US20210031640A1 - Jump starting apparatus - Google Patents

Jump starting apparatus Download PDF

Info

Publication number
US20210031640A1
US20210031640A1 US17/066,100 US202017066100A US2021031640A1 US 20210031640 A1 US20210031640 A1 US 20210031640A1 US 202017066100 A US202017066100 A US 202017066100A US 2021031640 A1 US2021031640 A1 US 2021031640A1
Authority
US
United States
Prior art keywords
battery
positive
negative
terminal connector
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US17/066,100
Other versions
US11766945B2 (en
Inventor
Jonathan Lewis Nook
William Knight Nook, Sr.
James Richard Stanfield
Derek Michael Underhill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noco Co
Original Assignee
Noco Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2014/045434 external-priority patent/WO2016003471A1/en
Priority claimed from US14/325,938 external-priority patent/US9007015B1/en
Priority claimed from PCT/US2016/024680 external-priority patent/WO2017138963A1/en
Priority claimed from PCT/US2017/017289 external-priority patent/WO2017139524A1/en
Priority claimed from US15/989,005 external-priority patent/US11788500B2/en
Priority to US17/066,100 priority Critical patent/US11766945B2/en
Application filed by Noco Co filed Critical Noco Co
Publication of US20210031640A1 publication Critical patent/US20210031640A1/en
Assigned to THE NOCO COMPANY reassignment THE NOCO COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NOOK, JONATHAN LEWIS, NOOK, WILLIAM KNIGHT, SR., STANFIELD, JAMES RICHARD, UNDERHILL, DEREK MICHAEL
Priority to US18/360,034 priority patent/US20230365011A1/en
Publication of US11766945B2 publication Critical patent/US11766945B2/en
Application granted granted Critical
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/06Two-wire systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/122Provisions for temporary connection of DC sources of essentially the same voltage, e.g. jumpstart cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/46The network being an on-board power network, i.e. within a vehicle for ICE-powered road vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates generally to apparatus for jump-starting a vehicle having a depleted or discharged vehicle battery.
  • Prior art devices are known, which provide either a pair of electrical connector cables that connect a fully-charged battery of another vehicle to the engine start circuit of the depleted or discharge vehicle battery, or portable booster devices which include a fully-charged battery which can be connected in circuit with the vehicle's engine starter through a pair of cables.
  • U.S. Pat. No. 6,212,054 issued Apr. 3, 2001 discloses a battery booster pack that is polarity sensitive and can detect proper and improper connections before providing a path for electric current flow.
  • the device uses a set of LEDs connected to optical couplers oriented by a control circuit.
  • the control circuit controls a solenoid assembly controlling the path of power current.
  • the control circuit causes power current to flow through the solenoid assembly only if the points of contact of booster cable clamp connections have been properly made.
  • U.S. Pat. No. 6,632,103 issued Oct. 14, 2003 discloses an adaptive booster cable connected with two pairs of clips, wherein the two pairs of clips are respectively attached to two batteries to transmit power from one battery to the other battery.
  • the adaptive booster cable includes a polarity detecting unit connected to each clip, a switching unit and a current detecting unit both provided between the two pairs of clips. After the polarity of each clip is sensed by the polarity detecting unit, the switching unit generates a proper connection between the two batteries. Therefore, the positive and negative terminals of the two batteries are correctly connected based on the detected result of the polarity detecting unit.
  • U.S. Pat. No. 8,493,021 issued Jul. 23, 2013, discloses apparatus that monitors the voltage of the battery of a vehicle to be jump started and the current delivered by the jump starter batteries to determine if a proper connection has been established and to provide fault monitoring. Only if the proper polarity is detected can the system operate. The voltage is monitored to determine open circuit, disconnected conductive clamps, shunt cable fault, and solenoid fault conditions. The current through the shunt cable is monitored to determine if there is a battery explosion risk, and for excessive current conditions presenting an overheating condition, which may result in fire.
  • the system includes an internal battery to provide the power to the battery of the vehicle to be jump started. Once the vehicle is started, the unit automatically electrically disconnects from the vehicle's battery.
  • U.S. Pat. No. 5,189,359 issued Feb. 23, 1993 discloses a jumper cable device having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating “positive” terminals, and one has a lower voltage than the reference voltage, indicating “negative” terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed.
  • the relay device is preferably a MOSFET combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.
  • U.S. Pat. No. 5,795,182 issued Aug. 18, 1998 discloses a polarity independent set of battery jumper cables for jumping a first battery to a second battery.
  • the apparatus includes a relative polarity detector for detecting whether two batteries are configured cross or parallel.
  • a three-position high current capacity crossbar pivot switch is responsive to the relative polarity detector for automatically connecting the plus terminals of the two batteries together and the minus terminals of the two batteries together regardless of whether the configuration detected is cross or parallel, and an undercurrent detector and a delay circuit for returning the device to its ready and unconnected state after the device has been disconnected from one of the batteries.
  • the crossbar pivot switch includes two pairs of contacts, and a pivot arm that pivots about two separate points to ensure full electrical contact between the pairs of contacts.
  • the invention can also be used to produce a battery charger that may be connected to a battery without regard to the polarity of the battery.
  • U.S. Pat. No. 6,262,492 issued Jul. 17, 2001 discloses a car battery jumper cable for accurately coupling an effective power source to a failed or not charged battery, which includes a relay switching circuit connected to the power source and the battery by two current conductor pairs.
  • First and second voltage polarity recognition circuits are respectively connected to the power source and the battery by a respective voltage conductor pair to recognize the polarity of the power source and the battery.
  • a logic recognition circuit produces a control signal subject to the polarity of the power source and the battery, and a driving circuit controlled by the control signal from the logic recognition circuit drives the relay switching circuit, enabling the two poles of the power source to be accurately coupled to the two poles of the battery.
  • U.S. Pat. No. 5,635,817 issued Jun. 3, 1997 discloses a vehicle battery charging device that includes a control housing having cables including a current limiting device to prevent exceeding of a predetermined maximum charging current of about 40 to 60 amps.
  • the control housing includes a polarity detecting device to verify the correct polarity of the connection of the terminals of the two batteries and to electrically disconnect the two batteries if there is an incorrect polarity.
  • U.S. Pat. No. 8,199,024 issued Jun. 12, 2012 discloses a safety circuit in a low-voltage connecting system that leaves the two low-voltage systems disconnected until it determines that it is safe to make a connection.
  • the safety circuit may connect the two systems by way of a “soft start” that provides a connection between the two systems over a period of time that reduces or prevents inductive voltage spikes on one or more of the low-voltage systems.
  • a method is used for detection of proper polarity of the connections between the low-voltage systems. The polarity of the discharged battery is determined by passing one or more test currents through it and determining whether a corresponding voltage rise is observed.
  • U.S. Pat. No. 5,793,185 issued Aug. 11, 1998 discloses a hand-held jump starter having control components and circuits to prevent overcharging and incorrect connection to batteries.
  • the first factor is the amount of power provided by the lithium ion battery pack, and the second factor is the maximum conductivity. You need both factors to have the best chance to jump-start big engines. One factor without the other factor is not enough.
  • apparatus for jump starting a vehicle engine, including: an internal power supply; an output port having positive and negative polarity outputs; a vehicle battery isolation sensor connected in circuit with said positive and negative polarity outputs, configured to detect presence of a vehicle battery connected between said positive and negative polarity outputs; a reverse polarity sensor connected in circuit with said positive and negative polarity outputs, configured to detect polarity of a vehicle battery connected between said positive and negative polarity outputs; a power FET switch connected between said internal power supply and said output port; and a microcontroller configured to receive input signals from said vehicle isolation sensor and said reverse polarity sensor, and to provide an output signal to said power FET switch, such that said power FET switch is turned on to connect said internal power supply to said output port in response to signals from said sensors indicating the presence of a vehicle battery at said output port and proper polarity connection of positive and negative terminals of said vehicle battery with said positive and negative polarity outputs.
  • the internal power supply is a rechargeable lithium ion battery pack.
  • a jumper cable device having a plug configured to plug into an output port of a handheld battery charger booster device having an internal power supply; a pair of cables integrated with the plug at one respective end thereof; said pair of cables being configured to be separately connected to terminals of a battery at another respective end thereof.
  • the presently described subject matter is directed to a battery device, for example, a battery connector, battery connector arrangement, or battery conductor assembly for use in a device for jump starting a vehicle, and a device for jump starting a vehicle comprising the battery connector device.
  • a battery device for example, a battery connector, battery connector arrangement, or battery conductor assembly for use in a device for jump starting a vehicle, and a device for jump starting a vehicle comprising the battery connector device.
  • the presently described subject matter is directed to a battery connector device comprising or consisting of a battery having at least one battery conductor connected to a terminal of the battery.
  • the presently described subject matter is directed to a battery connector device comprising or consisting of a battery having at least one battery conductor or cable connected to a battery tab of the battery.
  • the presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive conductor and a negative conductor connected to the battery.
  • the presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive conductor plate and/or a negative conductor plate connected to the battery.
  • the presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive conductor plate and/or a negative conductor plate connected to the battery, and a positive cable connected to the positive conductor plate and/or a negative cable connected to the negative conductor plate.
  • the presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive battery conductor connected to a positive terminal of the battery and/or a negative battery conductor connected to a negative terminal of the battery.
  • the presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive battery conductor connected to a positive terminal contact of the battery and/or a negative battery conductor connected to a negative terminal contact of the battery, the battery conductors being soldered to the respective terminals of the battery.
  • the presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive battery conductor connected to a positive terminal of the battery and/or a negative battery conductor connected to a negative terminal contact of the battery, and a relay connected to one of the battery conductors of the battery.
  • the presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive battery conductor connected to a positive terminal contact of the battery and/or a negative battery conductor connected to a negative terminal contact of the battery, and a relay connected to the negative battery conductor.
  • the presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive battery conductor connected to a positive terminal contact of the battery and/or a negative battery conductor connected to a negative terminal contact of the battery, and a relay connected to the negative battery conductor.
  • the presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive battery conductor connected to a positive terminal contact of the battery and/or a negative battery conductor connected to a negative terminal contact of the battery, and multiple relays connected to the negative battery conductor.
  • the presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive battery conductor connected to a positive terminal contact of the battery and/or a negative battery conductor connected to a negative terminal contact of the battery, and a positive cable connected to the positive battery conductor.
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • the presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the
  • FIG. 1 is a functional block diagram of a handheld vehicle battery boost apparatus in accordance with one aspect of the present invention
  • FIGS. 2A-2C are schematic circuit diagrams of an example embodiment of a handheld vehicle battery boost apparatus in accordance with an aspect of the invention.
  • FIG. 3 is a perspective view of a handheld jump starter booster device in accordance with one example embodiment of the invention.
  • FIG. 4 is a plan view of a jumper cable usable with the handheld jump starter booster device in accordance with another aspect of the invention.
  • FIG. 5 is a front view of the battery jump starting device with the battery terminal clamps un-deployed.
  • FIG. 6 is a rear perspective view of the battery jump starting device shown in FIG. 5 .
  • FIG. 7 is an end perspective view of the battery jump starting device shown in FIGS. 5 and 6 .
  • FIG. 8 is a front perspective view of the battery jump starting device shown in FIG. 5 , however, with the battery terminal clamps deployed.
  • FIG. 9 is a front perspective view of a battery connector device contained within the battery jump starting device shown in FIG. 5 , however, with the negative cable not yet installed.
  • FIG. 10 is a top planer view of the battery connector device shown in FIG. 9 .
  • FIG. 11 is a side elevational view of the battery connector device shown in FIG. 9 .
  • FIG. 12 is an end elevational view of the battery connector device shown in FIG. 9 .
  • FIG. 13 is a perspective view of the battery connector device shown in FIG. 9 , however, the negative cable in now connected to the battery connector device.
  • FIG. 14 is a view perspective view of the battery connector device shown in FIG. 9 , however, with a diode connector installed on the positive cable.
  • FIG. 15 is a perspective view of the battery connector device connected to other components or parts of the battery jump starting device.
  • FIG. 16 is a perspective view of the battery assembly of the battery connector device shown in FIG. 9 .
  • FIG. 17 is a front perspective view of another battery connector device for the battery jump starting device.
  • FIG. 18 is a detailed view of the positive cable connection with the relay printed circuit board prior to being soldered together.
  • FIG. 19 is a detailed view of the positive cable connection with the relay printed circuit board after being soldered together.
  • FIG. 20 is a front perspective view of the battery connector device shown in FIG. 17 prior to connection with the positive cable and negative cable.
  • FIG. 21 is a partial top planar view of the battery assembly of the battery connector device shown in FIG. 20 showing the positive terminal conductor sheet in an unwound condition.
  • FIG. 22 is an end perspective view showing the positive terminal conductor shown in FIG. 21 with the conductor end of the positive cable positioned on the positive terminal conductor just prior to winding the positive terminal conductor around the conductor end of the positive cable.
  • FIG. 23 is an end perspective view showing the positive terminal conductor shown in FIG. 22 partially wound around the conductor end of the positive cable.
  • FIG. 24 is an end perspective view of the positive terminal conductor shown in FIG. 22 fully wound around the conductor end of the positive cable.
  • FIG. 25 is a side perspective view showing the positive terminal conductor fully wound around and soldered to the conductor end of the positive cable.
  • FIG. 26 is an opposite end perspective view of the positive terminal conductor fully wound around and soldered to the end of the positive cable.
  • FIG. 27 is a perspective view of the diode connector installed between overlapping sections of the positive cable.
  • FIG. 28 is a perspective view of a Schottky diode used in the diode connector.
  • FIG. 29 is a perspective view of the diode connector insulated with a shrink wrap sleeve.
  • FIG. 30 is a graphical illustration showing a load test of the battery connection shown in FIGS. 9-14 .
  • FIG. 31 is a graphical illustration showing a load test of the battery connection shown in FIGS. 17-29 .
  • FIG. 32 is a front view of a further battery connector device for the battery jump starting device.
  • FIG. 33 is a planar view of the battery connector device comprising a plurality of battery cells having separate tab and conductors (e.g. plate conductors) prior to assembly.
  • tab and conductors e.g. plate conductors
  • FIG. 34 is a planar view of the battery connector device comprising battery cells being prepared with separate tabs for lengthening the tabs.
  • FIG. 35 is a front view of the battery connector device comprising the plurality of battery cells having separate tab and conductors shown in FIG. 33 , after assembly.
  • FIG. 36 is a elevational view of the battery connector device comprising the battery cell assembly shown in FIG. 35 , after folding the battery cells on top of each other.
  • FIG. 37 is an end perspective view of the battery connector device showing the separate tab wrapped or wound around an exposed conductor end of the positive cable, and soldered together.
  • FIG. 38 is an opposite end perspective view of the battery connector device showing a negative battery tab wrapped or wound around the negative terminal conductor plate and welded and/or soldered together.
  • FIG. 39 is a perspective view of the battery connector device showing the flat separate tab connected to the positive battery tab and extending outwardly prior to connection with the conductive end of the positive cable.
  • FIG. 40 is a side view of the temperature sensor assembly with wires and connector.
  • FIG. 41 is a perspective view of the diode circuit board assembled or connected or spliced inline into the positive cable.
  • FIG. 1 is a functional block diagram of a vehicle jump starting apparatus or a handheld battery booster according to one aspect of the invention.
  • a lithium polymer battery pack 32 At the heart of the handheld battery booster is a lithium polymer battery pack 32 , which stores sufficient energy to jump start a vehicle engine served by a conventional 12 volt lead-acid or valve regulated lead-acid battery.
  • a high-surge lithium polymer battery pack includes three 3.7V, 2666 mAh lithium polymer batteries in a 351P configuration.
  • the resulting battery pack provides 11.1V, 2666Ah (8000Ah at 3.7V, 29.6Wh). Continuous discharge current is 25C (or 200 amps), and burst discharge current is 50C (or 400 amps).
  • the maximum charging current of the battery pack is 8000mA (8 amps).
  • a programmable microcontroller unit (MCU) 1 receives various inputs and produces informational as well as control outputs.
  • the programmable MCU 1 further provides flexibility to the system by allowing updates in functionality and system parameters, without requiring any change in hardware.
  • an 8 bit microcontroller with 2K ⁇ 15 bits of flash memory is used to control the system.
  • One such microcontroller is the HT67F30, which is commercially available from Holtek Semiconductor Inc.
  • a car battery reverse sensor 10 monitors the polarity of the vehicle battery 72 when the handheld battery booster device is connected to the vehicle's electric system. As explained below, the booster device prevents the lithium battery pack from being connected to the vehicle battery 72 when the terminals of the battery 72 are connected to the wrong terminals of the booster device.
  • a car battery isolation sensor 12 detects whether or not a vehicle battery 72 is connected to the booster device, and prevents the lithium battery pack from being connected to the output terminals of the booster device unless there is a good (e.g. chargeable) battery connected to the output terminals.
  • a smart switch FET circuit 15 electrically switches the handheld battery booster lithium battery to the vehicle's electric system only when the vehicle battery is determined by the MCU 1 to be present (in response to a detection signal provided by isolation sensor 12 ) and connected with the correct polarity (in response to a detection signal provided by reverse sensor 10 ).
  • a lithium battery temperature sensor 20 monitors the temperature of the lithium battery pack 32 to detect overheating due to high ambient temperature conditions and overextended current draw during jump starting.
  • a lithium battery voltage measurement circuit 24 monitors the voltage of the lithium battery pack 32 to prevent the voltage potential from rising too high during a charging operation and from dropping too low during a discharge operation.
  • Lithium battery back-charge protection diodes 28 prevent any charge current being delivered to the vehicle battery 72 from flowing back to the lithium battery pack 32 from the vehicle's electrical system.
  • Flashlight LED circuit 36 is provided to furnish a flashlight function for enhancing light under a vehicle's hood in dark conditions, as well as providing SOS and strobe lighting functions for safety purposes when a vehicle may be disabled in a potentially dangerous location.
  • Voltage regulator 42 provides regulation of internal operating voltage for the microcontroller and sensors.
  • On/Off manual mode and flashlight switches 46 allow the user to control power-on for the handheld battery booster device, to control manual override operation if the vehicle has no battery, and to control the flashlight function. The manual button functions only when the booster device is powered on.
  • This button allows the user to jump-start vehicles that have either a missing battery, or the battery voltage is so low that automatic detection by the MCU is not possible.
  • the manual override button for a predetermined period time (such as three seconds) to prevent inadvertent actuation of the manual mode, the internal lithium ion battery power is switched to the vehicle battery connect port.
  • a predetermined period time such as three seconds
  • USB charge circuit 52 converts power from any USB charger power source, to charge voltage and current for charging the lithium battery pack 32 .
  • USB output 56 provides a USB portable charger for charging smartphones, tablets, and other rechargeable electronic devices.
  • Operation indicator LEDs 60 provides visual indication of lithium battery capacity status as well as an indication of smart switch activation status (indicating that power is being provided to the vehicle's electrical system).
  • the microcontroller unit 1 is the center of all inputs and outputs.
  • the reverse battery sensor 10 comprises an optically coupled isolator phototransistor (4N27) connected to the terminals of vehicle battery 72 at input pins 1 and 2 with a diode D 8 in the lead conductor of pin 1 (associated with the negative terminal CB ⁇ ), such that if the battery 72 is connected to the terminals of the booster device with the correct polarity, the optocoupler LED 11 will not conduct current, and is therefore turned off, providing a “1” or high output signal to the MCU 1 .
  • 4N27 optically coupled isolator phototransistor
  • the car battery isolation sensor 12 comprises an optically coupled isolator phototransistor (4N27) connected to the terminals of vehicle battery 72 at input pins 1 and 2 with a diode D 7 in the lead conductor of pin 1 (associated with the positive terminal CB+), such that if the battery 72 is connected to the terminals of the booster device with the correct polarity, the optocoupler LED 11 A will conduct current, and is therefore turned on, providing a “0” or low output signal to the MCU, indicating the presence of a battery across the jumper output terminals of the handheld booster device.
  • 4N27 optically coupled isolator phototransistor
  • the optocoupler LED 11 of the reverse sensor 10 will conduct current, providing a “0” or low signal to microcontroller unit 1 . Further, if no battery is connected to the handheld booster device, the optocoupler LED 11 A of the isolation sensor 12 will not conduct current, and is therefore turned off, providing a “1” or high output signal to the MCU, indicating the absence of any battery connected to the handheld booster device.
  • the microcontroller software of MCU 1 can determine when it is safe to turn on the smart switch FET 15 , thereby connecting the lithium battery pack to the jumper terminals of the booster device. Consequently, if the car battery 72 either is not connected to the booster device at all, or is connected with reverse polarity, the MCU 1 can keep the smart switch FET 15 from being turned on, thus prevent sparking/short circuiting of the lithium battery pack.
  • the FET smart switch 15 is driven by an output of the microcontroller 1 .
  • the FET smart switch 15 includes three FETs (Q 15 , Q 18 , and Q 19 ) in parallel, which spreads the distribution of power from the lithium battery pack over the FETs.
  • FETs 16 are all in a high resistance state, therefore not allowing current to flow from the internal lithium Battery negative contact 17 to the car battery 72 negative contact.
  • the FETs 16 When the microcontroller output is driven to a logic high, the FETs 16 (Q 15 , Q 18 , and Q 19 ) are in a low resistant state, allowing current to flow freely from the internal lithium battery pack negative contact 17 (LB ⁇ ) to the car battery 72 negative contact (CB ⁇ ). In this way, the microcontroller software controls the connection of the internal lithium battery pack 32 to the vehicle battery 72 for jumpstarting the car engine.
  • the internal lithium battery pack voltage can be accurately measured using circuit 24 and one of the analog-to-digital inputs of the microcontroller 1 .
  • Circuit 24 is designed to sense when the main 3.3V regulator 42 voltage is on, and to turn on transistor 23 when the voltage of regulator 42 is on. When transistor 23 is conducting, it turns on FET 22 , thereby providing positive contact (LB+) of the internal lithium battery a conductive path to voltage divider 21 allowing a lower voltage range to be brought to the microcontroller to be read.
  • the microcontroller software can determine if the lithium battery voltage is too low during discharge operation or too high during charge operation, and take appropriate action to prevent damage to electronic components.
  • the temperature of the internal lithium battery pack 32 can be accurately measured by two negative temperature coefficient (NTC) devices 20 . These are devices that reduce their resistance when their temperature rises.
  • NTC negative temperature coefficient
  • the circuit is a voltage divider that brings the result to two analog-to-digital (A/D) inputs on the microcontroller 1 .
  • the microcontroller software can then determine when the internal lithium battery is too hot to allow jumpstarting, adding safety to the design.
  • the main voltage regulator circuit 42 is designed to convert internal lithium battery voltage to a regulated 3.3 volts that is utilized by the microcontroller 1 as well as by other components of the booster device for internal operating power.
  • Three lithium battery back charge protection diodes 28 are in place to allow current to flow only from the internal lithium battery pack 32 to the car battery 72 , and not from the car battery to the internal lithium battery. In this way, if the car electrical system is charging from its alternator, it cannot back-charge (and thereby damage) the internal lithium battery, providing another level of safety.
  • the main power on switch 46 FIG.
  • the 2A is a combination that allows for double pole, double throw operation so that with one push, the product can be turned on if it is in the off state, or turned off if it is in the on state.
  • This circuit also uses a microcontroller output 47 to “keep alive” the power when it is activated by the on switch. When the switch is pressed the microcontroller turns this output to a high logic level to keep power on when the switch is released. In this way, the microcontroller maintains control of when the power is turned off when the on/off switch is activated again or when the lithium battery voltage is getting too low.
  • the microcontroller software also includes a timer that turns the power off after a predefined period of time, (such as, e.g. 8 hours) if not used.
  • the flashlight LED circuit 45 shown in FIG. 2B controls the operation of flashlight LEDs.
  • Two outputs from the microcontroller 1 are dedicated to two separate LEDs.
  • the LEDs can be independently software-controlled for strobe and SOS patterns, providing yet another safety feature to the booster device.
  • LED indicators provide the feedback the operator needs to understand what is happening with the product.
  • Four separate LEDs 61 ( FIG. 2A ) are controlled by corresponding individual outputs of microcontroller 1 to provide indication of the remaining capacity of the internal lithium battery. These LEDs are controlled in a “fuel gauge” type format with 25%, 50% 75% and 100% (red, red, yellow, green) capacity indications.
  • An LED indicator 63 ( FIG. 2B ) provides a visual warning to the user when the vehicle battery 72 has been connected in reverse polarity.
  • “Boost” and on/off LEDs 62 provide visual indications when the booster device is provide jump-start power, and when the booster device is turned on, respectively.
  • a USB output 56 circuit ( FIG. 2C ) is included to provide a USB output for charging portable electronic devices such as smartphones from the internal lithium battery pack 32 .
  • Control circuit 57 from the microcontroller 1 allows the USB output 56 to be turned on and off by software control to prevent the internal lithium battery getting too low in capacity.
  • the USB output is brought to the outside of the device on a standard USB connector 58 , which includes the standard voltage divider required for enabling charge to certain smartphones that require it.
  • the USB charge circuit 52 allows the internal lithium battery pack 32 to be charged using a standard USB charger. This charge input uses a standard micro-USB connector 48 allowing standard cables to be used.
  • the 5V potential provided from standard USB chargers is up-converted to the 12.4VDC voltage required for charging the internal lithium battery pack using a DC-DC converter 49 .
  • the DC-DC converter 49 can be turned on and off via circuit 53 by an output from the microcontroller 1 .
  • the microcontroller software can turn the charge off if the battery voltage is measured to be too high by the ND input 22 .
  • Additional safety is provided for helping to eliminate overcharge to the internal lithium battery using a lithium battery charge controller 50 that provides charge balance to the internal lithium battery cells 51 .
  • This controller also provides safety redundancy for eliminating over discharge of the internal lithium battery.
  • FIG. 3 is a perspective view of a handheld device 300 in accordance with an exemplary embodiment of the invention.
  • 301 is a power on switch.
  • 302 shows the LED “fuel gauge” indicators 61 .
  • 303 shows a 12 volt output port connectable to a cable device 400 , described further below.
  • 304 shows a flashlight control switch for activating flashlight LEDs 45 .
  • 305 is a USB input port for charging the internal lithium battery
  • 306 is a USB output port for providing charge from the lithium battery to other portable devices such as smartphones, tablets, music players, etc.
  • 307 is a “boost on” indicator showing that power is being provided to the 12V output port.
  • 308 is a “reverse” indicator showing that the vehicle battery is improperly connected with respect to polarity.
  • 309 is a “power on” indicator showing that the device is powered up for operation.
  • FIG. 4 shows a jumper cable device 400 specifically designed for use with the handheld device 300 .
  • Device 400 has a plug 401 configured to plug into 12 volt output port 303 of the handheld device 300 .
  • a pair of cables 402 a and 402 b are integrated with the plug 401 , and are respectively connected to vehicle battery terminal connectors, for example, battery terminal clamps 403 a and 403 b via ring terminals 404 a and 404 b.
  • the port 303 and plug 401 may be dimensioned so that the plug 401 will only fit into the port 303 in a specific orientation, thus ensuring that clamp 403 a will correspond to positive polarity, and clamp 403 b will correspond to negative polarity, as indicated thereon.
  • the ring terminals 404 a and 404 b may be disconnected from the clamps and connected directly to the terminals of a vehicle battery. This feature may be useful, for example, to permanently attach the cables 302 a - 302 b to the battery of a vehicle. In the event that the battery voltage becomes depleted, the handheld booster device 300 could be properly connected to the battery very simply by plugging in the plug 401 to the port 303 .
  • FIGS. 5 and 6 Another jump starting apparatus or device 510 is shown in FIGS. 5 and 6 .
  • the battery jump starting device 510 comprises the electronic components or parts of the handheld battery booster apparatus shown in FIGS. 1-3 and the handheld device 300 shown in FIG. 4 , and described above, in combination with a battery connection device 600 according to the present invention.
  • the jump starting apparatus 510 comprises a casing 512 having a display 514 provided with an arrangement of light emitting diodes (LEDs) 516 a - d, as shown in FIG. 5 .
  • LEDs light emitting diodes
  • the jump starting device 510 further comprises a positive cable 518 having a positive clamp 520 and a negative cable 522 having a negative clamp 524 .
  • the positive cable 518 and negative cable 522 pass through openings 512 a, 512 b, respectively, in the casing 512 .
  • the clamps 520 , 524 are stowed away or docked in an un-deployed mode by clamping each to a respective side posts 526 extending outwardly on opposite sides of the casing 512 , as shown in FIGS. 5 and 6 .
  • the side posts 526 are shown in FIG. 8 .
  • the clamps 520 , 524 are docked when the jump starting device 510 is in non-use, and then unclamped from the side post 526 during use.
  • the jump starting device 510 is configured to jump start a vehicle battery.
  • the jump starting device 510 can be the PORTABLE VEHICLE JUMP START APPARATUS WITH SAFETY PROTECTION disclosed in U.S. Pat. No. 9,007,015, which is fully incorporated herein by reference, or a device or apparatus similar thereto.
  • the jump starting device 510 comprises electrical components or parts located inside the casing 512 .
  • the jump starting device 510 comprises a battery connector device 600 shown in FIGS. 7-13 .
  • the battery connector device 600 comprises a battery assembly 610 having a battery 612 .
  • the battery 612 is a lithium-ion rechargeable type battery.
  • the battery connector device 600 is configured to maximize conductivity from the battery 612 to the cables 518 , 522 and clamps 520 , 524 of the jump starting device 510 .
  • the battery 612 comprises a battery casing 612 a, for example, a rectangular-shaped battery casing 612 a.
  • the battery 612 comprises a positive tab or terminal at one end (e.g. width) of the battery 612 , and a negative terminal tab or terminal at an opposite end (e.g. width) of the battery 612 .
  • the battery 612 comprises one or more battery cells each having a positive and negative tab.
  • the positive tab or terminal from the battery cell(s) is located at the one end of the battery 612 and the negative tab or terminal from the battery cell(s) is located at the opposite end of the battery 612 .
  • a positive terminal conductor plate 614 is connected (e.g. soldered, welded, or sonically welded) at the one end of the battery 612 to the positive tab (i.e. contact) or terminal of the battery 612 .
  • the positive terminal conductor plate 614 extends along the one end (e.g. width) of the battery 612 .
  • the positive cable 518 can be connected (e.g. directly connected by soldering) to the positive terminal conductor plate 614 and/or the positive tab of the battery 612 .
  • the positive terminal conductor bar 614 can be provided with a conductive loop 616 wrapping around (e.g. entirely wrapping around) and connected (e.g. crimped and/or soldered) to an exposed conductor end 518 a of the positive cable 518 .
  • the positive terminal conductor plate 614 is made from heavy gauge copper or aluminum sheet (e.g. machined, cut, or stamped therefrom).
  • the positive terminal conductor plate 614 can be configured (e.g. bent) to wrap around one of the square-shaped corners of the rectangular-shaped casing 612 a of the battery 612 (e.g. L-shaped).
  • the L-shaped positive terminal conductor plate 614 can extend along an end of the battery 612 and along at least a portion of the side of the battery 612 , as shown in FIG. 9 .
  • the positive terminal conductor plate 614 can also be mechanically coupled and/or adhered to the outer surface of the battery casing 612 a to provide additional support and stability thereof (e.g. assembled to survive mechanical shock when drop testing the battery jump starter device 510 ).
  • the positive terminal conductor bar 614 can be mechanically connected to the battery casing 612 by adhesive (e.g. silicon adhesive), double sided tape, double sided foam tape, insulated plastic or ceramic connector with snap fit connection and/or adhesive connection, and/or the battery casing 612 can be formed (e.g. molded) to mechanically connect (e.g. snap fit or interference connection) with the positive terminal conductor plate 614 .
  • adhesive e.g. silicon adhesive
  • double sided tape double sided foam tape
  • insulated plastic or ceramic connector with snap fit connection and/or adhesive connection
  • the battery casing 612 can be formed (e.g. molded) to mechanically connect (e.g. snap fit or interference connection) with the positive terminal conductor plate 614 .
  • the positive cable 518 can be a single piece of wire or a cable (e.g. twisted or braided wires) extending from the battery 612 to the positive clamp 520 . Specifically, one end of the positive cable 518 is connected to the positive terminal conductor plate 614 connected to the battery 612 , and the opposite end of the positive cable 518 is connected to the positive clamp 520 .
  • the positive cable 518 can comprise a flexible or bent cable portion 518 ( FIG. 9 ) for changing the direction of the positive cable 518 within the device casing 512 .
  • the positive cable 518 can be fitted with a flexible outer sleeve portion 620 transitioning into a flexible inner sleeve portion 622 to flexibly accommodate the positive cable 518 passing through the device casing 512 .
  • the flexible outer sleeve portion 620 is externally located relative to the device casing 512 of the battery jump starter device 510
  • the flexible inner sleeve portion 622 is internally located relative to the casing 512 of the battery jump starter device 510 .
  • the flexible outer sleeve portion 620 is configured to reinforce the connection between the positive cable 518 and the device casing 512 of the jump starting device 510 while remaining flexible.
  • the flexible outer sleeve portion 620 is provided with one or more grooves 618 a (e.g. three (3) grooves 624 shown in FIG. 9 ) exposing portions 518 a of the positive cable 518 .
  • the one or more grooves 624 act as hinges to ease bending of the positive cable 518 within the flexible outer sleeve portion 620 .
  • the flexible sleeve 620 comprises an outer flange 624 spaced apart (e.g. a small distance equal to about a wall thickness of the device casing 512 of the jump starting device 510 ) from an in inner flange 626 .
  • the flanges 624 , 626 further anchor the positive cable 518 to the device casing 512 of the jump starting device 510 .
  • the flexible sleeve 620 comprises a sleeve portion 628 ( FIG. 10 ) connecting together the outer flange 624 and inner flange 626 .
  • the flexible outer sleeve portion 620 is molded or applied onto and around the positive cable 518 as a single unit (e.g. the flexible sleeve 620 is molded onto a portion of the positive cable 518 inserted within the mold during the molding process).
  • the flexible sleeve 620 is made (e.g. molded) separately, and then installed or assembled onto a portion of the positive cable 518 .
  • the positive cable 518 comprises an inner conductor (e.g. single wire conductor, twisted wires, or braided wires) disposed within an outer insulating sheath (e.g. extruded plastic sheath).
  • the inner conductor for example, can be a solid wire conductor or a multi-strand metal wire conductor comprising bundle of wires.
  • the inner conductor can be made of copper or aluminum.
  • the flexible sleeve 620 can be applied (e.g. molded or installed or assembled) onto and surrounding the outer insulating sheath of the positive cable 518 .
  • the battery connector device 600 further comprises a negative terminal conductor plate 630 ( FIG. 9 ) connected (e.g. soldered, welded, or sonically welded) at an opposite end of the battery 612 to the negative tab or terminal (i.e. contact) of the battery 612 .
  • the negative terminal conductor plate 630 can extend along the opposite end of the battery 612 .
  • the other end of the negative terminal conductor plate 630 is provided with a negative terminal conductor plate connector portion 632 , as shown in FIGS. 9 and 10 .
  • the negative terminal conductor plate 630 can be configured to wrap around one of the corners of the rectangular-shaped battery 612 (e.g. L-shaped).
  • the L-shaped negative terminal conductor plate 630 can extend along an end of the battery 612 and along at least a portion of the side of the battery 612 , as shown in FIGS. 9 and 10 .
  • the negative terminal conductor bar 630 can also be mechanically coupled and/or adhered to the outer surface of the battery casing 612 a to provide additional support and stability thereof (e.g. to survive mechanical shock when drop testing the battery jump starter device 510 ).
  • the negative terminal conductor bar 614 can be mechanically connected to the battery casing 612 a by adhesive (e.g. silicon adhesive), double sided tape, double sided foam tape, insulating plastic or ceramic connector with snap fit connection and/or adhesive connection, and/or the battery casing 612 can be formed (e.g. molded) to mechanically connect (e.g. snap fit or interference connection) with the positive terminal conductor plate 614 .
  • adhesive e.g. silicon adhesive
  • double sided tape double sided foam tape
  • insulating plastic or ceramic connector with snap fit connection and/or adhesive connection
  • the battery casing 612 can be formed (e.g. molded) to mechanically connect (e.g. snap fit or interference connection) with the positive terminal conductor plate 614 .
  • the battery connector device 600 further comprises a smart switch battery interface 634 .
  • the smart switch battery interface 634 comprises a relay printed circuit board (PCB) 636 having a first circuit board conductor bar 638 spaced apart from a second circuit board conductor bar 640 located on one side of the circuit board 636 , as shown in FIGS. 9 and 10 .
  • PCB relay printed circuit board
  • a pair of relays 642 are mounted on an opposite side of the circuit board 636 .
  • the relays 642 include relay anchoring pins 642 a located in through holes 636 a in the relay printed circuit board 636 ( FIGS. 9 and 11 ).
  • the relays 642 further comprise relay connector pins 642 b extending through the through holes 636 b provided in the circuit board 636 and slots 638 a provided in the first conductor bar 638 .
  • the relays 642 even further comprise relay connector pins 642 c located in the through holes 636 c provided in the circuit board 636 and through holes 640 a provided in the second conductor bar 640 .
  • the relay anchoring pins 636 a are soldered in place to mechanically connect the relays 642 to the circuit board 636 .
  • the relay connecting pins 642 b and 642 c are soldered in place to mechanically and electrically connect the relays 642 , respectively, to the circuit board conductor plates 638 , 640 .
  • the through holes 636 a in the circuit board 636 are rectangular-shaped ( FIGS. 9 and 11 ) and accommodate the relay anchoring pins 642 a.
  • a base portion of the relay anchoring pins 642 a are rectangular-shaped with square-shaped ends. The square-shaped ends are dimensionally less wide verses the base portions creating transverse edges oriented flush with the outer surface of the circuit board 636 .
  • solder When solder is applied to the exposed ends of the relay anchoring pins 642 a, the solder connects to the sides of the square-shaped ends and transverse edges to anchor and lock the relay anchoring pins to the circuit board 636 .
  • the slots 632 a provided in negative terminal conductor bar connector portion 632 are rectangular-shaped and the through holes 638 a in the first circuit board conductor bar 638 ( FIG. 7 ) are T-shaped to accommodate the three (3) horizontally oriented relay connector pins 642 b, as shown in FIG. 7 .
  • the ends of the relay connector pins 642 b are shown flush with the outer surface of the negative terminal conductor bar connector portion 632 .
  • solder When solder is applied to the exposed ends of the relay connector pins 642 b, the solder fills in the slots 632 a in the negative terminal conductor bar connector portion 632 and the through holes 638 a of the first circuit board conductor bar 638 , and connects the sides of the connector pins 642 b with inner edges of the slots 632 a and through holes 638 a to anchoring the relays 642 to the circuit board 636 and negative terminal conductor bar connector portion 632 .
  • This applied solder also electrically connects the negative terminal conductor bar connector portion 632 to the first circuit board conductor bar 638 .
  • the through holes 640 a provided in the second circuit board conductor bar 640 are T-shaped to accommodate the three (3) vertically oriented relay connecting pins 642 b, as shown in FIG. 7 .
  • the relay connector prongs 640 a extend outwardly from the outer surface of the circuit board 636 to connect with the exposed conductor end 644 a of the negative cable 644 , and shown in FIG. 11 .
  • solder When solder is applied to the exposed conductor end 644 a and the ends of the relay connector prongs 640 a, the solder fills in the T-shaped slot and electrically connects the relay connector prongs 640 a, second circuit board conductor 640 , and exposed conductor end 644 a of the negative cable 644 .
  • the negative terminal conductor bar connector portion 632 of the negative terminal conductor bar 630 is connected (e.g. by soldering) to the first circuit board conductor bar 638 of the circuit board 636 .
  • the exposed conductor end 522 a (i.e. with the insulating sheath removed) of the negative cable 522 is connected (e.g. by soldering) to the second circuit board conductor bar 640 , as shown in FIG. 13 .
  • the battery connector device 600 can be modified by providing the positive cable 518 with a diode connection 650 , as shown in FIG. 14 .
  • a diode connection 650 is installed (e.g. spliced) into the positive cable 518 .
  • the diode connection 650 comprises a diode printed circuit board (PCB) 652 provided with a set of back-charge diodes 654 (e.g. Schottky diodes) located on one side thereof, and a conductor bar 656 provided on an opposite side of the circuit board 652 .
  • PCB diode printed circuit board
  • the jump starting device 510 comprises the device casing 512 having an upper casing portion 512 a and a lower casing portion 512 b, as shown in FIG. 15 .
  • the upper casing portion 512 a and the lower casing portion 512 b are configured to be connected together when assembling the jump starting device 510 .
  • the jump starting device 510 further comprises the battery connection device 600 and controller assembly 710 both disposed within the casing 512 .
  • the controller assembly 710 comprises a circuit board 712 located adjacent to another circuit board 714 .
  • the positive terminal of the battery assembly 610 ( FIG. 15 ) is connected to the circuit board 712 via a positive power wire 716 .
  • a positive power wire 716 For example, one end of the positive power wire 716 is soldered to the positive terminal conductor bar 614 ( FIG. 9 ) and the opposite end is soldered to the circuit board 712 .
  • the negative terminal of the battery assembly 610 is connected to the circuit board 714 via a negative power wire 718 .
  • one end of the negative power wire 718 is soldered to the negative terminal conductor bar 630 ( FIG. 9 ) and the opposite end is solder to the circuit board 714 .
  • the relay circuit board 636 is provided with a wire set 720 having a connector 722 ( FIGS. 14 and 15 ).
  • the connector 722 is configured to connect with the relay board connector 722 located on the circuit board 712 of the controller assembly 710 during assembly of the battery jump starting device 510 .
  • the battery assembly 610 further comprises a wire set 726 having a connector 728 .
  • the connector 728 is configured to connect with the battery cell charging/monitoring connector 728 located on the circuit board 712 of the controller assembly 710 .
  • the battery assembly 610 also comprises a battery temperature sensor having a wire set 732 ( FIG. 16 ) having a connector 734 .
  • the connector 734 is configured to connect with the temperature sensor connector 736 located on the circuit board 712 of the controller assembly 720 .
  • the circuit board 712 is provided with in charge power resistors and an out relay. Further, the lower casing portion 512 a is provided with a main user out connector 744 having a wire set 746 connected to the main circuit board 714 , and a main user in connector 748 having a wire set 750 connected to the circuit board 714 .
  • the battery assembly 610 is connected to jump starting device 510 , as shown in FIG. 15 .
  • the battery connector device 610 is installed within the device casing 512 of the jump starting device 510 when assembled.
  • FIGS. 17-29 An enhanced conductivity battery connector device 900 is shown in FIGS. 17-29 .
  • the enhanced conductivity battery connector device 900 provides a significantly increased conductivity compared to the battery connector device 600 , as shown in FIGS. 9-16 .
  • the amount of power to be conducted from the battery 912 to the battery terminal clamps connected to a vehicle battery of a vehicle to be jump started can be enhanced as follows:
  • the gauge of the positive cable 518 and negative cable 522 ( FIG. 13 ), for example, can be increased from 4AWG (American Wire Gage) cable to a 2AWG cable for positive cable 818 and negative cable 822 ( FIGS. 17-19 ).
  • 4AWG American Wire Gage
  • 2AWG 2AWG cable for positive cable 818 and negative cable 822
  • the 2AWG cable provides a significant increase of conductivity (i.e. ampacity) compared to the 4AWG cable (i.e. approximately 36% increase).
  • the negative cable 822 ( FIG. 19 ) can be connected to the battery 912 ( FIG. 17 ) in a manner to increase the conductivity (i.e. ampacity) between the battery 912 and negative cable 822 .
  • the negative cable conductor end 822 a can be directly connected (e.g. soldered) to the connector prongs 942 c ( FIG. 19 ) of the relays 942 .
  • the negative cable conductor end 822 a can extend across and directly connect to all relays 942 (e.g. like relays 642 ) of the smart switch battery interface 934 ( FIGS. 18 and 19 ).
  • the negative cable conductor end 822 a can be connected to the conductor loop 941 ( FIG. 19 ) of the circuit board conductor bar 940 .
  • the negative cable 822 can be made of stranded wire comprising an inner electrical wire conductor composed of an untwisted or twisted bundle of wires disposed within an outer electrical insulating sheath.
  • the electrical insulating sheath of the negative cable 822 can be removed from the negative cable end exposing the inner conductor end 822 a.
  • the exposed bundle of wires 822 d ( FIG. 18 ) of the inner conductor 822 a can be forced over the ends of the exposed connector pins 942 c of the relays 942 so that strands of wires 822 d are captured between the adjacent connector pins 942 c.
  • the exposed bundles of wires 832 d can be further forced into contact with the conductor bar 940 (e.g. made of copper).
  • Solder 923 is applied to this assembly so that the solder flows between the exposed bundles of wires 922 d to the connector pins 942 c and the conductor bar 940 to complete the electrical connection between the negative cable 322 and the smart switch battery interface 934 connected to the battery 912 .
  • the length of the exposed bundle of wires 822 d is selected so that exposed bundle of wires 822 d directly connects with each set of connector pins 942 c of each and every relay 942 to provide the maximum electrical conductivity (i.e. maximum ampacity) between the negative cable 822 and the battery 912 .
  • the positive cable 818 can be connected to the battery 912 in a manner to increase the conductivity (i.e. ampacity) between the battery 912 and positive cable 818 .
  • the positive cable 818 can be rolled up in the positive battery tab 914 of the battery 912 and soldered together thoroughly.
  • the steps for connection between the positive cable 818 and the positive battery tab 914 of the battery 912 is shown in FIGS. 22-26 .
  • the positive cable 818 can be made of stranded wire comprising an inner electrical wire conductor composed of an untwisted or twisted bundle of wires disposed within an outer electrical insulating sheath.
  • the electrical insulating sheath of the positive cable 818 can be removed from the positive cable conductor end 818 a exposing the inner conductor end 818 a.
  • the battery 912 is provided with a positive battery tab 914 .
  • the positive battery tab 914 is a metal sheet (e.g. copper sheet) connected to the positive terminal tab 914 of the battery 912 .
  • the exposed bundle of wires 818 d of the inner electrical conductor 818 b can be soldered with tin, and then rolled up within the positive battery tab 812 a. Solder 915 ( FIG. 25 ) is applied to the exposed bundle of wires 818 d and the positive battery tab 812 a.
  • the length of the exposed bundle of wires of the positive cable conductor end 818 a is selected so that exposed bundle of wires directly connects with the full width of the positive battery tab 914 to provide the maximum electrical conductivity (i.e. maximum ampacity) between the battery 712 and the positive cable 718 .
  • the positive cable 818 can be provided with a diode connection 950 configured to increase the conductivity along the positive cable 818 , as shown in FIGS. 27-29 .
  • the diode connection 950 comprises a plurality of diodes 954 connected between positive cable sections 818 a and 818 f ( FIG. 29 ).
  • the diode connection 950 comprises six (6) back-charge type diodes (e.g. Schottky barrier diodes).
  • the diodes 954 are soldered between the positive cable conductor ends 818 b and 818 b. Specifically, the diode conductor tabs 954 a are soldered to the upper positive cable conductor end 818 b and the diode conductor prongs 954 b are soldered to the positive cable conductor end 818 b. More specifically, the diode conductor prongs 954 b of the diodes 954 extend through the diode circuit board 952 , extend into the bundle of wires of the lower positive cable conductor end 818 b, and then are soldered in place completing assembly of the diode connection 950 .
  • the diode connection 950 is then insulated, for example, using a shrink wrap insulator 955 ( FIG. 29 ), which is applied around the diode connection 950 , and then shrunk by applying heat (e.g. using heat gun).
  • a shrink wrap insulator 955 FIG. 29
  • PCB Redesigned Resistor/Diode Printed Circuit Board
  • the resistor/diode PCB are redesigned to eliminate the diodes extending therefrom;
  • resistors R134A&B, R135A&B that are on the Resistor/Diode printed circuit board (PCB) 952 are reconnected to be connected again.
  • the battery connection device 600 shown in FIG. 13 was subjected to a 1250A
  • Pulse #1 Average Power of 4799.01 W Pulse #2 Average Power of 5528.99 W Pulse #3 Average Power of 6101.63 W
  • the battery connection device 900 shown in FIG. 17 was subjected to a 1250A Load Test. The results are shown in FIG. 31 , and as follows:
  • FIGS. 32-41 Another enhanced conductivity battery conductor device 1000 is shown in FIGS. 32-41 .
  • the enhanced conductivity battery connector device 1000 provides a significantly increased conductivity compared to the battery connector device 600 shown in FIGS. 9-14 .
  • the battery conductor device 1000 comprises the battery assembly 1010 , including the battery 1012 connected to the positive cable 1018 and the negative terminal conductor plate 1030 .
  • a positive wire 1019 is connected directly or indirectly to the positive tab or positive cable 1018 of the battery 1012
  • a negative wire 1023 is connected directly or indirectly to the negative tab or negative terminal conductor plate 1030 .
  • the battery conductor device 1000 can further include a bundle of wires 1070 connected to or associated with the operation of the battery 1012 (e.g. battery temperature sensor, power supply, etc.).
  • the battery 1012 can comprise a single battery cell 1012 c ( FIG. 34 ), or multiple battery cells 1012 c connected end-to-end in series. For example, three (3) separate battery cells 1012 c have respective tabs 512 d to be connected together ( FIG. 33 ).
  • the battery cells 1012 c each have respective positive and negative tabs 1012 d located at opposite ends of each battery cell 1012 c.
  • the battery cells 1012 c are connected together in series by welding (e.g. sonically and/or thermally welding) and/or soldering respective positive and negative tabs 1012 d together.
  • the tabs 1012 d are positioned so as to overlap each other (e.g. edges overlapping opposite tab 1012 d, or edge-to-edge).
  • the tabs 1012 d are metal plates (e.g. relative thin metal foils) extending outwardly from the body and opposite edges of each battery cell 1012 c. As shown in FIG. 34 , the positive and negative tabs 1012 d extend along opposite edges along the width dimension of each battery cell 1012 c. The positive and negative tabs 1012 d are each centered and extend most of the width dimension of each opposite edge of each battery cell 1012 c.
  • a separate tab 1012 e is added or connected to the right side of the battery cell 1012 c (i.e. battery cell on right side in FIG. 33 ) to extend the length of the tab 1012 d.
  • the separate tab 1012 e is shown as having the same width dimension as the tab 1012 d; however, this width can be different.
  • the separate tab 1012 e is positioned to overlap over the tab 1012 d, and then welded (e.g. sonically and/or thermally welded) and/or soldered together.
  • the exposed conductor end of the positive cable 1018 is then wound up inside the separate tab, as shown in FIGS. 35 and 37 .
  • the initially flat separate tab 1012 e is wrapped around the exposed conductor end of the positive cable 1018 , and then connected to the exposed end by welding (e.g. sonically and/or thermally welding) and/or soldering.
  • welding e.g. sonically and/or thermally welding
  • soldering e.g. sonically and/or thermally welding
  • soldering e.g. sonically and/or thermally welding
  • the three (3) battery cells 1012 c once connected together are then folded over each other into the layered battery cell arrangement shown in FIG. 36 .
  • the layered battery cell arrangement can be packaged (e.g. the three (3) battery cells can be taped or shrink wrapped together), or placed within a battery cover or casing 1012 , as shown in FIG. 38 .
  • the negative tab 1012 d can be attached to the negative terminal conductor plate 1030 .
  • the negative tab 1012 d can be wrapped partially or fully, as shown, around the negative terminal conductor plate 1030 .
  • the negative tab 1012 d can be provided with a plurality of through holes 1012 f to facilitate welding and/or soldering the negative tab 1012 d to the negative terminal conductor plate 1030 .
  • the through holes 1012 f can be square-shaped through holes arranged into a matrix, as shown in FIG. 39 .
  • the negative wire 1023 is shown connected (e.g. soldered) to the negative tab 1012 d.
  • Another separate tab 1012 e can be connected to the negative tab 1012 d to lengthen the negative tab 1012 d, so that the lengthened negative tab can be wrapped or wound around the negative terminal conductor plate 1030 more than one time (e.g. 2, 3, 4, or more times). In this manner, the electrical connection between the negative tab 1012 d and the negative terminal conductor plate 1030 can be enhanced.
  • the separate tab 1012 e can be provided with a layer of solder on one or both sides, so that after the separate tab 1012 e is wrapped or wound around the negative terminal conductor plate 1030 , this assembly can be heated up to solder the separate tab 1012 e onto the negative terminal conductor plate 1030 .
  • the completed assembly of the battery conductor device 1000 with the connected separate positive tab 1012 e ready to be wrapped or wound an exposed conductor end of the positive cable 1018 ( FIG. 32 ) can be seen in FIG. 39 .
  • the bundle of wires 1070 shown in FIG. 39 includes wires 1072 for a temperature sensor embedded within the battery 1012 (e.g. temperature sensor located near battery tab or between battery cells.).
  • the temperature sensor 1074 connected between two (2) wires 1072 a and 1072 b is shown in FIG. 40 .
  • the battery conductor device 1000 can be connected to the positive cable 1018 provided with a diode connector 1050 connected inline or splice into the positive cable 1018 , as shown in FIG. 41 .
  • the diode connector 1050 comprises a diode circuit board 1052 having a plurality of diodes 1054 assembled thereon.
  • the diodes 1054 each have a diode conductor tab 1054 a connected (e.g. soldered) to an exposed conductor end of the positive cable 1018 .
  • the prongs of the diodes 1054 extend through holes in the diode circuit board 1052 , and are soldered to both the conductive traces and the exposed conductor end of the positive cable 1018 along with a resistor 1076 to complete the assembly.

Abstract

A handheld device for jump starting a vehicle engine includes a rechargeable lithium ion battery pack and a microcontroller. The lithium ion battery is coupled to a power output port of the device through a FET smart switch actuated by the microcontroller. A vehicle battery isolation sensor connected in circuit with positive and negative polarity outputs detects the presence of a vehicle battery connected between the positive and negative polarity outputs. A reverse polarity sensor connected in circuit with the positive and negative polarity outputs detects the polarity of a vehicle battery connected between the positive and negative polarity outputs, such that the microcontroller will enable power to be delivered from the lithium ion power pack to the output port only when a good battery is connected to the output port and only when the battery is connected with proper polarity of positive and negative terminals.

Description

    RELATED APPLICATIONS
  • This application is a continuation-in-part (CIP) of U.S. patent application Ser. No. 15/691,884 filed Aug. 31, 2017, which is a continuation of Ser. No. 14/619,655 filed Feb. 11, 2015 (now U.S. Pat. No. 9,770,992 issued on Sep. 26, 2017), which is a division of Ser. No. 14/325,938 filed Jul. 8, 2014 (now U.S. Pat. No. 9,007,015 issued on Apr. 14, 2015), which is a continuation of PCT/US2014/045434 filed Jul. 3, 2014, and this application is also a continuation-in-part (CIP) of U.S. patent application Ser. No. 15/989,005 filed May 24, 2018, which is a continuation of PCT/US2017/017289 filed Feb. 10, 2017, which claims priority from U.S. Provisional Application No. 62/294,067 filed Feb. 11, 2016, claims priority to PCT/US2016/024680 filed Mar. 29, 2016, is a continuation-in-part (CIP) of U.S. patent application Ser. No. 15/137,626 filed on Apr. 25, 2016, and claims priority from U.S. Provisional Application No. 62/424,297 filed Nov. 18, 2016, of which all of the above applications are incorporated by reference herein in their entirety.
  • BACKGROUND
  • The present invention relates generally to apparatus for jump-starting a vehicle having a depleted or discharged vehicle battery. Prior art devices are known, which provide either a pair of electrical connector cables that connect a fully-charged battery of another vehicle to the engine start circuit of the depleted or discharge vehicle battery, or portable booster devices which include a fully-charged battery which can be connected in circuit with the vehicle's engine starter through a pair of cables.
  • Problems with the prior art arose when either the jumper terminals or clamps of the cables were inadvertently brought into contact with each other while the other ends were connected to a charged battery, or when the positive and negative terminals were connected to the opposite polarity terminals in the vehicle to be jumped, thereby causing a short circuit resulting in sparking and potential damage to batteries and/or bodily injury.
  • Various attempts to eliminate these problems have been made in the prior art. U.S. Pat. No. 6,212,054 issued Apr. 3, 2001, discloses a battery booster pack that is polarity sensitive and can detect proper and improper connections before providing a path for electric current flow. The device uses a set of LEDs connected to optical couplers oriented by a control circuit. The control circuit controls a solenoid assembly controlling the path of power current. The control circuit causes power current to flow through the solenoid assembly only if the points of contact of booster cable clamp connections have been properly made.
  • U.S. Pat. No. 6,632,103 issued Oct. 14, 2003, discloses an adaptive booster cable connected with two pairs of clips, wherein the two pairs of clips are respectively attached to two batteries to transmit power from one battery to the other battery. The adaptive booster cable includes a polarity detecting unit connected to each clip, a switching unit and a current detecting unit both provided between the two pairs of clips. After the polarity of each clip is sensed by the polarity detecting unit, the switching unit generates a proper connection between the two batteries. Therefore, the positive and negative terminals of the two batteries are correctly connected based on the detected result of the polarity detecting unit.
  • U.S. Pat. No. 8,493,021 issued Jul. 23, 2013, discloses apparatus that monitors the voltage of the battery of a vehicle to be jump started and the current delivered by the jump starter batteries to determine if a proper connection has been established and to provide fault monitoring. Only if the proper polarity is detected can the system operate. The voltage is monitored to determine open circuit, disconnected conductive clamps, shunt cable fault, and solenoid fault conditions. The current through the shunt cable is monitored to determine if there is a battery explosion risk, and for excessive current conditions presenting an overheating condition, which may result in fire. The system includes an internal battery to provide the power to the battery of the vehicle to be jump started. Once the vehicle is started, the unit automatically electrically disconnects from the vehicle's battery.
  • U.S. Pat. No. 5,189,359 issued Feb. 23, 1993, discloses a jumper cable device having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating “positive” terminals, and one has a lower voltage than the reference voltage, indicating “negative” terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.
  • U.S. Pat. No. 5,795,182 issued Aug. 18, 1998, discloses a polarity independent set of battery jumper cables for jumping a first battery to a second battery. The apparatus includes a relative polarity detector for detecting whether two batteries are configured cross or parallel. A three-position high current capacity crossbar pivot switch is responsive to the relative polarity detector for automatically connecting the plus terminals of the two batteries together and the minus terminals of the two batteries together regardless of whether the configuration detected is cross or parallel, and an undercurrent detector and a delay circuit for returning the device to its ready and unconnected state after the device has been disconnected from one of the batteries. The crossbar pivot switch includes two pairs of contacts, and a pivot arm that pivots about two separate points to ensure full electrical contact between the pairs of contacts. The invention can also be used to produce a battery charger that may be connected to a battery without regard to the polarity of the battery.
  • U.S. Pat. No. 6,262,492 issued Jul. 17, 2001, discloses a car battery jumper cable for accurately coupling an effective power source to a failed or not charged battery, which includes a relay switching circuit connected to the power source and the battery by two current conductor pairs. First and second voltage polarity recognition circuits are respectively connected to the power source and the battery by a respective voltage conductor pair to recognize the polarity of the power source and the battery. A logic recognition circuit produces a control signal subject to the polarity of the power source and the battery, and a driving circuit controlled by the control signal from the logic recognition circuit drives the relay switching circuit, enabling the two poles of the power source to be accurately coupled to the two poles of the battery.
  • U.S. Pat. No. 5,635,817 issued Jun. 3, 1997, discloses a vehicle battery charging device that includes a control housing having cables including a current limiting device to prevent exceeding of a predetermined maximum charging current of about 40 to 60 amps. The control housing includes a polarity detecting device to verify the correct polarity of the connection of the terminals of the two batteries and to electrically disconnect the two batteries if there is an incorrect polarity.
  • U.S. Pat. No. 8,199,024 issued Jun. 12, 2012, discloses a safety circuit in a low-voltage connecting system that leaves the two low-voltage systems disconnected until it determines that it is safe to make a connection. When the safety circuit determines that no unsafe conditions exist and that it is safe to connect the two low-voltage systems, the safety circuit may connect the two systems by way of a “soft start” that provides a connection between the two systems over a period of time that reduces or prevents inductive voltage spikes on one or more of the low-voltage systems. When one of the low-voltage systems has a completely-discharged battery incorporated into it, a method is used for detection of proper polarity of the connections between the low-voltage systems. The polarity of the discharged battery is determined by passing one or more test currents through it and determining whether a corresponding voltage rise is observed.
  • U.S. Pat. No. 5,793,185 issued Aug. 11, 1998, discloses a hand-held jump starter having control components and circuits to prevent overcharging and incorrect connection to batteries.
  • While the prior art attempted solutions to the abovementioned problems as discussed above, each of the prior art solutions suffers from other shortcomings, either in complexity, cost or potential for malfunction. Accordingly, there exists a need in the art for further improvements to vehicle jump start devices.
  • Further, there exists a portable vehicle battery jump start apparatus as disclosed in U.S. Pat. No. 9,007,015 to Nook et al. The apparatus utilizes a lithium ion battery pack. In this type of apparatus, there exists a need to maximize conductivity from the battery pack to the vehicle battery of the vehicle being jump started.
  • For successful car jump-starts, there are two main factors dictating the results. The first factor is the amount of power provided by the lithium ion battery pack, and the second factor is the maximum conductivity. You need both factors to have the best chance to jump-start big engines. One factor without the other factor is not enough.
  • SUMMARY
  • In accordance with an aspect of the invention, apparatus is provided for jump starting a vehicle engine, including: an internal power supply; an output port having positive and negative polarity outputs; a vehicle battery isolation sensor connected in circuit with said positive and negative polarity outputs, configured to detect presence of a vehicle battery connected between said positive and negative polarity outputs; a reverse polarity sensor connected in circuit with said positive and negative polarity outputs, configured to detect polarity of a vehicle battery connected between said positive and negative polarity outputs; a power FET switch connected between said internal power supply and said output port; and a microcontroller configured to receive input signals from said vehicle isolation sensor and said reverse polarity sensor, and to provide an output signal to said power FET switch, such that said power FET switch is turned on to connect said internal power supply to said output port in response to signals from said sensors indicating the presence of a vehicle battery at said output port and proper polarity connection of positive and negative terminals of said vehicle battery with said positive and negative polarity outputs.
  • In accordance with another aspect of the invention, the internal power supply is a rechargeable lithium ion battery pack.
  • In accordance with yet another aspect of the invention, a jumper cable device is provided, having a plug configured to plug into an output port of a handheld battery charger booster device having an internal power supply; a pair of cables integrated with the plug at one respective end thereof; said pair of cables being configured to be separately connected to terminals of a battery at another respective end thereof.
  • The presently described subject matter is directed to a battery device, for example, a battery connector, battery connector arrangement, or battery conductor assembly for use in a device for jump starting a vehicle, and a device for jump starting a vehicle comprising the battery connector device.
  • The presently described subject matter is directed to a battery connector device comprising or consisting of a battery having at least one battery conductor connected to a terminal of the battery.
  • The presently described subject matter is directed to a battery connector device comprising or consisting of a battery having at least one battery conductor or cable connected to a battery tab of the battery.
  • The presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive conductor and a negative conductor connected to the battery.
  • The presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive conductor plate and/or a negative conductor plate connected to the battery.
  • The presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive conductor plate and/or a negative conductor plate connected to the battery, and a positive cable connected to the positive conductor plate and/or a negative cable connected to the negative conductor plate.
  • The presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive battery conductor connected to a positive terminal of the battery and/or a negative battery conductor connected to a negative terminal of the battery.
  • The presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive battery conductor connected to a positive terminal contact of the battery and/or a negative battery conductor connected to a negative terminal contact of the battery, the battery conductors being soldered to the respective terminals of the battery.
  • The presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive battery conductor connected to a positive terminal of the battery and/or a negative battery conductor connected to a negative terminal contact of the battery, and a relay connected to one of the battery conductors of the battery.
  • The presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive battery conductor connected to a positive terminal contact of the battery and/or a negative battery conductor connected to a negative terminal contact of the battery, and a relay connected to the negative battery conductor.
  • The presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive battery conductor connected to a positive terminal contact of the battery and/or a negative battery conductor connected to a negative terminal contact of the battery, and a relay connected to the negative battery conductor.
  • The presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive battery conductor connected to a positive terminal contact of the battery and/or a negative battery conductor connected to a negative terminal contact of the battery, and multiple relays connected to the negative battery conductor.
  • The presently described subject matter is directed to a battery connector device comprising or consisting of a battery having a positive battery conductor connected to a positive terminal contact of the battery and/or a negative battery conductor connected to a negative terminal contact of the battery, and a positive cable connected to the positive battery conductor.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the output of the jump starting apparatus to the vehicle battery is provided by the connection between the positive battery terminal connector and the positive terminal of the vehicle battery and the connection between the negative battery terminal connector and the negative terminal of the vehicle battery.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the positive battery terminal connector is a positive battery clamp releasably connectable to the positive terminal of the vehicle battery, and wherein the negative battery terminal connector is a negative battery clamp releasably connectable to the negative terminal of the vehicle battery.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the positive battery terminal connector is a positive ring terminal connected to an end of the positive battery cable and configured to connect with a positive battery clamp connectable to the positive terminal of the vehicle battery or directly to the positive terminal itself of the vehicle battery, and wherein the negative battery terminal connector is a negative ring terminal connected to an end of the negative battery cable and configured to connect with a negative battery clamp connectable to the negative terminal of the vehicle battery or directly to the negative terminal itself of the vehicle battery.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the internal power supply comprises a rechargeable battery.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the internal power supply comprises a rechargeable battery, wherein the lithium ion battery comprises a battery pack of multiple lithium ion batteries.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the power switch is a FET switch.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the power switch is an FET switch, and wherein the FET switch comprises a plurality of FETs in parallel.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the vehicle isolation sensor and reverse polarity sensor comprise optically coupled isolator phototransistors.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, further comprising a plurality of power diodes coupled between the output of the jump starting apparatus to the vehicle battery and the internal power supply to prevent back-charging of said internal power supply from an electrical system connected to said output port.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, further comprising a temperature sensor configured to detect temperature of said internal power supply and to provide a temperature signal to said microcontroller.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, further comprising a voltage measurement circuit configured to measure output voltage of said internal power supply and to provide a voltage measurement signal to said microcontroller.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, further comprising a voltage regulator configured to convert output voltage of said internal power supply to a voltage level appropriate to provide operating power to internal components of the apparatus.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, further comprising a manual override switch configured to activate a manual override mode to enable a user to connect jump start power to said output port when said vehicle battery isolation sensor is unable to detect presence of a vehicle battery.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, further comprising a manual override switch configured to activate a manual override mode to enable a user to connect jump start power to said output port when said vehicle battery isolation sensor is unable to detect presence of a vehicle battery, wherein said microcontroller is configured to detect actuation of said manual override switch for at least a predetermined period of time before activation of said manual override mode.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the positive battery cable and negative battery cable together form a jumper cable device comprising a plug connected to one of the cables and configured to plug into an output port on the battery jump starting apparatus.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the positive battery cable and negative battery cable together form a jumper cable device comprising a plug connected to one of the cables and configured to plug into an output port on the battery jump starting apparatus, wherein said output port and said plug are dimensioned so that the plug will fit into the output port only in one specific orientation.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the internal power supply comprises a rechargeable battery, wherein the rechargeable battery comprises at least one battery cell having a positive tab and a negative tab, wherein the positive battery cable has a conductor connected to the positive tab of the at least one battery cell of the rechargeable battery; and wherein the negative tab of the at least one cell of the rechargeable battery is connected to a negative terminal conductor bar.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the internal power supply comprises a rechargeable battery, wherein the rechargeable battery comprises at least one battery cell having a positive tab and a negative tab, wherein the positive battery cable has a conductor connected to the positive tab of the at least one battery cell of the rechargeable battery; and wherein the negative tab of the at least one cell of the rechargeable battery is connected to a negative terminal conductor bar, further comprising a separate tab connected to the positive tab of the at least one cell of the rechargeable battery to extend a length of the positive tab of the at least one cell of the rechargeable battery.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the internal power supply comprises a rechargeable battery, wherein the rechargeable battery comprises at least one battery cell having a positive tab and a negative tab, wherein the positive battery cable has a conductor connected to the positive tab of the at least one battery cell of the rechargeable battery; and wherein the negative tab of the at least one cell of the rechargeable battery is connected to a negative terminal conductor bar, further comprising a separate tab connected to the positive tab of the at least one cell of the rechargeable battery to extend a length of the positive tab of the at least one cell of the rechargeable battery, wherein the separate tab is connected to the positive tab of the at least one battery cell of the rechargeable battery, and wherein the separate tab wraps around and connects to the conductor of the positive cable.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the internal power supply comprises a rechargeable battery, wherein the rechargeable battery comprises at least one battery cell having a positive tab and a negative tab, wherein the positive battery cable has a conductor connected to the positive tab of the at least one battery cell of the rechargeable battery; and wherein the negative tab of the at least one cell of the rechargeable battery is connected to a negative terminal conductor bar, wherein the positive tab wraps around and connects to the conductor of the positive cable.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the internal power supply comprises a rechargeable battery, wherein the rechargeable battery comprises at least one battery cell having a positive tab and a negative tab, wherein the positive battery cable has a conductor connected to the positive tab of the at least one battery cell of the rechargeable battery; and wherein the negative tab of the at least one cell of the rechargeable battery is connected to a negative terminal conductor bar, wherein the negative tab wraps around the negative conductor bar to electrically connect the at least one battery cell of the rechargeable battery to the negative conductor bar.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the internal power supply comprises a rechargeable battery, wherein the rechargeable battery comprises at least one battery cell having a positive tab and a negative tab, wherein the positive battery cable has a conductor connected to the positive tab of the at least one battery cell of the rechargeable battery; and wherein the negative tab of the at least one cell of the rechargeable battery is connected to a negative terminal conductor bar, wherein the conductor of the positive cable is soldered to the positive tab of the at least one battery cell of the rechargeable battery and the negative terminal conductor bar is soldered to the negative tab of the at least one battery cell of the rechargeable battery.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the internal power supply comprises a rechargeable battery, wherein the rechargeable battery comprises at least one battery cell having a positive tab and a negative tab, wherein the positive battery cable has a conductor connected to the positive tab of the at least one battery cell of the rechargeable battery; and wherein the negative tab of the at least one cell of the rechargeable battery is connected to a negative terminal conductor bar, wherein the rechargeable battery is rectangular-shaped, and the negative terminal conductor bar is L-shaped and wraps around a respective corner of the rechargeable battery.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the internal power supply comprises a rechargeable battery, wherein the rechargeable battery comprises at least one battery cell having a positive tab and a negative tab, wherein the positive battery cable has a conductor connected to the positive tab of the at least one battery cell of the rechargeable battery; and wherein the negative tab of the at least one cell of the rechargeable battery is connected to a negative terminal conductor bar, wherein the positive tab and the negative tab of the at least one battery cell of the rechargeable battery extend from opposite sides of the rechargeable battery.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the internal power supply comprises a rechargeable battery, wherein the rechargeable battery comprises at least one battery cell having a positive tab and a negative tab, wherein the positive battery cable has a conductor connected to the positive tab of the at least one battery cell of the rechargeable battery; and wherein the negative tab of the at least one cell of the rechargeable battery is connected to a negative terminal conductor bar, wherein the positive tab and negative tab of the at least one battery cell of the rechargeable battery extend along opposite edges along a width of the at least one battery cell of the rechargeable battery.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the internal power supply comprises a rechargeable battery, wherein the rechargeable battery comprises at least one battery cell having a positive tab and a negative tab, wherein the positive battery cable has a conductor connected to the positive tab of the at least one battery cell of the rechargeable battery; and wherein the negative tab of the at least one cell of the rechargeable battery is connected to a negative terminal conductor bar, further comprising a separate tab connected to the positive tab of the at least one cell of the rechargeable battery to extend a length of the positive tab of the at least one cell of the rechargeable battery, wherein the separate tab has a same width as the positive tab of the at least one battery cell of the rechargeable battery.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the internal power supply comprises a rechargeable battery, wherein the rechargeable battery comprises at least one battery cell having a positive tab and a negative tab, wherein the positive battery cable has a conductor connected to the positive tab of the at least one battery cell of the rechargeable battery; and wherein the negative tab of the at least one cell of the rechargeable battery is connected to a negative terminal conductor bar, further comprising a separate tab connected to the positive tab of the at least one cell of the rechargeable battery to extend a length of the positive tab of the at least one cell of the rechargeable battery, wherein the separate tab overlaps the positive tab of the at least one battery cell of the rechargeable battery.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the internal power supply comprises a rechargeable battery, wherein the rechargeable battery comprises at least one battery cell having a positive tab and a negative tab, wherein the positive battery cable has a conductor connected to the positive tab of the at least one battery cell of the rechargeable battery; and wherein the negative tab of the at least one cell of the rechargeable battery is connected to a negative terminal conductor bar, further comprising a separate tab connected to the positive tab of the at least one cell of the rechargeable battery to extend a length of the positive tab of the at least one cell of the rechargeable battery, further comprising another separate tab connected to the negative tab of the at least one cell of the rechargeable battery to extend a length of the negative tab of the at least one cell of the rechargeable battery.
  • The presently described subject matter is directed to a jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising or consisting of an internal power supply; a positive battery cable having a positive battery terminal connector; a negative battery cable having a negative battery terminal connector; a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector; a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector; a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector, wherein the internal power supply comprises a rechargeable battery, wherein the rechargeable battery comprises at least one battery cell having a positive tab and a negative tab, wherein the positive battery cable has a conductor connected to the positive tab of the at least one battery cell of the rechargeable battery; and wherein the negative tab of the at least one cell of the rechargeable battery is connected to a negative terminal conductor bar, further comprising a separate tab connected to the positive tab of the at least one cell of the rechargeable battery to extend a length of the positive tab of the at least one cell of the rechargeable battery, further comprising another separate tab connected to the negative tab of the at least one cell of the rechargeable battery to extend a length of the negative tab of the at least one cell of the rechargeable battery, wherein the another separate tab wraps more than one time around the negative conductor bar to enhance the electrical connection between the negative conductor bar and the negative tab of the at least one battery cell of the rechargeable battery.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a functional block diagram of a handheld vehicle battery boost apparatus in accordance with one aspect of the present invention;
  • FIGS. 2A-2C are schematic circuit diagrams of an example embodiment of a handheld vehicle battery boost apparatus in accordance with an aspect of the invention;
  • FIG. 3 is a perspective view of a handheld jump starter booster device in accordance with one example embodiment of the invention; and
  • FIG. 4 is a plan view of a jumper cable usable with the handheld jump starter booster device in accordance with another aspect of the invention.
  • FIG. 5 is a front view of the battery jump starting device with the battery terminal clamps un-deployed.
  • FIG. 6 is a rear perspective view of the battery jump starting device shown in FIG. 5.
  • FIG. 7 is an end perspective view of the battery jump starting device shown in FIGS. 5 and 6.
  • FIG. 8 is a front perspective view of the battery jump starting device shown in FIG. 5, however, with the battery terminal clamps deployed.
  • FIG. 9 is a front perspective view of a battery connector device contained within the battery jump starting device shown in FIG. 5, however, with the negative cable not yet installed.
  • FIG. 10 is a top planer view of the battery connector device shown in FIG. 9.
  • FIG. 11 is a side elevational view of the battery connector device shown in FIG. 9.
  • FIG. 12 is an end elevational view of the battery connector device shown in FIG. 9.
  • FIG. 13 is a perspective view of the battery connector device shown in FIG. 9, however, the negative cable in now connected to the battery connector device.
  • FIG. 14 is a view perspective view of the battery connector device shown in FIG. 9, however, with a diode connector installed on the positive cable.
  • FIG. 15 is a perspective view of the battery connector device connected to other components or parts of the battery jump starting device.
  • FIG. 16 is a perspective view of the battery assembly of the battery connector device shown in FIG. 9.
  • FIG. 17 is a front perspective view of another battery connector device for the battery jump starting device.
  • FIG. 18 is a detailed view of the positive cable connection with the relay printed circuit board prior to being soldered together.
  • FIG. 19 is a detailed view of the positive cable connection with the relay printed circuit board after being soldered together.
  • FIG. 20 is a front perspective view of the battery connector device shown in FIG. 17 prior to connection with the positive cable and negative cable.
  • FIG. 21 is a partial top planar view of the battery assembly of the battery connector device shown in FIG. 20 showing the positive terminal conductor sheet in an unwound condition.
  • FIG. 22 is an end perspective view showing the positive terminal conductor shown in FIG. 21 with the conductor end of the positive cable positioned on the positive terminal conductor just prior to winding the positive terminal conductor around the conductor end of the positive cable.
  • FIG. 23 is an end perspective view showing the positive terminal conductor shown in FIG. 22 partially wound around the conductor end of the positive cable.
  • FIG. 24 is an end perspective view of the positive terminal conductor shown in FIG. 22 fully wound around the conductor end of the positive cable.
  • FIG. 25 is a side perspective view showing the positive terminal conductor fully wound around and soldered to the conductor end of the positive cable.
  • FIG. 26 is an opposite end perspective view of the positive terminal conductor fully wound around and soldered to the end of the positive cable.
  • FIG. 27 is a perspective view of the diode connector installed between overlapping sections of the positive cable.
  • FIG. 28 is a perspective view of a Schottky diode used in the diode connector.
  • FIG. 29 is a perspective view of the diode connector insulated with a shrink wrap sleeve.
  • FIG. 30 is a graphical illustration showing a load test of the battery connection shown in FIGS. 9-14.
  • FIG. 31 is a graphical illustration showing a load test of the battery connection shown in FIGS. 17-29.
  • FIG. 32 is a front view of a further battery connector device for the battery jump starting device.
  • FIG. 33 is a planar view of the battery connector device comprising a plurality of battery cells having separate tab and conductors (e.g. plate conductors) prior to assembly.
  • FIG. 34 is a planar view of the battery connector device comprising battery cells being prepared with separate tabs for lengthening the tabs.
  • FIG. 35 is a front view of the battery connector device comprising the plurality of battery cells having separate tab and conductors shown in FIG. 33, after assembly.
  • FIG. 36 is a elevational view of the battery connector device comprising the battery cell assembly shown in FIG. 35, after folding the battery cells on top of each other.
  • FIG. 37 is an end perspective view of the battery connector device showing the separate tab wrapped or wound around an exposed conductor end of the positive cable, and soldered together.
  • FIG. 38 is an opposite end perspective view of the battery connector device showing a negative battery tab wrapped or wound around the negative terminal conductor plate and welded and/or soldered together.
  • FIG. 39 is a perspective view of the battery connector device showing the flat separate tab connected to the positive battery tab and extending outwardly prior to connection with the conductive end of the positive cable.
  • FIG. 40 is a side view of the temperature sensor assembly with wires and connector.
  • FIG. 41 is a perspective view of the diode circuit board assembled or connected or spliced inline into the positive cable.
  • DETAILED DESCRIPTION
  • FIG. 1 is a functional block diagram of a vehicle jump starting apparatus or a handheld battery booster according to one aspect of the invention. At the heart of the handheld battery booster is a lithium polymer battery pack 32, which stores sufficient energy to jump start a vehicle engine served by a conventional 12 volt lead-acid or valve regulated lead-acid battery. In one example embodiment, a high-surge lithium polymer battery pack includes three 3.7V, 2666 mAh lithium polymer batteries in a 351P configuration. The resulting battery pack provides 11.1V, 2666Ah (8000Ah at 3.7V, 29.6Wh). Continuous discharge current is 25C (or 200 amps), and burst discharge current is 50C (or 400 amps). The maximum charging current of the battery pack is 8000mA (8 amps).
  • A programmable microcontroller unit (MCU) 1 receives various inputs and produces informational as well as control outputs. The programmable MCU 1 further provides flexibility to the system by allowing updates in functionality and system parameters, without requiring any change in hardware. According to one example embodiment, an 8 bit microcontroller with 2K×15 bits of flash memory is used to control the system. One such microcontroller is the HT67F30, which is commercially available from Holtek Semiconductor Inc.
  • A car battery reverse sensor 10 monitors the polarity of the vehicle battery 72 when the handheld battery booster device is connected to the vehicle's electric system. As explained below, the booster device prevents the lithium battery pack from being connected to the vehicle battery 72 when the terminals of the battery 72 are connected to the wrong terminals of the booster device. A car battery isolation sensor 12 detects whether or not a vehicle battery 72 is connected to the booster device, and prevents the lithium battery pack from being connected to the output terminals of the booster device unless there is a good (e.g. chargeable) battery connected to the output terminals.
  • A smart switch FET circuit 15 electrically switches the handheld battery booster lithium battery to the vehicle's electric system only when the vehicle battery is determined by the MCU 1 to be present (in response to a detection signal provided by isolation sensor 12) and connected with the correct polarity (in response to a detection signal provided by reverse sensor 10). A lithium battery temperature sensor 20 monitors the temperature of the lithium battery pack 32 to detect overheating due to high ambient temperature conditions and overextended current draw during jump starting. A lithium battery voltage measurement circuit 24 monitors the voltage of the lithium battery pack 32 to prevent the voltage potential from rising too high during a charging operation and from dropping too low during a discharge operation.
  • Lithium battery back-charge protection diodes 28 prevent any charge current being delivered to the vehicle battery 72 from flowing back to the lithium battery pack 32 from the vehicle's electrical system. Flashlight LED circuit 36 is provided to furnish a flashlight function for enhancing light under a vehicle's hood in dark conditions, as well as providing SOS and strobe lighting functions for safety purposes when a vehicle may be disabled in a potentially dangerous location. Voltage regulator 42 provides regulation of internal operating voltage for the microcontroller and sensors. On/Off manual mode and flashlight switches 46 allow the user to control power-on for the handheld battery booster device, to control manual override operation if the vehicle has no battery, and to control the flashlight function. The manual button functions only when the booster device is powered on. This button allows the user to jump-start vehicles that have either a missing battery, or the battery voltage is so low that automatic detection by the MCU is not possible. When the user presses and holds the manual override button for a predetermined period time (such as three seconds) to prevent inadvertent actuation of the manual mode, the internal lithium ion battery power is switched to the vehicle battery connect port. The only exception to the manual override is if the car battery is connected in reverse. If the car battery is connected in reverse, the internal lithium battery power shall never be switched to the vehicle battery connect port.
  • USB charge circuit 52 converts power from any USB charger power source, to charge voltage and current for charging the lithium battery pack 32. USB output 56 provides a USB portable charger for charging smartphones, tablets, and other rechargeable electronic devices. Operation indicator LEDs 60 provides visual indication of lithium battery capacity status as well as an indication of smart switch activation status (indicating that power is being provided to the vehicle's electrical system).
  • Detailed operation of the handheld booster device will now be described with reference to the schematic diagrams of FIGS. 2A-2C. As shown in FIG. 2A, the microcontroller unit 1 is the center of all inputs and outputs. The reverse battery sensor 10 comprises an optically coupled isolator phototransistor (4N27) connected to the terminals of vehicle battery 72 at input pins 1 and 2 with a diode D8 in the lead conductor of pin 1 (associated with the negative terminal CB−), such that if the battery 72 is connected to the terminals of the booster device with the correct polarity, the optocoupler LED 11 will not conduct current, and is therefore turned off, providing a “1” or high output signal to the MCU 1. The car battery isolation sensor 12 comprises an optically coupled isolator phototransistor (4N27) connected to the terminals of vehicle battery 72 at input pins 1 and 2 with a diode D7 in the lead conductor of pin 1 (associated with the positive terminal CB+), such that if the battery 72 is connected to the terminals of the booster device with the correct polarity, the optocoupler LED 11A will conduct current, and is therefore turned on, providing a “0” or low output signal to the MCU, indicating the presence of a battery across the jumper output terminals of the handheld booster device.
  • If the car battery 72 is connected to the handheld booster device with reverse polarity, the optocoupler LED 11 of the reverse sensor 10 will conduct current, providing a “0” or low signal to microcontroller unit 1. Further, if no battery is connected to the handheld booster device, the optocoupler LED 11A of the isolation sensor 12 will not conduct current, and is therefore turned off, providing a “1” or high output signal to the MCU, indicating the absence of any battery connected to the handheld booster device. Using these specific inputs, the microcontroller software of MCU 1 can determine when it is safe to turn on the smart switch FET 15, thereby connecting the lithium battery pack to the jumper terminals of the booster device. Consequently, if the car battery 72 either is not connected to the booster device at all, or is connected with reverse polarity, the MCU 1 can keep the smart switch FET 15 from being turned on, thus prevent sparking/short circuiting of the lithium battery pack.
  • As shown in FIG. 2B, the FET smart switch 15 is driven by an output of the microcontroller 1. The FET smart switch 15 includes three FETs (Q15, Q18, and Q19) in parallel, which spreads the distribution of power from the lithium battery pack over the FETs. When that microcontroller output is driven to a logic low, FETs 16 are all in a high resistance state, therefore not allowing current to flow from the internal lithium Battery negative contact 17 to the car battery 72 negative contact. When the microcontroller output is driven to a logic high, the FETs 16 (Q15, Q18, and Q19) are in a low resistant state, allowing current to flow freely from the internal lithium battery pack negative contact 17 (LB−) to the car battery 72 negative contact (CB−). In this way, the microcontroller software controls the connection of the internal lithium battery pack 32 to the vehicle battery 72 for jumpstarting the car engine.
  • Referring back to FIG. 2A, the internal lithium battery pack voltage can be accurately measured using circuit 24 and one of the analog-to-digital inputs of the microcontroller 1. Circuit 24 is designed to sense when the main 3.3V regulator 42 voltage is on, and to turn on transistor 23 when the voltage of regulator 42 is on. When transistor 23 is conducting, it turns on FET 22, thereby providing positive contact (LB+) of the internal lithium battery a conductive path to voltage divider 21 allowing a lower voltage range to be brought to the microcontroller to be read. Using this input, the microcontroller software can determine if the lithium battery voltage is too low during discharge operation or too high during charge operation, and take appropriate action to prevent damage to electronic components.
  • Still referring to FIG. 2A, the temperature of the internal lithium battery pack 32 can be accurately measured by two negative temperature coefficient (NTC) devices 20. These are devices that reduce their resistance when their temperature rises. The circuit is a voltage divider that brings the result to two analog-to-digital (A/D) inputs on the microcontroller 1. The microcontroller software can then determine when the internal lithium battery is too hot to allow jumpstarting, adding safety to the design.
  • The main voltage regulator circuit 42 is designed to convert internal lithium battery voltage to a regulated 3.3 volts that is utilized by the microcontroller 1 as well as by other components of the booster device for internal operating power. Three lithium battery back charge protection diodes 28 (see FIG. 2B) are in place to allow current to flow only from the internal lithium battery pack 32 to the car battery 72, and not from the car battery to the internal lithium battery. In this way, if the car electrical system is charging from its alternator, it cannot back-charge (and thereby damage) the internal lithium battery, providing another level of safety. The main power on switch 46 (FIG. 2A) is a combination that allows for double pole, double throw operation so that with one push, the product can be turned on if it is in the off state, or turned off if it is in the on state. This circuit also uses a microcontroller output 47 to “keep alive” the power when it is activated by the on switch. When the switch is pressed the microcontroller turns this output to a high logic level to keep power on when the switch is released. In this way, the microcontroller maintains control of when the power is turned off when the on/off switch is activated again or when the lithium battery voltage is getting too low. The microcontroller software also includes a timer that turns the power off after a predefined period of time, (such as, e.g. 8 hours) if not used.
  • The flashlight LED circuit 45 shown in FIG. 2B controls the operation of flashlight LEDs. Two outputs from the microcontroller 1 are dedicated to two separate LEDs. Thus, the LEDs can be independently software-controlled for strobe and SOS patterns, providing yet another safety feature to the booster device. LED indicators provide the feedback the operator needs to understand what is happening with the product. Four separate LEDs 61 (FIG. 2A) are controlled by corresponding individual outputs of microcontroller 1 to provide indication of the remaining capacity of the internal lithium battery. These LEDs are controlled in a “fuel gauge” type format with 25%, 50% 75% and 100% (red, red, yellow, green) capacity indications. An LED indicator 63 (FIG. 2B) provides a visual warning to the user when the vehicle battery 72 has been connected in reverse polarity. “Boost” and on/off LEDs 62 provide visual indications when the booster device is provide jump-start power, and when the booster device is turned on, respectively.
  • A USB output 56 circuit (FIG. 2C) is included to provide a USB output for charging portable electronic devices such as smartphones from the internal lithium battery pack 32. Control circuit 57 from the microcontroller 1 allows the USB output 56 to be turned on and off by software control to prevent the internal lithium battery getting too low in capacity. The USB output is brought to the outside of the device on a standard USB connector 58, which includes the standard voltage divider required for enabling charge to certain smartphones that require it. The USB charge circuit 52 allows the internal lithium battery pack 32 to be charged using a standard USB charger. This charge input uses a standard micro-USB connector 48 allowing standard cables to be used. The 5V potential provided from standard USB chargers is up-converted to the 12.4VDC voltage required for charging the internal lithium battery pack using a DC-DC converter 49. The DC-DC converter 49 can be turned on and off via circuit 53 by an output from the microcontroller 1.
  • In this way, the microcontroller software can turn the charge off if the battery voltage is measured to be too high by the ND input 22. Additional safety is provided for helping to eliminate overcharge to the internal lithium battery using a lithium battery charge controller 50 that provides charge balance to the internal lithium battery cells 51. This controller also provides safety redundancy for eliminating over discharge of the internal lithium battery.
  • FIG. 3 is a perspective view of a handheld device 300 in accordance with an exemplary embodiment of the invention. 301 is a power on switch. 302 shows the LED “fuel gauge” indicators 61. 303 shows a 12 volt output port connectable to a cable device 400, described further below. 304 shows a flashlight control switch for activating flashlight LEDs 45. 305 is a USB input port for charging the internal lithium battery, and 306 is a USB output port for providing charge from the lithium battery to other portable devices such as smartphones, tablets, music players, etc. 307 is a “boost on” indicator showing that power is being provided to the 12V output port. 308 is a “reverse” indicator showing that the vehicle battery is improperly connected with respect to polarity. 309 is a “power on” indicator showing that the device is powered up for operation.
  • FIG. 4 shows a jumper cable device 400 specifically designed for use with the handheld device 300. Device 400 has a plug 401 configured to plug into 12 volt output port 303 of the handheld device 300. A pair of cables 402 a and 402 b are integrated with the plug 401, and are respectively connected to vehicle battery terminal connectors, for example, battery terminal clamps 403 a and 403 b via ring terminals 404 a and 404 b. The port 303 and plug 401 may be dimensioned so that the plug 401 will only fit into the port 303 in a specific orientation, thus ensuring that clamp 403 a will correspond to positive polarity, and clamp 403 b will correspond to negative polarity, as indicated thereon.
  • Additionally, the ring terminals 404 a and 404 b may be disconnected from the clamps and connected directly to the terminals of a vehicle battery. This feature may be useful, for example, to permanently attach the cables 302 a-302 b to the battery of a vehicle. In the event that the battery voltage becomes depleted, the handheld booster device 300 could be properly connected to the battery very simply by plugging in the plug 401 to the port 303.
  • Jump Starting Device with Battery Connection Device
  • Another jump starting apparatus or device 510 is shown in FIGS. 5 and 6. The battery jump starting device 510 comprises the electronic components or parts of the handheld battery booster apparatus shown in FIGS. 1-3 and the handheld device 300 shown in FIG. 4, and described above, in combination with a battery connection device 600 according to the present invention.
  • The jump starting apparatus 510 comprises a casing 512 having a display 514 provided with an arrangement of light emitting diodes (LEDs) 516 a-d, as shown in FIG. 5.
  • The jump starting device 510 further comprises a positive cable 518 having a positive clamp 520 and a negative cable 522 having a negative clamp 524. The positive cable 518 and negative cable 522 pass through openings 512 a, 512 b, respectively, in the casing 512.
  • The clamps 520, 524 are stowed away or docked in an un-deployed mode by clamping each to a respective side posts 526 extending outwardly on opposite sides of the casing 512, as shown in FIGS. 5 and 6. The side posts 526 are shown in FIG. 8. The clamps 520, 524 are docked when the jump starting device 510 is in non-use, and then unclamped from the side post 526 during use.
  • The jump starting device 510 is configured to jump start a vehicle battery. For example, the jump starting device 510 can be the PORTABLE VEHICLE JUMP START APPARATUS WITH SAFETY PROTECTION disclosed in U.S. Pat. No. 9,007,015, which is fully incorporated herein by reference, or a device or apparatus similar thereto.
  • The jump starting device 510 comprises electrical components or parts located inside the casing 512. For example, the jump starting device 510 comprises a battery connector device 600 shown in FIGS. 7-13.
  • The battery connector device 600 comprises a battery assembly 610 having a battery 612. For example, the battery 612 is a lithium-ion rechargeable type battery. The battery connector device 600 is configured to maximize conductivity from the battery 612 to the cables 518, 522 and clamps 520, 524 of the jump starting device 510. The battery 612 comprises a battery casing 612 a, for example, a rectangular-shaped battery casing 612 a.
  • The battery 612 comprises a positive tab or terminal at one end (e.g. width) of the battery 612, and a negative terminal tab or terminal at an opposite end (e.g. width) of the battery 612. For example, the battery 612 comprises one or more battery cells each having a positive and negative tab. For example, the positive tab or terminal from the battery cell(s) is located at the one end of the battery 612 and the negative tab or terminal from the battery cell(s) is located at the opposite end of the battery 612. A positive terminal conductor plate 614 is connected (e.g. soldered, welded, or sonically welded) at the one end of the battery 612 to the positive tab (i.e. contact) or terminal of the battery 612. The positive terminal conductor plate 614 extends along the one end (e.g. width) of the battery 612.
  • The positive cable 518 can be connected (e.g. directly connected by soldering) to the positive terminal conductor plate 614 and/or the positive tab of the battery 612. For example, the positive terminal conductor bar 614 can be provided with a conductive loop 616 wrapping around (e.g. entirely wrapping around) and connected (e.g. crimped and/or soldered) to an exposed conductor end 518 a of the positive cable 518. For example, the positive terminal conductor plate 614 is made from heavy gauge copper or aluminum sheet (e.g. machined, cut, or stamped therefrom).
  • As shown in FIGS. 9 and 10, the positive terminal conductor plate 614 can be configured (e.g. bent) to wrap around one of the square-shaped corners of the rectangular-shaped casing 612 a of the battery 612 (e.g. L-shaped). The L-shaped positive terminal conductor plate 614 can extend along an end of the battery 612 and along at least a portion of the side of the battery 612, as shown in FIG. 9.
  • The positive terminal conductor plate 614 can also be mechanically coupled and/or adhered to the outer surface of the battery casing 612 a to provide additional support and stability thereof (e.g. assembled to survive mechanical shock when drop testing the battery jump starter device 510). For example, the positive terminal conductor bar 614 can be mechanically connected to the battery casing 612 by adhesive (e.g. silicon adhesive), double sided tape, double sided foam tape, insulated plastic or ceramic connector with snap fit connection and/or adhesive connection, and/or the battery casing 612 can be formed (e.g. molded) to mechanically connect (e.g. snap fit or interference connection) with the positive terminal conductor plate 614.
  • The positive cable 518 can be a single piece of wire or a cable (e.g. twisted or braided wires) extending from the battery 612 to the positive clamp 520. Specifically, one end of the positive cable 518 is connected to the positive terminal conductor plate 614 connected to the battery 612, and the opposite end of the positive cable 518 is connected to the positive clamp 520.
  • More specifically, the positive cable 518 can comprise a flexible or bent cable portion 518 (FIG. 9) for changing the direction of the positive cable 518 within the device casing 512. The positive cable 518 can be fitted with a flexible outer sleeve portion 620 transitioning into a flexible inner sleeve portion 622 to flexibly accommodate the positive cable 518 passing through the device casing 512. The flexible outer sleeve portion 620 is externally located relative to the device casing 512 of the battery jump starter device 510, and the flexible inner sleeve portion 622 is internally located relative to the casing 512 of the battery jump starter device 510.
  • The flexible outer sleeve portion 620 is configured to reinforce the connection between the positive cable 518 and the device casing 512 of the jump starting device 510 while remaining flexible. For example, the flexible outer sleeve portion 620 is provided with one or more grooves 618 a (e.g. three (3) grooves 624 shown in FIG. 9) exposing portions 518 a of the positive cable 518. The one or more grooves 624 act as hinges to ease bending of the positive cable 518 within the flexible outer sleeve portion 620.
  • The flexible sleeve 620 comprises an outer flange 624 spaced apart (e.g. a small distance equal to about a wall thickness of the device casing 512 of the jump starting device 510) from an in inner flange 626. The flanges 624, 626 further anchor the positive cable 518 to the device casing 512 of the jump starting device 510.
  • The flexible sleeve 620 comprises a sleeve portion 628 (FIG. 10) connecting together the outer flange 624 and inner flange 626. For example, the flexible outer sleeve portion 620 is molded or applied onto and around the positive cable 518 as a single unit (e.g. the flexible sleeve 620 is molded onto a portion of the positive cable 518 inserted within the mold during the molding process). Alternatively, the flexible sleeve 620 is made (e.g. molded) separately, and then installed or assembled onto a portion of the positive cable 518.
  • The positive cable 518 comprises an inner conductor (e.g. single wire conductor, twisted wires, or braided wires) disposed within an outer insulating sheath (e.g. extruded plastic sheath). The inner conductor, for example, can be a solid wire conductor or a multi-strand metal wire conductor comprising bundle of wires. The inner conductor can be made of copper or aluminum. The flexible sleeve 620 can be applied (e.g. molded or installed or assembled) onto and surrounding the outer insulating sheath of the positive cable 518.
  • The battery connector device 600 further comprises a negative terminal conductor plate 630 (FIG. 9) connected (e.g. soldered, welded, or sonically welded) at an opposite end of the battery 612 to the negative tab or terminal (i.e. contact) of the battery 612. The negative terminal conductor plate 630 can extend along the opposite end of the battery 612.
  • The other end of the negative terminal conductor plate 630 is provided with a negative terminal conductor plate connector portion 632, as shown in FIGS. 9 and 10. The negative terminal conductor plate 630 can be configured to wrap around one of the corners of the rectangular-shaped battery 612 (e.g. L-shaped). The L-shaped negative terminal conductor plate 630 can extend along an end of the battery 612 and along at least a portion of the side of the battery 612, as shown in FIGS. 9 and 10.
  • The negative terminal conductor bar 630 can also be mechanically coupled and/or adhered to the outer surface of the battery casing 612 a to provide additional support and stability thereof (e.g. to survive mechanical shock when drop testing the battery jump starter device 510). For example, the negative terminal conductor bar 614 can be mechanically connected to the battery casing 612 a by adhesive (e.g. silicon adhesive), double sided tape, double sided foam tape, insulating plastic or ceramic connector with snap fit connection and/or adhesive connection, and/or the battery casing 612 can be formed (e.g. molded) to mechanically connect (e.g. snap fit or interference connection) with the positive terminal conductor plate 614.
  • The battery connector device 600 further comprises a smart switch battery interface 634. The smart switch battery interface 634 comprises a relay printed circuit board (PCB) 636 having a first circuit board conductor bar 638 spaced apart from a second circuit board conductor bar 640 located on one side of the circuit board 636, as shown in FIGS. 9 and 10.
  • A pair of relays 642 are mounted on an opposite side of the circuit board 636. The relays 642 include relay anchoring pins 642 a located in through holes 636 a in the relay printed circuit board 636 (FIGS. 9 and 11). The relays 642 further comprise relay connector pins 642 b extending through the through holes 636 b provided in the circuit board 636 and slots 638 a provided in the first conductor bar 638. The relays 642 even further comprise relay connector pins 642 c located in the through holes 636 c provided in the circuit board 636 and through holes 640 a provided in the second conductor bar 640. The relay anchoring pins 636 a are soldered in place to mechanically connect the relays 642 to the circuit board 636. The relay connecting pins 642 b and 642 c are soldered in place to mechanically and electrically connect the relays 642, respectively, to the circuit board conductor plates 638, 640.
  • The through holes 636 a in the circuit board 636 are rectangular-shaped (FIGS. 9 and 11) and accommodate the relay anchoring pins 642 a. Specifically, a base portion of the relay anchoring pins 642 a are rectangular-shaped with square-shaped ends. The square-shaped ends are dimensionally less wide verses the base portions creating transverse edges oriented flush with the outer surface of the circuit board 636. When solder is applied to the exposed ends of the relay anchoring pins 642 a, the solder connects to the sides of the square-shaped ends and transverse edges to anchor and lock the relay anchoring pins to the circuit board 636.
  • The slots 632 a provided in negative terminal conductor bar connector portion 632 are rectangular-shaped and the through holes638 a in the first circuit board conductor bar 638 (FIG. 7) are T-shaped to accommodate the three (3) horizontally oriented relay connector pins 642 b, as shown in FIG. 7. The ends of the relay connector pins 642 b are shown flush with the outer surface of the negative terminal conductor bar connector portion 632. When solder is applied to the exposed ends of the relay connector pins 642 b, the solder fills in the slots 632 a in the negative terminal conductor bar connector portion 632 and the through holes 638 a of the first circuit board conductor bar 638, and connects the sides of the connector pins 642 b with inner edges of the slots 632 a and through holes 638 a to anchoring the relays 642 to the circuit board 636 and negative terminal conductor bar connector portion 632. This applied solder also electrically connects the negative terminal conductor bar connector portion 632 to the first circuit board conductor bar 638.
  • The through holes 640 a provided in the second circuit board conductor bar 640 are T-shaped to accommodate the three (3) vertically oriented relay connecting pins 642 b, as shown in FIG. 7. The relay connector prongs 640 a extend outwardly from the outer surface of the circuit board 636 to connect with the exposed conductor end 644 a of the negative cable 644, and shown in FIG. 11. When solder is applied to the exposed conductor end 644 a and the ends of the relay connector prongs 640 a, the solder fills in the T-shaped slot and electrically connects the relay connector prongs 640 a, second circuit board conductor 640, and exposed conductor end 644 a of the negative cable 644.
  • The negative terminal conductor bar connector portion 632 of the negative terminal conductor bar 630 is connected (e.g. by soldering) to the first circuit board conductor bar 638 of the circuit board 636. The exposed conductor end 522 a (i.e. with the insulating sheath removed) of the negative cable 522 is connected (e.g. by soldering) to the second circuit board conductor bar 640, as shown in FIG. 13.
  • The battery connector device 600 can be modified by providing the positive cable 518 with a diode connection 650, as shown in FIG. 14. For example, a diode connection 650 is installed (e.g. spliced) into the positive cable 518. The diode connection 650 comprises a diode printed circuit board (PCB) 652 provided with a set of back-charge diodes 654 (e.g. Schottky diodes) located on one side thereof, and a conductor bar 656 provided on an opposite side of the circuit board 652.
  • Assembly
  • The jump starting device 510 comprises the device casing 512 having an upper casing portion 512 a and a lower casing portion 512 b, as shown in FIG. 15. The upper casing portion 512 a and the lower casing portion 512 b are configured to be connected together when assembling the jump starting device 510.
  • The jump starting device 510 further comprises the battery connection device 600 and controller assembly 710 both disposed within the casing 512. The controller assembly 710 comprises a circuit board 712 located adjacent to another circuit board 714.
  • The positive terminal of the battery assembly 610 (FIG. 15) is connected to the circuit board 712 via a positive power wire 716. For example, one end of the positive power wire 716 is soldered to the positive terminal conductor bar 614 (FIG. 9) and the opposite end is soldered to the circuit board 712. The negative terminal of the battery assembly 610 is connected to the circuit board 714 via a negative power wire 718. For example, one end of the negative power wire 718 is soldered to the negative terminal conductor bar 630 (FIG. 9) and the opposite end is solder to the circuit board 714.
  • The relay circuit board 636 is provided with a wire set 720 having a connector 722 (FIGS. 14 and 15). The connector 722 is configured to connect with the relay board connector 722 located on the circuit board 712 of the controller assembly 710 during assembly of the battery jump starting device 510.
  • The battery assembly 610 further comprises a wire set 726 having a connector 728. The connector 728 is configured to connect with the battery cell charging/monitoring connector 728 located on the circuit board 712 of the controller assembly 710.
  • The battery assembly 610 also comprises a battery temperature sensor having a wire set 732 (FIG. 16) having a connector 734. The connector 734 is configured to connect with the temperature sensor connector 736 located on the circuit board 712 of the controller assembly 720.
  • The circuit board 712 is provided with in charge power resistors and an out relay. Further, the lower casing portion 512 a is provided with a main user out connector 744 having a wire set 746 connected to the main circuit board 714, and a main user in connector 748 having a wire set 750 connected to the circuit board 714.
  • The battery assembly 610 is connected to jump starting device 510, as shown in FIG. 15. The battery connector device 610 is installed within the device casing 512 of the jump starting device 510 when assembled.
  • Enhanced Conductivity Battery Connector Device
  • An enhanced conductivity battery connector device 900 is shown in FIGS. 17-29. The enhanced conductivity battery connector device 900 provides a significantly increased conductivity compared to the battery connector device 600, as shown in FIGS. 9-16.
  • The amount of power to be conducted from the battery 912 to the battery terminal clamps connected to a vehicle battery of a vehicle to be jump started can be enhanced as follows:
    • 1) Increase Wire Gauge
      • For example, change the 4AWG (American Wire Gage) positive cable 518 and change the negative cable 522 (FIG. 13) to a 2AWG positive cable 818 and negative cable 822 (FIG. 19).
    • 2) Increase Conductivity of Negative Cable Connection
      • For example, the negative cable conductor end 822 a (FIGS. 18 and19) connection to the relays is extended all the way across the connector pins 922 c of the relays 922.
    • 3) Increase Conductivity of Positive Cable Connection
      • For example, the positive battery tab 914 is lengthened so that the inner conductor 818 a of the positive cable 818 is rolled up (FIGS. 21-26) within the positive battery tab 914 and soldered together thoroughly;
    • 4) Increase Conductivity of Diode Connection
      • For example, the diode connection 650 (FIG. 14) is replaced with the diode connection 950 (FIG. 27);
    • 5) Redesign Resistor/Diode Printed Circuit Board (PCB)
      • For example, the diode printed circuit board (PCB) 652 (FIG. 14) is replaced with the diode printed circuit board (PCB) 952 (FIGS. 27); and
    • 6) Reconnect Resistors
      • For example, the resistors R134A&B, R135A&B located on the diode printed circuit board (PCB) 652 (FIG. 14) is reconnected again.
  • A detailed description of each of these enhanced conductivity features or arrangement is set forth below.
  • 1) Increase Wire Gauge
  • The gauge of the positive cable 518 and negative cable 522 (FIG. 13), for example, can be increased from 4AWG (American Wire Gage) cable to a 2AWG cable for positive cable 818 and negative cable 822 (FIGS. 17-19). The comparative specifications of the 4AWG cable and 2AWG cable are as follows:
  • 2AWG 4AWG
    Diameter 0.2576 in 0.2294 in
    (6.544 mm) (5.189 mm)
    Turns of 3.88/in 4.89/in
    wire (1.53/cm) (1.93/cm)
    Area 66.4 kcmil 41.7 kcmil
    (33.6 mm2) (21.2 mm2)
    Resistance/ 0.5127 mQ/m 0.8152 mQ/m
    length (0.1563 mQ/ft) (0.2485 mQ/m)
    Ampacity  95 (60° C.) 70 (60° C.)
    115 (75° C.) 85 (75° C.)
    130 (90° C.) 95 (90° C.)
    Fusing 1.3 kA (10 s) 946 A (10 s)
    current 10.2 kA (1 s) 6.4 kA (1 s)
    57 kA (32 ms)36 kA (32 ms)
  • The 2AWG cable provides a significant increase of conductivity (i.e. ampacity) compared to the 4AWG cable (i.e. approximately 36% increase).
  • 2) Increase Conductivity of Negative Cable Connection
  • The negative cable 822 (FIG. 19) can be connected to the battery 912 (FIG. 17) in a manner to increase the conductivity (i.e. ampacity) between the battery 912 and negative cable 822. For example, the negative cable conductor end 822 a can be directly connected (e.g. soldered) to the connector prongs 942 c (FIG. 19) of the relays 942. Specifically, the negative cable conductor end 822 a can extend across and directly connect to all relays 942 (e.g. like relays 642) of the smart switch battery interface 934 (FIGS. 18 and 19). Further, the negative cable conductor end 822 a can be connected to the conductor loop 941 (FIG. 19) of the circuit board conductor bar 940.
  • The negative cable 822, for example, can be made of stranded wire comprising an inner electrical wire conductor composed of an untwisted or twisted bundle of wires disposed within an outer electrical insulating sheath. The electrical insulating sheath of the negative cable 822 can be removed from the negative cable end exposing the inner conductor end 822 a.
  • The exposed bundle of wires 822 d (FIG. 18) of the inner conductor 822 a can be forced over the ends of the exposed connector pins 942 c of the relays 942 so that strands of wires 822 d are captured between the adjacent connector pins 942 c. The exposed bundles of wires 832 d can be further forced into contact with the conductor bar 940 (e.g. made of copper). Solder 923 is applied to this assembly so that the solder flows between the exposed bundles of wires 922 d to the connector pins 942 c and the conductor bar 940 to complete the electrical connection between the negative cable 322 and the smart switch battery interface 934 connected to the battery 912.
  • The length of the exposed bundle of wires 822 d is selected so that exposed bundle of wires 822 d directly connects with each set of connector pins 942 c of each and every relay 942 to provide the maximum electrical conductivity (i.e. maximum ampacity) between the negative cable 822 and the battery 912.
  • 3) Increase Conductivity of Positive Cable Connection
  • The positive cable 818 can be connected to the battery 912 in a manner to increase the conductivity (i.e. ampacity) between the battery 912 and positive cable 818. For example, the positive cable 818 can be rolled up in the positive battery tab 914 of the battery 912 and soldered together thoroughly. The steps for connection between the positive cable 818 and the positive battery tab 914 of the battery 912 is shown in FIGS. 22-26.
  • The positive cable 818, for example, can be made of stranded wire comprising an inner electrical wire conductor composed of an untwisted or twisted bundle of wires disposed within an outer electrical insulating sheath. The electrical insulating sheath of the positive cable 818 can be removed from the positive cable conductor end 818 a exposing the inner conductor end 818 a.
  • The battery 912 is provided with a positive battery tab 914. The positive battery tab 914 is a metal sheet (e.g. copper sheet) connected to the positive terminal tab 914 of the battery 912.
  • The exposed bundle of wires 818 d of the inner electrical conductor 818 b can be soldered with tin, and then rolled up within the positive battery tab 812 a. Solder 915 (FIG. 25) is applied to the exposed bundle of wires 818 d and the positive battery tab 812 a.
  • The length of the exposed bundle of wires of the positive cable conductor end 818 a is selected so that exposed bundle of wires directly connects with the full width of the positive battery tab 914 to provide the maximum electrical conductivity (i.e. maximum ampacity) between the battery 712 and the positive cable 718.
  • 4) Increase Conductivity of Diode Connection
  • The positive cable 818 can be provided with a diode connection 950 configured to increase the conductivity along the positive cable 818, as shown in FIGS. 27-29.
  • The diode connection 950 comprises a plurality of diodes 954 connected between positive cable sections 818 a and 818 f (FIG. 29). For example, the diode connection 950 comprises six (6) back-charge type diodes (e.g. Schottky barrier diodes).
  • The diodes 954 are soldered between the positive cable conductor ends 818 b and 818 b. Specifically, the diode conductor tabs 954 a are soldered to the upper positive cable conductor end 818 b and the diode conductor prongs 954 b are soldered to the positive cable conductor end 818 b. More specifically, the diode conductor prongs 954 b of the diodes 954 extend through the diode circuit board 952, extend into the bundle of wires of the lower positive cable conductor end 818 b, and then are soldered in place completing assembly of the diode connection 950.
  • The diode connection 950 is then insulated, for example, using a shrink wrap insulator 955 (FIG. 29), which is applied around the diode connection 950, and then shrunk by applying heat (e.g. using heat gun).
  • 5) Redesigned Resistor/Diode Printed Circuit Board (PCB)
  • For example, the resistor/diode PCB are redesigned to eliminate the diodes extending therefrom;
  • 6) Reconnected Resistors
  • For example, the resistors R134A&B, R135A&B that are on the Resistor/Diode printed circuit board (PCB) 952 are reconnected to be connected again.
  • Test #1
  • The battery connection device 600 shown in FIG. 13 was subjected to a 1250A
  • Load Test. The results are shown in FIG. 30, and as follows:
  • Pulse #1 Average Power of 4799.01 W
    Pulse #
    2 Average Power of 5528.99 W
    Pulse #
    3 Average Power of 6101.63 W
  • Test #2
  • The battery connection device 900 shown in FIG. 17 was subjected to a 1250A Load Test. The results are shown in FIG. 31, and as follows:
  • Pulse #1 Average Power of 6584.61 W
    Pulse #
    2 Average Power of 7149.60 W
    Pulse #
    3 Average Power of 7325.91 W
  • These test results show a significant increase of approximately twenty percent (20%) for peak power for TEST #2 compared to the results of TEST #1.
  • Another enhanced conductivity battery conductor device 1000 is shown in FIGS. 32-41. The enhanced conductivity battery connector device 1000 provides a significantly increased conductivity compared to the battery connector device 600 shown in FIGS. 9-14.
  • The battery conductor device 1000 comprises the battery assembly 1010, including the battery 1012 connected to the positive cable 1018 and the negative terminal conductor plate 1030. A positive wire 1019 is connected directly or indirectly to the positive tab or positive cable 1018 of the battery 1012, and a negative wire 1023 is connected directly or indirectly to the negative tab or negative terminal conductor plate 1030. The battery conductor device 1000 can further include a bundle of wires 1070 connected to or associated with the operation of the battery 1012 (e.g. battery temperature sensor, power supply, etc.).
  • The battery 1012 can comprise a single battery cell 1012 c (FIG. 34), or multiple battery cells 1012 c connected end-to-end in series. For example, three (3) separate battery cells 1012 c have respective tabs 512 d to be connected together (FIG. 33).
  • The battery cells 1012 c each have respective positive and negative tabs 1012 d located at opposite ends of each battery cell 1012 c. The battery cells 1012 c are connected together in series by welding (e.g. sonically and/or thermally welding) and/or soldering respective positive and negative tabs 1012 d together. For example, the tabs 1012 d are positioned so as to overlap each other (e.g. edges overlapping opposite tab 1012 d, or edge-to-edge).
  • The tabs 1012 d are metal plates (e.g. relative thin metal foils) extending outwardly from the body and opposite edges of each battery cell 1012 c. As shown in FIG. 34, the positive and negative tabs 1012 d extend along opposite edges along the width dimension of each battery cell 1012 c. The positive and negative tabs 1012 d are each centered and extend most of the width dimension of each opposite edge of each battery cell 1012 c.
  • As shown in FIG. 33, a separate tab 1012 e is added or connected to the right side of the battery cell 1012 c (i.e. battery cell on right side in FIG. 33) to extend the length of the tab 1012 d. The separate tab 1012 e is shown as having the same width dimension as the tab 1012 d; however, this width can be different. To assemble the separate tab 1012 e to the tab 1012 d, for example, the separate tab 1012 e is positioned to overlap over the tab 1012 d, and then welded (e.g. sonically and/or thermally welded) and/or soldered together.
  • The exposed conductor end of the positive cable 1018 is then wound up inside the separate tab, as shown in FIGS. 35 and 37. For example, the initially flat separate tab 1012 e is wrapped around the exposed conductor end of the positive cable 1018, and then connected to the exposed end by welding (e.g. sonically and/or thermally welding) and/or soldering. For example, a layer of solder is applied to one or both sides of the separate tab 1012 e, and then after wrapping the separate tab 1012 e around the exposed end of the positive wire 1018, the assembly is heated to melt the layered solder and solder the assembly together.
  • The three (3) battery cells 1012 c once connected together are then folded over each other into the layered battery cell arrangement shown in FIG. 36. The layered battery cell arrangement can be packaged (e.g. the three (3) battery cells can be taped or shrink wrapped together), or placed within a battery cover or casing 1012, as shown in FIG. 38.
  • As shown in FIG. 38, the negative tab 1012 d can be attached to the negative terminal conductor plate 1030. For example, the negative tab 1012 d can be wrapped partially or fully, as shown, around the negative terminal conductor plate 1030. The negative tab 1012 d can be provided with a plurality of through holes 1012 f to facilitate welding and/or soldering the negative tab 1012 d to the negative terminal conductor plate 1030. For example, the through holes 1012 f can be square-shaped through holes arranged into a matrix, as shown in FIG. 39. The negative wire 1023 is shown connected (e.g. soldered) to the negative tab 1012 d.
  • Another separate tab 1012 e (see FIG. 33) can be connected to the negative tab 1012 d to lengthen the negative tab 1012 d, so that the lengthened negative tab can be wrapped or wound around the negative terminal conductor plate 1030 more than one time (e.g. 2, 3, 4, or more times). In this manner, the electrical connection between the negative tab 1012 d and the negative terminal conductor plate 1030 can be enhanced. The separate tab 1012 e can be provided with a layer of solder on one or both sides, so that after the separate tab 1012 e is wrapped or wound around the negative terminal conductor plate 1030, this assembly can be heated up to solder the separate tab 1012 e onto the negative terminal conductor plate 1030.
  • The completed assembly of the battery conductor device 1000 with the connected separate positive tab 1012 e ready to be wrapped or wound an exposed conductor end of the positive cable 1018 (FIG. 32) can be seen in FIG. 39. The bundle of wires 1070 shown in FIG. 39, includes wires 1072 for a temperature sensor embedded within the battery 1012 (e.g. temperature sensor located near battery tab or between battery cells.). The temperature sensor 1074 connected between two (2) wires 1072 a and 1072 b is shown in FIG. 40.
  • The battery conductor device 1000 can be connected to the positive cable 1018 provided with a diode connector 1050 connected inline or splice into the positive cable 1018, as shown in FIG. 41.
  • The diode connector 1050 comprises a diode circuit board 1052 having a plurality of diodes 1054 assembled thereon. The diodes 1054 each have a diode conductor tab 1054 a connected (e.g. soldered) to an exposed conductor end of the positive cable 1018. The prongs of the diodes 1054 extend through holes in the diode circuit board 1052, and are soldered to both the conductive traces and the exposed conductor end of the positive cable 1018 along with a resistor 1076 to complete the assembly.
  • The invention having been thus described, it will be apparent to those skilled in the art that the same may be varied in many ways without departing from the spirit or scope of the invention. Any and all such variations are intended to be encompassed within the scope of the following claims.

Claims (30)

What is claimed is:
1. A jump starting apparatus for jump starting a vehicle having a vehicle battery with a positive terminal and negative terminal, the apparatus comprising:
an internal power supply;
a positive battery cable having a positive battery terminal connector;
a negative battery cable having a negative battery terminal connector;
a vehicle battery isolation sensor connected in circuit with said positive battery terminal connector and the negative battery terminal connector, the vehicle battery isolation sensor configured to detect a presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector;
a reverse polarity sensor connected in circuit with the positive battery terminal connector and the negative battery terminal connector, the reverse polarity sensor configured to detect a polarity of the vehicle battery connected between the positive battery terminal connector and negative battery terminal connector and to provide an output signal indicating whether the positive terminal and the negative terminal of the vehicle battery are properly connected with the positive battery terminal connector and the negative battery terminal connector;
a power switch connected between the internal power supply and an output of the jump starting apparatus to the vehicle battery; and
a microcontroller configured to receive input signals from the vehicle isolation sensor and the reverse polarity sensor, and to provide an output signal to the power switch such that the power switch is turned on to cause the internal power supply to be connected to the vehicle battery in response to signals from the sensors indicating the presence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector and a proper polarity connection of positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative terminal connector, and is not turned on when signals from the sensors indicate either the absence of the vehicle battery connected between the positive battery terminal connector and the negative battery terminal connector or an improper polarity connection of the positive terminal and the negative terminal of the vehicle battery with the positive battery terminal connector and the negative battery terminal connector.
2. The apparatus according to claim 1, wherein the output of the jump starting apparatus to the vehicle battery is provided by the connection between the positive battery terminal connector and the positive terminal of the vehicle battery and the connection between the negative battery terminal connector and the negative terminal of the vehicle battery.
3. The apparatus according to claim 1, wherein the positive battery terminal connector is a positive battery clamp releasably connectable to the positive terminal of the vehicle battery, and wherein the negative battery terminal connector is a negative battery clamp releasably connectable to the negative terminal of the vehicle battery.
4. The apparatus according to claim 1, wherein the positive battery terminal connector is a positive ring terminal connected to an end of the positive battery cable and configured to connect with a positive battery clamp connectable to the positive terminal of the vehicle battery or directly to the positive terminal itself of the vehicle battery, and wherein the negative battery terminal connector is a negative ring terminal connected to an end of the negative battery cable and configured to connect with a negative battery clamp connectable to the negative terminal of the vehicle battery or directly to the negative terminal itself of the vehicle battery.
5. The apparatus according to claim 1, wherein the internal power supply comprises a rechargeable battery.
6. The apparatus according to claim 5, wherein the lithium ion battery comprises a battery pack of multiple lithium ion batteries.
7. The apparatus according to claim 1, wherein the power switch is a FET switch.
8. The apparatus according to claim 7, wherein the FET switch comprises a plurality of FETs in parallel.
9. The apparatus according to claim 1, wherein the vehicle isolation sensor and reverse polarity sensor comprise optically coupled isolator phototransistors.
10. The apparatus according to claim 1, further comprising a plurality of power diodes coupled between the output of the jump starting apparatus to the vehicle battery and the internal power supply to prevent back-charging of said internal power supply from an electrical system connected to said output port.
11. The apparatus according to claim 1, further comprising a temperature sensor configured to detect temperature of said internal power supply and to provide a temperature signal to said microcontroller.
12. The apparatus according to claim 1, further comprising a voltage measurement circuit configured to measure output voltage of said internal power supply and to provide a voltage measurement signal to said microcontroller.
13. The apparatus according to claim 1, further comprising a voltage regulator configured to convert output voltage of said internal power supply to a voltage level appropriate to provide operating power to internal components of the apparatus.
14. The apparatus according to claim 1, further comprising a manual override switch configured to activate a manual override mode to enable a user to connect jump start power to said output port when said vehicle battery isolation sensor is unable to detect presence of a vehicle battery.
15. The apparatus according to claim 14, wherein said microcontroller is configured to detect actuation of said manual override switch for at least a predetermined period of time before activation of said manual override mode.
16. The apparatus according to claim 1, wherein the positive battery cable and negative battery cable together form a jumper cable device comprising a plug connected to one of the cables and configured to plug into an output port on the battery jump starting apparatus.
17. The apparatus according to claim 16 wherein said output port and said plug are dimensioned so that the plug will fit into the output port only in one specific orientation.
18. The apparatus according to claim 5, wherein the rechargeable battery comprises at least one battery cell having a positive tab and a negative tab, wherein the positive battery cable has a conductor connected to the positive tab of the at least one battery cell of the rechargeable battery; and wherein the negative tab of the at least one cell of the rechargeable battery is connected to a negative terminal conductor bar.
19. The apparatus according to claim 18, further comprising a separate tab connected to the positive tab of the at least one cell of the rechargeable battery to extend a length of the positive tab of the at least one cell of the rechargeable battery.
20. The device according to claim 19, wherein the separate tab is connected to the positive tab of the at least one battery cell of the rechargeable battery, and wherein the separate tab wraps around and connects to the conductor of the positive cable.
21. The device according to claim 18, wherein the positive tab wraps around and connects to the conductor of the positive cable.
22. The device according to claim 18, wherein the negative tab wraps around the negative conductor bar to electrically connect the at least one battery cell of the rechargeable battery to the negative conductor bar.
23. The device according to claim 18, wherein the conductor of the positive cable is soldered to the positive tab of the at least one battery cell of the rechargeable battery and the negative terminal conductor bar is soldered to the negative tab of the at least one battery cell of the rechargeable battery.
24. The device according to claim 18, wherein the rechargeable battery is rectangular-shaped, and the negative terminal conductor bar is L-shaped and wraps around a respective corner of the rechargeable battery.
25. The device according to claim 18, wherein the positive tab and the negative tab of the at least one battery cell of the rechargeable battery extend from opposite sides of the rechargeable battery.
26. The device according to claim 18, wherein the positive tab and negative tab of the at least one battery cell of the rechargeable battery extend along opposite edges along a width of the at least one battery cell of the rechargeable battery.
27. The device according to claim 19, wherein the separate tab has a same width as the positive tab of the at least one battery cell of the rechargeable battery.
28. The device according to claim 19, wherein the separate tab overlaps the positive tab of the at least one battery cell of the rechargeable battery.
29. The device according to claim 19, further comprising another separate tab connected to the negative tab of the at least one cell of the rechargeable battery to extend a length of the negative tab of the at least one cell of the rechargeable battery.
30. The device according to claim 29, wherein the another separate tab wraps more than one time around the negative conductor bar to enhance the electrical connection between the negative conductor bar and the negative tab of the at least one battery cell of the rechargeable battery.
US17/066,100 2014-07-03 2020-10-08 Jump starting apparatus Active 2034-11-13 US11766945B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/066,100 US11766945B2 (en) 2014-07-03 2020-10-08 Jump starting apparatus
US18/360,034 US20230365011A1 (en) 2014-07-03 2023-07-27 Jump Starting Apparatus

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
PCT/US2014/045434 WO2016003471A1 (en) 2014-07-03 2014-07-03 Portable vehicle battery jump start apparatus with safety protection
US14/325,938 US9007015B1 (en) 2014-07-03 2014-07-08 Portable vehicle battery jump start apparatus with safety protection
US14/619,655 US9770992B2 (en) 2014-07-03 2015-02-11 Portable vehicle battery jump start apparatus with safety protection and jumper cable device therefor
US201662294067P 2016-02-11 2016-02-11
PCT/US2016/024680 WO2017138963A1 (en) 2016-02-11 2016-03-29 Battery assembly device
US15/137,626 US11601004B2 (en) 2016-02-11 2016-03-29 Battery assembly device
US201662424297P 2016-11-18 2016-11-18
PCT/US2017/017289 WO2017139524A1 (en) 2016-02-11 2017-02-10 Battery connector device for a battery jump starting device
US15/691,884 US10604024B2 (en) 2014-07-03 2017-08-31 Portable vehicle battery jump start apparatus with safety protection
US15/989,005 US11788500B2 (en) 2016-02-11 2018-05-24 Battery device for a battery jump starting device
US16/101,020 US11458851B2 (en) 2014-07-03 2018-08-10 Jump starting apparatus
US17/066,100 US11766945B2 (en) 2014-07-03 2020-10-08 Jump starting apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/101,020 Continuation US11458851B2 (en) 2014-07-03 2018-08-10 Jump starting apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/360,034 Continuation US20230365011A1 (en) 2014-07-03 2023-07-27 Jump Starting Apparatus

Publications (2)

Publication Number Publication Date
US20210031640A1 true US20210031640A1 (en) 2021-02-04
US11766945B2 US11766945B2 (en) 2023-09-26

Family

ID=64459641

Family Applications (3)

Application Number Title Priority Date Filing Date
US16/101,020 Active US11458851B2 (en) 2014-07-03 2018-08-10 Jump starting apparatus
US17/066,100 Active 2034-11-13 US11766945B2 (en) 2014-07-03 2020-10-08 Jump starting apparatus
US18/360,034 Pending US20230365011A1 (en) 2014-07-03 2023-07-27 Jump Starting Apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/101,020 Active US11458851B2 (en) 2014-07-03 2018-08-10 Jump starting apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
US18/360,034 Pending US20230365011A1 (en) 2014-07-03 2023-07-27 Jump Starting Apparatus

Country Status (1)

Country Link
US (3) US11458851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022178102A1 (en) * 2021-02-17 2022-08-25 The Noco Company Jump starter with current sharing switch arrangement, and safety switch, system, and method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11458851B2 (en) 2014-07-03 2022-10-04 The Noco Company Jump starting apparatus
US11787297B2 (en) 2014-07-03 2023-10-17 The Noco Company Battery charging device for charging a deeply discharged battery, and battery charging system and method
US9007015B1 (en) 2014-07-03 2015-04-14 The Noco Company Portable vehicle battery jump start apparatus with safety protection
WO2021071949A1 (en) * 2019-10-09 2021-04-15 The Noco Company Battery charging device for charging a deeply discharged battery, and battery charging system and method
CA3065290A1 (en) 2017-03-31 2018-10-04 The Noco Company Portable or hand held vehicle battery jump starting apparatus with battery cell equalization circuit
US11611222B2 (en) 2017-12-14 2023-03-21 The Noco Company Portable vehicle battery jump starter with air pump
USD929431S1 (en) * 2019-01-17 2021-08-31 Bae Systems Controls Inc. Display screen or portion thereof with animated graphical user interface
AU2019236650B2 (en) * 2019-03-20 2023-11-09 Ark Corporation Pty Ltd Trailer connector
GB2603407B (en) * 2019-10-09 2023-07-12 Noco Co Battery charging device for charging a deeply discharged battery, and battery charging system and method
MX2022006617A (en) * 2019-12-09 2022-06-24 Noco Co Jump starting device with a jump start current sharing system, and a jump start current sharing method.
WO2022076971A1 (en) * 2020-10-08 2022-04-14 The Noco Company Battery charging device for charging a deeply discharged battery, and battery charging system and method
US11303122B1 (en) 2021-07-06 2022-04-12 Shenzhen Caross Co., Ltd Jumper cable device and jump start system
CN113482832A (en) * 2021-07-06 2021-10-08 深圳市天成实业科技有限公司 Intelligent ignition clamp and starting device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867007A (en) * 1996-09-03 1999-02-02 Samsung Electronics Co., Ltd. Selection circuit for dual batteries in a battery powered electronic device
US20040130298A1 (en) * 2002-02-19 2004-07-08 Michael Krieger Microprocessor controlled booster apparatus with polarity protection
US7116078B2 (en) * 2002-08-02 2006-10-03 Eltek S.P.A. Protection system of a vehicle battery
WO2009059852A2 (en) * 2007-11-06 2009-05-14 Robert Bosch Gmbh Starting method for hybrid drives
US20110068734A1 (en) * 2009-09-18 2011-03-24 Waldron John F Battery maintenance kit
US8076900B1 (en) * 2006-04-21 2011-12-13 Audley Brown Portable battery charger
CN205544443U (en) * 2016-03-22 2016-08-31 武汉大学 Two portable power source that fill of many generating electricity way that are fit for field usage
US9490625B2 (en) * 2013-08-14 2016-11-08 Fujitsu Limited Electronic device and voltage monitoring method
US20180069413A1 (en) * 2016-09-02 2018-03-08 Superior Communications, Inc. Led cable and car charger
US20180090964A1 (en) * 2016-09-29 2018-03-29 Jonathan Henry Williams Apparatus for powering an electrical device from different battery packs
US11462928B2 (en) * 2017-09-22 2022-10-04 The Noco Company Rechargeable battery jump starting device with depleted or discharged battery pre-conditioning system

Family Cites Families (287)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA107977A (en) 1907-04-09 1907-10-15 The Empire Light, Limited Vapour burning apparatus
US3076900A (en) 1959-01-20 1963-02-05 Elcor Inc Flip-flop circuits
US3085187A (en) 1961-08-11 1963-04-09 Fox Prod Co Battery chargers with polarity control means
US3105183A (en) 1962-08-29 1963-09-24 Electromagnetic Ind Inc Universal battery charger
US3267452A (en) 1963-12-23 1966-08-16 Associated Equipment Corp Battery charger clamp and polarity detector
US3638108A (en) 1969-04-28 1972-01-25 Gen Battery And Ceramic Corp Method of testing an automobile battery and electrical system while in circuit, using a booster battery
US3590357A (en) 1969-11-05 1971-06-29 Donald Reid Battery booster
US3933140A (en) 1973-07-25 1976-01-20 Syncro Corporation Capacitive discharge ignition adapter
US4142771A (en) 1974-10-16 1979-03-06 Amp Incorporated Crimp-type terminal
US4041445A (en) 1976-06-28 1977-08-09 Chevron Research Company Method of connecting flexible numbers of geophone flyer groups to data acquisition units
US4740740A (en) 1986-10-20 1988-04-26 James Taranto Method and apparatus for the automatic connection of battery cables
US4910628A (en) 1987-11-13 1990-03-20 Mitsubishi Denki Kabushiki Kaisha Terminal unit in information transmission system
US4931731A (en) 1988-01-05 1990-06-05 Jenks William C Magnetic particle inspection apparatus with enhanced uniformity of magnetization
US4885524A (en) * 1988-04-15 1989-12-05 William J. Goldcamp Vehicle battery system
US4990723A (en) 1990-01-08 1991-02-05 General Motors Corporation Bulkhead connector
US4972135A (en) 1989-08-04 1990-11-20 Bates Bobby L Switching system for battery jumper cables
US5083076A (en) * 1989-11-13 1992-01-21 P.S.O. Electric, Incorporated Portable battery booster
US5111130A (en) 1990-03-14 1992-05-05 Bates Wesley V Clamp activated jumper cable switch
US5189359A (en) 1991-01-22 1993-02-23 Kronberg James W Solid state safety jumper cables
US5194799A (en) 1991-03-11 1993-03-16 Battery Technologies Inc. Booster battery assembly
AU661859B2 (en) 1991-09-10 1995-08-10 Wilson Greatbatch Ltd. Twin plate cathode assembly for multiplate, electrochemical cells
US5319298A (en) 1991-10-31 1994-06-07 Vern Wanzong Battery maintainer and charger apparatus
GB9205888D0 (en) 1992-03-17 1992-04-29 Cyber Electronics Co Ltd Improvements in battery chargers
US5281904A (en) 1992-09-29 1994-01-25 Innova Electronics Multi mode cordless battery charger
GB9305446D0 (en) 1993-03-17 1993-05-05 Endocore Limited Portable electrical power supply
JP2924561B2 (en) 1993-05-25 1999-07-26 住友電装株式会社 Battery terminal
CA2109166C (en) 1993-10-25 2001-05-29 Luc Rozon Portable booster battery
US5583416A (en) 1994-01-26 1996-12-10 Gnb Battery Technologies, Inc. Apparatus and method for step-charging batteries to optimize charge acceptance
US5496658A (en) 1994-07-25 1996-03-05 Exide Corporation Storage battery state-of-charge indicator
JPH08202631A (en) * 1995-01-30 1996-08-09 Mitsubishi Electric Corp Portable semiconductor storage and its power control integrated circuit
US5635817A (en) 1995-04-24 1997-06-03 Shiska; Theodore Vehicle battery charging system
DE29507501U1 (en) 1995-05-05 1995-06-29 Seo Solar Sonnenenergie Oppach Portable electric light with a fluorescent lamp
DE19528746C1 (en) 1995-08-04 1996-10-31 Siemens Ag Lateral silicon di:oxide spacer prodn. in semiconductor structure
US5637978A (en) * 1995-11-06 1997-06-10 Kendrick Products Corporation Battery booster
US5831350A (en) 1995-12-15 1998-11-03 Compaq Computer Corporation System using interchangeable nickel-based and lithium ion battery packs
US5635818A (en) 1996-02-20 1997-06-03 Quintero; Leodegario M. Safety jumper apparatus
US5820407A (en) 1996-04-22 1998-10-13 Morse; David M. Directional jumper cables
US5965998A (en) * 1996-07-02 1999-10-12 Century Mfg. Co. Automatic polarity and condition sensing battery charger
US5795182A (en) 1996-07-25 1998-08-18 Modern Technology Inventions Polarity independent battery jumper cables or charger with automatic polarity detector and built-in automatic safety features
US5953681A (en) 1996-07-30 1999-09-14 Bayer Corporation Autonomous node for a test instrument system having a distributed logic nodal architecture
US5707257A (en) 1997-01-30 1998-01-13 Yazaki Corporation Elliptical battery post and terminal
US6144110A (en) 1997-03-19 2000-11-07 The Furukawa Electric Co., Ltd. Vehicular use power distribution apparatus and vehicular use power source apparatus
US5921809A (en) 1997-05-29 1999-07-13 Battery Boy Llc Safety battery and jumper cables therefor
US5793185A (en) 1997-06-10 1998-08-11 Deltona Transformer Corporation Jump starter
US6140796A (en) 1997-08-07 2000-10-31 Martin Safety Products Co. Battery jump-start safety system and process
US20020007699A1 (en) 1997-09-05 2002-01-24 Montague Stephen C. Apparatus and method for optimizing the use of oxygen in the direct reduction of iron
US6037778A (en) 1997-11-05 2000-03-14 Stat Engineering Company, L.L.C. Electronic battery testing device and method for testing batteries
US6057667A (en) 1998-03-27 2000-05-02 Schumacher Electric Corporation Booster with switch actuated cable decoupler
US6054779A (en) 1998-04-14 2000-04-25 Strick Corporation Electrical power connector for tandem trailers
US6160381A (en) 1998-05-21 2000-12-12 Qualcomm Inc. Battery pack protection circuit and battery pack including a protection circuit
EP1032955A4 (en) 1998-07-27 2002-08-07 Gnb Technologies Apparatus and method for carrying out diagnostic tests on batteries and for rapidly charging batteries
US6130519A (en) * 1998-10-16 2000-10-10 Century Mfg. Co. Portable battery charger including auto-polarity switch
US6384573B1 (en) 1998-11-12 2002-05-07 James Dunn Compact lightweight auxiliary multifunctional reserve battery engine starting system (and methods)
US6002235A (en) 1999-02-17 1999-12-14 Bonnet Enterprises Llc Battery jump starter with jaw securing means
US6262492B1 (en) 1999-04-09 2001-07-17 Dhc Specialty Corp. Car battery jumper cable
US6271605B1 (en) 1999-05-04 2001-08-07 Research In Motion Limited Battery disconnect system
JP2001069673A (en) 1999-08-31 2001-03-16 Hitachi Ltd Power supply for vehicle
US6212054B1 (en) 1999-09-21 2001-04-03 Powerpro Inc. Spark proof booster cable system
US6147471A (en) 1999-10-01 2000-11-14 Hunter; Alton G. Single-point direct current connector
US6386907B1 (en) 1999-10-05 2002-05-14 The United States Of America As Represented By The Secretary Of The Navy Battery clamp
JP2001175551A (en) 1999-12-10 2001-06-29 Internatl Business Mach Corp <Ibm> Maintenance and managing system, remote maintenance and management method, sheet member processor and remote maintenance and management method for printer
US6344733B1 (en) 2000-01-31 2002-02-05 Snap-On Technologies, Inc. Portable jump-starting battery pack with charge monitoring system
US6215273B1 (en) 2000-03-23 2001-04-10 Jack Shy Portable electrical energy source
US6679212B2 (en) 2000-03-24 2004-01-20 Goodall Manufacturing, Llc Capacitive remote vehicle starter
AT410382B (en) 2000-06-28 2003-04-25 Fronius Schweissmasch Prod Electronic circuit for fitting to a battery charging device connects an energy-supplying device to an energy source via terminals to convert energy from an AC voltage into a DC voltage and pass converted energy to a consumer.
US6262559B1 (en) * 2000-07-06 2001-07-17 Snap-On Technologies, Inc. Portable auxiliary charging battery pack for thin metal film battery power pack
US20020007500A1 (en) 2000-07-14 2002-01-17 Viktor Kuvshinov Molecular control of transgene escape by a repressible excision system
AU2000276275A1 (en) 2000-07-28 2002-02-13 Snap-On Technologies, Inc. Jump start battery pack and enclosure therefor
GB2366101A (en) 2000-08-16 2002-02-27 Hung Kuang Fu Intelligent car battery jump leads which warn against and stop series battery connection
US6249106B1 (en) 2000-09-21 2001-06-19 Delphi Technologies, Inc. Apparatus and method for maintaining a threshold value in a battery
US6362599B1 (en) 2000-09-21 2002-03-26 Delphi Technologies, Inc. Method and apparatus for sensing the status of a vehicle
US6426606B1 (en) 2000-10-10 2002-07-30 Purkey Electrical Consulting Apparatus for providing supplemental power to an electrical system and related methods
JP2002141056A (en) 2000-11-02 2002-05-17 Yazaki Corp Battery terminal cap
DE20021126U1 (en) 2000-12-14 2001-02-22 Harting Automotive Gmbh & Co Battery clamp
US6756764B2 (en) 2001-03-05 2004-06-29 John S. Smith Portable jumper system and method
NZ510958A (en) 2001-04-05 2003-11-28 Stewart Trevor Winkle Polarity independent jumper cables for connecting batteries in parallel
US7501795B2 (en) 2001-06-22 2009-03-10 Midtronics Inc. Battery charger with booster pack
US7015674B2 (en) 2001-06-22 2006-03-21 Midtronics, Inc. Booster pack with storage capacitor
JP2003112586A (en) 2001-10-09 2003-04-15 Denso Corp Battery cable for starter
JP2003164066A (en) 2001-11-21 2003-06-06 Hitachi Koki Co Ltd Battery pack
US6822425B2 (en) 2002-01-25 2004-11-23 Vector Products, Inc. High frequency battery charger and method of operating same
JP3812459B2 (en) 2002-02-26 2006-08-23 トヨタ自動車株式会社 Vehicle power supply control device
US6650086B1 (en) 2002-11-26 2003-11-18 I-Chang Chang Automatic detecting and switching vehicle charger
JP3729164B2 (en) 2002-08-05 2005-12-21 日産自動車株式会社 Automotive battery
JP3962658B2 (en) 2002-08-26 2007-08-22 キヤノン株式会社 Camera, lens apparatus and camera system
EP1396919A1 (en) 2002-09-09 2004-03-10 Steve Liu Adaptive booster cable for a vehicle battery
US6679708B1 (en) 2002-09-10 2004-01-20 Sumitomo Wiring Systems, Ltd. Vehicle junction box having power distribution center with terminal for jump-starting vehicle
US6803743B2 (en) 2002-10-04 2004-10-12 Delphi Technologies, Inc. Jump start and reverse battery protection circuit
CA2502556C (en) 2002-10-15 2011-04-05 Vector Products, Inc. High frequency battery charger and method of operating same
TWI245212B (en) 2002-10-25 2005-12-11 Htc Corp Key input circuit and key detection method
US6799993B2 (en) 2002-12-20 2004-10-05 Vector Products, Inc. Portable electrical energy source
US7282891B2 (en) 2002-12-30 2007-10-16 Motorola, Inc. Method for charging a battery
US20040150373A1 (en) 2003-01-30 2004-08-05 Sing Chan Vehicle jump starter with polarity compensation
US7791319B2 (en) 2003-02-21 2010-09-07 Research In Motion Limited Circuit and method of operation for an electrical power supply
US20040239290A1 (en) 2003-03-21 2004-12-02 Vector Product, Inc. Combination jump starter and high frequency charger
US6759833B1 (en) 2003-05-06 2004-07-06 Kuo-Hua Chen Charger capable of switching polarity
USD488436S1 (en) 2003-07-08 2004-04-13 Symbol Technologies, Inc. Battery with side latches and secondary features
US6919704B1 (en) 2003-07-09 2005-07-19 Brunswick Corporation Reverse battery protection for a trolling motor
US7161253B2 (en) 2003-08-06 2007-01-09 Briggs & Stratton Corporation Portable power source
US7339347B2 (en) 2003-08-11 2008-03-04 Reserve Power Cell, Llc Apparatus and method for reliably supplying electrical energy to an electrical system
US20050040788A1 (en) * 2003-08-19 2005-02-24 Invot Electronic Co. Storage cell supplying power of different voltages
WO2005038952A2 (en) 2003-10-14 2005-04-28 Black & Decker Inc. Protection methods, protection circuits and protective devices for secondary batteries, a power tool, charger and battery pack adapted to provide protection against fault conditions in the battery pack
US20050110467A1 (en) 2003-11-03 2005-05-26 Bon-Aire Industries, Inc. Automotive jump starter with polarity detection and current routing circuitry
JP4059838B2 (en) 2003-11-14 2008-03-12 ソニー株式会社 Battery pack, battery protection processing device, and control method for battery protection processing device
CN2663229Y (en) 2003-11-28 2004-12-15 李伟光 Multifunctional automobile starting power
US7155075B2 (en) 2004-03-29 2006-12-26 General Electric Company Optical battery temperature monitoring system and method
US20050252573A1 (en) * 2004-05-13 2005-11-17 Montani Mark A Automotive fuel cell siphon/refill tool
US7301303B1 (en) 2004-08-16 2007-11-27 International Specialty Services, Inc. Portable battery jump start in a soft-sided carrying case
CA2483360C (en) 2004-10-01 2010-12-07 Xantrex International Charger/jumper method and apparatus
JP2008517440A (en) 2004-11-26 2008-05-22 エルジー・ケム・リミテッド Electrode connector including plate and battery module using the same
US7017055B1 (en) 2004-12-08 2006-03-21 Cyber Power System Inc. Hub that can supply power actively
US20060176011A1 (en) 2005-02-07 2006-08-10 Juye Lii International Co., Ltd. Battery charger with polarity switching capability
US7679317B2 (en) 2005-02-15 2010-03-16 Research In Motion Limited Systems and methods for charging a chargeable USB device
JP2006286385A (en) 2005-03-31 2006-10-19 Asahi Electric Works Ltd Crimped connection structure of terminal fitting and stranded wire
US20060220610A1 (en) 2005-04-05 2006-10-05 Kold Ban International, Inc. Power management controller
US20060244412A1 (en) 2005-05-02 2006-11-02 Bon-Aire Industries, Inc. Automotive jump-starter with polarity detection, current routing circuitry and lighted cable connection pairs
FR2888620B1 (en) 2005-07-12 2007-10-12 Ariance Sarl INTELLIGENT STARTER INTERFACE
JP5076902B2 (en) 2005-09-14 2012-11-21 三菱化学株式会社 Non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery using the same
US8456130B2 (en) 2005-11-18 2013-06-04 Moto Boost International, Llc Method and apparatus for utilizing recycled batteries to surface charge an automobile battery
US20070132537A1 (en) 2005-12-08 2007-06-14 General Electric Company Transformer and method of assembly
US7701173B2 (en) * 2005-12-13 2010-04-20 Research In Motion Limited Charging and power supply for mobile devices
TWM297579U (en) 2006-01-30 2006-09-11 Samya Technology Co Ltd Portable mobile power supply
US7381105B2 (en) 2006-02-01 2008-06-03 Sierra Madre Marketing Group Electrical contact surface having numerous protrusions
US20070285049A1 (en) * 2006-02-24 2007-12-13 Michael Krieger Jump starter with built-in battery charger
US20070278990A1 (en) 2006-06-06 2007-12-06 Spx Corporation Battery boosting apparatus and method
WO2008030398A2 (en) 2006-09-05 2008-03-13 Summit Microelectronics, Inc Circuits and methods for controlling power in a battery operated system
US7612524B2 (en) 2006-09-29 2009-11-03 International Truck Intellectual Property Company, Llc Motor vehicle battery disconnect circuit having electronic disconnects
US7514900B2 (en) 2006-10-06 2009-04-07 Apple Inc. Portable devices having multiple power interfaces
WO2008067564A2 (en) 2006-12-01 2008-06-05 Zero Motorcycles Inc. Battery cell assembly
JP5082054B2 (en) 2006-12-08 2012-11-28 日産自動車株式会社 Battery module, battery case, battery case winding device and method
US7893657B2 (en) 2006-12-19 2011-02-22 Anand Kumar Chavakula Multi-power charger and battery backup system
US7692402B2 (en) 2006-12-21 2010-04-06 Robert W. Wise Emergency appliance system
CA118796S (en) 2006-12-22 2008-01-15 Xantrex Int Mobile power source
US7782027B2 (en) 2006-12-30 2010-08-24 Advanced Analogic Technologies, Inc. High-efficiency DC/DC voltage converter including down inductive switching pre-regulator and capacitive switching post-converter
TWI310739B (en) 2007-07-27 2009-06-11 On-vehicle power supply device
AU2008230065A1 (en) * 2007-10-24 2009-05-14 Bep Marine Limited Battery switch sensor
USD597029S1 (en) 2007-11-29 2009-07-28 Jacky Li Battery clip
US8493021B2 (en) 2008-01-03 2013-07-23 F. D. Richardson Entereprises, Inc. Method and apparatus for providing supplemental power to an engine
US20090174362A1 (en) 2008-01-03 2009-07-09 F.D. Richardson Enterprises, Inc. Doing Business As Richardson Jumpstarters Method and apparatus for providing supplemental power to an engine
US9263907B2 (en) 2008-01-03 2016-02-16 F.D. Richardson Enterprises, Inc. Method and apparatus for providing supplemental power to an engine
US7872361B2 (en) 2008-03-24 2011-01-18 Jeffrey Noel McFadden Vehicle integrated dead battery backup starting system
KR100933843B1 (en) 2008-03-28 2009-12-24 삼성에스디아이 주식회사 Lithium secondary battery
US7749031B2 (en) 2008-04-03 2010-07-06 Delphi Technologies, Inc. Lever lock battery clamp terminal
US20100052620A1 (en) 2008-09-03 2010-03-04 Intersil Americas Inc. Battery charger ic including built-in usb detection
US8125181B2 (en) 2008-09-17 2012-02-28 Toyota Motor Engineering & Manufacturing North America, Inc. Method and apparatus for hybrid vehicle auxiliary battery state of charge control
USD649116S1 (en) 2008-11-19 2011-11-22 Seiwa Industry Co., Ltd. Booster cable
US8199024B2 (en) 2008-11-28 2012-06-12 Energy Safe Technologies, Inc. Low-voltage connection with safety circuit and method for determining proper connection polarity
US20100173182A1 (en) * 2008-11-28 2010-07-08 Michael Baxter Low-Voltage Connection with Safety Circuit and Method for Determining Proper Connection Polarity
JP2010154646A (en) 2008-12-25 2010-07-08 Omron Corp Apparatus and method for controlling charge, and program
US8319472B2 (en) 2009-01-19 2012-11-27 GM Global Technology Operations LLC Method and system for internally jump-starting an engine
KR100969529B1 (en) 2009-02-02 2010-07-12 (주) 엔네비솔루션 Apparatus for portable auxiliary power supply for automobile
KR101579146B1 (en) 2009-02-27 2015-12-21 페어차일드 세미컨덕터 코포레이션 Peripheral device host charging
US8172603B1 (en) * 2009-03-16 2012-05-08 Richardet Jr David Quick-release battery cable system
JP5144582B2 (en) 2009-04-23 2013-02-13 トヨタ自動車株式会社 Leakage transmission suppression structure for power storage devices
US20100301800A1 (en) 2009-05-26 2010-12-02 Mathew Inskeep Multi-purpose battery jump starter and reconditioner
JP2011023249A (en) 2009-07-16 2011-02-03 Nissan Motor Co Ltd Secondary battery, battery pack
US8575899B2 (en) 2009-07-16 2013-11-05 Schumacher Electric Corporation Battery charger with automatic voltage detection
JP2013502591A (en) 2009-08-26 2013-01-24 張怡章 Battery polarity detection system
US20110117408A1 (en) 2009-11-13 2011-05-19 Lennox Stuart B Battery Assembly
US9748541B2 (en) 2009-11-20 2017-08-29 Edmund David Burke Advanced lithium polymer system (ALPS)
DE202009016260U1 (en) 2009-11-30 2010-03-25 Tsai, Ming-Wei, Wugu Battery charging device
US8610396B2 (en) 2009-12-01 2013-12-17 Murray D. Hunter Battery boost apparatus
US20110140651A1 (en) 2009-12-12 2011-06-16 Dai Alex Rechargeable lead-acid battery cover
WO2011084891A1 (en) 2010-01-07 2011-07-14 Audiovox Corporation Method and apparatus for harvesting energy
USD625265S1 (en) 2010-01-29 2010-10-12 Schumacher Electric Corporation Battery clamp
JP5549684B2 (en) 2010-02-04 2014-07-16 株式会社Gsユアサ Charging method
US8664912B2 (en) 2010-02-23 2014-03-04 Old World Industries, Inc. Low battery voltage alert system
DE102010011276A1 (en) 2010-03-13 2011-09-15 Continental Automotive Gmbh On-board network for a vehicle
US8376775B2 (en) 2010-03-17 2013-02-19 Steven M Rinehardt Safety jumper cables
JP5582844B2 (en) 2010-03-30 2014-09-03 古河電気工業株式会社 Battery state detection sensor
US8815439B2 (en) 2010-04-13 2014-08-26 Samsung Sdi Co., Ltd. Secondary battery pack
KR101127611B1 (en) 2010-05-03 2012-03-26 삼성에스디아이 주식회사 Protection circuit module and rechargeable battery with the same
USD640196S1 (en) 2010-05-12 2011-06-21 Chervon Limited Battery pack
KR101137365B1 (en) 2010-05-20 2012-04-20 에스비리모티브 주식회사 Battery pack
US8785781B2 (en) 2010-06-21 2014-07-22 Samsung Sdi Co., Ltd. Connecting tab of battery pack, coupling structure between the connecting tab and wire, and coupling method thereof
JP5345175B2 (en) 2010-06-21 2013-11-20 三星エスディアイ株式会社 Battery pack connector and method of connecting the same
KR101682386B1 (en) 2010-06-29 2016-12-12 삼성전자 주식회사 A portable charging apparatus and a charging method thereof and a charging system
US20120013189A1 (en) 2010-07-15 2012-01-19 Vercingetorix, Llc battery management system
CA2747585C (en) 2010-07-27 2020-05-26 Ark Corporation Pty Ltd Charging apparatus and portable power supply
EP2424067A1 (en) 2010-08-26 2012-02-29 ST-Ericsson SA Power management circuit for a portable electronic device including USB functionality and method for doing the same
CN103098334B (en) 2010-09-13 2014-12-24 德发公司汽车部 Device for charging of rechargeable batteries
JP5591641B2 (en) 2010-09-17 2014-09-17 ローム株式会社 Charging circuit, control IC thereof, and electronic device using the same
US9871392B2 (en) 2010-09-17 2018-01-16 Schumacher Electric Corporation Portable battery booster
US20120091944A1 (en) * 2010-10-19 2012-04-19 Chad Rogers Jump start adapter
US9263731B2 (en) * 2010-11-12 2016-02-16 A123 Systems Llc High performance lithium or lithium ion cell
NZ609735A (en) 2010-11-25 2015-06-26 Clipsal Australia Pty Ltd Usb outlet charger
CN105390757A (en) 2010-11-29 2016-03-09 马丁·克布勒 Lithium starter battery and solid state switch therefor
US9768435B2 (en) 2010-11-29 2017-09-19 Martin Koebler Portable jump starter apparatus with simplified safety protection
CN201947042U (en) 2010-12-07 2011-08-24 深圳市思倍生电子科技有限公司 Vehicle-mounted emergency power supply device
DE102010062708B4 (en) 2010-12-09 2019-08-08 Robert Bosch Gmbh Mobile power supply
EP2654099B1 (en) 2010-12-13 2017-04-19 Panasonic Intellectual Property Management Co., Ltd. Battery module and battery pack
WO2012080996A1 (en) 2010-12-16 2012-06-21 Jtm Power Limited A jump starter
US9041244B2 (en) 2010-12-30 2015-05-26 Infineon Technologies Ag On-board power supply protection
CN103238081B (en) 2011-01-06 2016-08-10 古河电气工业株式会社 Secondary cell condition checkout gear and secondary cell condition detection method
US20120187897A1 (en) 2011-01-24 2012-07-26 Intersil Americas Inc. Battery charger for use with low voltage energy harvesting device
DE102011003564A1 (en) * 2011-02-03 2012-08-09 Bayerische Motoren Werke Aktiengesellschaft Motor vehicle with a Fremdstartvorrichtung
JP2012169161A (en) 2011-02-15 2012-09-06 Panasonic Corp Cylindrical nonaqueous electrolyte battery and method for manufacturing the same
CN202058834U (en) 2011-04-12 2011-11-30 海日升电器制品(深圳)有限公司 Automobile emergency start power supply suitable for low temperature environment
JP5734076B2 (en) 2011-04-25 2015-06-10 Jmエナジー株式会社 Power storage device and power storage module
JP6195558B2 (en) 2011-04-28 2017-09-13 ゾール サーキュレイション インコーポレイテッドZOLL Circulation,Inc. System and method for tracking and storing battery performance data
US20120295150A1 (en) 2011-05-17 2012-11-22 GM Global Technology Operations LLC Battery module and method of manufacturing the same
US9287725B2 (en) 2011-05-23 2016-03-15 Pulsetech Products Corporation Circuit and method enabling the sharing of a battery charger with multiple batteries
FR2975839B1 (en) 2011-05-23 2013-05-17 Renault Sa METHOD FOR RECHARGING A TORQUE OF VEHICLE BATTERIES OF DIFFERENT NOMINAL VOLTAGES, AND ASSOCIATED SYSTEM
US20120319487A1 (en) * 2011-06-16 2012-12-20 Rakesh Shah Integrated Battery Backup and Charging for Mobile Devices
WO2013002621A2 (en) 2011-06-30 2013-01-03 주식회사 엘지화학 Secondary battery having improved contact resistance
KR101305250B1 (en) 2011-07-25 2013-09-06 주식회사 엘지화학 Battery Module of Improved Reliability and Battery Pack Employed with the Same
WO2013024483A2 (en) 2011-08-16 2013-02-21 Better Place GmbH Identification of an electric vehicle adjacent to a power replenishment station
US8994327B2 (en) 2011-08-24 2015-03-31 General Electric Company Apparatus and method for charging an electric vehicle
US8940420B2 (en) 2011-09-29 2015-01-27 Samsung Sdi Co., Ltd. Rechargeable battery
USD689020S1 (en) 2011-10-21 2013-09-03 Johnson Controls Technology Company Battery charger terminal clamp
US20130104817A1 (en) 2011-10-26 2013-05-02 GM Global Technology Operations LLC Engine assembly including crankcase ventilation system
JP5847559B2 (en) 2011-11-25 2016-01-27 三洋電機株式会社 Battery pack
CN102447288A (en) 2011-12-05 2012-05-09 三门峡速达交通节能科技有限公司 Power lithium-ion battery pack intelligent management system specially used for electric automobile
EP2605313A1 (en) 2011-12-15 2013-06-19 Oxis Energy Limited Connecting contact leads to lithium-based electrodes
JP2013134818A (en) 2011-12-26 2013-07-08 Showa Denko Kk Terminal lead
WO2013137873A1 (en) 2012-03-14 2013-09-19 Elite Power Solutions, LLC Portable power supply
US9007023B2 (en) * 2012-03-14 2015-04-14 Elite Power Solutions Llc Portable power supply
CA145036S (en) 2012-03-30 2013-02-11 Techtronic Outdoor Prod Tech Battery
CN202696190U (en) 2012-05-23 2013-01-23 上海广为美线电源电器有限公司 Intelligent emergent start power source with self-equipped voice prompt function
KR102023916B1 (en) 2012-07-23 2019-09-23 에스케이이노베이션 주식회사 Connecting apparatus for battery electrode and terminal
KR102052062B1 (en) 2012-07-25 2019-12-04 삼성에스디아이 주식회사 Battery pack having connection member to accommodate soldering member
KR101985762B1 (en) 2012-08-13 2019-06-04 삼성에스디아이 주식회사 RECHARGEABLE BATTERY With Improved Connection Structure of Terminal AND BATTERY MODULE Comprising the Same
US9748778B2 (en) 2012-08-24 2017-08-29 Panasonic Intellectual Property Management Co., Ltd. Power supply apparatus
US9343727B2 (en) 2012-08-28 2016-05-17 Kabushiki Kaisha Toyota Jidoshokki Electricity storage device
US20140159509A1 (en) 2012-09-11 2014-06-12 Mathew Inskeep Battery Boost Jump Starter
US9899655B2 (en) 2012-09-14 2018-02-20 Greatbatch Ltd. Electrochemical current collector screen designs utilizing ultrasonic welding
CN102842935A (en) 2012-09-20 2012-12-26 上海广为美线电源电器有限公司 Lithium battery emergency starting power supply with low temperature automatic pre-heating function
US9809183B2 (en) 2012-09-23 2017-11-07 Darryl Weflen Self-contained automotive battery booster system
US9048597B2 (en) 2012-10-19 2015-06-02 Apple Inc. Structures for securing printed circuit connectors
CN202918052U (en) 2012-11-19 2013-05-01 雷星亮 Hybrid battery
US20140139175A1 (en) 2012-11-19 2014-05-22 Jose A. Gonzalez Pocket Jumper
US9337466B2 (en) 2012-12-07 2016-05-10 Tyco Electronics Corporation Power terminal connector
CN103066662B (en) 2013-01-07 2015-08-05 雷星亮 emergency power supply
US20140210399A1 (en) 2013-01-25 2014-07-31 Pylon Aviation Services Llc Portable electric power source for aircraft
JP3182855U (en) 2013-02-01 2013-04-11 Sfj株式会社 Auxiliary power feeder for vehicle
CN203211234U (en) 2013-04-26 2013-09-25 惠州市华易通科技有限公司 Emergency starting device of automobile
CN104118374A (en) 2013-04-26 2014-10-29 惠州市华易通科技有限公司 Automobile emergency start device
JP3185027U (en) 2013-05-17 2013-07-25 Sfj株式会社 Booster cable for portable auxiliary power supply
JP2014232666A (en) 2013-05-29 2014-12-11 株式会社カネカ Nonaqueous electrolyte secondary battery
DE202013102599U1 (en) 2013-06-18 2013-08-13 Asia Bright Industrial (Hong Kong) Co., Ltd Emergency starting power supply for vehicles
US20140368155A1 (en) 2013-06-18 2014-12-18 MtTek Co., Ltd Smart vehicle rescue battery apparatus
CN115101869A (en) 2013-06-26 2022-09-23 创科电动工具科技有限公司 Battery pack, tool battery and battery-powered tool
CN203522157U (en) 2013-07-08 2014-04-02 深圳市思倍生电子科技有限公司 Heavy current protective device for automobile emergency starting power supply
KR101500358B1 (en) 2013-07-08 2015-03-18 현대자동차 주식회사 System and method for controlling state of charge of battery in vehicle
US9048666B2 (en) 2013-07-09 2015-06-02 Chen-Source Inc. USB charging circuit
KR101620173B1 (en) * 2013-07-10 2016-05-13 주식회사 엘지화학 A stepwise electrode assembly with good stability and the method thereof
US20150037662A1 (en) 2013-07-30 2015-02-05 Johnson Controls Technology Company System and method for sealing a battery cell
US9506446B2 (en) 2013-08-14 2016-11-29 Spacekey (USA), Inc. Mobile power bank
CN104442429A (en) 2013-09-12 2015-03-25 柯国平 Vehicle starting power source with double-battery system
USD726114S1 (en) 2013-09-27 2015-04-07 The Noco Company Flex regulator
CN203504235U (en) 2013-10-11 2014-03-26 骆武强 Multifunctional emergency starting power supply for car
US20150137740A1 (en) * 2013-11-13 2015-05-21 Khalid Mike Allos System and Method for Mobile Charging
JP2015115979A (en) 2013-12-09 2015-06-22 Sfj株式会社 Vehicular auxiliary power feeder
CN103715737B (en) 2013-12-23 2016-05-25 杭州电子科技大学 A kind of charging and discharging lithium battery management system
CN104795527B (en) 2014-01-21 2018-07-17 微宏动力系统(湖州)有限公司 Battery module
USD726121S1 (en) 2014-04-01 2015-04-07 The Noco Company Electrical connector
USD735665S1 (en) 2014-04-01 2015-08-04 The Noco Company Electrical clamp
USD726109S1 (en) 2014-04-01 2015-04-07 The Noco Company Electrical clamp
CN203933073U (en) 2014-04-28 2014-11-05 王熙宁 A kind of new automobile charger
US20150366538A1 (en) 2014-06-18 2015-12-24 Analogic Corporation Hand held ultrasound imaging apparatus with portable carrier charger
CA2950151C (en) 2014-06-20 2021-02-09 Ioxus, Inc. Engine start and battery support module
WO2016004079A1 (en) 2014-06-30 2016-01-07 Black & Decker Inc. Battery pack for a cordless power tools
JP6245094B2 (en) 2014-06-30 2017-12-13 日立化成株式会社 Battery system
US9007015B1 (en) 2014-07-03 2015-04-14 The Noco Company Portable vehicle battery jump start apparatus with safety protection
US11788500B2 (en) 2016-02-11 2023-10-17 The Noco Company Battery device for a battery jump starting device
US11458851B2 (en) 2014-07-03 2022-10-04 The Noco Company Jump starting apparatus
WO2016003471A1 (en) 2014-07-03 2016-01-07 The Noco Company Portable vehicle battery jump start apparatus with safety protection
USD746774S1 (en) 2014-07-16 2016-01-05 The Noco Company Electrical connector
CN204113515U (en) 2014-08-13 2015-01-21 张恺龙 Remote control type vehicle accumulator auxiliary actuating apparatus
AU2015301449B2 (en) 2014-08-14 2018-07-05 Schumacher Electric Corp. Compact multifunctional battery booster
US20160111914A1 (en) 2014-10-15 2016-04-21 Hugh C. Willard Multi-voltage extended operation dc power supply system
JP6455705B2 (en) 2014-10-21 2019-01-23 株式会社オートネットワーク技術研究所 Power storage module
CN204558575U (en) 2015-01-30 2015-08-12 中国科学院广州能源研究所 A kind of soft-package battery lug coupling assembling and battery pack
CN204516832U (en) 2015-02-10 2015-07-29 宁德时代新能源科技有限公司 The multi-functional sampling terminal structure of battery pack
KR102379562B1 (en) 2015-02-25 2022-03-28 삼성에스디아이 주식회사 Battery pack
KR102381777B1 (en) 2015-02-25 2022-04-01 삼성에스디아이 주식회사 Battery pack
US10826286B2 (en) 2015-07-05 2020-11-03 Shen Zhen Jqb Industrial Co., Ltd. Battery boost apparatus
CN204966731U (en) 2015-08-26 2016-01-13 雅德电业(深圳)有限公司 Multi -functional output terminal of charger heavy current
US20180369599A1 (en) 2015-12-02 2018-12-27 Powerdoc Sentinel Llc Portable power supply device
AU2017217661B2 (en) 2016-02-11 2018-11-15 The Noco Company Battery connector device for a battery jump starting device
CA3107432C (en) 2016-02-11 2023-08-22 The Noco Company Battery assembly device
JP6971855B2 (en) 2016-02-11 2021-11-24 ザ・ノコ・カンパニーThe Noco Company Battery connector device for battery jump start device
TWM541146U (en) 2016-12-02 2017-05-01 旭隼科技股份有限公司 Integrated uninterruptible power supply
CA3065290A1 (en) 2017-03-31 2018-10-04 The Noco Company Portable or hand held vehicle battery jump starting apparatus with battery cell equalization circuit
GB2564910B (en) 2017-07-27 2020-07-15 Intercal Uk Ltd Battery management
GB2584424B (en) 2019-05-28 2021-07-28 Gupta Sanjay An apparatus and method for charging a battery pack, and decoupling the charging voltage from the battery pack voltage
US11865944B2 (en) 2020-05-29 2024-01-09 Deltran Operations Usa, Inc. Battery management system for batteries in engine start and deep cycle applications

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867007A (en) * 1996-09-03 1999-02-02 Samsung Electronics Co., Ltd. Selection circuit for dual batteries in a battery powered electronic device
US20040130298A1 (en) * 2002-02-19 2004-07-08 Michael Krieger Microprocessor controlled booster apparatus with polarity protection
US7116078B2 (en) * 2002-08-02 2006-10-03 Eltek S.P.A. Protection system of a vehicle battery
US8076900B1 (en) * 2006-04-21 2011-12-13 Audley Brown Portable battery charger
WO2009059852A2 (en) * 2007-11-06 2009-05-14 Robert Bosch Gmbh Starting method for hybrid drives
US20110068734A1 (en) * 2009-09-18 2011-03-24 Waldron John F Battery maintenance kit
US9490625B2 (en) * 2013-08-14 2016-11-08 Fujitsu Limited Electronic device and voltage monitoring method
CN205544443U (en) * 2016-03-22 2016-08-31 武汉大学 Two portable power source that fill of many generating electricity way that are fit for field usage
US20180069413A1 (en) * 2016-09-02 2018-03-08 Superior Communications, Inc. Led cable and car charger
US20180090964A1 (en) * 2016-09-29 2018-03-29 Jonathan Henry Williams Apparatus for powering an electrical device from different battery packs
US11462928B2 (en) * 2017-09-22 2022-10-04 The Noco Company Rechargeable battery jump starting device with depleted or discharged battery pre-conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022178102A1 (en) * 2021-02-17 2022-08-25 The Noco Company Jump starter with current sharing switch arrangement, and safety switch, system, and method

Also Published As

Publication number Publication date
US20180345803A1 (en) 2018-12-06
US20230365011A1 (en) 2023-11-16
US11766945B2 (en) 2023-09-26
US11458851B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
US11766945B2 (en) Jump starting apparatus
US11584243B2 (en) Jump starting device with USB
AU2022204065B2 (en) Portable vehicle battery jump start apparatus with safety protection
US11754031B2 (en) Rechargeable battery jump starting device with depleted or discharged battery pre-conditioning system

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: SMAL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

AS Assignment

Owner name: THE NOCO COMPANY, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NOOK, JONATHAN LEWIS;NOOK, WILLIAM KNIGHT, SR.;STANFIELD, JAMES RICHARD;AND OTHERS;SIGNING DATES FROM 20181226 TO 20190105;REEL/FRAME:064350/0799

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE