US20210069069A1 - Dental composition comprising a particulate carrier supporting a coinitiator - Google Patents

Dental composition comprising a particulate carrier supporting a coinitiator Download PDF

Info

Publication number
US20210069069A1
US20210069069A1 US16/642,163 US201816642163A US2021069069A1 US 20210069069 A1 US20210069069 A1 US 20210069069A1 US 201816642163 A US201816642163 A US 201816642163A US 2021069069 A1 US2021069069 A1 US 2021069069A1
Authority
US
United States
Prior art keywords
group
groups
dental composition
dental
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/642,163
Other languages
English (en)
Inventor
Maximilian Maier
Joachim E. Klee
Christian Scheufler
Caroline RENN
Florian Szillat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dentsply Sirona Inc
Original Assignee
Dentsply Sirona Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dentsply Sirona Inc filed Critical Dentsply Sirona Inc
Publication of US20210069069A1 publication Critical patent/US20210069069A1/en
Assigned to DENTSPLY SIRONA INC. reassignment DENTSPLY SIRONA INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Renn, Caroline, Szillat, Florian, SCHEUFLER, CHRISTIAN, KLEE, JOACHIM E., MAIER, MAXIMILIAN
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/70Preparations for dentistry comprising inorganic additives
    • A61K6/71Fillers
    • A61K6/72Fillers comprising nitrogen-containing compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/887Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • A61K6/889Polycarboxylate cements; Glass ionomer cements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/15Compositions characterised by their physical properties
    • A61K6/17Particle size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/30Compositions for temporarily or permanently fixing teeth or palates, e.g. primers for dental adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/40Primers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/60Preparations for dentistry comprising organic or organo-metallic additives
    • A61K6/62Photochemical radical initiators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/70Preparations for dentistry comprising inorganic additives
    • A61K6/71Fillers
    • A61K6/74Fillers comprising phosphorus-containing compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/884Preparations for artificial teeth, for filling teeth or for capping teeth comprising natural or synthetic resins
    • A61K6/887Compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a dental composition
  • a dental composition comprising a photoinitiator system comprising a particulate carrier supporting a coinitiator covalently bonded to the surface of the carrier. Furthermore, the present invention relates to a use of the particulate carrier in a dental composition.
  • the particulate carrier displays multiple covalently bonded tertiary amino groups and/or tertiary phosphine groups on the surface, for crosslinking monomers, oligomers and/or polymers having one or more polymerizable double bonds.
  • EP3124477 discloses an aqueous dental composition having a pH of at most 7 which may contain filler particles treated with a coupling agent in order to enhance the bond between the filler and the matrix, whereby coupling agents include gamma-aminopropyltrimethoxysilane. None of the coinitiators of an initiator system essentially present in a dental composition disclosed in EP3124477 is linked to a particulate carrier.
  • the restoration of teeth commonly involves a light curable dental composition containing free-radically polymerizable resins.
  • Light curing of a dental composition involves a photoinitiator system generating free radicals upon exposure to visible light.
  • Free radicals may be typically produced by either of two pathways:
  • the quantum yield indicating the efficiency of the conversion of radiation to radicals needs to be high since absorption or shielding of light by further components of the dental composition limit the amount of energy available for absorption by the photoinitiator. Accordingly, only about 70 percent conversion of the polymerizable groups may be expected in a polymerization of a typical dental composition, whereby the mechanical strength of the polymerized dental composition is less than optimal and unreacted monomers may leach out of the polymerized dental composition. Leaching monomers may have detrimental effects. In order to alleviate this problem, multifunctional monomers are frequently used which are more likely to be included in the polymer network.
  • photoinitiators are required to have a high acid resistance, solubility, thermal stability, and storage stability when incorporated into a dental composition.
  • the polymerization initiator system has a critical influence on the quality of the dental material.
  • camphor quinone optionally in combination with a tertiary amine, or 2, 4, 6-trimethylbenzoylphenyl phosphinate (Irgacure® TPO) are frequently used as photoinitiator system.
  • Irgacure® TPO 2, 4, 6-trimethylbenzoylphenyl phosphinate
  • the presence of amines in acrylate-containing compositions can cause yellowing in the resulting photocured composition, create undesirable odours, and soften the cured composition because of chain transfer reactions and therefore, often require the use of stabilizers.
  • aromatic amines gives rise to toxicological concerns.
  • the photoinitiator system can be light-activated at a long wavelength in order to avoid damage of soft tissue during polymerization of the dental composition in the patient's mouth. Accordingly, the photoinitiator system is required to contain a chromophoric group efficiently absorbing light of the desired wavelength in a range of from 400 to 800 nm.
  • an increase of the absorption coefficient of the photoinitiator system increases the coloration of the photoinitiator system and thereby the coloration of the dental composition before light curing. Accordingly, it is necessary that the chromophoric groups are efficiently destroyed during polymerization so that the coloration of the initiator system disappears in the polymerized dental composition, the so-called “photo-bleaching”.
  • a destruction of the chromophoric groups during polymerization may also be useful in increasing the depth of cure of the dental composition since activating light is not shielded from unpolymerized layers of the dental composition by the photoinitiator system present in polymerized layers covering the unpolymerized layers.
  • a coinitiator e.g. in the form of an organic compound having a tertiary amino group or a tertiary phosphine group
  • a dental composition containing a coinitiator in the form of an organic compound having a tertiary amino group are disclosed in WO/2017/017155 and EP 2859876 A2.
  • Dental compositions containing a coinitiator in the form of an organic compound having a tertiary phosphine group are for example disclosed in U.S. Pat. No. 3,534,122 A, WO 2009/147033 A1, WO 2012/045736 A1 and WO 2014/060450 A1.
  • the coinitiators disclosed in the above cited documents are small organic molecules.
  • It is an object of the present invention to provide a dental composition comprising a photoinitiator system comprising a photosensitizer and a particulate carrier supporting a coinitiator covalently bonded to the surface of the carrier, wherein the particulate carrier provides
  • the present invention provides a dental composition comprising
  • the present invention provides a use of the particulate carrier displaying multiple covalently bonded tertiary amino groups and/or tertiary phosphine groups on the surface, in a dental composition for crosslinking polymer chains formed by polymerizing a compound having a polymerizable double bond.
  • the present invention is based on the recognition that the particulate carrier (b2) provides a cured dental composition which has no yellowing or yellowing is significantly reduced compared with conventional dental compositions exclusively containing non-covalently bonded coinitiator compounds.
  • the leaching problem of the cured dental composition is alleviated.
  • the particulate carrier (b2) is harmless or at least has a significantly reduced toxicity compared with conventional, non-covalently bonded coinitiator compounds.
  • polymerizable double bond as used herein in connection with compound (a) means any double bond capable of addition polymerization, in particular free radical polymerization, preferably a carbon-carbon double bond.
  • photoinitiator system means any system of one or a mixture of two or more compounds that form free radicals when activated, e. g. by exposure to light and/or interaction with one or more further compounds in a photochemical process, whereby polymerization of polymerizable compounds, such as the compound having a polymerizable double bond (a), is initiated.
  • photosensitizer as used herein in connection with the photoinitiator system (b) refers to any chemical compound that forms free radicals when activated, e. g. by exposure to light or interaction with a further compound, such as the coinitiator covalently bonded to the particulate carrier (b2) in a photochemical process.
  • pill carrier refers to any particulate material to which surface a coinitiator having a tertiary amino group or a tertiary phosphine group can be covalently bond, either to the particulate material itself by means of any suitable chemical reaction forming a covalent bond, or by surface treatment of the particulate material with a coating agent to which the coinitiator is non-covalently bonded.
  • a coating agent is suitable as long as it is suitable for dental compositions.
  • the coating agent is an organosilane.
  • particulate carrier refers to compounds having a tertiary amino group and/or tertiary phosphine group which interacts with the photosensitizer in the generation of radicals initiating a polymerization reaction.
  • the present dental composition provides a cured dental composition based on a polymerization of a compound having a polymerizable double bond (a) by free radical polymerization initiated by the photoinitiator system (b).
  • the present invention relates to a dental composition, which may be used as a dental glass ionomer cement, a dental cement, a dental adhesive composition, a dental bonding agent, a dental primer, a dental infiltrant, a pit and fissure sealant, a dental desensitizing composition, a pulp capping composition, a dental composite, and a sealing and protecting composition for naked tooth necks.
  • a dental composition which may be used as a dental glass ionomer cement, a dental cement, a dental adhesive composition, a dental bonding agent, a dental primer, a dental infiltrant, a pit and fissure sealant, a dental desensitizing composition, a pulp capping composition, a dental composite, and a sealing and protecting composition for naked tooth necks.
  • the dental composition according to the invention comprises (a) a compound having a polymerizable bond, which compound is termed as “compound (a)” hereinafter.
  • the dental composition may comprise one or a mixture of two or more compounds (a).
  • polymerizable double bond as used herein in connection with compound (a) means any double bond capable of addition polymerization, in particular free radical polymerization, preferably a carbon-carbon double bond, more preferably alkenyl group(s) and/or vinyl group(s).
  • compound (a) has a carboxylic acid group or hydroxyl group to make the compound (a) water-soluble.
  • water-soluble used in this connection means that at least 0.1 g, preferably 0.5 g of compound (a) dissolves in 100 g of water at 20° C.
  • compound (a) is hydrolysis-stable.
  • hydrolysis-stable used in this connection means that the compound (a) is stable to hydrolysis in an acidic medium, such as in a dental composition.
  • the compound (a) does not contain groups, e.g. as ester groups, which hydrolyse in aqueous media at pH 3 at room temperature within one month.
  • compound (a) is (a1) a water-soluble, hydrolysis-stable monomer having a single polymerizable double bond and optionally a carboxylic acid group or hydroxyl group, which is termed as “monomer (a1)” hereinafter.
  • a water-soluble, hydrolysis-stable monomer having a single polymerizable double bond and a carboxylic acid group is a compound represented by the general formula (IV):
  • R 3 is a hydrogen atom or a straight chain or branched C 1-3 alkyl group
  • R 4 is a hydrogen atom or a straight-chain or branched C 1-6 alkyl group which may be substituted by a —COOH group.
  • the dotted line indicates that R 3 may be in either the cis or trans orientation.
  • R 3 is a hydrogen atom
  • R 4 is a hydrogen atom or a C 1-3 alkyl group optionally substituted with a —COOH group.
  • R 3 is a hydrogen atom
  • R 4 is a hydrogen atom or a methyl group substituted with a —COOH group, that is compound of formula (IV) is acrylic acid or itaconic acid.
  • the compound of formula (IV) is acrylic acid.
  • residues R 3 and R 4 are selected with the proviso that the molecular weight of monomer (a1) is at most 200 Da, preferably at most 150 Da, more preferably at most 100 Da.
  • Monomers (a1) comprising a carboxylic acid group, such as compounds of formula (IV), are particularly advantageous, since carboxylic acid groups can undergo a cement reaction with an optional reactive particulate filler (c) described below, whereby a further improved setting or curing reaction may be attained.
  • compound (a) may be a (meth)acrylate compound which may be selected from the group of methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate (HEMA), hydroxypropyl acrylate, hydroxypropyl methacrylate, tetrahydrofurfuryl acrylate, tetrahydrofurfuryl methacrylate, glycidyl acrylate, glycidyl methacrylate, the diglycidyl methacrylate of bisphenol A (“bis-GMA”), glycerol mono- and di-acrylate, glycerol mono- and dimethacrylate, ethyleneglycol diacrylate, ethyleneglycol dime
  • bis-GMA bisphenol
  • Suitable examples compounds (b) are isopropenyl oxazoline, vinyl azalactone, vinyl pyrrolidone, styrene, divinylbenzene, urethane acrylates or methacrylates, epoxy acrylates or methacrylates and polyol acrylates or methacrylates.
  • compound (a) may be (a2) a water-soluble, hydrolysis stable polymerizable crosslinker having at least two polymerizable carbon-carbon double bonds (a2) is termed as “crosslinker (a2)” hereinafter.
  • polymerizable carbon-carbon double bond as used herein in connection with the crosslinker (a2) means any carbon-carbon double bond capable of addition polymerization, in particular free radical polymerization, preferably alkenyl group(s) and/or vinyl group(s).
  • the crosslinker (a2) is a polymerizable compound of the following formula (V), which is disclosed in EP2705827 and WO2014040729:
  • Preferred divalent linker groups may be selected from methylene, ethylene, propylene, butylene and the following divalent groups:
  • N,N′-(2E)-but-2-en-1,4-diallylbis-RN-prop-2-en-1) amide and N,N-di(allylacrylamido) propane are preferred.
  • compound (a) may be a crosslinker selected from the group consisting of an alkylenediol dimethylacrylate such as 1,3-butanediol dimethacrylate, 1,4-butanediol dimethacrylate, an alkylenediol divinyl ether such as 1,4-butanediol divinyl ether, di(ethylene glycol) dimethacrylate, di(ethylene glycol) divinyl ether, pentaerythritol diacrylate monostearate, ethylene glycol dimethacrylate, trimetylolpropane trimethacrylate, pentaerythritol triacrylate or triallyl ether, pentaerythritol tetraacrylate and trimetylolpropane triacrylate.
  • an alkylenediol dimethylacrylate such as 1,3-butanediol dimethacrylate, 1,4-butanediol dim
  • compound (a) is contained in the dental composition in an amount of from 0.1 to 20, more preferably 1 to 15 even more preferably 2 to 10 percent by weight based on the total weight of the dental composition.
  • compound (a) is absent, no light-curing of the dental composition is possible. That is, the dental composition cannot be cured upon irraditation with light.
  • the amount of compound (a) exceeds 20 percent of weight, shrinkage of the cured dental composition may occur.
  • photocurable refers to a dental composition that will polymerize into a crosslinked polymer network when irradiated for example with actinic radiation such as ultraviolet (UV), visible, or infrared radiation.
  • actinic radiation is any electromagnetic radiation that is capable of producing photochemical action and can have a wavelength of at least 150 nm and up to and including 1250 nm, and typically at least 400 nm and up to and including 800 nm.
  • Compound (a) is preferably selected in view of a good processability and applicability of the final dental composition, in particular in terms of viscosity. Therefore, the viscosity of compound (a) is preferably in the range of 0.1 to 100 mPa ⁇ s, more preferably 0.3 to 50 mPa ⁇ s, even more preferably 0.5 to 25 mPa ⁇ s, yet even more preferably 0.8 to 10 mPa ⁇ s, in particular 0.9 to 3 mPa ⁇ s.
  • the dental composition according to the present invention comprises a photoinitiator system (b) comprising (b1) a photosensitizer absorbing light in the range of from 400 to 800 nm, which is termed as “photosensitizer (b1)” hereinafter.
  • the photoinitiator system (b) may comprise one or a mixture of two or more photosensitizers (b1).
  • Suitable photosensitizers (b1) for the photosensitizer system (b) are Norrish type I and Norrish type II photosensitizers.
  • Nevish type I refers to a photosensitizer undergoing excitation by energy absorption with subsequent decomposition of the compound into one or more radicals.
  • Nevish type II refers to a photosensitizer undergoing excitation, and the excited photosensitizer interacts with a second compound, such as a coinitiator, an electron donor, or a sensitizer, by either energy transfer or a redox reaction to form free radicals from any of the compounds.
  • Suitable Norrish type I photosensitizers are for example phosphine oxides or Si- or Ge-acyl compounds.
  • Phosphine oxide photosensitizers may have a functional wavelength range of about 380 nm to about 450 nm, which include acyl and bisacyl phosphine oxides such as those described in U.S. Pat. Nos. 4,298,738, 4,324,744 and 4,385,109 and EP 0 173 567.
  • acylphosphine oxides include 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, dibenzoylphenylphosphine oxide, bis(2,6-dimethoxybenzoyl)phenylphosphine oxide, tris(2,4-dimethylbenzoyl)phosphine oxide, tris(2-methoxybenzoyl)phosphine oxide, 2,6-dimethoxybenzoyldiphenylphosphine oxide, 2,6-dichlorobenzoyldiphenylphosphine oxide, 2,3,5,6-tetramethylbenzoyldiphenylphosphine oxide, benzoyl-bis(2,6-dimethylphenyl)phosphonate, and 2,4,6-trimethylbenzoylethoxyphenylphosphine oxide.
  • phosphine oxide photosensitizers capable of free-radical initiation when irradiated at wavelength ranges of greater than about 380 nm to about 450 nm include bis(2,4,6-trimethylbenzoyl)phenyl phosphine oxide (IRGACURE 819), bis(2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl) phosphine oxide (CGI 403), a 25:75 mixture, by weight, of bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentyl phosphine oxide and 2-hydroxy-2-methyl-1-phenylpropan-1-one (IRGACURE 1700), a 1:1 mixture, by weight, of bis(2,4,6-trimethylbenzoyl)phenyl phosphine oxide and 2-hydroxy-2-methyl-1-phenylpropane-1-one (DAROCUR 4265), and ethyl 2,4,6-trimethylbenzyl
  • Suitable Si- or Ge-acyl compounds preferably have the following formula (IX):
  • Si- or Ge-acyl compounds of formula (IX) represent 1,2-diketone photosensitizers which are particularly suitable for dental compositions.
  • compounds of formula (IX) With compounds of formula (IX), a high polymerization efficiency is attained, and no coloration problems occur, or in a polymerization system comprising a conventional photosensitizer such as camphor quinone, coloration is efficiently suppressed.
  • compounds of formula (IX) have a light absorption within the wavelength range typically applied in dental application, they are compatible with the ingredients of dental compositions and besides, they are considered physiologically harmless.
  • the term “substituted” as used herein means that R 10 , R 11 , R 12 , R 13 and R′ may be substituted by a substituent selected from the group consisting of halogen atoms, a nitro group, a cyano group, a hydroxy group, an amino group, C 1 -6 alkyl groups, C 1 -6 alkoxy groups and a —NR x R y group wherein R x and R y independently from each other represent a C 1-6 alkyl group.
  • illustrative of the halogen atoms can be fluorine, chlorine, bromine and iodine.
  • the C 1-6 alkyl groups are, for example, methyl, ethyl, n-propyl, isopropyl and n-butyl.
  • Illustrative of the C 1-6 alkoxy groups are, for example, methoxy, ethoxy and propoxy.
  • the alkyl moieties in these substituents may be linear, branched or cyclic.
  • the substituent is selected from a chlorine atom, a nitro group, a C 1 -4 alkoxy group and a —NR x R y group wherein R x and R y independently from each other represent a C 1 -4 alkyl group.
  • R 10 , R 11 and R 12 are substituted, then it is preferred that they are substituted with 1 to 3 substituents, more preferably with 1 substituent.
  • moieties R 10 , R 11 and R 12 may be defined as follows:
  • R 10 and R 11 independently from each other represent a substituted or unsubstituted hydrocarbyl or hydrocarbylcarbonyl group, and R 12 represents a substituted or unsubstituted hydrocarbyl group.
  • the hydrocarbyl group may be an alkyl group, a cycloalkyl group, a cycloalkylalkyl group, an arylalkyl group or an aryl group.
  • An alkyl group may be straight-chain or branched C 1-20 alkyl group, typically a C 1-8 alkyl group.
  • Examples for a C 1-6 alkyl group can include linear or branched alkyl groups having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl and n-hexyl.
  • a cycloalkyl group may be a C 3-20 cycloalkyl group, typically a C 3-8 cycloalkyl group.
  • Examples of the cycloalkyl group can include those having 3 to 6 carbon atoms, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • a cycloalkylalkyl group may have 4 to 20 carbon atoms and may include a combination of a linear or branched alkyl group having 1 to 6 carbon atoms and a cycloalkyl group having 3 to 14 carbon atoms.
  • Examples of the cycloalkylalkyl(-) group can for example, include methylcyclopropyl(-) methylcyclobutyl(-), methylcyclopentyl(-), methylcyclohexyl(-), ethylcyclopropyl(-), ethylcyclobutyl(-), ethylcyclopentyl(-), ethylcyclohexyl(-), propylcyclopropyl(-), propylcyclobutyl(-), propylcyclopentyl(-), propylcyclohexyl(-).
  • An arylalkyl(-) group may be a C 7-20 arylalkyl(-) group, typically a combination of a linear or branched alkyl group having 1 to 6 carbon atoms and an aryl(-) group having 6 to 10 carbon atoms.
  • Specific examples of an arylalkyl(-) group are a benzyl(-) group or a phenylethyl(-) group.
  • An aryl group can include aryl groups having 6 to 10 carbon atoms. Examples of the aryl group are phenyl and naphtyl.
  • the hydrocarbylcarbonyl groups of R 10 and R 11 represent acyl groups (R org —(C ⁇ O)—) in which the organic residue R org is a hydrocarbyl residue as defined above.
  • Compound of formula (IX) may contain one or two hydrocarbylcarbonyl groups, that is either one of R 10 or R 11 is a hydrocarbylcarbonyl group, or both R 10 and R 11 are hydrocarbylcarbonyl groups.
  • compound of formula (V) contains one hydrocarbylcarbonyl group.
  • the hydrocarbylcarbonyl group is an arylcarbonyl group, more preferably a benzoyl group.
  • R 10 and R 11 are independently selected from the group consisting of a straight chain or branched C 1-6 alkyl group, and a phenyl or benzoyl group which may optionally be substituted by one to three substitutents selected from halogen atoms, a nitro group, a C 1-4 alkoxy group and a —NR x R y group wherein R x and R y independently from each other represent a C 1-4 alkyl group, and R 12 is a straight chain or branched C 1-6 alkyl group or a phenyl group.
  • R 10 and R 11 are independently selected from the group consisting of a straight chain or branched C 1-4 alkyl group, and a phenyl or benzoyl group which may optionally be substituted with one substituent selected from the group consisting of selected from a halogen atom, a nitro group, a C 1 -4 alkoxy group and a —NR x R y group wherein R x and R y independently from each other represent a C 1-4 alkyl group, and R 12 is a straight chain or branched C 1-4 alkyl group.
  • R 9 may have the same meaning as X, whereby the compound of formula (IX) may be symmetrical or unsymmetrical.
  • R 9 may represent a substituted or unsubstituted hydrocarbyl group, or a group of formula (XI).
  • R 9 has the same meaning as X, then compound of formula (IX) is unsymmetrical.
  • R 9 represents a substituted or unsubstituted hydrocarbyl group, then the hydrocarbyl group has the same meaning as defined above for R 10 and is independently selected therefrom.
  • R 13 represents a substituted or unsubstituted hydrocarbyl group, a trihydrocarbylsilyl group, a mono(hydrocarbylcarbonyl)-dihydrocarbylsilyl group or a di(hydrocarbylcarbonyl)monohydrocarbylsilyl group.
  • R 13 of formula (XI) is a trihydrocarbylsilyl group, a mono(hydrocarbylcarbonyl)-dihydrocarbylsilyl group or a di(hydrocarbylcarbonyl)monohydrocarbylsilyl group
  • each of the hydrocarbyl and hydrocarbylcarbonyl groups has the same meaning as defined for R 10 , R 11 and R 12 and is independently selected therefrom.
  • R′ has the same meaning as defined for R 12 and is independently selected therefrom.
  • compounds of formula (IX) wherein R 9 represents a group of formula (XI) wherein Y is a bond, an oxygen atom or a NR′ group, and R 13 represents a substituted or unsubstituted hydrocarbyl group may have the following structural formulae:
  • compound of formula (IX) is selected from the group consisting of:
  • compound of formula (IX) has the following structural formula:
  • M Si
  • DKSi tert-butyl (tert-butyldimethylsilyl)-glyoxylate)
  • the dental composition is in the form of an acidic composition, that is a composition having a pH of less than 7, depending on the composition's pH level, it is preferred to select compounds of formula (IX) with the proviso that they do not contain ester groups, or at least only ester groups which do not significantly hydrolyse in aqueous media at pH 3 at room temperature within one month.
  • an advantageous stability of an acidic dental composition that is a composition having a pH of less than 7, in terms of shelf-life stability of the uncured dental composition as well as stability after curing in the mouth of a patient is ensured. Therefore, for acidic dental compositions, particularly preferred are compounds of formula (IX) excluding R 9 being a group of formula (XI) in which Y is an oxygen atom.
  • acylsilyl moiety (—C( ⁇ O)—Si—) might be sensitive to basic conditions, that is a pH higher than 7, it is preferred to suitably select a pH value of the composition being higher than 7 with the proviso that the acylsilyl moiety is not cleaved in aqueous media at the selected basic pH at room temperature within one month.
  • the compound of the formula (IX) may be a known compound which is commercially available or a may be prepared according to published procedures, as described for example in WO 2017/060459 A1.
  • Suitable Norrish type II photosensitizers may be selected from the group consisting of camphorquinone, benzil, 2,2′-3 3′- and 4,4′-dihydroxylbenzil, 2,3-butanedione, 2,3-pentanedione, 2,3-hexanedione, 3,4-hexanedione, 2,3-heptanedione, 3,4-heptanedione, 2,3-octanedione, 4,5-octanedionefuril, biacetyl, 1,2-cyclohexanedione, 1,2-naphthaquinone, and acenaphthaquinone.
  • Camphorquinone is preferred.
  • the photosensitizer (b1) is a 1,2-diketone, even more preferably camphor quinone or a Si- or Ge-acyl compound of formula (IX), yet even more preferably camphor quinone or DKSi, and most preferably camphor quinone.
  • the photoiniator system (b) further comprises (b2) a particulate carrier supporting a coinitiator covalently bonded to the surface of the carrier, which is termed as “particulate carrier (b2)” hereinafter.
  • the photoinitiator system (b) may comprise one or a mixture of two or more particulate carriers (b2).
  • the particulate carrier (b2) supports a coinitiator covalently bonded to the surface of the carrier, wherein the particulate carrier displays multiple covalently bonded tertiary amino groups and/or tertiary phosphine groups on the surface, for crosslinking monomers, oligomers and/or polymers having one or more polymerizable double bonds.
  • the particulate carrier (b2) provides for a cured dental composition which has no yellowing or yellowing is significantly reduced compared with conventional dental composition having exclusively non-covalently bonded coinitiator compounds. Furthermore, the leaching problem of the cured dental composition is alleviated. Finally, the particulate carrier (b2) is harmless or at least has a significantly reduced toxicity compared with non-covalently bonded coinitiator compounds.
  • the covalently bonded tertiary amino groups and/or tertiary phosphine groups are selected from moieties of the following formulae (I) and (II):
  • R 1 and R 2 which may be the same or different, independently represent a C 1-6 straight-chain, C 3-6 branched or cyclic alkyl group.
  • L is a single bond or a divalent linker group.
  • R 1 and R 2 which may be the same or different, independently represent a C 1 -4 straight-chain or branched alkyl group, more preferably a C1 or C2 straight-chain alkyl group, most preferably a methyl group.
  • the divalent linker group may be a hydrocarbon group which may be aliphatic and/or aromatic, preferably aliphatic, and preferably has 1 to 45 carbon atoms.
  • the aliphatic hydrocarbon group may be saturated or unsaturated.
  • the hydrocarbon group may be substituted with 1 to 6 C 1-4 alkyl groups. Specific examples of the alkyl groups are methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl or tert.-butyl.
  • the hydrocarbon group of the linker group may contain 1 to 20 heteroatoms selected from oxygen, nitrogen and sulphur.
  • the oxygen atoms, nitrogen atoms and sulphur atoms in the hydrocarbon group may be in the form of ether or thioether bonds, amine bonds, keto or sulfoxide groups, carboxylic acid or ester groups, amide groups, sulfonic acid or ester groups, hydroxyl groups and thiol or thioester groups.
  • the divalent linker group is a divalent C 1-20 hydrocarbon which may contain one or more heteroatoms selected from the group of an oxygen atom, a sulfur atom, and a nitrogen atom. More preferably, the divalent linker group is an aliphatic group in the form of a linear C 1 to C 20 or branched C 3 to C 20 alkylene group, linear C 2 to C 20 and branched C 3 to C 20 alkenylene group, C 3 to C 20 cycloalkylene or cycloalkenylene group which may contain 1 to 20 heteroatoms selected from oxygen, nitrogen and sulphur, which heteroatoms may be in the form described above.
  • the divalent linker group is a group of the following formula (III):
  • a is 0 or an integer of from 1 to 10
  • Het is selected from the group of sulfur, oxygen, and a nitrogen atom substituted with a hydrogen atom or a straight-chain C 1-6 alkyl group or a branched or cyclic C 3-6 alkyl group.
  • the divalent linker group may be an alkylene(polyoxyalkylene) group.
  • the alkylene(polyoxyalkylene) for the divalent linker group is not particularly limited, but preferably, it is a C 2-6 alkenylene-(O—C 2-6 alkylene) k wherein k is 1 to 20.
  • the alkylene(polyoxyalkylene) is ethylene(polyoxyethylene) wherein k is 1 to 10, most preferably 1 to 5.
  • L is a single bond.
  • the moieties of formulae (I) and (II) may be covalently bonded to the surface of the particulate carrier via any covalent bond formed by an organic reaction, preferably a carboxylic acid ester bond, a carboxylic acid amide bond, a sulfonamide bond, an oxo- or thio-ether bond, a carbamate bond, a thiocarbamate bond or an urea bond, more preferably a carboxylic acid ester bond and a carboxylic acid amide bond, most preferably a carboxylic acid amide bond.
  • any covalent bond formed by an organic reaction preferably a carboxylic acid ester bond, a carboxylic acid amide bond, a sulfonamide bond, an oxo- or thio-ether bond, a carbamate bond, a thiocarbamate bond or an urea bond, more preferably a carboxylic acid ester bond and a carboxylic acid amide bond, most preferably
  • the particulate carrier is selected from a microparticle, a nanoparticle and a polycondensate.
  • microparticle means a particle having an average particle size within the micrometer range, preferably up to 250 ⁇ m, more preferably 0.05 to 125 ⁇ m, and most preferably 1 to 50 ⁇ m.
  • nanoparticle means a particle having an average particle size within the micrometer range, preferably up to 250 nm, more preferably 0.05 to 125 nm, and most preferably 1 to 50 nm.
  • average particle size refers to the arithmetic mean diameter of a particle and may be determined by any suitable means, such as transmission or high resolution scanning electron microscopy.
  • the average particle size may be determined as so-called “D50” value, which is the particle size corresponding to the volume basis cumulative 50% size.
  • microparticle or nanoparticle may for example be composite particles comprising two or more components, for example at least one particulate inorganic component such as a particulate metal oxide and at least one organic component such as a surface treatment agent, e.g. a silane treatment agent.
  • the microparticle or nanoparticle may also be a particle essentially consisting of one component, e.g. of a polycondensate of organic compounds such as organoalkoxysilanes.
  • polycondensate as used in connection with the particulate carrier (b2) means any particulate product having polycondensation reaction products. Polycondensation products are obtained by a polymerization reaction in which molecules join together whereby small compounds such as water or an alcohol leave the molecules.
  • the polycondensate may be any suitable organic polycondensation reaction product, preferably a polycondensation reaction product of organoalkoxysilanes.
  • the particulate carrier (b2) in the form of a nanoparticle preferably has a density of covalently bonded tertiary amino groups and/or tertiary phosphine group of from 0.1 to 100 groups per nm 2 .
  • the particulate carrier is a microparticle or nanoparticle comprising silica, alumina, zirconia, titania, or a mixture thereof.
  • the nanoparticle is a polycondensate obtainable by a process comprising the following three steps (i) to (iii):
  • the silica precursor component (A) is preferably silicon alkoxide Si(OR 7 ) 4 , wherein R 7 is a linear C 1-8 or branched or cyclic C 3-8 alkyl group, preferably a linear or branched C 1-4 alkyl group, most preferably a linear C 1 or C 2 alkyl group.
  • the optional compound (B) is preferably a metal alkoxide M(OR 8 ) n , wherein R 8 has the same meaning as R 7 of the silicon alkoxide, M is selected from the group consisting of aluminum, zinc, titanium, zirconium, tungsten, ytterbium, hafnium, bismuth, barium, strontium, silver, tantalum, lanthanum, tin, boron, and cerium, and n is an integer of 1 to 4 corresponding to the oxidation state of the selected M.
  • M is aluminum, titanium, zirconium or zirconium.
  • step (i) is effected by adding water to the silica precursor component (A) and the optional compound (B), whereby the corresponding hydroxide is formed from silica precursor component (A) and optional compound(s) (B), and as a byproduct, an alcohol is formed.
  • step (ii) converting is a polycondensation reaction in which from the hydroxide obtained in step (i), a particulate oxide is formed as polycondensate of the silica precursor component (A) and the optional compound(s) (B), and water is formed as a byproduct.
  • the polycondensation reaction is preferably carried out in a mixture of water and an alcohol, for example ethanol or methanol.
  • step (i) and (ii) independently from each other are base or acid catalyzed.
  • Base catalyzation may preferably be carried out by setting the pH within a range of more than 7 to 14, more preferably 9 to 13, most preferably 11 to 12.
  • any suitable basic compound may be used for setting the pH, for example with ammonia.
  • Acid catalyzation may preferably be carried out by setting the pH within a range of 0 to less than 7, more preferably 1 to 6, most preferably 2 to 5.
  • any suitable acidic compound may be used for setting the pH, for example hydrochloric acid, sulfuric acid and phosphoric acid.
  • the reaction mixture of step (ii) provides a colloidal metal oxide, which is typically aged for obtaining a gel thereof.
  • Aging means that the reaction mix is allowed to stand for a predetermined period of time at a predetermined temperature. For example, aging may be carried out for 0.5 to 6 h, preferably at a temperature of 15 to 35° C.
  • the resulting gel is typically dried and calcined for obtaining a particulate oxide. Drying is carried out to remove water and alcohol. Therefore, the temperature for drying is suitably selected in view of the alcohol present in the reaction mixture and in view of the pressure applied. For example, for a reaction mixture of step (ii) containing water and ethanol, drying at standard pressure (100 kPa) may be carried out at a temperature of 100° C. or more. Calcination is carried out to remove organic species and to convert byproducts formed due to incomplete reactions in steps (i) and (ii), for example silanols, to the desired particulate oxide. Preferably, calcination is carried out at 400 to 1000° C., more preferably 500 to 800° C., most preferably 550 to 650° C.
  • steps (i) and (ii) is well known as sol-gel process in the field of chemistry and described in general for example in Ullmann's Encyclopedia of Industrial Chemistry, vol. A. 14, page 248 to 250, 5th edition, 1989, VCH Verlagsgesellschaft mbH.
  • silica sol-gel processes for preparing nanoparticles are described in I. A. Rahman et al., “Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nanocomposites—A Review”, Journal of Nanomaterials Volume 2012, Article ID 132424, Hindawi Publishing Corporation.
  • the silane treatment agent has one or more covalently bonded tertiary amino groups and/or tertiary phosphine groups selected from the moieties of the formulae (I) and (II) described above.
  • One preferred silane treatment agent for step (iii) is an organosilane of formula (XII)
  • n 1 to 3 and the number of substituents R C , R B , R C is 4 ⁇ n.
  • n is 2 or 3, more preferably 3.
  • R A , R B , R C which may be the same or different, represent an unreactive group or a polymerizable group, and at least one of R A , R B , R C is substituted with a covalently bonded tertiary amino group and/or tertiary phosphine group.
  • Unreactive groups for R A , R B and R C may be represented by alkyl groups, preferably linear C 1-8 or branched or cyclic C 3-8 alkyl groups.
  • Polymerizable groups for R A , R B and R C are preferably selected from the group consisting of a (meth)acryl group, a vinyl group or an oxirane group, more preferably (meth)acryl group or a vinyl group, and most preferably a (meth)acryl group which may be in the form of e.g. methacryloxy or methacryloxyalkyl wherein alkyl means a linear C 1-8 or branched or cyclic C 3-8 alkyl group.
  • at least one of R A , R B and R C is a polymerizable group.
  • R H which may be the same or different if two or three groups R H are present, represent(s) a hydrolysable group capable of reacting with the surface of the filler material to be coated.
  • R H may be selected from the group consisting of alkoxy groups, ester groups, halogen atoms and amino group, wherein the alkoxy groups are preferably linear C 1-8 or branched or cyclic C 3-8 alkoxy groups, and the ester groups are preferably carboxylates having linear C 1-8 or branched or cyclic C 3-8 alkyl groups.
  • the hydrolysable group R H represents an alkoxy group.
  • R A and R H have the same meaning as defined above for the organosilane of formula (XII), R D represents an alkylene group, and n is 1 to 3, preferably 2 or 3, more preferably 3.
  • R D represents a linear C 1-8 or branched or cyclic C 3-8 alkylene group, more preferably a linear or branched C 1-4 alkylene group.
  • At least one of R A , R B , R C of formula (XII) and R A of formula (XIII) is substituted with a tertiary amino or tertiary phosphine group, which group is preferably selected from the moieties of formulae (XII) and (XIII) described above.
  • R A , R B , R C may be substituted with the tertiary amino or tertiary phosphine group via any covalent bond formed by an organic reaction, preferably a carboxylic acid ester bond, a carboxylic acid amide bond, a sulfonamide bond, an oxo- or thio-ether bond, a carbamate bond, a thiocarbamate bond or an urea bond, more preferably a carboxylic acid ester bond and a carboxylic acid amide bond, most preferably a carboxylic acid amide bond.
  • organosilanes of formula (XII) or (XIII) with R H being an alkoxy group may be prepared analogous to the synthesis disclosed in EP 1 156 053 A2, which describes how an organic moiety having for example a tertiary amino group can be introduced into a trialkoxysilane.
  • the synthesis starts from an trialkoxysilane having an aminoalkyl, an isocyanatoalkyl or an thiolalkyl group.
  • the trialkoxysilane is reacted with a compound having a tertiary amino group in the form of a maleimide group and a reactive group in the form of a hydroxyl or isocyanate group.
  • the reactive group is reacted with the amino, isocyanate or thiol group of the trialkoxysilane.
  • the tertiary amino group is covalently bonded to the trialkoxysilane via a carbamate, thiocarbamate or urea bond.
  • organosilanes of formula (XII) or (XIII) with R H being an alkoxy group may for example be prepared analogous to the synthesis disclosed in WO 00/121967 A1 by reacting a trialkoxylsilane having an aminoalkyl group with a compound having an organic moiety and a reactive group in the form of an acyl halogenide (preferably iodide, chloride, bromide, most preferably chloride), whereby the organic group is covalently bonded to the trialkoxysilane via an amide bond.
  • an acyl halogenide preferably iodide, chloride, bromide, most preferably chloride
  • an organosilane of formula (XII) in which R H is an alkoxy group and one of R A , R B , R C is substituted with a tertiary amino group covalently bonded by a carboxylic acid amide group may be prepared starting from a commercially readily available aminoalkyl trialkoxysilane such as (3-aminopropyl)trimethoxysilane (CAS-No. 13822-56-5), which is reacted with an acyl halogenide (preferably iodide, chloride, bromide, most preferably chloride) compound having the moiety of formula (I) or (II).
  • acyl halogenide preferably iodide, chloride, bromide, most preferably chloride
  • step (iii) in addition to the preferred organosilanes of formulae (XII) and (XIII), in step (iii), conventional organosilanes, that is organosilanes without a covalently bonded tertiary amino group and/or tertiary phosphine group may be applied.
  • Particularly preferred conventional organosilanes are for example 3-methacryloxy trimethoxysilane, vinyltrichlorosilane, tris (2-methoxyethoxy)-vinylsilane or tris(acetoxy)-vinylsilane, or any one of the specific group of organosilanes disclosed in EP 0969789 A1, namely 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyldimethoxy-monochlorosilane, 3-methacryloxypropyldichloromonomethoxysilane, methacryloxypropyltri-chlorosilane, 3-methacryloxypropyldichloromonomethyl-silane and 3-methacryloxypropylmonochlorodimethylsilane.
  • the photoinitiator system (b) may comprise further components, such as an electron donor component, a coinitiator component which is not covalently bonded to any component of the dental composition, and a sensitizer component.
  • Preferred electron donor components include, for example, amides, ethers, thioethers, ureas, thioureas, ferrocene, sulfinic acids and their salts, salts of ferrocyanide, ascorbic acid and its salts, dithiocarbamic acid and its salts, salts of xanthates, salts of ethylene diamine tetraacetic acid and salts of tetraphenylboronic acid or an organic hydride of Si, Ge or Sn.
  • the electron donor component is an organic hydride compound of Si, Ge or Sn.
  • Preferred organic hydrides of Si, Ge or Sn have the following formula (XIV):
  • X* represents Si, Ge, or Sn
  • R a represents a hydrogen atom, an organic moiety or a different moiety L*
  • R b and R c which are independent from each other, represent an organic moiety.
  • the organic metal hydride of formula (XIV) may react as a hydrogen donating agent in a photoexcitation complex with the alpha-diketone sensitizer. Accordingly, when an alpha-diketone absorbs visible light and forms an exciplex with the organic metal hydride of formula (XIV), a hydrogen transfer may take place from the organic metal hydride to the alpha-diketone compound, whereby the organic metal hydride of formula (XIV) is transformed into a radical specifies capable of facilitating the polymerization reaction.
  • X* represents Si, Ge, or Sn.
  • X* represents Si or Ge. More preferably, X* is Ge.
  • compound of formula (XIV) is a silane compound.
  • compound of formula (XIV) is a germane compound.
  • R a may be a hydrogen atom, an organic moiety or a different moiety L.
  • R a is a hydrogen atom
  • the compound of formula (XIV) contains two metal hydride bonds (X*—H).
  • R a is a hydrogen atom
  • the X* is Si.
  • R a is preferably an aromatic, an aliphatic or an alicyclic group.
  • An aromatic group may be a phenyl group.
  • the phenyl group may be substituted by one or more straight chain or branched alkyl groups having 1 to 6 carbon atoms, alicyclic groups having 3 to 6 carbon atoms, halogen atoms, hydroxyl groups, or amino groups.
  • the aliphatic group may be a straight chain or branched alkyl groups having 1 to 6 carbon atoms which may be substituted by one or more aromatic groups, alicyclic groups having 3 to 6 carbon atoms, halogen atoms, hydroxyl groups or amino groups.
  • An alicyclic group may be a group having 3 to 6 carbon atoms which may be substituted by one or more aromatic groups, aliphatic groups, halogen atoms, hydroxyl groups or amino groups.
  • each X*, R a , R b and R c may be the same or different and independently has the meaning as defined by the present invention.
  • R b and R c which are independent from each other, represent an organic moiety.
  • An organic group may be an aromatic, an aliphatic or an alicyclic group.
  • An aromatic group may be a phenyl group.
  • the phenyl group may be substituted by one or more straight chain or branched alkyl groups having 1 to 6 carbon atoms, alicyclic groups having 3 to 6 carbon atoms, halogen atoms, hydroxyl groups, or amino groups.
  • the aliphatic group may be a straight chain or branched alkyl groups having 1 to 6 carbon atoms which may be substituted by one or more aromatic groups, alicyclic groups having 3 to 6 carbon atoms, halogen atoms, hydroxyl groups or amino groups.
  • An alicyclic group may be a group having 3 to 6 carbon atoms which may be substituted by one or more aromatic groups, aliphatic groups, halogen atoms, hydroxyl groups or amino groups.
  • R a , R b , and R c in the compound of formula (XIV) are the same and represent an aliphatic, an aromatic or an alicyclic hydrocarbon group.
  • the compound of formula (XIV) is a compound of the following formula:
  • the dental composition contains the compound of formula (XIV) in an amount from 0.05 to 5 percent by weight based on the total weight of the composition.
  • Coinitiator components are preferably selected from iodonium salts, sulfonium salts, phosphonium salts, amine compounds and tertiary aromatic phosphine compounds.
  • Preferred iodonium, sulfonium or phosphonium salts respectively have a cation selected from:
  • Salts having a cation selected from formulae (XVI), (XVII) and (XVIII) represent particularly efficient iodonium, sulfonium or phosphonium salts and significantly improve the polymerization performance of the photoinitiator system.
  • R 15 and R 16 of the iodonium ion of formula (XVI), R 17 , R 18 and R 19 of the sulfonium ion of (XVII), and R 29 , R 21 and R 22 of the phosphonium ion of formula (XVIII) are respectively selected from an aromatic, an aliphatic or an alicyclic group.
  • An aromatic group may be a phenyl group.
  • the phenyl group may be substituted by one or more straight chain or branched alkyl groups having 1 to 6 carbon atoms, straight chain or branched alkoxy groups having 1 to 6 carbon atoms, aromatic groups such as aryl groups or aryloxy groups, alicyclic groups having 3 to 6 carbon atoms, halogen atoms, hydroxyl groups, or amino groups.
  • the aliphatic group may be a straight chain or branched alkyl groups having 1 to 6 carbon atoms which may be substituted by one or more aromatic groups, alicyclic groups having 3 to 6 carbon atoms, halogen atoms, hydroxyl groups or amino groups.
  • An alicyclic group may be a group having 3 to 6 carbon atoms which may be substituted by one or more aromatic groups, aliphatic groups, halogen atoms, hydroxyl groups or amino groups.
  • R 15 and R 16 of the iodonium ion of formula (XVI) and R 17 , R 18 and R 19 of the sulfonium ion of (XVII) are respectively selected from a phenyl group which may be substituted with 1 to 3 substituents selected from halogen atoms, a cyano group, a hydroxy group, an amino group, C 1-6 alkyl groups and C 1-6 alkoxy groups.
  • the iodonium ion of formula (XVI) is a diaryl iodonium ion.
  • useful diaryl iodonium ions include (4-methylphenyl)[4-(2-methylpropyl) phenyl] iodonium, diphenyliodonium tetrafluoroborate, di(4-methylphenyl)iodonium, phenyl-4-methylphenyliodonium, di(4-heptylphenyl)iodonium, di(3-nitrophenyl)iodonium, di(4-chlorophenyl)iodonium, di(naphthyl)iodonium, di(4-trifluoromethylphenyl)iodonium, diphenyliodonium, di(4-methylphenyl)iodonium; diphenyliodonium, di(4-phenoxyphenyl)iodonium, phenyl-2
  • aromatic iodonium ions of formula (XVI) are selected from the group consisting of diaryliodonium, (4-methylphenyl)[4-(2-methylpropyl) phenyl] iodonium, 4-octyloxyphenyl phenyliodonium, and 4-(1-methylethyl)phenyl 4-methylphenyliodonium.
  • the aromatic iodonium ion of formula (XVI) is diphenyliodonium or (4-methylphenyl)[4-(2-methylpropyl)phenyl]iodonium.
  • a preferred sulfonium ion of formula (XVII) is S-(phenyl)thianthrenium of the following formula:
  • R 20 , R 21 and R 22 independently from each other represent an aliphatic group, more preferably a straight chain or branched alkyl group having 1 to 6 carbon atoms which may be substituted by one or more aromatic groups, alicyclic groups having 3 to 6 carbon atoms, halogen atoms, hydroxyl groups or amino groups. More preferably, in a phosphonium ion of formula (XVIII), R 20 , R 21 and R 22 independently from each other represent a straight chain or branched alkyl group having 1 to 4 carbon atoms which may be substituted by one or more halogen atoms, hydroxyl groups or amino groups.
  • a particularly preferred phosphonium ion of formula (XVIII) is tetrakis-(hydroxymethyl)-phosphonium (THP).
  • the anion may be selected from hexafluoroantimonate, trifluoromethylsulfate, hexafluorophosphate, tetrafluoroborate, hexafluoroarsenate, and tetraphenylborate.
  • Preferred amine compounds are tertiary amine compounds, more preferably tertiary amine compounds selected from the group consisting of triethanolamine, 4-N,N-dimethylaminobenzonitrile, methyl N,N-dimethylaminobenzoate, ethyl N,N-dimethylaminobenzoate, N,N-dimethylaminoethyl methacrylate and isoamyl 4-N,N-dimethylaminobenzoate, N,N-dimethylaniline, N,N-dimethyltoluidine, N,N-diethanoltoluidine, dimethylaminoanisole, 1 or 2-d imethylaminonaphthalene.
  • the tertiary amine compound is selected from the group consisting of triethanolamine, methyl 4-N,N-dimethylaminobenzoate, ethyl 4-N,N-dimethylaminobenzoate, 4-N,N-dimethylaminoethyl methacrylate and isoamyl 4-N,N-dimethylaminobenzoate.
  • Preferred aromatic tertiary phosphine compounds have the following formula (XIX):
  • the monovalent hydrocarbyl group may be an alkyl group, a cycloalkyl group, a cycloalkylalkyl group, an arylalkyl group or an aryl group.
  • Ar P represents a substituted or unsubstituted aryl or heteroaryl group.
  • An aryl group may be selected from a phenyl group, a naphtyl group, a tolyl group, a xylyl group, and a styryl group.
  • a heteroaryl group may be a pyridyl group.
  • L P is a substituted or unsubstituted divalent hydrocarbyl group which may contain a linkage selected from an ether linkage, a thioether linkage, an ester linkage, an amide linkage, and a urethane linkage.
  • the divalent hydrocarbyl group may be an alkyldiyl group, a cycloalkyldiyl group, a cycloalkylalkyl-diyl group, an arylalkyl-diyl group or an aryldiyl group.
  • a valency may be bonded to each of the cycloalkyl moiety or the alkyl moiety, or both valencies may be bonded to either the cycloalkyl moiety or the alkyl moiety.
  • a arylalkyl-diyl group each of the aryl moiety or the alkyl moiety may be monovalent respectively, or either the aryl moiety or the alkyl moiety is divalent, while the other moiety is nonvalent.
  • each of the cycloalkyl moiety or the alkyl moiety may be monovalent respectively, or either the cycloalkyl moiety or the alkyl moiety is divalent, while the other moiety is nonvalent.
  • An alkyl(diyl) group may be straight-chain or branched C 1-20 alkyl(diyl) group, typically a C 1-8 alkyl(diyl) group.
  • Examples for a C 1-6 alkyl(diyl) group can include linear or branched alkyl(diyl) groups having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, for example, methyl(diyl), ethyl(diyl), n-propyl(diyl), isopropyl(diyl), n-butyl(diyl), isobutyl(diyl), sec-butyl(diyl), tert-butyl(diyl), n-pentyl(diyl), isopentyl(diyl) and n-hexyl(diyl).
  • a cycloalkyl(diyl) group may be a C 3-20 cycloalkyl(diyl) group.
  • Examples of the cycloalkyl(diyl) group can include those having 3 to 14 carbon atoms, for example, cyclopropyl(diyl), cyclobutyl(diyl), cyclopentyl(diyl) and cyclohexyl(diyl).
  • a cycloalkylalkyl(diyl) group can include those having 4 to 20 carbon atoms.
  • a cycloalkylalkyl(-diyl) group can include a combination of a linear or branched alkyl(diyl) group having 1 to 6 carbon atoms and a cycloalkyl(diyl) group having 3 to 14 carbon atoms.
  • Examples of the cycloalkylalkyl(-diyl) group can for example, include methylcyclopropyl(-diyl) methylcyclobutyl(-diyl), methylcyclopentyl(-diyl), methylcyclohexyl(-diyl), ethylcyclopropyl(-diyl), ethylcyclobutyl(-diyl), ethylcyclopentyl(-diyl), ethylcyclohexyl(-diyl), propylcyclopropyl(-diyl), propylcyclobutyl(-diyl), propylcyclopentyl(-diyl), propylcyclohexyl(-diyl).
  • An arylalkyl(-diyl) group may be a C 7-20 arylalkyl(-diyl) group, typically a combination of a linear or branched alkyl(diyl) group having 1 to 6 carbon atoms and an aryl(-diyl) group having 6 to 10 carbon atoms.
  • Specific examples of an arylalkyl(-diyl) group are a benzyl(-diyl) group or a phenylethyl(-diyl) group.
  • An aryl(diyl) group can include aryl(diyl) groups having 6 to 10 carbon atoms. Examples of the aryl(diyl) group are phenyl(diyl) and naphtyl(diyl).
  • Aryl(diyl) groups may contain 1 to 3 substituents. Examples of such substituents can include halogen atoms, a cyano group, a hydroxy group, an amino group, C 1-6 alkyl groups and C 1-6 alkoxy groups.
  • substituents can include fluorine, chlorine, bromine and iodine.
  • the C 1-4 alkyl(diyl) groups are, for example, methyl(diyl), ethyl(diyl), n-propyl(diyl), isopropyl(diyl) and n-butyl(diyl).
  • Illustrative of the C 1-4 alkoxy(diyl) groups are, for example, methoxy(diyl), ethoxy(diyl) and propoxy(diyl).
  • the alkyl(diyl) moieties in these substituents may be linear, branched or cyclic.
  • the hydrocarbyl group is an aryl(diyl) group selected from a phenyl(diyl) group and a naphthyl(diyl) group, which groups may optionally be substituted by one to three groups selected from halogen atoms, a cyano group, an amino group, a hydroxy group, C 1-6 alkyl groups and C1-6 alkoxy groups, or wherein the hydrocarbyl group is a non-aromatic hydrocarbyl group selected from a straight chain or branched alkyl group, a straight chain or branched alkenyl group, or a straight chain or branched alkynyl group.
  • the C 1-8 alkyl(diyl) group and the C 3-14 cycloalkyl(diyl) group may optionally be substituted by one or more members of the group selected from a C 1-4 alkyl group, C 1-4 alkoxy group, a phenyl group, and a hydroxy group.
  • Examples for a C 1-4 alkyl group can include linear or branched alkyl groups having 1 to 4 carbon atoms, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl.
  • Examples for an C 1-4 alkoxy group can include linear or branched alkoxy groups having 1 to 4 carbon atoms, for example, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, and tert-butoxy.
  • any of the hydrocarbyl group may be substituted by one or more groups selected from halogen atoms, a cyano group, an amino group or a hydroxy group. Accordingly, in the hydrocarbyl groups some or all hydrogen atoms are replaced by halogen atoms (e.g., fluoro, bromo, chloro), for example, halo-substituted alkyl groups such as chloromethyl, chloropropyl, bromoethyl and trifluoropropyl, and cyanoethyl.
  • halogen atoms e.g., fluoro, bromo, chloro
  • the hydrocarbyl group contains an alkyl(diyl) chain
  • one or more carbon atoms in the alkyl(diyl) chain may be replaced by an oxygen atom, a sulfur atom, an amide group, an ester group, or a urethane group.
  • the hydrocarbyl group is an alkyl group having more than one carbon atom
  • the alkyl group contains an alkylene. Accordingly, in case the hydrocarbyl group is an n-hexyl group, any of the carbon atoms of the alkylene chain excluding the terminal methyl group may be replaced by an oxygen atom, a sulfur atom, an amide group, an ester group, a urethane group or an NH group. Therefore, the following groups may be given as specific examples in case of one or more oxygen atoms:
  • group R* and/or Ar P as well as R P and/or may be substituted with a polymerizable double bond, preferably a carbon-carbon double bond.
  • polymerizable carbon-carbon double bonds include vinyl, conjugated vinyl, allyl, acryl, methacryl and styryl.
  • the polymerizable double bond is selected from the group consisting of methacryl, acryl and styryl. More preferably, the double bond is styryl.
  • R* and Ar P independently are aromatic hydrocarbyl groups selected from a phenyl group, a naphtyl group, a tolyl group, a xylyl group, and a styryl group.
  • this moiety is an aryl group, which may be substituted by one or more groups selected from a hydroxyl group, an amino group, a —NR a R b group (wherein R a and R b , which may be the same or different, are selected from C 1-6 alkyl groups), a carboxyl group, and a group having a polymerizable double bond.
  • R P is an aryl group substituted by one or more groups selected from a hydroxyl group, an amino group, a —NR a R b group (wherein R a and R b , which may be the same or different, are selected from C 1-6 alkyl groups), a carboxyl group, and a group having a polymerizable double bond.
  • R P is a phenyl group substituted by one or two groups selected from a hydroxyl group, an amino group, a —NR a R b group (wherein R a and R b , which may be the same or different, are selected from C 1-6 alkyl groups), a carboxyl group, and a group having a polymerizable double bond.
  • the aromatic phosphine compound is a compound of formula (XIX) wherein Z P is a group of the following formula:
  • a compound of formula (XIX) include triphenyl phosphine (TPP), 4-(diphenylphosphino)styrene (DPPS), 4-(diphenylphosphino)benzoic acid, 4-(diphenylphosphino) benzoic acid, 3-(diphenylphophonino)propionic acid, (4-(diphenylphosphino) N,N′′-dimethylaniline, 2,2′′-bis(diphenylphosphino)benzophenone (BDPPEP), bis[2-(di-phenylphosphino)phenyl]ether (BDPPE), (4-Hydroxyphenyl)diphenylphosphine, allyldiphenylphosphine.
  • TPP triphenyl phosphine
  • DPPS 4-(diphenylphosphino)styrene
  • BDPPEP 2,2′′-bis(diphenylphosphino)benzophen
  • the compound of formula (XIX) is triphenyl phosphine (TPP) or 4-(diphenylphosphino)styrene (DPPS), more preferably 4-(diphenylphosphino)styrene (DPPS).
  • TPP triphenyl phosphine
  • DPPS 4-(diphenylphosphino)styrene
  • DPPS 4-(diphenylphosphino)styrene
  • a compound of the formula (XIX) may be a known compound which is commercially available or may be prepared according to published procedures, as described for example in WO/2017/156363 A1.
  • the photoinitiator system may comprise a sensitizer component selected from a Norrish type I or II sensitizer as described above.
  • the sensitizer component represents an additional photosensitizer other than the photosensitizer (b1) of the photoinitiator system (b).
  • the dental composition according to the present invention comprises (c) a reactive particulate filler.
  • the dental composition may comprise one or a mixture of two or more reactive particulate fillers (c).
  • any granular component being reactive with a polyacidic polymer in a cement reaction may be used as the reactive particulate filler (c), that is, any alkaline granular compound suitable for a dental composition.
  • cement reaction means an acid-base reaction between the reactive particulate filler (c) and a polyacidic polymer in the presence of water. Water provides a medium needed for the ionic acid-base reaction to take place between the reactive particulate filler (c) and a polyacidic polymer.
  • the reactive particulate filler (c) is one or a mixture of two or more metal oxides, most preferably a glass, i.e. an amorphous solid mixture of metal oxides.
  • the reactive particulate filler (c) in the form of a glass is obtainable by transforming a solid mixture of metal oxides by a thermal melt process into a glass followed by milling, which glass is capable of reacting with a polyacidic polymer in a cement reaction
  • any conventional reactive dental glass may be used as reactive particulate filler (c).
  • particulate reactive glasses are selected from calcium alumino silicate glass, calcium alumino fluorosilicate glass, calcium aluminumfluoroborosilicate glass, strontium aluminosilicate glass, strontium aluminofluorosilicate glass, strontium aluminofluoroborosilicate glass, or ion-leachable glasses, e.g. as described in U.S. Pat. Nos. 3,655,605, 3,814,717, 4,143,018, 4,209,434, 4,360,605 and 4,376,835.
  • reactive metal oxides such as zinc oxide and/or magnesium oxide may be used in glass and/or crystalline form as reactive particulate filler (c).
  • the reactive particulate filler (c) is a glass comprising:
  • the present dental composition preferably comprises 20 to 90 percent by weight of the reactive particulate filler (c), more preferably 30 to 85 percent by weight, most preferably 20 to 80 percent by weight based on the total weight of the composition.
  • the reactive particulate filler (c) usually has an average particle size of from 0.1 to 100 ⁇ m, preferably of from 1 to 40 ⁇ m as measured, for example, by electron microscopy or by using a conventional laser diffraction particle sizing method as embodied by a MALVERN Mastersizer S or MALVERN Mastersizer 2000 apparatus.
  • the reactive particulate filler (c) may have a unimodal or multimodal (e.g., bimodal) particle size distribution, wherein a multimodal reactive particulate filler (c) represents a mixture of two or more particulate fractions having different average particle sizes.
  • the reactive particulate filler (c) may be an agglomerated reactive particulate filler which is obtainable by agglomerating a reactive particulate filler in the presence of a modified polyacid and/or polymerizable resin such as (meth)acryloyl monomers.
  • the particle size of the agglomerated reactive particulate filler (c) may be adjusted by suitable size-reduction processes such as milling.
  • the reactive particulate filler (c) may be surface modified by a surface modifying agent.
  • the surface modifying agent is a silane.
  • a silane provides a suitable hydrophobicity to the reactive particulate filler (c), which allows for an advantageous, homogeneous admixture with organic components of the dental composition.
  • the reactive particulate filler (c) may have silane coupling agent(s) on its surface, for example in the form of a coating at least partly, and preferably fully covering the surface of the reactive particulate filler (c).
  • the dental composition according to the present invention comprises (d) a polyacidic polymer which is reactive with the reactive particulate filler in a cement reaction, which is termed as “polyacidic polymer (d)” hereinafter.
  • the dental composition may comprise one or a mixture of two or more polyacidic polymers (d).
  • the acidic groups are preferably selected from carboxylic acid group ((C ⁇ O)—OH), (C ⁇ S)—SH, (C ⁇ O)—SH and (C ⁇ S)—OH.
  • the most preferred acidic group is the carboxylic acid group ((C ⁇ O)—OH).
  • the acidic groups of the polyacidic polymer (d) can react with the reactive particulate filler (a) to form a glass ionomer cement which can be used as a dental material.
  • the polyacidic polymer (d) is water-soluble.
  • water-soluble means that at least 0.1 g, preferably 0.5 g of the polyacidic polymer (d) dissolves in 100 g of water at 20° C.
  • the polyacidic polymer (d) is hydrolysis-stable. “Hydrolysis-stable” means that the polyacidic polymer (d) is stable to hydrolysis in an acidic medium, such as in a dental composition. Specifically, the polyacidic polymer (d) preferably does not contain groups such as ester groups which hydrolyze in aqueous media at pH 3 at room temperature within one month.
  • the polyacidic polymer (d) may for example be prepared based by polymerizing acrylic acid or a mixture comprising acrylic acid and one or a mixture of polymerizable monomers having a polymerizable double bond and optionally a carboxylic acid group.
  • the polyacidic polymer (d) has repeating units of the following formula (XXI)
  • a o which may be the same or different, independently is selected from a group of the following formulae (XXIa) to (XXIf):
  • k, l, m, n and o are independently integers of at least 0, k+l+m+n+o is at least 2, and at least one of k, l, n, and o is at least 1.
  • the polyacidic polymer (d) having repeating units of the following formula (XXI) has a weight average molecular weight of 1 to 300 kDa, more preferably 5 to 250 kDa, most preferably 10 to 200 kDa.
  • the polyacidic polymer (d) having repeating units of the following formula (XXI) may be prepared based by polymerizing acrylic acid or a mixture comprising acrylic acid.
  • a mixture comprising acrylic acid may further comprise one or more unsaturated monocarboxylic acids or unsaturated dicarboxylic acids or an anhydride of the unsaturated dicarboxylic acids.
  • Specific examples include itaconic acid, maleic acid, methacrylic acid, 2-chloroacrylic acid, 2-cyanoacrylic acid, aconitic acid, mesaconic acid, fumaric acid, glutaconic acid, citraconic acid, utraconic acid, and an anhydride of the unsaturated dicarboxylic acids. Itaconic acid and maleic acid are preferred.
  • a mixture comprising acrylic acid may further comprise copolymerizable monomers which do not have a carboxylic acid functionality or an anhydride thereof, whereby it is preferable that the proportion of the unsaturated carboxylic acid units is 50% by mol or more of the entire structural units.
  • the polyacidic polymer (d) having repeating units of the following formula (XXI) contains from 50 to 100 mole percent of acrylic acid repeating units.
  • the copolymerizable monomer is preferably an ethylenically unsaturated polymerizable monomer, and the copolymerizable monomer includes, for example, styrene, acrylamide, acrylonitrile, methyl methacrylate, vinyl chloride, allyl chloride, vinyl acetate, 1,1,6-trimethylhexamethylene dimethacrylate ester.
  • the polyacidic polymers (d) having repeating units of the following formula (XXI) homopolymers of acrylic acid and copolymers of acrylic acid and itaconic acid anhydride are preferred.
  • the polyacidic polymers (d) having repeating units of the following formula (XXI) is polyacrylic acid or a copolymer of acrylic acid and itaconic anhydride.
  • a polyacidic polymer (d) having repeating units of the following formula (XXI) may be used having repeating units of the following formula (XXII)
  • R is an organic group having one or more polymerizable double bond, and A o as well as k, l, m, n and o are defined as above for formula (XXI).
  • the polyacidic polymer (d) having repeating units of the following formula (XXII) is prepared by a process in which the polyacidic polymer having repeating units of following formula (XXI) as defined above is reacted with one or more polymerizable compounds of the following formula (XXIII) in a solvent:
  • X o is selected from an amino group and an isocyanato group, and R is an organic group having one or more polymerizable double bond, for preparing a polymerizable linear polyacidic acrylic polymer having polymerizable pendant groups linked to the acrylic polymer backbone by amide groups.
  • R is an organic group having one or more polymerizable double bond, for preparing a polymerizable linear polyacidic acrylic polymer having polymerizable pendant groups linked to the acrylic polymer backbone by amide groups.
  • X o is an amino group.
  • the reacting with polymerizable compounds of formula (XXIII) serves to introduce one or more polymerizable moieties into the polyacidic polymer having repeating units of the following formula (XXI), which moieties can be post-polymerized to provide additional covalent crosslinking, imparting additional strength to a cured dental composition comprising the polymer.
  • the polymerizable polyacidic polymer (d) having repeating units of the following formula (XXII) having polymerizable pendant groups linked to the acrylic polymer backbone by amide groups can be used as a polymer according to the present invention without further treatment.
  • the carboxylic acid groups of the polymer are protected. Any protective group for carboxylic acid groups known in the art of organic chemistry may be used, as described e.g. in P. G. M. Wuts and T. W. Greene, Greene's Protective Groups in Organic Synthesis, 4th Edition, John Wiley and Sons Inc., 2007. However, the carboxylic acid groups would have to be deprotected before the polymer may be used in a cement reaction. Therefore, the alternative embodiment is less preferred.
  • R o in formula (XXIII) is a moiety of the following formula (XXIV):
  • R 23 represents a hydrogen atom, a carboxylic acid group or a C 1-3 alkyl group
  • R 24 represents a hydrogen atom, a carboxylic acid group or a C 1-3 alkyl group
  • L o represents a divalent organic linker group
  • L o is preferably a group —Y o L′-, wherein Y o represents 0 or NH, and L o represents a divalent organic group.
  • a polymerizable compound of formula (XXIII) with X being an amino group is reacted with the polyacidic polymer having repeating units of formula (XXI) in which the carboxylic acid groups are activated with a coupling agent prior to the reaction with the polymerizable compounds of the formula (XXIII).
  • the coupling agent is a carbodiimide.
  • the carbodiimide may be selected from N,N′-dicyclohexylcarbodiimide (DCC), N-(3-Dimethylaminopropyl)-N′-ethylcarbonate (EDC), and N,N′-diisopropylcarbodiimide (DIC).
  • the reaction conditions of the process are not particularly limited. Accordingly, it is possible to carry out the reaction in any suitable solvent or a suitable mixture of two or more solvents.
  • a solvent may be selected from the group of dimethylformamide (DMF), acetonitrile, carbon tetrachloride, tetrahydrofurane (THF), and dioxane. More preferably, dimethylformamide (DMF), acetonitrile, and/or carbon tetrachloride are used.
  • the reaction temperature is not particularly limited. Preferably, the reaction is carried out at a temperature of between ⁇ 10° C. to the boiling point of the solvent. Preferably, the reaction temperature is in the range of from 0° C. to 100° C.
  • the reaction time is not particularly limited. Preferably, the reaction time is in the range of from 10 minutes to 120 hours, more preferably 1 hour to 80 hours.
  • the reaction between the polyacidic polymer (d) having repeating units of the following formula (XXI) and the one or more polymerizable compound of the formula (XXIII) may preferably be carried out at a temperature of from 20 to 100° C. for 1 to 60 hours.
  • the reaction product of the process may be isolated by precipitation and filtration.
  • the product may be purified by washing with a suitable solvent.
  • the polyacidic polymer (d) has repeating units of the following formula
  • R is as defined above for formula (XXII), k, l, m, n, and o are independently integers of at least 0, k+l+m+n+o is at least 2; at least one of k, l, n, and at least 1, and m is at least 1. Furthermore, A o , which may be the same or different, independently represent a group selected from groups of the following formula (XXII′c), (XXII′d), and (XXII′f):
  • Z is COOH CONHR′, wherein at least one Z is COOH, and R′ is as defined above for formula (XXI).
  • the polyacidic polymer having repeating units of formula (IV′) has a weight average molecular weight of 1.2 to 400 kDa, more preferably 6 to 350 kDa, most preferably 12 to 300 kDa.
  • the polyacidic polymer (d) When the polyacidic polymer (d) has a weight-average molecular weight of less than 1 kDa, the strength of the cured dental composition is lowered. On the other hand, when the polyacidic polymer (d) has a weight-average molecular weight exceeding a viscosity of 400 kDa, upon mixing and blending the dental composition becomes harder, so that workability is lowered in some cases. Therefore, the preferred weight-average molecular weight of the polyacidic polymer (d) is from 1 to 300 kDa.
  • the dental composition according to the present invention may, besides of optional components reactive particulate filler (c) and polyacidic polymer (d), comprise additional optional components.
  • the dental composition according to the present invention may contain further components such as a redox initiator, further fillers besides of reactive particulate filler (a), components improving radio-opacity, solvents, free radical scavengers such as 4-methoxyphenol, polymerization inhibitors, surfactants (such as to enhance solubility of an inhibitor e. g., polyoxyethylene), coupling agents to enhance reactivity of fillers e.g. 3-(trimethoxysilyl) propyl methacrylate, and rheology modifiers.
  • a redox initiator further fillers besides of reactive particulate filler (a), components improving radio-opacity, solvents, free radical scavengers such as 4-methoxyphenol, polymerization inhibitors, surfactants (such as to enhance solubility of an inhibitor e. g., polyoxyethylene), coupling agents to enhance reactivity of fillers e.g. 3-(trimethoxysilyl) propyl methacrylate, and
  • the dental composition contains a redox initiator.
  • redox initiator means a combination of an oxidizing agent and a reducing agent, and optionally a catalyst such as a metal salt.
  • the redox initiator provides a redox reaction in which radicals are formed. These radicals initiate polymerisation of a radically polymerizable compound.
  • a redox initiator system is activated by bringing the redox initiator system in contact with water and/or an organic solvent providing for at least partial dissolution of the oxidising agent and the reducing agent.
  • the optional catalyst may be added to accelerate the redox reaction and thus the polymerization of the compound having a polymerizable double bond (a).
  • a mixture of the photoinitiator system (b) and a redox initiator is a “dual cure initiator system”.
  • a suitable redox initiator system comprises reducing and oxidizing agents, which produce free-radicals capable of initiating polymerization of the polymerizable double bonds of the compound having a polymerizable double bond (a), independent from the presence of light.
  • the reducing and oxidizing agents are selected such that the dental composition is sufficiently storage-stable and free of undesirable colorization to permit storage and use under typical dental conditions.
  • the reducing and oxidizing agents are selected so that the dual cure initiators system is sufficiently miscible with the resin system to permit dissolution of the redox initiator system in the composition.
  • Useful reducing agents include ascorbic acid, ascorbic acid derivatives, and metal complexed ascorbic acid compounds as described in U.S. Pat. No. 5,501,727; amines, namely tertiary amines, preferably tertiary aromatic amines such as 4-tert-butyl dimethylaniline; aromatic sulfinate salts such as p-toluenesulfinate salts and benzenesulfinate salts, most preferably sodium para-toluenesulfinate; thioureas, such as 1-ethyl-2-thiourea, tetraethyl thiourea, tetramethyl thiourea, 1,1-dibutyl thiourea, and 1,3-dibutyl thiourea; and mixtures thereof.
  • amines namely tertiary amines, preferably tertiary aromatic amines such as 4-tert-butyl di
  • Secondary reducing agents may include cobalt (Ill) chloride, ferrous chloride, ferrous sulfate, hydrazine, hydroxylamine, salts of a dithionite or sulfite anion, and mixtures thereof.
  • cobalt (Ill) chloride ferrous chloride, ferrous sulfate, hydrazine, hydroxylamine, salts of a dithionite or sulfite anion, and mixtures thereof.
  • Suitable oxidizing agents include persulfuric acid and salts thereof, such as ammonium, sodium, potassium, cesium, and alkyl ammonium salts, preferably inorganic peroxodisulfate salts, most preferably potassium peroxodisulphate.
  • Additional oxidizing agents include peroxides such as benzoyl peroxides, hydroperoxides such as cumyl hydroperoxide, t-butyl hydroperoxide, and amyl hydroperoxide, as well as salts of transition metals such as cobalt (Ill) chloride and ferric chloride, cerium (IV) sulfate, perboric acid and salts thereof, permanganic acid and salts thereof, perphosphoric acid and salts thereof, and mixtures thereof.
  • One or more different oxidizing agents or one or more different reducing agent may be used in the initiator system. Small quantities of transition metal compounds may also be added to accelerate the rate of redox cure.
  • the reducing and oxidizing agents are present in amounts sufficient to permit an adequate free-radical reaction rate.
  • the reducing or oxidizing agents may be microencapsulated for enhancing shelf stability of the composition, and if necessary permitting packaging the reducing and oxidizing agents together (U.S. Pat. No. 5,154,762).
  • Appropriate selection of an encapsulant may allow combination of the oxidizing and reducing agents and even of an acid-functional component and optional filler in a storage-stable state.
  • appropriate selection of a water-insoluble encapsulant allows combination of the reducing and oxidizing agents with the particulate reactive glass and water in a storage-stable state.
  • a particularly preferred redox initiator contains (i) an inorganic peroxodisulphate salt, (ii) an aromatic amine, and (iii) an aromatic or non-aromatic sulfinate salt.
  • the inorganic peroxodisulphate salt is potassium peroxodisulphate; and/or the aromatic amine is tert.-butyl-N,N-dimethylaniline (4-tert.-butyl-N,N-dimethylaniline); and/or the aromatic sulfinate salt is sodium para-toluenesulfinate.
  • the redox initiator contains (i′) potassium peroxodisulphate, (ii′) 4-tert.-butyl-N,N-dimethylaniline, and (iii′) sodium para-toluenesulfinate.
  • a dual cure initiator system contains the photoinitiator system with the covalently bonded coinitiator compound having formula (I) or (II), and the redox initiator contains (i) an inorganic peroxodisulphate salt, (ii) an aromatic amine, and (iii) an aromatic or non-aromatic sulfinate salt, more preferably the redox initiator contains (i′) potassium peroxodisulphate, (ii′) tert.-butyl-N,N-dimethylaniline, and (iii′) sodium para-toluenesulfinate.
  • Further filler(s) besides of the reactive particulate filler (c) may for example be selected from inert glass(es), fluoride releasing glass(es), granulated prepolymerized fillers, ground prepolymerized fillers and filler aggregates.
  • inert glass(es) refers to a glass which is not capable of reacting with a polymer containing acidic groups in a cement reaction.
  • Inert glasses are for example described in the Journal of Dental Research June 1979, pages 1607-1619, or more recently in U.S. Pat. Nos. 4,814,362, 5,318,929, 5,360,770, and application US 2004/0079258 A1.
  • inert glasses are known in which strongly basic oxides such as CaO, BaO, SrO, MgO, ZnO, Na 2 O, K 2 O, Li 2 O etc. are replaced with weakly basic oxides such as those in the Scandium or Lanthanide series.
  • fluoride releasing glass(es) refers to a glass capable to of releasing fluoride. Fluoride releasing capability may be provided by adding to a mixture of oxides for forming a glass inorganic particles containing fluoride with the proviso that the glass has fluoride releasability, preferably sustained fluoride releasability.
  • Such inorganic particles may be selected from the group consisting of sodium fluoride, strontium fluoride, lanthanum fluoride, ytterbium fluoride, yttrium fluoride, and calcium-containing fluoroaluminosilicate glasses.
  • Components improving radio-opacity may for example be selected from CaWO 4 , ZrO 2 and YF 3 .
  • Suitable solvents may be selected from water, alcohols such as methanol, ethanol, propanol (n-, i-), butanol (n-, iso-, tert.-), and ketones such as acetone.
  • the dental composition of the present invention may preferably comprise a solvent in an amount of 5 to 75 percent by weight based on the total weight of the dental composition.
  • water is present in an amount from about 0.5 wt % to about 40 wt %, more preferably 1.0 wt % to 30 wt %, and most preferably 2.0 wt % to 25 wt % based on the total weight of the dental composition.
  • This preferred amount of water is particularly suitable for a dental composition in the form of a dental glass ionomer cement, that is a dental composition comprising the reactive particulate filler (c) and the polyacidic polymer (d).
  • the present dental composition may be a one-pack or a multi-pack dental composition.
  • one-pack means that all components of the dental composition are comprised in one single pack such as a capsule having at least two chambers.
  • multi-pack means that the components of the dental composition are comprised in a multitude of separate packs. For example, a first part of components is comprised in a first pack, while as second part of components is comprised in a second pack, a third part of components may be comprised in a third pack, a fourth part of components may be comprised in a fourth pack, and so on.
  • the dental composition is a composition of two or more packs, more preferably a two-pack composition.
  • a two-pack powder/liquid composition is preferred.
  • the powder pack comprises the particulate carrier (b2) and optionally the reactive particulate filler (c), and the liquid pack comprises the compound having a polymerizable double bond (a) and optionally the polyacidic polymer(d).
  • a particulate carrier displaying multiple covalently bonded tertiary amino groups and/or tertiary phosphine groups on the surface may be used in a dental composition for crosslinking polymer chains formed by polymerizing a compound having a polymerizable double bond.
  • the above described particulate carrier is the particulate carrier (b2) described above for the dental composition.
  • the dental composition is a dental composition as described above.
  • the raw product was dispersed in 50 mL water in an ultrasound bath. After 1 hour 0.8 g Ammonium fluoride was added and treated for another hour in the ultrasound bath. Then, the Water was removed in vacuum and the product was dried at 50° C. and 50 mbar.
  • Aerosil OX-50 was dispersed in 100.2 g isopropanol. 0.24 g (3-Aminopropyl) trimethoxy silane were added and the mixture was stirred at 50° C. for 5 minutes. Solvent was evaporated at 125 mbar and 50° C. by rotary evaporation. Afterward the powder was dried at 80° C. overnight.
  • the obtained composite was irradiated with a SmartLite Focus for 20 s resulting in a hard polymerized composite material.
  • the obtained composite was irradiated with a SmartLite Focus for 20 s resulting in a hard polymerized composite material.

Landscapes

  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Biophysics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Dental Preparations (AREA)
US16/642,163 2017-08-31 2018-08-29 Dental composition comprising a particulate carrier supporting a coinitiator Abandoned US20210069069A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17188788.8 2017-08-31
EP17188788.8A EP3449894A1 (en) 2017-08-31 2017-08-31 Dental composition comprising a particulate carrier supporting a coinitiator
PCT/EP2018/073231 WO2019043056A1 (en) 2017-08-31 2018-08-29 DENTAL COMPOSITION COMPRISING A PARTICULATE CARRIER CONTAINING A CO-INITIATOR

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/073231 A-371-Of-International WO2019043056A1 (en) 2017-08-31 2018-08-29 DENTAL COMPOSITION COMPRISING A PARTICULATE CARRIER CONTAINING A CO-INITIATOR

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/959,768 Continuation US11883510B2 (en) 2017-08-31 2022-10-04 Dental composition comprising a particulate carrier supporting a coinitiator

Publications (1)

Publication Number Publication Date
US20210069069A1 true US20210069069A1 (en) 2021-03-11

Family

ID=59745811

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/642,163 Abandoned US20210069069A1 (en) 2017-08-31 2018-08-29 Dental composition comprising a particulate carrier supporting a coinitiator
US17/959,768 Active US11883510B2 (en) 2017-08-31 2022-10-04 Dental composition comprising a particulate carrier supporting a coinitiator

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/959,768 Active US11883510B2 (en) 2017-08-31 2022-10-04 Dental composition comprising a particulate carrier supporting a coinitiator

Country Status (7)

Country Link
US (2) US20210069069A1 (ja)
EP (2) EP3449894A1 (ja)
JP (1) JP7160902B2 (ja)
CN (1) CN111050729B (ja)
AU (1) AU2018322801B2 (ja)
CA (1) CA3072984C (ja)
WO (1) WO2019043056A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102426261B1 (ko) 2019-09-26 2022-07-29 주식회사 엘지화학 다이싱 테이프용 점착조성물 및 이를 포함하는 다이싱 테이프
WO2021060960A1 (ko) * 2019-09-26 2021-04-01 주식회사 엘지화학 다이싱 테이프용 점착조성물 및 이를 포함하는 다이싱 테이프
WO2024044330A1 (en) * 2022-08-24 2024-02-29 Pac-Dent, Inc. Photocurable materials for the production of dental prostheses and devices

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1139430A (en) 1966-12-30 1969-01-08 Nat Res Dev Improvements relating to surgical cements
US3534122A (en) 1967-03-10 1970-10-13 Sartomer Resins Inc Free radical polymerization of bulk liquid acrylic monomer with monotertiary butyl peroxy maleic acid and tertiary phosphine coagent at room temperature
US3814717A (en) 1970-12-04 1974-06-04 Dental Materials Section Labor Poly(carboxylic acid)-fluoroalumino-silicate glass surgical cement
US4209434A (en) 1972-04-18 1980-06-24 National Research Development Corporation Dental cement containing poly(carboxylic acid), chelating agent and glass cement powder
GB1532954A (en) 1974-10-24 1978-11-22 Nat Res Dev Poly-(carboxylate)cements
DE2909992A1 (de) 1979-03-14 1980-10-02 Basf Ag Photopolymerisierbare aufzeichnungsmassen, insbesondere zur herstellung von druckplatten und reliefformen
DE2830927A1 (de) 1978-07-14 1980-01-31 Basf Ag Acylphosphinoxidverbindungen und ihre verwendung
DE2909994A1 (de) 1979-03-14 1980-10-02 Basf Ag Acylphosphinoxidverbindungen, ihre herstellung und verwendung
DE2929121A1 (de) 1979-07-18 1981-02-12 Espe Pharm Praep Calciumaluminiumfluorosilikatglas- pulver und seine verwendung
DE2932823A1 (de) 1979-08-13 1981-03-12 Espe Pharm Praep Anmischkomponente fuer glasionomerzemente
GR852068B (ja) 1984-08-30 1985-12-24 Johnson & Johnson Dental Prod
GB2190372B (en) 1986-04-08 1991-05-15 Dentsply Ltd Glasses and poly(carboxylic acid)cement compositions containing them
DD291982A5 (de) 1990-02-12 1991-07-18 ���������`��������`����@����k�� Apatitglaskeramik, vorzugsweise fuer dentale glasionomerzemente
US5154762A (en) 1991-05-31 1992-10-13 Minnesota Mining And Manufacturing Company Universal water-based medical and dental cement
US5360770A (en) 1992-01-07 1994-11-01 Den-Mat Corporation Fluoride ion-leachable glasses and dental cement compositions containing them
US5501727A (en) 1994-02-28 1996-03-26 Minnesota Mining And Manufacturing Company Color stability of dental compositions containing metal complexed ascorbic acid
EP0839341B1 (de) * 1995-07-19 2002-09-25 Ciba SC Holding AG Heterogene photoinitiatoren, photopolymerisierbare zusammensetzungen und deren verwendung
EP0969789B2 (en) 1997-10-03 2015-08-19 DENTSPLY International Inc. Dental materials having a nanoscale filler
US6262216B1 (en) 1998-10-13 2001-07-17 Affymetrix, Inc. Functionalized silicon compounds and methods for their synthesis and use
US6441213B1 (en) 2000-05-18 2002-08-27 National Starch And Chemical Investment Holding Corporation Adhesion promoters containing silane, carbamate or urea, and donor or acceptor functionality
DE10063939B4 (de) 2000-12-20 2005-01-27 3M Espe Ag Dentalzement enthaltend ein reaktionsträges Dentalglas und Verfahren zu dessen Herstellung
EP1634561A1 (en) * 2004-08-06 2006-03-15 DENTSPLY DETREY GmbH Reactive filler for dental cements
JP5461415B2 (ja) 2007-11-01 2014-04-02 スリーエム イノベイティブ プロパティズ カンパニー 歯科用組成物及び色安定アミン電子供与体を有する開始剤系
KR101646284B1 (ko) 2008-06-06 2016-08-05 바스프 에스이 광개시제 혼합물
JP6038033B2 (ja) 2010-10-05 2016-12-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ベンゾカルバゾール化合物のオキシムエステル誘導体ならびに前記誘導体の光重合性の組成物における光開始剤としての使用
EP2444054A1 (en) 2010-10-19 2012-04-25 Dentsply DeTrey GmbH Dental composition
US20130338252A1 (en) * 2012-06-13 2013-12-19 Dentsply International Inc. Dental Composition
EP2705827B1 (en) 2012-09-11 2017-12-27 DENTSPLY DETREY GmbH Dental composition
CN104736513B (zh) 2012-10-19 2018-04-03 Igm集团公司 混合光引发剂
EP3277248B1 (en) 2015-03-30 2020-07-01 Dentsply DeTrey GmbH Dental composition
EP3124477B1 (en) * 2015-07-27 2019-07-17 DENTSPLY DETREY GmbH Dental adhesive
EP3124009A1 (en) 2015-07-27 2017-02-01 DENTSPLY DETREY GmbH Dental adhesive
EP3153150A1 (en) 2015-10-08 2017-04-12 Dentsply DeTrey GmbH Dental composition
JP6978170B2 (ja) 2017-03-31 2021-12-08 株式会社松風 機能性複合微粒子およびそれらを含有する歯科用硬化性組成物

Also Published As

Publication number Publication date
EP3675799A1 (en) 2020-07-08
WO2019043056A1 (en) 2019-03-07
CA3072984A1 (en) 2019-03-07
JP2020531548A (ja) 2020-11-05
CN111050729A (zh) 2020-04-21
AU2018322801A1 (en) 2020-03-05
AU2018322801B2 (en) 2022-08-04
EP3675799B1 (en) 2022-10-19
EP3449894A1 (en) 2019-03-06
US20230100120A1 (en) 2023-03-30
CA3072984C (en) 2023-08-15
JP7160902B2 (ja) 2022-10-25
CN111050729B (zh) 2023-03-28
US11883510B2 (en) 2024-01-30

Similar Documents

Publication Publication Date Title
US11883510B2 (en) Dental composition comprising a particulate carrier supporting a coinitiator
US9907733B2 (en) Dental compositions comprising addition-fragmentation agents
US11918664B2 (en) Direct dental filling compositions
KR101712414B1 (ko) 알릴 다이설파이드-함유 부가-단편화 올리고머
EP3675800B1 (en) Photoinitiator modified polyacidic polymer
EP3761942B1 (en) Dental composition
EP3449895A1 (en) Photoinitiator modified polyacidic polymer
AU2017381313B2 (en) Process for preparing a dental resin-modified glass ionomer composition

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

AS Assignment

Owner name: DENTSPLY SIRONA INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MAIER, MAXIMILIAN;KLEE, JOACHIM E.;SCHEUFLER, CHRISTIAN;AND OTHERS;SIGNING DATES FROM 20200826 TO 20200828;REEL/FRAME:060752/0817

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION