20210093618A1-20210401-C01241
  • Following the procedure as described in Example 470 step 3, and making variation as required to replace (1R,3r,5S)-tert-butyl 3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octane-8-carboxylate with tert-butyl 4-((2-chloro-4-fluorobenzyl)oxy)piperidine-1-carboxylate, the title compound was obtained as a yellowish oil (1.70 g, 71%): 1H NMR (300 MHz, CDCl3) δ 7.46 (dd, J=8.4, 6.4 Hz, 1H), 7.08 (dd, J=8.5, 2.6 Hz, 1H), 6.96 (dt, J=8.4, 8.3, 2.6 Hz, 1H), 4.56 (s, 2H), 3.56-3.43 (m, 1H), 3.14-3.04 (m, 2H), 2.68-2.54 (m, 2H), 2.02-1.91 (m, 2H), 1.88-1.79 (m, 1H), 1.58-1.43 (m, 2H).
  • Step 3. Preparation of tert-butyl 4-((4-((2-chloro-4-fluorobenzyl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01242
  • Following the procedure as described in Example 470 step 4, and making variation as required to replace (1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]-octane with 4-((2-chloro-4-fluorobenzyl)oxy)piperidine, the title compound was obtained as a yellowish oil (3.40 g, 97%): MS(ES+) m/z 492.2, 494.2 (M+1).
  • Step 4. Preparation of 4-((4-((2-chloro-4-fluorobenzyl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01243
  • To a mixture of tert-butyl 4-((4-((2-chloro-4-fluorobenzyl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate (3.41 g, 6.90 mmol) in dichloromethane (40 mL) was added trifluoroacetic acid (5 mL) and the reaction mixture was stirred at ambient temperature for 16 hours. Concentration of the reaction mixture in vacuo provided the title compound as an off-white solid (3.20 g, 84%): MS(ES+) m/z 436.1, 438.1 (M+1).
  • Step 5. Preparation of 4-((4-((2-chloro-4-fluorobenzyl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01244
  • Following the procedure as described in Example 470 step 6, and making variations as required to replace 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with 4-((4-((2-chloro-4-fluorobenzyl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid, trifluoroacetic acid salt and to replace cyclopropanesulfonamide with methanesulfonamide, the title compound was obtained as a colorless solid (0.52 g, 53%): 1H NMR (300 MHz, DMSO-d6) δ11.46 (br s, 1H), 9.97 (br s, 1H), 7.68 (d, J=7.4 Hz, 1H), 7.43 (d, J=11.9 Hz, 1H), 7.37 (dd, J=8.4, 6.3 Hz, 1H), 7.13 (dd, J=8.4, 2.3 Hz, 1H), 6.99 (dt, J=8.3, 8.3, 2.4 Hz, 1H), 4.52 (s, 2H), 4.46 (s, 2H), 3.85 (br s, 1H), 3.50-3.40 (m, 2H), 3.37 (s, 3H), 3.25-3.09 (m, 2H), 2.24-2.02 (m, 4H), 1.91-1.80 (m, 1H), 1.12-1.03 (m, 2H), 0.77-0.69 (m, 2H); MS(ES+) m/z 513.2, 515.2 (M+1).
  • Example 479 Synthesis of N-(azetidin-1-ylsulfonyl)-4-((4-((2-chloro-4-fluorobenzyl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01245
  • Following the procedure as described in Example 470 step 6, and making variations as required to replace 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with 4-((4-((2-chloro-4-fluorobenzyl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid, trifluoroacetic acid salt and to replace cyclopropanesulfonamide with azetidine-1-sulfonamide, the title compound was obtained as a colorless solid (0.18 g, 17%): 1H NMR (300 MHz, DMSO-d6) δ13.04 (br s, 1H), 9.04 (br s, 1H), 7.75 (d, J=7.5 Hz, 1H), 7.52 (d, J=12.1 Hz, 1H), 7.37 (dd, J=8.4, 6.2 Hz, 1H), 7.13 (dd, J=8.4, 2.5 Hz, 1H), 6.99 (dt, J=8.3, 8.3, 2.6 Hz, 1H), 4.53 (s, 2H), 4.43 (s, 2H), 4.23 (t, J=7.7, 7.7 Hz, 4H), 3.84 (br s, 1H), 3.48-3.33 (m, 2H), 3.22-3.05 (m, 2H), 2.34-2.14 (m, 4H), 2.13-2.01 (m, 3H), 1.13-1.04 (m, 2H), 0.78-0.71 (m, 2H); MS (ES+) m/z 554.2, 556.2 (M+1).
  • Example 480 Synthesis of 4-((4-((2-chloro-4-fluorobenzyl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01246
  • Following the procedure as described in Example 470 step 6, and making variation as required to replace 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with 4-((4-((2-chloro-4-fluorobenzyl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid 2,2,2-trifluoroacetate, the title compound was obtained as a colorless solid (0.62 g, 60%): 1H NMR (300 MHz, DMSO-d6) δ12.13 (br s, 1H), 9.34 (br s, 1H), 7.72 (d, J=7.4 Hz, 1H), 7.46 (d, J=11.9 Hz, 1H), 7.37 (dd, J=8.5, 6.1 Hz, 1H), 7.13 (dd, J=8.4, 2.4 Hz, 1H), 6.99 (dt, J=8.3, 8.3, 2.6 Hz, 1H), 4.52 (s, 2H), 4.45 (s, 2H), 3.85 (s, 1H), 3.50-3.37 (m, 2H), 3.22-2.99 (m, 3H), 2.28-2.01 (m, 4H), 1.92-1.80 (m, 1H), 1.48-1.39 (m, 2H), 1.19-1.03 (m, 4H), 0.77-0.70 (m, 2H); MS(ES+) m/z 539.2, 541.1 (M+1).
  • Example 481 Synthesis of 4-((1-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01247
  • Step 1. Preparation of tert-butyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)-3-methylazetidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01248
  • Following the procedure as described in Example 3 step 1, and making variation as required to (R)-tert-butyl 3-hydroxypiperidine-1-carboxylate with 1-Boc-3-(hydroxymethyl)-3-methylazetidine and purification by flash chromatography (0 to 40% ethyl acetate in hexanes), the title compound was obtained as a yellowish oil (12.40 g, 81%): 1H NMR (300 MHz, CDCl3) δ 7.86 (d, J=7.6 Hz, 1H), 6.62 (d, J=11.9 Hz, 1H), 3.95 (s, 2H), 3.90 (d, J=8.5 Hz, 2H), 3.66 (d, J=8.5 Hz, 2H), 1.56 (s, 9H), 1.42 (s, 9H), 1.41 (s, 3H); MS(ES+) m/z 430.1, 432.1 (M+1).
  • Step 2. Preparation of tert-butyl 3-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-3-methylazetidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01249
  • Following the procedure as described in Example 3 step 2, and making variation as required to (R)-tert-butyl 3-(4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)piperidine-1-carboxylate with tert-butyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)-3-methylazetidine-1-carboxylate, the title compound was obtained as a brownish gum (10.80 g, 86%): 1H NMR (300 MHz, CDCl3) δ7.40 (d, J=8.3 Hz, 1H), 6.50 (d, J=12.4 Hz, 1H), 3.95 (d, J=8.4 Hz, 2H), 3.90 (s, 2H), 3.64 (d, J=8.4 Hz, 2H), 1.98-1.87 (m, 1H), 1.55 (s, 9H), 1.41 (s, 9H), 1.40 (s, 3H), 0.91-0.82 (m, 2H), 0.62-0.56 (m, 2H).
  • Step 3. Preparation of methyl 5-cyclopropyl-2-fluoro-4-((3-methylazetidin-3-yl)methoxy)benzoate hydrochloride
  • Figure US20210093618A1-20210401-C01250
  • Thionyl chloride (9.0 mL) was added slowly methanol (200 mL) at 0° C. and the mixture was stirred for 1 hour at 0° C. A solution of tert-butyl 3-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-3-methylazetidine-1-carboxylate (10.80 g, 24.80 mmol) in methanol (20 mL) was then added and the reaction mixture was heated under reflux for 6 hours. After cooling to ambient temperature, the reaction mixture was stirred for 16 hours and then concentrated in vacuo. The residue was co-evaporated with toluene (3×10 mL) and triturated in hexanes (20 mL) to provide the title compound as a brownish gum (8.20 g, quant. yield): 1H NMR (300 MHz, CDCl3) δ9.98 (br s, 1H), 9.79 (br s, 1H), 7.47 (d, J=8.2 Hz, 1H), 6.57 (d, J=12.2 Hz, 1H), 4.26-4.15 (m, 2H), 4.01 (s, 2H), 3.86 (s, 3H), 3.86-3.79 (m, 2H), 2.11-2.01 (m, 1H), 1.55 (s, 3H), 1.01-0.93 (m, 2H), 0.62-0.56 (m, 2H); MS(ES+) m/z 294.2 (M+1).
  • Step 4. Preparation of methyl 4-((1-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01251
  • To a mixture of methyl 5-cyclopropyl-2-fluoro-4-((3-methylazetidin-3-yl)methoxy)benzoate hydrochloride (0.60 g, 1.82 mmol) in toluene (10 mL) was added 2-bromo-3-chloro-5-(trifluoromethyl)pyridine (0.71 g, 2.73 mmol), cesium carbonate (1.78 g, 5.46 mmol), bis(dibenzylideneacetone)palladium(0) (0.21 g, 0.36 mmol) and 2,2′-bis(diphenyl-phosphino)-1,1′-binaphthalene (0.22 g, 0.36 mmol). The reaction mixture was degassed by passing a stream of argon through it and then heated at 110° C. in a sealed vial for 16 hours. After cooling to ambient temperature, the reaction mixture was filtered over diatomaceous earth. The filter cake was washed with ethyl acetate (50 mL) and the combined filtrate was concentrated in vacuo. Purification of the residue by purification by flash chromatography (0 to 25% ethyl acetate in hexanes) provided the title compound as an orange gum (0.60 g, 70%): 1H NMR (300 MHz, CDCl3) δ8.24-8.22 (m, 1H), 7.56 (d, J=2.0 Hz, 1H), 7.45 (d, J=8.3 Hz, 1H), 6.56 (d, J=12.5 Hz, 1H), 4.39 (d, J=9.0 Hz, 2H), 4.08 (d, J=9.0 Hz, 2H), 4.00 (s, 2H), 3.86 (s, 3H), 1.88-1.74 (m, 1H), 1.48 (s, 3H), 0.75-0.68 (m, 2H), 0.59-0.53 (m, 2H).
  • Step 5. Preparation of 4-((1-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01252
  • To a mixture of methyl 4-((1-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate (0.60 g, 1.27 mmol) in tetrahydrofuran (5 mL) was added a solution of lithium hydroxide monohydrate (0.29 g, 6.95 mmol) in water (5 mL) and the reaction mixture was heated at 80° C. for 3 hours. After cooling to ambient temperature, the reaction mixture was partitioned between dichloromethane (50 mL) and 1 M aqueous hydrochloric acid solution (10 mL). The organic phase was dried over anhydrous sodium sulfate, filtered, and the filtrate concentrated in vacuo to provide the title compound as an off-white solid (0.58 g, 99%): MS(ES+) m/z 459.0, 461.0 (M+1).
  • Step 6. Preparation of 4-((1-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01253
  • Following the procedure as described in Example 470 Step 6, and making variation as required to replace 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with 4-((1-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and purification by flash chromatography (0 to 50% ethyl acetate containing 0.1% trifluoroacetic acid in hexanes), the title compound was obtained as an off-white solid (0.19 g, 54%): 1H NMR (300 MHz, DMSO-d6) δ11.85 (br s, 1H), 8.40-8.38 (m, 1H), 7.99 (d, J=1.9 Hz, 1H), 7.12 (d, J=8.3 Hz, 1H), 7.01 (d, J=12.9 Hz, 1H), 4.35 (d, J=9.0 Hz, 2H), 4.12 (s, 2H), 4.06 (d, J=9.0 Hz, 2H), 3.12-3.02 (m, 1H), 1.80-1.69 (m, 1H), 1.43 (s, 3H), 1.15-1.07 (m, 4H), 0.64-0.58 (m, 4H); MS(ES−) m/z 560.1, 562.1 (M−1).
  • Example 482 Synthesis of 4-((1-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(ethylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01254
  • Following the procedure as described in Example 470 step 6, and making variation as required to replace 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with 4-((1-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and cyclopropanesulfonamide with ethanesulfonamide and purification by flash chromatography (0 to 50% ethyl acetate containing 0.1% trifluoroacetic acid in hexanes), the title compound was obtained as an off-white solid (0.19 g, 56%): 1H NMR (300 MHz, DMSO-d6) δ 11.83 (br s, 1H), 8.40-8.38 (m, 1H), 7.99 (d, J=2.1 Hz, 1H), 7.12 (d, J=8.3 Hz, 1H), 7.00 (d, J=12.8 Hz, 1H), 4.35 (d, J=9.0 Hz, 2H), 4.12 (s, 2H), 4.06 (d, J=9.0 Hz, 2H), 3.46 (q, J=7.3 Hz, 2H), 1.81-1.68 (m, 1H), 1.43 (s, 3H), 1.24 (t, J=7.3 Hz, 3H), 0.64-0.58 (m, 4H); MS(ES−) m/z 548.1, 550.1 (M−1).
  • Example 483 Synthesis of 4-((1-(5-chloro-3-fluoropyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01255
  • Step 1. Preparation of methyl 4-((1-(5-chloro-3-fluoropyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01256
  • Following the procedure as described in Example 481 step 4, and making variation as required to replace 2-bromo-3-chloro-5-(trifluoromethyl)pyridine with 2-bromo-5-chloro-3-fluoropyridine, the title compound was obtained as an orange gum (0.43 g, 56%): 1H NMR (300 MHz, CDCl3) δ7.87-7.85 (m, 1H), 7.44 (d, J=8.3 Hz, 1H), 7.16 (d, J=11.2 Hz, 1H), 6.56 (d, J=12.5 Hz, 1H), 4.18 (d, J=8.3 Hz, 2H), 4.01 (s, 2H), 3.89 (d, J=7.9 Hz, 2H), 3.86 (s, 3H), 1.87-1.75 (m, 1H), 1.48 (s, 3H), 0.77-0.68 (m, 2H), 0.60-0.53 (m, 2H).
  • Step 2. Preparation of 4-((1-(5-chloro-3-fluoropyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01257
  • Following the procedure as described in Example Example 481 step 5, and making variation as required to replace methyl 4-((1-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with methyl 4-((1-(5-chloro-3-fluoropyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as an off-white solid (0.41 g, 98%): MS(ES−) m/z 409.0, 411.0 (M−1).
  • Step 3. Preparation of 4-((1-(5-chloro-3-fluoropyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01258
  • Following the procedure as described in Example 470 step 6, and making variation as required to replace 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1 I]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with 4-((1-(5-chloro-3-fluoropyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and purification by flash chromatography (0 to 50% ethyl acetate containing 0.1% trifluoroacetic acid in hexanes), the title compound was obtained as an off-white solid (0.13 g, 51%): 1H NMR (300 MHz, DMSO-d6) δ11.85 (s, 1H), 7.97 (dd, J=2.0, 0.6 Hz, 1H), 7.74 (dd, J=11.8, 2.1 Hz, 1H), 7.12 (d, J=8.3 Hz, 1H), 7.00 (d, J=12.9 Hz, 1H), 4.16-4.10 (m, 4H), 3.85 (dd, J=8.3, 1.2 Hz, 2H), 3.12-3.02 (m, 1H), 1.80-1.69 (m, 1H), 1.43 (s, 3H), 1.16-1.07 (m, 4H), 0.68-0.58 (m, 4H); MS(ES−) m/z 510.1, 512.1 (M−1).
  • Example 484 Synthesis of 4-((1-(5-chloro-3-fluoropyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(ethylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01259
  • Following the procedure as described in Example 470 step 6, and making variation as required to replace 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with 4-((1-(5-chloro-3-fluoropyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and cyclopropanesulfonamide with ethanesulfonamide, the title compound was obtained as an off-white solid (0.08 g, 30%): 1H NMR (300 MHz, DMSO-d6) δ11.83 (br s, 1H), 7.97 (d, J=1.9 Hz, 1H), 7.74 (dd, J=11.8, 2.0 Hz, 1H), 7.12 (d, J=8.3 Hz, 1H), 7.00 (d, J=12.9 Hz, 1H), 4.17-4.09 (m, 4H), 3.85 (dd, J=8.3, 1.2 Hz, 2H), 3.46 (q, J=7.4, 7.3, 7.3 Hz, 2H), 1.81-1.70 (m, 1H), 1.43 (s, 3H), 1.24 (t, J=7.3, 7.3 Hz, 3H), 0.68-0.58 (m, 4H); MS(ES−) m/z 498.1, 500.1 (M−1).
  • Example 485 Synthesis of 4-((1-(5-chloro-6-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01260
  • Step 1. Preparation of methyl 4-((1-(5-chloro-6-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01261
  • Following the procedure as described in Example 481 step 4, and making variation as required to replace 2-bromo-3-chloro-5-(trifluoromethyl)pyridine with 3,6-dichloro-2-(trifluoromethyl)pyridine, the title compound was obtained as an orange gum (0.66 g, 51%): 1H NMR (300 MHz, CDCl3) δ7.48 (d, J=8.8 Hz, 1H), 7.43 (d, J=8.3 Hz, 1H), 6.55 (d, J=12.4 Hz, 1H), 6.36 (d, J=8.8 Hz, 1H), 4.10 (d, J=8.2 Hz, 2H), 3.99 (s, 2H), 3.86 (s, 3H), 3.81 (d, J=8.2 Hz, 2H), 1.82-1.70 (m, 1H), 1.50 (s, 3H), 0.74-0.65 (m, 2H), 0.58-0.52 (m, 2H).
  • Step 2. Preparation of 4-((1-(5-chloro-6-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01262
  • Following the procedure as described in Example 481 Step 5, and making variation as required to replace methyl 4-((1-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with methyl 4-((1-(5-chloro-6-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as an off-white solid (0.63 g, 99%): MS(ES+) m/z 459.0, 461.0 (M+1).
  • Step 3. Preparation of 4-((1-(5-chloro-6-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01263
  • Following the procedure as described in Example 470 step 6, and making variation as required to replace 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with -((1-(5-chloro-6-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and purification by flash chromatography (0 to 50% ethyl acetate containing 0.1% trifluoroacetic acid in hexanes), the title compound was obtained as a colorless solid (0.11 g, 28%): 1H NMR (300 MHz, DMSO-d6) δ11.85 (br s, 1H), 7.81 (d, J=8.9 Hz, 1H), 7.10 (d, J=8.3 Hz, 1H), 6.99 (d, J=12.9 Hz, 1H), 6.78-6.68 (m, 1H), 4.10 (s, 2H), 4.05 (d, J=8.5 Hz, 2H), 3.81 (d, J=8.5 Hz, 2H), 3.13-3.00 (m, 1H), 1.72-1.61 (m, 1H), 1.44 (s, 3H), 1.15-1.06 (m, 4H), 0.62-0.55 (m, 4H); MS(ES−) m/z 560.1, 562.1 (M−1).
  • Example 486 and Example 487 Synthesis of 4-((1-(4-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01264
  • And 4-((1-(2-chloro-5-(trifluoromethyl)pyridin-4-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01265
  • Step 1. Preparation of methyl 4-((1-(4-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate and methyl 4-((1-(2-chloro-5-(trifluoromethyl)pyridin-4-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01266
  • Following the procedure as described in Example 481 Step 4, and making variation as required to replace 2-bromo-3-chloro-5-(trifluoromethyl)pyridine with 2,4-dichloro-5-(trifluoromethyl)pyridine, a 2.5:1 mixture of the title compounds was obtained as an orange gum (0.40 g, 31%). Major isomer: 19F NMR (282 MHz, CDCl3) δ −55.5 (s, 3F), −108.8 (s, 1F). Minor isomer: 19F NMR (282 MHz, CDCl3) δ −60.5 (s, 3F), −108.9 (s, 1F).
  • Step 2. Preparation of 4-((1-(4-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and 4-((1-(2-chloro-5-(trifluoromethyl)pyridin-4-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01267
  • Following the procedure as described in Example 481 Step 5, and making variation as required to replace methyl 4-((1-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with a mixture of methyl 4-((1-(4-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate and methyl 4-((1-(2-chloro-5-(trifluoromethyl)pyridin-4-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate, a mixture of the title compounds was obtained as a yellowish solid (0.33 g, 76%): MS(ES+) m/z 459.1, 461.1 (M+1).
  • Step 3. Preparation of 4-((1-(4-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01268
  • And 4-((1-(2-chloro-5-(trifluoromethyl)pyridin-4-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01269
  • Following the procedure as described in Example 470 step 6, and making variation as required to replace 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with a mixture of 4-((1-(4-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid and 4-((1-(2-chloro-5-(trifluoromethyl)pyridin-4-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compounds were obtained after reverse phase HPLC purification: the first fraction is 4-((1-(2-Chloro-5-(trifluoromethyl)pyridin-4-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt (0.07 g, 18%): 1H NMR (300 MHz, DMSO-d6) δ 11.86 (br s, 1H), 8.27 (s, 1H), 7.14 (d, J=8.3 Hz, 1H), 7.02 (d, J=12.9 Hz, 1H), 6.58 (s, 1H), 4.19 (d, J=8.9 Hz, 2H), 4.14 (s, 2H), 3.96 (d, J=8.9 Hz, 2H), 3.13-3.02 (m, 1H), 1.88-1.76 (m, 1H), 1.42 (s, 3H), 1.16-1.07 (m, 4H), 0.66-0.58 (m, 4H); MS(ES+) m/z 562.1, 564.1 (M+1). The second fraction is 4-((1-(4-Chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt (0.19 g, 46%): 1H NMR (300 MHz, DMSO-d6) δ 11.85 (s, 1H), 8.39 (s, 1H), 7.11 (d, J=8.3 Hz, 1H), 7.01 (d, J=12.9 Hz, 1H), 6.75 (s, 1H), 4.14-4.07 (m, 4H), 3.86 (d, J=8.9 Hz, 2H), 3.12-3.02 (m, 1H), 1.76-1.64 (m, 1H), 1.44 (s, 3H), 1.14-1.07 (m, 4H), 0.64-0.58 (m, 4H); MS(ES+) m/z 562.1, 564.1 (M+1).
  • Example 488 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((3-methyl-1-(5-(trifluoromethyl)pyridin-2-yl)azetidin-3-yl)methoxy)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01270
  • To a mixture of 4-((1-(4-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt (0.10 g, 0.18 mmol) in ethyl acetate (5 mL) and acetic acid (1 mL) was added palladium on carbon (10 wt %, wet, 50 mg) and the reaction mixture was stirred under an atmosphere of hydrogen for 16 hours. The reaction mixture was filtered over diatomaceous earth, the filter cake washed with ethyl acetate (20 mL), and the combined filtrate concentrated in vacuo. Purification of the residue by reverse phase HPLC provided the title compound as a colorless solid (0.02 g, 16%): 1H NMR (300 MHz, DMSO-d6) δ 8.67 (d, J=16.3 Hz, 1H), 8.43 (s, 1H), 7.80 (d, J=8.2 Hz, 1H), 7.61 (d, J=9.1 Hz, 1H), 6.61 (d, J=13.3 Hz, 1H), 6.51 (d, J=8.8 Hz, 1H), 4.41 (d, J=8.7 Hz, 2H), 4.12 (d, J=8.8 Hz, 2H), 4.07 (s, 2H), 3.14-3.02 (m, 1H), 1.86-1.73 (m, 1H), 1.57 (s, 3H), 1.48-1.40 (m, 2H), 1.19-1.09 (m, 2H), 0.78-0.70 (m, 2H), 0.63-0.55 (m, 2H); MS(ES+) m/z 528.0 (M+1).
  • Example 489 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((3-methyl-1-(3-(trifluoromethyl)pyridin-4-yl)azetidin-3-yl)methoxy)benzamide, trifluoroacetic acid salt(
  • Figure US20210093618A1-20210401-C01271
  • Following the procedure as described in Example 488, and making variation as required to replace 4-((1-(4-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt with 4-((1-(2-chloro-5-(trifluoromethyl)pyridin-4-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt, the title compound was obtained as a colorless solid (0.01 g, 33%): 1H NMR (300 MHz, DMSO-d6) δ 8.79-8.55 (m, 2H), 8.36 (br s, 1H), 7.63 (d, J=8.9 Hz, 1H), 6.62 (d, J=13.7 Hz, 1H), 6.53 (br s, 1H), 4.53 (br s, 2H), 4.19 (br s, 2H), 4.07 (s, 2H), 3.13-3.00 (m, 1H), 1.84-1.72 (m, 1H), 1.59 (s, 3H), 1.48-1.38 (m, 2H), 1.17-1.08 (m, 2H), 0.77-0.68 (m, 2H), 0.62-0.54 (m, 2H); MS(ES+) m/z 528.1 (M+1).
  • Example 490 Synthesis of (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(5-(trifluoromethyl)pyridin-2-yl)piperidin-3-yl)oxy)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01272
  • Step 1. Preparation of (R)-methyl 5-cyclopropyl-2-fluoro-4-((1-(5-(trifluoromethyl)pyridin-2-yl)piperidin-3-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C01273
  • Following the procedure as described in Example 481 Step 4 and making variation as required to replace methyl 5-cyclopropyl-2-fluoro-4-((3-methylazetidin-3-yl)methoxy)benzoate hydrochloride with (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate and 2-bromo-3-chloro-5-(trifluoromethyl)pyridine with 2-chloro-5-(trifluoromethyl)pyridine, the title compound was obtained as a yellowish oil (0.58 g, 44%): 1H NMR (300 MHz, CDCl3) δ8.35-8.33 (m, 1H), 7.56 (dd, J=9.1, 2.5 Hz, 1H), 7.36 (d, J=8.3 Hz, 1H), 6.74 (d, J=12.9 Hz, 1H), 6.61 (d, J=9.0 Hz, 1H), 4.47-4.38 (m, 1H), 4.17 (dd, J=13.5, 2.7 Hz, 1H), 3.86 (s, 3H), 3.80-3.64 (m, 3H), 2.18-2.05 (m, 1H), 2.04-1.87 (m, 2H), 1.78-1.57 (m, 2H), 0.74-0.67 (m, 2H), 0.55-0.46 (m, 2H); MS(ES+) m/z 439.2 (M+1).
  • Step 2. Preparation of (R)-5-cyclopropyl-2-fluoro-4-((1-(5-(trifluoromethyl)pyridin-2-yl)piperidin-3-yl)oxy)benzoic acid
  • Figure US20210093618A1-20210401-C01274
  • Following the procedure as described in Example 481 Step 5 and making variation as required to replace methyl 4-((1-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with (R)-methyl 5-cyclopropyl-2-fluoro-4-((1-(5-(trifluoromethyl)pyridin-2-yl)piperidin-3-yl)oxy)benzoate, the title compound was obtained as an orange gum (0.55 g, quant. yield): MS(ES+) m/z 425.1 (M+1).
  • Step 3. Preparation of (R)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(5-(trifluoromethyl)pyridin-2-yl)piperidin-3-yl)oxy)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01275
  • Following the procedure as described in Example 470 Step 6, and making variation as required to replace 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with (R)-5-cyclopropyl-2-fluoro-4-((1-(5-(trifluoromethyl)pyridin-2-yl)piperidin-3-yl)oxy)benzoic acid and cyclopropanesulfonamide with methanesulfonamide, the title compound was obtained as a colorless solid (0.16 g, 39%): 1H NMR (300 MHz, DMSO-d6) δ10.59 (br s, 1H), 8.86-8.71 (m, 1H), 8.37-8.34 (m, 1H), 7.73 (dd, J=9.3, 2.3 Hz, 1H), 7.47 (d, J=9.0 Hz, 1H), 6.83 (d, J=9.3 Hz, 1H), 6.76-6.69 (m, 1H), 4.65-4.56 (m, 1H), 4.10 (dd, J=14.0, 5.3 Hz, 1H), 4.02 (dd, J=14.0, 2.7 Hz, 1H), 3.90 (ddd, J=13.5, 5.9, 3.2 Hz, 1H), 3.63 (ddd, J=13.7, 8.6, 3.4 Hz, 1H), 3.39 (s, 3H), 2.15-1.94 (m, 3H), 1.81-1.60 (m, 2H), 0.78-0.61 (m, 2H), 0.58-0.41 (m, 2H); MS(ES−) m/z 500.2 (M−1).
  • Example 491 Synthesis of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(5-(trifluoromethyl)pyridin-2-yl)piperidin-3-yl)oxy)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01276
  • Following the procedure as described in Example 470 step 6, and making variation as required to replace 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with (R)-5-cyclopropyl-2-fluoro-4-((1-(5-(trifluoromethyl)pyridin-2-yl)piperidin-3-yl)oxy)benzoic acid, the title compound was obtained as a colorless solid (0.16 g, 39%): 1H NMR (300 MHz, DMSO-d6) δ9.89 (br s, 1H), 8.75 (d, J=15.1 Hz, 1H), 7.72 (dd, J=9.3, 2.3 Hz, 1H), 7.48 (d, J=9.0 Hz, 1H), 6.82 (d, J=9.3 Hz, 1H), 6.73 (d, J=14.2 Hz, 1H), 4.64-4.53 (m, 1H), 4.12-3.99 (m, 2H), 3.89 (ddd, J=13.4, 6.3, 3.3 Hz, 1H), 3.63 (ddd, J=13.7, 8.2, 3.3 Hz, 1H), 3.07 (tt, J=8.1, 8.1, 4.8, 4.8 Hz, 1H), 2.15-1.92 (m, 3H), 1.80-1.60 (m, 3H), 1.47-1.38 (m, 2H), 1.18-1.08 (m, 2H), 0.79-0.61 (m, 2H), 0.58-0.43 (m, 2H); MS(ES−) m/z 526.2 (M−1).
  • Example 492 Synthesis of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(pyridin-2-yl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C01277
  • Step 1. Preparation of (R)-tert-butyl 5-cyclopropyl-2-fluoro-4-((1-(pyridin-2-yl)piperidin-3-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C01278
  • Following the procedure as described in Example 481 Step 4 and making variations as required to replace methyl 5-cyclopropyl-2-fluoro-4-((3-methylazetidin-3-yl)methoxy)benzoate hydrochloride with (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate, and to replace 2-bromo-3-chloro-5-(trifluoromethyl)pyridine with 2-bromopyridine, and to replace cesium carbonate with potassium tert-butoxide, the title compound was obtained as a yellowish oil (0.27 g, 32%): MS(ES+) m/z 413.3 (M+1).
  • Step 2. Preparation of (R)-5-cyclopropyl-2-fluoro-4-((1-(pyridin-2-yl)piperidin-3-yl)oxy)benzoic acid
  • Figure US20210093618A1-20210401-C01279
  • Following the procedure as described in Example 478 step 4, and making variation as required to replace tert-butyl 4-((4-((2-chloro-4-fluorobenzyl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate with (R)-tert-butyl 5-cyclopropyl-2-fluoro-4-((1-(pyridin-2-yl)piperidin-3-yl)oxy)benzoate, the title compound was obtained as a yellowish oil (0.23 g, quant. yield): MS(ES+) m/z 357.2 (M+1).
  • Step 3. Preparation of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(pyridin-2-yl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C01280
  • Following the procedure as described in Example 470 Step 6, and making variation as required to replace 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with (R)-5-cyclopropyl-2-fluoro-4-((1-(pyridin-2-yl)piperidin-3-yl)oxy)benzoic acid and purification by flash chromatography (0-100% ethyl acetate in hexanes), the title compound was obtained as a colorless solid (0.03 g, 20%): 1H NMR (300 MHz, CDCl3) δ 8.71 (s, 1H), 8.15 (ddd, J=5.0, 1.9, 0.6 Hz, 1H), 7.52 (d, J=9.1 Hz, 1H), 7.44 (ddd, J=8.9, 7.1, 1.9 Hz, 1H), 6.95 (d, J=15.0 Hz, 1H), 6.65 (d, J=8.6 Hz, 1H), 6.59 (dd, J=7.1, 5.0 Hz, 1H), 4.46-4.32 (m, 2H), 3.81-3.71 (m, 1H), 3.45-3.32 (m, 2H), 3.13-3.01 (m, 1H), 2.23-2.11 (m, 1H), 1.97-1.81 (m, 3H), 1.70-1.60 (m, 1H), 1.47-1.39 (m, 2H), 1.16-1.08 (m, 2H), 0.85-0.76 (m, 2H), 0.60-0.53 (m, 2H); MS(ES−) m/z 458.3 (M−1).
  • Example 493 Synthesis of (R)—N-(azetidin-1-ylsulfonyl)-5-cyclopropyl-2-fluoro-4-((1-(pyridin-2-yl)piperidin-3-yl)oxy)benzamide
  • Figure US20210093618A1-20210401-C01281
  • Following the procedure as described in Example 470 Step 6, and making variations as required to replace 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with (R)-5-cyclopropyl-2-fluoro-4-((1-(pyridin-2-yl)piperidin-3-yl)oxy)benzoic acid, and to replace cyclopropanesulfonamide with azetidine-1-sulfonamide and purification by flash chromatography (0-100% ethyl acetate in hexanes), the title compound was obtained as a colorless solid (0.04 g, 28%): 1H NMR (300 MHz, CDCl3) δ8.67 (d, J=14.1 Hz, 1H), 8.15 (dd, J=4.9, 1.8 Hz, 1H), 7.53 (d, J=9.1 Hz, 1H), 7.44 (ddd, J=8.8, 7.2, 1.9 Hz, 1H), 6.96 (d, J=14.7 Hz, 1H), 6.65 (d, J=8.6 Hz, 1H), 6.59 (dd, J=7.1, 5.0 Hz, 1H), 4.46-4.33 (m, 2H), 4.23 (t, J=8.1, 8.1 Hz, 4H), 3.81-3.71 (m, 1H), 3.45-3.33 (m, 2H), 2.31-2.12 (m, 3H), 1.97-1.82 (m, 3H), 1.72-1.60 (m, 1H), 0.85-0.77 (m, 2H), 0.62-0.55 (m, 2H); MS(ES−) m/z 473.3 (M−1).
  • Example 494 Synthesis of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(5-fluoropyridin-2-yl)piperidin-3-yl)oxy)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01282
  • Step 1. Preparation of (R)-tert-butyl 5-cyclopropyl-2-fluoro-4-((1-(5-fluoropyridin-2-yl)piperidin-3-yl)oxy)benzoate
  • Figure US20210093618A1-20210401-C01283
  • Following the procedure as described in Example 481 step 4 and making variation as required to replace methyl 5-cyclopropyl-2-fluoro-4-((3-methylazetidin-3-yl)methoxy)benzoate hydrochloride with (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate, 2-bromo-3-chloro-5-(trifluoromethyl)pyridine with 2-chloro-5-fluoropyridine, and cesium carbonate with potassium tert-butoxide, the title compound was obtained as a yellowish oil (0.22 g, 26%): MS(ES+) m/z 431.1 (M+1).
  • Step 2. Preparation of (R)-5-cyclopropyl-2-fluoro-4-((1-(5-fluoropyridin-2-yl)piperidin-3-yl)oxy)benzoic acid
  • Figure US20210093618A1-20210401-C01284
  • Following the procedure as described in Example 478 step 4, and making variation as required to replace tert-butyl 4-((4-((2-chloro-4-fluorobenzyl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate with (R)-tert-butyl 5-cyclopropyl-2-fluoro-4-((1-(5-fluoropyridin-2-yl)piperidin-3-yl)oxy)benzoate, the title compound was obtained as an orange oil (0.04 g, quant. yield): MS(ES+) m/z 374.9 (M+1).
  • Step 3. Preparation of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((1-(5-fluoropyridin-2-yl)piperidin-3-yl)oxy)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01285
  • Following the procedure as described in Example 470 step 6, and making variation as required to replace 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with (R)-5-cyclopropyl-2-fluoro-4-((1-(5-fluoropyridin-2-yl)piperidin-3-yl)oxy)benzoic acid and purification by flash chromatography (50% ethyl acetate in hexanes, then 0-10% methanol in dichloromethane) and treatment with trifluoroacetic acid, the title compound was obtained as a colorless solid (0.12 g, 39%): 1H NMR (300 MHz, DMSO-d6) δ 8.72 (d, J=15.5 Hz, 1H), 8.01 (d, J=2.8 Hz, 1H), 7.51 (d, J=9.1 Hz, 1H), 7.32-7.25 (m, 1H), 6.86 (d, J=14.5 Hz, 1H), 6.66 (dd, J=9.3, 3.2 Hz, 1H), 5.06 (br s, 1H), 4.51-4.42 (m, 1H), 4.19 (dd, J=13.2, 2.0 Hz, 1H), 3.72-3.61 (m, 1H), 3.54-3.39 (m, 2H), 3.15-3.02 (m, 1H), 2.21-2.08 (m, 1H), 2.00-1.78 (m, 3H), 1.75-1.60 (m, 1H), 1.47-1.37 (m, 2H), 1.20-1.08 (m, 2H), 0.84-0.76 (m, 2H), 0.61-0.52 (m, 2H); MS(ES+) m/z 478.2 (M+1).
  • Example 495 Synthesis of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(2-(3,5-dichlorophenyl)propan-2-yl)piperidin-3-yl)oxy)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01286
  • Step 1. Preparation of (R)-methyl 5-cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)propan-2-yl)piperidin-3-yl)oxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01287
  • To a mixture of (R)-methyl 5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate (1.00 g, 3.41 mmol) in anhydrous tetrahydrofuran (20 mL) was added 4-dimethylaminopyridine (0.08 g, 0.68 mmol), triethylamine (0.95 mL, 6.82 mmol) and 3,5-dichlorobenzoyl chloride (0.86 g, 4.11 mmol). After stirring at ambient temperature for 16 hours, the reaction mixture was diluted with ethyl acetate (200 mL), washed with aqueous hydrochloric acid solution (1 N, 10 mL), water (10 mL), brine (10 mL), and dried over anhydrous sodium sulfate. Filtration and concentration of the filtrate in vacuo gave a residue which was purified by flash chromatography (0-100% ethyl acetate in hexanes) to provide (R)-methyl 5-cyclopropyl-4-((1-(3,5-dichlorobenzoyl)piperidin-3-yl)oxy)-2-fluorobenzoate as yellowish oil (1.31 g, 82%).
  • To a mixture of (R)-methyl 5-cyclopropyl-4-((1-(3,5-dichlorobenzoyl)piperidin-3-yl)oxy)-2-fluorobenzoate (1.31 g, 2.81 mmol) and 2,6-di-tert-butyl-4-methylpyridine (0.69 g, 3.37 mmol) in anhydrous dichloromethane (40 mL) was added trifluoromethanesulfonic anhydride (0.57 ml, 3.37 mmol) at −78° C. The reaction mixture was stirred for 2 hours at −78° C., after which methyl lithium (1.6 M solution in diethyl ether, 8.8 mL 14.10 mmol) was added to it. After stirring for 1 hour at −78° C., the reaction mixture was warmed to −60° C., and stirred for additional 2 hours. After addition of saturated ammonium chloride solution (20 mL) and dichloromethane (200 mL), the mixture was allowed to warm to ambient temperature. The organic phase was washed with aqueous hydrochloric acid solution (1 N, 10 mL), water (10 mL), brine (10 mL), and dried over anhydrous sodium sulfate. Filtration and concentration of the filtrate in vacuo gave a residue which was purified by flash chromatography (0-30% ethyl acetate in hexanes) to provide the title compound as a colorless oil (0.23 g, 17%): 1H NMR (300 MHz, CDCl3) δ7.42-7.37 (m, 3H), 7.19 (t, J=1.9, 1.9 Hz, 1H), 6.42 (d, J=12.9 Hz, 1H), 4.37-4.28 (m, 1H), 3.85 (s, 3H), 2.93-2.85 (m, 1H), 2.67-2.58 (m, 1H), 2.39-2.21 (m, 2H), 2.09-1.97 (m, 2H), 1.86-1.74 (m, 1H), 1.64-1.48 (m, 2H), 1.29 (s, 3H), 1.27 (s, 3H), 0.94-0.82 (m, 2H), 0.66-0.59 (m, 2H); MS(ES+) m/z 480.2, 482.2 (M+1).
  • Step 2. Preparation of (R)-5-cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)propan-2-yl)piperidin-3-yl)oxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01288
  • Following the procedure as described in Example 481 Step 5 and making variation as required to replace methyl 4-((1-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with (R)-methyl 5-cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)propan-2-yl)piperidin-3-yl)oxy)-2-fluorobenzoate, the title compound was obtained as a yellowish oil (0.23 g, quant. yield): MS(ES−) m/z 466.2, 468.2 (M−1).
  • Step 3. Preparation of (R)-5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((1-(2-(3,5-dichlorophenyl)propan-2-yl)piperidin-3-yl)oxy)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01289
  • Following the procedure as described in Example 473 Step 5, and making variation as required to replace 4-((4-((5-bromo-3-chloropyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with (R)-5-cyclopropyl-4-((1-(2-(3,5-dichlorophenyl)propan-2-yl)piperidin-3-yl)oxy)-2-fluorobenzoic acid, the title compound was as a colorless solid (0.19 g, 67%): 1H NMR (300 MHz, CDCl3) δ 8.74 (d, J=13.3 Hz, 1H), 7.55 (d, J=1.7 Hz, 2H), 7.53 (d, J=9.0 Hz, 1H), 7.45 (t, J=1.7 Hz, 1H), 6.92 (d, J=14.1 Hz, 1H), 5.15-5.04 (m, 1H), 3.75-3.65 (m, 1H), 3.43-3.35 (m, 1H), 3.11-3.01 (m, 1H), 2.67-2.50 (m, 2H), 2.39-1.89 (m, 4H), 1.89 (s, 3H), 1.86 (s, 3H), 1.60-1.48 (m, 1H), 1.47-1.38 (m, 2H), 1.16-1.08 (m, 2H), 0.93-0.84 (m, 2H), 0.65-0.58 (m, 2H); MS(ES−) m/z 567.2, 569.2 (M−1)
  • Example 496 Synthesis of 4-(((1R,3r,5S)-3-(3-chloro-5-(trifluoromethoxy)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01290
  • Step 1. Preparation of (1R,3r,5S)-tert-butyl 3-(3-chloro-5-(trifluoromethoxy)phenoxy)-8-azabicyclo[3.2.1]octane-8-carboxylate
  • Figure US20210093618A1-20210401-C01291
  • Following the procedure as described in Example 470 step 2, and making variation as required to replace 3-chloro-2-fluoro-5-(trifluoromethyl)phenol with 3-chloro-5-(trifluoromethoxy)-phenol, the title compound was obtained as a colorless oil (2.0 g, quant. yield): 1H NMR (300 MHz, CDCl3) δ6.82-6.79 (m, 1H), 6.75-6.72 (m, 1H), 6.57-6.53 (m, 1H), 4.60-4.54 (m, 1H), 4.23-4.17 (m, 2H), 2.19-1.87 (m, 8H), 1.46 (s, 9H); MS(ES+) m/z 366.0, 368.0 (M−55).
  • Step 2. Preparation of (1R,3r,5S)-3-(3-chloro-5-(trifluoromethoxy)phenoxy)-8-azabicyclo[3.2.1]octane
  • Figure US20210093618A1-20210401-C01292
  • Following the procedure as described in Example 470 step 3, and making variation as required to replace (1R,3r,5S)-tert-butyl 3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]octane-8-carboxylate with (1R,3r,5S)-tert-butyl 3-(3-chloro-5-(trifluoromethoxy-)phenoxy)-8-azabicyclo[3.2.1]octane-8-carboxylate, the title compound was isolated as a colorless oil (1.50 g, quant. yield): MS(ES+) m/z 322.1, 324.1 (M+1).
  • Step 3. Preparation of tert-butyl 4-(((1R,3r,S5S)-3-(3-chloro-5-(trifluoromethoxy)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01293
  • Following the procedure as described in Example 470 Step 4, and making variation as required to replace (1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]-octane with (1R,3r,5S)-3-(3-chloro-5-(trifluoromethoxy)phenoxy)-8-azabicyclo[3.2.1]octane, the title compound was isolated as a colorless oil (1.75 g, 65%): 1H NMR (300 MHz, CDCl3) δ 7.48 (d, J=7.1 Hz, 1H), 7.36-7.28 (m, 1H), 6.81-6.77 (m, 1H), 6.74 (t, J=2.0 Hz, 1H), 6.58-6.53 (m, 1H), 4.58-4.46 (m, 1H), 3.74-3.58 (m, 2H), 3.23-3.05 (m, 2H), 2.23-1.83 (m, 9H), 1.57 (s, 9H), 0.95-0.83 (m, 2H), 0.65-0.57 (m, 2H); MS(ES+) m/z 570.1, 572.1 (M+1).
  • Step 4. Preparation of 4-(((1R,3r,5S)-3-(3-chloro-5-(trifluoromethoxy)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01294
  • Following the procedure as described in Example 470 Step 5, and making variation as required to replace tert-butyl 4-(((1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)-phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoate with tert-butyl 4-(((1R,3r,5S)-3-(3-chloro-5-(trifluoromethoxy)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoate, the title compound was isolated as a colorless solid (1.64 g, 96%): MS(ES+) m/z 516.1, 518.1 (M+1).
  • Step 5. Preparation of 4-(((1R,3r,5S)-3-(3-chloro-5-(trifluoromethoxy)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01295
  • Following the procedure as described in Example 473 step 5, and making variation as required to replace 4-((4-((5-bromo-3-chloropyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride with (of 4-(((1R,3r,5S)-3-(3-chloro-5-(trifluoromethoxy)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, the title compound was as a colorless solid (0.45 g, 62%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 7.47 (d, J=7.3 Hz, 1H), 7.41 (d, J=11.2 Hz, 1H), 6.79 (br s, 1H), 6.74-6.71 (m, 1H), 6.53 (br s, 1H), 4.62-4.55 (m, 1H), 4.37 (s, 2H), 3.88 (br s, 2H), 3.04-2.93 (m, 1H), 2.75-2.62 (m, 2H), 2.49-2.38 (m, 2H), 2.33-2.22 (m, 2H), 2.12 (d, J=15.6 Hz, 2H), 1.85-1.74 (m, 1H), 1.37-1.28 (m, 2H), 1.11-0.94 (m, 4H), 0.71-0.62 (m, 2H); MS(ES+) m/z: 617.1, 619.1 (M+1).
  • Example 497 Synthesis of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((4-(2-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzamide
  • Figure US20210093618A1-20210401-C01296
  • Step 1. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-(2-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzoate
  • Figure US20210093618A1-20210401-C01297
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 4-(2-(trifluoromethyl)phenoxy)piperidine, hydrochloride salt, the title compound was obtained as an oil (1.38 g, 66%): 1H NMR (300 MHz, CDCl3) δ 7.55 (d, J=8.3 Hz, 1H), 7.50-7.39 (m, 2H), 7.20 (d, J=12.1 Hz, 1H), 6.99-6.90 (m, 2H), 4.58-4.47 (m, 1H), 3.64 (s, 2H), 2.74-2.62 (m, 2H), 2.50-2.35 (m, 2H), 2.03-1.83 (m, 5H), 1.56 (s, 9H), 0.96-0.86 (m, 2H), 0.64-0.56 (m, 2H); MS(ES+) m/z 494.3 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-4-((4-(2-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzoic acid, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01298
  • Following the procedure as described in Example 53 step 4, and making variation as required to replace (S)-tert-butyl 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-((4-(2-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzoate, the title compound was obtained as an colorless solid (1.54 g, quant. yield): MS(ES+) m/z 438.1 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((4-(2-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzamide
  • Figure US20210093618A1-20210401-C01299
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace cyclopropanesulfonamide with methylsulfonamide and to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((4-(2-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzoic acid, trifluoroacetic acid salt, and purification by flash chromatography (0-75% methanol+0.4% ammonium hydroxide in dichloromethane), the title compound was obtained as a colorless solid (0.20 g, 53%): 1H NMR (300 MHz, CDCl3) δ 7.69 (d, J=7.6 Hz, 1H), 7.57 (d, J=7.7 Hz, 1H), 7.51-7.37 (m, 2H), 7.04-6.93 (m, 2H), 6.50 (br s, 1H), 4.77-4.68 (m, 1H), 4.09 (s, 2H), 3.29 (s, 3H), 3.04-2.89 (m, 4H), 2.36-2.22 (m, 2H), 2.12-2.00 (m, 2H), 1.94-1.82 (m, 1H) 1.05-0.97 (m, 2H), 0.70-0.63 (m, 2H); MS(ES+) m/z 515.2 (M+1).
  • Example 498 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((4-(2-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzamide
  • Figure US20210093618A1-20210401-C01300
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((4-(2-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzoic acid, trifluoroacetic acid salt the title compound was obtained as a colorless solid (0.22 g, 56%): 1H NMR (300 MHz, CDCl3) δ 7.70 (d, J=7.7 Hz, 1H), 7.56 (d, J=7.7 Hz, 1H), 7.50-7.37 (m, 2H), 7.02-6.92 (m, 2H), 6.57 (br s, 1H), 4.73-4.62 (m, 1H), 3.99 (s, 2H), 3.08-2.97 (m, 1H), 2.95-2.76 (m, 4H), 2.27-2.12 (m, 2H), 2.08-1.96 (m, 2H), 1.95-1.84 (m, 1H), 1.45-1.36 (m, 2H), 1.16-1.05 (m, 2H), 1.04-0.94 (m, 2H), 0.70-0.61 (m, 2H); MS(ES+) m/z 541.2 (M+1).
  • Example 499 Synthesis of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((4-(4-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzamide
  • Figure US20210093618A1-20210401-C01301
  • Step 1. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-(4-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzoate
  • Figure US20210093618A1-20210401-C01302
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 4-(4-(trifluoromethyl)phenoxy)piperidine, hydrochloride salt, the title compound was obtained as an oil (1.24 g, 60%): 1H NMR (300 MHz, CDCl3) δ 7.54-7.45 (m, 3H), 7.18 (d, J=11.8 Hz, 1H), 6.94 (d, J=9.1 Hz, 2H), 4.46-4.34 (m, 1H), 3.65 (s, 2H), 2.79-2.67 (m, 2H), 2.44-2.27 (m, 2H), 2.07-1.90 (m, 3H), 1.89-1.75 (m, 2H), 1.56 (s, 9H), 0.95-0.87 (m, 2H), 0.65-0.57 (m, 2H); MS(ES+) m/z 494.1 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-4-((4-(4-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzoic acid, 2trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01303
  • Following the procedure as described in Example 53 step 4, and making variation as required to replace (S)-tert-butyl 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-((4-(4-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzoate, the title compound was obtained as an colorless solid (1.38 g, quant. yield): MS(ES+) m/z 438.2 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((4-(4-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzamide
  • Figure US20210093618A1-20210401-C01304
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace cyclopropanesulfonamide with methylsulfonamide and to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((4-(4-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzoic acid, trifluoroacetic acid salt, the title compound was obtained as a colorless solid (0.18 g, 48%): 1H NMR (300 MHz, CDCl3) δ 7.69 (d, J=7.6 Hz, 1H), 7.52 (d, J=8.6 Hz, 2H), 7.39 (d, J=13.1 Hz, 1H), 6.94 (d, J=8.6 Hz, 2H), 6.22 (br s, 1H), 4.56-4.43 (m, 1H), 3.88 (s, 2H), 3.37 (s, 3H), 2.90-2.79 (m, 2H), 2.72-2.59 (m, 2H), 2.21-2.08 (m, 2H), 1.99-1.86 (m, 3H), 1.03-0.94 (m, 2H), 0.70-0.62 (m, 2H); MS(ES+) m/z 515.2 (M+1).
  • Example 500 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((4-(4-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzamide
  • Figure US20210093618A1-20210401-C01305
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((4-(4-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzoic acid, trifluoroacetic acid salt, the title compound was obtained as a colorless solid (0.20 g, 51%): 7.69 (d, J=7.6 Hz, 1H), 7.53 (d, J=8.6 Hz, 2H), 7.46 (d, J=12.5 Hz, 1H), 6.95 (d, J=8.6 Hz, 2H), 4.67-4.55 (m, 1H), 4.17 (s, 2H), 3.16-2.91 (m, 5H), 2.37-2.18 (m, 2H), 2.11-1.97 (m, 2H), 1.96-1.85 (m, 1H), 1.46-1.37 (m, 2H), 1.18-0.99 (m, 4H), 0.74-0.65 (m, 2H); MS(ES+) m/z 541.2 (M+1).
  • Example 501 Synthesis of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((4-(3-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01306
  • Step 1. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-(3-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzoate
  • Figure US20210093618A1-20210401-C01307
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 4-(3-(trifluoromethyl)phenoxy)piperidine, the title compound was obtained as an oil (0.69 g, 79%): 1H NMR (300 MHz, CDCl3) δ 7.48 (d, J=7.3 Hz, 1H), 7.35 (dd, J=8.0, 8.0 Hz, 1H), 7.22-7.09 (m, 3H), 7.07-7.02 (m, 1H), 4.43-4.34 (m, 1H), 3.67 (s, 2H), 2.79-2.68 (m, 2H), 2.43-2.32 (m, 2H), 2.05-1.92 (m, 3H), 1.89-1.76 (m, 2H), 1.56 (s, 9H), 0.95-0.88 (m, 2H), 0.65-0.58 (m, 2H); MS(ES+) m/z 494.3 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-4-((4-(3-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzoic acid, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01308
  • Following the procedure as described in Example 53 step 4, and making variation as required to replace (S)-tert-butyl 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-(3-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzoate, the title compound was obtained as an colorless solid (0.77 g, quant. yield): MS(ES+) m/z 438.2 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((4-(3-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01309
  • Following the procedure as described in Example 53 step 5, and making variations as required to replace cyclopropanesulfonamide with methylsulfonamide and to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((4-(3-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzoic acid trifluoroacetic acid salt and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.06 g, 14%): 1H NMR (300 MHz, DMSO-d6) δ 12.24 (br s, 1H), 9.49 (br s, 1H), 7.65-7.45 (m, 2H), 7.34-7.22 (m, 4H), 4.92-4.74 (m, 1H), 4.52 (br s, 2H), 3.78-3.49 (m, 2H), 3.33 (s, 3H), 3.27-3.15 (m, 2H), 2.25-1.95 (m, 5H), 1.03-0.95 (m, 2H), 0.81-0.73 (m, 2H); MS(ES+) m/z 515.0 (M+1).
  • Example 502 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((4-(3-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01310
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((4-(3-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)benzoic acid trifluoroacetic acid salt and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.10 g, 22%): 1H NMR (300 MHz, CDCl3) δ 12.78 (br s, 1H), 9.24 (br s, 1H), 7.76 (d, J=7.6 Hz, 1H), 7.63 (d, J=11.9 Hz, 1H), 7.46-7.38 (m, 1H), 7.28-7.21 (m, 1H), 7.14-7.10 (m, 1H), 7.07-7.02 (m, 1H), 4.78-4.69 (m, 1H), 4.49 (s, 2H), 3.55-3.42 (m, 2H), 3.25-3.11 (m, 2H), 3.11-3.00 (m, 1H), 2.56-2.38 (m, 2H), 2.23-2.10 (m, 2H), 1.97-1.86 (m, 1H), 1.48-1.40 (m, 2H), 1.19-1.07 (m, 4H), 0.80-0.72 (m, 2H); MS(ES+) m/z 541.0 (M+1).
  • Example 503 Synthesis of 4-((4-(4-chlorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01311
  • Step 1. Preparation of tert-butyl 4-((4-(4-chlorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01312
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 4-(4-chlorophenoxy)piperidine, the title compound was obtained as an oil (0.85 g, 93%): 1H NMR (300 MHz, CDCl3) δ 7.48 (d, J=7.4 Hz, 1H), 7.23-7.14 (m, 3H), 6.84-6.78 (m, 2H), 4.33-4.23 (m, 1H), 3.65 (s, 2H), 2.77-2.66 (m, 2H), 2.40-2.28 (m, 2H), 2.03-1.90 (m, 3H), 1.86-1.72 (m, 2H), 1.56 (s, 9H), 0.94-0.87 (m, 2H), 0.64-0.57 (m, 2H); MS(ES+) m/z 460.3, 462.2 (M+1).
  • Step 2. Preparation of 4-((4-(4-chlorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01313
  • Following the procedure as described in Example 53 step 4, and making variation as required to replace (S)-tert-butyl 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate with tert-butyl 4-((4-(4-chlorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as an colorless solid (0.96 g, quant. yield): MS(ES+) m/z 404.2, 406.2 (M+1).
  • Step 3. Preparation of 4-((4-(4-chlorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01314
  • Following the procedure as described in Example 53 step 5, and making variations as required to replace cyclopropanesulfonamide with methylsulfonamide and to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((4-(4-chlorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid, trifluoroacetic acid salt, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.06 g, 11%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 7.35-7.28 (m, 2H), 7.14-7.07 (m, 2H), 6.76-6.69 (m, 2H), 4.51-4.45 (m, 1H), 4.36 (s, 2H), 3.23 (s, 3H), 3.21-3.09 (m, 4H), 2.19-2.07 (m, 2H), 2.05-1.94 (m, 2H), 1.88-1.77 (m, 1H), 1.00-0.92 (m, 2H), 0.64-0.57 (m, 2H); MS(ES+) m/z 481.1, 483.2 (M+1).
  • Example 504 Synthesis of 4-((4-(4-chlorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01315
  • Following the procedure as described in Example 53 step 5, and making variations as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((4-(4-chlorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid, trifluoroacetic acid salt, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.07 g, 12%): 1H NMR (300 MHz, DMSO-d6) δ 12.19 (br s, 1H), 9.49 (br s, 1H), 7.49 (d, J=11.1 Hz, 1H), 7.32 (d, J=8.6 Hz, 2H), 7.23 (d, J=7.0 Hz, 1H), 7.01 (d, J=8.5 Hz, 2H), 4.77-4.35 (m, 3H), 3.71-3.16 (m, 4H), 3.09-2.99 (m, 1H), 2.28-1.93 (m, 4H), 1.86-1.67 (m, 1H), 1.15-1.06 (m, 4H), 1.02-0.94 (m, 2H), 0.79-0.72 (m, 2H); MS(ES+) m/z 507.2, 509.1 (M+1).
  • Example 505 Synthesis of 4-((4-(2-chloro-4-fluorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01316
  • Step 1. Preparation of tert-butyl 4-((4-(2-chloro-4-fluorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01317
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 4-(2-chloro-4-fluorophenoxy)piperidine, the title compound was obtained as an oil (1.42 g, 68%): 1H NMR (300 MHz, CDCl3) δ 7.48 (d, J=7.3 Hz, 1H), 7.22-7.15 (m, 1H), 6.98-6.80 (m, 3H), 4.33-4.18 (m, 1H), 3.65 (s, 2H), 2.80-2.68 (m, 2H), 2.41-2.26 (m, 2H), 2.02-1.72 (m, 5H), 1.56 (s, 9H), 0.95-0.87 (m, 2H), 0.65-0.57 (m, 2H); MS(ES+) m/z 478.3, 480.2 (M+1).
  • Step 2. Preparation of 4-((4-(2-chloro-4-fluorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01318
  • Following the procedure as described in Example 53 step 4, and making variation as required to replace (S)-tert-butyl 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate with tert-butyl 4-((4-(2-chloro-4-fluorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as an colorless solid (1.59 g, quant. yield): MS(ES+) m/z 422.2, 424.1 (M+1).
  • Step 3. Preparation of 4-((4-(2-chloro-4-fluorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01319
  • Following the procedure as described in Example 53 step 5, and making variations as required to replace cyclopropanesulfonamide with methylsulfonamide and to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with -((4-(2-chloro-4-fluorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid, trifluoroacetic acid salt and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.10 g, 23%): 1H NMR (300 MHz, DMSO-d6) δ 12.19 (br s, 1H), 9.81 (br s, 1H), 7.53-7.41 (m, 2H), 7.31-7.23 (m, 2H), 7.21-7.13 (m, 1H), 4.74-4.38 (m, 3H), 3.77-3.44 (m, 2H), 3.32 (s, 3H), 3.29-3.17 (m, 2H), 2.18-2.03 (m, 3H), 2.00-1.80 (m, 2H), 1.02-0.94 (m, 2H), 0.80-0.72 (m, 2H); MS(ES+) m/z 499.2, 501.1 (M+1).
  • Example 506 Synthesis of 4-((4-(2-chloro-4-fluorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01320
  • Following the procedure as described in Example 53 step 5, and making variations as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((4-(2-chloro-4-fluorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid, trifluoroacetic acid salt, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.13 g, 29%): 1H NMR (300 MHz, DMSO-d6) δ 12.28 (br s, 1H), 9.92 (br s, 1H), 7.56-7.49 (m, 1H), 7.44 (dd, J=8.4, 3.1 Hz, 1H), 7.31-7.22 (m, 2H), 7.21-7.13 (m, 1H), 4.76-4.68 (m, 1H), 4.56 (s, 2H), 3.53-3.33 (m, 2H), 3.31-3.15 (m, 2H), 3.11-3.00 (m, 1H), 2.31-1.97 (m, 4H), 1.91-1.77 (m, 1H), 1.15-1.06 (m, 4H), 1.03-0.94 (m, 2H), 0.81-0.73 (m, 2H); MS(ES+) m/z 525.2, 527.2 (M+1).
  • Example 507 Synthesis of 4-((4-(2-chloro-4-fluorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01321
  • Step 1. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-(4-fluorophenoxy)piperidin-1-yl)methyl)benzoate
  • Figure US20210093618A1-20210401-C01322
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 4-(4-fluorophenoxy)piperidine, the title compound was obtained as an oil (1.92 g, quant. yield): 1H NMR (300 MHz, CDCl3) δ 7.47 (d, J=7.5 Hz, 1H), 7.17 (d, J=11.8 Hz, 1H), 6.97-6.88 (m, 2H), 6.86-6.79 (m, 2H), 4.27-4.17 (m, 1H), 3.63 (s, 2H), 2.77-2.67 (m, 2H), 2.36-2.25 (m, 2H), 2.00-1.89 (m, 3H), 1.1.84-1.71 (m, 2H), 1.55 (s, 9H), 0.94-0.86 (m, 2H), 0.63-0.57 (m, 2H); MS(ES+) m/z 444.2 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-4-((4-(4-fluorophenoxy)piperidin-1-yl)methyl)benzoic acid, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01323
  • Following the procedure as described in Example 53 step 4, and making variation as required to replace (S)-tert-butyl 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-((4-(4-fluorophenoxy)piperidin-1-yl)methyl)benzoate, the title compound was obtained as an colorless solid (2.43 g, quant. yield): MS(ES+) m/z 388.2 (M+1).
  • Step 3. Preparation of 4-((4-(2-chloro-4-fluorophenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01324
  • Following the procedure as described in Example 53 step 5, and making variations as required to replace cyclopropanesulfonamide with methylsulfonamide and to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((4-(4-fluorophenoxy)piperidin-1-yl)methyl)benzoic acid, trifluoroacetic acid salt, and purification by preparative HPLC the title compound was obtained as a colorless solid (0.05 g, 12%): 1H NMR (300 MHz, DMSO-d6) δ 12.28 (br s, 1H), 9.68 (br s, 1H), 7.51 (d, J=11.2 Hz, 1H), 7.25 (d, J=6.9 Hz, 1H), 7.16-7.06 (m, 2H), 7.05-6.94 (m, 2H), 4.71-4.41 (m, 3H), 4.21-3.72 (m, 4H), 3.33 (s, 3H), 2.26-2.09 (m, 2H), 2.07-1.93 (m, 2H), 1.86-1.70 (m, 1H), 1.04-0.95 (m, 2H), 0.81-0.73 (m, 2H); MS(ES+) m/z 465.2 (M+1).
  • Example 508 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((4-(4-fluorophenoxy)piperidin-1-yl)methyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01325
  • Following the procedure as described in Example 53 step 5, and making variations as required replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((4-(4-fluorophenoxy)piperidin-1-yl)methyl)benzoic acid, trifluoroacetic acid salt and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.06 g, 14%): 1H NMR (300 MHz, DMSO-d6) δ 12.26 (br s, 1H), 9.86 (br s, 1H), 7.52 (d, J=11.1 Hz, 1H), 7.23 (d, J=7.2 Hz, 1H), 7.16-7.06 (m, 2H), 7.05-6.95 (m, 2H), 4.73, 4.70 (m, 3H), 4.13-3.70 (m, 2H), 3.50-3.31 (m, 2H), 3.11-3.00 (m, 1H), 2.27-1.93 (m, 4H), 1.88-1.70 (m, 1H), 1.15-1.06 (m, 4H), 1.03-0.94 (m, 2H), 0.80-0.72 (m, 2H); MS(ES+) m/z 491.2 (M+1).
  • Example 509 Synthesis of 5-cyclopropyl-4-((4-(3,4-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt)
  • Figure US20210093618A1-20210401-C01326
  • Step 1. Preparation of tert-butyl 5-cyclopropyl-4-((4-(3,4-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01327
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 4-(3,4-dichlorophenoxy)piperidine, the title compound was obtained as an oil (1.75 g, quant.): 1H NMR (300 MHz, CDCl3) δ 7.47 (d, J=7.2 Hz, 1H), 7.26 (d, J=8.9 Hz, 1H), 7.15 (d, J=11.8 Hz, 1H), 6.97 (d, J=2.7 Hz, 1H), 6.72 (dd, J=8.9, 2.8 Hz, 1H), 4.32-4.21 (m, 1H), 3.63 (s, 2H), 2.74-2.64 (m, 2H), 2.38-2.27 (m, 2H), 2.00-1.88 (m, 3H), 1.84-1.71 (m, 2H), 1.55 (s, 9H), 0.94-0.85 (m, 2H), 0.64-0.56 (m, 2H); MS(ES+) m/z 494.1, 496.1 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-4-((4-(3,4-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01328
  • Following the procedure as described in Example 53 step 4, and making variation as required to replace (S)-tert-butyl 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate with tert-butyl 5-cyclopropyl-4-((4-(3,4-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate and purification by trituration with diethyl ether, the title compound was obtained as an colorless solid (1.54 g, 69%): MS(ES+) m/z 438.1, 440.1 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-4-((4-(3,4-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01329
  • Following the procedure as described in Example 53, step 5, and making variation as required to replace cyclopropanesulfonamide with methylsulfonamide and (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-((4-(3,4-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid, trifluoroacetic acid salt and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.40 g, 69%): 1H NMR (300 MHz, DMSO-d6) δ 12.28 (br s, 1H), 10.00 (br s, 1H), 7.55-7.47 (m, 2H), 7.32 (d, J=2.4 Hz, 1H), 7.25 (d, J=7.1 Hz, 1H), 7.07-6.98 (m, 1H), 4.82-4.65 (m, 1H), 4.56 (s, 2H), 4.38-3.94 (m, 2H), 3.34 (s, 3H), 3.30-3.18 (m, 2H), 2.24-2.09 (m, 3H), 2.01-1.76 (m, 2H), 1.05-0.94 (m, 2H), 0.80-0.72 (m, 2H); MS(ES+) m/z 515.7, 517.1 (M+1).
  • Example 510 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((4-(3,4-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01330
  • Following the procedure as described in Example 53 step 5, and making variations as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-(3,4-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid, trifluoroacetic acid salt and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.45 g, 69%): 1H NMR (300 MHz, DMSO-d6) δ 12.28 (br s, 1H), 9.98 (br s, 1H), 7.57-7.47 (m, 2H), 7.36-7.28 (m, 1H), 7.23 (d, J=7.0 Hz, 1H), 7.08-6.94 (m, 1H), 4.85-4.69 (m, 1H), 4.57 (s, 2H), 3.59-3.16 (m, 4H), 3.10-2.98 (m, 1H), 2.26-2.09 (m, 2H), 2.09-1.94 (m, 2H), 1.89-1.71 (m, 1H), 1.15-1.06 (m, 4H), 1.03-0.94 (m, 2H), 0.81-0.72 (m, 2H); MS(ES+) m/z 541.1, 543.1 (M+1).
  • Example 511 Synthesis of 5-cyclopropyl-4-((4-((3,5-dichlorobenzyl)oxy)piperidin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01331
  • Step 1. Preparation of tert-butyl 4-((3,5-dichlorobenzyl)oxy)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01332
  • Following the procedure as described in Example 478 step 1, and making variation as required to replace 2-chloro-4-fluorobenzylbromide with 3,5-dichlorobenzyl chloride, the title compound was isolated as a yellowish oil (1.29 g, 77%).
  • Step 2. Preparation of 4-((3,5-dichlorobenzyl)oxy)piperidine, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01333
  • A solution of tert-butyl 4-((3,5-dichlorobenzyl)oxy)piperidine-1-carboxylate (1.98 g, 5.50 mmol) in dichloromethane (50 mL) was treated with trifluoroacetic acid (15 mL). The resulting solution was stirred at ambient temperature for 1 hour and then concentrated to in vacuo. The residue was used in the next step without further purification.
  • Step 3. Preparation of tert-butyl 5-cyclopropyl-4-((4-((3,5-dichlorobenzyl)oxy)piperidin-1-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01334
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 4-((3,5-dichlorobenzyl)oxy)piperidine, trifluoroacetic acid salt, the title compound was obtained as an oil (1.44 g, 51% in 2 steps): 1H NMR (300 MHz, CDCl3) δ 7.47 (d, J=7.3 Hz, 1H), 7.25-7.19 (m, 3H), 7.16 (d, J=11.8 Hz, 1H), 4.46 (s, 2H), 3.61 (s, 2H), 3.48-3.37 (m, 1H), 2.78-2.68 (m, 2H), 2.27-2.14 (m, 2H), 1.99-1.84 (m, 3H), 1.74-1.60 (m, 2H), 1.56 (s, 9H), 0.94-0.85 (m, 2H), 0.63-0.56 (m, 2H); MS (ES+) m/z 508.2, 510.2 (M+1).
  • Step 4. Preparation of 5-cyclopropyl-4-((4-((3,5-dichlorobenzyl)oxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01335
  • Following the procedure as described in Example 53 step 4, and making variation as required to replace (S)-tert-butyl 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate with tert-butyl 5-cyclopropyl-4-((4-((3,5-dichlorobenzyl)oxy)piperidin-1-yl)methyl)-2-fluorobenzoate, the title compound was obtained as an colorless solid (1.29 g, 81%): MS(ES+) m/z 452.1, 454.1 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-4-((4-((3,5-dichlorobenzyl)oxy)piperidin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01336
  • Following the procedure as described in Example 53 step 5, and making variations as required to replace cyclopropanesulfonamide with methylsulfonamide and to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-((3,5-dichlorobenzyl)oxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid, trifluoroacetic acid salt and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.25 g, 51%): 1H NMR (300 MHz, DMSO-d6) δ 12.26 (br s, 1H), 9.63 (br s, 1H), 7.54-7.45 (m, 2H), 7.42-7.32 (m, 2H), 7.24 (d, J=7.3 Hz, 1H), 4.51 (br s, 4H), 3.81-3.66 (m, 1H), 3.34 (s, 3H), 3.30-3.20 (m, 2H), 3.18-3.07 (m, 1H), 2.24-1.97 (m, 3H), 1.93-1.80 (m, 2H), 1.73-1.54 (m, 1H), 1.02-0.93 (m, 2H), 0.80-0.71 (m, 2H); MS(ES+) m/z 529.1, 531.1 (M+1).
  • Example 512 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((4-((3,5-dichlorobenzyl)oxy)piperidin-1-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01337
  • Following the procedure as described in Example 53 step 5, and making variations as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-((3,5-dichlorobenzyl)oxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid, trifluoroacetic acid salt and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.31 g, 61%): 1H NMR (300 MHz, DMSO-d6) δ 12.24 (br s, 1H), 9.53 (br s, 1H), 7.53-7.45 (m, 2H), 7.42-7.33 (m, 2H), 7.23 (d, J=7.3 Hz, 1H), 4.51 (br s, 4H), 3.79-3.66 (m, 1H), 3.64-3.49 (m, 1H), 3.42-3.12 (m, 3H), 3.11-3.00 (m, 1H), 2.21-1.98 (m, 3H), 1.93-1.79 (m, 1H), 1.73-1.53 (m, 1H), 1.16-1.06 (m, 4H), 1.01-0.93 (m, 2H), 0.79-0.71 (m, 2H); MS(ES+) m/z 555.2, 557.2 (M+1).
  • Example 513 Synthesis of 5-cyclopropyl-2-fluoro-4-((4-(fluoromethyl)-4-(4-fluorophenyl)piperidin-1-yl)methyl)-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01338
  • Step 1. Preparation of (4-(4-fluorophenyl)piperidin-4-yl)methanol, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01339
  • To a solution of tert-butyl 4-(4-fluorophenyl)-4-(hydroxymethyl)piperidine-1-carboxylate (1.51 g, 4.88 mmol) in dichloromethane (50 mL) was added trifluoracetic acid (15 mL). The resulting solution was stirred at ambient temperature for 1.5 hours and then concentrated in vacuo to provided the title compound (1.58 g, quant. yield): MS(ES+) m/z 210.2 (M+1).
  • Step 2. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-(4-fluorophenyl)-4-(hydroxymethyl)piperidin-1-yl)methyl)benzoate
  • Figure US20210093618A1-20210401-C01340
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with (4-(4-fluorophenyl)piperidin-4-yl)methanol, trifluoroacetic acid salt, the title compound was obtained as an oil (0.78 g, 35%): 1H NMR (300 MHz, CDCl3) δ 7.45 (d, J=7.3 Hz, 1H), 7.33-7.26 (m, 2H), 7.17 (d, J=11.9 Hz, 1H), 7.12-7.00 (m, 2H), 4.19-4.11 (m, 1H), 3.60-3.50 (m, 4H), 3.32-3.21 (m, 1H), 3.14-3.03 (m, 1H), 2.68-2.57 (m, 2H), 2.33-2.21 (m, 1H), 2.20-2.10 (m, 1H), 1.98-1.79 (m, 3H), 1.55 (s, 9H), 0.90-0.82 (m, 2H), 0.61-0.54 (m, 2H); MS(ES+) m/z 458.3 (M+1).
  • Step 3. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-(fluoromethyl)-4-(4-fluorophenyl)piperidin-1-yl)methyl)benzoate
  • Figure US20210093618A1-20210401-C01341
  • To a solution of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-(4-fluorophenyl)-4-(hydroxymethyl)piperidin-1-yl)methyl)benzoate (0.78 g, 1.70 mmol) in dichloromethane (40 mL) under nitrogen, was added with diethylaminosulfur trifluoride (0.45 mL, 3.4 mmol) at 0° C. The resulting solution was stirred at 0° C. for 2.5 hours and then quenched with saturated sodium bicarbonate (30 mL). The mixture was extracted with ethyl acetate (80 mL) and the combined organic extracts were washed with saturated sodium bicarbonate (3×30 mL), saturated ammonium chloride (40 mL), brine (40 mL), dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (0-25% ethyl acetate in hexanes) to provide the title compound as a colorless oil (0.39 g, 50%): 1H NMR (300 MHz, CDCl3) δ 7.47 (d, J=7.2 Hz, 1H), 7.21-7.09 (m, 3H), 7.01-6.91 (m, 2H), 3.64 (s, 2H), 2.85 (d, J=22.9 Hz, 2H), 2.71-2.59 (m, 2H), 2.41-2.28 (m, 2H), 1.97-1.85 (m, 1H), 1.79-1.61 (m, 4H), 1.55 (s, 9H), 0.93-0.85 (m, 2H), 0.63-0.55 (m, 2H); MS(ES+) m/z 460.3 (M+1).
  • Step 4. Preparation of 5-cyclopropyl-2-fluoro-4-((4-(fluoromethyl)-4-(4-fluorophenyl)piperidin-1-yl)methyl)benzoic acid
  • Figure US20210093618A1-20210401-C01342
  • To a solution of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-(fluoromethyl)-4-(4-fluorophenyl)piperidin-1-yl)methyl)benzoate (0.39 g, 0.85 mmol) in 1,4-dioxane (10 mL) was added concentrated hydrochloric acid (5 mL). The resulting solution was stirred at ambient temperature for 4 hours. The reaction mixture was diluted with ethyl acetate (60 mL), washed with water (60 mL), saturated ammonium chloride (50 mL), brine (2×40 mL), dried over anhydrous sodium sulfate, filtered the solid, and concentrated in vacuo to provide the title compound (0.24 g, 71%): MS(ES+) m/z 404.2 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-2-fluoro-4-((4-(fluoromethyl)-4-(4-fluorophenyl)piperidin-1-yl)methyl)-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01343
  • Following the procedure as described in Example 53 step 5, and making variations as required to replace cyclopropanesulfonamide with methylsulfonamide and to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((4-(fluoromethyl)-4-(4-fluorophenyl)piperidin-1-yl)methyl)benzoic acid and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.045 g, 26%): 1H NMR (300 MHz, DMSO-d6) δ 12.22 (br s, 1H), 9.49 (br s, 1H), 7.45 (d, J=10.8 Hz, 1H), 7.28-7.19 (m, 3H), 7.17-7.08 (m, 2H), 4.50 (s, 2H), 4.14-3.60 (m, 2H), 3.33 (s, 3H), 3.30-3.10 (m, 2H), 2.96 (d, J=20.6 Hz, 2H), 2.17-2.05 (m, 1H), 2.02-1.75 (m, 4H), 1.03-0.89 (m, 2H), 0.78-0.69 (m, 2H); MS(ES+) m/z 481.2 (M+1).
  • Example 514 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((4-(fluoromethyl)-4-(4-fluorophenyl)piperidin-1-yl)methyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01344
  • Following the procedure as described in Example 53 step 5, and making variations as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-2-fluoro-4-((4-(fluoromethyl)-4-(4-fluorophenyl)piperidin-1-yl)methyl)benzoic acid, and purification by preparative HPLC s), the title compound was obtained as a colorless solid (0.07 g, 39%): 1H NMR (300 MHz, DMSO-d6) δ 12.24 (br s, 1H), 9.53 (br s, 1H), 7.46 (d, J=11.1 Hz, 1H), 7.27-7.18 (m, 3H), 7.17-7.08 (m, 2H), 4.52 (s, 2H), 4.09-3.64 (m, 2H), 3.37-3.13 (m, 2H), 3.09-3.02 (m, 1H), 2.96 (d, J=19.7 Hz, 2H), 2.17-2.05 (m, 1H), 2.02-1.73 (m, 4H), 1.16-1.04 (m, 4H), 1.01-0.91 (m, 2H), 0.79-0.68 (m, 2H); MS (ES+) m/z 507.2 (M+1).
  • Example 515 Synthesis of 5-cyclopropyl-2-fluoro-4-((4-(4-fluorophenyl)-4-(methoxymethyl)piperidin-1-yl)methyl)-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01345
  • Step 1. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-(4-fluorophenyl)-4-(methoxymethyl)piperidin-1-yl)methyl)benzoate
  • Figure US20210093618A1-20210401-C01346
  • To a solution of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-(4-fluorophenyl)-4-(hydroxymethyl)piperidin-1-yl)methyl)benzoate (1.39 g, 3.04 mmol) and methyliodide (0.53 mL, 8.5 mmol) in anhydrous tetrahydrofuran (40 mL) at −78° C. was treated with 1.0 M lithium bis(trimethylsilyl)amide in tetrahydrofuran (8.5 mL, 8.5 mmol) under nitrogen. The resulting solution was stirred −78° C. for 30 minutes and then warmed to ambient temperature and stirred for 18 hours. The reaction mixture was diluted with ethyl acetate (100 mL), washed with saturated ammonium chloride (2×50 mL), brine (2×40 mL), dried over anhydrous sodium sulfate, filtered the solid, and concentrated in vacuo. The residue was purified by flash chromatography (0-25% ethyl acetate in hexanes) to provide the title compound as a colorless oil (0.48 g, 34%): 1H NMR (300 MHz, CDCl3) δ 7.45 (d, J=7.3 Hz, 1H), 7.33-7.26 (m, 2H), 7.17 (d, J=11.8 Hz, 1H), 7.05-6.96 (m, 2H), 3.54 (s, 2H), 3.31 (s, 2H), 3.19 (s, 3H), 2.66-2.54 (m, 2H), 2.33-2.21 (m, 2H), 2.17-2.06 (m, 2H), 2.02-1.84 (m, 3H), 1.56 (s, 9H), 0.90-0.81 (m, 2H), 0.61-0.53 (m, 2H); MS(ES+) m/z 472.3 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-2-fluoro-4-((4-(4-fluorophenyl)-4-(methoxymethyl)piperidin-1-yl)methyl)benzoic acid
  • Figure US20210093618A1-20210401-C01347
  • Following the procedure as described in Example 513 step 4, and making variation as required to replace tert-butyl 5-cyclopropyl-2-fluoro-4-((4-(fluoromethyl)-4-(4-fluorophenyl)piperidin-1-yl)methyl)benzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-((4-(4-fluorophenyl)-4-(methoxymethyl)piperidin-1-yl)methyl)benzoate, the title compound was obtained as a colorless solid (0.26 g, 62%): MS(ES+) m/z 461.2 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-2-fluoro-4-((4-(4-fluorophenyl)-4-(methoxymethyl)piperidin-1-yl)methyl)-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01348
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with with 5-cyclopropyl-2-fluoro-4-((4-(4-fluorophenyl)-4-(methoxymethyl)piperidin-1-yl)methyl)benzoic acid, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.04 g, 21%): 1H NMR (300 MHz, DMSO-d6) δ 12.31 (br s, 1H), 9.54 (br s, 1H), 7.54-7.30 (m, 3H), 7.25-7.02 (m, 3H), 5.74-4.82 (m, 1H), 4.63-4.34 (m, 2H), 3.73-3.55 (m, 1H), 3.38-3.27 (m, 5H), 3.18-3.08 (m, 4H), 2.92-2.74 (m, 1H), 2.43-2.37 (m, 1H), 2.28-2.02 (m, 3H), 1.99-1.84 (m, 1H), 1.04-0.85 (m, 2H), 0.81-0.66 (m, 2H); MS(ES+) m/z 493.2 (M+1).
  • Example 516 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluoro-4-((4-(4-fluorophenyl)-4-(methoxymethyl)piperidin-1-yl)methyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01349
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with with 5-cyclopropyl-2-fluoro-4-((4-(4-fluorophenyl)-4-(methoxymethyl)piperidin-1-yl)methyl)benzoic acid, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.045 g, 23%): 1H NMR (300 MHz, DMSO-d6) δ 12.24 (br s, 1H), 9.51 (br s, 1H), 7.54-7.31 (m, 3H), 7.26-7.07 (m, 3H), 4.64-4.53 (m, 1H), 4.42 (s, 2H), 3.72-3.57 (m, 1H), 3.42-3.26 (m, 2H), 3.19-3.09 (m, 4H), 3.08-3.00 (m, 1H), 2.92-2.75 (m, 1H), 2.44-2.35 (m, 1H), 2.29-2.01 (m, 3H), 2.00-1.85 (m, 1H), 1.17-1.06 (m, 4H), 1.04-0.84 (m, 2H), 0.82-0.65 (m, 2H); MS(ES+) m/z 519.2 (M+1).
  • Example 517 Synthesis of 5-cyclopropyl-4-((4-(3,5-dichlorobenzyl)piperazin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01350
  • Step 1. Preparation of tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate
  • Figure US20210093618A1-20210401-C01351
  • To a mixture of tert-butyl piperazine-1-carboxylate (1.00 g, 5.37 mmol) and potassium carbonate (1.34 g, 9.76 mmol) in anhydrous dimethylformamide (50 mL) was added 1,3-dichloro-5-(chloromethyl)benzene (0.95 g, 4.88 mmol) under nitrogen. The resulting mixture was stirred at ambient temperature for 2 days. The reaction mixture was diluted with ethyl acetate (200 mL), washed with water (100 mL), saturated ammonium chloride (2×50 mL), brine (2×40 mL), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (3:1 hexanes:ethyl acetate) to provide the title compound as a colorless oil (1.22 g, 73%): 1H NMR (300 MHz, CDCl3) δ 7.25-7.17 (m, 3H), 3.45-3.35 (m, 6H), 2.39-2.30 (m, 4H), 1.42 (s, 9H); MS(ES+) m/z 345.1, 347.1 (M+1).
  • Step 2. Preparation of 1-(3,5-dichlorobenzyl)piperazine dihydrochloride
  • Figure US20210093618A1-20210401-C01352
  • To a mixture of tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate (1.22 g, 3.53 mmol) in 1,4-dioxane (20 mL) was added concentrated hydrochloric acid (5 mL). The mixture was stirred for 2 hours and then concentrated in vacuo to provide the title compound as a colorless solid (1.12 g, quant. yield): MS(ES+) m/z 245.1, 247.1 (M+1).
  • Step 3. Preparation of tert-butyl 5-cyclopropyl-4-((4-(3,5-dichlorobenzyl)piperazin-1-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01353
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 1-(3,5-dichlorobenzyl)piperazine dihydrochloride, the title compound was obtained as an oil (1.74 g, quant. yield): 1H NMR (300 MHz, CDCl3) δ 7.46 (d, J=7.2 Hz, 1H), 7.25-7.10 (m, 4H), 3.63 (s, 2H), 3.43 (s, 2H), 2.59-2.35 (m, 8H), 1.98-1.87 (m, 1H), 1.55 (s, 9H), 0.94-0.86 (m, 2H), 0.67-0.55 (m, 2H); MS(ES+) m/z 508.2, 510.2 (M+1).
  • Step 4. Preparation of 5-cyclopropyl-4-((4-(3,5-dichlorobenzyl)piperazin-1-yl)methyl)-2-fluorobenzoic acid dihydrochloride
  • Figure US20210093618A1-20210401-C01354
  • To a solution of tert-butyl 5-cyclopropyl-4-((4-(3,5-dichlorobenzyl)piperazin-1-yl)methyl)-2-fluorobenzoate (1.81 g, 3.67 mmol) in 1,4-dioxane (35 mL) was added concentrated hydrochloric acid (15 mL). The resulting mixture was stirred for 2 hours and then concentrated in vacuo. The residue was triturated with water to provide the title compound as a colorless solid (1.5 g, 94%): MS(ES+) m/z 437.0, 439.0 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-4-((4-(3,5-dichlorobenzyl)piperazin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01355
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-(3,5-dichlorobenzyl)piperazin-1-yl)methyl)-2-fluorobenzoic acid dihydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.08 g, 21%): 1H NMR (300 MHz, DMSO-d6) δ 12.19 (br s, 1H), 9.74 (br s, 1H), 7.66 (s, 1H), 7.51 (s, 2H), 7.32 (d, J=11.6 Hz, 1H), 7.22 (d, J=7.1 Hz, 1H), 5.76 (br s, 1H), 4.11 (br s, 2H), 3.97 (br s, 2H), 3.33 (s, 3H), 3.27-2.65 (m, 8H), 2.11-1.98 (m, 1H), 1.01-0.86 (m, 2H), 0.77-0.59 (m, 2H); MS(ES+) m/z 514.1, 516.1 (M+1).
  • Example 518 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((4-(3,5-dichlorobenzyl)piperazin-1-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01356
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-(3,5-dichlorobenzyl)piperazin-1-yl)methyl)-2-fluorobenzoic acid dihydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.20 g, 34%): 1H NMR (300 MHz, DMSO-d6) δ 12.13 (br s, 1H), 7.65 (s, 1H), 7.54-7.49 (m, 2H), 7.33 (d, J=11.3 Hz, 1H), 7.20 (d, J=7.6 Hz, 1H), 4.10 (br s, 2H), 3.97 (br s, 2H), 3.33-2.59 (m, 9H), 2.10-1.99 (m, 1H), 1.15-1.03 (m, 4H), 0.96-0.87 (m, 2H), 0.72-0.63 (m, 2H); MS(ES+) m/z 540.2, 542.2 (M+1).
  • Example 519 Synthesis of 4-((4-(4-chloro-3-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01357
  • Step 1. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-hydroxypiperidin-1-yl)methyl)benzoate
  • Figure US20210093618A1-20210401-C01358
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with piperidin-4-ol, the title compound was obtained as an oil (0.98 g, 94%): 1H NMR (300 MHz, CDCl3) δ 7.45 (d, J=7.3 Hz, 1H), 7.16 (d, J=11.8 Hz, 1H), 3.57-3.64 (m, 1H), 3.61 (s, 2H), 2.77-2.68 (m, 2H), 2.25-2.13 (m, 2H), 1.97-1.76 (m, 4H), 1.64-1.57 (m, 1H), 1.54 (s, 9H), 0.92-0.84 (m, 2H), 0.62-0.55 (m, 2H); MS(ES+) m/z 350.3 (M+1).
  • Step 2. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-((methylsulfonyl)oxy)piperidin-1-yl)methyl)benzoate
  • Figure US20210093618A1-20210401-C01359
  • To a solution of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-hydroxypiperidin-1-yl)methyl)benzoate (0.98 g, 2.80 mmol) and triethylamine (0.59 mL, 4.2 mmol) in dichloromethane (40 mL) at 0° C. was added methanesulfonyl chloride (0.26 mL, 3.36 mmol) under nitrogen. The resulting mixture was stirred at 0° C. for 1 hour. The mixture was washed with saturated ammonium chloride (40 mL), brine (40 mL), dried over anhydrous sodium sulfate, filtered the solid, and concentrated in vacuo to dryness to provide the title compound as a colorless oil (1.20 g, quant. yield): 1H NMR (300 MHz, CDCl3) δ 7.47 (d, J=7.3 Hz, 1H), 7.14 (d, J=11.8 Hz, 1H), 7.81-4.71 (m, 1H), 3.64 (s, 21), 3.00 (s, 3H), 2.76-2.65 (m, 2H), 2.43-2.28 (m, 2H), 2.09-1.83 (m, 5H), 1.55 (s, 9H), 0.94-0.86 (m, 2H), 0.63-0.56 (m, 2H); MS(ES+) m/z 428.2 (M+1).
  • Step 3. Preparation of tert-butyl 4-((4-(4-chloro-3-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01360
  • To a mixture of tert-butyl 5-cyclopropyl-2-fluoro-4-((4-((methylsulfonyl)oxy)piperidin-1-yl)methyl)benzoate (1.20 g, 2.80 mmol) and 4-chloro-3-(trifluoromethyl)phenol (0.61 g, 3.08 mmol) in anhydrous dimethylformamide (50 mL) was added potassium carbonate (0.43 g, 3.08 mmol). The reaction mixture was heated at 90° C. under nitrogen for 7 hours, cooled to ambient temperature and diluted with ethyl acetate (150 mL), washed with water (100 mL), saturated ammonium chloride (100 mL), brine (100 mL), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (0-25% ethyl acetate in hexanes) to provide the title compound as a colorless oil (0.71 g, 48%): MS(ES+) m/z 528.1, 530.1 (M+1).
  • Step 4. Preparation of 4-((4-(4-chloro-3-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluoren acid hydrochloride
  • Figure US20210093618A1-20210401-C01361
  • Following the procedure as described in Example 517 step 4, and making variation as required to replace tert-butyl 5-cyclopropyl-4-((4-(3,5-dichlorobenzyl)piperazin-1-yl)methyl)-2-fluorobenzoate with tert-butyl 4-((4-(4-chloro-3-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate and purification by trituration with diethyl ether, the title compound was obtained as a colorless solid (0.32 g, 47%): MS(ES+) m/z 472.0, 474.0 (M+1).
  • Step 5. Preparation of 4-((4-(4-chloro-3-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01362
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((4-(4-chloro-3-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.05 g, 24%): 1H NMR (300 MHz, DMSO-d6) δ 12.30 (br s, 1H), 9.67 (br s, 1H), 7.63 (d, J=8.9 Hz, 1H), 7.51 (d, J=11.1 Hz, 1H), 7.44-7.30 (m, 2H), 7.25 (d, J=7.0 Hz, 1H), 4.95-4.76 (m, 1H), 4.54 (s, 2H), 4.26-3.74 (m, 2H), 3.47-3.12 (m, 6H), 2.28-1.74 (m, 4H), 1.06-0.92 (m, 2H), 0.82-0.71 (m, 2H); MS(ES+) m/z 549.1, 551.1 (M+1).
  • Example 520 Synthesis of 4-((4-(4-chloro-3-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01363
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((4-(4-chloro-3-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless (0.07 g, 32%): 1H NMR (300 MHz, DMSO-d6) δ 12.22 (br s, 1H), 9.69 (br s, 1H), 7.63 (d, J=8.7 Hz, 1H), 7.51 (d, J=11.1 Hz, 1H), 7.44-7.30 (m, 2H), 7.23 (d, J=7.2 Hz, 1H), 7.92-4.79 (m, 1H), 4.54 (s, 2H), 4.23-3.76 (m, 2H), 3.50-3.31 (m, 2H), 3.10-3.00 (m, 1H), 2.28-1.70 (m, 5H), 1.15-1.06 (m, 4H), 1.03-0.95 (m, 2H), 0.81-0.72 (m, 2H); MS (ES+) m/z 575.2, 577.1 (M+1).
  • Example 521 Synthesis of 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01364
  • Step 1. Preparation of tert-butyl 4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01365
  • To a solution of tert-butyl 4-hydroxypiperidine-1-carboxylate (1.03 g, 5.09 mmol) in anhydrous 1,2-dimethoxyethane (35 mL) was added (60% sodium hydride in mineral oil, 0.20 g, 5.09 mmol) under nitrogen. The resulting mixture was stirred for 1 hour at ambient temperature and then added 2,5-dichloro-4-(trifluoromethyl)pyridine (1.00 g, 4.63 mmol). The reaction mixture was refluxed for 2 hours and cooled to ambient temperature. The reaction mixture was diluted with ethyl acetate (100 mL), washed with water (50 mL), saturated ammonium chloride (2×50 mL), brine (50 mL), dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo to provide the title compound as an oil (1.76 g, quant. yield): H NMR (300 MHz, CDCl3) δ 8.18 (s, 1H), 6.99 (s, 1H), 5.21-5.11 (m, 1H), 3.80-3.66 (m, 2H), 3.30-3.19 (m, 2H), 1.99-1.88 (m, 2H), 1.75-1.61 (m, 2H), 1.43 (s, 9H); MS(ES+) m/z 325.0, 326.9 (M−55).
  • Step 2. Preparation of tert-butyl 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01366
  • To a mixture of tert-butyl 4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)piperidine-1-carboxylate (1.76 g, 4.63 mmol) in 1,4-dioxane (30 mL) was added concentrated hydrochloric acid (10 mL). The resulting mixture was stirred for 5 hours and then concentrated in vacuo. The residue was dissolved in anhydrous dimethylformamide (70 mL), and to this solution was added potassium carbonate (2.21 g, 16.00 mmol) and tert-butyl 5-cyclopropyl-2-fluoro-4-(((methylsulfonyl)oxy)methyl)benzoate (1.38 g, 4.00 mmol). The resulting mixture was stirred under nitrogen at ambient temperature for 18 hours diluted with ethyl acetate (150 mL), washed with water (100 mL), saturated ammonium chloride (2×70 mL), brine (70 mL), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (0-80% ethyl acetate in hexanes) to provide the title compound as a colorless oil (1.92 g, 91%): 1H NMR (300 MHz, CDCl3) δ 8.19 (s, 1H), 7.48 (d, J=7.1 Hz, 1H), 7.18 (d, J=11.8 Hz, 1H), 7.00 (s, 1H), 5.12-5.02 (m, 1H), 3.64 (s, 2H), 2.78-2.67 (m, 2H), 2.41-2.31 (m, 2H), 2.05-1.90 (m, 3H), 1.86-1.73 (m, 2H), 1.56 (s, 9H), 0.94-0.86 (m, 2H), 0.65-0.58 (m, 2H); MS(ES+) min 529.2, 531.2 (M+1H).
  • Step 3. Preparation of 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01367
  • Following the procedure as described in Example 517 step 4, and making variation as required to replace tert-butyl 5-cyclopropyl-4-((4-(3,5-dichlorobenzyl)piperazin-1-yl)methyl)-2-fluorobenzoate with tert-butyl 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (1.85 g, quant. yield): MS(ES+) m/z 472.9, 475.1 (M+1H).
  • Step 4. Preparation of 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01368
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.45 g, 67%): 1H NMR (300 MHz, DMSO-d6) δ 12.28 (br s, 1H), 9.92 (br s, 1H), 8.49 (s, 1H), 7.51 (d, J=10.9 Hz, 1H), 7.30 (s, 1H), 7.25 (d, J=7.1 Hz, 1H), 5.33-5.15 (m, 1H), 4.55 (s, 2H), 3.51-3.24 (m, 7H), 2.34-2.00 (m, 4H), 1.93-1.75 (m, 1H), 1.04-0.91 (m, 2H), 0.81-0.70 (m, 2H); MS(ES+) m/z 550.1, 552.1 (M+1).
  • Example 522 Synthesis of 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01369
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.35 g, 51%): 1H NMR (300 MHz, DMSO-d6) δ 12.24 (br s, 1H), 10.16 (br s, 1H), 8.48 (s, 1H), 7.53 (d, J=10.9 Hz, 1H), 7.30 (s, 1H), 7.23 (d, J=7.1 Hz, 1H), 5.32-5.14 (m, 1H), 4.56 (s, 2H), 3.52-3.24 (m, 4H), 3.11-3.00 (m, 1H), 2.33-1.98 (m, 4H), 1.96-1.82 (m, 1H), 1.17-1.06 (m, 4H), 1.03-0.94 (m, 2H), 0.81-0.71 (m, 2H); MS(ES+) m/z 576.1, 578.1 (M+1).
  • Example 523 Synthesis of 4-((4-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01370
  • Step 1. Preparation of tert-butyl 4-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01371
  • Following the procedure as described in Example 521 step 1, and making variation as required to replace 2,5-dichloro-4-(trifluoromethyl)pyridine with 3-chloro-2-fluoro-5-(trifluoromethyl)pyridine, the title compound was obtained as a colorless solid (1.76 g, quant. yield): 1H NMR (300 MHz, CDCl3) δ 8.25 (s, 1H), 7.80 (s, 1H), 5.38-5.28 (m, 1H), 3.87-3.72 (m, 4H), 3.04-2.90 (m, 2H), 1.86-1.72 (m, 2H), 1.40 (s, 9H); MS(ES+) m/z 324.9, 326.9 (M−55).
  • Step 2. Preparation of tert-butyl 4-((4-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01372
  • Following the procedure as described in Example 521 step 2, and making variation as required to replace tert-butyl 4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)piperidine-1-carboxylate with tert-butyl 4-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)piperidine-1-carboxylate, the title compound was obtained as a colorless solid (0.52 g, 25%): 1H NMR (300 MHz, CDCl3) δ 8.29-8.26 (m, 1H), 7.81 (d, J=2.1 Hz, 1H), 7.48 (d, J=7.1 Hz, 1H), 7.19 (d, J=11.7 Hz, 1H), 5.28-5.19 (m, 1H), 3.66 (s, 2H), 2.79-2.68 (m, 2H), 2.46-2.35 (m, 2H), 2.09-1.82 (m, 5H), 1.56 (s, 9H), 0.96-0.87 (m, 2H), 0.65-0.58 (m, 2H); MS(ES+) m/z 529.3, 531.2 (M+1).
  • Step 3. Preparation of 4-((4-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01373
  • Following the procedure as described in Example 517 step 4, and making variation as required to replace tert-butyl 5-cyclopropyl-4-((4-(3,5-dichlorobenzyl)piperazin-1-yl)methyl)-2-fluorobenzoate with tert-butyl 4-((4-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.50 g, quant. yield): MS(ES+) m/z 472.9, 475.1 (M+1H).
  • Step 4. Preparation of 4-((4-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01374
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((4-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.11 g, 39%): 1H NMR (300 MHz, DMSO-d6) δ 12.31 (br s, 1H), 9.87 (br s, 1H), 8.55-8.51 (m, 1H), 8.43-8.39 (m, 1H), 7.52 (d, J=11.1 Hz, 1H), 7.26 (d, J=7.1 Hz, 1H), 5.49-5.24 (m, 1H), 4.56 (s, 2H), 3.55-3.14 (m, 7H), 2.38-2.06 (m, 4H), 2.03-1.82 (m, 1H), 1.05-0.93 (m, 2H), 0.83-0.70 (m, 2H); MS(ES+) m/z 550.1, 552.1 (M+1).
  • Example 524 Synthesis of 4-((4-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01375
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((4-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.11 g, 38%): 1H NMR (300 MHz, DMSO-d6) δ 12.22 (br s, 1H), 9.96 (br s, 1H), 8.55-8.51 (m, 1H), 8.43-8.39 (m, 1H), 7.55 (d, J=10.9 Hz, 1H), 7.24 (d, J=7.1 Hz, 1H), 5.48-5.25 (m, 1H), 4.56 (s, 2H), 3.56-3.16 (m, 4H), 3.11-3.00 (m, 1H), 2.38-2.07 (m, 4H), 2.01-1.82 (m, 1H), 1.15-1.06 (m, 4H), 1.04-0.94 (m, 2H), 0.80-0.72 (m, 2H); MS(ES+) m/z 576.1, 578.1 (M+1).
  • Example 525 Synthesis of 4-((4-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01376
  • Step 1. Preparation of methyl 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01377
  • To a degassed mixture of methyl 5-cyclopropyl-2-fluoro-4-((3-methylazetidin-3-yl)methoxy)benzoate hydrochloride (0.15 g, 0.46 mmol), 2,5-dichloro-4-(trifluoromethyl)pyridine (0.15 g, 0.68 mmol) and cesium carbonate (0.58 g, 1.77 mmol) in anhydrous toluene (5.0 mL) was added rac-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (0.06 g, 0.091 mmol) and bis(dibenzylideneacetone)palladium(0) (0.03 g, 0.046 mmol). The resulting mixture was heated at 100° C. in a sealed tube for 30 hours. The reaction mixture was diluted with ethyl acetate (30 mL), washed with water (30 mL), saturated ammonium chloride (30 mL), brine (30 mL), dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The residue was purified by HPLC to provide the title compound as a colorless solid (0.10 g, 46%): MS(ES+) m/z 473.1, 475.1 (M+1).
  • Step 2. Preparation of 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01378
  • To a mixture of methyl 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate (0.10 g, 0.21 mmol) and lithium hydroxide monohydrate (0.09 g, 2.10 mmol) in tetrahydrofuran (20 mL) and water (10 mL) was refluxed for 7 hours. The mixture was diluted with ethyl acetate (50 mL), washed with 1.0 N hydrochloride acid solution (30 mL), brine (3×30 mL), dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo to provide the title compound as a colorless solid (0.07 g, 67%): MS(ES+) m/z 458.9, 460.9 (M+1).
  • Step 3. Preparation of 4-((4-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)piperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01379
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and purification by preparative HPLC, the title compound was obtained as a colorless solid, (0.03 g, 38%): 1H NMR (300 MHz, DMSO-d6) δ 11.81 (s, 1H), 8.27 (s, 1H), 7.06 (d, J=8.3 Hz, 1H), 6.96 (d, J=13.0 Hz, 1H), 6.75 (s, 1H), 4.07 (s, 2H), 4.03 (d, J=8.6 Hz, 2H), 3.79 (d, J=8.6 Hz, 2H), 3.08-2.98 (m, 1H), 1.71-1.59 (m, 1H), 1.40 (s, 3H), 1.12-1.03 (m, 4H), 0.59-0.53 (m, 4H); MS(ES+) m/z 562.1, 564.1 (M+1).
  • Example 526 Synthesis of 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfonyl)piperazin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01380
  • Step 1. Preparation of tert-butyl 4-((3,5-dichlorophenyl)sulfonyl)piperazine-1-carboxylate
  • Figure US20210093618A1-20210401-C01381
  • To a solution of perfluorophenyl 3,5-dichlorobenzenesulfonate (2.30 g, 5.85 mmol) and triethylamine (1.63 mL, 11.7 mmol) in dichloromethane (50 mL) was added with tert-butyl piperazine-1-carboxylate (1.31 g, 7.02 mmol) at ambient temperature. The resulting mixture was stirred at ambient temperature for 18 hours under nitrogen, diluted with ethyl acetate (100 mL), washed with saturated ammonium chloride (2×50 mL), saturated sodium bicarbonate (50 mL), brine (30 mL), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (0-20% ethyl acetate in hexanes) to provide the title compound as a colorless solid (1.87 g, 81%): 1H NMR (300 MHz, CDCl3) δ 7.60-7.54 (m, 3H), 3.50 (t, J=4.8 Hz, 4H), 2.99 (t, J=5.1 Hz, 4H), 1.39 (s, 9H); MS(ES+) m/z 294.9, 296.9 (M−Boc+2).
  • Step 2. Preparation of 1-((3,5-dichlorophenyl)sulfonyl)piperazine hydrochloride
  • Figure US20210093618A1-20210401-C01382
  • Following the procedure as described in Example 517 step 4, and making variation as required to replace tert-butyl 5-cyclopropyl-4-((4-(3,5-dichlorobenzyl)piperazin-1-yl)methyl)-2-fluorobenzoate with tert-butyl 4-((3,5-dichlorophenyl)sulfonyl)piperazine-1-carboxylate, the title compound was obtained as a colorless solid (1.57 g, quant. yield): MS(ES+) m/z 295.0, 297.0 (M+1).
  • Step 2. Preparation of tert-butyl 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfonyl)piperazin-1-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01383
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 1-((3,5-dichlorophenyl)sulfonyl)piperazine hydrochloride and purification by flash chromatography (0-20% ethyl acetate in hexanes), the title compound was obtained as an foam (1.81 g, 70%): 1H NMR (300 MHz, CDCl3) δ 7.61-7.55 (m, 3H), 7.45 (d, J=7.5 Hz, 1H), 7.04 (d, J=11.7 Hz, 1H), 3.64 (s, 2H), 3.11-3.00 (m, 4H), 2.61-2.51 (m, 4H), 1.92-1.79 (m, 1H), 1.54 (s, 9H), 0.91-0.83 (m, 2H), 0.62-0.54 (m, 2H); MS(ES+) m/z 543.0, 545.0 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfonyl)piperazin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01384
  • Following the procedure as described in Example 517 step 4, and making variation as required to replace tert-butyl 5-cyclopropyl-4-((4-(3,5-dichlorobenzyl)piperazin-1-yl)methyl)-2-fluorobenzoate with tert-butyl 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfonyl)piperazin-1-yl)methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid (1.74 g, quant. yield): MS (ES+) m/z 478.0, 489.0 (M+1).
  • Step 4. Preparation of 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfonyl)piperazin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01385
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfonyl)piperazin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.18 g, 43%): 1H NMR (300 MHz, DMSO-d6) δ 11.97 (br s, 1H), 8.07-8.04 (m, 1H), 7.74 (d, J=1.7 Hz, 2H), 7.32 (d, J=11.3 Hz, 1H), 7.21 (d, J=7.2 Hz, 1H), 5.68 (br s, 1H), 4.20 (s, 2H), 3.32 (s, 3H), 3.29-2.90 (m, 8H), 2.08-1.97 (m, 1H), 0.97-0.87 (m, 2H), 0.72-0.64 (m, 2H); MS(ES+) m/z 564.0, 566.0 (M+1).
  • Example 527 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((4-((3,5-dichlorophenyl)sulfonyl)piperazin-1-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01386
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfonyl)piperazin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.19 g, 43%): 1H NMR (300 MHz, DMSO-d6) δ 12.01 (br s, 1H), 8.04 (dd, J=1.7 Hz, 1H), 7.74 (d, J=1.7 Hz, 2H), 7.31 (d, J=11.4 Hz, 1H), 7.19 (d, J=7.1 Hz, 1H), 5.05 (br s, 1H), 4.13 (s, 2H), 3.29-2.76 (m, 9H), 2.07-1.95 (m, 1H), 1.14-1.05 (m, 4H), 0.96-0.87 (m, 2H), 0.71-0.63 (m, 2H); MS(ES+) m/z 590.0, 592.0 (M+1).
  • Example 528 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-(((1R,3s,5S)-3-(3,5-dichlorophenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01387
  • Step 1. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-(((1R,3r,5S)-3-hydroxy-8-azabicyclo[3.2.1]octan-8-yl)methyl)benzoate
  • Figure US20210093618A1-20210401-C01388
  • Following the procedure as described in Example 470 Step 4, and making variation as required to replace (1R,3r,5S)-3-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)-8-azabicyclo[3.2.1]-octane with nortropine, the title compound was obtained as a yellowish solid (2.16 g, 99%): 1H NMR (300 MHz, CDCl3) δ7.46 (d, J=7.3 Hz, 1H), 7.31 (d, J=12.2 Hz, 1H), 4.09-4.03 (m, 1H), 3.63 (s, 2H), 3.13-3.07 (m, 2H), 2.16-1.94 (m, 6H), 1.92-1.81 (m, 1H), 1.70 (br s, 1H), 1.65 (br s, 1H), 1.57-1.57 (m, 1H), 1.56 (s, 9H), 0.91-0.83 (m, 2H), 0.62-0.56 (m, 2H).
  • Step 2. Preparation of tert-butyl 5-cyclopropyl-2-fluoro-4-(((1R,3r,5S)-3-((methylsulfonyl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)benzoate
  • Figure US20210093618A1-20210401-C01389
  • Following the procedure as described in Example 519 step 2, and making variation as required to replace tert-butyl 5-cyclopropyl-2-fluoro-4-((4-hydroxypiperidin-1-yl)methyl)benzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-(((1R,3r,5S)-3-hydroxy-8-azabicyclo[3.2.1]octan-8-yl)methyl)benzoate, the title compound was obtained as an foam (1.21 g, quant. yield): MS(ES+) m/z 454.2 (M+1).
  • Step 3. Preparation of tert-butyl 5-cyclopropyl-4-(((1R,3s,5S)-3-(3,5-dichlorophenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01390
  • Following the procedure as described in Example 519 step 3, and making variation as required to replace 4-chloro-3-(trifluoromethyl)phenol with 3,5-dichlorophenol and to replace tert-butyl 5-cyclopropyl-2-fluoro-4-((4-((methylsulfonyl)oxy)piperidin-1-yl)methyl)benzoate with tert-butyl 5-cyclopropyl-2-fluoro-4-(((1R,3r,5S)-3-((methylsulfonyl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)benzoate, the title compound was obtained as an colorless oil (0.70 g, 36%): 1H NMR (300 MHz, CDCl3) δ 7.47 (d, J=7.3 Hz, 1H), 7.30 (d, J=12.1 Hz, 1H), 6.91-6.87 (m, 1H), 6.76-6.69 (m, 2H), 4.53-4.40 (m, 1H), 3.75 (s, 2H), 3.32-3.24 (m, 2H), 2.15-1.76 (m, 7H), 1.72-1.64 (m, 2H), 1.57 (s, 9H), 0.94-0.85 (m, 2H), 0.64-0.56 (m, 2H); MS(ES+) m/z 520.2, 522.2 (M+1).
  • Step 4. Preparation of 5-cyclopropyl-4-(((1R,3s,5S)-3-(3,5-dichlorophenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01391
  • Following the procedure as described in Example 517 step 4, and making variation as required to replace tert-butyl 5-cyclopropyl-4-((4-(3,5-dichlorobenzyl)piperazin-1-yl)methyl)-2-fluorobenzoate with tert-butyl 5-cyclopropyl-4-(((1R,3s,5S)-3-(3,5-dichlorophenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.67 g, quant. yield): MS(ES+) m/z 464.1, 466.1 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-(((1R,3s,5S)-3-(3,5-dichlorophenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01392
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((1R,3s,5S)-3-(3,5-dichlorophenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.04 g, 4%): 1H NMR (300 MHz, DMSO-d6) δ 12.25 (br s, 1H), 9.63 (br s, 1H), 7.57 (d, J=11.4 Hz, 1H), 7.26 (d, J=7.1 Hz, 1H), 7.16-7.09 (m, 3H), 4.97-4.83 (m, 1H), 4.38 (s, 2H), 4.03 (s, 2H), 3.10-2.98 (m, 1H), 2.42-2.17 (m, 6H), 2.15-1.94 (m, 3H), 1.17-1.06 (m, 4H), 1.03-0.93 (m, 2H), 0.82-0.72 (m, 2H); MS(ES+) m/z 567.1, 569.1 (M+1).
  • Example 529 Synthesis of (R)-4-((1-(2-(3-chlorophenyl)propan-2-yl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01393
  • Step 1. Preparation of methyl (R)-4-((1-(2-(3-chlorophenyl)propan-2-yl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01394
  • Following the procedure as described in Example 495 step 1 and making variation as required to replace 3,5-dichlorobenzoyl chloride with 3-chlorobenzoyl chloride, the title compound was obtained as a yellowish oil (0.72 g, 24% in 2 steps): 1H NMR (300 MHz, CDCl3) δ7.53-7.48 (m, 1H), 7.42-7.35 (m, 2H), 7.21-7.16 (m, 2H), 6.39 (d, J=13.0 Hz, 1H), 4.35-4.24 (m, 1H), 3.85 (s, 3H), 2.96-2.87 (m, 1H), 2.74-2.64 (m, 1H), 2.34-2.20 (m, 2H), 2.09-1.97 (m, 2H), 1.86-1.77 (m, 1H), 1.63-1.50 (m, 2H), 1.30 (s, 3H), 1.30 (s, 3H), 0.92-0.84 (m, 2H), 0.65-0.59 (m, 2H); MS (ES+) m/z 446.2, 448.2 (M+1).
  • Step 2. Preparation of (R)-4-((1-(2-(3-chlorophenyl)propan-2-yl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01395
  • Following the procedure as described in Example 481 step 5 and making variation as required to replace methyl 4-((1-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with (R)-methyl 4-((1-(2-(3-chlorophenyl)propan-2-yl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as an orange amorphous solid (0.47 g, 68%): MS(ES+) m/z 432.2, 434.2 (M+1).
  • Step 3. Preparation of (R)-4-((1-(2-(3-chlorophenyl)propan-2-yl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01396
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with (R)-4-((1-(2-(3-chlorophenyl)propan-2-yl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.08 g, 24%): 1H NMR (300 MHz, CDCl3) δ 12.12 (br s, 1H), 8.85-8.65 (m, 1H), 7.67-7.58 (m, 1H), 7.57-7.49 (m, 2H), 7.46-7.40 (m, 2H), 6.96 (d, J=14.0 Hz, 1H), 5.18-5.05 (m, 1H), 3.78-3.66 (m, 1H), 3.47-3.32 (m, 4H), 2.60-2.43 (m, 2H), 2.38-2.08 (m, 2H), 2.03-1.93 (m, 2H), 1.90 (s, 3H), 1.88 (s, 3H), 1.57-1.41 (m, 1H), 0.93-0.82 (m, 2H), 0.65-0.56 (m, 2H); MS(ES+) m/z 509.1, 511.1 (M+1).
  • Example 530 Synthesis of (R)-4-((1-(2-(3-chlorophenyl)propan-2-yl)piperidin-3-yl)oxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01397
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with R)-4-((1-(2-(3-chlorophenyl)propan-2-yl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.08 g, 23%): 1H NMR (300 MHz, CDCl3) δ 11.92 (br s, 1H), 8.72 (d, J=15.5 Hz, 1H), 7.67-7.58 (m, 1H), 7.57-7.49 (m, 2H), 7.47-7.40 (m, 2H), 6.96 (d, J=14.0 Hz, 1H), 5.18-5.04 (m, 1H), 3.78-3.65 (m, 1H), 3.46-3.34 (m, 1H), 3.11-3.01 (m, 1H), 2.61-2.43 (m, 2H), 2.37-2.10 (m, 2H), 2.04-1.93 (m, 2H), 1.91 (s, 3H), 1.87 (s, 3H), 1.57-1.39 (m, 3H), 1.16-1.07 (m, 2H), 0.92-0.84 (m, 2H), 0.64-0.57 (m, 2H); MS(ES+) m/z 535.2, 537.1 (M+1).
  • Example 531 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((4-((3,5-dichlorophenyl)thio)piperidin-1-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01398
  • Step 1. Preparation of tert-butyl 4-((methylsulfonyl)oxy)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01399
  • Following the procedure as described in Example 519 step 2, and making variation as required to replace tert-butyl 5-cyclopropyl-2-fluoro-4-((4-hydroxypiperidin-1-yl)methyl)benzoate with tert-butyl 4-hydroxypiperidine-1-carboxylate, the title compound was obtained as a colorless solid (7.32 g, quant. yield): 1H NMR (300 MHz, CDCl3) δ 4.88-4.78 (m, 1H), 3.71-3.60 (m, 2H), 3.30-3.19 (m, 2H), 2.99 (s, 3H), 1.97-1.86 (m, 2H), 1.82-1.70 (m, 2H) 1.41 (s, 9H); MS (ES+) m/z 302.1 (M+23).
  • Step 2. Preparation of tert-butyl 4-((3,5-dichlorophenyl)thio)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01400
  • Following the procedure as described in Example 519 step 3, and making variation as required to replace 4-chloro-3-(trifluoromethyl)phenol with 3,5-dichlorobenzenethiol and tert-butyl 5-cyclopropyl-2-fluoro-4-((4-((methylsulfonyl)oxy)piperidin-1-yl)methyl)benzoate with tert-butyl 4-((methylsulfonyl)oxy)piperidine-1-carboxylate, the title compound was obtained as an colorless solid (3.66 g, 64%): 1H NMR (300 MHz, CDCl3) δ 7.22-7.16 (m, 3H), 3.99-3.81 (m, 2H), 3.29-3.17 (m, 1H), 2.98-2.85 (m, 2H), 1.94-1.83 (m, 2H), 1.58-1.45 (m, 2H), 1.41 (s, 9H); MS(ES+) m/z 306.0, 308.0 (M−Boc+2H).
  • Step 3. Preparation of 4-((3,5-dichlorophenyl)thio)piperidine hydrochloride
  • Figure US20210093618A1-20210401-C01401
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 4-((3,5-dichlorophenyl)thio)piperidine-1-carboxylate, the title compound was obtained as a colorless solid (0.19 g, quant. yield): MS(ES+) m/z: 262.1, 264.1 (M+1).
  • Step 4. Preparation of tert-butyl 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)thio)piperidin-1-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01402
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 4-((3,5-dichlorophenyl)thio)piperidine hydrochloride, the title compound was obtained as an oil (0.29 g, quant. yield): MS(ES+) m/z 510.0, 512.0 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)thio)piperidin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01403
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)thio)piperidin-1-yl)methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.28 g, quant. yield): MS(ES+) m/z 454.0, 456.1 (M+1).
  • Step 6. Preparation of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((4-((3,5-dichlorophenyl)thio)piperidin-1-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01404
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)thio)piperidin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.09 g, 22%): 1H NMR (300 MHz, CDCl3) δ 9.43 (br s, 2H), 7.71 (d, J=7.2 Hz, 1H), 7.43 (d, J=12.1 Hz, 1H), 7.27-7.20 (m, 3H), 4.43 (s, 2H), 3.61-3.15 (m, 5H), 3.09-2.99 (m, 1H), 2.50-2.20 (m, 2H), 2.07-1.91 (m, 2H), 1.91-1.81 (m, 1H), 1.46-1.37 (m, 2H), 1.19-1.04 (m, 4H), 0.79-0.69 (m, 2H); MS (ES+) m/z 557.1, 559.1 (M+1).
  • Example 532 Synthesis of 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfonyl)piperidin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01405
  • Step 1. Preparation of tert-butyl 4-((3,5-dichlorophenyl)sulfonyl)piperidine-1-carboxylate and tert-butyl 4-((3,5-dichlorophenyl)sulfinyl)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01406
  • To a solution of tert-butyl 4-((3,5-dichlorophenyl)thio)piperidine-1-carboxylate (3.66 g, 10.10 mmol) in dichloromethane (100 mL) at 0° C. was added m-chloroperoxybenzoic acid (77%, 3.40 g, 15.15 mmol). The resulting mixture was stirred at 0° C. for 3 hours and then concentrated in vacuo to about 40 mL volume. The mixture was diluted with ethyl acetate (150 mL), washed with saturated sodium thiosulfate (100 mL), 1.0 M aqueous sodium hydroxide solution (3×50 mL), brine (50 mL), dried over anhydrous sodium sulfate, filtered the solid, and concentrated in vacuo. The residue was purified by flash chromatography (0-50% ethyl acetate in hexanes) to provide tert-butyl 4-((3,5-dichlorophenyl)sulfonyl)piperidine-1-carboxylate (2.12 g, 53%) and tert-butyl 4-((3,5-dichlorophenyl)sulfinyl)piperidine-1-carboxylate (1.35 g, 34%) as a colorless solids. Analytical data for tert-butyl 4-((3,5-dichlorophenyl)sulfonyl)piperidine-1-carboxylate: 1H NMR (300 MHz, CDCl3) δ 7.73-7.68 (m, 2H), 7.64-7.60 (m, 1H), 4.31-4.15 (m, 2H), 3.10-2.97 (m, 1H), 2.72-2.56 (m, 2H), 1.99-1.89 (m, 2H), 1.67-1.51 (m, 2H), 1.41 (s, 9H); MS (ES+) m/z 294.0, 296.0 (M−Boc+H). Analytical data for tert-butyl 4-((3,5-dichlorophenyl)sulfinyl)piperidine-1-carboxylate: 1H NMR (300 MHz, CDCl3) δ 7.46-7.44 (m, 1H), 7.43-7.41 (m, 2H), 4.27-4.12 (m, 2H), 2.76-2.59 (m, 3H), 1.86-1.76 (m, 1H), 1.68-1.54 (m, 3H), 1.40 (s, 9H); MS(ES+) m/z 378.0, 380.0 (M+1).
  • Step 2. Preparation of 4-((3,5-dichlorophenyl)sulfonyl)piperidine hydrochloride
  • Figure US20210093618A1-20210401-C01407
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 4-((3,5-dichlorophenyl)sulfonyl)piperidine-1-carboxylate, the title compound was obtained as a colorless solid (1.78 g, quant. yield): MS(ES+) m/z 294.1, 296.1 (M+1).
  • Step 3. Preparation of tert-butyl 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfonyl)piperidin-1-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01408
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 4-((3,5-dichlorophenyl)sulfonyl)piperidine hydrochloride, the title compound was obtained as a colorless solid (2.63, quant. yield): MS(ES+) m/z 542.0, 544.0 (M+1).
  • Step 4. Preparation of 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfonyl)piperidin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01409
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfonyl)piperidin-1-yl)methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid (2.59 g, 90%): MS(ES+) m/z 486.0, 488.1 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfonyl)piperidin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01410
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfonyl)piperidin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.11 g, 20%): 1H NMR (300 MHz, DMSO-d6) δ 12.17 (br s, 1H), 9.85 (br s, 1H), 8.12 (dd, J=1.7, 1.7 Hz, 1H), 7.84 (d, J=1.7 Hz, 2H), 7.39 (d, J=11.1 Hz, 1H), 7.23 (d, J=7.1 Hz, 1H), 4.32 (s, 2H), 3.75-3.59 (m, 3H), 3.32 (s, 3H), 2.98-2.75 (m, 2H), 2.10-1.96 (m, 3H), 1.88-1.68 (m, 2H), 0.98-0.88 (m, 2H), 0.76-0.66 (m, 2H); MS(ES+) m/z 563.0, 565.0 (M+1).
  • Example 533 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((4-((3,5-dichlorophenyl)sulfonyl)piperidin-1-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01411
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfonyl)piperidin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.04 g, 7%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 7.65-7.61 (m, 2H), 7.60-7.57 (m, 1H), 7.38 (d, J=7.1 Hz, 1H), 7.16 (d, J=11.4 Hz, 1H), 4.02 (s, 2H), 3.28-3.20 (m, 2H), 3.17-3.06 (m, 1H), 3.02-2.91 (m, 1H), 2.66-2.51 (m, 2H), 2.11-2.00 (m, 2H), 1.97-1.74 (m, 3H), 1.34-1.25 (m, 2H), 1.08-0.98 (m, 2H), 0.95-0.86 (m, 2H), 0.62-0.54 (m, 2H); MS(ES+) m/z 589.1, 591.1 (M+1).
  • Example 534 Synthesis of 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfinyl)piperidin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01412
  • Step 1. Preparation of 4-((3,5-dichlorophenyl)sulfinyl)piperidine hydrochloride
  • Figure US20210093618A1-20210401-C01413
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 4-((3,5-dichlorophenyl)sulfinyl)piperidine-1-carboxylate, the title compound was obtained as a colorless solid (1.12 g, quant. yield): MS(ES+) m/z 278.1, 280.1 (M−1).
  • Step 2. Preparation of tert-butyl 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfinyl)piperidin-1-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01414
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 4-((3,5-dichlorophenyl)sulfinyl)piperidine hydrochloride, the title compound was obtained as a colorless solid (1.40 g, 80%): MS (ES+) m/z 526.1, 528.1 (M+1).
  • Step 3. Preparation of 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfinyl)piperidin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01415
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfinyl)piperidin-1-yl)methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid (1.35 g, quant. yield): MS(ES+) m/z 470.0, 472.1 (M+1).
  • Step 4. Preparation of 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfinyl)piperidin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01416
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfinyl)piperidin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.05 g, 9%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 7.46-7.37 (m, 3H), 7.26-7.20 (m, 2H), 4.19 (s, 2H), 3.42-3.33 (m, 2H), 3.31-3.24 (m, 4H), 2.88-2.70 (m, 2H), 2.08-1.87 (m, 4H), 1.86-1.76 (m, 1H), 1.00-0.91 (m, 2H), 0.66-0.58 (m, 2H) (Note: Note: exchangeable protons not observed.); MS(ES+) m/z 547.0, 549.0 (M+1).
  • Example 535 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((4-((3,5-dichlorophenyl)sulfinyl)piperidin-1-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01417
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-((3,5-dichlorophenyl)sulfinyl)piperidin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.05 g, 8%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 7.47-7.42 (m, 2H), 7.42-7.39 (m, 2H), 7.29-7.23 (m, 1H), 4.26 (s, 2H), 3.33-3.27 (m, 2H), 3.05-2.95 (m, 1H), 2.94-2.84 (m, 2H), 2.82-2.72 (m, 1H), 2.13-2.03 (m, 2H), 2.02-1.93 (m, 2H), 1.88-1.77 (m, 1H), 1.39-1.30 (m, 2H), 1.12-1.03 (m, 2H), 1.02-0.95 (m, 2H), 0.68-0.60 (m, 2H); MS(ES+) m/z 573.1, 575.1 (M+1).
  • Example 536 Synthesis of 4-((4-(3-Chloro-2-fluoro-5-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01418
  • Step 1. Preparation of tert-butyl 4-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01419
  • Following the procedure as described in Example 519 step 3, and making variation as required to replace 4-chloro-3-(trifluoromethyl)phenol with 3-chloro-2-fluoro-5-(trifluoromethyl)phenol and tert-butyl 5-cyclopropyl-2-fluoro-4-((4-((methylsulfonyl)oxy)piperidin-1-yl)methyl)benzoate with tert-butyl 4-((methylsulfonyl)oxy)piperidine-1-carboxylate, the title compound was obtained as an colorless oil (2.67 g, 69%): 1H NMR (300 MHz, CDCl3) δ 7.29-7.25 (m, 1H), 7.11-7.06 (m, 1H), 4.55-4.46 (m, 1H), 3.74-3.61 (m, 2H), 3.41-3.29 (m, 2H), 1.97-1.85 (m, 2H), 1.83-1.71 (m, 2H), 1.44 (s, 9H); MS(ES+) m/z 342.0, 344.0 (M−55).
  • Step 2. Preparation of 4-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)piperidine hydrochloride
  • Figure US20210093618A1-20210401-C01420
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 4-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)piperidine-1-carboxylate, the title compound was obtained as a colorless solid (2.24 g, quant. yield): MS (ES+) m/z 298.1, 300.1 (M+1).
  • Step 3. Preparation of tert-butyl 4-((4-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01421
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 4-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)piperidine hydrochloride, the title compound was obtained as a colorless solid (2.00, 66%): MS(ES+) m/z: 546.2, 548.2 (M+1).
  • Step 4. Preparation of 4-((4-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01422
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 4-((4-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (1.93 g, quant. yield): MS(ES+) m/z 490.1, 492.1 (M+1).
  • Step 5. Preparation of -((4-(3-Chloro-2-fluoro-5-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01423
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((4-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.22 g, 38%): 1H NMR (300 MHz, DMSO-d6) δ 12.19 (br s, 1H), 10.27 (br s, 1H), 7.68-7.61 (m, 2H), 7.52 (d, J=11.1 Hz, 1H), 7.25 (d, J=7.1 Hz, 1H), 4.95-4.77 (m, 1H), 4.57 (s, 2H), 3.45-3.36 (m, 2H), 3.34 (s, 3H), 3.31-3.23 (m, 2H), 2.24-2.10 (m, 3H), 2.06-1.98 (m, 2H), 1.03-0.95 (m, 2H), 0.81-0.73 (m, 2H); MS(ES+) m/z 567.1, 569.1 (M+1).
  • Example 537 Synthesis of 4-((4-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01424
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((4-(3-chloro-2-fluoro-5-(trifluoromethyl)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.25 g, 43%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 7.40 (d, J=7.1 Hz, 1H), 7.34-7.25 (m, 2H), 7.13-7.08 (m, 1H), 4.67-4.59 (m, 1H), 4.41 (s, 2H), 3.42-3.30 (m, 2H), 3.29-3.15 (m, 2H), 3.02-2.91 (m, 1H), 2.32-2.17 (m, 2H), 2.13-2.01 (m, 2H), 1.90-1.79 (m, 1H), 1.34-1.26 (m, 2H), 1.08-0.96 (m, 4H), 0.69-0.61 (m, 2H); MS(ES+) m/z 593.1, 595.1 (M+1).
  • Example 538 Synthesis of (R)-4-((1-(tert-butyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01425
  • Step 1. Preparation of methyl (R)-4-((1-acetylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01426
  • To a solution of methyl (R)-5-cyclopropyl-2-fluoro-4-(piperidin-3-yloxy)benzoate (2.00 g, 6.82 mmol), triethylamine (1.90 mL, 13.64 mmol), and 4-dimethylaminopyridine (0.20 g, 1.64 mmol) in dichloromethane (60 mL) was added acetic anhydride (1.29 mL, 13.64 mmol) under nitrogen. The resulting solution was stirred at ambient temperature for 18 hours. The reaction mixture was concentrated in vacuo, diluted with ethyl acetate (100 mL), washed with aqueous saturated ammonium chloride solution (2×50 mL), aqueous saturated sodium bicarbonate solution (2×50 mL), and brine (30 mL); dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (50-100% ethyl acetate in hexanes) to provide the title compound as a colorless solid (1.28 g, 56%): MS(ES+) m/z 336.1 (M+1).
  • Step 2. Preparation of methyl (R)-4-((1-(tert-butyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01427
  • To a solution of methyl (R)-4-((1-acetylpiperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate (1.28 g, 3.82 mmol) and 2,6-di-tert-butyl-4-methylpyridine (0.94 g, 4.58 mmol) in anhydrous dichloromethane (70 mL) at −78° C. under nitrogen was added trifluoromethanesulfonic anhydride (0.77 mL, 4.58 mmol) dropwise. The resulting mixture was stirred at −78° C. for 2 hours and then added methyl lithium (1.6 M in diethyl ether, 11.9 mL, 19.04 mmol) dropwise. The resulting mixture was stirred at −78° C. for 1 hour and then quenched cold with aqueous saturated ammonium chloride solution (50 mL). The mixture was warmed to ambient temperature, the organic layer was washed with brine (50 mL), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue was purified by preparative HPLC to provide the title compound as a colorless solid (0.40 g, 30%): 1H NMR (300 MHz, CDCl3) δ 7.39 (d, J=8.4 Hz, 1H), 6.46 (d, J=12.8 Hz, 1H), 4.67-4.39 (m, 1H), 3.84 (s, 3H), 3.46-3.31 (m, 1H), 3.16-2.98 (m, 1H), 2.32-2.11 (m, 3H), 2.05-1.93 (m, 1H), 1.91-1.69 (m, 2H), 1.50-1.34 (m, 1H), 1.15 (s, 9H), 0.90-0.81 (m, 2H), 0.66-0.55 (m, 2H); MS(ES+) m/z 350.3 (M+1).
  • Step 3. Preparation of (R)-4-((1-(tert-butyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01428
  • To a mixture of (R)-4-((1-(tert-butyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate (0.14 g, 0.40 mmol) and sodium hydroxide (0.12 g, 2.85 mmol) in tetrahydrofuran (10 mL) and water (2.5 mL) was refluxed for 6 hours. The reaction mixture was cooled to ambient temperature and added 1.0 N aqueous hydrochloride acid solution (5 mL) and concentrated in vacuo. The residue was dissolved in anhydrous dimethylformamide (5 mL), and dichloromethane (5 mL). To this solution was added methanesulfonamide (0.06 g, 0.60 mmol), N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (0.12 g, 0.60 mmol) and 4-dimethylaminopyridine (0.20 g, 1.60 mmol), The resulting mixture was stirred for 20 hours at ambient temperature, and diluted with 1.0 N aqueous hydrochloric acid solution (15 mL) and brine (15 mL); extracted with dichloromethane:methanol (20:1 v/v, 2×50 mL); dried dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue was purified by preparative HPLC to provide the title compound as a colorless solid (0.03 g, 18%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 7.29 (d, J=8.9 Hz, 1H), 6.54 (d, J=13.1 Hz, 1H), 4.51-4.38 (m, 1H), 3.47-3.37 (m, 1H), 3.29-3.18 (m, 1H), 3.09 (s, 3H), 2.37-2.23 (m, 2H), 2.19-2.07 (m, 1H), 1.94-1.73 (m, 3H), 1.44-1.29 (m, 1H), 1.19 (s, 9H), 0.81-0.73 (m, 2H), 0.58-0.49 (m, 2H); MS(ES+) m/z 413.2 (M+1).
  • Example 539 Synthesis of (R)-4-((1-(tert-butyl)piperidin-3-yl)oxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01429
  • Following the procedure as described in Example 538 step 3, and making variation as required to replace methylsulfonamide with cyclopropanesulfonamide, the title compound was obtained as a colorless solid (0.04 g, 23%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 7.33 (d, J=8.7 Hz, 1H), 6.58 (d, J=13.4 Hz, 1H), 4.44-4.31 (m, 1H), 3.36-3.24 (m, 1H), 3.11-2.98 (m, 1H), 2.95-2.84 (m, 1H), 2.23-2.05 (m, 3H), 1.98-1.87 (m, 1H), 1.85-1.57 (m, 2H), 1.43-1.29 (m, 1H), 1.27-1.20 (m, 2H), 1.09 (s, 9H), 1.01-0.92 (m, 2H), 0.84-0.74 (m, 2H), 0.58-0.50 (m, 2H); MS(ES+) m/z 439.2 (M+1).
  • Example 540 Synthesis of 5-cyclopropyl-4-((4-(1-(3,5-dichlorophenyl)ethyl)piperazin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01430
  • Step 1. Preparation of tert-butyl 4-(1-(3,5-dichlorophenyl)ethyl)piperazine-1-carboxylate
  • Figure US20210093618A1-20210401-C01431
  • To a solution of tert-butyl piperazine-1-carboxylate (3.13 g, 16.83 mmol) and L-(3,5-dichlorophenyl)ethan-1-one (3.50 g, 18.51 mmol) in anhydrous tetrahydrofuran (80 mL) was added titanium isopropoxide (IV) (10.2 mL, 33.66 mmol) under nitrogen. The resulting mixture was refluxed for 18 hours, cooled to −42° C. and added anhydrous methanol (3.0 mL) and sodium triacetoxyborohydride (7.13 g, 33.66 mmol). After stirring for 5 hours at −42° C., the reaction mixture was added acetic acid (3.85 mL, 67.32 mmol) and allowed to warm to ambient temperature. The reaction mixture was stirred for 18 hours and then refluxed for 16 hours, cooled to ambient temperature and diluted with ethyl acetate (200 mL) and 1.0 M aqueous sodium hydroxide solution (100 mL). The mixture was filtered and the layers were separated. The organic layer was washed with 1.0 M aqueous sodium hydroxide solution (3×50 mL) and brine (3×50 mL); dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (0-50% ethyl acetate in hexanes) to provide the title compound as an oil (2.70 g, 45%): 1H NMR (300 MHz, CDCl3) δ 7.21-7.15 (m, 3H), 3.43-3.33 (m, 4H), 3.29 (q, J=6.7 Hz, 1H), 2.45-2.21 (m, 4H), 1.41 (s, 9H), 1.27 (d, J=6.6 Hz, 3H); MS(ES+) m/z 359.1, 361.1 (M+1).
  • Step 2. Preparation of 1-(1-(3,5-dichlorophenyl)ethyl)piperazine
  • Figure US20210093618A1-20210401-C01432
  • To a solution of tert-butyl 4-(1-(3,5-dichlorophenyl)ethyl)piperazine-1-carboxylate (2.70 g, 7.51 mmol) in dichloromethane (100 mL) was added trifluoroacetic acid (25 mL). The resulting solution was stirred at ambient temperature for 1 hour and then concentrated in vacuo. To the residue was added 1.0 M aqueous sodium hydroxide solution (50 mL) and extracted with dichloromethane (2×80 mL). The combined organic extracts were washed with brine (50 mL), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to provide the title compound as a colorless oil (1.80 g, 92%): MS(ES+) m/z 259.1, 261.2 (M+1).
  • Step 3. Preparation of tert-butyl 5-cyclopropyl-4-((4-(1-(3,5-dichlorophenyl)ethyl)piperazin-1-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01433
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 1-(1-(3,5-dichlorophenyl)ethyl)piperazine, the title compound was obtained as a colorless oil (3.53 g, quant. yield): 1H NMR (300 MHz, CDCl3) δ 7.51-7.43 (m, 1H), 7.27-7.09 (m, 2H), 3.61 (s, 2H), 3.34-3.22 (m, 1H), 2.58-2.28 (m, 8H), 1.98-1.85 (m, 1H), 1.55 (s, 9H), 1.33-1.23 (m, 3H), 0.94-0.83 (m, 2H), 0.66-0.53 (m, 2H); MS(ES+) m/z 507.2, 509.2 (M+1).
  • Step 4. Preparation of 5-cyclopropyl-4-((4-(1-(3,5-dichlorophenyl)ethyl)piperazin-1-yl)methyl)-2-fluorobenzoic acid dihydrochloride
  • Figure US20210093618A1-20210401-C01434
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 5-cyclopropyl-4-((4-(1-(3,5-dichlorophenyl)ethyl)piperazin-1-yl)methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid (1.82 g, quant. yield): MS(ES+) m/z 451.0, 453.0 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-4-((4-(1-(3,5-dichlorophenyl)ethyl)piperazin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01435
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-(1-(3,5-dichlorophenyl)ethyl)piperazin-1-yl)methyl)-2-fluorobenzoic acid dihydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.01 g, 1%): 1H NMR (300 MHz, CDCl1+10% CD3OD) δ 7.50-7.43 (m, 1H), 7.18-7.09 (m, 4H), 3.59 (s, 2H), 3.31-3.19 (m, 4H), 2.56-2.25 (m, 8H), 1.88-1.79 (m, 1H), 1.29-1.20 (m, 3H), 0.90-0.81 (m, 2H), 0.59-0.50 (m, 2H); MS(ES+) m/z 528.1, 530.1 (M+1).
  • Example 541 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((4-(1-(3,5-dichlorophenyl)ethyl)piperazin-1-yl)methyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01436
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-(1-(3,5-dichlorophenyl)ethyl)piperazin-1-yl)methyl)-2-fluorobenzoic acid dihydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.08 g, 8%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 7.47 (d, J=7.9 Hz, 1H), 7.17-7.09 (m, 4H) 3.28-3.18 (m, 3H), 3.01-2.91 (m, 1H), 2.55-2.39 (m, 8H), 1.89-1.78 (m, 1H), 1.35-1.26 (m, 2H), 1.24 (d, J=6.8 Hz, 3H), 1.07-0.98 (m, 2H), 0.89-0.80 (m, 2H), 0.57-0.49 (m, 2H); MS(ES+) m/z 554.1, 556.1 (M+1).
  • Example 542 Synthesis of 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01437
  • Step 1. Preparation of tert-butyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)azetidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01438
  • To a mixture of tert-butyl 3-(hydroxymethyl)azetidine-1-carboxylate (8.96 g, 47.86 mmol), tert-butyl 5-chloro-2,4-difluorobenzoate (14.28 g, 57.43 mmol) in anhydrous dimethylsulfoxide (250 mL) was added cesium carbonate (28.10 g, 86.15 mmol). The reaction mixture was heated at 85° C. under nitrogen for 6 hours, cooled to ambient temperature and diluted with ethyl acetate (500 mL), washed with water (250 mL), aqueous saturated ammonium chloride solution (2×200 mL) and brine (2×100 mL); dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (0-25% ethyl acetate in hexanes) to provide the title compound as a colorless solid (19.30 g, 81%): 1H NMR (300 MHz, CDCl3) δ 7.83 (d, J=7.7 Hz, 1H), 6.61 (d, J=11.8 Hz, 1H), 4.13-4.07 (m, 2H), 4.40 (d, J=8.4 Hz, 2H), 3.80 (dd, J=8.6, 5.2 Hz, 2H), 3.07-2.91 (m, 1H), 1.53 (s, 9H), 1.40 (s, 9H); MS(ES+) m/z 416.2, 418.2 (M+1).
  • Step 2. Preparation of tert-butyl 3-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)azetidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01439
  • To a degassed mixture of tert-butyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)azetidine-1-carboxylate (8.45 g, 20.32 mmol), cyclopropylboronic acid (43.49 g, 40.64 mmol), and potassium phosphate (tribasic, 17.30 g, 81.28 mmol) in toluene (200 mL) and water (20 mL) was added tricyclohexylphosphine tetrafluoroborate (1.50 g, 4.06 mmol) and palladium (II) acetate (0.46 g, 2.03 mmol). The resulting mixture was refluxed under nitrogen for 18 hours, cooled to ambient temperature and filtered. The filtrate was diluted with ethyl acetate (200 mL), washed with water (100 mL), aqueous saturated ammonium chloride solution (100 mL) and brine (100 mL); dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (0-18% ethyl acetate in hexanes) to provide the title compound as a colorless solid (8.35 g, 98%): 1H NMR (300 MHz, CDCl3) δ 7.37 (d, J=8.3 Hz, 1H), 6.49 (d, J=12.4 Hz, 1H), 4.10-4.01 (m, 4H), 3.86 (dd, J=8.6, 5.5 Hz, 2H), 3.07-2.91 (m, 1H), 1.99-1.87 (m, 1H), 1.54 (s, 9H), 1.40 (s, 9H), 0.90-0.80 (m, 2H), 0.63-0.53 (m, 2H); MS(ES+) m/z 422.2 (M+1).
  • Step 3. Preparation of methyl 4-(azetidin-3-ylmethoxy)-5-cyclopropyl-2-fluorobenzoate hydrochloride
  • Figure US20210093618A1-20210401-C01440
  • To anhydrous methanol (80 mL) under nitrogen was added thionyl chloride (5.00 mL, 68.97 mmol) dropwise at 0° C. The resulting mixture was stirred at 0° C. for 1 hour and then added a solution of tert-butyl 3-((4-tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)azetidine-1-carboxylate (8.35 g, 19.81 mmol) in anhydrous methanol (10 mL). The resulting mixture was stirred at 0° C. for 2 hours, at ambient temperature for 18 hours and refluxed for 4 hours, and then concentrated in vacuo. The residue was dissolved in anhydrous toluene (50 mL) and concentrated in vacuo to provide the title compound as a colorless solid (6.26 g, quant. yield): MS(ES+) m/z 280.2 (M+1).
  • Step 4. Preparation of methyl 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01441
  • Following the procedure as described in Example 525 step 1, and making variation as required to replace methyl 5-cyclopropyl-2-fluoro-4-((3-methylazetidin-3-yl)methoxy)benzoate hydrochloride with methyl 4-(azetidin-3-ylmethoxy)-5-cyclopropyl-2-fluorobenzoate hydrochloride and purification by flash chromatography (2:1 of hexanes:ethyl acetate), the title compound was obtained as a colorless oil (0.51 g, 53%): 1H NMR (300 MHz, CDCl3) δ 8.18 (s, 1H), 7.42 (d, J=8.4 Hz, 1H), 6.56 (d, J=12.4 Hz, 1H), 6.48 (s, 1H), 4.28-4.20 (m, 2H), 4.18 (d, J=5.7 Hz, 2H), 4.02 (dd, J=8.2, 5.3 Hz, 2H), 3.86 (s, 3H), 3.34-3.20 (m, 1H), 1.86-1.75 (m, 1H), 0.77-0.69 (m, 2H), 0.60-0.53 (m, 2H); MS(ES+) m/z 459.1, 461.0 (M+1).
  • Step 5. Preparation of 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01442
  • Following the procedure as described in Example 525 step 2, and making variation as required to replace methyl 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with methyl 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.49 g, quant. yield): MS(ES+) m/z 445.1, 447.0 (M+1).
  • Step 6. Preparation of -((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01443
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace cyclopropanesulfonamide with methylsulfonamide, the title compound was obtained as a colorless solid (0.12 g, 42%): 1H NMR (300 MHz, CDCl3) δ 8.70 (d, J=14.0 Hz, 1H), 8.17 (s, 1H), 7.54 (d, J=9.1 Hz, 1H), 6.59 (d, J=14.2 Hz, 1H), 6.48 (s, 1H), 4.28-4.19 (m, 4H), 4.06-3.98 (m, 2H), 3.38 (s, 3H), 3.33-3.23 (m, 1H), 1.87-1.76 (m, 1H), 0.80-0.72 (m, 2H), 0.61-0.54 (m, 2H); MS(ES+) m/z 522.0, 524.0 (M+1).
  • Example 543 Synthesis of 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)azetidin-3-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01444
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)azetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.07 g, 23%): 1H NMR (300 MHz, CDCl3) δ 8.66 (d, J=15.9 Hz, 1H), 8.18 (s, 1H), 7.56 (d, J=8.9 Hz, 1H), 6.59 (d, J=14.1 Hz, 1H), 6.49 (s, 1H), 4.30-4.19 (m, 4H), 4.06-3.98 (m, 2H), 3.35-3.22 (m, 1H), 3.12-3.02 (m, 1H), 1.89-1.77 (m, 1H), 1.47-1.39 (m, 2H), 1.17-1.08 (m, 2H), 0.81-0.72 (m, 2H), 0.64-0.54 (m, 2H); MS(ES+) m/z 548.0, 550.0 (M+1).
  • Example 544 Synthesis of 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)azetidin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01445
  • Step 1. Preparation of tert-butyl 3-((methylsulfonyl)oxy)azetidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01446
  • Following the procedure as described in Example 519 step 2, and making variation as required to replace tert-butyl 5-cyclopropyl-2-fluoro-4-((4-hydroxypiperidin-1-yl)methyl)benzoate with tert-butyl 3-hydroxyazetidine-1-carboxylate, the title compound was obtained as a colorless oil (16.76 g, quant. yield): 1H NMR (300 MHz, CDCl3) δ 5.18-5.08 (m, 1H), 4.21 (dd, J=11.1, 6.7 Hz, 2H), 4.02 (dd, J=4.1, 11.0 Hz, 2H), 3.00 (s, 3H), 1.37 (s, 9H).
  • Step 2. Preparation of tert-butyl 3-(3,5-dichlorophenoxy)azetidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01447
  • Following the procedure as described in Example 519 step 3, and making variation as required to replace 4-chloro-3-(trifluoromethyl)phenol with 3,5-dichlorophenol, and to replace tert-butyl 5-cyclopropyl-2-fluoro-4-((4-((methylsulfonyl)oxy)piperidin-1-yl)methyl)benzoate with tert-butyl 3-((methylsulfonyl)oxy)azetidine-1-carboxylate, the title compound was obtained as an colorless solid (7.06 g, 97%): 1H NMR (300 MHz, CDCl3) δ 6.98-6.93 (m, 1H), 6.62-6.57 (m, 2H), 4.84-4.75 (m, 1H), 4.26 (dd, J=9.8, 6.4 Hz, 2H), 3.94 (dd, J=9.9, 4.1 Hz, 2H), 1.41 (s, 9H); MS(ES+) m/z 262.1, 264.1 (M−55).
  • Step 3. Preparation of 3-(3,5-dichlorophenoxy)azetidine
  • Figure US20210093618A1-20210401-C01448
  • Following the procedure as described in Example 540 step 2, and making variation as required to replace tert-butyl 4-(1-(3,5-dichlorophenyl)ethyl)piperazine-1-carboxylate with tert-butyl 3-(3,5-dichlorophenoxy)azetidine-1-carboxylate, the title compound was obtained as an colorless oil (4.84 g, quant. yield): MS(ES+) m/z 218.1, 220.1 (M+1).
  • Step 4. Preparation of tert-butyl 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)azetidin-1-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01449
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 3-(3,5-dichlorophenoxy)azetidine, the title compound was obtained as a colorless oil (1.81 g, 65%): 1H NMR (300 MHz, CDCl3) δ 7.47 (d, J=7.3 Hz, 1H), 7.09 (d, J=11.7 Hz, 1H), 6.95-6.92 (m, 1H), 6.67-6.62 (m, 2H), 4.81-4.71 (m, 1H), 3.91-3.80 (m, 4H), 3.22-3.11 (m, 2H), 1.90-1.76 (m, 1H), 1.55 (s, 9H), 0.96-0.85 (m, 2H), 0.66-0.55 (m, 2H); MS(ES+) m/z 466.1, 468.1 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)azetidin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01450
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)azetidin-1-yl)methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid (1.73 g, quant. yield): MS(ES+) m/z 410.0, 412.0 (M+1).
  • Step 6. Preparation of 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)azetidin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01451
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)azetidin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.60 g, 99%): 1H NMR (300 MHz, CDCl3+50% CD3OD) δ 8.00-7.93 (m, 1H), 7.78-7.68 (m, 1H), 7.55-7.49 (m, 1H), 7.26-7.18 (m, 2H), 5.66-5.55 (m, 1H), 5.24-5.08 (m, 4H), 4.60-4.49 (m, 2H), 3.84 (s, 3H), 2.46-2.35 (m, 1H), 1.62-1.49 (m, 2H), 1.26-1.16 (m, 2H); MS(ES+) m/z 487.0, 489.0 (M+1).
  • Example 545 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((3-(3,5-dichlorophenoxy)azetidin-1-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01452
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)azetidin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.40 g, 64%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 7.48 (d, J=7.1 Hz, 1H), 7.17 (d, J=10.8 Hz, 1H), 7.00-6.95 (m, 1H), 6.67-6.62 (m, 2H), 5.10-5.00 (m, 1H), 4.67-4.66 (m, 2H), 4.59 (s, 2H), 3.99-3.90 (m, 2H), 3.05-2.94 (m, 1H), 1.88-1.76 (m, 1H), 1.38-1.30 (m, 2H), 1.12-0.96 (m, 4H), 0.69-0.62 (m, 2H) (Note: exchangeable protons not observed.); MS (ES+) m/z 513.0, 515.0 (M+1).
  • Example 546 Synthesis of 5-cyclopropyl-4-((4-(2,4-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01453
  • Step 1. Preparation of tert-butyl 4-(2,4-dichlorophenoxy)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01454
  • Following the procedure as described in Example 519 step 3, and making variation as required to replace 4-chloro-3-(trifluoromethyl)phenol with 2,4-dichlorophenol, and to replace tert-butyl 5-cyclopropyl-2-fluoro-4-((4-((methylsulfonyl)oxy)piperidin-1-yl)methyl)benzoate with tert-butyl 4-((methylsulfonyl)oxy)piperidine-1-carboxylate, the title compound was obtained as an colorless solid (3.16 g, 81%): 1H NMR (300 MHz, CDCl3) δ 7.33 (d, J=2.4 Hz, 1H), 7.12 (dd, J=8.7, 2.6 Hz, 1H), 6.84 (d, J=8.7 Hz, 1H), 4.50-4.41 (m, 1H), 3.60 (ddd, J=13.4, 8.0, 3.9 Hz, 2H), 3.48-3.35 (m, 2H), 1.91-1.71 (m, 4H), 1.42 (s, 9H); MS(ES+) m/z: 290.1, 292.1 (M−t-Bu+2H).
  • Step 2. Preparation of 4-(2,4-dichlorophenoxy)piperidine
  • Figure US20210093618A1-20210401-C01455
  • Following the procedure as described in Example 540 step 2, and making variation as required to replace tert-butyl 4-(1-(3,5-dichlorophenyl)ethyl)piperazine-1-carboxylate with tert-butyl 4-(2,4-dichlorophenoxy)piperidine-1-carboxylate, the title compound was obtained as an colorless oil (1.96 g, 87%): MS(ES+) m/z 246.1, 248.1 (M+1).
  • Step 3. Preparation of tert-butyl 5-cyclopropyl-4-((4-(2,4-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01456
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 4-(2,4-dichlorophenoxy)piperidine, the title compound was obtained as a colorless oil (2.76 g, 93%): 1H NMR (300 MHz, CDCl3) δ 7.47 (d, J=7.3 Hz, 1H), 7.34 (d, J=2.3 Hz, 1H), 7.21-7.10 (m, 2H), 6.85 (d, J=8.9 Hz, 1H), 4.40-4.30 (m, 1H), 3.64 (s, 2H), 2.78-2.67 (m, 2H), 2.42-2.30 (m, 2H), 2.01-1.80 (m, 5H), 1.56 (s, 9H), 0.94-0.86 (m, 2H), 0.65-0.56 (m, 2H); MS(ES+) m/z 494.1, 496.1 (M+1).
  • Step 4. Preparation of 5-cyclopropyl-4-((4-(2,4-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01457
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 5-cyclopropyl-4-((4-(2,4-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid (2.65 g, quant. yield): MS(ES+) m/z 438.1, 440.1 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-4-((4-(2,4-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01458
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-(2,4-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.25 g, 40%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 7.42 (d, J=7.1 Hz, 1H), 7.36-7.28 (m, 2H), 7.16-7.09 (m, 1H), 6.86-6.80 (m, 1H), 4.69-4.59 (m, 1H), 4.42 (s, 2H), 3.40-3.17 (m, 7H), 2.27-2.00 (m, 4H), 1.89-1.77 (m, 1H), 1.06-0.95 (m, 2H), 0.70-0.61 (m, 2H); MS(ES+) m/z 515.0, 517.0 (M+1).
  • Example 547 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-((4-(2,4-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01459
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-((4-(2,4-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.33 g, 50%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 7.49-7.43 (m, 1H), 7.37-7.28 (m, 2H), 7.16-7.10 (m, 1H), 6.87-6.80 (m, 1H), 4.69-4.61 (m, 1H), 4.43 (s, 2H), 3.48-3.15 (m, 4H), 3.04-2.92 (m, 1H), 2.30-2.14 (m, 2H), 2.13-2.01 (m, 2H), 1.89-1.77 (m, 1H), 1.39-1.28 (m, 2H), 1.13-0.94 (m, 4H), 0.72-0.63 (m, 2H); MS(ES+) m/z 541.1, 543.1 (M+1).
  • Example 548 Synthesis of 4-((4-(3-chloro-5-(trifluoromethoxy)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01460
  • Step 1. Preparation of tert-butyl 4-(3-chloro-5-(trifluoromethoxy)phenoxy)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01461
  • Following the procedure as described in Example 519 step 3, and making variation as required to replace 4-chloro-3-(trifluoromethyl)phenol with 3-chloro-5-(trifluoromethoxy)phenol, and to replace tert-butyl 5-cyclopropyl-2-fluoro-4-((4-((methylsulfonyl)oxy)piperidin-1-yl)methyl)benzoate with tert-butyl 4-((methylsulfonyl)oxy)piperidine-1-carboxylate, the title compound was obtained as an colorless solid (2.41 g, 65%): 1H NMR (300 MHz, CDCl3) δ 6.82-6.78 (m, 2H), 6.64-6.61 (m, 1H), 4.46-4.37 (m, 1H), 3.64 (ddd, J=13.4, 7.6, 3.9 Hz, 2H), 3.33 (ddd, J=13.5, 7.6, 3.9 Hz, 2H), 1.95-1.82 (m, 2H), 1.77-1.64 (m, 2H), 1.44 (s, 9H); MS(ES+) m/z 340.1, 342.1 (M−t-Bu+2H).
  • Step 2. Preparation of 4-(3-chloro-5-(trifluoromethoxy)phenoxy)piperidine
  • Figure US20210093618A1-20210401-C01462
  • Following the procedure as described in Example 540 step 2, and making variation as required to replace tert-butyl 4-(1-(3,5-dichlorophenyl)ethyl)piperazine-1-carboxylate with tert-butyl 4-(3-chloro-5-(trifluoromethoxy)phenoxy)piperidine-1-carboxylate, the title compound was obtained as an colorless oil (1.55 g, 86%): MS(ES+) m/z 296.1, 298.1 (M+1).
  • Step 3. Preparation of tert-butyl 4-((4-(3-chloro-5-(trifluoromethoxy)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01463
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 4-(3-chloro-5-(trifluoromethoxy)phenoxy)piperidine, the title compound was obtained as a colorless oil (2.15 g, 76%): 1H NMR (300 MHz, CDCl3) δ 7.48 (d, J=7.1 Hz, 1H), 7.17 (d, J=11.6 Hz, 1H), 6.84-6.76 (m, 2H), 6.67-6.61 (m, 1H), 4.35-4.26 (m, 1H), 3.64 (s, 2H), 2.76-2.64 (m, 2H), 2.41-2.29 (m, 2H), 2.03-1.89 (m, 3H), 1.87-1.74 (m, 2H), 1.56 (s, 9H), 0.96-0.87 (m, 2H), 0.65-0.57 (m, 2H); MS(ES+) m/z 544.2, 546.2 (M+1).
  • Step 4. Preparation of 4-((4-(3-chloro-5-(trifluoromethoxy)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01464
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 4-((4-(3-chloro-5-(trifluoromethoxy)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (2.07 g, quant. yield): MS(ES+) m/z 488.1, 490.1 (M+1).
  • Step 5. Preparation of 4-((4-(3-chloro-5-(trifluoromethoxy)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01465
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((4-(3-chloro-5-(trifluoromethoxy)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.15 g, 22%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 7.42 (d, J=7.3 Hz, 1H), 7.33 (d, J=11.1 Hz, 1H), 6.84-6.78 (m, 2H), 6.65-6.60 (m, 1H), 4.64-4.55 (m, 1H), 4.41 (s, 2H), 3.45-3.33 (m, 2H), 3.30 (s, 3H), 3.24-3.11 (m, 2H), 2.33-2.19 (m, 2H), 2.15-2.03 (m, 2H), 1.91-1.80 (m, 1H), 1.08-0.99 (m, 2H), 0.71-0.64 (m, 2H); MS(ES+) m/z 565.2, 567.2 (M+1).
  • Example 549 Synthesis of 4-((4-(3-chloro-5-(trifluoromethoxy)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01466
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((4-(3-chloro-5-(trifluoromethoxy)phenoxy)piperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.15 g, 21%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 7.43 (d, J=7.0 Hz, 1H), 7.32 (d, 10.9 Hz, 1H), 6.82-6.77 (m, 2H), 6.64-6.59 (m, 1H), 4.62-4.57 (m, 1H), 4.41 (s, 2H), 3.35-3.25 (m, 2H), 3.23-3.09 (m, 2H), 3.04-2.93 (m, 1H), 2.32-2.17 (m, 2H), 2.13-2.01 (m, 2H), 1.91-1.79 (m, 1H), 1.37-1.28 (m, 2H), 1.11-0.97 (m, 4H), 0.71-0.62 (m, 2H); MS(ES+) m/z 591.1, 593.1 (M+1).
  • Example 550 Synthesis of 4-(((1R,3r,5S)-3-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01467
  • Step 1. Preparation of tert-butyl (1R,3r,5S)-3-hydroxy-8-azabicyclo[3.2.1]octane-8-carboxylate
  • Figure US20210093618A1-20210401-C01468
  • To a mixture of (1R,3r,5S)-8-azabicyclo[3.2.1]octan-3-ol (4.20 g, 33.02 mmol) and 1.0 M aqueous sodium hydroxide solution (50 mL, 50.0 mmol) in tetrahydrofuran (100 mL) was added di-tert-butyl dicarbonate (8.65 g, 39.62 mmol). The resulting mixture was stirred at ambient temperature for 18 hours, and diluted with diethyl ether (200 mL); washed with brine (4×70 mL); dried over anhydrous sodium sulfate, filtered concentrated in vacuo. The residue was triturated with hexanes to provide the title compound as a colorless solid (6.87 g, 91%): 1H NMR (300 MHz, CDCl3) δ 4.24-4.02 (m, 3H), 2.19-1.95 (m, 4H), 1.95-1.83 (m, 2H), 1.76-1.59 (m, 3H), 1.41 (s, 9H).
  • Step 2. Preparation of tert-butyl (1R,3r,5S)-3-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octane-8-carboxylate
  • Figure US20210093618A1-20210401-C01469
  • Following the procedure as described in Example 521 step 1, and making variation as required to replace tert-butyl 4-hydroxypiperidine-1-carboxylate with tert-butyl (1R,3r,5S)-3-hydroxy-8-azabicyclo[3.2.1]octane-8-carboxylate, the title compound was obtained as a colorless solid (1.57 g, 84%): 1H NMR (300 MHz, CDCl3) δ 8.20 (s, 1H), 6.95 (s, 1H), 5.37-5.29 (m, 1H), 4.29-4.08 (m, 2H), 2.26-1.82 (m, 8H), 1.45 (s, 9H); MS(ES+) m/z 351.1, 353.1 (M−55).
  • Step 3. Preparation of (1R,3r,5S)-3-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octane
  • Figure US20210093618A1-20210401-C01470
  • Following the procedure as described in Example 540 step 2, and making variation as required to replace tert-butyl 4-(1-(3,5-dichlorophenyl)ethyl)piperazine-1-carboxylate with tert-butyl (1R,3r,5S)-3-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octane-8-carboxylate, the title compound was obtained as an colorless oil (1.18 g, quant. yield): MS(ES+) m/z 307.2, 309.2 (M+1).
  • Step 4. Preparation of tert-butyl 4-(((1R,3r,5S)-3-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01471
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with (1R,3r,5S)-3-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octane, the title compound was obtained as a colorless oil (1.62 g, 76%): 1H NMR (300 MHz, CDCl3) δ 8.20 (s, 1H), 7.47 (d, J=7.3 Hz, 1H), 7.32 (d, J=12.1 Hz, 1H), 6.95 (s, 1H), 5.30-5.24 (m, 1H), 3.67 (s, 2H), 3.19-3.12 (m, 2H), 2.23-2.13 (m, 2H), 2.10-2.00 (m, 4H), 1.95-1.82 (m, 3H), 1.56 (s, 9H), 0.93-0.84 (m, 2H), 0.64-0.57 (m, 2H); MS(ES+) m/z 555.2, 557.2 (M+1).
  • Step 5. Preparation of 4-(((1R,3r,5S)-3-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01472
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 4-(((1R,3r,5S)-3-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (1.56 g, quant. yield): MS(ES+) m/z: 499.0, 501.0 (M+1).
  • Step 6. Preparation of 4-(((1R,3r,5S)-3-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01473
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-(((1R,3r,5S)-3-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.14 g, 20%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 8.18 (s, 1H), 7.50-7.37 (m, 2H), 6.94 (s, 1H), 5.37-5.27 (m, 1H), 4.40 (s, 2H), 3.98-3.83 (m, 2H), 3.29 (s, 3H), 2.80-2.63 (m, 2H), 2.52-2.41 (m, 2H), 2.38-2.25 (m, 2H), 2.19-2.08 (m, 2H), 1.86-1.75 (m, 1H), 1.05-0.95 (m, 2H), 0.71-0.62 (m, 2H); MS(ES+) m/z 576.1, 578.1 (M+1).
  • Example 551 Synthesis of 4-(((1R,3r,5S)-3-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01474
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-(((1R,3r,5S)-3-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.16 g, 22%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 8.18 (s, 1H), 7.51-7.40 (m, 2H), 6.94 (s, 1H), 5.36-5.28 (m, 1H), 4.38 (s, 2H), 3.95-3.85 (m, 2H), 3.04-2.94 (m, 1H), 2.76-2.63 (m, 2H), 2.52-2.41 (m, 2H), 2.37-2.23 (m, 2H), 2.20-2.07 (m, 2H), 1.87-1.74 (m, 1H), 1.39-1.29 (m, 2H), 1.11-0.93 (m, 4H), 0.72-0.63 (m, 2H); MS(ES+) m/z 602.1, 604.1 (M+1).
  • Example 552 Synthesis of 4-(((1R,3r,5S)-3-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01475
  • Step 1. Preparation of tert-butyl (1R,3r,5S)-3-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octane-8-carboxylate
  • Figure US20210093618A1-20210401-C01476
  • Following the procedure as described in Example 521 step 1, and making variation as required to replace 2,5-dichloro-4-(trifluoromethyl)pyridine with 3-chloro-2-fluoro-5-(trifluoromethyl)pyridine and tert-butyl 4-hydroxypiperidine-1-carboxylate with tert-butyl (1R,3r,5S)-3-hydroxy-8-azabicyclo[3.2.1]octane-8-carboxylate, the title compound was obtained as a colorless solid (1.22 g, 34%): 1H NMR (300 MHz, CDCl3) δ 8.77 (s, 1H), 7.71 (s, 1H), 5.53-5.46 (m, 1H), 4.31-4.12 (m, 2H), 2.30-2.08 (m, 4H), 2.05-1.81 (m, 4H), 1.45 (s, 9H); MS(ES+) m/z 351.1, 353.1 (M−55).
  • Step 2. Preparation of (1R,3r,5S)-3-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octane
  • Figure US20210093618A1-20210401-C01477
  • Following the procedure as described in Example 540 step 2, and making variation as required to replace tert-butyl 4-(1-(3,5-dichlorophenyl)ethyl)piperazine-1-carboxylate with tert-butyl (1R,3r,5S)-3-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octane-8-carboxylate, the title compound was obtained as an colorless oil (0.39 g, 42%): MS(ES+) m/z 307.0, 309.0 (M+1).
  • Step 3. Preparation of tert-butyl 4-(((1R,3r,5S)-3-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01478
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with (1R,3r,5S)-3-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octane, the title compound was obtained as a colorless oil (0.68 g, 97%): 1H NMR (300 MHz, CDCl3) δ 8.30-8.26 (m, 1H), 7.82 (d, J=2.2 Hz, 1H), 7.48 (d, J=7.3 Hz, 1H), 7.34 (d, J=12.1 Hz, 1H), 5.44 (t, J=5.2 Hz, 1H), 3.68 (s, 2H), 3.21-3.13 (m, 2H), 2.27-2.16 (m, 4H), 2.10-1.99 (m, 2H), 1.96-1.84 (m, 3H), 1.56 (s, 9H), 0.93-0.85 (m, 2H), 0.65-0.57 (m, 2H); MS(ES+) m/z 555.2, 557.2 (M+1).
  • Step 4. Preparation of 4-(((1R,3r,5S)-3-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01479
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 4-(((1R,3r,5S)-3-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.66 g, quant. yield): MS(ES+) m/z 499.1, 501.1 (M+1).
  • Step 5. Preparation of 4-(((1R,3r,5S)-3-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01480
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with -(((1R,3r,5S)-3-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.12 g, 29%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 8.24 (s, 1H), 7.83 (s, 1H), 7.50-7.41 (m, 2H), 5.53-5.46 (m, 1H), 4.42 (s, 2H), 3.97-3.87 (m, 2H), 3.30 (s, 3H), 2.80-2.68 (m, 2H), 2.66-2.54 (m, 2H), 2.38-2.25 (m, 2H), 2.20-2.09 (m, 2H), 1.87-1.75 (m, 1H), 1.05-0.95 (m, 2H), 0.72-0.63 (m, 2H); MS(ES+) m/z 576.0, 578.0 (M+1).
  • Example 553 Synthesis of 4-(((1R,3r,5S)-3-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01481
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with -(((1R,3r,5S)-3-((3-chloro-5-(trifluoromethyl)pyridin-2-yl)oxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.12 g, 27%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 8.24 (s, 1H), 7.83 (s, 1H), 7.52-7.41 (m, 2H), 5.53-5.46 (m, 1H), 4.42 (s, 2H), 3.97-3.87 (m, 2H), 3.05-2.95 (m, 1H), 2.80-2.68 (m, 2H), 2.66-2.54 (m, 2H), 2.38-2.25 (m, 2H), 2.20-2.09 (m, 2H), 1.87-1.75 (m, 1H), 1.38-1.29 (m, 2H), 1.13-0.94 (m, 4H), 0.73-0.62 (m, 2H); MS(ES+) m/z 602.1, 604.0 (M+1).
  • Example 554 Synthesis of 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01482
  • Step 1. Preparation of tert-butyl 4-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)piperidine-1-carboxy late
  • Figure US20210093618A1-20210401-C01483
  • Following the procedure as described in Example 542 step 1, and making variation as required to replace tert-butyl 3-(hydroxymethyl)azetidine-1-carboxylate with tert-butyl4-(hydroxymethyl)piperidine-1-carboxylate, the title compound was obtained as a colorless solid (7.39 g, 69%): 1H NMR (300 MHz, CDCl3) δ 7.85 (d, J=7.6 Hz, 1H), 6.59 (d, J=11.9 Hz, 1H), 4.23-4.05 (m, 2H), 3.84 (d, J=6.2 Hz, 2H), 2.81-2.64 (m, 2H), 2.10-1.94 (m, 1H), 1.87-1.77 (m, 2H), 1.55 (s, 9H), 1.44 (s, 9H), 1.36-1.20 (m, 2H); MS(ES+) m/z 444.1, 446.2 (M+1).
  • Step 2. Preparation of tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01484
  • Following the procedure as described in Example 542 step 2, and making variation as required to replace tert-butyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)azetidine-1-carboxylate with tert-butyl 4-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)piperidine-1-carboxylate, the title compound was obtained as a colorless solid (8.12 g, 97%): 1H NMR (300 MHz, CDCl3) δ 7.35 (d, J=8.3 Hz, 1H), 6.47 (d, J=12.4 Hz, 1H), 4.23-4.04 (m, 2H), 3.81 (d, J=6.2 Hz, 2H), 2.81-2.64 (m, 2H), 2.05-1.91 (m, 2H), 1.85-1.75 (m, 2H), 1.53 (s, 9H), 1.43 (s, 9H), 1.38-1.26 (m, 2H), 0.89-0.81 (m, 2H), 0.63-0.56 (m, 2H); MS(ES+) m/z: 450.2 (M+1).
  • Step 3. Preparation of methyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate hydrochloride
  • Figure US20210093618A1-20210401-C01485
  • Following the procedure as described in Example 542 step 3, and making variation as required to tert-butyl 3-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)azetidine-1-carboxylate with tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)piperidine-1-carboxylate, the title compound was obtained as a colorless solid (6.21 g, quant. yield): MS(ES+) m/z 308.2 (M+1).
  • Step 4. Preparation of methyl 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01486
  • Following the procedure as described in Example 525 step 1, and making variation as required to replace methyl 5-cyclopropyl-2-fluoro-4-((3-methylazetidin-3-yl)methoxy)benzoate hydrochloride with methyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate hydrochloride and purification by flash chromatography, the title compound was obtained as a colorless oil (0.71 g, 56%): 1H NMR (300 MHz, CDCl3) δ 8.19 (s, 1H), 7.42 (d, J=8.4 Hz, 1H), 6.86 (s, 1H), 6.52 (d, J=12.5 Hz, 1H), 4.41-4.31 (m, 2H), 3.90-3.83 (m, 5H), 2.94 (dt, J=13.0, 2.6 Hz, 2H), 2.23-2.08 (m, 1H), 2.01-1.90 (m, 3H), 1.44 (dq, J=12.4, 4.0 Hz, 2H), 0.94-0.82 (m, 2H), 0.67-0.57 (m, 2H); MS(ES+) m/z 487.1, 489.1 (M+1).
  • Step 5. Preparation of 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01487
  • Following the procedure as described in Example 525 step 2, and making variation as required to replace methyl 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with methyl 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.49 g, 71%): MS(ES+) m/z 473.1, 475.1 (M+1).
  • Step 6. Preparation of 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01488
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace cyclopropanesulfonamide with methylsulfonamide, the title compound was obtained as a colorless solid (0.15 g, 55%): 1H NMR (300 MHz, CDCl3) δ 8.68 (br s, 1H), 8.20 (s, 1H), 7.56 (d, J=8.7 Hz, 1H), 6.86 (s, 1H), 6.55 (d, J=14.1 Hz, 1H), 4.41-4.32 (m, 2H), 3.89 (d, J=6.28 Hz, 2H), 3.39 (s, 3H), 2.95 (dt, J=13.0, 2.6 Hz, 2H), 2.25-2.10 (m, 1H), 2.05-1.91 (m, 3H), 1.45 (dq, J=12.5, 3.6 Hz, 2H), 0.95-0.86 (m, 2H), 0.68-0.58 (m, 2H); MS(ES+) m/z 550.0, 552.0 (M+1).
  • Example 555 Synthesis of 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01489
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.14 g, 49%): 1H NMR (300 MHz, CDCl3) δ 8.67 (br s, 1H), 8.20 (s, 1H), 7.57 (d, J=9.1 Hz, 1H), 6.86 (s, 1H), 6.55 (d, J=14.1 Hz, 1H), 4.41-4.31 (m, 2H), 3.89 (d, J=6.1 Hz, 2H), 3.12-3.03 (m, 1H), 3.00-2.89 (m, 2H), 2.25-2.09 (m, 1H), 2.05-1.90 (m, 3H), 1.53-1.37 (m, 4H), 1.17-1.07 (m, 2H), 0.94-0.85 (m, 2H), 0.67-0.59 (m, 2H); MS(ES+) m/z 576.0, 578.0 (M+1).
  • Example 556 Synthesis of 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01490
  • Step 1. Preparation of tert-butyl 4-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)-4-methylpiperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01491
  • Following the procedure as described in Example 542 step 1, and making variation as required to replace tert-butyl 3-(hydroxymethyl)azetidine-1-carboxylate with tert-butyl 4-(hydroxymethyl)-4-methylpiperidine-1-carboxylate, the title compound was obtained as a colorless solid (15.19 g, 76%): 1H NMR (300 MHz, CDCl3) δ 77.83 (d, J=7.6 Hz, 1H), 6.58 (d, J=11.9 Hz, 1H), 3.76-3.62 (m, 4H), 3.22-3.10 (m, 2H), 1.65-1.56 (m, 2H), 1.54 (s, 9H), 1.48-1.39 (m, 1H), 1.13 (s, 3H); MS(ES+) m/z 458.1, 460.0 (M+1).
  • Step 2. Preparation of tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-4-methylpiperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01492
  • Following the procedure as described in Example 542 step 2, and making variation as required to replace tert-butyl 3-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)azetidine-1-carboxylate with tert-butyl 4-((4-(tert-butoxycarbonyl)-2-chloro-5-fluorophenoxy)methyl)-4-methylpiperidine-1-carboxylate, the title compound was obtained as a colorless solid (9.91 g, 69%): 1H NMR (300 MHz, CDCl3) δ 7.38 (d, J=8.4 Hz, 1H), 6.47 (d, J=12.5 Hz, 1H), 3.77-3.61 (m, 4H), 3.23-3.09 (m, 2H), 2.00-1.88 (m, 1H), 1.69-1.57 (m, 2H), 1.54 (s, 9H), 1.48-1.38 (m, 1H), 1.13 (s, 3H), 0.89-0.82 (m, 2H), 0.62-0.55 (m, 2H); MS(ES+) m/z: 464.2 (M+1).
  • Step 3. Preparation of methyl 5-cyclopropyl-2-fluoro-4-((4-methylpiperidin-4-yl)methoxy)benzoate hydrochloride
  • Figure US20210093618A1-20210401-C01493
  • Following the procedure as described in Example 542 step 3, and making variation as required to tert-butyl 3-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)azetidine-1-carboxylate with tert-butyl 4-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)-4-methylpiperidine-1-carboxylate, the title compound was obtained as a colorless solid (7.65 g, quant. yield): MS(ES+) m/z 322.2 (M+1).
  • Step 4. Preparation of methyl 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01494
  • Following the procedure as described in Example 525 step 1, and making variation as required to replace methyl 5-cyclopropyl-2-fluoro-4-((3-methylazetidin-3-yl)methoxy)benzoate hydrochloride with methyl 5-cyclopropyl-2-fluoro-4-((4-methylpiperidin-4-yl)methoxy)benzoate hydrochloride, the title compound was obtained as a colorless oil (0.87 g, 67%): 1H NMR (300 MHz, CDCl3) δ 8.19 (s, 1H), 7.45 (d, J=8.4 Hz, 1H), 6.84 (s, 1H), 6.52 (d, J=12.5 Hz, 1H), 3.94-3.83 (m, 5H), 3.73 (s, 2H), 3.43-3.31 (m, 2H), 1.99-1.86 (m, 1H), 1.84-1.72 (m, 2H), 1.63-1.52 (m, 2H), 1.20 (s, 3H), 0.88-0.79 (m, 2H), 0.64-0.55 (m, 2H); MS(ES+) m/z 501.1, 503.1 (M+1).
  • Step 5. Preparation of 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01495
  • Following the procedure as described in Example 525 step 2, and making variation as required to replace methyl 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with methyl 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.85 g, quant. yield): MS(ES+) m/z 487.1, 489.1 (M+1).
  • Step 6. Preparation of 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01496
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace cyclopropanesulfonamide with methylsulfonamide, the title compound was obtained as a colorless solid (0.40 g, 82%): 1H NMR (300 MHz, CDCl3) δ 8.71 (br s, 1H), 8.18 (s, 1H), 7.65 (d, J=9.1 Hz, 1H), 8.84 (s, 1H), 6.56 (d, J=14.1 Hz, 1H), 3.95-3.84 (m, 2H), 3.76 (s, 2H), 3.42-3.30 (m, 5H), 1.98-1.87 (m, 1H), 1.84-1.71 (m, 2H), 1.63-1.53 (m, 2H), 1.21 (s, 3H), 0.91-0.82 (m, 2H), 0.64-0.56 (m, 2H); MS(ES+) m/z 564.0, 566.0 (M+1).
  • Example 557 Synthesis of 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01497
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, the title compound was obtained as a colorless solid (0.35 g, 68%): 1H NMR (300 MHz, CDCl3) δ 8.67 (d, J=13.6 Hz, 1H), 8.19 (s, 1H), 7.58 (d, J=9.1 Hz, 1H), 6.84 (s, 1H), 6.55 (d, J=14.1 Hz, 1H), 3.97-3.84 (m, 2H), 3.76 (s, 2H), 3.43-3.29 (m, 2H), 3.13-3.01 (m, 1H), 1.99-1.87 (m, 1H), 1.85-1.72 (m, 2H), 1.64-1.51 (m, 2H), 1.46-1.38 (m, 2H), 1.21 (s, 3H), 1.16-1.07 (m, 2H), 0.91-0.81 (m, 2H), 0.65-0.56 (m, 2H); MS(ES+) m/z 590.0, 592.0 (M+1).
  • Example 558 Synthesis of 5-cyclopropyl-4-(((1S,4S)-5-((3,5-dichlorophenyl)sulfonyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01498
  • Step 1. Preparation of tert-butyl (1S,4S)-5-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorobenzyl)-2,5-diazabicyclo[2.2.1]heptane-2-carboxylate
  • Figure US20210093618A1-20210401-C01499
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with tert-butyl (1S,4S)-2,5-diazabicyclo[2.2.1]heptane-2-carboxylate, the title compound was obtained as a colorless solid (2.61 g, 67%): 1H NMR (300 MHz, CDCl3) δ 7.46 (d, J=7.1 Hz, 1H), 7.18 (d, J=12.1 Hz, 1H), 4.41-4.22 (m, 1H), 3.94-3.77 (m, 2H), 3.65-3.39 (m, 2H), 3.23-3.13 (m, 1H), 2.98-2.82 (m, 1H), 2.75-2.43 (m, 1H), 1.93-1.80 (m, 2H), 1.77-1.60 (m, 1H), 1.55 (s, 9H), 1.44 (s, 9H), 0.94-0.86 (m, 2H), 0.64-0.55 (m, 2H); MS(ES+) m/z 447.2 (M+1).
  • Step 2. Preparation of methyl 4-(((1S,4S)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-5-cyclopropyl-2-fluorobenzoate hydrochloride
  • Figure US20210093618A1-20210401-C01500
  • Following the procedure as described in Example 542 step 3, and making variation as required to tert-butyl 3-((4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorophenoxy)methyl)azetidine-1-carboxylate with tert-butyl (1S,4S)-5-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorobenzyl)-2,5-diazabicyclo[2.2.1]heptane-2-carboxylate, the title compound was obtained as a colorless solid (2.12 g, 96%): MS(ES+) m/z 305.2 (M+1).
  • Step 3. Preparation of methyl 5-cyclopropyl-4-(((1S,4S)-5-((3,5-dichlorophenyl)sulfonyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01501
  • To a mixture of of methyl 4-(((1S,4S)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-5-cyclopropyl-2-fluorobenzoate hydrochloride (0.38 g, 1.00 mmol) and 4-dimethylaminopyridine (0.61 g, 5.00 mmol) in dichloromethane (10 mL) was added 3,5-dichlorobenzenesulfonyl chloride (0.37 g, 1.50 mmol). The reaction mixture was stirred at ambient temperature in a sealed tube for 5 hours, was diluted with ethyl acetate (50 mL); washed with water (40 mL), aqueous saturated sodium bicarbonate solution (50 mL) and brine (50 mL); dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (0-40% ethyl acetate in hexanes) to provide the title compound as a colorless solid (0.51 g, quant. yield): 1H NMR (300 MHz, CDCl3) δ 7.73-7.68 (m, 2H), 7.58-7.50 (m, 2H), 7.11 (d, J=11.8 Hz, 1H), 4.34 (s, 1H), 3.93-3.81 (m, 5H), 3.64 (d, J=9.5 Hz, 1H), 3.49 (s, 1H), 3.10 (dd, J=9.5, 2.1 Hz, 1H), 2.89 (dd, J=9.7, 2.1 Hz, 1H), 2.68 (d, J=9.7 Hz, 1H), 1.88-1.76 (m, 2H), 1.30 (d, J=9.7 Hz, 1H), 0.94-0.86 (m, 2H), 0.63-0.56 (m, 2H); MS(ES+) m/z 513.0, 515.0 (M+1).
  • Step 4. Preparation of 5-cyclopropyl-4-(((1S,4S)-5-((3,5-dichlorophenyl)sulfonyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01502
  • Following the procedure as described in Example 525 step 2, and making variation as required to replace methyl 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)pyridin-2-yl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate with methyl 5-cyclopropyl-4-(((1S,4S)-5-((3,5-dichlorophenyl)sulfonyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid (0.51 g, quant. yield): MS(ES+) m/z 499.0, 501.0 (M+1).
  • Step 5. Preparation of 5-cyclopropyl-4-(((1S,4S)-5-((3,5-dichlorophenyl)sulfonyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01503
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.15 g, 43%): 1H NMR (300 MHz, CDCl3+10% CD3OD) J=7.67-7.62 (m, 2H), 7.57-7.53 (m, 1H), 7.48-7.41 (m, 1H), 7.30-7.22 (m, 1H), 4.55-4.33 (m, 3H), 4.24 (s, 1H), 3.84 (d, J=11.1 Hz, 1H), 3.39-3.20 (m, 6H), 2.14 (d, J=11.1 Hz, 1H), 1.86-1.74 (m, 1H), 1.63 (d, J=11.6 Hz, 1H), 1.05-0.95 (m, 2H), 0.69-0.59 (m, 2H); MS(ES+) m/z 575.9, 577.9 (M+1).
  • Example 559 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-(((1S,4S)-5-((3,5-dichlorophenyl)sulfonyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01504
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((1-(5-chloro-4-(trifluoromethyl)pyridin-2-yl)-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.20 g, 56%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 7.64 (d, J=1.7 Hz, 2H), 7.57-7.54 (m, 1H), 7.47 (d, J=7.3 Hz, 1H), 7.258 (d, J=11.4 Hz, 1H), 4.49-4.28 (m, 3H), 4.17 (s, 1H), 3.82 (d, J=11.4 Hz, 1H), 3.35-3.20 (m, 3H), 3.05-2.94 (m, 1H), 2.15-2.06 (m, 1H), 1.86-1.74 (m, 1H), 1.60 (d, J=11.3 Hz, 1H), 1.37-1.29 (m, 2H), 1.22-0.94 (m, 4H), 0.67-0.59 (m, 2H); MS(ES+) m/z 602.3, 603.9 (M+1).
  • Example 560 Synthesis of 4-(((1R,3r,5S)-3-(3-chloro-5-(trifluoromethoxy)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01505
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-(((1R,3r,5S)-3-(3-chloro-5-(trifluoromethoxy)phenoxy)-8-azabicyclo[3.2.1]octan-8-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.36 g, 51%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 7.47-7.39 (m, 2H), 6.81-6.78 (m, 1H), 6.75-6.72 (m, 1H), 6.56-6.52 (m, 1H), 4.62-4.56 (m, 1H), 4.38 (s, 2H), 3.90 (br s, 2H), 3.29 (s, 3H), 2.75-2.64 (m, 2H), 2.50-2.40 (m, 2H), 2.16-2.24 (m, 2H), 2.13 (d, J=16.4 Hz, 2H), 1.85-1.74 (m, 1H), 1.03-0.95 (m, 2H), 0.70-0.63 (m, 2H); MS(ES+) m/z 591.1, 593.1 (M+1).
  • Example 561 Synthesis of 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-3,3-dimethylpiperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01506
  • Step 1. Preparation of tert-butyl 3,3-dimethyl-4-oxopiperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01507
  • To a solution of tert-butyl 4-oxopiperidine-1-carboxylate (15.0 g, 75.30 mmol) in anhydrous tetrahydrofuran (400 mL) at 0° C. was added sodium hydride (60% in mineral oil, 6.04 g, 151.00 mmol) under nitrogen. After stirring for 10 minutes, methyl iodide (11.7 mL, 188.00 mmol) was added; the reaction mixture was stirred at 0° C. for 1 hour and stirred at ambient temperature for 3 hours. The reaction mixture was quenched by slowly addition of water (10 mL) and concentrated in vacuo to remove about 300 mL of tetrahydrofuran. The residue was diluted with ethyl acetate (300 mL), washed with aqueous saturated ammonium chloride solution (2×250 mL) and brine (100 mL); dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue was triturated with hexanes to provide the title compound as a colorless solid (6.68 g, 39%): 1H NMR (300 MHz, CDCl3) δ 3.68 (t, J=6.2 Hz, 2H), 3.39 (s, 2H), 2.45 (t, J=6.2 Hz, 2H), 1.45 (s, 9H), 1.07 (s, 6H).
  • Step 2. Preparation of tert-butyl 4-hydroxy-3,3-dimethylpiperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01508
  • To a solution of tert-butyl 3,3-dimethyl-4-oxopiperidine-1-carboxylate (4.88 g, 21.47 mmol) in anhydrous methanol (50 mL) at 0° C. was added sodium borohydride (0.87 g, 21.97 mmol) portionwise under nitrogen. The resulting mixture was stirred at 0° C. for 1 hour and then stirred at ambient temperature for 2 hours. The reaction mixture was concentrated in vacuo and the residue was diluted with ethyl acetate (200 mL), washed with 1.0 M aqueous hydrochloric acid solution (100 mL) and brine (2×70 mL); dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to provide the title compound as a colorless solid (4.92 g, quant. yield): 1H NMR (300 MHz, CDCl3) δ 3.92-3.68 (m, 1H), 3.58-3.41 (m, 1H), 3.37 (dd, J=9.2, 4.0 Hz, 1H), 3.07-2.93 (m, 1H), 2.69 (d, J=13.3 Hz, 1H), 1.77-1.65 (m, 1H), 1.60-1.46 (m, 1H), 1.42 (s, 9H), 0.92 (s, 3H), 0.85 (s, 3H); MS(ES+) m/z 230.2 (M+1).
  • Step 3. Preparation of tert-butyl 4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-3,3-dimethylpiperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01509
  • To a mixture of tert-butyl 4-hydroxy-3,3-dimethylpiperidine-1-carboxylate (4.58 g, 19.97 mmol) and 2,5-dichloro-4-(trifluoromethyl)pyridine (5.18 g, 23.96 mmol) in anhydrous dimethylsulfoxide (150 mL) was added cesium carbonate (19.52 g, 59.91 mmol). The reaction mixture was heated at 90° C. under nitrogen for 18 hours, cooled to ambient temperature, diluted with ethyl acetate (300 mL), washed with water (150 mL) and brine (3×100 mL), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue was purified by flash chromatography (0-12% ethyl acetate in hexanes) to provide the title compound as a colorless oil (4.55 g, 56%): 1H NMR (300 MHz, CDCl3) δ 8.18 (s, 1H), 7.01 (s, 1H), 4.91 (dd, J=8.3, 3.8 Hz, 1H), 3.80-3.60 (m, 1H), 3.55-3.43 (m, 1H), 3.25 (ddd, J=13.5, 8.7, 3.9 Hz, 1H), 2.97 (d, J=13.7 Hz, 1H), 1.98-1.83 (m, 1H), 1.73-1.58 (m, 1H), 1.44 (s, 9H), 0.97 (s, 3H), 0.95 (s, 3H); MS(ES+) m/z 353.0, 355.0 (M−55).
  • Step 4. Preparation of 5-chloro-2-((3,3-dimethylpiperidin-4-yl)oxy)-4-(trifluoromethyl)pyridine
  • Figure US20210093618A1-20210401-C01510
  • Following the procedure as described in Example 540 step 2, and making variation as required to replace tert-butyl 4-(1-(3,5-dichlorophenyl)ethyl)piperazine-1-carboxylate with tert-butyl 4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-3,3-dimethylpiperidine-1-carboxylate, the title compound was obtained as an colorless oil (3.77 g, quant. yield): MS(ES+) m/z 309.1, 311.1 (M+1).
  • Step 5. Preparation of tert-butyl 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-3,3-dimethylpiperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01511
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with 5-chloro-2-((3,3-dimethylpiperidin-4-yl)oxy)-4-(trifluoromethyl)pyridine, the title compound was obtained as a colorless solid (5.46 g, 79%): 1H NMR (300 MHz, CDCl3) δ 8.18 (s, 1H), 7.47 (d, J=7.3 Hz, 1H), 7.17 (d, J=11.9 Hz, 1H), 7.01 (s, 1H), 4.83 (dd, J=8.6, 3.9 Hz, 1H), 3.59 (s, 2H), 2.74-2.62 (m, 1H), 2.43 (d, J=10.9 Hz, 1H), 2.37-2.26 (m, 1H), 2.08-1.91 (m, 3H), 1.83-1.68 (m, 1H), 1.56 (s, 9H), 1.07 (s, 3H), 0.98-0.86 (m, 5H), 0.65-0.58 (m, 2H); MS(ES+) m/z 515.0, 516.9 (M+1).
  • Step 6. Preparation of 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-3,3-dimethylpiperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01512
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-3,3-dimethylpiperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoate, the title compound was obtained as a colorless solid (1.59 g, quant. yield): MS(ES+) m/z 501.1, 503.1 (M+1).
  • Step 7. Preparation of 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-3,3-dimethylpiperidin-1-yl)methyl)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01513
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-3,3-dimethylpiperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.35 g, 34%): 1H NMR (300 MHz, DMSO-d6+5% D2O) δ 8.45 (s, 1H), 7.49 (d, J=11.2 Hz, 1H), 7.32 (s, 1H), 7.25 (d, J=7.1 Hz, 1H), 5.06-4.91 (m, 1H), 4.43 (br s, 2H), 3.33 (s, 3H), 3.29-2.91 (m, 4H), 2.20-2.04 (m, 2H), 2.02-1.80 (m, 1H), 1.21-0.86 (m, 8H), 0.81-0.68 (m, 2H); MS(ES+) m/z 578.1, 580.1 (M+1).
  • Example 562 Synthesis of 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-3,3-dimethylpiperidin-1-yl)methyl)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01514
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 4-((4-((5-chloro-4-(trifluoromethyl)pyridin-2-yl)oxy)-3,3-dimethylpiperidin-1-yl)methyl)-5-cyclopropyl-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.50 g, 47%): 1H NMR (300 MHz, CDCl3+10% CD3OD) δ 8.14 (s, 1H), 7.46 (d, J=7.3 Hz, 1H), 7.39 (d, J=11.2 Hz, 1H), 7.00 (s, 1H), 4.99-4.92 (m, 1H), 4.48-4.32 (m, 2H), 3.56-3.32 (m, 1H), 3.21-3.08 (m, 1H), 3.05-2.97 (m, 1H), 2.96-2.88 (m, 1H), 2.87-2.74 (m, 1H), 2.35-2.19 (m, 1H), 2.08-1.95 (m, 1H), 1.92-1.81 (m, 1H), 1.38-1.29 (m, 2H), 1.20-0.89 (m, 10H), 0.70-0.63 (m, 2H); MS(ES+) m/z 604.2, 606.2 (M+1).
  • Example 563 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-(((1S,4S)-5-((R)-1-(3,5-dichlorophenyl)ethyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01515
  • Step 1. Preparation of methyl 5-cyclopropyl-4-(((1S,4S)-5-((R)-1-(3,5-dichlorophenyl)ethyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-2-fluorobenzoate and methyl 5-cyclopropyl-4-(((1S,4S)-5-((S)-1-(3,5-dichlorophenyl)ethyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01516
  • To a solution of methyl 4-(((1S,4S)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-5-cyclopropyl-2-fluorobenzoate dihydrochloride (0.38 g, 1.00 mmol) and 1-(3,5-dichlorophenyl)ethyl 4-methylbenzenesulfonate (0.41 g, 1.20 mmol) in anhydrous dimethylformamide (10 mL) was added potassium carbonate (0.55 g, 4.00 mmol). The reaction mixture was heated at 80° C. in a sealed tube for 6 hours, cooled to ambient temperature, diluted with ethyl acetate (80 mL), washed with water (50 mL) and brine (50 mL), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The residue was purified by preparative HPLC. The first eluting fraction was arbitrarily assigned as methyl 5-cyclopropyl-4-(((1S,4S)-5-((R)-1-(3,5-dichlorophenyl)ethyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-2-fluorobenzoate as a colorless oil (0.05 g, 10%)) and the second eluting fraction was arbitrarily assigned as methyl 5-cyclopropyl-4-(((1S,4S)-5-((S)-1-(3,5-dichlorophenyl)ethyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-2-fluorobenzoate as a colorless oil (0.05 g, 10%)). Analytical data for methyl 5-cyclopropyl-4-(((1S,4S)-5-((R)-1-(3,5-dichlorophenyl)ethyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-2-fluorobenzoate: 1H NMR (300 MHz, CDCl3) δ 7.54 (d, J=7.3 Hz, 1H), 7.31-7.17 (m, 4H), 3.97-3.85 (m, 4H), 3.75 (d, J=15.6 Hz, 1H), 3.65-3.54 (m, 1H), 3.25 (d, J=11.4 Hz, 2H), 2.94-2.85 (m, 2H), 2.70 (d, J=9.7 Hz, 1H), 2.48 (dd, J=10.2, 2.4 Hz, 1H), 1.93-1.81 (m, 1H), 1.77-1.67 (m, 2H), 1.31 (d, J=6.4 Hz, 3H), 0.96-0.88 (m, 2H), 0.65-0.57 (m, 2H); MS (ES+) m/z: 477.1, 479.1 (M+1). Analytical data for methyl 5-cyclopropyl-4-(((1S,4S)-5-((S)-1-(3,5-dichlorophenyl)ethyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-2-fluorobenzoate: 1H NMR (300 MHz, CDCl3) δ 7.54 (d, J=7.3 Hz, 1H), 7.30-7.17 (m, 4H), 3.93 (d, J=15.7 Hz, 1H), 3.88 (s, 3H), 3.79 (d, J=15.7 Hz, 1H), 3.54 (q, J=5.9 Hz, 1H), 3.48 (s, 1H), 3.25 (s, 1H), 2.88 (d, J=9.9 Hz, 1H), 2.72-2.60 (m, 2H), 2.54 (d, J=9.6 Hz, 1H), 1.93-1.82 (m, 1H), 1.81-1.69 (m, 2H), 1.22 (d, J=5.9 Hz, 3H), 0.96-0.88 (m, 2H), 0.68-0.56 (m, 2H); MS(ES+) m/z 477.1, 479.1 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-(((1S,4S)-5-((R)-1-(3,5-dichlorophenyl)ethyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01517
  • Following the procedure as described in Example 538 step 3, and making variation as required to replace (R)-4-((1-(tert-butyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate with methyl 5-cyclopropyl-4-(((1S,4S)-5-((R)-1-(3,5-dichlorophenyl)ethyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-2-fluorobenzoate, and to replace methylsulfonamide with cyclopropanesulfonamide, and purification by HPLC, the title compound was obtained as a colorless solid (0.07 g, 26%): 1H NMR (300 MHz, DMSO-d6+5% D2O) δ 7.64-7.57 (m, 3H), 7.37 (d, J=11.5 Hz, 1H), 7.19 (d, J=7.1 Hz, 1H), 4.37-3.98 (m, 4H), 3.79 (br s, 1H), 3.38-3.23 (m, 2H), 3.10-2.86 (m, 3H), 2.20-2.03 (m, 2H), 2.02-1.92 (m, 1H), 1.52 (d, J=6.2 Hz, 3H), 1.13-1.04 (m, 4H), 0.95-0.87 (m, 2H), 0.70-0.60 (m, 2H); MS(ES+) m/z 566.1, 568.1 (M+1).
  • Example 564 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-(((1S,4S)-5-((S)-1-(3,5-dichlorophenyl)ethyl)-2,5-diazabicyclo[2.2.2.1]heptan-2-yl)methyl)-2-fluorobenzamide, trifluoroacetic acid salt
  • Figure US20210093618A1-20210401-C01518
  • Following the procedure as described in Example 538 step 3, and making variation as required to replace (R)-4-((1-(tert-butyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoate with methyl 5-cyclopropyl-4-(((1S,4S)-5-((S)-1-(3,5-dichlorophenyl)ethyl)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-2-fluorobenzoate, and to replace methylsulfonamide with cyclopropanesulfonamide, and purification by HPLC, the title compound was obtained as a colorless solid (0.07 g, 17%): 1H NMR (300 MHz, DMSO-d6+5% D2O) δ 7.62 (s, 1H), 7.55 (s, 2H), 7.39 (d, J=11.7 Hz, 1H), 7.21 (d, J=7.1 Hz, 1H), 4.39-4.08 (m, 3H), 3.90 (br s, 2H), 3.39-3.25 (m, 2H), 3.22-3.10 (m, 1H), 3.08-2.99 (m, 1H), 2.98-2.89 (m, 1H), 2.26-2.08 (m, 2H), 2.04-1.93 (m, 1H), 1.41 (d, J=6.5 Hz, 3H), 1.16-1.03 (m, 4H), 0.97-0.87 (m, 2H), 0.73-0.61 (m, 2H) (Note: Exchangeable protons not observed.); MS(ES+) m/z 566.2, 568.2 (M+1).
  • Example 565 Synthesis of 5-cyclopropyl-4-(((S)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01519
  • Step 1. Preparation of 1-benzyl 4-(tert-butyl) (S)-2-methylpiperazine-1,4-dicarboxylate
  • Figure US20210093618A1-20210401-C01520
  • To a solution of tert-butyl (S)-3-methylpiperazine-1-carboxylate (6.35 g, 31.71 mmol), triethylamine (4.98 mL, 34.88 mmol) and 4-dimethylaminopyridine (0.10 g, 0.82 mmol) in dichloromethane (80 mL) under nitrogen at 0° C. was added dropwise benzyl chloroformate (8.84 mL, 63.42 mmol). The resulting mixture was stirred at 0° C. for 2 hours and then at ambient temperature for 18 hours, quenched with water (10 mL) and stirred for 1 hour. The mixture was diluted with diluted with ethyl acetate (150 mL), washed with aqueous saturated ammonium chloride solution (2×80 mL) and brine (80 mL); dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to provide the title compound as an oil (10.45 g, 99%): 1H NMR (300 MHz, CDCl3) δ 7.39-7.25 (m, 5H), 5.11 (s, 2H), 4.37-4.23 (m, 1H), 4.10-3.71 (m, 3H), 3.15-2.91 (m, 2H), 2.86-2.69 (m, 1H), 1.43 (s, 9H), 1.14 (d, J=6.8 Hz, 3H); MS(ES+) m/z 235.2 (M−99).
  • Step 2. Preparation of benzyl (S)-2-methylpiperazine-1-carboxylate
  • Figure US20210093618A1-20210401-C01521
  • To a solution of 1-benzyl 4-(tert-butyl) (S)-2-methylpiperazine-1,4-dicarboxylate (10.45 g, 31.25 mmol) in dichloromethane (70 mL) was added trifluoroacetic acid (35 mL). After stirring at ambient temperature for 5 hours, the reaction mixture was concentrated in vacuo and the residue was dissolved in diethyl ether (80 mL) and extracted with 1.0 M aqueous hydrochloric acid solution (2×25 mL). The combined aqueous layers were basified with 2.0 M aqueous sodium hydroxide solution to pH=9, and extracted with diethyl ether (2×100 mL), the combined organic layers were washed with brine (2×50 mL); dried over anhydrous sodium sulfate; filtered and concentrated in vacuo to provide the title compound as an oil (6.28 g, 86%): 1H NMR (300 MHz, CDCl3) δ 7.36-7.23 (m, 5H), 5.13 (d, J=12.7 Hz, 1H), 5.08 (d, J=12.7 Hz, 1H), 4.27-4.16 (m, 1H), 3.88-3.79 (m, 1H), 3.02 (td, J=12.7, 3.3 Hz, 1H), 2.95-2.83 (m, 2H), 2.76-2.70 (m, 1H), 2.64 (td, J=12.7, 3.6 Hz, 1H), 1.21 (d, J=7.0 Hz, 3H); MS(ES+) m/z 235.1 (M+1).
  • Step 3. Preparation of benzyl (S)-4-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorobenzyl)-2-methylpiperazine-1-carboxylate
  • Figure US20210093618A1-20210401-C01522
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with benzyl (S)-2-methylpiperazine-1-carboxylate, the title compound was obtained as a colorless solid (6.58 g, 84%): 1H NMR (300 MHz, CDCl3) δ 7.47 (d, J=7.3 Hz, 1H), 7.38-7.25 (m, 5H), 7.14 (d, J=11.7 Hz, 1H), 5.17-5.07 (m, 2H), 4.34-4.23 (m, 1H), 3.95-3.85 (m, 1H), 3.58 (s, 2H), 3.17 (td, J=12.4-3.0 Hz, 1H), 2.74 (d, J=11.1 Hz, 1H), 2.59 (d, J=11.1 Hz, 1H), 2.22 (dd, J=11.1, 3.8 Hz, 1H), 2.08 (td, J=11.8, 3.3 Hz, 1H), 2.01-1.90 (m, 1H), 1.56 (s, 9H), 1.26 (d, J=6.7 Hz, 3H), 0.94-0.86 (m, 2H), 0.64-0.57 (m, 2H); MS (ES+) m/z 483.1 (M+1).
  • Step 4. Preparation of tert-butyl (S)-5-cyclopropyl-2-fluoro-4-((3-methylpiperazin-1-yl)methyl)benzoate
  • Figure US20210093618A1-20210401-C01523
  • To a degassed mixture of 10% palladium on carbon (50% wetted powder, 2.0 g) in methanol (50 mL) was added a solution of benzyl (S)-4-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorobenzyl)-2-methylpiperazine-1-carboxylate (5.51 g, 11.42 mmol) in methanol (50 mL). The resulting mixture was bubbled with hydrogen gas for 2 minutes and then held under 1 atmosphere of hydrogen for 2 hours. The reaction mixture was bubbled with nitrogen, filtered through diatomaceous earth, and concentrated in vacuo to provide the title compound as a colorless oil (3.98 g, quant. yield): MS(ES+) m/z: 349.3 (M+1).
  • Step 5. Preparation of tert-butyl 5-cyclopropyl-4-(((S)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoate and tert-butyl 5-cyclopropyl-4-(((S)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01524
  • Following the procedure as described in Example 563 step 1, and making variation as required to replace methyl 4-(((1S,4S)-2,5-diazabicyclo[2.2.1]heptan-2-yl)methyl)-5-cyclopropyl-2-fluorobenzoate dihydrochloride with tert-butyl (S)-5-cyclopropyl-2-fluoro-4-((3-methylpiperazin-1-yl)methyl)benzoate and purification by flash chromatography (0-15% ethyl acetate (+10% isopropanol, +10% triethylamine) in hexanes. The first eluting fraction was arbitrarily assigned as tert-butyl 5-cyclopropyl-4-(((S)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoate (1.44 g, 29%): MS (ES+) m/z: 521.3, 523.2 (M+1). The second eluting fraction was arbitrarily assigned as tert-butyl 5-cyclopropyl-4-(((S)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoate (3.27 g, 66%) MS(ES+) m/z: 521.2, 523.2 (M+1).
  • Step 6. Preparation of 5-cyclopropyl-4-(((S)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01525
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 5-cyclopropyl-4-(((S)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid (1.49 g, quant. yield): MS(ES+) m/z 465.0, 467.0 (M+1).
  • Step 7. Preparation of 5-cyclopropyl-4-(((S)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01526
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((S)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.07 g, 9%): 1H NMR (300 MHz, CDCl3) δ 7.69 (d, J=7.7 Hz, 1H), 7.32-7.25 (m, 3H), 7.20-7.18 (m, 1H), 3.98-3.85 (m, 1H), 3.62 (s, 2H), 3.39 (s, 3H), 3.04-2.92 (m, 1H), 2.65-2.57 (m, 1H), 2.50-2.41 (m, 1H), 2.36-2.19 (m, 4H), 1.98-1.87 (m, 1H), 1.24 (d, J=6.7 Hz, 3H), 1.10 (d, J=6.3 Hz, 3H), 0.98-0.91 (m, 2H), 0.66-0.59 (m, 2H); MS(ES+) m/z 542.1, 544.1 (M+1).
  • Example 566 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-(((S)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01527
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((S)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.11 g, 14%): 1H NMR (300 MHz, CDCl3) δ 8.74 (br s, 1H), 7.70 (d, J=7.8 Hz, 1H), 7.34-7.25 (m, 3H), 7.21-7.17 (m, 1H), 3.97-3.84 (m, 1H), 3.61 (s, 2H), 3.13-3.03 (m, 1H), 3.02-2.91 (m, 1H), 2.65-2.57 (m, 1H), 2.50-2.40 (m, 1H), 2.35-0.217 (m, 4H), 1.98-1.87 (m, 1H), 1.48-1.40 (m, 2H), 1.24 (d, J=6.5 Hz, 3H), 1.17-1.06 (m, 5H), 0.98-0.90 (m, 2H), 0.66-0.59 (m, 2H); MS(ES+) m/z 568.2, 570.2 (M+1).
  • Example 567 Synthesis of 5-cyclopropyl-4-(((S)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01528
  • Step 1. Preparation of 5-cyclopropyl-4-(((S)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoic acid dihydrochloride
  • Figure US20210093618A1-20210401-C01529
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 5-cyclopropyl-4-(((S)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid (3.38 g, quant.): MS(ES+) m/z 465.0, 467.0 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-4-(((S)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01530
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((S)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.003 g, 0.2%): MS(ES+) m/z 542.2, 544.2 (M+1).
  • Example 568 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-(((S)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01531
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((S)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.004 g, 0.2%): MS (ES+) m/z 568.2, 570.2 (M+1).
  • Example 569 Synthesis of 5-cyclopropyl-4-(((R)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01532
  • Step 1. Preparation of 1-benzyl 4-(tert-butyl) (R)-2-methylpiperazine-1,4-dicarboxylate
  • Figure US20210093618A1-20210401-C01533
  • Following the procedure as described in Example 565 step 1, and making variation as required to replace tert-butyl (S)-3-methylpiperazine-1-carboxylate with tert-butyl (R)-3-methylpiperazine-1-carboxylate, the title compound was obtained as a colorless oil (10.60 g, quant. yield): 1H NMR (300 MHz, CDCl3) δ 7.39-7.26 (m, 5H), 5.16-5.06 (m, 2H), 4.37-4.23 (m, 1H), 4.12-3.70 (m, 3H), 3.16-2.91 (m, 2H), 2.88-2.68 (m, 1H), 1.43 (s, 9H), 1.14 (d, J=6.7 Hz, 3H); MS(ES+) m/z 235.2 (M−Boc+H).
  • Step 2. Preparation of benzyl (R)-2-methylpiperazine-1-carboxylate
  • Figure US20210093618A1-20210401-C01534
  • Following the procedure as described in Example 565 step 2, and making variation as required to replace 1-benzyl 4-(tert-butyl) (S)-2-methylpiperazine-1,4-dicarboxylate with 1-benzyl 4-(tert-butyl) (R)-2-methylpiperazine-1,4-dicarboxylate, the title compound was obtained as a colorless oil (6.80 g, 82%): 1H NMR (300 MHz, CDCl3) δ 7.36-7.24 (m, 5H), 5.16-5.05 (m, 2H), 4.27-4.17 (m, 1H), 3.88-3.79 (m, 1H), 3.02 (td, J=12.5, 3.3 Hz, 1H), 2.95-2.82 (m, 2H), 2.77-2.70 (m, 1H), 2.64 (td, J=12.3, 3.5 Hz, 1H), 1.49 (br s, 1H), 1.21 (d, J=6.5 Hz, 3H); MS(ES+) m/z: 235.1 (M+1).
  • Step 3. Preparation of benzyl (R)-4-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorobenzyl)-2-methylpiperazine-1-carboxylate
  • Figure US20210093618A1-20210401-C01535
  • Following the procedure as described in Example 53 step 3, and making variation as required to replace (S)-3-(3,5-dichlorophenoxy)piperidine, trifluoroacetic acid salt with benzyl (R)-2-methylpiperazine-1-carboxylate, the title compound was obtained as a colorless solid (7.04 g, 90%): 1H NMR (300 MHz, CDCl3) δ 7.47 (d, J=7.4 Hz, 1H), 7.36-7.25 (m, 5H), 7.14 (d, J=11.8 Hz, 1H), 5.17-5.07 (m, 2H), 4.34-4.23 (m, 1H), 3.95-3.86 (m, 1H), 3.58 (s, 2H), 3.17 (td, J=12.7, 3.2 Hz, 1H), 2.74 (d, J=11.0 Hz, 1H), 2.59 (d, J=11.1 Hz, 1H), 2.22 (dd, J=11.0, 3.5 Hz, 1H), 2.08 (td, J=11.6, 3.3 Hz, 1H), 2.01-1.90 (m, 1H), 1.56 (s, 9H), 1.26 (d, J=6.8 Hz, 3H), 0.94-0.86 (m, 2H), 0.65-0.57 (m, 2H); MS(ES+) m/z 483.1 (M+1).
  • Step 4. Preparation of tert-butyl (R)-5-cyclopropyl-2-fluoro-4-((3-methylpiperazin-1-yl)methyl)benzoate
  • Figure US20210093618A1-20210401-C01536
  • Following the procedure as described in Example 565 step 4, and making variation as required to replace benzyl (S)-4-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorobenzyl)-2-methylpiperazine-1-carboxylate with benzyl (R)-4-(4-(tert-butoxycarbonyl)-2-cyclopropyl-5-fluorobenzyl)-2-methylpiperazine-1-carboxylate, the title compound was obtained as a colorless oil (4.19 g, 98%): MS(ES+) m/z 349.1 (M+1).
  • Step 5. Preparation of tert-butyl 5-cyclopropyl-4-(((R)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoate and tert-butyl 5-cyclopropyl-4-(((R)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01537
  • Following the procedure as described in Example 563 step 1, and making variation as required to replace methyl 4-(((1S,4S)-2,5-diazabicyclo[2.2. I]heptan-2-yl)methyl)-5-cyclopropyl-2-fluorobenzoate dihydrochloride with tert-butyl (R)-5-cyclopropyl-2-fluoro-4-((3-methylpiperazin-1-yl)methyl)benzoate and purification by flash chromatography (0-15% ethyl acetate (+10% isopropanol, +10% triethylamine) in hexanes. The first eluting fraction was arbitrarily assigned as tert-butyl 5-cyclopropyl-4-(((R)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoate (1.12 g, 24%)): MS (ES+) m/z: 521.2, 523.2 (M+1). The second eluting fraction was arbitrarily assigned as tert-butyl 5-cyclopropyl-4-(((R)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoate (2.07 g, 44%): MS(ES+) m/z 521.2, 523.2 (M+1).
  • Step 6. Preparation of 5-cyclopropyl-4-(((R)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoic acid dihydrochloride
  • Figure US20210093618A1-20210401-C01538
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 5-cyclopropyl-4-(((R)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid (1.16 g, quant. yield): MS(ES+) m/z 465.1, 467.1 (M+1).
  • Step 7. Preparation of 5-cyclopropyl-4-(((R)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01539
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((R)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.13 g, 22%): 1H NMR (300 MHz, CDCl3) δ 7.44 (d, J=7.7 Hz, 1H), 7.27 (d, J=1.6 Hz, 2H), 7.17 (dd, J=1.7 Hz, 1H), 7.02 (d, J=12.2 Hz, 1H), 6.78 (br s, 1H), 3.93-3.81 (m, 1H), 3.52 (s, 2H), 3.02 (s, 3H), 2.96-2.84 (m, 1H), 2.61-2.51 (m, 1H), 2.45-2.35 (m, 1H), 2.31-2.11 (m, 3H), 1.99-1.96 (m, 1H), 1.93-1.84 (m, 1H), 1.20 (d, J=1.05, 3H), (d, J=6.2 Hz, 3H), 0.87-0.80 (m, 2H), 0.60-0.52 (m, 2H); MS(ES+) m/z 542.1, 544.1 (M+1).
  • Example 570 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-(((R)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01540
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((R)-4-((R)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.18 g, 30%): 1H NMR (300 MHz, CDCl3) δ 7.69 (d, J=7.8 Hz, 1H), 7.32-7.23 (m, 3H), 7.21-7.17 (m, 1H), 3.98-3.83 (m, 1H), 3.61 (s, 2H), 3.12-3.02 (m, 1H), 3.02-2.92 (m, 1H), 2.65-2.57 (m, 1H), 2.51-2.40 (m, 1H), 2.35-2.19 (m, 4H), 2.00-1.87 (m, 1H), 1.47-1.39 (m, 2H), 1.24 (d, J=6.5 Hz, 3H), 1.17-1.06 (m, 5H), 0.98-0.90 (m, 2H) 0.66-0.59 (m, 2H); MS(ES+) m/z 568.2, 570.2 (M+1).
  • Example 571 Synthesis of 5-cyclopropyl-4-(((R)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01541
  • Step 1. Preparation of 5-cyclopropyl-4-(((R)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride
  • Figure US20210093618A1-20210401-C01542
  • Following the procedure as described in Example 517 step 2, and making variation as required to replace tert-butyl 4-(3,5-dichlorobenzyl)piperazine-1-carboxylate with tert-butyl 5-cyclopropyl-4-(((R)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoate, the title compound was obtained as a colorless solid (2.14 g, quant.): MS(ES+) m/z 465.1, 467.1 (M+1).
  • Step 2. Preparation of 5-cyclopropyl-4-(((R)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01543
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((R)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and to replace cyclopropanesulfonamide with methylsulfonamide, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.005 g, 0.5%): 1H NMR (300 MHz, CDCl3) δ 7.46 (d, J=7.5 Hz, 1H), 7.22-7.18 (m, 1H), 7.17-7.13 (m, 2H), 6.99 (d, J=12.2 Hz, 1H), 3.91-3.78 (m, 1H), 3.51 (s, 2H), 3.02 (s, 3H), 2.79-2.67 (m, 1H), 2.54-2.35 (m, 3H), −2.21-2.11 (m, 2H), 1.94-1.82 (m, 1H), 1.31 (d, J=6.8 Hz, 3H), 1.25-1.20 (m, 2H), 1.00 (d, J=6.1 Hz, 3H), 0.88-0.78 (m, 2H), 0.59-0.52 (m, 2H); MS(ES−) m/z 540.2, 542.2 (M−1).
  • Example 572 Synthesis of 5-cyclopropyl-N-(cyclopropylsulfonyl)-4-(((R)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01544
  • Following the procedure as described in Example 53 step 5, and making variation as required to replace (S)-5-cyclopropyl-4-((3-(3,5-dichlorophenoxy)piperidin-1-yl)methyl)-2-fluorobenzoic acid with 5-cyclopropyl-4-(((R)-4-((S)-1-(3,5-dichlorophenyl)ethyl)-3-methylpiperazin-1-yl)methyl)-2-fluorobenzoic acid hydrochloride, and purification by preparative HPLC, the title compound was obtained as a colorless solid (0.01 g, 1%): 1H NMR (300 MHz, CDCl3) δ 8.74 (br s, 1H), 7.69 (d, J=7.8 Hz, 1H), 7.28-7.20 (m, 2H), 7.19-7.13 (m, 2H), 3.94-3.81 (m, 1H), 3.59 (s, 2H), 3.12-3.02 (m, 1H), 2.93-2.72 (m, 1H), 2.58-2.42 (m, 3H), 2.25-2.16 (m, 1H), 1.97-1.86 (m, 1H), 1.66-1.49 (m, 2H), 1.47-1.40 (m, 2H), 1.33 (d, J=6.5 Hz, 3H), 1.17-1.08 (m, 2H), 1.05 (d, J=6.3 Hz, 3H), 0.97-0.89 (m, 2H), 0.65-0.57 (m, 2H); MS(ES+) m/z 568.2, 570.2 (M+1).
  • Example 573 Synthesis of (S)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)
  • Figure US20210093618A1-20210401-C01545
  • Following the procedure as described in Example 3 step 5, and making variation as required to replace (R)-5-cyclopropyl-4-((1-(3,5-dichlorobenzyl)piperidin-3-yl)oxy)-2-fluorobenzoic acid with (S)-4-((1-(2-chloro-4-fluorobenzyl)piperidin-3-yl)oxy)-5-cyclopropyl-2-fluorobenzoic acid, and to replace cyclopropylsulfonamide with methanesulfonamide, the title compound was obtained as a colorless solid (0.09 g, 55%): 1H NMR (300 MHz, CDCl3) δ7.55 (d, J=9.2 Hz, 1H), 7.46-7.41 (m, 1H), 7.11-7.08 (m, 1H), 6.96-6.89 (m, 1H), 6.58 (d, J=14.6 Hz, 1H), 4.46-4.41 (m, 1H), 3.63 (s, 2H), 3.41 (s, 3H), 2.99-2.96 (m, 1H), 2.73-2.70 (m, 1H), 2.48-2.42 (m, 1H), 2.36-2.29 (m, 1H), 2.10-2.02 (m, 2H), 1.92-1.86 (m, 1H), 1.72-1.56 (m, 2H), 0.96-0.90 (m, 2H), 0.69-0.64 (m, 2H); MS(ES+) m/z 498.9, 500.9 (M+1); MS(ES−) m/z 497.2, 499.2 (M−1).
  • Example 574 Synthesis of 4-((1-benzhydryl-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01546
  • Steps 1-2: Preparation of tert-butyl 4-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)-phenoxy)methyl)-4-methylpiperidine-1-carboxylate
  • The compound was prepared in a similar manner to Example 598 starting from 5-chloro-2,4-difluoro-N-methylsulfonyl-benzamide and tert-butyl 3-(hydroxymethyl)-3-methylazetidine-1-carboxylate.
  • Step 3: Preparation of 4-((1-benzhydryl-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • A mixture of 4-((1-benzhydryl-4-methylpiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide (55 mg), trifluoroacetic acid (0.23 mL) in dichloromethane (0.68 mL) was stirred at 0° C. for 10 min then at rt for 1 h. The contents were concentrated under vacuum. To the residue were added acetonitrile (2.3 mL), benzhydryl bromide (29 mg), and cesium carbonate (266 mg). The mixture was heated at 50° C. for 4 hr. Extra benzhydryl bromide (6 mg) was added. The mixture was heated at 50° C. for 16 hr. Acidified with 0.5M NaH2PO4, the contents were extracted with DCM (2×). The combined extracts were dried (Na2SO4). The crude was purified with HPLC (19.8 mg). LCMS (Method F): RT=4.71 min, m/z: 551.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.84 (s, 1H), 7.49-7.36 (m, 4H), 7.36-7.24 (m, 4H), 7.24-7.11 (m, 3H), 6.93 (d, J=12.9 Hz, 1H), 4.35 (s, 1H), 3.84 (s, 2H), 2.31-2.15 (m, 2H), 2.04-1.94 (m, 1H), 1.76-1.60 (m, 2H), 1.55-1.35 (m, 2H), 1.06 (s, 3H), 0.92-0.80 (m, 2H), 0.68-0.58 (m, 2H).
  • Example 575 Synthesis of 5-cyclopropyl-4-((1-(3,4-dichlorobenzyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01547
  • The compound was prepared in a similar manner to Example 73 starting from tert-butyl 4-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)methyl)-4-methylpiperidine-1-carboxylate (Example 73 step 1-2) and 3,4-dichlorobenzaldehyde. LCMS (Method F): RT=4.73 min, m/z: 543.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.67-7.58 (m, 2H), 7.35 (dd, J=8.3, 2.0 Hz, 1H), 7.20 (d, J=8.4 Hz, 1H), 6.87 (d, J=12.8 Hz, 1H), 3.83 (s, 2H), 3.72 (s, 2H), 3.15 (s, 3H), 2.78-2.62 (m, 2H), 2.07-1.95 (m, 1H), 1.76-1.64 (m, 2H), 1.57-1.43 (m, 2H), 1.09 (s, 3H), 0.94-0.83 (m, 2H), 0.68-0.55 (m, 2H).
  • Example 576 Synthesis of 5-cyclopropyl-2-fluoro-4-((1-((6-methoxypyridin-2-yl)methyl)-4-methylpiperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01548
  • The compound was prepared in a similar manner to Example 73 starting from tert-butyl 4-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)methyl)-4-methylpiperidine-1-carboxylate (Example 73 step 1-2) and 6-methoxypicolinaldehyde.
  • LCMS (Method F): RT==4.25 min, m/z: 506.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.77-7.69 (m, 1H), 7.22 (d, J=8.5 Hz, 1H), 7.06 (d, J=7.3 Hz, 1H), 6.80 (dd, J=26.4, 10.5 Hz, 2H), 4.02-3.89 (m, 2H), 3.86 (s, 3H), 3.85 (d, J=1.2 Hz, 2H), 3.05 (s, 3H), 3.01-2.75 (m, 4H), 2.06-1.97 (m, 1H), 1.87-1.74 (m, 2H), 1.58 (s, 2H), 1.12 (s, 3H), 0.91-0.83 (m, 2H), 0.63-0.56 (m, 2H).
  • Example 577 Synthesis of 5-cyclopropyl-4-((1-(4,5-dichloro-2-fluorobenzoyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01549
  • To a solution of tert-butyl 4-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)-phenoxy)methyl)-4-methylpiperidine-1-carboxylate (Example 73 steps 1-2, 56 mg) in dichloromethane (0.7 mL) at 0° C. was added trifluoroacetic acid (0.17 mL). The mixture was stirred at 0° C. for 10 min then at rt for 1 h. The contents were concentrated under vacuum. To the residue was added dichloromethane (2.3 mL), 4,5-dichloro-2-fluorobenzoic acid (28 mg), DIPEA (0.09 mL, cooled with ice-bath), and HBTU (30 mg). The mixture was stirred at rt for 1 hr. Acidified with 1:4 mixture of 0.5 M HCl and 0.5 M NaH2PO4, the contents were extracted with DCM (2×). The combined DCM solutions were dried (Na2SO4). After filtration and concentration, The crude was purified with HPLC (41 mg). LCMS (Method F): RT=6.50 min, m/z: 575.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.85 (s, 1H), 7.82 (d, J=8.9 Hz, 1H), 7.73 (d, J=6.4 Hz, 1H), 7.18 (d, J=8.3 Hz, 1H), 7.00-6.91 (m, 1H), 4.01-3.85 (m, 3H), 3.49-3.38 (m, 1H), 2.05-1.95 (m, 1H), 1.74-1.55 (m, 2H), 1.56-1.45 (m, 1H), 1.45-1.35 (m, 1H), 1.15 (s, 3H), 0.93-0.84 (m, 2H), 0.70-0.61 (m, 2H).
  • Example 578 Synthesis of 5-cyclopropyl-4-((1-(2,5-dichlorobenzoyl)-4-methylpiperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01550
  • The compound was prepared in a similar manner to Example 589 from tert-butyl 4-((2-cyclopropyl-5-fluoro-4-((methylsulfonyl)carbamoyl)phenoxy)methyl)-4-methylpiperidine-1-carboxylate and 2,5-dichlorobenzoic acid. LCMS (Method F): RT=6.256 min, m/z: 557.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.85 (s, 1H), 7.62-7.43 (m, 3H), 7.19 (t, J=8.0 Hz, 1H), 6.93 (dd, J=12.9, 6.2 Hz, 1H), 3.99 (s, 1H), 3.89 (d, J=4.9 Hz, 2H), 3.41 (d, J=13.9 Hz, 1H), 3.26-3.17 (m, 4H), 2.01 (d, J=4.9 Hz, 1H), 1.78-1.46 (m, 4H), 1.40 (d, J=13.6 Hz, 1H), 1.14 (d, J=9.5 Hz, 3H), 0.93-0.82 (m, 2H), 0.70-0.58 (m, 2H).
  • Example 579 Synthesis of 4-((1-(4-chloro-2-(trifluoromethyl)benzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01551
  • To a solution of 5-cyclopropyl-2-fluoro-N-methylsulfonyl-4-(4-piperidylmethoxy)benzamide hydrochloride (60 mg) in 1,2-dichloroethane (2.2 mL) at 0° C. was added DIPEA (0.075 mL), followed by 4-fluoro-2-(trifluoromethyl)benzaldehyde (39 mg) and sodium triacetoxyborohydride (91 mg). The mixture was stirred at rt for 20 hr. Diluted with 0.5 M NaH2PO4, the contents were extracted with DCM (3×). The combined org solutions were dried (Na2SO4). After filtration and concentration, the residue was purified with HPLC (55 mg). LCMS (Method G): RT=4.36 min, m/z: 563.14 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.74 (s, 1H), 7.81 (d, J=8.5 Hz, 1H), 7.78-7.72 (m, 2H), 7.15 (d, J=8.4 Hz, 1H), 6.92 (d, J=12.9 Hz, 1H), 3.95 (d, J=6.0 Hz, 2H), 3.62 (s, 2H), 3.27 (s, 3H), 2.83 (d, J=11.1 Hz, 2H), 2.16-1.97 (m, 3H), 1.90-1.74 (m, 3H), 1.46-1.31 (m, 2H), 0.92-0.85 (m, 2H), 0.69-0.62 (m, 2H).
  • Example 580 Synthesis of 4-((1-(2-chloro-5-(trifluoromethyl)benzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01552
  • The compound was prepared in a similar manner to Example 591 from 5-cyclopropyl-2-fluoro-N-methylsulfonyl-4-(4-piperidylmethoxy)benzamide hydrochloride and 2-chloro-5-(trifluoromethyl)benzaldehyde. LCMS (Method G): RT=4.25 min, m/z: 563.14 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.61 (s, 1H), 7.86 (d, J=2.0 Hz, 1H), 7.73-7.64 (m, 2H), 7.16 (d, J=8.4 Hz, 1H), 6.91 (d, J=12.9 Hz, 1H), 3.97 (d, J=6.0 Hz, 2H), 3.72 (s, 2H), 3.26 (s, 3H), 2.92 (d, J=11.2 Hz, 2H), 2.24 (t, J=11.6 Hz, 2H), 2.08-1.96 (m, 1H), 1.92-1.75 (m, 3H), 1.51-1.35 (m, 2H), 0.92-0.83 (m, 2H), 0.69-0.61 (m, 2H).
  • Example 581 Synthesis of 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01553
  • Step 1: Preparation of methyl 4-[[1-[[3-chloro-2-fluoro-5-(trifluoromethyl)phenyl]methyl]-4-piperidyl]methoxy]-5-cyclopropyl-2-fluoro-benzoate
  • To a solution of methyl 5-cyclopropyl-2-fluoro-4-(4-piperidylmethoxy)benzoate hydrochloride (A, 0.362 g, 1.00 mmol, ˜95% pure) in 1,2-dichloroethane (6.0 mL) at 0° C. was added DIPEA (2.0 equiv., 2.00 mmol, 100 mass %), followed by 3-chloro-2-fluoro-5-(trifluoromethyl)benzaldehyde (350 mg) and sodium triacetoxyborohydride (636 mg). The mixture was stirred at rt for 20 hr. Diluted with aqueous sodium bicarbonate solution, the contents were extracted with DCM (3×). The combined org solutions were dried (Na2SO4). After filtration and concentration, the crude was purified with flash chromatography (0-40% EtOAc/heptane) to afford the product (498 mg).
  • Step 2: Preparation of 4-[[1-[[3-chloro-2-fluoro-5-(trifluoromethyl)phenyl]methyl]-4-piperidyl]methoxy]-5-cyclopropyl-2-fluoro-benzoic acid
  • To a mixture of methyl 4-[[1-[[3-chloro-2-fluoro-5-(trifluoromethyl)phenyl]methyl]-4-piperidyl]methoxy]-5-cyclopropyl-2-fluoro-benzoate (A, 0.480 g, 0.927 mmol) and KOH (57 mg) in methanol (4.6 mL) was slowly added water (0.46 mL). The resulting mixture was stirred at 40° C. for 16 hr. Extra 0.1 eq of KOH was added. The mixture was heated at 60° C. for 20 hr. LCMS showed completion. The contents were concentrated under vacuum. Used as-is.
  • Step 3: Preparation of 4-[[1-[[3-chloro-2-fluoro-5-(trifluoromethyl)phenyl]methyl]-4-piperidyl]methoxy]-5-cyclopropyl-2-fluoro-N-methylsulfonyl-benzamide
  • A mixture of crude 4-[[1-[[3-chloro-2-fluoro-5-(trifluoromethyl)phenyl]methyl]-4-piperidyl]methoxy]-5-cyclopropyl-2-fluoro-benzoic acid potassium salt (60.0 mg) from the previous step, methanesulfonamide (41 mg), HBTU (62 mg) and DIPEA (0.037 mL) in 1,2-dichloroethane (1.6 mL) was stirred at 40° C. for 16 hr. LCMS showed completion. Acidified with 0.5M NaH2PO4, the contents were extracted with DCM (3×). The combined extracts were dried (Na2SO4). The crude was purified with HPLC (16.2 mg). LCMS (Method G): RT=5.71 min, m/z: 581.1 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.59 (s, 1H), 8.05-7.98 (m, 1H), 7.83-7.75 (m, 1H), 7.15 (d, J=8.3 Hz, 1H), 6.89 (d, J=12.9 Hz, 1H), 3.94 (d, J=5.9 Hz, 2H), 3.73 (s, 2H), 3.24 (s, 3H), 2.91 (d, J=11.2 Hz, 2H), 2.25-2.10 (m, 2H), 2.05-1.96 (m, 1H), 1.80 (d, J=11.9 Hz, 3H), 1.39 (d, J=11.9 Hz, 2H), 0.93-0.83 (m, 2H), 0.69-0.61 (m, 2H).
  • Example 582 Synthesis of 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-N-(cyclopropylsulfonyl)-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01554
  • The compound was prepared in a similar manner to Example 587 from 4-[[1-[[3-chloro-2-fluoro-5-(trifluoromethyl)phenyl]methyl]-4-piperidyl]methoxy]-5-cyclopropyl-2-fluoro-benzoic acid and cyclopropanesulfonamide. LCMS (Method F): RT=4.98 min, m/z: 607.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.69 (s, 1H), 8.03-7.97 (m, 1H), 7.80-7.74 (m, 1H), 7.16 (d, J=8.5 Hz, 1H), 6.83 (d, J=12.9 Hz, 1H), 3.92 (d, J=5.8 Hz, 2H), 3.70-3.63 (m, 2H), 3.04-2.93 (m, 1H), 2.86 (d, J=11.1 Hz, 2H), 2.14-2.05 (m, 3H), 2.04-1.96 (m, 1H), 1.78 (d, J=10.9 Hz, 3H), 1.44-1.31 (m, 2H), 1.04-0.91 (m, 3H), 0.90-0.83 (m, 2H), 0.65-0.58 (m, 2H).
  • Example 583 Synthesis of N-(azetidin-1-ylsulfonyl)-4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzamide
  • Figure US20210093618A1-20210401-C01555
  • The compound was prepared in a similar manner to Example 587 from 4-[[1-[[3-chloro-2-fluoro-5-(trifluoromethyl)phenyl]methyl]-4-piperidyl]methoxy]-5-cyclopropyl-2-fluoro-benzoic acid and azetidine-1-sulfonamide. LCMS (Method F): RT=5.04 min, m/z: 622.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.47 (s, 1H), 8.03-7.97 (m, 1H), 7.81-7.74 (m, 1H), 7.15 (d, J=8.3 Hz, 1H), 6.90 (d, J=12.8 Hz, 1H), 4.06-3.90 (m, 6H), 3.68 (s, 2H), 2.88 (d, J=11.1 Hz, 2H), 2.19-2.06 (m, 4H), 2.06-1.97 (m, 1H), 1.79 (d, J=11.4 Hz, 3H), 1.46-1.31 (m, 2H), 0.93-0.84 (m, 2H), 0.69-0.61 (m, 2H).
  • Example 584 Synthesis of 4-((1-(4-chloro-2-(trifluoromethyl)benzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01556
  • The compound was prepared in a similar manner to Example 585 from 5-cyclopropyl-2-fluoro-N-methylsulfonyl-4-(4-piperidylmethoxy)benzamide hydrochloride and 4-chloro-2-(trifluoromethyl)benzaldehyde. LCMS (Method G): RT=4.36 min, m/z: 563.14 [M+H]+.
  • 1H NMR (400 MHz, DMSO-d6) δ 11.74 (s, 1H), 7.81 (d, J=8.5 Hz, 1H), 7.78-7.72 (m, 2H), 7.15 (d, J=8.4 Hz, 1H), 6.92 (d, J=12.9 Hz, 1H), 3.95 (d, J=6.0 Hz, 2H), 3.62 (s, 2H), 3.27 (s, 3H), 2.83 (d, J=11.1 Hz, 2H), 2.16-1.97 (m, 3H), 1.90-1.74 (m, 3H), 1.46-1.31 (m, 2H), 0.92-0.85 (m, 2H), 0.69-0.62 (m, 2H).
  • Example 585 Synthesis of 4-((1-(4-bromo-2-(trifluoromethyl)benzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01557
  • The compound was prepared in a similar manner to Example 585 from 5-cyclopropyl-2-fluoro-N-methylsulfonyl-4-(4-piperidylmethoxy)benzamide hydrochloride and 4-bromo-2-(trifluoromethyl)benzaldehyde. LCMS (Method G): RT=4.44 min, m/z: 609.09 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.74 (s, 1H), 7.93-7.82 (m, 2H), 7.74 (d, J=8.4 Hz, 1H), 7.15 (d, J=8.4 Hz, 1H), 6.92 (d, J=13.0 Hz, 1H), 3.96 (d, J=6.1 Hz, 2H), 3.61 (s, 2H), 3.28 (s, 3H), 2.89-2.77 (m, 2H), 2.17-1.96 (m, 3H), 1.90-1.72 (m, 3H), 1.46-1.31 (m, 2H), 0.94-0.82 (m, 2H), 0.71-0.61 (m, 2H).
  • Example 586 Synthesis of 5-cyclopropyl-2-fluoro-4-((1-(4-fluoro-2-(trifluoromethyl)benzyl)piperidin-4-yl)methoxy)-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01558
  • The compound was prepared in a similar manner to Example 585 from 5-cyclopropyl-2-fluoro-N-methylsulfonyl-4-(4-piperidylmethoxy)benzamide hydrochloride and 4-fluoro-2-(trifluoromethyl)benzaldehyde. LCMS (Method G): RT=4.18 min, m/z: 547.17 [M+H]+.
  • 1H NMR (400 MHz, DMSO-d6) δ 11.71 (s, 1H), 7.82 (dd, J=8.6, 5.8 Hz, 1H), 7.61-7.49 (m, 2H), 7.15 (d, J=8.3 Hz-, 1H), 6.92 (d, J=13.0 Hz, 1H), 3.95 (d, J=6.2 Hz, 2H), 3.62 (s, 2H), 2.84 (d, J=11.1 Hz, 2H), 2.17-1.96 (m, 3H), 1.90-1.73 (m, 3H), 1.46-1.31 (m, 2H), 0.93-0.84 (m, 2H), 0.69-0.62 (m, 2H).
  • Example 587 Synthesis of 4-((1-(4-bromo-3-chlorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01559
  • The compound was prepared in a similar manner to Example 585 from 5-cyclopropyl-2-fluoro-N-methylsulfonyl-4-(4-piperidylmethoxy)benzamide hydrochloride and 4-bromo-2-chlorobenzaldehyde. LCMS (Method G): RT=4.13 min, m/z: 575.06 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.76 (d, J=8.2 Hz, 1H), 7.61 (d, J=2.0 Hz, 1H), 7.27 (dd, J=8.2, 2.0 Hz, 1H), 7.17 (d, J=8.4 Hz, 1H), 6.86 (d, J=12.9 Hz, 1H), 3.94 (d, J=5.9 Hz, 2H), 3.67 (s, 2H), 3.16 (s, 3H), 2.97 (d, J=11.2 Hz, 2H), 2.25 (s, 2H), 2.06-1.96 (m, 1H), 1.83 (d, J=12.8 Hz, 3H), 1.42 (d, J=12.2 Hz, 2H), 0.92-0.83 (m, 2H), 0.67-0.58 (m, 2H).
  • Example 588 Synthesis of 4-((1-(4-bromo-2,5-difluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01560
  • The compound was prepared in a similar manner to Example 585 from 5-cyclopropyl-2-fluoro-N-methylsulfonyl-4-(4-piperidylmethoxy)benzamide hydrochloride and 4-bromo-2,5-difluorobenzaldehyde. LCMS (Method G): RT=4.19 min, m/z: 577.08 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.46 (s, 1H), 7.71 (dd, J=8.9, 5.7 Hz, 1H), 7.44 (dd, J=9.1, 6.2 Hz, 1H), 7.15 (d, J=8.3 Hz, 1H), 6.89 (d, J=12.9 Hz, 1H), 3.94 (d, J=5.9 Hz, 2H), 3.62 (s, 2H), 3.23 (s, 3H), 2.93 (d, J=11.2 Hz, 2H), 2.19 (t, J=11.5 Hz, 2H), 2.05-1.96 (m, 1H), 1.80 (d, J=12.4 Hz, 3H), 1.48-1.32 (m, 2H), 0.92-0.83 (m, 2H), 0.68-0.60 (m, 2H).
  • Example 589 Synthesis of 4-((1-(4-bromo-2-fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01561
  • The compound was prepared in a similar manner to Example 585 from 5-cyclopropyl-2-fluoro-N-methylsulfonyl-4-(4-piperidylmethoxy)benzamide hydrochloride and 4-bromo-2,5-difluorobenzaldehyde. LCMS (Method G): RT=4.18 min, m/z: 559.09 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.54 (dd, J=9.7, 1.8 Hz, 1H), 7.47-7.37 (m, 2H), 7.16 (d, J=8.5 Hz, 1H), 6.87 (d, J=12.9 Hz, 1H), 3.93 (d, J=5.9 Hz, 2H), 3.67 (s, 2H), 3.19 (s, 3H), 2.96 (d, J=11.2 Hz, 2H), 2.24 (s, 2H), 2.05-1.96 (m, 1H), 1.81 (d, J=11.8 Hz, 3H), 1.47-1.32 (m, 2H), 0.92-0.83 (m, 2H), 0.67-0.59 (m, 2H).
  • Example 590 Synthesis of 4-((1-(3-chloro-5-cyanobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01562
  • The compound was prepared in a similar manner to Example 585 from 5-cyclopropyl-2-fluoro-N-methylsulfonyl-4-(4-piperidylmethoxy)benzamide hydrochloride and 3-chloro-5-formylbenzonitrile. LCMS (Method G): RT=3.96 min, m/z: 520.15 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.42 (s, 1H), 7.96 (t, J=1.8 Hz, 1H), 7.81-7.74 (m, 2H), 7.16 (d, J=8.4 Hz, 1H), 6.89 (d, J=12.9 Hz, 1H), 3.95 (d, J=5.9 Hz, 2H), 3.68 (s, 2H), 3.22 (s, 3H), 2.92 (d, J=11.2 Hz, 2H), 2.19 (t, J=11.6 Hz, 2H), 2.06-1.95 (m, 1H), 1.91-1.74 (m, 3H), 1.50-1.32 (m, 2H), 0.94-0.82 (m, 2H), 0.69-0.60 (m, 2H).
  • Example 591 Synthesis of 4-((1-(3-cyano-4-fluorobenzyl)piperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01563
  • The compound was prepared in a similar manner to Example 585 from 5-cyclopropyl-2-fluoro-N-methylsulfonyl-4-(4-piperidylmethoxy)benzamide hydrochloride and 2-fluoro-5-formylbenzonitrile. LCMS (Method G): RT=3.85 min, m/z: 504.17 [M+H]+.
  • 1H NMR (400 MHz, DMSO-d6) δ 7.87 (dd, J=6.3, 2.2 Hz, 1H), 7.80-7.72 (m, 1H), 7.57-7.48 (m, 1H), 7.16 (d, J=8.4 Hz, 1H), 6.88 (d, J=12.9 Hz, 1H), 3.94 (d, J=6.0 Hz, 2H), 3.70 (s, 2H), 3.19 (s, 3H), 2.96 (d, J=11.3 Hz, 2H), 2.24 (t, J=11.6 Hz, 2H), 2.05-1.96 (m, 1H), 1.92-1.76 (m, 3H), 1.49-1.33 (m, 2H), 0.92-0.83 (m, 2H), 0.68-0.60 (m, 2H).
  • Example 592 Synthesis of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(6-(trifluoromethyl)pyridin-2-yl)piperidin-4-yl)methoxy)benzamide
  • Figure US20210093618A1-20210401-C01564
  • Step 1: Preparation of 5-chloro-2-fluoro-N-methylsulfonyl-4-[[1-[6-(trifluoromethyl)-2-pyridyl]-4-piperidyl]methoxy]benzamide
  • To solution of (1-[6-(trifluoromethyl)pyridin-2-yl]piperidin-4-yl)methanol (169 mg) and 5-chloro-2,4-difluoro-N-methylsulfonyl-benzamide (175 mg) in DMSO (2.5 mL) at 14° C. (bath) was added potassium tert-butoxide (175 mg). The mixture was stirred at rt for 1 hr. Diluted with EtOAc, the contents were washed with 1/4 mixture of 0.5M HCl and 0.5M NaH2PO4 (2×) and brine (1×), dried (Na2SO4). After filtration and concentration, the crude was purified with flash chromatography (0-2% MeOH/DCM with 0.5% HCO2H) to give the product (205 mg).
  • Step 2: Preparation of 5-cyclopropyl-2-fluoro-N-(methylsulfonyl)-4-((1-(6-(trifluoromethyl)pyridin-2-yl)piperidin-4-yl)methoxy)benzamide
  • A mixture of 5-chloro-2-fluoro-N-methylsulfonyl-4-[[1-[6-(trifluoromethyl)-2-pyridyl]-4-piperidyl]methoxy]benzamide (205 mg), cyclopropylboronic acid (109 mg), and potassium phosphate (523 mg) in water (0.4 mL) and toluene (8.0 mL) was purged with nitrogen for 10 min. Tricyclohexylphosphoniumtetrafluoroborate (46 mg) and palladium acetate (14 mg) were added. The resulting mixture was stirred under nitrogen at 95° C. for 40 hr. Acidified with 1/4 mixture of 0.5 M HCl and 0.5 M NaH2PO4, the contents were extracted with DCM (2×). The combined DCM solutions were dried (Na2SO4). After filtration and concentration, the crude was purified with HPLC (37.5 mg). LCMS (Method G): RT=7.99 min, m/z: 516.2 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.84 (s, 1H), 7.76-7.67 (m, 1H), 7.15 (dd, J=9.8, 8.6 Hz, 2H), 6.98 (d, J=7.2 Hz, 1H), 6.90 (d, J=12.9 Hz, 1H), 4.38 (d, J=13.2 Hz, 2H), 3.98 (d, J=6.2 Hz, 2H), 3.23 (s, 3H), 2.94 (td, J=12.7, 2.6 Hz, 2H), 2.12 (s, 1H), 2.04-1.94 (m, 1H), 1.92-1.81 (m, 2H), 1.43-1.28 (m, 2H), 0.88-0.80 (m, 2H), 0.68-0.59 (m, 2H).
  • Example 593 Synthesis of 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01565
  • Steps 1-2: Preparation of tert-butyl 3-[[2-cyclopropyl-5-fluoro-4-(methylsulfonylcarbamoyl)phenoxy]methyl]-3-methyl-azetidine-1-carboxylate
  • The compound was prepared in a similar manner to Example 598 starting 5-chloro-2,4-difluoro-N-methylsulfonyl-benzamide and tert-butyl 3-(hydroxymethyl)-3-methylazetidine-1-carboxylate
  • Step 3: Preparation of 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-3-methylazetidin-3-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • The compound was prepared in a similar manner to Example 73 starting from tert-butyl 3-[[2-cyclopropyl-5-fluoro-4-(methylsulfonylcarbamoyl)phenoxy]methyl]-3-methyl-azetidine-1-carboxylate and 3-chloro-2-fluoro-5-(trifluoromethyl)benzaldehyde. LCMS (Method G): RT=5.66 min, m/z: 567.1 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 11.68 (s, 1H), 8.01 (dd, J=6.5, 2.2 Hz, 1H), 7.74 (dd, J=5.9, 2.3 Hz, 1H), 7.20 (d, J=8.5 Hz, 1H), 6.94 (d, J=12.8 Hz, 1H), 4.06 (s, 2H), 3.84 (s, 2H), 3.39 (d, J=7.3 Hz, 2H), 3.23 (s, 3H), 3.14 (d, J=7.3 Hz, 2H), 2.09-1.98 (m, 1H), 1.36 (s, 3H), 0.92-0.82 (m, 2H), 0.70-0.61 (m, 2H).
  • Example 594 Synthesis of 5-Cyclopropyl-4-((1-(3,5-dichloro-2-cyanobenzyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01566
  • Step 1: Preparation of 1-(bromomethyl)-3,5-dichloro-2-iodobenzene
  • Figure US20210093618A1-20210401-C01567
  • 2,2′-azobis(2-methylpropionitrile) (149 mg, 0.91 mmol) was added to a solution of 1,5-dichloro-2-iodo-3-methylbenzene (2.6 g, 9.1 mmol) and N-bromosuccinimide (1.8 g, 10.0 mmol) in acetonitrile (70 mL), the reaction mixture was stirred at 80° C. for 16 h, diluted with water (50 mL) and extracted with ethyl acetate (100 mL×3), the combined organic layers were washed with brine (50 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel column chromatography (eluting with petroleum ether) to afford the target compound (1.26 g, yield: 38%) as a white solid. 1H NMR (500 MHz, CDCl3): δ 7.44-7.43 (m, 1H), 7.41-7.40 (m, 1H), 4.61 (s, 2H).
  • Step 2: Preparation of methyl 5-cyclopropyl-4-((1-(3,5-dichloro-2-iodobenzyl)piperidin-4-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01568
  • A mixture of 1-(bromomethyl)-3,5-dichloro-2-iodobenzene (200 mg, 0.55 mmol), methyl 5-cyclopropyl-2-fluoro-4-(piperidin-4-ylmethoxy)benzoate hydrochloride (188.7 mg, 0.55 mmo), sodium iodide (245.9 mg, 1.65 mmol) and potassium carbonate (227.7 mg, 1.65 mmol) in acetonitrile (40 mL) was stirred at 80° C. for 16 h. The reaction mixture was diluted with ethyl acetate (100 mL) and brine (50 mL), and the organic layer was separated, washed with brine (20 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (eluting with 20% ethyl acetate in petroleum ether) to give the target compound (240 mg, 74%) as a pale yellow oil. LCMS (ESI) m/z: 592.0 [M+H]+.
  • Step 3: Preparation of methyl 5-cyclopropyl-4-((1-(3,5-dichloro-2-cyanobenzyl)piperidin-4-yl)methoxy)-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01569
  • A mixture of methyl 5-cyclopropyl-4-((1-(3,5-dichloro-2-iodobenzyl)piperidin-4-yl)methoxy)-2-fluorobenzoate (150 mg, 0.25 mmol) and copper cyamide (45.0 mg, 0.50 mmo) in N-methylpyrolidone (5.0 mL) was stirred under microwave at 150° C. for 1.0 h. The reaction mixture was diluted with ethyl acetate (300 mL), filtered, the filtrate was washed with water (50 mL) and brine (50 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (eluting with 20% ethyl acetate in petroleum ether) to give the target compound (35.0 mg, 14%) as a pale yellow oil. LCMS (ESI) m/z: 491.1 [M+H]+.
  • Step 4: Preparation of 5-cyclopropyl-4-((1-(3,5-dichloro-2-cyanobenzyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01570
  • A mixture of methyl 5-cyclopropyl-4-((1-(3,5-dichloro-2-cyanobenzyl)piperidin-4-yl)methoxy)-2-fluorobenzoate (35 mg, 0.07 mmol) and lithium hydroxide (42 mg, 1.75 mmol) in THF (5 mL) and water (5 mL) was stirred at room temperature for 16 h. The mixture was adjusted to pH 2-3 with HCl (2M), extracted with ethyl acetate (10×2 mL), the combined organic layers were washed with brine (10 mL), dried over anhydrous sodium sulfate, filtered and concentrated to give the crude product as a pale yellow solid. The solid was used in next step without further purification. LCMS (ESI) m/z: 477.1 [M+H]+.
  • Step 5: Preparation of 5-Cyclopropyl-4-((1-(3,5-dichloro-2-cyanobenzyl)piperidin-4-yl)methoxy)-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01571
  • A mixture of 5-cyclopropyl-4-((1-(3,5-dichloro-2-cyanobenzyl)piperidin-4-yl)methoxy)-2-fluorobenzoic acid (30 mg, 0.07 mmol), methanesulfonamide (11 mg, 0.11 mmol), 1-ethyl-(3-dimethylaminopropyl)carbodiimide hydrochloride (27 mg, 0.14 mmol) and N,N-dimethyl-4-aminopyridine (17 mg, 0.14 mmol) in DCM (4 mL) was stirred at room temperature for 16 h. The reaction mixture was diluted with DCM (30 mL), washed with HCl (2.0 M, 5 mL), water (5 mL) and brine (10 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by reverse phase Combiflash (30-40% MeCN in 0.1% NH4HCO3) to give the target product (23 mg, 38%) as a white solid. LCMS (ESI) Method A: RT=5.68 min, m/z: 554.1 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 7.91 (d, J=4.0 Hz, 1H), 7.65 (d, J=4.0 Hz, 1H), 7.15 (d, J=8.4 Hz, 1H), 6.90 (d, J=16.0 Hz, 1H), 3.95 (d, J=4.0 Hz, 2H), 3.67 (s, 2H), 3.23 (s, 3H), 2.87-2.84 (m, 2H), 2.18-2.12 (m, 2H), 1.99-2.02 (m, 1H), 1.80-1.77 (m, 3H), 1.39-1.36 (m, 2H), 0.90-0.87 (m, 2H), 0.67-0.64 (m, 2H).
  • Example 595 Synthesis of 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-cyanopiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01572
    Figure US20210093618A1-20210401-C01573
  • Step 1: Preparation of 1-(tert-butyl) 4-ethyl 4-cyanopiperidine-1,4-dicarboxylate
  • Figure US20210093618A1-20210401-C01574
  • Lithium hexamethyldisilazide (1 M, 20 mL, 20 mmol) was added dropwise to a solution of tert-butyl 4-cyanopiperidine-1-carboxylate (2.1 g, 10 mmol) in anhydrous THF (30 mL) at −78° C. The resulting mixture was stirred at this temperature for 1 h, then ethyl carbonochloridate (2.2 g, 20 mmol) was added at −78° C. and stirred at this temperature for 1 h. The reaction was quenched with sodium bicarbonate aqueous solution (1 M, 30 mL) and extracted with ethyl acetate (100 mL×3), the combined organic layers were washed with brine (20 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The crude product was purified by silica column chromatography (eluting with 10-25% ethyl acetate in petroleum ether) to give product as colorless oil (2.8 g, 99%). LCMS (ESI) m/z: 183.1 [M−99]+.
  • Step 2: Preparation of tert-butyl 4-cyano-4-(hydroxymethyl)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01575
  • Sodium borohydride (1.5 g, 40 mmol) was added to a solution of 1-tert-butyl 4-ethyl 4-cyanopiperidine-1,4-dicarboxylate (2.8 g, 10 mmol) in MeOH (30 mL) at 0° C., the reaction mixture was stirred at room temperature for 1 h. The solvent was removed under reduced pressure and the crude was diluted with water (30 ml), extracted with ethyl acetate (50 mL×3), washed with brine (20 mL), dried over anhydrous sodium sulfate, filtered and concentrated to get crude product (2.4 g, 99%). The crude was used directly in the next step without further purification.
  • Step 3: Preparation of tert-butyl 4-cyano-4-(tosyloxymethyl)piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01576
  • Sodium hydride (2.0 g, 50 mmol) was added to an ice-cooled solution of tert-butyl 4-cyano-4-(hydroxymethyl)piperidine-1-carboxylate (2.4 g, 10 mmol) in anhydrous THF (20 mL) and stirred for 1 h, then a solution of tosyl chloride (3.8 g, 20 mmol) in THF (10 mL) was added and the mixture was stirred at room temperature for 16 h. The mixture was quenched with water (40 mL), extracted with ethyl acetate (50 mL×3), washed with brine (40 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The crude product was purified by silica column chromatography (eluting with 25% ethyl acetate in petroleum ether) to give product as white solid (2.0 g, 50%). LCMS (ESI) m/z: 295.1 [M−99]+.
  • Step 4: Preparation of tert-butyl 4-cyano-4-((2-cyclopropyl-5-fluoro-4-(methoxycarbonyl)-phenoxy)methyl) piperidine-1-carboxylate
  • Figure US20210093618A1-20210401-C01577
  • A mixture of tert-butyl 4-cyano-4-(tosyloxymethyl)piperidine-1-carboxylate (1.0 g, 2.5 mmol), methyl 5-cyclopropyl-2-fluoro-4-hydroxybenzoate (525 mg, 2.5 mmol) and potassium carbonate (1.1 g, 7.5 mmol) in DMF (10 mL) in a sealed tube was stirred at 120° C. for 4 h. The reaction mixture was diluted with water (40 mL), extracted with ethyl acetate (50 mL×3), washed with brine (20 mL), dried over anhydrous sodium sulfate, filtered and concentrated to get crude product (1.0 g, 93%). The crude was used directly in the next step without further purification. LCMS (ESI) m/z: 433.1 [M+1]+.
  • Step 5: Preparation of methyl 4-((4-cyanopiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate hydrochloride
  • Figure US20210093618A1-20210401-C01578
  • Hydrochloride in 1,4-dioxane (4 M, 20 mL) was added to a solution of tert-butyl 4-cyano-4-((2-cyclopropyl-5-fluoro-4-(methoxycarbonyl)phenoxy)methyl)piperidine-1-carboxylate (1.0 g, 2.3 mmol) in 1,4-dioxane, the reaction mixture was stirred at room temperature for 1 h. The solution was concentrated to give a brown solid, which was recrystallized in ethyl acetate (4 mL) to give the target compound as a gray solid (0.6 g, 74%). LCMS (ESI) m/z: 333.1 [M−HCl+1]+.
  • Step 6: Preparation of (3-chloro-2-fluoro-5-(trifluoromethyl)phenyl)methanol
  • Figure US20210093618A1-20210401-C01579
  • Borane-tetrahydrofuran complex (1M, 20 mL, 20 mmol) was mixed with 3-chloro-2-fluoro-5-(trifluoromethyl)benzoic acid (480 mg, 2 mmol) at 0° C., the reaction mixture was stirred at room temperature for 1 h, quenched with MeOH (20 mL). The solvents were removed under reduced pressure to give crude product (400 mg, 87%) which was used directly in the next step without further purification. LCMS (ESI) m/z: 227.1 [M−1].
  • Step 7: Preparation of 3-chloro-2-fluoro-5-(trifluoromethyl)benzyl methanesulfonate
  • Figure US20210093618A1-20210401-C01580
  • Methanesulfonyl chloride (60 mg, 0.52 mmol) was added dropwise to a mixture of (3-chloro-2-fluoro-5-(trifluoromethyl)phenyl)methanol (100 mg, 0.44 mmol) and triethylamine (90 mg, 0.88 mmol) in DCM (10 mL) at 0° C. The reaction mixture was stirred at room temperature for 16 h, diluted with DCM (20 mL), washed with water (10 mL×2), dried over anhydrous sodium sulfate, filtered and concentrated to get crude product (130 mg, 96%). The crude was used directly in the next step without further purification. LCMS (ESI) m/z: 307.1 [M+1]+.
  • Step 8: Preparation of methyl 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-cyanopiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate
  • Figure US20210093618A1-20210401-C01581
  • A mixture of 3-chloro-2-fluoro-5-(trifluoromethyl)benzyl methanesulfonate (100 mg, 0.33 mmol), methyl 4-((4-cyanopiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate hydrochloride (122 mg, 0.33 mmol) and potassium carbonate (137 mg, 0.99 mmol) in acetonitrile (10 mL) was stirred at 80° C. for 16 h. The reaction mixture was diluted with ethyl acetate (100 mL) and brine (50 mL), washed with brine (50 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by silica gel chromatography (eluting with 20% ethyl acetate in petroleum ether) to give the target compound (80 mg, 45%) as a pale yellow oil. LCMS (ESI) m/z: 543.0 [M+H]+.
  • Step 9: Preparation of 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-cyanopiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid
  • Figure US20210093618A1-20210401-C01582
  • A mixture of methyl 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-cyanopiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoate (80 mg, 0.15 mmol) and lithium hydroxide (36 mg, 1.5 mmol) in THF (3 mL) and water (3 mL) was stirred at 50° C. for 3 h. The reaction mixture was adjusted pH 2-3 with HCl (2M), extracted with ethyl acetate (10×2 mL), washed with brine (10 mL), dried over anhydrous sodium sulfate, filtered and concentrated to give the product (77 mg, 99%) as a pale yellow solid. LCMS (ESI) m/z: 529.1 [M+H]+.
  • Step 10: Preparation of 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-cyanopiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluoro-N-(methylsulfonyl)benzamide
  • Figure US20210093618A1-20210401-C01583
  • A mixture of 4-((1-(3-chloro-2-fluoro-5-(trifluoromethyl)benzyl)-4-cyanopiperidin-4-yl)methoxy)-5-cyclopropyl-2-fluorobenzoic acid (77 mg, 0.16 mmol), methanesulfonamide (23 mg, 0.24 mmol), 1-ethyl-(3-dimethylaminopropyl)carbodiimide hydrochloride (61 mg, 0.32 mmol) and N,N-dimethyl-4-aminopyridine (39 mg, 0.32 mmol) in DCM (4 mL) was stirred at room temperature for 16 h. The reaction mixture was diluted with DCM (100 mL), washed with HCl (2.0 M, 20 mL) and brine (50 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by reverse phase combiflash (40-50% MeCN in 0.1% NH4HCO3) to give the target product (40 mg, 41%) as white solid. LCMS (ESI) Method A: RT=5.91 min, m/z: 606.0 [M+H]+. 1H NMR (400 MHz, DMSO-d6) δ 8.03 (d, J=5.2 Hz, 1H), 7.8 (d, J=3.2 Hz, 1H), 7.21 (d, J=7.6 Hz, 1H), 6.92-6.87 (m, 1H), 4.21 (s, 2H), 3.72 (s, 2H), 3.14 (s, 3H), 2.91-2.88 (m, 2H), 2.33-2.76 (m, 2H), 2.06-2.03 (m, 3H), 1.77-1.71 (m, 2H), 0.90-0.87 (m, 2H), 0.65-0.62 (m, 2H).
  • Examples 596-598
  • Using procedures similar to those described herein the following compounds of formula (I) were also prepared.
  • Figure US20210093618A1-20210401-C01584
  • Example 596: M+H 588.23; Example 597: M+H 568.22; and Example 598: M+H 568.22
  • Example 599 Electrophysiological Assay (EP) (In Vitro Assay)
  • Patch voltage clamp electrophysiology allows for the direct measurement and quantification of block of voltage-gated sodium channels (NaV's), and allows the determination of the time- and voltage-dependence of block which has been interpreted as differential binding to the resting, open, and inactivated states of the sodium channel (Hille, B., Journal of General Physiology (1977), 69: 497-515).
  • The following patch voltage clamp electrophysiology studies were performed on representative compounds of the invention using human embryonic kidney cells (HEK), permanently transfected with an expression vector containing the full-length cDNA coding for the desired human sodium channel α-subunit, grown in culture media containing 10% FBS, 1% PSG, and 0.5 mg/mL G418 at 37° C. with 5% CO2. HEK cells used for the electrophysiology (EP) recordings had a passage number of less than 40 for all studies and were used within three days from the time of plating. NaV1.7 and NaV1.5 cDNAs (NM_002977 and AC137587; SCN5A, respectively) were stably expressed in HEK-293 cells. The β1 subunit was coexpressed in both the NaV1.7 and NaV1.5 cell lines.
  • Sodium currents were measured using the patch clamp technique in the whole-cell configuration using either a PatchXpress automated voltage clamp or manually using an Axopatch 200B (Axon Instruments) or Model 2400 (A-M systems) amplifier. The manual voltage clamp protocol was as follows: Borosilicate glass micropipettes were fire-polished to a tip diameter yielding a resistance of 2-4 Mohms in the working solutions. The pipette was filled with a solution comprised of: 5 mMNaCl, 10 mMCsCl, 120 mMCsF, 0.1 mM CaCl2, 2 mM MgCl2, 10 mM HEPES, 10 mM EGTA; and adjusted to pH 7.2 with CsOH. The external solution had the following composition: 140 mMNaCl, 5 mMKCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM HEPES; and adjusted to pH 7.4 with NaOH. In some studies, the external sodium was reduced by equimolar replacement with choline. Osmolarity in the CsF internal and NaCl external solutions was adjusted to 300 mOsm/kg and 310 mOsm/kg with glucose, respectively. All recordings were performed at ambient temperature in a bath chamber with a volume of 150 μL. Control sodium currents were measured in 0.5% DMSO. Controls and representative compounds of the invention were applied to the recording chamber through a 4-pinch or 8-pinch valve bath perfusion system manufactured by ALA Scientific Instruments.
  • Currents were recorded at 40 kHz sampling frequency, filtered at 5 Hz. and stored using a Digidata-1322A analogue/digital interface with the pClamp software (Axon Instruments). Series resistance compensation was applied (60-80%). Cells were rejected if currents showed inadequate voltage control (as judged by the IV relationship during stepwise activation). All statistics in this study are given as mean±SD.
  • The membrane potential was maintained at a voltage where inactivation of the channel is complete (which was −60 mV for both NaV1.7 and NaV1.5). The voltage is then stepped back to a very negative (Vhold=150 mV) voltage for 20 ms and then a test pulse is applied to quantify the compound block. The 20 ms brief repolarization was long enough for compound-free channels to completely recover from fast inactivation, but the compound-bound channels recovered more slowly such that negligible recovery could occur during this interval. The percent decrease in sodium current following wash-on of compound was taken as the percent block of sodium channels. Data for representative compounds of formula (I) is provided in Table 1.
  • Example 600 Tritiated Sulfonamide Binding to Membranes Isolated from Cells that Heterologously Express hNav1.7 and the β1 Subunit
  • Preparation of membranes containing recombinantly expressed sodium channels: Frozen recombinant cell pellets were thawed on ice and diluted to 4 times the cell pellet weight with ice cold 50 mMTrisHCl, pH 7.4 buffer. The cell suspensions were homogenized on ice using a motorized glass douncehomogeniser. Homogenates were further diluted 8.4 times with ice cold 50 mMTrisHCl, pH 7.4 buffer and then centrifuged at 200×g at 4° C. for 15 min. The supernatants were collected and centrifuged at 10000×g at 4° C. for 50 min. The pellets were then re-suspended in 100 mMNaCl, 20 mMTrisHCl, pH 7.4 buffer containing 1% v/v protease inhibitors (Calbiochem) and re-homogenized on ice. The homogenized membranes were then processed through a syringe equipped with a 26 gauge needle. Protein concentrations were determined by Bradford Assay and the membranes were stored at −80° C.
  • Radioligand Binding Studies:
  • Saturation experiments. A representative compound of formula (I) having a methyl group was tritiated. Three tritiums were incorporated in place of methyl hydrogens to generate [3H]compound. Binding of this radioligand was preformed in 5 mL borosilicate glass test tubes at room temperature. Binding was initiated by adding membranes to increasing concentrations of [3H]compound in 100 mMNaCl, 20 mMTrisHCl, pH 7.4 buffer containing 0.01% w/v bovine serum albumin (BSA) for 18h. Non-specific binding was determined in the presence of 1 μM unlabelled compound. After 18 h, the reactants were filtered through GF/C glass fiber filters presoaked in 0.5% w/v polyethylene imine. Filters were washed with 15 mL ice cold 100 mMNaCl, 20 mMTrisHCl, pH7.4 buffer containing 0.25% BSA to separate bound from free ligand. [3H]compound bound to filters was quantified by liquid scintillation counting.
  • Competitive Binding Experiments:
  • Binding reactions were preformed in 96-well polypropylene plates at room temperature for 18 h. In 360 μL, membranes were incubated with 100 μM [3H]compound and increasing concentrations of Test Compound. Non-specific binding was defined in the presence of 1 μM unlabelled compound. Reactions were transferred and filtered through 96-well glass fiber/C filter plates presoaked with 0.5% polyethylene imine. The filtered reactions were washed 5 times with 200 μL ice cold buffer containing 0.25% BSA. Bound radioactivity was determined by liquid scintillation counting.
  • Data Analysis:
  • For saturation experiments, non-specific binding was subtracted from total binding to provide specific binding and these values were recalculated in terms of pmol ligand bound per mg protein. Saturation curves were constructed and dissociation constants were calculated using the single site ligand binding model: Beq=(Bmax*X)/(X+Kd), where Beq is the amount of ligand bound at equilibrium, Bmax is the maximum receptor density, Kd is the dissociation constant for the ligand, and X is the free ligand concentration. For competition studies percent inhibition was determined and IC50 values were calculated using a 4 parameter logistic model (% inhibition=(A+((B−A)/(1+((x/C){circumflex over ( )}D)))) using XLfit, where A and B are the maximal and minimum inhibition respectively, C is the IC50 concentration and D is the (Hill) slope.
  • Representative compounds, when tested in this model, demonstrated affinities as set forth in Table 1.
  • TABLE 1
    Ligand
    Binding NaV1.7 NaV1.5
    Assay EP EP
    Example Structure (μM) (μM) (μM)
    1
    Figure US20210093618A1-20210401-C01585
    0.0356 0.0226 2.7559
    2
    Figure US20210093618A1-20210401-C01586
    4.1167 1.0769
    3
    Figure US20210093618A1-20210401-C01587
    0.0026
    4
    Figure US20210093618A1-20210401-C01588
    6.5995
    5
    Figure US20210093618A1-20210401-C01589
    0.0071
    6
    Figure US20210093618A1-20210401-C01590
    0.0030 0.0009 0.0331
    7
    Figure US20210093618A1-20210401-C01591
    0.0035
    8
    Figure US20210093618A1-20210401-C01592
    0.0081
    9
    Figure US20210093618A1-20210401-C01593
    0.0035
    10
    Figure US20210093618A1-20210401-C01594
    0.0041
    11
    Figure US20210093618A1-20210401-C01595
    0.0474
    12
    Figure US20210093618A1-20210401-C01596
    0.0113
    13
    Figure US20210093618A1-20210401-C01597
    1.4894
    14
    Figure US20210093618A1-20210401-C01598
    0.3181
    15
    Figure US20210093618A1-20210401-C01599
    0.0048
    16
    Figure US20210093618A1-20210401-C01600
    0.0034
    17
    Figure US20210093618A1-20210401-C01601
    0.0048
    18
    Figure US20210093618A1-20210401-C01602
    0.0026
    19
    Figure US20210093618A1-20210401-C01603
    0.0049
    20
    Figure US20210093618A1-20210401-C01604
    0.0309
    21
    Figure US20210093618A1-20210401-C01605
    0.0112
    22
    Figure US20210093618A1-20210401-C01606
    0.0182
    23
    Figure US20210093618A1-20210401-C01607
    0.0017
    24
    Figure US20210093618A1-20210401-C01608
    0.0060
    25
    Figure US20210093618A1-20210401-C01609
    0.0032
    26
    Figure US20210093618A1-20210401-C01610
    0.0061
    27
    Figure US20210093618A1-20210401-C01611
    0.0036 0.1689
    28
    Figure US20210093618A1-20210401-C01612
    0.0074
    29
    Figure US20210093618A1-20210401-C01613
    0.0017
    30
    Figure US20210093618A1-20210401-C01614
    0.0027
    31
    Figure US20210093618A1-20210401-C01615
    0.0026
    32
    Figure US20210093618A1-20210401-C01616
    0.0054
    33
    Figure US20210093618A1-20210401-C01617
    0.0132
    34
    Figure US20210093618A1-20210401-C01618
    0.0019
    35
    Figure US20210093618A1-20210401-C01619
    0.0024
    36
    Figure US20210093618A1-20210401-C01620
    0.0036
    37
    Figure US20210093618A1-20210401-C01621
    0.0151
    38
    Figure US20210093618A1-20210401-C01622
    0.0039
    39
    Figure US20210093618A1-20210401-C01623
    0.0068
    40
    Figure US20210093618A1-20210401-C01624
    0.0084
    41
    Figure US20210093618A1-20210401-C01625
    0.0134
    42
    Figure US20210093618A1-20210401-C01626
    0.0021
    43
    Figure US20210093618A1-20210401-C01627
    0.0049
    44
    Figure US20210093618A1-20210401-C01628
    0.0036
    45
    Figure US20210093618A1-20210401-C01629
    4.5841
    46
    Figure US20210093618A1-20210401-C01630
    0.9205
    47
    Figure US20210093618A1-20210401-C01631
    0.0251
    48
    Figure US20210093618A1-20210401-C01632
    2.8179
    49
    Figure US20210093618A1-20210401-C01633
    0.0043 0.0054 0.199
    50
    Figure US20210093618A1-20210401-C01634
    0.0019
    51
    Figure US20210093618A1-20210401-C01635
    0.0021
    52
    Figure US20210093618A1-20210401-C01636
    <0.0016
    53
    Figure US20210093618A1-20210401-C01637
    0.0080
    54
    Figure US20210093618A1-20210401-C01638
    0.0220
    55
    Figure US20210093618A1-20210401-C01639
    0.0233
    56
    Figure US20210093618A1-20210401-C01640
    0.0635
    57
    Figure US20210093618A1-20210401-C01641
    0.0038
    Figure US20210093618A1-20210401-C01642
    58
    Figure US20210093618A1-20210401-C01643
    Figure US20210093618A1-20210401-C01644
    59
    Figure US20210093618A1-20210401-C01645
    0.076
    60
    Figure US20210093618A1-20210401-C01646
    1.6
    61
    Figure US20210093618A1-20210401-C01647
    0.057
    62
    Figure US20210093618A1-20210401-C01648
    0.047
    63
    Figure US20210093618A1-20210401-C01649
    0.046
    64
    Figure US20210093618A1-20210401-C01650
    0.0047
    65
    Figure US20210093618A1-20210401-C01651
    0.034
    66
    Figure US20210093618A1-20210401-C01652
    0.091
    67
    Figure US20210093618A1-20210401-C01653
    0.0079
    68
    Figure US20210093618A1-20210401-C01654
    0.0064
    69
    Figure US20210093618A1-20210401-C01655
    0.0061
    70
    Figure US20210093618A1-20210401-C01656
    0.006
    71
    Figure US20210093618A1-20210401-C01657
    0.0031
    72
    Figure US20210093618A1-20210401-C01658
    0.75
    73
    Figure US20210093618A1-20210401-C01659
    1.3
    74
    Figure US20210093618A1-20210401-C01660
    3.6
    75
    Figure US20210093618A1-20210401-C01661
    0.074
    76
    Figure US20210093618A1-20210401-C01662
    0.042
    77
    Figure US20210093618A1-20210401-C01663
    0.0064
    78
    Figure US20210093618A1-20210401-C01664
    0.49
    79
    Figure US20210093618A1-20210401-C01665
    0.0099
    80
    Figure US20210093618A1-20210401-C01666
    0.00405
    81
    Figure US20210093618A1-20210401-C01667
    0.63
    82
    Figure US20210093618A1-20210401-C01668
    0.408
    83
    Figure US20210093618A1-20210401-C01669
    0.059
    84
    Figure US20210093618A1-20210401-C01670
    1.24
    85
    Figure US20210093618A1-20210401-C01671
    1.86
    86
    Figure US20210093618A1-20210401-C01672
    0.0495
    87
    Figure US20210093618A1-20210401-C01673
    0.278
    88
    Figure US20210093618A1-20210401-C01674
    0.0928
    89
    Figure US20210093618A1-20210401-C01675
    0.0223
    90
    Figure US20210093618A1-20210401-C01676
    0.00287
    91
    Figure US20210093618A1-20210401-C01677
    0.0147
    92
    Figure US20210093618A1-20210401-C01678
    0.0305
    93
    Figure US20210093618A1-20210401-C01679
    0.173
    94
    Figure US20210093618A1-20210401-C01680
    0.15
    95
    Figure US20210093618A1-20210401-C01681
    1.06
    96
    Figure US20210093618A1-20210401-C01682
    0.429
    97
    Figure US20210093618A1-20210401-C01683
    0.00269
    98
    Figure US20210093618A1-20210401-C01684
    0.00751
    99
    Figure US20210093618A1-20210401-C01685
    0.00389
    100
    Figure US20210093618A1-20210401-C01686
    0.00419 0.0058 0.552
    101
    Figure US20210093618A1-20210401-C01687
    0.00376
    102
    Figure US20210093618A1-20210401-C01688
    0.00254
    103
    Figure US20210093618A1-20210401-C01689
    0.00524
    104
    Figure US20210093618A1-20210401-C01690
    0.0451
    105
    Figure US20210093618A1-20210401-C01691
    0.0163
    106
    Figure US20210093618A1-20210401-C01692
    0.0048
    107
    Figure US20210093618A1-20210401-C01693
    0.0021
    108
    Figure US20210093618A1-20210401-C01694
    0.094
    109
    Figure US20210093618A1-20210401-C01695
    0.0536
    110
    Figure US20210093618A1-20210401-C01696
    0.0411
    111
    Figure US20210093618A1-20210401-C01697
    0.0204
    112
    Figure US20210093618A1-20210401-C01698
    0.00335
    113
    Figure US20210093618A1-20210401-C01699
    0.0111
    114
    Figure US20210093618A1-20210401-C01700
    0.00727
    115
    Figure US20210093618A1-20210401-C01701
    0.0042
    116
    Figure US20210093618A1-20210401-C01702
    0.0775
    117
    Figure US20210093618A1-20210401-C01703
    0.411
    118
    Figure US20210093618A1-20210401-C01704
    0.417
    119
    Figure US20210093618A1-20210401-C01705
    0.306
    120
    Figure US20210093618A1-20210401-C01706
    0.0206
    121
    Figure US20210093618A1-20210401-C01707
    0.0301
    122
    Figure US20210093618A1-20210401-C01708
    0.0024
    123
    Figure US20210093618A1-20210401-C01709
    0.0029
    124
    Figure US20210093618A1-20210401-C01710
    0.0713
    125
    Figure US20210093618A1-20210401-C01711
    0.025
    126
    Figure US20210093618A1-20210401-C01712
    0.282
    127
    Figure US20210093618A1-20210401-C01713
    0.578
    128
    Figure US20210093618A1-20210401-C01714
    0.0056
    129
    Figure US20210093618A1-20210401-C01715
    1.37
    130
    Figure US20210093618A1-20210401-C01716
    0.0035
    131
    Figure US20210093618A1-20210401-C01717
    0.00299
    132
    Figure US20210093618A1-20210401-C01718
    0.014
    133
    Figure US20210093618A1-20210401-C01719
    0.118
    134
    Figure US20210093618A1-20210401-C01720
    0.346
    135
    Figure US20210093618A1-20210401-C01721
    0.0155
    136
    Figure US20210093618A1-20210401-C01722
    0.00188
    137
    Figure US20210093618A1-20210401-C01723
    0.00205
    138
    Figure US20210093618A1-20210401-C01724
    0.0112
    139
    Figure US20210093618A1-20210401-C01725
    0.0049
    140
    Figure US20210093618A1-20210401-C01726
    0.0035
    141
    Figure US20210093618A1-20210401-C01727
    0.0039
    142
    Figure US20210093618A1-20210401-C01728
    0.00657
    143
    Figure US20210093618A1-20210401-C01729
    0.0026
    144
    Figure US20210093618A1-20210401-C01730
    0.00915
    145
    Figure US20210093618A1-20210401-C01731
    0.00622
    146
    Figure US20210093618A1-20210401-C01732
    0.276
    147
    Figure US20210093618A1-20210401-C01733
    0.00603
    148
    Figure US20210093618A1-20210401-C01734
    0.015
    149
    Figure US20210093618A1-20210401-C01735
    0.0737
    150
    Figure US20210093618A1-20210401-C01736
    0.100
    151
    Figure US20210093618A1-20210401-C01737
    0.00994
    152
    Figure US20210093618A1-20210401-C01738
    0.443
    153
    Figure US20210093618A1-20210401-C01739
    0.439
    154
    Figure US20210093618A1-20210401-C01740
    0.00912
    155
    Figure US20210093618A1-20210401-C01741
    0.00202
    156
    Figure US20210093618A1-20210401-C01742
    0.021
    157
    Figure US20210093618A1-20210401-C01743
    0.0351
    158
    Figure US20210093618A1-20210401-C01744
    0.0123
    159
    Figure US20210093618A1-20210401-C01745
    0.00542
    160
    Figure US20210093618A1-20210401-C01746
    0.0628
    161
    Figure US20210093618A1-20210401-C01747
    0.284
    162
    Figure US20210093618A1-20210401-C01748
    0.0039 0.0028
    163
    Figure US20210093618A1-20210401-C01749
    0.0036
    164
    Figure US20210093618A1-20210401-C01750
    0.0043 0.0033
    165
    Figure US20210093618A1-20210401-C01751
    0.0023 0.0024 0.049
    166
    Figure US20210093618A1-20210401-C01752
    0.0039
    167
    Figure US20210093618A1-20210401-C01753
    0.0049 0.0042
    168
    Figure US20210093618A1-20210401-C01754
    0.0062 0.003 0.078
    169
    Figure US20210093618A1-20210401-C01755
    0.0063 0.003 0.28
    170
    Figure US20210093618A1-20210401-C01756
    0.005
    171
    Figure US20210093618A1-20210401-C01757
    0.005
    172
    Figure US20210093618A1-20210401-C01758
    0.0039
    173
    Figure US20210093618A1-20210401-C01759
    0.0039
    174
    Figure US20210093618A1-20210401-C01760
    0.012
    175
    Figure US20210093618A1-20210401-C01761
    0.0052
    176
    Figure US20210093618A1-20210401-C01762
    0.0091
    177
    Figure US20210093618A1-20210401-C01763
    0.0083
    178
    Figure US20210093618A1-20210401-C01764
    0.0076
    179
    Figure US20210093618A1-20210401-C01765
    1.8
    180
    Figure US20210093618A1-20210401-C01766
    9.9
    181
    Figure US20210093618A1-20210401-C01767
    0.011
    182
    Figure US20210093618A1-20210401-C01768
    0.014
    183
    Figure US20210093618A1-20210401-C01769
    0.047
    184
    Figure US20210093618A1-20210401-C01770
    0.0051
    185
    Figure US20210093618A1-20210401-C01771
    0.007
    186
    Figure US20210093618A1-20210401-C01772
    0.004
    187
    Figure US20210093618A1-20210401-C01773
    0.005
    188
    Figure US20210093618A1-20210401-C01774
    0.0052
    189
    Figure US20210093618A1-20210401-C01775
    0.016
    190
    Figure US20210093618A1-20210401-C01776
    0.056
    191
    Figure US20210093618A1-20210401-C01777
    0.032
    192
    Figure US20210093618A1-20210401-C01778
    0.034
    193
    Figure US20210093618A1-20210401-C01779
    0.052
    194
    Figure US20210093618A1-20210401-C01780
    0.18
    195
    Figure US20210093618A1-20210401-C01781
    0.35
    196
    Figure US20210093618A1-20210401-C01782
    0.043
    197
    Figure US20210093618A1-20210401-C01783
    3.2
    198
    Figure US20210093618A1-20210401-C01784
    0.55
    199
    Figure US20210093618A1-20210401-C01785
    1.4
    200
    Figure US20210093618A1-20210401-C01786
    9.4
    201
    Figure US20210093618A1-20210401-C01787
    0.005
    202
    Figure US20210093618A1-20210401-C01788
    0.0016
    203
    Figure US20210093618A1-20210401-C01789
    0.0036
    204
    Figure US20210093618A1-20210401-C01790
    0.0027
    205
    Figure US20210093618A1-20210401-C01791
    0.0025
    206
    Figure US20210093618A1-20210401-C01792
    0.0018
    207
    Figure US20210093618A1-20210401-C01793
    0.0017
    208
    Figure US20210093618A1-20210401-C01794
    0.0016 0.003 0.013
    209
    Figure US20210093618A1-20210401-C01795
    0.0017 0.0158
    210
    Figure US20210093618A1-20210401-C01796
    0.0019
    211
    Figure US20210093618A1-20210401-C01797
    0.0017
    212
    Figure US20210093618A1-20210401-C01798
    0.0027
    213
    Figure US20210093618A1-20210401-C01799
    0.0025
    214
    Figure US20210093618A1-20210401-C01800
    0.0031
    215
    Figure US20210093618A1-20210401-C01801
    0.0048
    216
    Figure US20210093618A1-20210401-C01802
    0.005
    217
    Figure US20210093618A1-20210401-C01803
    0.0056 0.0025 0.19
    218
    Figure US20210093618A1-20210401-C01804
    0.0078
    219
    Figure US20210093618A1-20210401-C01805
    0.0083
    220
    Figure US20210093618A1-20210401-C01806
    0.017
    221
    Figure US20210093618A1-20210401-C01807
    1.8
    222
    Figure US20210093618A1-20210401-C01808
    0.16
    223
    Figure US20210093618A1-20210401-C01809
    0.25
    224
    Figure US20210093618A1-20210401-C01810
    0.0045
    225
    Figure US20210093618A1-20210401-C01811
    0.017
    226
    Figure US20210093618A1-20210401-C01812
    0.012
    227
    Figure US20210093618A1-20210401-C01813
    0.0081
    228
    Figure US20210093618A1-20210401-C01814
    0.0051 0.031 4.1
    229
    Figure US20210093618A1-20210401-C01815
    0.0073
    230
    Figure US20210093618A1-20210401-C01816
    0.0044
    231
    Figure US20210093618A1-20210401-C01817
    0.0059
    232
    Figure US20210093618A1-20210401-C01818
    0.064
    233
    Figure US20210093618A1-20210401-C01819
    0.031
    234
    Figure US20210093618A1-20210401-C01820
    0.17
    235
    Figure US20210093618A1-20210401-C01821
    0.21
    236
    Figure US20210093618A1-20210401-C01822
    0.0016
    237
    Figure US20210093618A1-20210401-C01823
    0.0029
    238
    Figure US20210093618A1-20210401-C01824
    0.0022
    239
    Figure US20210093618A1-20210401-C01825
    0.0034
    240
    Figure US20210093618A1-20210401-C01826
    0.0024
    241
    Figure US20210093618A1-20210401-C01827
    0.0027
    242
    Figure US20210093618A1-20210401-C01828
    0.003
    243
    Figure US20210093618A1-20210401-C01829
    0.011
    244
    Figure US20210093618A1-20210401-C01830
    0.012
    245
    Figure US20210093618A1-20210401-C01831
    0.0079
    246
    Figure US20210093618A1-20210401-C01832
    0.0077
    247
    Figure US20210093618A1-20210401-C01833
    0.0089
    248
    Figure US20210093618A1-20210401-C01834
    0.01
    249
    Figure US20210093618A1-20210401-C01835
    0.039
    250
    Figure US20210093618A1-20210401-C01836
    0.043
    251
    Figure US20210093618A1-20210401-C01837
    0.049
    252
    Figure US20210093618A1-20210401-C01838
    0.05
    253
    Figure US20210093618A1-20210401-C01839
    0.02
    254
    Figure US20210093618A1-20210401-C01840
    0.026
    255
    Figure US20210093618A1-20210401-C01841
    1.1
    256
    Figure US20210093618A1-20210401-C01842
    0.29
    257
    Figure US20210093618A1-20210401-C01843
    0.27
    258
    Figure US20210093618A1-20210401-C01844
    0.065
    259
    Figure US20210093618A1-20210401-C01845
    0.0022 0.023 0.11
    260
    Figure US20210093618A1-20210401-C01846
    0.0048
    261
    Figure US20210093618A1-20210401-C01847
    0.0048
    262
    Figure US20210093618A1-20210401-C01848
    0.018
    263
    Figure US20210093618A1-20210401-C01849
    0.02
    264
    Figure US20210093618A1-20210401-C01850
    0.0092
    265
    Figure US20210093618A1-20210401-C01851
    0.10
    266
    Figure US20210093618A1-20210401-C01852
    0.091
    267
    Figure US20210093618A1-20210401-C01853
    0.047
    268
    Figure US20210093618A1-20210401-C01854
    0.006 0.0028
    269
    Figure US20210093618A1-20210401-C01855
    0.0034
    270
    Figure US20210093618A1-20210401-C01856
    0.005 0.0058
    271
    Figure US20210093618A1-20210401-C01857
    0.0037
    272
    Figure US20210093618A1-20210401-C01858
    0.0042
    273
    Figure US20210093618A1-20210401-C01859
    0.0085
    274
    Figure US20210093618A1-20210401-C01860
    0.068
    275
    Figure US20210093618A1-20210401-C01861
    0.0069
    276
    Figure US20210093618A1-20210401-C01862
    0.0057
    277
    Figure US20210093618A1-20210401-C01863
    0.004
    278
    Figure US20210093618A1-20210401-C01864
    0.0033
    279
    Figure US20210093618A1-20210401-C01865
    0.004
    280
    Figure US20210093618A1-20210401-C01866
    0.0081
    281
    Figure US20210093618A1-20210401-C01867
    0.0047
    282
    Figure US20210093618A1-20210401-C01868
    0.0044
    283
    Figure US20210093618A1-20210401-C01869
    0.004
    284
    Figure US20210093618A1-20210401-C01870
    0.0036
    285
    Figure US20210093618A1-20210401-C01871
    0.0033
    286
    Figure US20210093618A1-20210401-C01872
    0.0054
    287
    Figure US20210093618A1-20210401-C01873
    0.0035
    288
    Figure US20210093618A1-20210401-C01874
    0.0035
    289
    Figure US20210093618A1-20210401-C01875
    0.0035
    290
    Figure US20210093618A1-20210401-C01876
    0.0048
    291
    Figure US20210093618A1-20210401-C01877
    0.011
    292
    Figure US20210093618A1-20210401-C01878
    0.0029
    293
    Figure US20210093618A1-20210401-C01879
    0.0052
    294
    Figure US20210093618A1-20210401-C01880
    0.0038
    295
    Figure US20210093618A1-20210401-C01881
    0.0023
    296
    Figure US20210093618A1-20210401-C01882
    0.0081
    297
    Figure US20210093618A1-20210401-C01883
    0.0108
    298
    Figure US20210093618A1-20210401-C01884
    0.0046
    299
    Figure US20210093618A1-20210401-C01885
    0.0019
    300
    Figure US20210093618A1-20210401-C01886
    0.0016
    301
    Figure US20210093618A1-20210401-C01887
    0.003
    302
    Figure US20210093618A1-20210401-C01888
    0.0057
    303
    Figure US20210093618A1-20210401-C01889
    0.0065
    304
    Figure US20210093618A1-20210401-C01890
    0.0037
    305
    Figure US20210093618A1-20210401-C01891
    0.0039
    306
    Figure US20210093618A1-20210401-C01892
    0.0060
    307
    Figure US20210093618A1-20210401-C01893
    0.0067
    308
    Figure US20210093618A1-20210401-C01894
    0.0060
    309
    Figure US20210093618A1-20210401-C01895
    0.0027 0.003 0.38
    310
    Figure US20210093618A1-20210401-C01896
    0.0023
    311
    Figure US20210093618A1-20210401-C01897
    0.0029
    312
    Figure US20210093618A1-20210401-C01898
    0.0022 <0.001 0.31
    313
    Figure US20210093618A1-20210401-C01899
    0.0091
    314
    Figure US20210093618A1-20210401-C01900
    >10
    315
    Figure US20210093618A1-20210401-C01901
    0.0191
    316
    Figure US20210093618A1-20210401-C01902
    0.0372
    317
    Figure US20210093618A1-20210401-C01903
    0.0060
    318
    Figure US20210093618A1-20210401-C01904
    0.0026
    319
    Figure US20210093618A1-20210401-C01905
    0.0054
    320
    Figure US20210093618A1-20210401-C01906
    0.2133
    321
    Figure US20210093618A1-20210401-C01907
    0.1907
    322
    Figure US20210093618A1-20210401-C01908
    0.0019
    323
    Figure US20210093618A1-20210401-C01909
    0.0019
    324
    Figure US20210093618A1-20210401-C01910
    0.0027
    325
    Figure US20210093618A1-20210401-C01911
    0.0024
    326
    Figure US20210093618A1-20210401-C01912
    0.0029
    327
    Figure US20210093618A1-20210401-C01913
    0.0027
    328
    Figure US20210093618A1-20210401-C01914
    0.0064
    329
    Figure US20210093618A1-20210401-C01915
    0.0033
    330
    Figure US20210093618A1-20210401-C01916
    0.0319
    331
    Figure US20210093618A1-20210401-C01917
    0.0322
    332
    Figure US20210093618A1-20210401-C01918
    0.0352
    333
    Figure US20210093618A1-20210401-C01919
    0.0207
    334
    Figure US20210093618A1-20210401-C01920
    0.0071
    335
    Figure US20210093618A1-20210401-C01921
    0.0143
    336
    Figure US20210093618A1-20210401-C01922
    0.0049
    337
    Figure US20210093618A1-20210401-C01923
    0.01108
    338
    Figure US20210093618A1-20210401-C01924
    0.0074
    339
    Figure US20210093618A1-20210401-C01925
    0.0165
    340
    Figure US20210093618A1-20210401-C01926
    0.0047
    341
    Figure US20210093618A1-20210401-C01927
    0.0044
    342
    Figure US20210093618A1-20210401-C01928
    0.0057
    343
    Figure US20210093618A1-20210401-C01929
    0.0084
    344
    Figure US20210093618A1-20210401-C01930
    0.0069
    345
    Figure US20210093618A1-20210401-C01931
    0.0078
    346
    Figure US20210093618A1-20210401-C01932
    0.0044 0.0022 682
    347
    Figure US20210093618A1-20210401-C01933
    0.0063
    348
    Figure US20210093618A1-20210401-C01934
    0.0045
    349
    Figure US20210093618A1-20210401-C01935
    0.0040
    350
    Figure US20210093618A1-20210401-C01936
    0.0045
    351
    Figure US20210093618A1-20210401-C01937
    0.0053
    352
    Figure US20210093618A1-20210401-C01938
    0.0020
    353
    Figure US20210093618A1-20210401-C01939
    0.011
    354
    Figure US20210093618A1-20210401-C01940
    2.6695
    355
    Figure US20210093618A1-20210401-C01941
    0.11876
    356
    Figure US20210093618A1-20210401-C01942
    0.0058
    357
    Figure US20210093618A1-20210401-C01943
    0.0130
    358
    Figure US20210093618A1-20210401-C01944
    0.0140
    359
    Figure US20210093618A1-20210401-C01945
    0.0114
    360
    Figure US20210093618A1-20210401-C01946
    0.0128
    361
    Figure US20210093618A1-20210401-C01947
    0.0020
    362
    Figure US20210093618A1-20210401-C01948
    0.0029
    363
    Figure US20210093618A1-20210401-C01949
    0.0058
    364
    Figure US20210093618A1-20210401-C01950
    0.0806
    365
    Figure US20210093618A1-20210401-C01951
    0.3272
    366
    Figure US20210093618A1-20210401-C01952
    0.0091
    367
    Figure US20210093618A1-20210401-C01953
    0.0083
    368
    Figure US20210093618A1-20210401-C01954
    0.0251
    369
    Figure US20210093618A1-20210401-C01955
    0.0145
    370
    Figure US20210093618A1-20210401-C01956
    0.0308
    371
    Figure US20210093618A1-20210401-C01957
    0.0203
    372
    Figure US20210093618A1-20210401-C01958
    0.04923
    373
    Figure US20210093618A1-20210401-C01959
    0.0197
    374
    Figure US20210093618A1-20210401-C01960
    0.0231
    375
    Figure US20210093618A1-20210401-C01961
    0.0146
    376
    Figure US20210093618A1-20210401-C01962
    2.4491
    377
    Figure US20210093618A1-20210401-C01963
    1.2589
    378
    Figure US20210093618A1-20210401-C01964
    0.0459
    379
    Figure US20210093618A1-20210401-C01965
    0.0172
    380
    Figure US20210093618A1-20210401-C01966
    0.0409
    381
    Figure US20210093618A1-20210401-C01967
    0.0148
    382
    Figure US20210093618A1-20210401-C01968
    0.0407
    383
    Figure US20210093618A1-20210401-C01969
    0.0148
    384
    Figure US20210093618A1-20210401-C01970
    0.0163
    385
    Figure US20210093618A1-20210401-C01971
    0.0100
    386
    Figure US20210093618A1-20210401-C01972
    0.0521
    387
    Figure US20210093618A1-20210401-C01973
    0.0133
    388
    Figure US20210093618A1-20210401-C01974
    0.0163
    389
    Figure US20210093618A1-20210401-C01975
    0.0088
    390
    Figure US20210093618A1-20210401-C01976
    0.0185
    391
    Figure US20210093618A1-20210401-C01977
    0.0101
    392
    Figure US20210093618A1-20210401-C01978
    2.0625
    393
    Figure US20210093618A1-20210401-C01979
    1.3750
    394
    Figure US20210093618A1-20210401-C01980
    6.0057
    395
    Figure US20210093618A1-20210401-C01981
    >10
    396
    Figure US20210093618A1-20210401-C01982
    0.0148
    397
    Figure US20210093618A1-20210401-C01983
    0.0057
    398
    Figure US20210093618A1-20210401-C01984
    0.0051
    399
    Figure US20210093618A1-20210401-C01985
    0.0046
    400
    Figure US20210093618A1-20210401-C01986
    0.0021
    401
    Figure US20210093618A1-20210401-C01987
    0.0031
    402
    Figure US20210093618A1-20210401-C01988
    0.0224
    403
    Figure US20210093618A1-20210401-C01989
    0.0170
    404
    Figure US20210093618A1-20210401-C01990
    0.0201
    405
    Figure US20210093618A1-20210401-C01991
    0.0150
    406
    Figure US20210093618A1-20210401-C01992
    0.0176
    407
    Figure US20210093618A1-20210401-C01993
    0.0067
    408
    Figure US20210093618A1-20210401-C01994
    0.0227
    409
    Figure US20210093618A1-20210401-C01995
    0.0540
    410
    Figure US20210093618A1-20210401-C01996
    0.0109
    411
    Figure US20210093618A1-20210401-C01997
    0.0008
    412
    Figure US20210093618A1-20210401-C01998
    0.0015
    413
    Figure US20210093618A1-20210401-C01999
    0.0060
    414
    Figure US20210093618A1-20210401-C02000
    0.0038
    415
    Figure US20210093618A1-20210401-C02001
    0.0061
    416
    Figure US20210093618A1-20210401-C02002
    0.0053
    417
    Figure US20210093618A1-20210401-C02003
    0.0057
    418
    Figure US20210093618A1-20210401-C02004
    0.0032
    419
    Figure US20210093618A1-20210401-C02005
    0.0052
    420
    Figure US20210093618A1-20210401-C02006
    0.0024
    421
    Figure US20210093618A1-20210401-C02007
    0.0025
    422
    Figure US20210093618A1-20210401-C02008
    0.0013
    423
    Figure US20210093618A1-20210401-C02009
    0.0021
    424
    Figure US20210093618A1-20210401-C02010
    0.0025
    425
    Figure US20210093618A1-20210401-C02011
    0.0029
    426
    Figure US20210093618A1-20210401-C02012
    0.0031
    427
    Figure US20210093618A1-20210401-C02013
    0.0190
    428
    Figure US20210093618A1-20210401-C02014
    0.0234
    429
    Figure US20210093618A1-20210401-C02015
    0.0519
    430
    Figure US20210093618A1-20210401-C02016
    0.5327
    431
    Figure US20210093618A1-20210401-C02017
    0.0032
    432
    Figure US20210093618A1-20210401-C02018
    0.0033
    433
    Figure US20210093618A1-20210401-C02019
    0.0062
    434
    Figure US20210093618A1-20210401-C02020
    0.0050 0.0128
    435
    Figure US20210093618A1-20210401-C02021
    0.0054
    436
    Figure US20210093618A1-20210401-C02022
    0.0054
    437
    Figure US20210093618A1-20210401-C02023
    0.0073
    438
    Figure US20210093618A1-20210401-C02024
    0.0095
    439
    Figure US20210093618A1-20210401-C02025
    0.0110
    440
    Figure US20210093618A1-20210401-C02026
    0.0003
    441
    Figure US20210093618A1-20210401-C02027
    0.1378
    442
    Figure US20210093618A1-20210401-C02028
    0.0031
    443
    Figure US20210093618A1-20210401-C02029
    0.0034
    444
    Figure US20210093618A1-20210401-C02030
    0.0045
    445
    Figure US20210093618A1-20210401-C02031
    0.0061
    446
    Figure US20210093618A1-20210401-C02032
    0.0565
    447
    Figure US20210093618A1-20210401-C02033
    0.0060
    448
    Figure US20210093618A1-20210401-C02034
    0.0105
    449
    Figure US20210093618A1-20210401-C02035
    0.0171
    450
    Figure US20210093618A1-20210401-C02036
    0.0099
    451
    Figure US20210093618A1-20210401-C02037
    0.0257
    452
    Figure US20210093618A1-20210401-C02038
    0.0432
    453
    Figure US20210093618A1-20210401-C02039
    0.0030
    454
    Figure US20210093618A1-20210401-C02040
    0.0050
    455
    Figure US20210093618A1-20210401-C02041
    0.0085
    456
    Figure US20210093618A1-20210401-C02042
    0.0093
    457
    Figure US20210093618A1-20210401-C02043
    0.0048
    458
    Figure US20210093618A1-20210401-C02044
    0.0044
    459
    Figure US20210093618A1-20210401-C02045
    0.0125
    460
    Figure US20210093618A1-20210401-C02046
    0.0050
    461
    Figure US20210093618A1-20210401-C02047
    0.0421
    462
    Figure US20210093618A1-20210401-C02048
    0.0363
    463
    Figure US20210093618A1-20210401-C02049
    0.0038 <0.003 0.6688
    464
    Figure US20210093618A1-20210401-C02050
    0.0027 <0.0030 0.109
    465
    Figure US20210093618A1-20210401-C02051
    0.0128
    466
    Figure US20210093618A1-20210401-C02052
    0.0073
    467
    Figure US20210093618A1-20210401-C02053
    0.0043
    468
    Figure US20210093618A1-20210401-C02054
    0.0113
    469
    Figure US20210093618A1-20210401-C02055
    0.0989
    470
    Figure US20210093618A1-20210401-C02056
    0.0038
    471
    Figure US20210093618A1-20210401-C02057
    0.0037
    472
    Figure US20210093618A1-20210401-C02058
    0.0036
    473
    Figure US20210093618A1-20210401-C02059
    0.0095
    474
    Figure US20210093618A1-20210401-C02060
    0.0056 <0.0030 0.4493
    475
    Figure US20210093618A1-20210401-C02061
    0.0031 0.0018 0.8140
    476
    Figure US20210093618A1-20210401-C02062
    0.0372
    477
    Figure US20210093618A1-20210401-C02063
    0.0142
    478
    Figure US20210093618A1-20210401-C02064
    0.0381
    479
    Figure US20210093618A1-20210401-C02065
    0.0553
    480
    Figure US20210093618A1-20210401-C02066
    0.0218
    481
    Figure US20210093618A1-20210401-C02067
    0.0031
    482
    Figure US20210093618A1-20210401-C02068
    0.0033
    483
    Figure US20210093618A1-20210401-C02069
    0.0052
    484
    Figure US20210093618A1-20210401-C02070
    0.0092
    485
    Figure US20210093618A1-20210401-C02071
    0.0045
    486
    Figure US20210093618A1-20210401-C02072
    0.0056
    487
    Figure US20210093618A1-20210401-C02073
    0.0135
    488
    Figure US20210093618A1-20210401-C02074
    0.0092
    489
    Figure US20210093618A1-20210401-C02075
    0.1031
    490
    Figure US20210093618A1-20210401-C02076
    0.0423
    491
    Figure US20210093618A1-20210401-C02077
    0.0283
    492
    Figure US20210093618A1-20210401-C02078
    0.0938
    493
    Figure US20210093618A1-20210401-C02079
    0.2427
    494
    Figure US20210093618A1-20210401-C02080
    0.0527
    495
    Figure US20210093618A1-20210401-C02081
    0.0044 0.0002 0.0154
    496
    Figure US20210093618A1-20210401-C02082
    0.0022
    497
    Figure US20210093618A1-20210401-C02083
    0.0143
    498
    Figure US20210093618A1-20210401-C02084
    0.0874
    499
    Figure US20210093618A1-20210401-C02085
    0.0136
    500
    Figure US20210093618A1-20210401-C02086
    0.0078
    501
    Figure US20210093618A1-20210401-C02087
    0.0134
    502
    Figure US20210093618A1-20210401-C02088
    0.0068
    503
    Figure US20210093618A1-20210401-C02089
    0.0296
    504
    Figure US20210093618A1-20210401-C02090
    0.0162
    505
    Figure US20210093618A1-20210401-C02091
    0.0278
    506
    Figure US20210093618A1-20210401-C02092
    0.0143
    507
    Figure US20210093618A1-20210401-C02093
    0.0817
    508
    Figure US20210093618A1-20210401-C02094
    0.0440
    509
    Figure US20210093618A1-20210401-C02095
    0.0131
    510
    Figure US20210093618A1-20210401-C02096
    0.0091
    511
    Figure US20210093618A1-20210401-C02097
    0.0235
    512
    Figure US20210093618A1-20210401-C02098
    0.0167
    513
    Figure US20210093618A1-20210401-C02099
    0.0698
    514
    Figure US20210093618A1-20210401-C02100
    0.0244
    515
    Figure US20210093618A1-20210401-C02101
    0.3843
    516
    Figure US20210093618A1-20210401-C02102
    0.2131
    517
    Figure US20210093618A1-20210401-C02103
    0.0150
    518
    Figure US20210093618A1-20210401-C02104
    0.0082
    519
    Figure US20210093618A1-20210401-C02105
    0.0081
    520
    Figure US20210093618A1-20210401-C02106
    0.0073
    521
    Figure US20210093618A1-20210401-C02107
    0.0079
    522
    Figure US20210093618A1-20210401-C02108
    0.0052
    523
    Figure US20210093618A1-20210401-C02109
    0.0058
    524
    Figure US20210093618A1-20210401-C02110
    0.0114
    525
    Figure US20210093618A1-20210401-C02111
    0.0065 0.0048 0.1134
    526
    Figure US20210093618A1-20210401-C02112
    0.0202
    527
    Figure US20210093618A1-20210401-C02113
    0.0099
    528
    Figure US20210093618A1-20210401-C02114
    0.0034
    529
    Figure US20210093618A1-20210401-C02115
    0.0024
    530
    Figure US20210093618A1-20210401-C02116
    0.0023
    531
    Figure US20210093618A1-20210401-C02117
    0.0022
    532
    Figure US20210093618A1-20210401-C02118
    0.2205
    533
    Figure US20210093618A1-20210401-C02119
    0.1268
    534
    Figure US20210093618A1-20210401-C02120
    0.8789
    535
    Figure US20210093618A1-20210401-C02121
    0.7204
    536
    Figure US20210093618A1-20210401-C02122
    0.0050
    537
    Figure US20210093618A1-20210401-C02123
    0.0057
    538
    Figure US20210093618A1-20210401-C02124
    7.1223
    539
    Figure US20210093618A1-20210401-C02125
    2.2782
    540
    Figure US20210093618A1-20210401-C02126
    0.0078
    541
    Figure US20210093618A1-20210401-C02127
    0.0059
    542
    Figure US20210093618A1-20210401-C02128
    0.0270
    543
    Figure US20210093618A1-20210401-C02129
    0.0117
    544
    Figure US20210093618A1-20210401-C02130
    0.0153
    545
    Figure US20210093618A1-20210401-C02131
    0.0034
    546
    Figure US20210093618A1-20210401-C02132
    0.0119
    547
    Figure US20210093618A1-20210401-C02133
    0.0082
    548
    Figure US20210093618A1-20210401-C02134
    0.0037
    549
    Figure US20210093618A1-20210401-C02135
    0.0044
    550
    Figure US20210093618A1-20210401-C02136
    0.0136
    551
    Figure US20210093618A1-20210401-C02137
    0.0075
    552
    Figure US20210093618A1-20210401-C02138
    0.0070
    553
    Figure US20210093618A1-20210401-C02139
    0.0061
    554
    Figure US20210093618A1-20210401-C02140
    0.0032
    555
    Figure US20210093618A1-20210401-C02141
    0.0029
    556
    Figure US20210093618A1-20210401-C02142
    0.0021
    557
    Figure US20210093618A1-20210401-C02143
    0.0027
    558
    Figure US20210093618A1-20210401-C02144
    0.0371
    559
    Figure US20210093618A1-20210401-C02145
    0.0189
    560
    Figure US20210093618A1-20210401-C02146
    0.0028
    561
    Figure US20210093618A1-20210401-C02147
    0.0028
    562
    Figure US20210093618A1-20210401-C02148
    0.0031
    563
    Figure US20210093618A1-20210401-C02149
    0.0042
    564
    Figure US20210093618A1-20210401-C02150
    0.0036
    565
    Figure US20210093618A1-20210401-C02151
    0.0041
    566
    Figure US20210093618A1-20210401-C02152
    0.0027
    567
    Figure US20210093618A1-20210401-C02153
    0.0152
    568
    Figure US20210093618A1-20210401-C02154
    0.0095
    569
    Figure US20210093618A1-20210401-C02155
    0.0048
    570
    Figure US20210093618A1-20210401-C02156
    0.0029
    571
    Figure US20210093618A1-20210401-C02157
    0.0443
    572
    Figure US20210093618A1-20210401-C02158
    0.0216
    573
    Figure US20210093618A1-20210401-C02159
    0.1072
    574
    Figure US20210093618A1-20210401-C02160
    0.0029
    575
    Figure US20210093618A1-20210401-C02161
    0.0045
    576
    Figure US20210093618A1-20210401-C02162
    0.27
    577
    Figure US20210093618A1-20210401-C02163
    0.04
    578
    Figure US20210093618A1-20210401-C02164
    0.18
    579
    Figure US20210093618A1-20210401-C02165
    0.0029
    580
    Figure US20210093618A1-20210401-C02166
    0.0037
    581
    Figure US20210093618A1-20210401-C02167
    0.0038
    582
    Figure US20210093618A1-20210401-C02168
    0.0042
    583
    Figure US20210093618A1-20210401-C02169
    0.0034
    584
    Figure US20210093618A1-20210401-C02170
    0.0029
    585
    Figure US20210093618A1-20210401-C02171
    0.0035
    586
    Figure US20210093618A1-20210401-C02172
    0.0052
    587
    Figure US20210093618A1-20210401-C02173
    0.0051
    588
    Figure US20210093618A1-20210401-C02174
    0.0069
    589
    Figure US20210093618A1-20210401-C02175
    0.011
    590
    Figure US20210093618A1-20210401-C02176
    0.026
    591
    Figure US20210093618A1-20210401-C02177
    0.24
    592
    Figure US20210093618A1-20210401-C02178
    0.0054
    593
    Figure US20210093618A1-20210401-C02179
    0.0099
    594
    Figure US20210093618A1-20210401-C02180
    0.137 0.0084 0.623
    595
    Figure US20210093618A1-20210401-C02181
    0.0343
    596
    Figure US20210093618A1-20210401-C02182
    0.0599
    597
    Figure US20210093618A1-20210401-C02183
    0.0276
    598
    Figure US20210093618A1-20210401-C02184
    0.258
  • Example 601 Analgesia Induced by Sodium Channel Blockers Heat Induced Tail Flick Latency Test
  • In this test, the analgesia effect produced by administering a compound of the invention can be observed through heat-induced tail-flick in mice. The test includes a heat source consisting of a projector lamp with a light beam focused and directed to a point on the tail of a mouse being tested. The tail-flick latencies, which are assessed prior to drug treatment, and in response to a noxious heat stimulus, i.e., the response time from applying radiant heat on the dorsal surface of the tail to the occurrence of tail flick, are measured and recorded at 40, 80, 120, and 160 minutes.
  • For the first part of this study, 65 animals undergo assessment of baseline tail flick latency once a day over two consecutive days. These animals are then randomly assigned to one of the 11 different treatment groups including a vehicle control, a morphine control, and 9 compounds at 30 mg/Kg are administered intramuscularly. Following dose administration, the animals are closely monitored for signs of toxicity including tremor or seizure, hyperactivity, shallow, rapid or depressed breathing and failure to groom. The optimal incubation time for each compound is determined via regression analysis. The analgesic activity of the test compounds is expressed as a percentage of the maximum possible effect (% MPE) and is calculated using the following formula:
  • % MPE Postdrug latency - Predrug latency Cut - off time ( 10 s ) - Predrug latency × 100 %
  • where:
  • Postdrug latency=the latency time for each individual animal taken before the tail is removed (flicked) from the heat source after receiving drug.
  • Predrug latency=the latency time for each individual animal taken before the tail is flicked from the heat source prior to receiving drug.
  • Cut-off time (10 s)=is the maximum exposure to the heat source.
  • Acute Pain (Formalin Test)
  • The formalin test is used as an animal model of acute pain. In the formalin test, animals are briefly habituated to the plexiglass test chamber on the day prior to experimental day for 20 minutes. On the test day, animals are randomly injected with the test articles. At 30 minutes after drug administration, 50 μL of 10% formalin is injected subcutaneously into the plantar surface of the left hind paw of the rats. Video data acquisition begins immediately after formalin administration, for duration of 90 minutes.
  • The images are captured using the Actimetrix Limelight software which stores files under the *.llii extension, and then converts it into the MPEG-4 coding. The videos are then analyzed using behaviour analysis software “The Observer 5.1”, (Version 5.0, Noldus Information Technology, Wageningen, The Netherlands). The video analysis is conducted by watching the animal behaviour and scoring each according to type, and defining the length of the behaviour (Dubuisson and Dennis, 1977). Scored behaviours include: (1) normal behaviour, (2) putting no weight on the paw, (3) raising the paw, (4) licking/biting or scratching the paw. Elevation, favoring, or excessive licking, biting and scratching of the injected paw indicate a pain response. Analgesic response or protection from compounds is indicated if both paws are resting on the floor with no obvious favoring, excessive licking, biting or scratching of the injected paw.
  • Analysis of the formalin test data is done according to two factors: (1) Percent Maximal Potential Inhibitory Effect (% MPIE) and (2) pain score. The % MPIEs is calculated by a series of steps, where the first is to sum the length of non-normal behaviours (behaviours 1,2,3) of each animal. A single value for the vehicle group is obtained by averaging all scores within the vehicle treatment group. The following calculation yields the MPIE value for each animal:

  • MPIE (%)=100−[(treatment sum/average vehicle value)×100%]
  • The pain score is calculated from a weighted scale as described above. The duration of the behaviour is multiplied by the weight (rating of the severity of the response), and divided by the total length of observation to determine a pain rating for each animal. The calculation is represented by the following formula:

  • Pain rating=[0(To)+1(T1)+2(T2)+3(T3)]/(To+T1+T2+T3)
  • CFA Induced Chronic Inflammatory Pain
  • In this test, tactile allodynia is assessed with calibrated von Frey filaments. Following a full week of acclimatization to the vivarium facility, 150 μL of the “Complete Freund's Adjuvant” (CFA) emulsion (CFA suspended in an oil/saline (1:1) emulsion at a concentration of 0.5 mg/mL) is injected subcutaneously into the plantar surface of the left hind paw of rats under light isoflurane anaesthesia. Animals are allowed to recover from the anaesthesia and the baseline thermal and mechanical nociceptive thresholds of all animals are assessed one week after the administration of CFA. All animals are habituated to the experimental equipment for 20 minutes on the day prior to the start of the experiment. The test and control articles are administrated to the animals, and the nociceptive thresholds measured at defined time points after drug administration to determine the analgesic responses to each of the six available treatments. The time points used are previously determined to show the highest analgesic effect for each test compound.
  • Thermal nociceptive thresholds of the animals are assessed using the Hargreaves test. Animals are placed in a Plexiglas enclosure set on top of an elevated glass platform with heating units. The glass platform is thermostatically controlled at a temperature of approximately 30° C. for all test trials. Animals are allowed to accommodate for 20 minutes following placement into the enclosure until all exploration behaviour ceases. The Model 226 Plantar/Tail Stimulator Analgesia Meter (IITC, Woodland Hills, Calif.) is used to apply a radiant heat beam from underneath the glass platform to the plantar surface of the hind paws. During all test trials, the idle intensity and active intensity of the heat source are set at 1 and 45 respectively, and a cut off time of 20 seconds is employed to prevent tissue damage.
  • The response thresholds of animals to tactile stimuli are measured using the Model 2290 Electrovonfreyanesthesiometer (IITC Life Science, Woodland Hills, Calif.) following the Hargreaves test. Animals are placed in an elevated Plexiglas enclosure set on a mire mesh surface. After 10 minutes of accommodation, pre-calibrated Von Frey hairs are applied perpendicularly to the plantar surface of both paws of the animals in an ascending order starting from the 0.1 g hair, with sufficient force to cause slight buckling of the hair against the paw. Testing continues until the hair with the lowest force to induce a rapid flicking of the paw is determined or when the cut off force of approximately 20 g is reached. This cut off force is used because it represent approximately 10% of the animals' body weight and it serves to prevent raising of the entire limb due to the use of stiffer hairs, which would change the nature of the stimulus.
  • Postoperative Models of Nociception
  • In this model, the hypealgesia caused by an intra-planar incision in the paw is measured by applying increased tactile stimuli to the paw until the animal withdraws its paw from the applied stimuli. While animals are anaesthetized under 3.5% isofluorane, which is delivered via a nose cone, a t cm longitudinal incision is made using a number 10 scalpel blade in the plantar aspect of the left hind paw through the skin and fascia, starting 0.5 cm from the proximal edge of the heel and extending towards the toes. Following the incision, the skin is apposed using 2, 3-0 sterilized silk sutures. The injured site is covered with Polysporin and Betadine. Animals are returned to their home cage for overnight recovery.
  • The withdrawal thresholds of animals to tactile stimuli for both operated (ipsilateral) and unoperated (contralateral) paws can be measured using the Model 2290 Electrovonfreyanesthesiometer (IITC Life Science, Woodland Hills, Calif.). Animals are placed in an elevated Plexiglas enclosure set on a mire mesh surface. After at least 10 minutes of acclimatization, pre-calibrated Von Frey hairs are applied perpendicularly to the plantar surface of both paws of the animals in an ascending order starting from the 10 g hair, with sufficient force to cause slight buckling of the hair against the paw. Testing continues until the hair with the lowest force to induce a rapid flicking of the paw is determined or when the cut off force of approximately 20 g is reached. This cut off force is used because it represent approximately 10% of the animals' body weight and it serves to prevent raising of the entire limb due to the use of stiffer hairs, which would change the nature of the stimulus.
  • Neuropathic Pain Model; Chronic Constriction Injury
  • Briefly, an approximately 3 cm incision is made through the skin and the fascia at the mid thigh level of the animals' left hind leg using a no. 10 scalpel blade. The left sciatic nerve is exposed via blunt dissection through the biceps femoris with care to minimize haemorrhagia. Four loose ligatures are tied along the sciatic nerve using 4-0 non-degradable sterilized silk sutures at intervals of 1 to 2 mm apart. The tension of the loose ligatures is tight enough to induce slight constriction of the sciatic nerve when viewed under a dissection microscope at a magnification of 4 fold. In the sham-operated animal, the left sciatic nerve is exposed without further manipulation. Antibacterial ointment is applied directly into the wound, and the muscle is closed using sterilized sutures. Betadine is applied onto the muscle and its surroundings, followed by skin closure with surgical clips.
  • The response thresholds of animals to tactile stimuli are measured using the Model 2290 Electrovonfreyanesthesiometer (IITC Life Science, Woodland Hills, Calif.). Animals are placed in an elevated Plexiglas enclosure set on a mire mesh surface. After 10 minutes of accommodation, pre-calibrated Von Frey hairs are applied perpendicularly to the plantar surface of both paws of the animals in an ascending order starting from the 0.1 g hair, with sufficient force to cause slight buckling of the hair against the paw. Testing continues until the hair with the lowest force to induce a rapid flicking of the paw is determined or when the cut off force of approximately 20 g is reached. This cut off force is used because it represents approximately 10% of the animals' body weight and it serves to prevent raising of the entire limb due to the use of stiffer hairs, which would change the nature of the stimulus.
  • Thermal nociceptive thresholds of the animals are assessed using the Hargreaves test. Following the measurement of tactile thresholds, animals are placed in a Plexiglass enclosure set on top of an elevated glass platform with heating units. The glass platform is thermostatically controlled at a temperature of approximately 24 to 26° C. for all test trials. Animals are allowed to accommodate for 10 minutes following placement into the enclosure until all exploration behaviour ceases. The Model 226 Plantar/Tail Stimulator Analgesia Meter (IITC, Woodland Hills, Calif.) is used to apply a radiant heat beam from underneath the glass platform to the plantar surface of the hind paws. During all test trials, the idle intensity and active intensity of the heat source are set at 1 and 55 respectively, and a cut off time of 20 seconds is used to prevent tissue damage.
  • Neuropathic Pain Model: Spinal Nerve Ligation
  • The spinal nerve ligation (SNL) neuropathic pain model is used as an animal (i.e. rat) model of neuropathic pain. In the SNL test, the lumbar roots of spinal nerves L5 and L6 are tightly ligated to cause nerve injury, which results in the development of mechanical hyperalgesia, mechanical allodynia and thermal hypersensitivity. The surgery is performed two weeks before the test day in order for the pain state to fully develop in the animals. Several spinal nerve ligation variations are used to characterize the analgesic properties of a compound of the invention.
  • Ligation of the L5 spinal nerve;
  • Ligation of the L5 and L6 spinal nerves;
  • Ligation and transection of the L5 spinal nerve;
  • Ligation and transection of the L5 and L6 spinal nerves; or
  • Mild irritation of the L4 spinal nerve in combination with any one of the above (1)-(4).
  • While the animals are anaesthetized under 3.5% isofluorane delivered via a nose cone, an approximately 2.5 cm longitudinal incision is made using a number 10 scalpel blade in the skin just lateral to the dorsal midline, using the level of the posterior iliac crests as the midpoint of the incision. Following the incision, the isoflourane is readjusted to maintenance levels (1.5%-2.5%). At mid-sacral region, an incision is made with the scalpel blade, sliding the blade along the side of the vertebral column (in the saggital plane) until the blade hits the sacrum. Scissors tips are introduced through the incision and the muscle and ligaments are removed from the spine to expose 2-3 cm of the vertebral column. The muscle and fascia are cleared from the spinal vertebra in order to locate the point where the nerve exits from the vertebra. A small glass hook is placed medial to the spinal nerves and the spinal nerves are gently elevated from the surrounding tissues. Once the spinal nerves have been isolated, a small length of non-degradable 6-0 sterilized silk thread is wound twice around the ball at the tip of the glass hook and passed back under the nerve. The spinal nerves are then firmly ligated by tying a knot, ensuring that the nerve bulges on both sides of the ligature. The procedure may be repeated as needed. In some animals, the L4 spinal nerve may be lightly rubbed (up to 20 times) with the small glass hook to maximize the development of neuropathic pain. Antibacterial ointment is applied directly into the incision, and the muscle is closed using sterilized sutures. Betadine is applied onto the muscle and its surroundings, followed by skin closure with surgical staples or sterile non-absorbable monofilament 5-0 nylon sutures.
  • The analgesic effect produced by topical administration of a compound of the invention to the animals can then be observed by measuring the paw withdrawal threshold of animals to mechanical tactile stimuli. These may be measured using either the mechanical allodynia procedure or the mechanical hyperalgesia procedure as described below. After establishment of the appropriate baseline measurements by either method, topical formulation of a compound of the invention is applied on the ipsilateral ankle and foot. The animals are then placed in plastic tunnels for 15 minutes to prevent them from licking the treated area and removing the compound. Animals are placed in the acrylic enclosure for 15 minutes before testing the ipsilateral paw by either of the methods described below, and the responses are recorded at 0.5, 1.0 and 2.0 hour post treatment.
  • Mechanical Allodynia Method
  • The pain threshold of animals to mechanical alloydnia for both operated and control animals can be measured approximately 14 days post-surgery using manual calibrated von Frey filaments as follows. Animals are placed in an elevated plexiglass enclosure set on a mire mesh surface. Animals are allowed to acclimate for 20-30 minutes. Pre-calibrated Von Frey hairs are applied perpendicularly to the plantar surface of the ipsilateral paw of the animals starting from the 2.0 g hair, with sufficient force to cause slight buckling of the hair against the paw to establish the baseline measurements. Stimuli are presented in a consecutive manner, either in an ascending or descending order until the first change in response is noted, after which four additional responses are recorded for a total of six responses. The six responses measured in grams are entered into a formula as described by Chaplan, S. R. et al., J. Neurosci. Methods, 1994 July; 53(1):55-63, and a 50% withdrawal threshold is calculated. This constitutes the mechanical allodynia value.
  • B. Mechanical Hyperalgesia Method
  • The response thresholds of animals to tactile stimuli were measured using the Model 2290 Electrovonfreyanesthesiometer (IITC Life Science, Woodland Hills, Calif.). Animals were placed in an elevated Plexiglas enclosure set on a wire mesh surface. After 15 minutes of accommodation in this enclosure, a von Frey hair was applied perpendicularly to the plantar surface of the ipsilateral hind paws of the animals, with sufficient force, measured in grams, to elicit a crisp response of the paw. The response indicated a withdrawal from the painful stimulus and constituted the efficacy endpoint. The data were expressed as percent change from baseline threshold measured in grams.
  • Example 602 In Vivo Assay for Treatment of Pruritis
  • The compounds of the invention can be evaluated for their activity as antipruritic agents by in vivo test using rodent models. One established model for peripherally elicited pruritus is through the injection of serotonin into the rostral back area (neck) in hairless rats. Prior to serotonin injections (e.g., 2 mg/mL, 50 μL), a dose of a compound of the present invention can be applied systemically through oral, intravenous or intraperitoneal routes or topically to a circular area fixed diameter (e.g. 18 mm). Following dosing, the serotonin injections are given in the area of the topical dosing. After serotonin injection the animal behaviour is monitored by video recording for 20 min-1.5 h, and the number of scratches in this time compared to vehicle treated animals. Thus, application of a compound of the current invention could suppress serotonin-induced scratching in rats.
  • All of the U.S. patents, U.S. patent application publications, U.S. patent applications, foreign patents, foreign patent applications and non patent publications referred to in this specification are incorporated herein by reference in their entireties.
  • Although the foregoing invention has been described in some detail to facilitate understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. Accordingly, the described embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.

Claims (30)

1. A compound of formula I:
Figure US20210093618A1-20210401-C02185
or a pharmaceutically acceptable salt thereof, wherein:
R1 is C1-8 alkyl, C2-8 alkenyl, C1-8 haloalkyl, C1-8 alkoxy, C3-8 carbocycle, C-linked C2-7 heterocycle, or —NR1AR1B, wherein R1A and R1B are each independently selected from the group consisting of hydrogen, C1-8 alkyl, C1-8 alkoxy, and wherein R1A and R1B are optionally combined to form a 3 to 8 membered heterocyclic ring optionally comprising 1 additional heteroatom selected from N, O and S; and wherein R1 is optionally substituted with from 1 to 5 substituents selected from the group consisting of C1-4 alkyl, C1-4 haloalkyl, F, Cl, Br, I, —OH, —CN, —NO2, —NRR1aRR1b, —ORR1a, —SRR1a, —Si(RR1a)3 and C3-6 carbocycle; wherein RR1a and RR1b are independently selected from the group consisting of hydrogen, C1-8 alkyl, C1-8 haloalkyl;
RN is hydrogen, C1-4 alkyl or C1-4 haloalkyl;
R2 is selected from the group consisting of H, F, Cl, Br, I, —CN, C1-8 alkyl, C1-8 haloalkyl and C1-8 alkoxy;
R3 is selected from the group consisting of H, F, Cl, Br, I, —CN, C1-8alkyl, C1-8 haloalkyl and C1-8 alkoxy;
R4 is selected from the group consisting of H, F, Cl, Br, I, —CN, C1-8 alkyl, C1-8 haloalkyl and C1-8 alkoxy;
R5 is selected from the group consisting of H, F, Cl, Br, I, —CN, C1-8 alkyl, C1-8 haloalkyl, C1-8 alkoxy, C3-8 cycloalkyl and C2-7 heterocycle, wherein said C3-8 cycloalkyl and C2-7 heterocycle is optionally substituted with 1-3 substituents selected from F, Cl, Br and I;
L is a linker selected from the group consisting of C1-4 alkylene, C2-4 alkenylene and C2-4 alkynylene, wherein L is optionally substituted with from 1 to 3 substituents selected from the group consisting of ═O, C1-4 alkyl, halo, and C1-4 haloalkyl;
the subscript m represents the integer 0 or 1;
X1 and X2 are each independently selected from the group consisting of absent, —O—, —S(O)—, —S(O)2— and —N(RX)— wherein Rx is H, C1-8 alkyl, C1-8 alkanoyl, or —S(O)2(C1-8 alkyl), and wherein if the subscript m is 0 then one of X1 or X2 is absent;
the subscript n is an integer from 0 to 5;
the ring A is a C2-11 heterocycle comprising a nitrogen atom and further optionally comprising 1-2 heteroatoms selected from N, O and S;
each RAA is independently selected from the group consisting of C1-6 alkyl, C1-6 haloalkyl, C1-6 heteroalkyl, CN, F, Cl, Br and I; and
RA is selected from the group consisting of —(XRB)0-1ORA1, C6-10 aryl-(XRA)—, C1-20 heteroaryl-(XRA)—, C3-12 carbocycle-(XRA)—, —RA2, —S(O)2—RA2, and C2-11 heterocycle-(XRA)—, wherein said C6-10 aryl, C5-9 heteroaryl, C3-12 carbocycle and C2-11 heterocycle of RA is optionally substituted with from 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4(halo)alkoxy, C1-4 alkylamino, C1-4 dialkylamino, C1-4 alkanoyl, C1-4 alkyl-OC(═O)—, C1-4 alkyl-S(O)2—, C3-6 carbocycle, and phenyl that is optionally substituted with one or more substituents selected from fluoro, chloro, and bromo; RA1 is selected from the group consisting of hydrogen, C1-8 alkyl, C2-8 alkenyl, C1-8 haloalkyl, C3-8 cycloalkyl, phenyl and benzyl; RA2 is selected from the group consisting of C1-8 alkyl that is optionally substituted with one or more substituents selected from oxo (═O), fluoro, amino, C1-4 alkylamino and C1-4 dialkylamino; XRA is selected from the group consisting of absent, —O—, —S—, —N(H)—, —N(C1-4 alkyl)-, —S(O)—, —S(O)2—, —C(═O)—, C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene; XRB is selected from the group consisting of absent, C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene; wherein any C1-4 alkylene, C1-4 heteroalkylene, C2-4 alkenylene and C2-4 alkynylene of XRA or XRB is optionally substituted with 1 to 3 substituents selected from the group consisting of C1-4 alkyl, C1-4 haloalkyl, C1-4 heteroalkyl, oxo (═O), hydroxy, and phenyl that is optionally substituted with 1 to 5 substitutents selected from, F, Cl, Br, I, —NH2, —OH, —CN, —NO2, C1-4 alkyl, C1-4 haloalkyl, C1-4 alkoxy, C1-4(halo)alkoxy, C1-4 alkylamino and C1-4 dialkylamino; or wherein XRA or XRB is optionally substituted with 2 substituents that combine to form a 3 to 5 membered carbocycle or a 3-5 membered heterocycle;
provided the compound of formula I is not:
Figure US20210093618A1-20210401-C02186
Figure US20210093618A1-20210401-C02187
Figure US20210093618A1-20210401-C02188
Figure US20210093618A1-20210401-C02189
2-4. (canceled)
5. The compound of claim 1, wherein the compound has the formula Ib:
Figure US20210093618A1-20210401-C02190
6. The compound of claim 1, wherein the compound has the formula Ic:
Figure US20210093618A1-20210401-C02191
7-13. (canceled)
14. The compound of claim 1, wherein R5 is C3-5 cycloalkyl.
15-17. (canceled)
18. The compound of claim 1, wherein X1 is —O—; the subscript m is 1 and -(L)- is —CH2— or —CH2—CH2—.
19. The compound of claim 1, wherein X1 is absent; X2 is —O— or —N(H)—; the subscript m is 1; and -(L)- is selected from the group consisting of —C(H)2—, —C(═O)—, —C(H)(CH3)—, —CH2—CH2—, —CH2—C(H)(CH3)—, —C(H)(CH3)—C(H2)—, —CH2CH2CH2—, —CH2—C(H)(CH3)—CH2— or —CH2CH2CH2CH2—.
20. The compound of claim 1, wherein X1 and X2 is absent; the subscript m is 1; and -(L)- is selected from the group consisting of —C(H)2—, —C(═O)—, —C(H)(CH3)—, —CH2—CH2—, —CH2—C(H)(CH3)—, —C(H)(CH3)—C(H2)—, —CH2CH2CH2—, —CH2—C(H)(CH3)—CH2— or —CH2CH2CH2CH2—.
21-22. (canceled)
23. The compound of claim 1, wherein:
Figure US20210093618A1-20210401-C02192
is selected from the group consisting of:
Figure US20210093618A1-20210401-C02193
24. The compound of claim 1, wherein:
Figure US20210093618A1-20210401-C02194
is selected from the group consisting of:
Figure US20210093618A1-20210401-C02195
25-30. (canceled)
31. The compound of claim 1, wherein RA is selected from the group consisting of
Figure US20210093618A1-20210401-C02196
32-36. (canceled)
37. The compound of claim 1, wherein the compound has the formula Id:
Figure US20210093618A1-20210401-C02197
38. The compound of claim 37 wherein R1 is methyl, ethyl, cyclopropyl, or 1-azetidinyl.
39. The compound of claim 37, wherein —X2-(L)m-X1— is —O—, —CH2—, —CH2—O—, or —CH2CH2—O—.
40. The compound of claim 37, wherein:
Figure US20210093618A1-20210401-C02198
41. The compound of claim 37, wherein:
Figure US20210093618A1-20210401-C02199
42. The compound of claim 37, wherein A is optionally substituted azetidine, pyrrolidine, piperidine, morpholine, homopiperazine, and piperazine.
43-44. (canceled)
45. The compound of claim 1, wherein:
Figure US20210093618A1-20210401-C02200
has the formula:
Figure US20210093618A1-20210401-C02201
46. The compound of claim 41, wherein
Figure US20210093618A1-20210401-C02202
47-49. (canceled)
50. The compound of claim 1 which is selected from:
Figure US20210093618A1-20210401-C02203
Figure US20210093618A1-20210401-C02204
Figure US20210093618A1-20210401-C02205
Figure US20210093618A1-20210401-C02206
Figure US20210093618A1-20210401-C02207
Figure US20210093618A1-20210401-C02208
Figure US20210093618A1-20210401-C02209
Figure US20210093618A1-20210401-C02210
Figure US20210093618A1-20210401-C02211
Figure US20210093618A1-20210401-C02212
Figure US20210093618A1-20210401-C02213
Figure US20210093618A1-20210401-C02214
Figure US20210093618A1-20210401-C02215
Figure US20210093618A1-20210401-C02216
Figure US20210093618A1-20210401-C02217
Figure US20210093618A1-20210401-C02218
Figure US20210093618A1-20210401-C02219
Figure US20210093618A1-20210401-C02220
Figure US20210093618A1-20210401-C02221
Figure US20210093618A1-20210401-C02222
Figure US20210093618A1-20210401-C02223
Figure US20210093618A1-20210401-C02224
Figure US20210093618A1-20210401-C02225
Figure US20210093618A1-20210401-C02226
Figure US20210093618A1-20210401-C02227
Figure US20210093618A1-20210401-C02228
Figure US20210093618A1-20210401-C02229
Figure US20210093618A1-20210401-C02230
Figure US20210093618A1-20210401-C02231
Figure US20210093618A1-20210401-C02232
Figure US20210093618A1-20210401-C02233
Figure US20210093618A1-20210401-C02234
Figure US20210093618A1-20210401-C02235
Figure US20210093618A1-20210401-C02236
Figure US20210093618A1-20210401-C02237
Figure US20210093618A1-20210401-C02238
Figure US20210093618A1-20210401-C02239
Figure US20210093618A1-20210401-C02240
Figure US20210093618A1-20210401-C02241
Figure US20210093618A1-20210401-C02242
Figure US20210093618A1-20210401-C02243
Figure US20210093618A1-20210401-C02244
Figure US20210093618A1-20210401-C02245
Figure US20210093618A1-20210401-C02246
Figure US20210093618A1-20210401-C02247
Figure US20210093618A1-20210401-C02248
Figure US20210093618A1-20210401-C02249
Figure US20210093618A1-20210401-C02250
Figure US20210093618A1-20210401-C02251
Figure US20210093618A1-20210401-C02252
Figure US20210093618A1-20210401-C02253
Figure US20210093618A1-20210401-C02254
Figure US20210093618A1-20210401-C02255
Figure US20210093618A1-20210401-C02256
Figure US20210093618A1-20210401-C02257
Figure US20210093618A1-20210401-C02258
Figure US20210093618A1-20210401-C02259
Figure US20210093618A1-20210401-C02260
Figure US20210093618A1-20210401-C02261
Figure US20210093618A1-20210401-C02262
Figure US20210093618A1-20210401-C02263
Figure US20210093618A1-20210401-C02264
Figure US20210093618A1-20210401-C02265
Figure US20210093618A1-20210401-C02266
Figure US20210093618A1-20210401-C02267
Figure US20210093618A1-20210401-C02268
Figure US20210093618A1-20210401-C02269
Figure US20210093618A1-20210401-C02270
Figure US20210093618A1-20210401-C02271
Figure US20210093618A1-20210401-C02272
Figure US20210093618A1-20210401-C02273
Figure US20210093618A1-20210401-C02274
Figure US20210093618A1-20210401-C02275
Figure US20210093618A1-20210401-C02276
Figure US20210093618A1-20210401-C02277
Figure US20210093618A1-20210401-C02278
Figure US20210093618A1-20210401-C02279
Figure US20210093618A1-20210401-C02280
Figure US20210093618A1-20210401-C02281
Figure US20210093618A1-20210401-C02282
Figure US20210093618A1-20210401-C02283
Figure US20210093618A1-20210401-C02284
Figure US20210093618A1-20210401-C02285
Figure US20210093618A1-20210401-C02286
Figure US20210093618A1-20210401-C02287
Figure US20210093618A1-20210401-C02288
Figure US20210093618A1-20210401-C02289
Figure US20210093618A1-20210401-C02290
Figure US20210093618A1-20210401-C02291
Figure US20210093618A1-20210401-C02292
Figure US20210093618A1-20210401-C02293
Figure US20210093618A1-20210401-C02294
Figure US20210093618A1-20210401-C02295
Figure US20210093618A1-20210401-C02296
Figure US20210093618A1-20210401-C02297
Figure US20210093618A1-20210401-C02298
Figure US20210093618A1-20210401-C02299
Figure US20210093618A1-20210401-C02300
and salts thereof.
51. (canceled)
52. A method of treating a disease or condition in a mammal selected from the group consisting of pain, depression, cardiovascular diseases, respiratory diseases, and psychiatric diseases, and combinations thereof, wherein the method comprises administering to the mammal in need thereof a therapeutically effective amount of a compound of formula I as described in claim 1, or a pharmaceutically acceptable salt thereof.
53-64. (canceled)
US16/677,487 2013-11-27 2019-11-07 Substituted benzamides and methods of use thereof Abandoned US20210093618A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/677,487 US20210093618A1 (en) 2013-11-27 2019-11-07 Substituted benzamides and methods of use thereof

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN2013001452 2013-11-27
CNPCT/CN2013/001452 2013-11-27
CNPCT/CN2013/088062 2013-11-28
CN2013088062 2013-11-28
CN2014090171 2014-11-03
CNPCT/CN2014/090171 2014-11-03
PCT/CN2014/092269 WO2015078374A1 (en) 2013-11-27 2014-11-26 Substituted benzamides and methods of use thereof
US14/603,273 US9546164B2 (en) 2013-11-27 2015-01-22 Substituted benzamides and methods of use thereof
US15/275,131 US9694002B2 (en) 2013-11-27 2016-09-23 Substituted benzamides and methods of use thereof
US201715620597A 2017-06-12 2017-06-12
US201815875992A 2018-01-19 2018-01-19
US201816130703A 2018-09-13 2018-09-13
US16/390,957 US20200108054A1 (en) 2013-11-27 2019-04-22 Substituted benzamides and methods of use thereof
US16/677,487 US20210093618A1 (en) 2013-11-27 2019-11-07 Substituted benzamides and methods of use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/390,957 Continuation US20200108054A1 (en) 2013-11-27 2019-04-22 Substituted benzamides and methods of use thereof

Publications (1)

Publication Number Publication Date
US20210093618A1 true US20210093618A1 (en) 2021-04-01

Family

ID=53198372

Family Applications (4)

Application Number Title Priority Date Filing Date
US14/603,273 Active US9546164B2 (en) 2013-11-27 2015-01-22 Substituted benzamides and methods of use thereof
US15/275,131 Active US9694002B2 (en) 2013-11-27 2016-09-23 Substituted benzamides and methods of use thereof
US16/390,957 Abandoned US20200108054A1 (en) 2013-11-27 2019-04-22 Substituted benzamides and methods of use thereof
US16/677,487 Abandoned US20210093618A1 (en) 2013-11-27 2019-11-07 Substituted benzamides and methods of use thereof

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US14/603,273 Active US9546164B2 (en) 2013-11-27 2015-01-22 Substituted benzamides and methods of use thereof
US15/275,131 Active US9694002B2 (en) 2013-11-27 2016-09-23 Substituted benzamides and methods of use thereof
US16/390,957 Abandoned US20200108054A1 (en) 2013-11-27 2019-04-22 Substituted benzamides and methods of use thereof

Country Status (17)

Country Link
US (4) US9546164B2 (en)
EP (2) EP3450428A1 (en)
JP (2) JP6383418B2 (en)
KR (1) KR20160090846A (en)
CN (1) CN105793238B (en)
AU (1) AU2014356967A1 (en)
CA (1) CA2931732A1 (en)
CL (1) CL2016001287A1 (en)
CR (1) CR20160296A (en)
EA (1) EA201691085A1 (en)
HK (1) HK1223913A1 (en)
IL (1) IL245844A0 (en)
MX (1) MX2016006936A (en)
PE (1) PE20161247A1 (en)
PH (1) PH12016501007A1 (en)
TW (1) TWI560180B (en)
WO (1) WO2015078374A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2853439A1 (en) 2011-10-31 2013-05-10 Xenon Pharmaceuticals Inc. Benzenesulfonamide compounds and their use as therapeutic agents
US9481677B2 (en) 2011-10-31 2016-11-01 Xenon Pharmaceuticals Inc. Biaryl ether sulfonamides and their use as therapeutic agents
SG11201408284VA (en) 2012-05-22 2015-02-27 Xenon Pharmaceuticals Inc N-substituted benzamides and their use in the treatment of pain
WO2014008458A2 (en) 2012-07-06 2014-01-09 Genentech, Inc. N-substituted benzamides and methods of use thereof
US9550775B2 (en) 2013-03-14 2017-01-24 Genentech, Inc. Substituted triazolopyridines and methods of use thereof
BR112015023397A2 (en) 2013-03-15 2017-07-18 Genentech Inc substituted benzoxazole and methods of use thereof
MX2016006936A (en) 2013-11-27 2016-10-05 Genentech Inc Substituted benzamides and methods of use thereof.
CN106715418A (en) 2014-07-07 2017-05-24 基因泰克公司 Therapeutic compounds and methods of use thereof
CN107406380B (en) * 2015-02-04 2020-04-28 上海海雁医药科技有限公司 Heterocyclic substituted N-sulfonyl benzamide derivative, preparation method and medical application thereof
BR112017024853A2 (en) 2015-05-22 2018-08-07 Genentech Inc compound, pharmaceutical composition, method for treating a disease or condition in a mammal, for treating itching in a mammal, for treating or prophylaxis and use of a compound
JP2018526371A (en) 2015-08-27 2018-09-13 ジェネンテック, インコーポレイテッド Therapeutic compounds and methods of use thereof
SG10202007787RA (en) 2015-09-28 2020-09-29 Genentech Inc Therapeutic compounds and methods of use thereof
EP4163281A1 (en) * 2015-11-13 2023-04-12 Oppilan Pharma Ltd. Process for preparing heterocyclic compounds for the treatment of disease and intermediate compounds used therein
EP3380466A1 (en) * 2015-11-25 2018-10-03 Genentech, Inc. Substituted benzamides useful as sodium channel blockers
EP3383389B1 (en) 2015-11-30 2021-04-28 Merck Sharp & Dohme Corp. Aryl acylsulfonamides as blt1 antagonists
KR20180095598A (en) 2015-12-18 2018-08-27 머크 샤프 앤드 돔 코포레이션 Hydroxyalkylamine- and hydroxycycloalkylamine-substituted diamine-arylsulfonamide compounds having selective activity in voltage-gated sodium channels
JP2019505508A (en) 2016-02-03 2019-02-28 シャンハイ ハイヤン ファーマシューティカル テクノロジー カンパニー リミテッドShanghai Haiyan Pharmaceutical Technology Co., Ltd. Heterocyclic substituted N-sulfonylbenzamide derivatives, their preparation and use in medicine
JP2019513714A (en) 2016-03-30 2019-05-30 ジェネンテック, インコーポレイテッド Substituted benzamides and methods of use thereof
TN2018000385A1 (en) * 2016-05-20 2020-06-15 Xenon Pharmaceuticals Inc Benzenesulfonamide compounds and their use as therapeutic agents
AU2017347549A1 (en) 2016-10-17 2019-05-02 Genentech, Inc. Therapeutic compounds and methods of use thereof
BR112019011121A2 (en) 2016-12-09 2019-10-01 Xenon Pharmaceuticals Inc benzenesulfonamide compounds and their use as therapeutic agents
NZ763766A (en) 2017-03-20 2023-07-28 Novo Nordisk Healthcare Ag Pyrrolopyrrole compositions as pyruvate kinase (pkr) activators
CN110546148A (en) 2017-03-24 2019-12-06 基因泰克公司 4-piperidine-N- (pyrimidin-4-yl) chroman-7-sulfonamide derivatives as sodium channel inhibitors
WO2019019851A1 (en) 2017-07-24 2019-01-31 上海海雁医药科技有限公司 Sodium ion channel inhibitor and pharmaceutically acceptable salt and polymorph thereof and use thereof
US11020381B2 (en) 2017-08-31 2021-06-01 Raqualia Pharma Inc. Biaryloxy derivatives as TTX-S blockers
CN109574927A (en) * 2017-09-29 2019-04-05 浙江海正药业股份有限公司 N- (substituted sulphonyl) benzamide derivatives and preparation method thereof and medical usage
WO2019126559A1 (en) 2017-12-20 2019-06-27 Vanderbilt University Antagonists of the muscarinic acetylcholine receptor m4
TW202000651A (en) 2018-02-26 2020-01-01 美商建南德克公司 Therapeutic compounds and methods of use thereof
US10947251B2 (en) 2018-03-30 2021-03-16 Genentech, Inc. Therapeutic compounds and methods of use thereof
UA127024C2 (en) 2018-06-13 2023-03-15 Ксенон Фармасьютікалз Інк. Benzenesulfonamide compounds and their use as therapeutic agents
EP3852791B1 (en) 2018-09-19 2024-07-03 Novo Nordisk Health Care AG Activating pyruvate kinase r
BR112021005188A2 (en) 2018-09-19 2021-06-08 Forma Therapeutics, Inc. treating sickle cell anemia with a pyruvate kinase r activating compound
WO2020248123A1 (en) * 2019-06-11 2020-12-17 Merck Sharp & Dohme Corp. Hydroxypyrrolidine-substituted arylsulfonamide compounds with selective activity in voltage-gated sodium channels
WO2021132577A1 (en) * 2019-12-27 2021-07-01 日本たばこ産業株式会社 Acylsulfamide compound and pharmaceutical use therefor
CN111303120A (en) * 2020-03-14 2020-06-19 江巨东 Preparation method of fasudil hydrochloride
CN115215787A (en) * 2021-04-19 2022-10-21 中国科学院上海药物研究所 Somatostatin receptor 5 antagonists and uses thereof
EP4387609A2 (en) 2021-08-18 2024-06-26 ChemoCentryx, Inc. Aryl sulfonyl (hydroxy) piperidines as ccr6 inhibitors
EP4387965A2 (en) 2021-08-18 2024-06-26 ChemoCentryx, Inc. Aryl sulfonyl compounds as ccr6 inhibitors
EP4174077A1 (en) * 2021-10-27 2023-05-03 Merck Patent GmbH Electronic switching device
CN116120261B (en) * 2022-11-30 2024-01-23 浙大宁波理工学院 Preparation method of 3- [ (4-sulfadiazine-1-yl) methyl ] benzoic acid compound

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3705185A (en) 1969-04-14 1972-12-05 Minnesota Mining & Mfg N-aroyl sulfonamides
GR71915B (en) * 1979-11-27 1983-08-16 Pfizer
GB8524157D0 (en) 1984-10-19 1985-11-06 Ici America Inc Heterocyclic amides
DK24089D0 (en) 1989-01-20 1989-01-20 Hans Bundgaard NOVEL PRODRUG DERIVATIVES OF BIOLOGICALLY ACTIVE AGENTS CONTAINING HYDROXYL GROUPS OR NH-ACIDIC GROUPS
GB8911854D0 (en) 1989-05-23 1989-07-12 Ici Plc Heterocyclic compounds
IL101860A0 (en) 1991-05-31 1992-12-30 Ici Plc Heterocyclic derivatives
JP3462501B2 (en) 1992-11-23 2003-11-05 アベンティス・ファーマスーティカルズ・インコーポレイテツド Substituted 3- (aminoalkylamino) -1,2-benzisoxazoles and related compounds
US5573653A (en) 1994-07-11 1996-11-12 Sandoz Ltd. Electrochemical process for thiocyanating aminobenzene compounds
CA2198457A1 (en) 1994-08-30 1996-03-07 Koichi Kojima Isoxazole derivatives
US5753653A (en) 1995-12-08 1998-05-19 Agouron Pharmaceuticals, Inc. Metalloproteinase inhibitors, pharmaceutical compositions containing them and their pharmaceutical uses
GB9828442D0 (en) 1998-12-24 1999-02-17 Karobio Ab Novel thyroid receptor ligands and method II
KR100789567B1 (en) 2001-11-06 2007-12-28 동화약품공업주식회사 A 3-amido-1,2-benzoisoxazole derivatives, process for preparation, and use thereof
DE10201550A1 (en) 2002-01-17 2003-07-31 Merck Patent Gmbh Phenoxy piperidines
WO2004014913A2 (en) 2002-08-08 2004-02-19 Memory Pharmaceuticals Corporation Derivatives of 2-trifluormethyl-6-aminopurine as phosphodiesterase 4 inhibitors
US7132425B2 (en) 2002-12-12 2006-11-07 Hoffmann-La Roche Inc. 5-substituted-six-membered heteroaromatic glucokinase activators
BRPI0409429A (en) 2003-04-15 2006-04-18 Pfizer alpha-substituted carboxylic acid as modulators for
EP2332912A1 (en) 2003-08-08 2011-06-15 Vertex Pharmaceuticals Incorporated Heteroarylaminosulfonylphenylderivates for use as sodium or calcium channel blockers in the treatment of pain
ZA200601942B (en) 2003-08-08 2007-05-30 Vertex Pharma Heteroarylaminosulfonylphenyl derivatives for use as sodium or calcium channel blockers in the treatment of pain
DE602004024093D1 (en) 2003-10-03 2009-12-24 Portola Pharm Inc 2,4-dioxo-3-CHINAZOLINYLARYLSULFONYLHARNSTOFFE
US7081539B2 (en) 2004-03-25 2006-07-25 Dainippon Sumitomo Pharma Co., Ltd. One-pot process for the preparation of 1,2-benzisoxazole-3-methanesulfonamide
JP2008508306A (en) 2004-07-30 2008-03-21 メルク エンド カムパニー インコーポレーテッド Indanone enhancer of metabotropic glutamate receptor
CA2576993C (en) 2004-08-12 2013-09-24 Amgen Inc. Bisaryl-sulfonamides
US7205296B2 (en) 2004-09-29 2007-04-17 Portola Pharmaceuticals, Inc. Substituted 2H-1,3-benzoxazin-4(3H)-ones
JP2008189549A (en) 2005-05-12 2008-08-21 Astellas Pharma Inc Carboxylic acid derivative or its salt
DE102005038947A1 (en) 2005-05-18 2006-11-30 Grünenthal GmbH Substituted benzo [d] isoxazol-3-yl-amine compounds and their use in medicaments
US7632837B2 (en) 2005-06-17 2009-12-15 Bristol-Myers Squibb Company Bicyclic heterocycles as cannabinoid-1 receptor modulators
WO2007030582A2 (en) 2005-09-09 2007-03-15 Bristol-Myers Squibb Company Acyclic ikur inhibitors
ATE425138T1 (en) 2005-10-19 2009-03-15 Hoffmann La Roche N-PHENYL-PHENYLACETAMIDE NONNUCLEOSIDE INHIBITOR N REVERSE TRANSCRIPTASE
WO2007062078A2 (en) 2005-11-23 2007-05-31 Ligand Pharmaceuticals Inc. Thrombopoietin activity modulating compounds and methods
AR058296A1 (en) 2005-12-09 2008-01-30 Kalypsys Inc INHIBITORS OF HISTONA DEACETILASE AND PHARMACEUTICAL COMPOSITION
MX2008013194A (en) 2006-04-11 2008-12-01 Vertex Pharma Compositions useful as inhibitors of voltage-gated sodium channels.
ES2377821T3 (en) 2006-10-11 2012-04-02 Amgen Inc. Imidazo- and triazolo-pyridine compounds and methods of use thereof.
EP2108020A2 (en) 2007-01-30 2009-10-14 Biogen Idec MA, Inc. 1-h-pyrazolo[3,4b]pyrimidine derivatives and their use as modulators of mitotic kinases
CA2677493A1 (en) 2007-02-05 2008-08-14 Xenon Pharmaceuticals Inc. Pyridopyrimidinone compounds useful in treating sodium channel-mediated diseases or conditions
DE602008000809D1 (en) 2007-03-23 2010-04-29 Icagen Inc Ion channel inhibitors
WO2008147797A2 (en) * 2007-05-25 2008-12-04 Vertex Pharmaceuticals Incorporated Ion channel modulators and methods of use
KR20100031725A (en) 2007-06-07 2010-03-24 아스텔라스세이야쿠 가부시키가이샤 Pyridone compound
US20090012103A1 (en) 2007-07-05 2009-01-08 Matthew Abelman Substituted heterocyclic compounds
JP5460589B2 (en) 2007-07-13 2014-04-02 アイカジェン, インコーポレイテッド Sodium channel inhibitor
WO2009010784A1 (en) 2007-07-13 2009-01-22 Astrazeneca Ab New compounds 955
WO2009022731A1 (en) 2007-08-10 2009-02-19 Nippon Chemiphar Co., Ltd. P2x4 receptor antagonist
GB0720390D0 (en) 2007-10-18 2007-11-28 Prosidion Ltd G-Protein coupled receptor agonists
WO2009086303A2 (en) 2007-12-21 2009-07-09 University Of Rochester Method for altering the lifespan of eukaryotic organisms
CA2715835C (en) * 2008-02-29 2017-03-21 Renovis, Inc. Amide compounds, compositions and uses thereof
EP2305641A4 (en) 2008-06-23 2012-08-22 Astellas Pharma Inc Sulfonamide compound or salt thereof
WO2010022055A2 (en) 2008-08-20 2010-02-25 Amgen Inc. Inhibitors of voltage-gated sodium channels
PE20142099A1 (en) 2009-01-12 2014-12-13 Icagen Inc SULFONAMIDE DERIVATIVES
PT2464645T (en) 2009-07-27 2017-10-11 Gilead Sciences Inc Fused heterocyclic compounds as ion channel modulators
WO2011016234A1 (en) 2009-08-04 2011-02-10 Raqualia Pharma Inc. Picolinamide derivatives as ttx-s blockers
ES2532866T3 (en) 2009-09-25 2015-04-01 Astellas Pharma Inc. Substituted amide compound
WO2011059042A1 (en) 2009-11-12 2011-05-19 武田薬品工業株式会社 Aromatic ring compound
US8471034B2 (en) 2009-11-18 2013-06-25 Concert Pharmaceuticals, Inc. Niacin prodrugs and deuterated versions thereof
TW201139406A (en) 2010-01-14 2011-11-16 Glaxo Group Ltd Voltage-gated sodium channel blockers
ES2565345T3 (en) 2010-02-12 2016-04-04 Nivalis Therapeutics, Inc. New s-nitrosoglutathione reductase inhibitors
WO2011153588A1 (en) 2010-06-10 2011-12-15 Biota Scientific Management Pty Ltd Viral polymerase inhibitors
US20120004714A1 (en) 2010-06-30 2012-01-05 Ryan Kleve Lead having coil electrode with preferential bending region
WO2012004664A2 (en) 2010-07-07 2012-01-12 Purdue Pharma L.P. Analogs of sodium channel peptide toxin
EP2590972B1 (en) 2010-07-09 2015-01-21 Pfizer Limited N-sulfonylbenzamides as inhibitors of voltage-gated sodium channels
ES2533065T3 (en) 2010-07-09 2015-04-07 Pfizer Limited Benzenesulfonamides useful as sodium channel inhibitors
US9096558B2 (en) 2010-07-09 2015-08-04 Pfizer Limited N-sulfonylbenzamide compounds
US8772343B2 (en) * 2010-07-12 2014-07-08 Pfizer Limited Chemical compounds
CA2804877A1 (en) 2010-07-12 2012-01-19 Pfizer Limited Sulfonamide derivatives as nav1.7 inhibitors for the treatment of pain
JP2013531030A (en) * 2010-07-12 2013-08-01 ファイザー・リミテッド N-sulfonylbenzamide as an inhibitor of voltage-gated sodium channels
CA2801032A1 (en) 2010-07-12 2012-01-19 Pfizer Limited N-sulfonylbenzamide derivatives useful as voltage gated sodium channel inhibitors
CA2804716A1 (en) * 2010-07-12 2012-01-19 Pfizer Limited Chemical compounds
US9120752B2 (en) 2010-07-16 2015-09-01 Purdue Pharma, L.P. Pyridine compounds as sodium channel blockers
BR112013005889A2 (en) 2010-09-13 2020-08-25 Novartis Ag triazineoxadiazoles, pharmaceutical composition that comprises them and their use
WO2012039657A1 (en) 2010-09-22 2012-03-29 Astrazeneca Ab Novel chromane compound for the treatment of pain disorders
KR20130119964A (en) 2010-12-22 2013-11-01 퍼듀 퍼머 엘피 Substituted pyridines as sodium channel blockers
WO2012095781A1 (en) 2011-01-13 2012-07-19 Pfizer Limited Indazole derivatives as sodium channel inhibitors
EP3056495A1 (en) 2011-02-02 2016-08-17 Vertex Pharmaceuticals Inc. Pyrrolopyrazine-spirocyclic piperidine amides as modulators of ion channels
CA2844799A1 (en) 2011-08-17 2013-02-21 Amgen Inc. Heteroaryl sodium channel inhibitors
EP2766018A4 (en) 2011-10-13 2015-02-25 Univ Case Western Reserve Rxr agonists compounds and methods
BR112014010197A2 (en) 2011-10-28 2017-04-18 Merck Sharp & Dohme compound, pharmaceutical composition, method of treating a disorder
CA2853439A1 (en) 2011-10-31 2013-05-10 Xenon Pharmaceuticals Inc. Benzenesulfonamide compounds and their use as therapeutic agents
US9481677B2 (en) 2011-10-31 2016-11-01 Xenon Pharmaceuticals Inc. Biaryl ether sulfonamides and their use as therapeutic agents
US9133131B2 (en) 2011-11-15 2015-09-15 Purdue Pharma L.P. Pyrimidine diol amides as sodium channel blockers
EP2788332A1 (en) 2011-12-07 2014-10-15 Amgen, Inc. Bicyclic aryl and heteroaryl sodium channel inhibitors
ES2593533T3 (en) * 2011-12-15 2016-12-09 Pfizer Limited Sulfonamide derivatives
JP6067031B2 (en) * 2012-01-04 2017-01-25 ファイザー・リミテッドPfizer Limited N-aminosulfonylbenzamide
JP2015083542A (en) * 2012-02-08 2015-04-30 大日本住友製薬株式会社 Three substituted proline derivative
US8889741B2 (en) 2012-02-09 2014-11-18 Daiichi Sankyo Company, Limited Cycloalkane derivatives
WO2013122897A1 (en) 2012-02-13 2013-08-22 Amgen Inc. Dihydrobenzoxazine and tetrahydroquinoxaline sodium channel inhibitors
WO2013134518A1 (en) 2012-03-09 2013-09-12 Amgen Inc. Sulfamide sodium channel inhibitors
WO2013146969A1 (en) 2012-03-29 2013-10-03 第一三共株式会社 Novel disubstituted cyclohexane derivative
SG11201408284VA (en) * 2012-05-22 2015-02-27 Xenon Pharmaceuticals Inc N-substituted benzamides and their use in the treatment of pain
WO2014008458A2 (en) * 2012-07-06 2014-01-09 Genentech, Inc. N-substituted benzamides and methods of use thereof
AU2013291098A1 (en) * 2012-07-19 2015-02-05 Sumitomo Dainippon Pharma Co., Ltd. 1-(cycloalkyl-carbonyl)proline derivative
BR112015008987A2 (en) 2012-10-26 2017-07-04 Merck Sharp & Dohme compound or a pharmaceutically acceptable salt thereof, pharmaceutical composition, and use of a pharmaceutical composition
BR112015009216A2 (en) 2012-10-26 2017-07-04 Merck Sharp & Dohme compound or a pharmaceutically acceptable salt thereof, pharmaceutical composition, and use of a pharmaceutical composition
WO2014096941A1 (en) 2012-12-20 2014-06-26 Purdue Pharma L.P. Cyclic sulfonamides as sodium channel blockers
UY35288A (en) 2013-01-31 2014-08-29 Vertex Pharma PYRIDONAMIDS AS SODIUM CHANNEL MODULATORS
US20140296266A1 (en) 2013-03-01 2014-10-02 Gilead Sciences, Inc. Therapeutic compounds
US9550775B2 (en) 2013-03-14 2017-01-24 Genentech, Inc. Substituted triazolopyridines and methods of use thereof
BR112015023397A2 (en) 2013-03-15 2017-07-18 Genentech Inc substituted benzoxazole and methods of use thereof
JP6449845B2 (en) 2013-03-15 2019-01-09 クロモセル コーポレイション Sodium channel modulator for the treatment of pain
US9663508B2 (en) 2013-10-01 2017-05-30 Amgen Inc. Biaryl acyl-sulfonamide compounds as sodium channel inhibitors
MX2016006936A (en) 2013-11-27 2016-10-05 Genentech Inc Substituted benzamides and methods of use thereof.

Also Published As

Publication number Publication date
CA2931732A1 (en) 2015-06-04
US20200108054A1 (en) 2020-04-09
EP3074377A1 (en) 2016-10-05
EP3074377B1 (en) 2018-10-17
US9546164B2 (en) 2017-01-17
US20150252038A1 (en) 2015-09-10
IL245844A0 (en) 2016-08-02
TW201533021A (en) 2015-09-01
AU2014356967A1 (en) 2016-07-07
PE20161247A1 (en) 2016-11-30
WO2015078374A1 (en) 2015-06-04
PH12016501007A1 (en) 2016-07-18
JP2017504571A (en) 2017-02-09
JP6383418B2 (en) 2018-08-29
US9694002B2 (en) 2017-07-04
KR20160090846A (en) 2016-08-01
EA201691085A1 (en) 2017-02-28
HK1223913A1 (en) 2017-08-11
EP3450428A1 (en) 2019-03-06
CN105793238A (en) 2016-07-20
JP2018188466A (en) 2018-11-29
CR20160296A (en) 2016-09-20
CN105793238B (en) 2019-12-24
TWI560180B (en) 2016-12-01
EP3074377A4 (en) 2017-04-19
MX2016006936A (en) 2016-10-05
US20170087136A1 (en) 2017-03-30
CL2016001287A1 (en) 2018-03-16

Similar Documents

Publication Publication Date Title
US9694002B2 (en) Substituted benzamides and methods of use thereof
US11149002B2 (en) Therapeutic compounds and methods of use thereof
US11203572B2 (en) Substituted benzamides and methods of use thereof
US9550775B2 (en) Substituted triazolopyridines and methods of use thereof
US10457654B2 (en) Therapeutic compounds and methods of use thereof
US10179767B2 (en) Substituted benzamides and methods of use thereof
US20210171516A1 (en) Therapeutic compounds and methods of use thereof
US20210253548A1 (en) Substituted benzamides and methods of use thereof
EP3797101A1 (en) Pyrididne-sulfonamide derivatives as sodium channel inhibitors
WO2023028056A1 (en) 3-amino piperidyl sodium channel inhibitors

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION