US20210088481A1 - Portable phased array test instrument - Google Patents

Portable phased array test instrument Download PDF

Info

Publication number
US20210088481A1
US20210088481A1 US17/113,517 US202017113517A US2021088481A1 US 20210088481 A1 US20210088481 A1 US 20210088481A1 US 202017113517 A US202017113517 A US 202017113517A US 2021088481 A1 US2021088481 A1 US 2021088481A1
Authority
US
United States
Prior art keywords
instrument
dongle
sliding support
casing
handle part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/113,517
Inventor
Benjamin Spay
Francois Houde
Jean-Sebastien Langlois
Eric Bharucha
Christian Gauvin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evident Scientific Inc
Original Assignee
Olympus America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus America Inc filed Critical Olympus America Inc
Priority to US17/113,517 priority Critical patent/US20210088481A1/en
Assigned to OLYMPUS AMERICA INC. reassignment OLYMPUS AMERICA INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HOUDE, FRANCOIS, BHARUCHA, ERIC, GAUVIN, CHRISTIAN, LANGLOIS, JEAN-SEBASTIEN, Spay, Benjamin
Publication of US20210088481A1 publication Critical patent/US20210088481A1/en
Assigned to EVIDENT SCIENTIFIC, INC. reassignment EVIDENT SCIENTIFIC, INC. CONFIRMATORY ASSIGNMENT Assignors: OLYMPUS AMERICA INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/262Arrangements for orientation or scanning by relative movement of the head and the sensor by electronic orientation or focusing, e.g. with phased arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9006Details, e.g. in the structure or functioning of sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • G01N29/226Handheld or portable devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/60Software deployment
    • G06F8/61Installation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/60Software deployment
    • G06F8/65Updates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays

Definitions

  • the invention relates to ultrasonic non-destructive testing and inspection (NDT/NDI), and in particular to a portable phased array test instrument for controlling operation of one or more ultrasonic phased array probes.
  • NDT/NDI ultrasonic non-destructive testing and inspection
  • Phased array test instruments generally contain electronic components which may require re-programming to update the firmware or may require testing in order to isolate faults or error conditions during instrument maintenance.
  • it is often necessary to either connect to the relevant components at the printed circuit board level, or to connect to components by means of an external connector, which is unsightly and may lead to inadvertent user errors.
  • FIG. 1 is a perspective view of a portable phased array instrument according to the present disclosure.
  • FIG. 2 is a perspective view of a handle assembly according to the present disclosure.
  • FIG. 3A is a perspective view of a battery rack according to the present disclosure.
  • FIG. 3B is a perspective view showing a front view of a battery door according to the present disclosure.
  • FIG. 3C is a perspective view showing a back view of a battery door according to the present disclosure.
  • FIG. 4 is a perspective view of a USB dongle mourning assembly according to the present disclosure.
  • FIG. 5 is a perspective view of a screen support assembly according to the present disclosure.
  • FIG. 6 is a perspective view of electronic components according to the present disclosure.
  • FIG. 7 is a perspective view of a board stack and heatsink assembly according to the present disclosure.
  • FIG. 8A is a first perspective view showing insertion of an exchangeable re-programming module into a battery rack according to the present disclosure.
  • FIG. 8B is a second perspective view showing insertion of the exchangeable re-programming module into the battery rack according to the present disclosure.
  • FIG. 8C is a perspective view showing insertion of a battery into the battery rack.
  • FIG. 1 shows an isometric view of a portable phased array instrument 1 according to the present disclosure.
  • FIG. 2 shows the construction of a handle assembly 20 for instrument 1 .
  • handles may be constructed of plastic and nylon cloth sewed together with an elastic thread. This solution is functional, but expensive and aesthetically displeasing.
  • handle assembly 20 is constructed of custom molded parts, has lower cost, and is well integrated into the overall design of instrument 1 .
  • Handle assembly 20 comprises two rigid molded plastic parts 22 a and 22 b, which have good rigidity for grasping with the user's hand. Parts 22 a and 22 b are attached by means of screws 24 a, 24 b and 24 c.
  • Flexible polyurethane arms 26 a and 26 b are locked between parts 22 a and 22 b, thereby spring loading handle assembly 20 with respect to the casing of instrument 1 .
  • flexible arms 26 a and 26 b replace the function of the elastic thread used in existing practice.
  • FIG. 3A shows the construction of a battery rack 30 for instrument 1 .
  • the function of battery rack 30 is to enclose at least one battery (see FIG. 8C ) and to constrain battery movement when instrument 1 is dropped or roughly handled.
  • batteries are locked by quarter turn screws when a battery door is closed, which is inconvenient for the user. During a drop test, it has been observed that, the batteries may push hard against the door and may break it. If the door is open, the batteries are not well constrained.
  • the batteries are constrained between two plastic parts 34 a and 34 b of a battery case, and part 34 a has two metal springs 32 a and 32 b inserted from the outside of the case.
  • Springs 32 a and 32 b are configured to reinforce plastic springs 33 a and 33 b (shown in FIG. 3A and in FIG. 4 ) that are directly molded into the plastic of part 34 a. Springs 33 a and 33 b push on the batteries and constrain them.
  • the batteries are further constrained by a battery door 36 shown in FIGS. 3B and 3C .
  • Door 36 has two V-shaped protrusions 36 a and 36 b which lock the batteries in place when the door is closed.
  • the batteries are pushed against plastic part 34 b by the action of springs 33 a and 33 b, and constrained by a lip 35 in part 34 b. Therefore, the batteries are automatically locked and stay in position even if the user leaves the door open.
  • battery door 36 is secured by an upper latch 38 a ( FIG. 3C ) and a lower latch 38 b (not shown) which are activated by springs 37 a and 37 b respectively.
  • Latches 38 a and 38 b are a more convenient replacement for quarter turn screws used in existing practice.
  • the design ensures that when instrument 1 is dropped or roughly handled, the batteries are fully constrained by battery rack 30 and battery door 36 , door 36 being secured by latches 38 a and 38 b.
  • FIG. 4 shows the construction of a dongle mounting assembly 40 for instrument 1 .
  • Instrument 1 uses standard communication technologies, such as both Wi-Fi® and Bluetooth® technologies.
  • Instrument 1 uses an integration method alternative to existing well-known practices by means of a connecting technology dongle 49 .
  • Examples of the standard connecting technology are USB, WiFi® Bluetooth®, etc.
  • USB dongle 49 should be removable without using any tool.
  • USB dongle 49 is mountable on a printed circuit board (PCB) 48 , which includes a USB port 41 for insertion of USB dongle 49 .
  • PCB printed circuit board
  • PCB 48 is attached to a plastic sliding support 42 allowing it to slide between parts 34 a and 34 b of battery rack 30 .
  • Sliding support 42 includes a post 43 which is captured in a slot 45 in part 34 a.
  • Slot 45 includes an inner position hole 45 a and an outer position hole 45 b.
  • post 43 is in inner position hole 45 a, sliding support 42 is in the inner position, and dongle 49 is concealed within battery rack 30 .
  • Sliding support 42 may be moved back and forth between the inner and outer positions by a user pressing on an edge 42 a of sliding support 42 . Motion of sliding support 42 between inner and outer position, and retention of sliding support 42 in either position, is facilitated by the action of a spring 46 .
  • dongle mounting assembly 40 by configuring dongle mounting assembly 40 to be contained within battery rack 30 , sealing for water tightness is provided by battery door 36 , and there is no need to provide any additional sealing, such as would be the case if connection to USB port 41 were provided on the outer case of instrument 1 .
  • FIG. 5 shows the construction of a screen support assembly 50 for instrument 1 .
  • the function of screen support assembly 50 is to provide adequate support for a screen 54 which has only four small tapped holes 56 a, 56 b, 56 c and 56 d (holes 56 b, 56 c and 56 d are not shown) provided for attachment.
  • a one-piece support for screen 54 is inadequate because of the manufacturing tolerances of screen 54 , particularly in the horizontal direction. As a result of the tolerances, a single support plate would have to be made oversize. However, four small screws matched to the tapped holes cannot exert enough force to compress an oversize single support plate.
  • screen support assembly 50 provides support for screen 54 using two parts 52 a and 52 b, whose relative horizontal positions may be varied to account for manufacturing tolerances of screen 54 .
  • Parts 52 a and 52 b are both first fixed to screen 54 .
  • Part 52 a is fixed with two flat head screws through holes 57 a and 57 b into tapped holes 56 a and 56 b in screen 54 .
  • Part 52 b is fixed with two flat head screws through holes 57 c and 57 d (not shown) into tapped holes 56 c and 56 d in screen 54 .
  • Part 52 b is then located on the plastic enclosure of instrument 1 with location pins.
  • Parts 52 a and 52 b are then screwed to the plastic enclosure with horizontal tolerance being taken up by slotted holes 58 a, 58 b, 58 c and 58 d in part 52 a and slotted holes 59 a, 59 b, 59 c and 59 d in part 52 b.
  • the slotted holes ensure that wide manufacturing tolerances of screen 54 will not prevent parts 52 a and 52 b from being fixed to the plastic enclosure.
  • the horizontal dimensions of parts 52 a and 52 b allow for a gap between the parts when they are fixed to screen 54 , the gap being large enough to account for the tolerance in the horizontal dimension of screen 54 .
  • FIG. 6 shows electronic components 60 for instrument 1 , comprising a representative first circuit board 64 a and a representative second circuit board 64 b, and featuring board clips 62 a, 62 b, 62 c and 62 d.
  • Boards 64 a and 64 b are electrically connected by connectors, and normally reside within the enclosure of instrument 1 . However, it is a requirement that electronic components 60 should be electrically tested outside the enclosure, and that, after testing, boards 64 a and 64 b should remain securely in position and electrically connected while being re-inserted into the enclosure of instrument 1 .
  • electronic components 60 is secured to the enclosure by screws inserted through holes (not shown) in the undersides of board clips 62 a, 62 b, 62 c and 62 d, and through matching holes in both boards 64 a and 64 b.
  • Board clips 62 a, 62 b, 62 c and 62 d are captured by the screws, and remain securely in place, securing the location of boards 64 a and 64 b even in the event of impact to instrument 1 .
  • FIG. 7 shows a hoard stack and heatsink assembly 70 for instrument 1 , assembly 70 comprising a heatsink 72 , representative boards 64 a and 64 b, and an intermediate circuit board 76 stacked on board 64 b. If heatsink 72 were only mounted on board 64 a then there would be no mechanism for dissipation of heat generated by electronic components on board 76 . This is representative of a general problem that some boards of any board stack are not directly in contact with the heat sink for heat dissipation.
  • the problem is mitigated in board stack and heatsink assembly 70 by creating an aperture 74 on board 64 a, and configuring heatsink 72 with a protrusion 78 which protrudes through aperture 74 , thereby allowing direct thermal contact between board 76 and heat sink 72 . With this arrangement, heat can be efficiently extracted from all hoards in the hoard stack.
  • FIGS. 8A and 8B illustrate a method of making connection to the boards of instrument 1 for the purpose of testing or re-programming electronic components.
  • the necessary connections to the boards are made by means of a JTAG (Joint Test Action Group) connector 80 .
  • Instrument 1 incorporates multiple boards with electronic components 60 (see FIG. 6 ), some or all of which may require testing or re-programming. It is desirable to provide electrical connectivity to testable or re-programmable components without needing to open the enclosure of instrument 1 , and without the need for an unsightly external connector which is visible to the user.
  • JTAG connector 80 preferably comprised of a printed circuit board with flat conductive contact traces, is configured to be inserted into a connector cavity in an interior surface of battery rack 30 for the purpose of providing connections to test or re-program components.
  • JTAG connector 80 When JTAG connector 80 is inserted inside battery rack 30 , the contact traces are flush with the base of part 34 a of battery rack 30 . JTAG connector 80 then remains permanently in position in the connector cavity.
  • the casing of instrument 1 incorporates a battery cavity into which a battery 92 is inserted during normal operation of instrument 1 (see FIG. 8C ).
  • battery 92 is replaced with an exchangeable re-programming module 82 which has substantially the same shape as battery 92 and can be inserted inside the battery cavity of battery rack 30 in place of battery 92 .
  • a spring pin connector 83 on the underside of re-programming module 82 makes electrical contact with the flat traces on JTAG connector 80 , and the connections are transferred to an external cable connector 84 .
  • Cable connector 84 has cable contacts for a flat ribbon computer cable (not shown), each of the cable contacts being electrically connected to a corresponding one of the contacts of spring pin connector 83 .
  • the flat ribbon cable is connected to a computer (not shown) configured to perform the testing or re-programming.
  • the computer cable is connected to cable connector 84 at a first computer cable end and to a computer at a second computer cable end.
  • the electronic components comprise re-programmable and/or testable electronic components and the computer is configured to re-program and/or test the electronic components.
  • the electronic components are configured to control the emission of non-destructive testing energy and to receive and process response signals of the energy emission.
  • the electronic components may be configured to have at least one ultrasonic acquisition unit.
  • the electronic components may comprise at least one eddy current controller unit.
  • the electronic components may be configured to comprise an X-ray detector pulse acquisition unit and a signal processor for processing X-ray fluorescence (XRF) spectra.
  • XRF X-ray fluorescence

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Acoustics & Sound (AREA)
  • Battery Mounting, Suspending (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

Inventive features of a portable ultrasonic phased array test instrument are disclosed. The instrument has a battery rack that can be repurposed to host a re-programming module for testing and re-programming electronic components.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit and priority of U.S. Provisional patent application Ser. No. 62/523,339 filed Jun. 22, 2017 entitled AN IMPROVED PORTABLE PHASED ARRAY TEST INSTRUMENT, the entire disclosure of which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The invention relates to ultrasonic non-destructive testing and inspection (NDT/NDI), and in particular to a portable phased array test instrument for controlling operation of one or more ultrasonic phased array probes.
  • BACKGROUND OF THE INVENTION
  • Phased array test instruments generally contain electronic components which may require re-programming to update the firmware or may require testing in order to isolate faults or error conditions during instrument maintenance. In existing practice, it is often necessary to either connect to the relevant components at the printed circuit board level, or to connect to components by means of an external connector, which is unsightly and may lead to inadvertent user errors. There therefore exists a need for a method of connecting to testable or re-programmable components without removing any circuit boards from the instrument, and without need for an external connector.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a portable phased array instrument according to the present disclosure.
  • FIG. 2 is a perspective view of a handle assembly according to the present disclosure.
  • FIG. 3A is a perspective view of a battery rack according to the present disclosure.
  • FIG. 3B is a perspective view showing a front view of a battery door according to the present disclosure.
  • FIG. 3C is a perspective view showing a back view of a battery door according to the present disclosure.
  • FIG. 4 is a perspective view of a USB dongle mourning assembly according to the present disclosure.
  • FIG. 5 is a perspective view of a screen support assembly according to the present disclosure.
  • FIG. 6 is a perspective view of electronic components according to the present disclosure.
  • FIG. 7 is a perspective view of a board stack and heatsink assembly according to the present disclosure.
  • FIG. 8A is a first perspective view showing insertion of an exchangeable re-programming module into a battery rack according to the present disclosure.
  • FIG. 8B is a second perspective view showing insertion of the exchangeable re-programming module into the battery rack according to the present disclosure.
  • FIG. 8C is a perspective view showing insertion of a battery into the battery rack.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENT
  • FIG. 1 shows an isometric view of a portable phased array instrument 1 according to the present disclosure.
  • FIG. 2 shows the construction of a handle assembly 20 for instrument 1. In existing practice, handles may be constructed of plastic and nylon cloth sewed together with an elastic thread. This solution is functional, but expensive and aesthetically displeasing. In contrast, handle assembly 20 is constructed of custom molded parts, has lower cost, and is well integrated into the overall design of instrument 1. Handle assembly 20 comprises two rigid molded plastic parts 22 a and 22 b, which have good rigidity for grasping with the user's hand. Parts 22 a and 22 b are attached by means of screws 24 a, 24 b and 24 c. Flexible polyurethane arms 26 a and 26 b are locked between parts 22 a and 22 b, thereby spring loading handle assembly 20 with respect to the casing of instrument 1. Thus flexible arms 26 a and 26 b replace the function of the elastic thread used in existing practice.
  • FIG. 3A shows the construction of a battery rack 30 for instrument 1. The function of battery rack 30 is to enclose at least one battery (see FIG. 8C) and to constrain battery movement when instrument 1 is dropped or roughly handled. In existing practice, batteries are locked by quarter turn screws when a battery door is closed, which is inconvenient for the user. During a drop test, it has been observed that, the batteries may push hard against the door and may break it. If the door is open, the batteries are not well constrained. In contrast, in battery rack 30 the batteries are constrained between two plastic parts 34 a and 34 b of a battery case, and part 34 a has two metal springs 32 a and 32 b inserted from the outside of the case. Springs 32 a and 32 b are configured to reinforce plastic springs 33 a and 33 b (shown in FIG. 3A and in FIG. 4) that are directly molded into the plastic of part 34 a. Springs 33 a and 33 b push on the batteries and constrain them.
  • The batteries are further constrained by a battery door 36 shown in FIGS. 3B and 3C. Door 36 has two V- shaped protrusions 36 a and 36 b which lock the batteries in place when the door is closed. When the door is open, the batteries are pushed against plastic part 34 b by the action of springs 33 a and 33 b, and constrained by a lip 35 in part 34 b. Therefore, the batteries are automatically locked and stay in position even if the user leaves the door open. When in the closed position, battery door 36 is secured by an upper latch 38 a (FIG. 3C) and a lower latch 38 b (not shown) which are activated by springs 37 a and 37 b respectively. Latches 38 a and 38 b are a more convenient replacement for quarter turn screws used in existing practice. The design ensures that when instrument 1 is dropped or roughly handled, the batteries are fully constrained by battery rack 30 and battery door 36, door 36 being secured by latches 38 a and 38 b.
  • FIG. 4 shows the construction of a dongle mounting assembly 40 for instrument 1. Instrument 1 uses standard communication technologies, such as both Wi-Fi® and Bluetooth® technologies. Instrument 1 uses an integration method alternative to existing well-known practices by means of a connecting technology dongle 49. Examples of the standard connecting technology are USB, WiFi® Bluetooth®, etc. However, an industry standard requires that USB dongle 49 should be removable without using any tool. In addition, it is preferable that dongle 49 should be hidden from the user. As shown in FIG. 4, USB dongle 49 is mountable on a printed circuit board (PCB) 48, which includes a USB port 41 for insertion of USB dongle 49. PCB 48 is attached to a plastic sliding support 42 allowing it to slide between parts 34 a and 34 b of battery rack 30. Sliding support 42 includes a post 43 which is captured in a slot 45 in part 34 a. Slot 45 includes an inner position hole 45 a and an outer position hole 45 b. When post 43 is in outer position hole 45 b, sliding support 42 is in the outer position, permitting easy insertion or removal of dongle 49 from battery rack 30. When post 43 is in inner position hole 45 a, sliding support 42 is in the inner position, and dongle 49 is concealed within battery rack 30. Sliding support 42 may be moved back and forth between the inner and outer positions by a user pressing on an edge 42 a of sliding support 42. Motion of sliding support 42 between inner and outer position, and retention of sliding support 42 in either position, is facilitated by the action of a spring 46.
  • Note that, by configuring dongle mounting assembly 40 to be contained within battery rack 30, sealing for water tightness is provided by battery door 36, and there is no need to provide any additional sealing, such as would be the case if connection to USB port 41 were provided on the outer case of instrument 1.
  • FIG. 5 shows the construction of a screen support assembly 50 for instrument 1. The function of screen support assembly 50 is to provide adequate support for a screen 54 which has only four small tapped holes 56 a, 56 b, 56 c and 56 d (holes 56 b, 56 c and 56 d are not shown) provided for attachment. A one-piece support for screen 54 is inadequate because of the manufacturing tolerances of screen 54, particularly in the horizontal direction. As a result of the tolerances, a single support plate would have to be made oversize. However, four small screws matched to the tapped holes cannot exert enough force to compress an oversize single support plate.
  • As shown in FIG. 5, screen support assembly 50 provides support for screen 54 using two parts 52 a and 52 b, whose relative horizontal positions may be varied to account for manufacturing tolerances of screen 54. Parts 52 a and 52 b are both first fixed to screen 54. Part 52 a is fixed with two flat head screws through holes 57 a and 57 b into tapped holes 56 a and 56 b in screen 54. Part 52 b is fixed with two flat head screws through holes 57 c and 57 d (not shown) into tapped holes 56 c and 56 d in screen 54. Part 52 b is then located on the plastic enclosure of instrument 1 with location pins. Parts 52 a and 52 b are then screwed to the plastic enclosure with horizontal tolerance being taken up by slotted holes 58 a, 58 b, 58 c and 58 d in part 52 a and slotted holes 59 a, 59 b, 59 c and 59 d in part 52 b. The slotted holes ensure that wide manufacturing tolerances of screen 54 will not prevent parts 52 a and 52 b from being fixed to the plastic enclosure. In addition, the horizontal dimensions of parts 52 a and 52 b allow for a gap between the parts when they are fixed to screen 54, the gap being large enough to account for the tolerance in the horizontal dimension of screen 54.
  • FIG. 6 shows electronic components 60 for instrument 1, comprising a representative first circuit board 64 a and a representative second circuit board 64 b, and featuring board clips 62 a, 62 b, 62 c and 62 d. Boards 64 a and 64 b are electrically connected by connectors, and normally reside within the enclosure of instrument 1. However, it is a requirement that electronic components 60 should be electrically tested outside the enclosure, and that, after testing, boards 64 a and 64 b should remain securely in position and electrically connected while being re-inserted into the enclosure of instrument 1. In the absence of board clips 62 a, 62 b, 62 c and 62 d, the relative locations of boards 64 a and 64 b are maintained only by the electrical connectors and there is a significant risk of electrical disconnection when inserting electronic components 60 into the enclosure of instrument 1. By using four plastic clips 62 a, 62 b, 62 c and 62 d, one on each corner of electronic components 60, boards 64 a and 64 b are securely connected during testing and subsequent insertion into instrument 1. Within the enclosure of instrument 1, electronic components 60 is secured to the enclosure by screws inserted through holes (not shown) in the undersides of board clips 62 a, 62 b, 62 c and 62 d, and through matching holes in both boards 64 a and 64 b. Board clips 62 a, 62 b, 62 c and 62 d are captured by the screws, and remain securely in place, securing the location of boards 64 a and 64 b even in the event of impact to instrument 1.
  • FIG. 7 shows a hoard stack and heatsink assembly 70 for instrument 1, assembly 70 comprising a heatsink 72, representative boards 64 a and 64 b, and an intermediate circuit board 76 stacked on board 64 b. If heatsink 72 were only mounted on board 64 a then there would be no mechanism for dissipation of heat generated by electronic components on board 76. This is representative of a general problem that some boards of any board stack are not directly in contact with the heat sink for heat dissipation. The problem is mitigated in board stack and heatsink assembly 70 by creating an aperture 74 on board 64 a, and configuring heatsink 72 with a protrusion 78 which protrudes through aperture 74, thereby allowing direct thermal contact between board 76 and heat sink 72. With this arrangement, heat can be efficiently extracted from all hoards in the hoard stack.
  • FIGS. 8A and 8B illustrate a method of making connection to the boards of instrument 1 for the purpose of testing or re-programming electronic components. The necessary connections to the boards are made by means of a JTAG (Joint Test Action Group) connector 80. Instrument 1 incorporates multiple boards with electronic components 60 (see FIG. 6), some or all of which may require testing or re-programming. It is desirable to provide electrical connectivity to testable or re-programmable components without needing to open the enclosure of instrument 1, and without the need for an unsightly external connector which is visible to the user. JTAG connector 80, preferably comprised of a printed circuit board with flat conductive contact traces, is configured to be inserted into a connector cavity in an interior surface of battery rack 30 for the purpose of providing connections to test or re-program components. When JTAG connector 80 is inserted inside battery rack 30, the contact traces are flush with the base of part 34 a of battery rack 30. JTAG connector 80 then remains permanently in position in the connector cavity.
  • The casing of instrument 1 incorporates a battery cavity into which a battery 92 is inserted during normal operation of instrument 1 (see FIG. 8C). When re-programming or testing is required, battery 92 is replaced with an exchangeable re-programming module 82 which has substantially the same shape as battery 92 and can be inserted inside the battery cavity of battery rack 30 in place of battery 92. Once re-programming module 82 is inserted into battery rack 30, a spring pin connector 83 on the underside of re-programming module 82 makes electrical contact with the flat traces on JTAG connector 80, and the connections are transferred to an external cable connector 84. Cable connector 84 has cable contacts for a flat ribbon computer cable (not shown), each of the cable contacts being electrically connected to a corresponding one of the contacts of spring pin connector 83. The flat ribbon cable is connected to a computer (not shown) configured to perform the testing or re-programming.
  • Thus, when re-programming module 82 is inserted into the connector assembly, the computer cable is connected to cable connector 84 at a first computer cable end and to a computer at a second computer cable end.
  • The electronic components comprise re-programmable and/or testable electronic components and the computer is configured to re-program and/or test the electronic components.
  • The electronic components are configured to control the emission of non-destructive testing energy and to receive and process response signals of the energy emission.
  • The electronic components may be configured to have at least one ultrasonic acquisition unit. Alternatively, for non-destructive eddy current testing, the electronic components may comprise at least one eddy current controller unit. For the purpose of an X-ray analytical instrument, the electronic components may be configured to comprise an X-ray detector pulse acquisition unit and a signal processor for processing X-ray fluorescence (XRF) spectra.
  • Although the present invention has been described in relation to particular embodiments thereof, it can be appreciated that various designs can be conceived based on the teachings of the present disclosure, and all are within the scope of the present disclosure.

Claims (10)

What is claimed is:
1. An instrument comprising:
an outer casing having a top outer casing surface;
a handle assembly further comprising:
a left arm having a left casing end and a left captured end;
a right arm having a right casing end and a right captured end;
an upper handle part having an upper left end and an upper right end; and,
a lower handle part having a lower left end and a lower right end; and,
wherein the upper handle part and the lower handle part are connected with fasteners thereby capturing the right captured end between the upper right end and the lower right end, and capturing the left captured end between the upper left end and the lower left end; and,
wherein the left casing end and the right casing end are connected with fasteners to the top outer casing surface.
2. The instrument of claim 1, wherein the left arm and the right arm are made of a flexible polyurethane material.
3. The instrument of claim 1, wherein the upper handle part and the lower handle part are made of a rigid plastic material.
4. The instrument of claim 1 wherein the left arm, the right arm, the upper handle part and the lower handle part are molded plastic parts.
5. An instrument comprising a casing assembly and a dongle mounting assembly, wherein the dongle mounting assembly further comprises:
a dongle having a dongle connector;
a printed circuit board (PCB) having a connector port interfacing with the dongle connector; and,
a sliding support configured to slide within the casing assembly between an outer position and an inner position; and,
wherein the PCB is mounted on the sliding support, the dongle is insertable into and removable from the connector port without using a tool when the sliding support is in the outer position, and the dongle is concealed within the casing assembly when the sliding support is in the inner position.
6. The instrument of claim 5 wherein the dongle connector is a Universal Serial Bus (USB) connector.
7. The instrument of claim 5 wherein the dongle is interchangeably a Wi-Fi® or a Bluetooth® dongle.
8. The instrument of claim 5 wherein the sliding support comprises a post configured to be inserted into a slot in the casing assembly, wherein motion of the sliding support between the inner position and the outer position is guided by the post sliding within the slot.
9. The instrument of claim 8 wherein the slot has an inner position hole at a first slot end and an outer position hole at a second slot end, and wherein the sliding support is in the inner position when the post is in the inner position hole and the sliding support is in the outer position when the post is in the outer position hole.
10. The instrument of claim 5 further comprising a spring exerting a spring force on the sliding support, wherein the spring force is effective to facilitate motion of the sliding support between the inner and outer position, and to retain the sliding support in either the inner position or the outer position.
US17/113,517 2017-06-22 2020-12-07 Portable phased array test instrument Abandoned US20210088481A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/113,517 US20210088481A1 (en) 2017-06-22 2020-12-07 Portable phased array test instrument

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762523339P 2017-06-22 2017-06-22
US16/012,361 US10890565B2 (en) 2017-06-22 2018-06-19 Portable phased array test instrument
US17/113,517 US20210088481A1 (en) 2017-06-22 2020-12-07 Portable phased array test instrument

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/012,361 Division US10890565B2 (en) 2017-06-22 2018-06-19 Portable phased array test instrument

Publications (1)

Publication Number Publication Date
US20210088481A1 true US20210088481A1 (en) 2021-03-25

Family

ID=62748754

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/012,361 Active US10890565B2 (en) 2017-06-22 2018-06-19 Portable phased array test instrument
US17/113,517 Abandoned US20210088481A1 (en) 2017-06-22 2020-12-07 Portable phased array test instrument

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/012,361 Active US10890565B2 (en) 2017-06-22 2018-06-19 Portable phased array test instrument

Country Status (3)

Country Link
US (2) US10890565B2 (en)
EP (1) EP3418733B1 (en)
CN (1) CN109115890B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10890565B2 (en) 2017-06-22 2021-01-12 Olympus America Inc. Portable phased array test instrument
US11495881B1 (en) 2018-12-10 2022-11-08 Ball Aerospace & Technologies Corp. Antenna system with integrated electromagnetic interference shielded heat sink
US11686710B2 (en) * 2020-03-31 2023-06-27 Evident Canada, Inc. Longitudinal and circumferential ultrasound scanner

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1261860B1 (en) 2000-03-09 2006-12-27 Clinical Analysis Corp. Medical diagnostic system
WO2003077377A1 (en) * 2002-03-06 2003-09-18 Tyco Electronics Corporation Receptacle assembly having shielded interface with pluggable electronic module
US7367514B2 (en) * 2003-07-03 2008-05-06 Hand Held Products, Inc. Reprogramming system including reprogramming symbol
JP2006234636A (en) 2005-02-25 2006-09-07 Olympus Corp Nondestructive inspecting system
US7646167B2 (en) * 2006-04-26 2010-01-12 Technuity, Inc. System for updating programmable batteries
CN102124828B (en) * 2009-03-26 2014-11-12 松下电器产业株式会社 Vehicle-mounted electronic device
US8169783B2 (en) * 2009-03-30 2012-05-01 Tyco Electronics Corporation Latch assembly for a pluggable electronic module
US9224084B2 (en) * 2009-04-01 2015-12-29 Vanguard Identification Systems, Inc. Smart device programmable electronic luggage tag
US9918537B2 (en) * 2009-04-01 2018-03-20 Vanguard Identification Systems Smart device programmable electronic luggage tag and bag mountings therefore
TW201133188A (en) * 2010-03-23 2011-10-01 Hon Hai Prec Ind Co Ltd Power source device
CN103582449B (en) * 2011-02-18 2017-06-09 索泰拉无线公司 For the modularization wrist wearing type processor of patient monitoring
GB201200297D0 (en) * 2012-01-07 2012-02-22 Smiths Medical Int Ltd Electrical apparatus
MX349303B (en) * 2012-06-25 2017-07-20 Xceedid Corp Access credential reader connector.
US9629518B2 (en) 2012-12-27 2017-04-25 Arthrex, Inc. Contactless camera connection system
US20140353300A1 (en) * 2013-06-03 2014-12-04 John A. Swiatek Automated local thermal management system
JP6257253B2 (en) * 2013-10-07 2018-01-10 日本航空電子工業株式会社 connector
US9932756B1 (en) * 2014-01-06 2018-04-03 Mark Nickeas Electronic barrel lock and key system
DE102014100918A1 (en) * 2014-01-27 2015-07-30 Aesculap Ag Programming device of a recharge device for medical accumulators
US9573476B2 (en) * 2014-06-09 2017-02-21 GM Global Technology Operations LLC Method and apparatus for controller wakeup using control pilot signal from charge port
TWI648930B (en) * 2014-11-14 2019-01-21 英屬開曼群島商鴻騰精密科技股份有限公司 Electrical connector
US9743731B2 (en) * 2014-12-18 2017-08-29 Hand Held Products, Inc. Wearable sled system for a mobile computer device
US10230196B2 (en) * 2015-05-15 2019-03-12 Te Connectivity Corporation Latch for electrical connector
US9737777B2 (en) * 2015-05-29 2017-08-22 Michael E. April Sweetspot trainer
US9684809B2 (en) * 2015-10-29 2017-06-20 Hand Held Products, Inc. Scanner assembly with removable shock mount
US10180371B2 (en) * 2016-04-06 2019-01-15 Spectronics Corporation Ultrasonic detector with storable probes
AU2017203837B2 (en) * 2016-06-07 2020-02-06 Vanguard Identification Systems, Inc. Electronic Luggage ID Tag
US9853397B1 (en) * 2016-09-16 2017-12-26 Te Connectivity Corporation Pluggable module having pull tether for latch release
US10890565B2 (en) 2017-06-22 2021-01-12 Olympus America Inc. Portable phased array test instrument

Also Published As

Publication number Publication date
US20180372693A1 (en) 2018-12-27
CN109115890B (en) 2024-03-08
EP3418733A1 (en) 2018-12-26
EP3418733B1 (en) 2022-08-03
US10890565B2 (en) 2021-01-12
CN109115890A (en) 2019-01-01

Similar Documents

Publication Publication Date Title
US20210088481A1 (en) Portable phased array test instrument
US20070223189A1 (en) Electronic Device with Removable Module
US7170742B2 (en) Peripheral device mounting holder and portable computer including the holder
CN105093000B (en) Test device
US20110294309A1 (en) Expansion card and expansion apparatus thereof
US8460012B2 (en) Socket protection device and circuit board assembly
JP2008141139A (en) Electronic apparatus, flexible substrate, and substrate-fixing member
KR20060088162A (en) A universal fixture for pcb test
US20130120918A1 (en) Mounting apparatus for pci card
US6720776B2 (en) Instrument with housing having recess for connectors
JP2003264044A (en) Socket for electric parts
JP2010108885A (en) Clip type relay connector
US6828777B2 (en) Fixture for test cards of testing machine
JP5828734B2 (en) Socket for electrical parts
US6496025B1 (en) Method and apparatus for testing printed circuit board assemblies
US20110188190A1 (en) Electronic apparatus having replaceable input device
KR101348423B1 (en) Ejector device for test board of automatic test equipment
KR100751213B1 (en) Pallet for mobile communication terminal
KR101033978B1 (en) Ic socket for rom writer
US20090185353A1 (en) Mounting apparatus for motherboard
TW201307869A (en) Electronic element testing device and fixing device
US20030210064A1 (en) Testing apparatus for BGA IC
CN217428532U (en) Upper cover assembly and electronic equipment
CN219533243U (en) Annular component test base
CN219201835U (en) General PCBA detector with all-in-one switching function

Legal Events

Date Code Title Description
AS Assignment

Owner name: OLYMPUS AMERICA INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SPAY, BENJAMIN;HOUDE, FRANCOIS;LANGLOIS, JEAN-SEBASTIEN;AND OTHERS;SIGNING DATES FROM 20200911 TO 20200929;REEL/FRAME:054564/0611

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: EVIDENT SCIENTIFIC, INC., MASSACHUSETTS

Free format text: CONFIRMATORY ASSIGNMENT;ASSIGNOR:OLYMPUS AMERICA INC.;REEL/FRAME:066143/0724

Effective date: 20231130