US20210013766A1 - Motor sleeve and motor device - Google Patents

Motor sleeve and motor device Download PDF

Info

Publication number
US20210013766A1
US20210013766A1 US17/039,176 US202017039176A US2021013766A1 US 20210013766 A1 US20210013766 A1 US 20210013766A1 US 202017039176 A US202017039176 A US 202017039176A US 2021013766 A1 US2021013766 A1 US 2021013766A1
Authority
US
United States
Prior art keywords
motor
sleeve
chassis
base
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/039,176
Inventor
Chen-Shi CHOU
Zong-Lin LI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chicony Power Technology Co Ltd
Original Assignee
Chicony Power Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chicony Power Technology Co Ltd filed Critical Chicony Power Technology Co Ltd
Priority to US17/039,176 priority Critical patent/US20210013766A1/en
Publication of US20210013766A1 publication Critical patent/US20210013766A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/207Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium with openings in the casing specially adapted for ambient air
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations

Definitions

  • the present disclosure relates to a motor and a sleeve thereof and, in particular, to an integrated motor drive and a sleeve thereof.
  • the integrated motor drive (IMD) device mainly includes a motor and a motor driver.
  • the motor driver can drive the motor to rotate.
  • the motor driver is an inverter.
  • the motor driver further includes a controller for controlling the rotation speed of the motor.
  • the motor and the inverter are assembled and integrated together.
  • This configuration has the advantages of saving power and space.
  • the expansive connecting wires between the motor and the inverter can be reduced, and the external connection and layout can be also minimized.
  • This integration design can decrease the required space for the integrated motor drive device, and the decreased layout can also make the circuit design much simpler.
  • the vibration of the motor can be easily transferred to the inverter, which may cause the damage of the inverter.
  • the heat generated by the operating motor can also be transferred to the inverter, which can reduce the lifetime of the inverter.
  • this disclosure provides a motor sleeve and a motor device that can speed the heat dissipation and reduce the vibration transmission.
  • a motor sleeve is applied to a motor housing and a motor driver housing.
  • a first fixing structure is disposed on a side portion of the motor housing, and the motor driver housing comprises a first coupling structure.
  • the motor sleeve comprises a sleeve base, a second fixing structure, a second coupling structure and a plurality of base fins.
  • the sleeve base comprises an outer surface and an inner surface opposite to the outer surface.
  • the second fixing structure is disposed on the inner surface and located corresponding to the first fixing structure of the motor housing.
  • the sleeve base is fixed to the motor housing by the first fixing structure and the second fixing structure.
  • the sleeve base is installed on the side portion of the motor housing.
  • the second coupling structure is disposed on the outer surface.
  • the base fins are separately disposed on the outer surface and located corresponding to the first coupling structure of the motor driver housing.
  • the motor driver housing is coupled to the sleeve base by the first
  • the sleeve base further comprises a first branched fin and a second branched fin.
  • the first branched fin extends horizontally from a first fin end portion of the base fins.
  • the second branched fin extends horizontally from a second fin end portion of the base fins.
  • first branched fin and the second branched fin are thermal coupled to the motor driver housing.
  • the sleeve base comprises at least a fixing end for installing a fan.
  • the motor sleeve further comprises a sleeve chassis, a plurality of chassis fins, and a third fixing structure.
  • the sleeve chassis comprises an outer chassis surface and an inner chassis surface opposite to the outer chassis surface.
  • the chassis fins are separately disposed on the outer chassis surface.
  • the third fixing structure is disposed on the inner chassis surface and located corresponding to a fourth fixing structure of the motor housing.
  • the sleeve chassis is fixed to the motor housing by the third fixing structure and the fourth fixing structure.
  • the sleeve base and the sleeve chassis are coupled to form the motor sleeve.
  • the sleeve chassis comprises at least a fixing end for installing a fan.
  • a motor device comprises a motor, a motor driver and a motor sleeve.
  • the motor comprises a motor housing, and a first fixing structure is disposed on a side portion of the motor housing.
  • the motor driver comprises a motor driver housing, and the motor driver housing comprises a first coupling structure.
  • the motor sleeve comprises a sleeve base, a second fixing structure, a second coupling structure and a plurality of base fins.
  • the sleeve base comprises an outer surface and an inner surface opposite to the outer surface.
  • the second fixing structure is disposed on the inner surface and located corresponding to the first fixing structure of the motor housing.
  • the sleeve base is fixed to the motor housing by the first fixing structure and the second fixing structure, and the sleeve base is installed on the side portion of the motor housing.
  • the second coupling structure is disposed on the outer surface.
  • the base fins are separately disposed on the outer surface and located corresponding to the first coupling structure of the motor driver housing.
  • the motor driver housing is coupled to the sleeve base by the first coupling structure and the second coupling structure.
  • the motor housing further comprises a plurality of heat dissipation plates extending from an outer wall of the motor housing and separately arranged with a predetermined interval so as to form a plurality of gaps.
  • the second fixing structure comprises a plurality of recesses corresponding to a shape of the heat dissipation plates and thermal coupling to the heat dissipation plates.
  • a bottom portion of the motor driver housing comprises at least a protrusion, and the protrusion forms a heat exchange portion and is accommodated in at least a gap between the base fins.
  • the sleeve base further comprises a first branched fin and a second branched fin.
  • the first branched fin extends horizontally from a first fin end portion of the base fins.
  • the second branched fin extends horizontally from a second fin end portion of the base fins.
  • first branched fin and the second branched fin are thermal coupled to the motor driver housing.
  • the sleeve base comprises at least a fixing end for installing a fan.
  • the motor sleeve further comprises a sleeve chassis, a plurality of chassis fins, and a third fixing structure.
  • the sleeve chassis comprises an outer chassis surface and an inner chassis surface opposite to the outer chassis surface.
  • the chassis fins are separately disposed on the outer chassis surface.
  • the third fixing structure is disposed on the inner chassis surface and located corresponding to a fourth fixing structure of the motor housing.
  • the sleeve chassis is fixed to the motor housing by the third fixing structure and the fourth fixing structure.
  • the sleeve base and the sleeve chassis are coupled to form the motor sleeve.
  • the sleeve chassis comprises at least a fixing end for installing a fan.
  • the motor device further comprises a fan installed on an end portion of the motor housing and an end portion of the sleeve base.
  • an air output surface of the fan is located away from the end portion of the motor housing and the end portion of the sleeve base.
  • a detachable motor heat dissipation sleeve comprises a base, a chassis, at least a damping material, and a plurality of fins.
  • the base comprises an outer surface and an inner surface opposite to the outer surface.
  • the chassis comprises an outer chassis surface and an inner chassis surface opposite to the outer chassis surface.
  • the damping material is coupled to the inner surface or the inner chassis surface.
  • the fins are separately disposed on the outer surface and the outer chassis surface.
  • the base and the chassis are connected to form a heat dissipation sleeve.
  • a detachable motor heat dissipation sleeve is applied to a motor housing and comprises a base, a plurality of fins, and a plurality of fixing structures.
  • the base comprises an outer surface and an inner surface opposite to the outer surface.
  • the fins are separately disposed on the outer surface.
  • the fixing structures are separately disposed on the inner surface for installing the base on the outer surface of the motor housing. The base can transfer the heat from the motor housing to the fins.
  • the motor sleeve of this disclosure has an inner surface assembled with the motor and an outer surface assembled with the motor driver, so that the motor device can be quickly assembled.
  • the motor sleeve has a plurality of fins for speeding the heat conducting and dissipating.
  • the motor sleeve of this disclosure is provided between the motor and the motor driver for connecting the motor and the motor driver. Accordingly, this disclosure can reduce the vibration transferred from the motor to the motor driver, and rapidly assemble the motor and the motor driver.
  • the motor sleeve is a cylindrical heat dissipation sleeve, which can mount on and extend from the heat dissipating plates of the motor so as to increase the heat transmission effect of the assembled motor driver and motor.
  • the additional detachable fan can be further provided to achieve the rapid heat dissipation effect of the motor and the motor driver.
  • FIG. 1A is a schematic diagram showing a motor device of an embodiment
  • FIG. 1B is a schematic diagram of a motor sleeve of FIG. 1A ;
  • FIG. 1C is a front view of the motor device of FIG. 1A ;
  • FIG. 2 is a schematic diagram showing a motor device of an embodiment
  • FIGS. 3A to 3C are side views of different aspects of the motor device
  • FIGS. 4A and 4B are side views of different aspects of the motor device
  • FIGS. 5A and 5B are side views of different aspects of the motor device.
  • FIGS. 6A and 6B are side views of different aspects of the motor device.
  • FIG. 1A is a schematic diagram showing a motor device 5 according to an embodiment of this disclosure.
  • a motor device 5 comprises a motor 2 , a motor driver 3 and a motor sleeve 1 .
  • the motor device 5 is, for example, an integrated motor drive (IMD) device.
  • IMD integrated motor drive
  • the motor sleeve 1 is provided to integrate the motor 2 and the motor driver 3 .
  • the motor driver 3 can be designed based on the connected motor 2 for achieving the maximum performance of the motor 2 and sufficiently reducing the required wires between the conventional motor, sensing devices, driver and control system.
  • the motor 2 comprises a motor housing 21 and a shaft 22 .
  • the shaft 22 protrudes from one end of the motor housing 21 and extends outwardly.
  • the shaft 22 can connect to an object and drive the object to rotate.
  • the internal components of the motor 2 are disposed inside the motor housing 21 .
  • the internal components include, for example, a rotor and a stator.
  • the shaft 22 is installed on the rotor, and the rotor can drive the shaft 22 to rotate.
  • the motor driver 3 includes a motor driver housing 31 and a driver circuit 32 .
  • the driver circuit 32 is disposed inside the motor driver housing 31 and electrically connecting to the motor 2 for driving the motor 2 to rotate.
  • the driver circuit 32 includes a plurality of power transistors.
  • the driver circuit 32 can be formed on a circuit board, and the circuit board can be installed inside the motor driver housing 31 .
  • the driver circuit 32 can be an inverter or a converter.
  • the driver circuit 32 can electrically connect to an external control system for controlling the rotation speed of the motor 2 .
  • the external control system may output a control signal to the driver circuit 32 .
  • the driver circuit 32 may include a controller, which can output a control signal to the driver of the driver circuit 32 , and the driver can drive the motor 2 to rotate.
  • the driver can be, for example, an inverter or a converter.
  • the control signal can control the current, voltage, or frequency outputted from the driver circuit 32 to the motor 2 , thereby controlling the rotation speed of the motor 2 .
  • the control signal can be, for example, a PWM signal or a digital signal, which may carry an instruction.
  • FIG. 1B is a schematic diagram of a motor sleeve 1 of FIG. 1A
  • FIG. 1C is a front view of the motor device 5 of FIG. 1A
  • a first fixing structure 212 is disposed on a side portion 211 of the motor housing 21
  • the motor driver housing 31 comprises a first coupling structure 311
  • the motor sleeve 1 comprises a sleeve base 11 , a second fixing structure 12 , a second coupling structure 13 , and a plurality of base fins 14 .
  • the sleeve base 11 comprises an outer surface 111 and an inner surface 112 opposite to the outer surface 111 .
  • the second fixing structure 12 is disposed on the inner surface 112 and located corresponding to the first fixing structure 212 of the motor housing 21 .
  • the sleeve base 11 is fixed to the motor housing 21 by the first fixing structure 212 and the second fixing structure 12 .
  • the sleeve base 11 is installed on the side portion 211 of the motor housing 21 .
  • the second coupling structure 13 is disposed on the outer surface 111 .
  • the base fins 14 are separately disposed on the outer surface 111 .
  • the second coupling structure 13 is located corresponding to the first coupling structure 311 of the motor driver housing 31 .
  • the motor driver housing 31 is coupled to the sleeve base 11 by the first coupling structure 311 and the second coupling structure 13 .
  • the inner surface 112 of the motor sleeve 1 is assembled with the motor 2 , so that the heat generated by the operating motor 2 will be transferred to the motor housing 21 and then reach the motor sleeve 1 .
  • the outer surface 111 of the motor sleeve 1 is connected to the motor driver 3 .
  • the driver circuit 32 also generates heat during the operation, and the generated heat will be transferred to the motor driver housing 31 and then reach the motor sleeve 1 .
  • the heat can be dissipated by the base fins 14 of the motor sleeve 1 . This configuration can speed the heat dissipation rate and simultaneously dissipate the heat of the motor 2 and the motor driver 3 by a single motor sleeve 1 .
  • the motor sleeve 1 is disposed between the motor 2 and the motor driver 3 .
  • the motor driver 3 is not directly fixed on the motor 2 by screws or slide rails. Accordingly, the disclosure can reduce the vibration transferred from the motor 2 to the motor driver 3 .
  • the outer surface of the motor housing 21 is shaped as the first fixing structure 212
  • the inner surface 111 of the sleeve base 11 is directly shaped as the second fixing structure 12 .
  • the shape of the first fixing structure 212 matches the shape of the second fixing structure 12 , so that the motor sleeve 1 can be tightly mounted on the motor housing 21 .
  • the motor sleeve 1 is a cylindrical heat dissipation sleeve, and the motor housing 21 has a cylinder shape. Therefore, the motor sleeve 1 can mount on the motor 2 .
  • the annularly extending heat dissipation plates can rapidly conduct and dissipate the heat of the rotor and stator of the motor 2 . Since the motor 2 does not have any heat dissipation plates, the motor sleeve 1 can mount on and be fixed to the motor 2 (by screwing).
  • first coupling structure 311 and the second coupling structure 13 are connected by screws or rivets.
  • first coupling structure 311 and the second coupling structure 13 are holes.
  • the amount of the first coupling structure 311 can be one or more, and amount of the second coupling structure 13 can also be one or more.
  • this embodiment may configure four first coupling structures 311 and four second coupling structures 13 .
  • the motor device further comprises a fan 4 installed on an end portion 214 of the motor housing 21 and an end portion 15 of the sleeve base 11 .
  • An air output surface 41 of the fan 4 is located away from the end portion 214 of the motor housing 21 and the end portion 15 of the sleeve base 11 .
  • the fan 4 blows toward a direction D.
  • the configuration of the additional detachable fan 4 can rapidly and simultaneously dissipate the heat of the motor 2 and the motor driver 3 , which are integrated.
  • the sleeve base 11 further comprises a first branched fin 113 and a second branched fin 114 .
  • the first branched fin 113 extends horizontally from a first fin end portion 141 of the base fins 14 .
  • the second branched fin 114 extends horizontally from a second fin end portion 142 of the base fins 14 .
  • the first branched fin 113 and the second branched fin 114 are thermal coupled to the motor driver housing 31 .
  • the first branched fin 113 and the second branched fin 114 can be directly or indirectly connected to the motor driver housing 31 , and they can be thermal coupled so that the heat can be conducted therebetween.
  • another thermal conductive element is provided to connect the first branched fin 113 with the motor driver housing 31 and to connect the second branched fin 114 with the motor driver housing 31 .
  • FIG. 2 is a schematic diagram showing a motor device 5 a of an embodiment.
  • the motor housing 21 a of the motor device 5 a further comprises a plurality of heat dissipation plates 215 extending from an outer wall of the motor housing 21 a and separately arranged with a predetermined interval so as to form a plurality of gaps.
  • the positions of the gaps can be designed based on the heat source(s) of the motor so as to precisely dissipate the generated heat and reduce the loss of the heat dissipation material.
  • the heat dissipation plates 215 can be directly used as the first fixing structures 212 a
  • the second fixing structure 12 a of the motor sleeve 1 a comprises a plurality of recesses.
  • the recesses can be designed corresponding to the shape of the heat dissipation plates 215 , so that the recesses and the heat dissipation plates 215 can be thermal coupled with each other.
  • the recesses are disposed at the inner side of the sleeve base 11 a , and the second fixing structures 12 a can be inserted into the recesses and directly or indirectly contact the heat dissipation plates 215 . Thus, they can be thermal coupled so that the heat can be conducted therebetween.
  • another thermal conductive element is provided between the second fixing structures 12 a and the heat dissipation plates 215 .
  • the amount of the first fixing structures 212 a can be one or more, and amount of the second fixing structures 12 a can also be one or more.
  • this embodiment may configure four first fixing structures 212 a and four second fixing structures 12 a.
  • the cylindrical motor sleeve 1 a is mounted and fixed on the heat dissipation plates 215 of the motor 2 a , so that the motor sleeve 1 a can be an extension structure of the heat dissipation plates 215 .
  • the motor sleeve 1 a can be attached to the surface of the motor 2 a and form a larger thermal conductive surface for achieving the effect of rapidly heat transmission.
  • the motor driver housing 31 can also be designed as a thermal conductive element.
  • the combination of the motor driver housing 31 and the cylindrical motor sleeve 1 a can provide the rapid heat transmission for the driver components.
  • the fan 4 can be additionally and detachably disposed on the cylindrical motor sleeve 1 a . The configuration of the additional detachable fan 4 can rapidly and simultaneously dissipate the heat of the motor 2 a and the motor driver 3 by a single motor sleeve 1 a.
  • the sleeve base 11 or 11 a can be a single sheet.
  • the single sheet is curved, and the two ends of the curved sheet are connected at the fixing positions 116 , thereby forming a sleeve shape.
  • the two ends of the curved sheet can be connected by screwing, engaging or hooking.
  • the sleeve base 11 or 11 a can also be formed by another process, such as pressing or casting.
  • the sleeve base 11 a comprises at least one fixing end 115 for installing the fan 4 .
  • the fan 4 can be installed by embedding.
  • the fan 4 has a protrusion for embedding into the fixing end 115 .
  • the fans 4 can be screwed on the sleeve base 11 .
  • the sleeve base 11 and the fan 4 as shown in FIG. 1A can also be assembled as the way shown in FIG. 2 .
  • the fan 4 is an axial-flow fan.
  • the fan 4 can also be a side channel blower or a centrifugal fan.
  • the blades of the fan 4 are disposed corresponding to the integrated structural design of the motor 2 or 2 a and the motor driver 3 for providing the effect of simultaneous and rapid heat dissipation.
  • the motor sleeve 1 a is a detachable motor heat dissipation sleeve, which can be additionally mounted on the motor housing 21 a .
  • the motor sleeve 1 a comprises a base 11 a (referring to the sleeve base 11 a ), a plurality of fins 14 a (referring to the base fins 14 a ), and a plurality of fixing structures 12 a (referring to the second fixing structure 12 a ).
  • the base 11 a comprises an outer surface 111 a and an inner surface 112 a opposite to the outer surface 111 a .
  • the fins 14 a are separately disposed on the outer surface 111 a .
  • the fixing structures 12 a are separately disposed on the inner surface 112 a for installing the base 11 a on the outer surface of the motor housing 21 a .
  • the base 11 a can transfer the heat from the motor housing 21 a to the fins 14 a.
  • the motor sleeve may not comprise a single sleeve base but further comprise other components (e.g. a sleeve chassis).
  • FIGS. 3A to 3C are side views of different aspects of the motor device.
  • the motor sleeve 1 b further comprises a sleeve chassis 16 b , a plurality of chassis fins 17 b , and a third fixing structure 18 b .
  • the sleeve base 11 b is coupled to the sleeve chassis 16 b to form the body of the motor sleeve 1 b .
  • an elastic washer 7 is disposed between the sleeve base 11 b and the sleeve chassis 16 b , and a screw is provided to screw and fix the sleeve base 11 b and the sleeve chassis 16 b .
  • the configuration of the elastic washer 7 can reduce the vibration transmission from the motor 2 , thereby inhibiting the motor vibration and decreasing the vibration transferred from the motor to the motor driver.
  • the sleeve chassis 16 b comprises an outer chassis surface 161 b and an inner chassis surface 162 b opposite to the outer chassis surface 161 b .
  • the chassis fins 17 b are separately disposed on the outer chassis surface 161 b .
  • the third fixing structure 18 b is disposed on the inner chassis surface 162 b and located corresponding to a fourth fixing structure 213 of the motor housing 21 .
  • the sleeve chassis 16 b is fixed to the motor housing 21 by the third fixing structure 18 b and the fourth fixing structure 213 .
  • the outer surface of the motor housing 21 is shaped as the fourth fixing structure 213
  • the inner chassis surface 162 b of the sleeve chassis 16 b is directly shaped as the third fixing structure 18 b
  • the shape of the fourth fixing structure 213 matches the shape of the third fixing structure 18 b , so that the motor sleeve 1 b can be tightly mounted on the motor housing 21 .
  • the motor sleeve 1 b further comprises at least one damping material 6 , which is coupled to the inner surface 112 b or the inner chassis surface 162 b .
  • the damping material 6 is disposed between the motor housing 21 and the motor sleeve 1 b for decreasing the vibration transmission of the motor 2 .
  • the motor sleeves 1 c - 1 d of FIGS. 3B and 3C have the same or similar configurations as the motor sleeve 1 b of FIG. 3A .
  • the components shown in FIGS. 3B and 3C having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 3A , and the detailed descriptions thereof will be omitted.
  • each of the sleeve base 11 b and the sleeve chassis 16 b has a semicircular shape, and the first branched fin 113 and the second branched fin 114 are disposed at the opposite positions of the circle of the sleeve base 11 b .
  • the sleeve base 11 c has a larger arc shape than the sleeve chassis 16 c , and the first branched fin 113 c and the second branched fin 114 c are disposed at the lower part of the sleeve base 11 c .
  • the sleeve chassis 16 c can stand on the ground, the surface of another object, or a horizontal plane, and the motor driver 3 can be installed at the lateral side of the motor device 5 c instead of the top thereof.
  • the sleeve base 11 d further comprises a branched fin 117 , which extends similar to the first branched fin 113 .
  • a fan 8 is installed on the branched fin 117 for enhancing the heat dissipation efficiency.
  • the motor sleeve 1 b is a detachable motor heat dissipation sleeve, and the motor sleeve 1 b comprises a base 11 b (referring to the sleeve base 11 b ), a chassis 16 b (referring to the sleeve chassis 16 b ), at least a damping material 6 , and a plurality of fins 14 b and 17 b (referring to the base fins 14 b and the chassis fins 17 b ).
  • the base 11 b comprises an outer surface 111 b and an inner surface 112 b opposite to the outer surface 111 b .
  • the chassis 16 b comprises an outer chassis surface 161 b and an inner chassis surface 162 b opposite to the outer chassis surface 161 b .
  • the damping material 6 is coupled to the inner surface 112 b or the inner chassis surface 162 b .
  • the fins 14 b and 17 b are separately disposed on the outer surface 111 b and the outer chassis surface 161 b .
  • the base 11 b and the chassis 16 b are connected to form a heat dissipation sleeve.
  • the motor sleeves 1 c - 1 d of FIGS. 3B and 3C have the same or similar configurations as the motor sleeve 1 b of FIG. 3A .
  • the components shown in FIGS. 3B and 3C having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 3A , and the detailed descriptions thereof will be omitted.
  • FIGS. 4A and 4B are side views of different aspects of the motor device.
  • the heat dissipation plates 215 e of the motor 2 e can be used as the first fixing structure 212 e and the fourth fixing structure 213 e .
  • the second fixing structure 12 e of the base 11 e and the third fixing structure 18 e of the chassis 16 e comprise a plurality of recesses.
  • the shape of the recesses correspond to the heat dissipation plates 215 e , and the recesses are thermal coupled with the heat dissipation plates 215 e .
  • the recesses of the second fixing structure 12 e and the third fixing structure 18 e can directly or indirectly contact the heat dissipation plates 215 e .
  • they can be thermal coupled so that the heat can be conducted therebetween.
  • another thermal conductive element is provided between the second fixing structures 12 e and the heat dissipation plates 215 e .
  • the amount of the fixing structures can be one or more, and this disclosure is not limited.
  • the second fixing structure 12 e and the third fixing structure 8 e are located corresponding to the base fins 14 e and the chassis fins 17 e , respectively, and the fixing structures are disposed at the roots of the corresponding fins.
  • FIG. 4B has the same or similar configurations as the motor sleeve 1 e of FIG. 4A .
  • the components shown in FIG. 4B having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 4A , and the detailed descriptions thereof will be omitted.
  • the motor sleeve 1 e is a detachable motor heat dissipation sleeve
  • the motor sleeve 1 e comprises a base 11 e (referring to the sleeve base 11 e ), a chassis 16 e (referring to the sleeve chassis 16 e ), and a plurality of fins 14 e and 17 e (referring to the base fins 14 e and the chassis fins 17 e ).
  • the base 11 e comprises an outer surface 111 e and an inner surface 12 e opposite to the outer surface 111 e .
  • the chassis 16 e comprises an outer chassis surface 161 e and an inner chassis surface 162 e opposite to the outer chassis surface 16 e .
  • the fins 14 e and 17 e are separately disposed on the outer surface 111 e and the outer chassis surface 161 e .
  • the base 11 e and the chassis 16 e are connected to form a heat dissipation sleeve.
  • the motor sleeve 1 e may further comprise at least a damping material, which is coupled to the inner surface 112 e or the inner chassis surface 162 e .
  • the configuration of the damping material can be referred to the damping material 6 as shown in FIGS. 3A to 3C .
  • FIG. 4B has the same or similar configurations as the motor sleeve 1 e of FIG. 4A .
  • the components shown in FIG. 4B having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 4A , and the detailed descriptions thereof will be omitted.
  • the motor sleeve 1 e is a detachable motor heat dissipation sleeve, which can be mounted on the motor housing 21 e .
  • the motor sleeve 1 e comprises a base 11 e (referring to the sleeve base 11 e ), a plurality of fins 14 e (referring to the base fins 14 e ), and a plurality of fixing structures 12 e (referring to the second fixing structures 12 e of the base 11 e ).
  • the base 11 e comprises an outer surface 111 e and an inner surface 112 e opposite to the outer surface 111 e .
  • the fins 14 e are separately disposed on the outer surface 111 e .
  • the fixing structures 12 e are separately disposed on the inner surface 112 e for installing the base 11 e on the outer surface of the motor housing 21 e .
  • the base 11 e can transfer the heat from the motor housing 21 e to the fins 14 e .
  • the motor sleeve 1 f of FIG. 4B has the same or similar configurations as the motor sleeve 1 e of FIG. 4A .
  • the components shown in FIG. 4B having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 4A , and the detailed descriptions thereof will be omitted.
  • FIGS. 5A and 5B are side views of different aspects of the motor device.
  • the heat dissipation plates 215 g of the motor 2 g can be used as the first fixing structure 212 g and the fourth fixing structure 213 g .
  • the second fixing structure 12 g and the third fixing structure 18 g comprise a plurality of recesses. The shape of the recesses correspond to the heat dissipation plates 215 g , and the recesses are thermal coupled with the heat dissipation plates 215 g .
  • the second fixing structure 12 g is located between the base fins 14 g
  • the third fixing structure 18 g is located between the chassis fins 17 g .
  • the heat dissipation plates 215 g do not reach the roots of the base fins 14 g and the chassis fins 17 g .
  • the motor sleeve 1 h of FIG. 5B has the same or similar configurations as the motor sleeve 1 g of FIG. 5A .
  • the components shown in FIG. 5B having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 5A , and the detailed descriptions thereof will be omitted.
  • the motor sleeve 1 g is a detachable motor heat dissipation sleeve, and the motor sleeve 1 g comprises a base 11 g (referring to the sleeve base 11 g ), a chassis 16 g (referring to the sleeve chassis 16 g ), and a plurality of fins 14 g and 17 g (referring to the base fins 14 g and the chassis fins 17 g ).
  • the base 11 g comprises an outer surface 111 g and an inner surface 112 g opposite to the outer surface 111 g .
  • the chassis 16 g comprises an outer chassis surface 161 g and an inner chassis surface 162 g opposite to the outer chassis surface 161 g .
  • the fins 14 g and 17 g are separately disposed on the outer surface 111 g and the outer chassis surface 161 g .
  • the base 11 g and the chassis 16 g are connected to form a heat dissipation sleeve.
  • the motor sleeve 1 g may further comprise at least a damping material, which is coupled to the inner surface 112 g or the inner chassis surface 162 g .
  • the configuration of the damping material can be referred to the damping material 6 as shown in FIGS. 3A to 3C .
  • FIG. 5B has the same or similar configurations as the motor sleeve 1 g of FIG. 5A .
  • the components shown in FIG. 5B having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 5A , and the detailed descriptions thereof will be omitted.
  • the motor sleeve 1 g is a detachable motor heat dissipation sleeve, which can be mounted on the motor housing 21 g .
  • the motor sleeve 1 g comprises a base 11 g (referring to the sleeve base 11 g ), a plurality of fins 14 g (referring to the base fins 14 g ), and a plurality of fixing structures 12 g (referring to the second fixing structures 12 g of the base 11 g ).
  • the base 11 g comprises an outer surface 111 g and an inner surface 112 g opposite to the outer surface 111 g .
  • the fins 14 g are separately disposed on the outer surface 111 g .
  • the fixing structures 12 g are separately disposed on the inner surface 112 g for installing the base 11 g on the outer surface of the motor housing 21 g .
  • the base 11 g can transfer the heat from the motor housing 21 g to the fins 14 g .
  • the motor sleeve 1 h of FIG. 5B has the same or similar configurations as the motor sleeve 1 g of FIG. 5A .
  • the components shown in FIG. 5B having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 5A , and the detailed descriptions thereof will be omitted.
  • FIGS. 6A and 6B are side views of different aspects of the motor device.
  • a bottom portion of the motor driver housing 31 comprises at least a protrusion 33
  • the protrusion 33 forms a heat exchange portion and is accommodated in at least a gap between the base fins 14 i and 14 j .
  • each of the bottom portions of the motor driver housings 31 of FIGS. 3A to 3C, 4A to 4B, and 5A to 5B may also be configured with a protrusion 33 similar to the configuration of the gap of FIG. 6A or 6B .
  • the motor sleeve 1 i is a detachable motor heat dissipation sleeve, which can be mounted on the motor housing 21 i .
  • the motor sleeve 1 i comprises a base 11 i (referring to the sleeve base 11 i ), a plurality of fins 14 i (referring to the base fins 14 i ), and a plurality of fixing structures 12 i (referring to the second fixing structures 12 i of the base 11 i ).
  • the base 11 i comprises an outer surface 111 i and an inner surface 112 i opposite to the outer surface 111 i .
  • the fins 14 i are separately disposed on the outer surface 111 i .
  • the fixing structures 12 i are separately disposed on the inner surface 112 i for installing the base 11 i on the outer surface of the motor housing 21 i .
  • the base 11 i can transfer the heat from the motor housing 21 i to the fins 14 i .
  • the motor sleeve 1 j of FIG. 6B has the same or similar configurations as the motor sleeve 1 i of FIG. 6A .
  • the components shown in FIG. 6B having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 6A , and the detailed descriptions thereof will be omitted.
  • each of the sleeve chasses 16 b ⁇ 16 h comprises at least one fixing end for installing the fan 4 .
  • the installation position of the fan 4 can refer to that shown in FIG. 2 .
  • each of the sleeve bases 11 i and 11 j comprises at least one fixing end for installing the fan 4 .
  • the installation position of the fan 4 can refer to that shown in FIG. 2 .
  • the branched fins of the heat dissipation plates can be used as the extension structure of the motor driver housing and the cylindrical motor sleeve, and the motor driver housing can be fixed by the locking points of the extending horizontal structure along with the elastic washer.
  • These extension structures can be used to fix one or more fans.
  • the added locking points, which are disposed on the extension horizontal structure, can be used to install more fans for speeding the heat dissipation rate.
  • the cylindrical motor sleeve design can install the motor driver housing at any desired direction.
  • the metal slide rail can also be configured on the horizontal extension structures of the branched fins for installing or uninstalling the motor driver housing.
  • the motor sleeve of this disclosure has an inner surface assembled with the motor and an outer surface assembled with the motor driver, so that the motor device can be quickly assembled.
  • the motor sleeve has a plurality of fins for speeding the heat conducting and dissipating.
  • the motor sleeve of this disclosure is provided between the motor and the motor driver for connecting the motor and the motor driver. Accordingly, this disclosure can reduce the vibration transferred from the motor to the motor driver, and rapidly assemble the motor and the motor driver.
  • the motor sleeve is a cylindrical heat dissipation sleeve, which can mount on and extend from the heat dissipating plates of the motor so as to increase the heat transmission effect of the assembled motor driver and motor.
  • the additional detachable fan can be further provided to achieve the rapid heat dissipation effect of the motor and the motor driver.

Abstract

A motor sleeve is applied to a motor housing and a motor driver housing. The motor sleeve includes a sleeve base, a second fixing structure, a second coupling structure, a plurality of base fins, a sleeve chassis, a plurality of chassis fins, and a third fixing structure. The second fixing structure is disposed on an inner surface of the sleeve base and correspondingly fixed to a first fixing structure of the motor housing. The sleeve base is installed on a lateral portion of the motor housing. The base fins are separately disposed on an outer surface of the sleeve base and corresponding to a first coupling structure of the motor driver housing. The motor driver housing is coupled to the sleeve base by the first and second coupling structures. The third fixing structure is correspondingly fixed to a fourth fixing structure of the motor housing.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation Application (CA) of an earlier filed, pending, application, having application Ser. No. 16/103,221 and filed on Aug. 14, 2018, the content of which, including drawings, is expressly incorporated by reference herein.
  • BACKGROUND Technology Field
  • The present disclosure relates to a motor and a sleeve thereof and, in particular, to an integrated motor drive and a sleeve thereof.
  • Description of Related Art
  • The integrated motor drive (IMD) device mainly includes a motor and a motor driver. The motor driver can drive the motor to rotate. In general, the motor driver is an inverter. Moreover, the motor driver further includes a controller for controlling the rotation speed of the motor.
  • For example, in the integrated motor drive device, the motor and the inverter are assembled and integrated together. This configuration has the advantages of saving power and space. Thus, the expansive connecting wires between the motor and the inverter can be reduced, and the external connection and layout can be also minimized. This integration design can decrease the required space for the integrated motor drive device, and the decreased layout can also make the circuit design much simpler.
  • However, in the integration design, the vibration of the motor can be easily transferred to the inverter, which may cause the damage of the inverter. In addition, the heat generated by the operating motor can also be transferred to the inverter, which can reduce the lifetime of the inverter.
  • Therefore, it is an importance subject to provide an integrated motor drive and a sleeve thereof that can speed up the heat dissipation and reduce the vibration transmission.
  • SUMMARY
  • In view of the foregoing, this disclosure provides a motor sleeve and a motor device that can speed the heat dissipation and reduce the vibration transmission.
  • A motor sleeve is applied to a motor housing and a motor driver housing. A first fixing structure is disposed on a side portion of the motor housing, and the motor driver housing comprises a first coupling structure. The motor sleeve comprises a sleeve base, a second fixing structure, a second coupling structure and a plurality of base fins. The sleeve base comprises an outer surface and an inner surface opposite to the outer surface. The second fixing structure is disposed on the inner surface and located corresponding to the first fixing structure of the motor housing. The sleeve base is fixed to the motor housing by the first fixing structure and the second fixing structure. The sleeve base is installed on the side portion of the motor housing. The second coupling structure is disposed on the outer surface. The base fins are separately disposed on the outer surface and located corresponding to the first coupling structure of the motor driver housing. The motor driver housing is coupled to the sleeve base by the first coupling structure and the second coupling structure.
  • In one embodiment, the sleeve base further comprises a first branched fin and a second branched fin. The first branched fin extends horizontally from a first fin end portion of the base fins. The second branched fin extends horizontally from a second fin end portion of the base fins.
  • In one embodiment, the first branched fin and the second branched fin are thermal coupled to the motor driver housing.
  • In one embodiment, the sleeve base comprises at least a fixing end for installing a fan.
  • In one embodiment, the motor sleeve further comprises a sleeve chassis, a plurality of chassis fins, and a third fixing structure. The sleeve chassis comprises an outer chassis surface and an inner chassis surface opposite to the outer chassis surface. The chassis fins are separately disposed on the outer chassis surface. The third fixing structure is disposed on the inner chassis surface and located corresponding to a fourth fixing structure of the motor housing. The sleeve chassis is fixed to the motor housing by the third fixing structure and the fourth fixing structure. The sleeve base and the sleeve chassis are coupled to form the motor sleeve.
  • In one embodiment, the sleeve chassis comprises at least a fixing end for installing a fan.
  • A motor device comprises a motor, a motor driver and a motor sleeve. The motor comprises a motor housing, and a first fixing structure is disposed on a side portion of the motor housing. The motor driver comprises a motor driver housing, and the motor driver housing comprises a first coupling structure. The motor sleeve comprises a sleeve base, a second fixing structure, a second coupling structure and a plurality of base fins. The sleeve base comprises an outer surface and an inner surface opposite to the outer surface. The second fixing structure is disposed on the inner surface and located corresponding to the first fixing structure of the motor housing. The sleeve base is fixed to the motor housing by the first fixing structure and the second fixing structure, and the sleeve base is installed on the side portion of the motor housing. The second coupling structure is disposed on the outer surface. The base fins are separately disposed on the outer surface and located corresponding to the first coupling structure of the motor driver housing. The motor driver housing is coupled to the sleeve base by the first coupling structure and the second coupling structure.
  • In one embodiment, the motor housing further comprises a plurality of heat dissipation plates extending from an outer wall of the motor housing and separately arranged with a predetermined interval so as to form a plurality of gaps.
  • In one embodiment, the second fixing structure comprises a plurality of recesses corresponding to a shape of the heat dissipation plates and thermal coupling to the heat dissipation plates.
  • In one embodiment, a bottom portion of the motor driver housing comprises at least a protrusion, and the protrusion forms a heat exchange portion and is accommodated in at least a gap between the base fins.
  • In one embodiment, the sleeve base further comprises a first branched fin and a second branched fin. The first branched fin extends horizontally from a first fin end portion of the base fins. The second branched fin extends horizontally from a second fin end portion of the base fins.
  • In one embodiment, the first branched fin and the second branched fin are thermal coupled to the motor driver housing.
  • In one embodiment, the sleeve base comprises at least a fixing end for installing a fan.
  • In one embodiment, the motor sleeve further comprises a sleeve chassis, a plurality of chassis fins, and a third fixing structure. The sleeve chassis comprises an outer chassis surface and an inner chassis surface opposite to the outer chassis surface. The chassis fins are separately disposed on the outer chassis surface. The third fixing structure is disposed on the inner chassis surface and located corresponding to a fourth fixing structure of the motor housing. The sleeve chassis is fixed to the motor housing by the third fixing structure and the fourth fixing structure. The sleeve base and the sleeve chassis are coupled to form the motor sleeve.
  • In one embodiment, the sleeve chassis comprises at least a fixing end for installing a fan.
  • In one embodiment, the motor device further comprises a fan installed on an end portion of the motor housing and an end portion of the sleeve base.
  • In one embodiment, wherein an air output surface of the fan is located away from the end portion of the motor housing and the end portion of the sleeve base.
  • A detachable motor heat dissipation sleeve comprises a base, a chassis, at least a damping material, and a plurality of fins. The base comprises an outer surface and an inner surface opposite to the outer surface. The chassis comprises an outer chassis surface and an inner chassis surface opposite to the outer chassis surface. The damping material is coupled to the inner surface or the inner chassis surface. The fins are separately disposed on the outer surface and the outer chassis surface. The base and the chassis are connected to form a heat dissipation sleeve.
  • A detachable motor heat dissipation sleeve is applied to a motor housing and comprises a base, a plurality of fins, and a plurality of fixing structures. The base comprises an outer surface and an inner surface opposite to the outer surface. The fins are separately disposed on the outer surface. The fixing structures are separately disposed on the inner surface for installing the base on the outer surface of the motor housing. The base can transfer the heat from the motor housing to the fins.
  • As mentioned above, the motor sleeve of this disclosure has an inner surface assembled with the motor and an outer surface assembled with the motor driver, so that the motor device can be quickly assembled. In addition, the motor sleeve has a plurality of fins for speeding the heat conducting and dissipating. Compared with the conventional integrated motor drive, which fixes the motor driver on the motor by screws or slide rails, the motor sleeve of this disclosure is provided between the motor and the motor driver for connecting the motor and the motor driver. Accordingly, this disclosure can reduce the vibration transferred from the motor to the motor driver, and rapidly assemble the motor and the motor driver. In some embodiments, the motor sleeve is a cylindrical heat dissipation sleeve, which can mount on and extend from the heat dissipating plates of the motor so as to increase the heat transmission effect of the assembled motor driver and motor. Moreover, the additional detachable fan can be further provided to achieve the rapid heat dissipation effect of the motor and the motor driver.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The disclosure will become more fully understood from the detailed description and accompanying drawings, which are given for illustration only, and thus are not limitative of the present disclosure, and wherein:
  • FIG. 1A is a schematic diagram showing a motor device of an embodiment;
  • FIG. 1B is a schematic diagram of a motor sleeve of FIG. 1A;
  • FIG. 1C is a front view of the motor device of FIG. 1A;
  • FIG. 2 is a schematic diagram showing a motor device of an embodiment;
  • FIGS. 3A to 3C are side views of different aspects of the motor device;
  • FIGS. 4A and 4B are side views of different aspects of the motor device;
  • FIGS. 5A and 5B are side views of different aspects of the motor device; and
  • FIGS. 6A and 6B are side views of different aspects of the motor device.
  • DETAILED DESCRIPTION OF THE DISCLOSURE
  • The present disclosure will be apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.
  • FIG. 1A is a schematic diagram showing a motor device 5 according to an embodiment of this disclosure. Referring to FIG. 1A, a motor device 5 comprises a motor 2, a motor driver 3 and a motor sleeve 1. The motor device 5 is, for example, an integrated motor drive (IMD) device. The motor sleeve 1 is provided to integrate the motor 2 and the motor driver 3. The motor driver 3 can be designed based on the connected motor 2 for achieving the maximum performance of the motor 2 and sufficiently reducing the required wires between the conventional motor, sensing devices, driver and control system.
  • The motor 2 comprises a motor housing 21 and a shaft 22. The shaft 22 protrudes from one end of the motor housing 21 and extends outwardly. The shaft 22 can connect to an object and drive the object to rotate. The internal components of the motor 2 are disposed inside the motor housing 21. The internal components include, for example, a rotor and a stator. The shaft 22 is installed on the rotor, and the rotor can drive the shaft 22 to rotate.
  • The motor driver 3 includes a motor driver housing 31 and a driver circuit 32. The driver circuit 32 is disposed inside the motor driver housing 31 and electrically connecting to the motor 2 for driving the motor 2 to rotate. For example, the driver circuit 32 includes a plurality of power transistors. The driver circuit 32 can be formed on a circuit board, and the circuit board can be installed inside the motor driver housing 31. In addition, based on the type of the motor 2, the driver circuit 32 can be an inverter or a converter.
  • In addition, the driver circuit 32 can electrically connect to an external control system for controlling the rotation speed of the motor 2. For example, the external control system may output a control signal to the driver circuit 32. Alternatively, the driver circuit 32 may include a controller, which can output a control signal to the driver of the driver circuit 32, and the driver can drive the motor 2 to rotate. The driver can be, for example, an inverter or a converter. The control signal can control the current, voltage, or frequency outputted from the driver circuit 32 to the motor 2, thereby controlling the rotation speed of the motor 2. The control signal can be, for example, a PWM signal or a digital signal, which may carry an instruction.
  • FIG. 1B is a schematic diagram of a motor sleeve 1 of FIG. 1A, and FIG. 1C is a front view of the motor device 5 of FIG. 1A. Referring to FIGS. 1A to 1C, a first fixing structure 212 is disposed on a side portion 211 of the motor housing 21, and the motor driver housing 31 comprises a first coupling structure 311. The motor sleeve 1 comprises a sleeve base 11, a second fixing structure 12, a second coupling structure 13, and a plurality of base fins 14. The sleeve base 11 comprises an outer surface 111 and an inner surface 112 opposite to the outer surface 111. The second fixing structure 12 is disposed on the inner surface 112 and located corresponding to the first fixing structure 212 of the motor housing 21. The sleeve base 11 is fixed to the motor housing 21 by the first fixing structure 212 and the second fixing structure 12. The sleeve base 11 is installed on the side portion 211 of the motor housing 21. The second coupling structure 13 is disposed on the outer surface 111. The base fins 14 are separately disposed on the outer surface 111. The second coupling structure 13 is located corresponding to the first coupling structure 311 of the motor driver housing 31. The motor driver housing 31 is coupled to the sleeve base 11 by the first coupling structure 311 and the second coupling structure 13.
  • The inner surface 112 of the motor sleeve 1 is assembled with the motor 2, so that the heat generated by the operating motor 2 will be transferred to the motor housing 21 and then reach the motor sleeve 1. The outer surface 111 of the motor sleeve 1 is connected to the motor driver 3. In the motor driver 3, the driver circuit 32 also generates heat during the operation, and the generated heat will be transferred to the motor driver housing 31 and then reach the motor sleeve 1. After reaching the motor sleeve 1, the heat can be dissipated by the base fins 14 of the motor sleeve 1. This configuration can speed the heat dissipation rate and simultaneously dissipate the heat of the motor 2 and the motor driver 3 by a single motor sleeve 1.
  • The motor sleeve 1 is disposed between the motor 2 and the motor driver 3. In this embodiment, the motor driver 3 is not directly fixed on the motor 2 by screws or slide rails. Accordingly, the disclosure can reduce the vibration transferred from the motor 2 to the motor driver 3.
  • In this embodiment, the outer surface of the motor housing 21 is shaped as the first fixing structure 212, and the inner surface 111 of the sleeve base 11 is directly shaped as the second fixing structure 12. The shape of the first fixing structure 212 matches the shape of the second fixing structure 12, so that the motor sleeve 1 can be tightly mounted on the motor housing 21. For example, the motor sleeve 1 is a cylindrical heat dissipation sleeve, and the motor housing 21 has a cylinder shape. Therefore, the motor sleeve 1 can mount on the motor 2. The annularly extending heat dissipation plates can rapidly conduct and dissipate the heat of the rotor and stator of the motor 2. Since the motor 2 does not have any heat dissipation plates, the motor sleeve 1 can mount on and be fixed to the motor 2 (by screwing).
  • In addition, the first coupling structure 311 and the second coupling structure 13 are connected by screws or rivets. In this case, the first coupling structure 311 and the second coupling structure 13 are holes. The amount of the first coupling structure 311 can be one or more, and amount of the second coupling structure 13 can also be one or more. For example, this embodiment may configure four first coupling structures 311 and four second coupling structures 13.
  • Moreover, the motor device further comprises a fan 4 installed on an end portion 214 of the motor housing 21 and an end portion 15 of the sleeve base 11. An air output surface 41 of the fan 4 is located away from the end portion 214 of the motor housing 21 and the end portion 15 of the sleeve base 11. The fan 4 blows toward a direction D. The configuration of the additional detachable fan 4 can rapidly and simultaneously dissipate the heat of the motor 2 and the motor driver 3, which are integrated.
  • Furthermore, the sleeve base 11 further comprises a first branched fin 113 and a second branched fin 114. The first branched fin 113 extends horizontally from a first fin end portion 141 of the base fins 14. The second branched fin 114 extends horizontally from a second fin end portion 142 of the base fins 14.
  • The first branched fin 113 and the second branched fin 114 are thermal coupled to the motor driver housing 31. For example, the first branched fin 113 and the second branched fin 114 can be directly or indirectly connected to the motor driver housing 31, and they can be thermal coupled so that the heat can be conducted therebetween. In the indirectly connection case, another thermal conductive element is provided to connect the first branched fin 113 with the motor driver housing 31 and to connect the second branched fin 114 with the motor driver housing 31.
  • FIG. 2 is a schematic diagram showing a motor device 5 a of an embodiment. As shown in FIG. 2, the motor housing 21 a of the motor device 5 a further comprises a plurality of heat dissipation plates 215 extending from an outer wall of the motor housing 21 a and separately arranged with a predetermined interval so as to form a plurality of gaps. The positions of the gaps can be designed based on the heat source(s) of the motor so as to precisely dissipate the generated heat and reduce the loss of the heat dissipation material.
  • In this embodiment, the heat dissipation plates 215 can be directly used as the first fixing structures 212 a, and the second fixing structure 12 a of the motor sleeve 1 a comprises a plurality of recesses. The recesses can be designed corresponding to the shape of the heat dissipation plates 215, so that the recesses and the heat dissipation plates 215 can be thermal coupled with each other. For example, the recesses are disposed at the inner side of the sleeve base 11 a, and the second fixing structures 12 a can be inserted into the recesses and directly or indirectly contact the heat dissipation plates 215. Thus, they can be thermal coupled so that the heat can be conducted therebetween. In the indirectly connection case, another thermal conductive element is provided between the second fixing structures 12 a and the heat dissipation plates 215. The amount of the first fixing structures 212 a can be one or more, and amount of the second fixing structures 12 a can also be one or more. For example, this embodiment may configure four first fixing structures 212 a and four second fixing structures 12 a.
  • The cylindrical motor sleeve 1 a is mounted and fixed on the heat dissipation plates 215 of the motor 2 a, so that the motor sleeve 1 a can be an extension structure of the heat dissipation plates 215. The motor sleeve 1 a can be attached to the surface of the motor 2 a and form a larger thermal conductive surface for achieving the effect of rapidly heat transmission. The motor driver housing 31 can also be designed as a thermal conductive element. The combination of the motor driver housing 31 and the cylindrical motor sleeve 1 a can provide the rapid heat transmission for the driver components. The fan 4 can be additionally and detachably disposed on the cylindrical motor sleeve 1 a. The configuration of the additional detachable fan 4 can rapidly and simultaneously dissipate the heat of the motor 2 a and the motor driver 3 by a single motor sleeve 1 a.
  • For example, as shown in FIGS. 1A and 2, the sleeve base 11 or 11 a can be a single sheet. The single sheet is curved, and the two ends of the curved sheet are connected at the fixing positions 116, thereby forming a sleeve shape. The two ends of the curved sheet can be connected by screwing, engaging or hooking. In addition, the sleeve base 11 or 11 a can also be formed by another process, such as pressing or casting.
  • As shown in FIG. 2, the sleeve base 11 a comprises at least one fixing end 115 for installing the fan 4. The fan 4 can be installed by embedding. In more details, the fan 4 has a protrusion for embedding into the fixing end 115. In other aspects, the fans 4 can be screwed on the sleeve base 11. The sleeve base 11 and the fan 4 as shown in FIG. 1A can also be assembled as the way shown in FIG. 2.
  • As shown in FIGS. 1A and 2, the fan 4 is an axial-flow fan. Of course, the fan 4 can also be a side channel blower or a centrifugal fan. When the fan 4 is an axial-flow fan, the blades of the fan 4 are disposed corresponding to the integrated structural design of the motor 2 or 2 a and the motor driver 3 for providing the effect of simultaneous and rapid heat dissipation.
  • Referring to FIG. 2, regarding the motor sleeve 1 a and the motor housing 21 a, the motor sleeve 1 a is a detachable motor heat dissipation sleeve, which can be additionally mounted on the motor housing 21 a. The motor sleeve 1 a comprises a base 11 a (referring to the sleeve base 11 a), a plurality of fins 14 a (referring to the base fins 14 a), and a plurality of fixing structures 12 a (referring to the second fixing structure 12 a). The base 11 a comprises an outer surface 111 a and an inner surface 112 a opposite to the outer surface 111 a. The fins 14 a are separately disposed on the outer surface 111 a. The fixing structures 12 a are separately disposed on the inner surface 112 a for installing the base 11 a on the outer surface of the motor housing 21 a. The base 11 a can transfer the heat from the motor housing 21 a to the fins 14 a.
  • In some modified aspects, the motor sleeve may not comprise a single sleeve base but further comprise other components (e.g. a sleeve chassis). These modified aspects will be described hereinafter with reference to the following drawings.
  • FIGS. 3A to 3C are side views of different aspects of the motor device. In the motor device 5 b of FIG. 3A, the motor sleeve 1 b further comprises a sleeve chassis 16 b, a plurality of chassis fins 17 b, and a third fixing structure 18 b. The sleeve base 11 b is coupled to the sleeve chassis 16 b to form the body of the motor sleeve 1 b. For example, an elastic washer 7 is disposed between the sleeve base 11 b and the sleeve chassis 16 b, and a screw is provided to screw and fix the sleeve base 11 b and the sleeve chassis 16 b. The configuration of the elastic washer 7 can reduce the vibration transmission from the motor 2, thereby inhibiting the motor vibration and decreasing the vibration transferred from the motor to the motor driver.
  • The sleeve chassis 16 b comprises an outer chassis surface 161 b and an inner chassis surface 162 b opposite to the outer chassis surface 161 b. The chassis fins 17 b are separately disposed on the outer chassis surface 161 b. The third fixing structure 18 b is disposed on the inner chassis surface 162 b and located corresponding to a fourth fixing structure 213 of the motor housing 21. The sleeve chassis 16 b is fixed to the motor housing 21 by the third fixing structure 18 b and the fourth fixing structure 213.
  • In this embodiment, the outer surface of the motor housing 21 is shaped as the fourth fixing structure 213, and the inner chassis surface 162 b of the sleeve chassis 16 b is directly shaped as the third fixing structure 18 b. The shape of the fourth fixing structure 213 matches the shape of the third fixing structure 18 b, so that the motor sleeve 1 b can be tightly mounted on the motor housing 21.
  • The motor sleeve 1 b further comprises at least one damping material 6, which is coupled to the inner surface 112 b or the inner chassis surface 162 b. The damping material 6 is disposed between the motor housing 21 and the motor sleeve 1 b for decreasing the vibration transmission of the motor 2.
  • The motor sleeves 1 c-1 d of FIGS. 3B and 3C have the same or similar configurations as the motor sleeve 1 b of FIG. 3A. The components shown in FIGS. 3B and 3C having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 3A, and the detailed descriptions thereof will be omitted.
  • As shown in FIG. 3A, each of the sleeve base 11 b and the sleeve chassis 16 b has a semicircular shape, and the first branched fin 113 and the second branched fin 114 are disposed at the opposite positions of the circle of the sleeve base 11 b. As shown in FIG. 3B, the sleeve base 11 c has a larger arc shape than the sleeve chassis 16 c, and the first branched fin 113 c and the second branched fin 114 c are disposed at the lower part of the sleeve base 11 c. For example, as shown in FIG. 3B, the sleeve chassis 16 c can stand on the ground, the surface of another object, or a horizontal plane, and the motor driver 3 can be installed at the lateral side of the motor device 5 c instead of the top thereof.
  • As shown in FIG. 3C, the sleeve base 11 d further comprises a branched fin 117, which extends similar to the first branched fin 113. A fan 8 is installed on the branched fin 117 for enhancing the heat dissipation efficiency.
  • As shown in FIG. 3A, the motor sleeve 1 b is a detachable motor heat dissipation sleeve, and the motor sleeve 1 b comprises a base 11 b (referring to the sleeve base 11 b), a chassis 16 b (referring to the sleeve chassis 16 b), at least a damping material 6, and a plurality of fins 14 b and 17 b (referring to the base fins 14 b and the chassis fins 17 b). The base 11 b comprises an outer surface 111 b and an inner surface 112 b opposite to the outer surface 111 b. The chassis 16 b comprises an outer chassis surface 161 b and an inner chassis surface 162 b opposite to the outer chassis surface 161 b. The damping material 6 is coupled to the inner surface 112 b or the inner chassis surface 162 b. The fins 14 b and 17 b are separately disposed on the outer surface 111 b and the outer chassis surface 161 b. The base 11 b and the chassis 16 b are connected to form a heat dissipation sleeve. The motor sleeves 1 c-1 d of FIGS. 3B and 3C have the same or similar configurations as the motor sleeve 1 b of FIG. 3A. The components shown in FIGS. 3B and 3C having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 3A, and the detailed descriptions thereof will be omitted.
  • FIGS. 4A and 4B are side views of different aspects of the motor device. In the motor device 5 e of FIG. 4A, the heat dissipation plates 215 e of the motor 2 e can be used as the first fixing structure 212 e and the fourth fixing structure 213 e. The second fixing structure 12 e of the base 11 e and the third fixing structure 18 e of the chassis 16 e comprise a plurality of recesses. The shape of the recesses correspond to the heat dissipation plates 215 e, and the recesses are thermal coupled with the heat dissipation plates 215 e. For example, the recesses of the second fixing structure 12 e and the third fixing structure 18 e can directly or indirectly contact the heat dissipation plates 215 e. Thus, they can be thermal coupled so that the heat can be conducted therebetween. In the indirectly connection case, another thermal conductive element is provided between the second fixing structures 12 e and the heat dissipation plates 215 e. The amount of the fixing structures can be one or more, and this disclosure is not limited. In addition, the second fixing structure 12 e and the third fixing structure 8 e are located corresponding to the base fins 14 e and the chassis fins 17 e, respectively, and the fixing structures are disposed at the roots of the corresponding fins. The motor sleeve 1 f of FIG. 4B has the same or similar configurations as the motor sleeve 1 e of FIG. 4A. The components shown in FIG. 4B having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 4A, and the detailed descriptions thereof will be omitted.
  • As shown in FIG. 4A, in another aspect, the motor sleeve 1 e is a detachable motor heat dissipation sleeve, and the motor sleeve 1 e comprises a base 11 e (referring to the sleeve base 11 e), a chassis 16 e (referring to the sleeve chassis 16 e), and a plurality of fins 14 e and 17 e (referring to the base fins 14 e and the chassis fins 17 e). The base 11 e comprises an outer surface 111 e and an inner surface 12 e opposite to the outer surface 111 e. The chassis 16 e comprises an outer chassis surface 161 e and an inner chassis surface 162 e opposite to the outer chassis surface 16 e. The fins 14 e and 17 e are separately disposed on the outer surface 111 e and the outer chassis surface 161 e. The base 11 e and the chassis 16 e are connected to form a heat dissipation sleeve. In addition, the motor sleeve 1 e may further comprise at least a damping material, which is coupled to the inner surface 112 e or the inner chassis surface 162 e. The configuration of the damping material can be referred to the damping material 6 as shown in FIGS. 3A to 3C. The motor sleeve 1 f of FIG. 4B has the same or similar configurations as the motor sleeve 1 e of FIG. 4A. The components shown in FIG. 4B having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 4A, and the detailed descriptions thereof will be omitted.
  • As shown in FIG. 4A, in another aspect, regarding the motor sleeve 1 e and the motor housing 21 e, the motor sleeve 1 e is a detachable motor heat dissipation sleeve, which can be mounted on the motor housing 21 e. The motor sleeve 1 e comprises a base 11 e (referring to the sleeve base 11 e), a plurality of fins 14 e (referring to the base fins 14 e), and a plurality of fixing structures 12 e (referring to the second fixing structures 12 e of the base 11 e). The base 11 e comprises an outer surface 111 e and an inner surface 112 e opposite to the outer surface 111 e. The fins 14 e are separately disposed on the outer surface 111 e. The fixing structures 12 e are separately disposed on the inner surface 112 e for installing the base 11 e on the outer surface of the motor housing 21 e. The base 11 e can transfer the heat from the motor housing 21 e to the fins 14 e. The motor sleeve 1 f of FIG. 4B has the same or similar configurations as the motor sleeve 1 e of FIG. 4A. The components shown in FIG. 4B having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 4A, and the detailed descriptions thereof will be omitted.
  • FIGS. 5A and 5B are side views of different aspects of the motor device. In the motor device 5 g of FIG. 5A, the heat dissipation plates 215 g of the motor 2 g can be used as the first fixing structure 212 g and the fourth fixing structure 213 g. The second fixing structure 12 g and the third fixing structure 18 g comprise a plurality of recesses. The shape of the recesses correspond to the heat dissipation plates 215 g, and the recesses are thermal coupled with the heat dissipation plates 215 g. In addition, the second fixing structure 12 g is located between the base fins 14 g, and the third fixing structure 18 g is located between the chassis fins 17 g. The heat dissipation plates 215 g do not reach the roots of the base fins 14 g and the chassis fins 17 g. The motor sleeve 1 h of FIG. 5B has the same or similar configurations as the motor sleeve 1 g of FIG. 5A. The components shown in FIG. 5B having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 5A, and the detailed descriptions thereof will be omitted.
  • As shown in FIG. 5A, in another aspect, the motor sleeve 1 g is a detachable motor heat dissipation sleeve, and the motor sleeve 1 g comprises a base 11 g (referring to the sleeve base 11 g), a chassis 16 g (referring to the sleeve chassis 16 g), and a plurality of fins 14 g and 17 g (referring to the base fins 14 g and the chassis fins 17 g). The base 11 g comprises an outer surface 111 g and an inner surface 112 g opposite to the outer surface 111 g. The chassis 16 g comprises an outer chassis surface 161 g and an inner chassis surface 162 g opposite to the outer chassis surface 161 g. The fins 14 g and 17 g are separately disposed on the outer surface 111 g and the outer chassis surface 161 g. The base 11 g and the chassis 16 g are connected to form a heat dissipation sleeve. In addition, the motor sleeve 1 g may further comprise at least a damping material, which is coupled to the inner surface 112 g or the inner chassis surface 162 g. The configuration of the damping material can be referred to the damping material 6 as shown in FIGS. 3A to 3C. The motor sleeve 1 h of FIG. 5B has the same or similar configurations as the motor sleeve 1 g of FIG. 5A. The components shown in FIG. 5B having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 5A, and the detailed descriptions thereof will be omitted.
  • As shown in FIG. 6A, in another aspect, regarding the motor sleeve 1 g and the motor housing 21 g, the motor sleeve 1 g is a detachable motor heat dissipation sleeve, which can be mounted on the motor housing 21 g. The motor sleeve 1 g comprises a base 11 g (referring to the sleeve base 11 g), a plurality of fins 14 g (referring to the base fins 14 g), and a plurality of fixing structures 12 g (referring to the second fixing structures 12 g of the base 11 g). The base 11 g comprises an outer surface 111 g and an inner surface 112 g opposite to the outer surface 111 g. The fins 14 g are separately disposed on the outer surface 111 g. The fixing structures 12 g are separately disposed on the inner surface 112 g for installing the base 11 g on the outer surface of the motor housing 21 g. The base 11 g can transfer the heat from the motor housing 21 g to the fins 14 g. The motor sleeve 1 h of FIG. 5B has the same or similar configurations as the motor sleeve 1 g of FIG. 5A. The components shown in FIG. 5B having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 5A, and the detailed descriptions thereof will be omitted.
  • FIGS. 6A and 6B are side views of different aspects of the motor device. In the motor devices 5 i and 5 j of FIGS. 6A and 6B, a bottom portion of the motor driver housing 31 comprises at least a protrusion 33, and the protrusion 33 forms a heat exchange portion and is accommodated in at least a gap between the base fins 14 i and 14 j. To be noted, each of the bottom portions of the motor driver housings 31 of FIGS. 3A to 3C, 4A to 4B, and 5A to 5B may also be configured with a protrusion 33 similar to the configuration of the gap of FIG. 6A or 6B.
  • As shown in FIG. 6A, in another aspect, the motor sleeve 1 i is a detachable motor heat dissipation sleeve, which can be mounted on the motor housing 21 i. The motor sleeve 1 i comprises a base 11 i (referring to the sleeve base 11 i), a plurality of fins 14 i (referring to the base fins 14 i), and a plurality of fixing structures 12 i (referring to the second fixing structures 12 i of the base 11 i). The base 11 i comprises an outer surface 111 i and an inner surface 112 i opposite to the outer surface 111 i. The fins 14 i are separately disposed on the outer surface 111 i. The fixing structures 12 i are separately disposed on the inner surface 112 i for installing the base 11 i on the outer surface of the motor housing 21 i. The base 11 i can transfer the heat from the motor housing 21 i to the fins 14 i. The motor sleeve 1 j of FIG. 6B has the same or similar configurations as the motor sleeve 1 i of FIG. 6A. The components shown in FIG. 6B having the same digits or the same digits with different alphabets can be referred to the corresponding components of FIG. 6A, and the detailed descriptions thereof will be omitted.
  • As shown in FIGS. 3A to 3C, 4A to 4B, and 5A to 5B, each of the sleeve chasses 16 b˜16 h comprises at least one fixing end for installing the fan 4. The installation position of the fan 4 can refer to that shown in FIG. 2. As shown in FIGS. 6A and 6B, each of the sleeve bases 11 i and 11 j comprises at least one fixing end for installing the fan 4. The installation position of the fan 4 can refer to that shown in FIG. 2.
  • In the above embodiments, the branched fins of the heat dissipation plates can be used as the extension structure of the motor driver housing and the cylindrical motor sleeve, and the motor driver housing can be fixed by the locking points of the extending horizontal structure along with the elastic washer. These extension structures can be used to fix one or more fans. The added locking points, which are disposed on the extension horizontal structure, can be used to install more fans for speeding the heat dissipation rate. The cylindrical motor sleeve design can install the motor driver housing at any desired direction. Moreover, the metal slide rail can also be configured on the horizontal extension structures of the branched fins for installing or uninstalling the motor driver housing.
  • In summary, the motor sleeve of this disclosure has an inner surface assembled with the motor and an outer surface assembled with the motor driver, so that the motor device can be quickly assembled. In addition, the motor sleeve has a plurality of fins for speeding the heat conducting and dissipating. Compared with the conventional integrated motor drive, which fixes the motor driver on the motor by screws or slide rails, the motor sleeve of this disclosure is provided between the motor and the motor driver for connecting the motor and the motor driver. Accordingly, this disclosure can reduce the vibration transferred from the motor to the motor driver, and rapidly assemble the motor and the motor driver. In some embodiments, the motor sleeve is a cylindrical heat dissipation sleeve, which can mount on and extend from the heat dissipating plates of the motor so as to increase the heat transmission effect of the assembled motor driver and motor. Moreover, the additional detachable fan can be further provided to achieve the rapid heat dissipation effect of the motor and the motor driver.
  • Although the disclosure has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments, will be apparent to persons skilled in the art. It is, therefore, contemplated that the appended claims will cover all modifications that fall within the true scope of the disclosure.

Claims (16)

What is claimed is:
1. A motor sleeve applied to a motor housing and a motor driver housing, wherein a first fixing structure is disposed on a lateral portion of the motor housing, and the motor driver housing comprises a first coupling structure, the motor sleeve comprising:
a sleeve base comprising an outer surface and an inner surface opposite to the outer surface;
a second fixing structure disposed on the inner surface and corresponding to the first fixing structure of the motor housing, wherein the sleeve base is fixed to the motor housing by the first fixing structure and the second fixing structure, and the sleeve base is installed on the lateral portion of the motor housing;
a second coupling structure disposed on the outer surface;
a plurality of base fins separately disposed on the outer surface and corresponding to the first coupling structure of the motor driver housing, wherein the motor driver housing is coupled to the sleeve base by the first coupling structure and the second coupling structure;
a sleeve chassis comprising an outer chassis surface and an inner chassis surface opposite to the outer chassis surface;
a plurality of chassis fins separately disposed on the outer chassis surface; and
a third fixing structure disposed on the inner chassis surface and corresponding to a fourth fixing structure of the motor housing, wherein the sleeve chassis is fixed to the motor housing by the third fixing structure and the fourth fixing structure;
wherein the sleeve base and the sleeve chassis are coupled to form the motor sleeve.
2. The motor sleeve according to claim 1, wherein the sleeve base further comprises:
a first branched fin extending horizontally from a first fin end portion of the base fins; and
a second branched fin extending horizontally from a second fin end portion of the base fins.
3. The motor sleeve according to claim 2, wherein the first branched fin and the second branched fin are thermally coupled to the motor driver housing.
4. The motor sleeve according to claim 1, wherein the sleeve base comprises at least a fixing end for installing a fan.
5. The motor sleeve according to claim 4, wherein the sleeve chassis comprises at least a fixing end for installing a fan.
6. A motor device, comprising:
a motor comprising a motor housing, wherein a first fixing structure is disposed on a lateral portion of the motor housing;
a motor driver comprising a motor driver housing, wherein the motor driver housing comprises a first coupling structure; and
a motor sleeve comprising:
a sleeve base comprising an outer surface and an inner surface opposite to the outer surface;
a second fixing structure disposed on the inner surface and corresponding to the first fixing structure of the motor housing, wherein the sleeve base is fixed to the motor housing by the first fixing structure and the second fixing structure, and the sleeve base is installed on the lateral portion of the motor housing;
a second coupling structure disposed on the outer surface;
a plurality of base fins separately disposed on the outer surface and corresponding to the first coupling structure of the motor driver housing, wherein the motor driver housing is coupled to the sleeve base by the first coupling structure and the second coupling structure;
a sleeve chassis comprising an outer chassis surface and an inner chassis surface opposite to the outer chassis surface;
a plurality of chassis fins separately disposed on the outer chassis surface; and
a third fixing structure disposed on the inner chassis surface and corresponding to a fourth fixing structure of the motor housing, wherein the sleeve chassis is fixed to the motor housing by the third fixing structure and the fourth fixing structure;
wherein the sleeve base and the sleeve chassis are coupled to form the motor sleeve.
7. The motor device according to claim 6, wherein the motor housing further comprises:
a plurality of heat dissipation plates extending from an outer wall of the motor housing and separately arranged with a predetermined interval so as to form a plurality of gaps.
8. The motor device according to claim 6, wherein the second fixing structure comprises:
a plurality of recesses corresponding to a shape of the heat dissipation plates and thermally coupled to the heat dissipation plates.
9. The motor device according to claim 6, wherein a bottom portion of the motor driver housing comprises at least a protrusion, and the protrusion forms a heat exchange portion and is accommodated in at least a gap between the base fins.
10. The motor device according to claim 6, wherein the sleeve base further comprises:
a first branched fin extending horizontally from a first fin end portion of the base fins; and
a second branched fin extending horizontally from a second fin end portion of the base fins.
11. The motor device according to claim 10, wherein the first branched fin and the second branched fin are thermally coupled to the motor driver housing.
12. The motor device according to claim 6, wherein the sleeve base comprises at least a fixing end for installing a fan.
13. The motor device according to claim 12, wherein the sleeve chassis comprises at least a fixing end for installing a fan.
14. The motor device according to claim 6, further comprising:
a fan installed on an end portion of the motor housing and an end portion of the sleeve base.
15. The motor device according to claim 14, wherein an air output surface of the fan is away from the end portion of the motor housing and the end portion of the sleeve base.
16. A detachable motor heat dissipation sleeve, comprising:
a base comprising an outer surface and an inner surface opposite to the outer surface;
a chassis comprising an outer chassis surface and an inner chassis surface opposite to the outer chassis surface;
at least a damping material coupled to the inner surface or the inner chassis surface;
a plurality of fins separately disposed on the outer surface and the outer chassis surface; and
a fixing structure disposed on the inner chassis surface;
wherein the base and the chassis are connected to form a heat dissipation sleeve.
US17/039,176 2018-06-22 2020-09-30 Motor sleeve and motor device Abandoned US20210013766A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/039,176 US20210013766A1 (en) 2018-06-22 2020-09-30 Motor sleeve and motor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW107121568 2018-06-22
TW107121568A TWI672892B (en) 2018-06-22 2018-06-22 Motor sleeve and motor device
US16/103,221 US10826347B2 (en) 2018-06-22 2018-08-14 Motor sleeve and motor device
US17/039,176 US20210013766A1 (en) 2018-06-22 2020-09-30 Motor sleeve and motor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/103,221 Continuation US10826347B2 (en) 2018-06-22 2018-08-14 Motor sleeve and motor device

Publications (1)

Publication Number Publication Date
US20210013766A1 true US20210013766A1 (en) 2021-01-14

Family

ID=68618752

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/103,221 Active 2038-11-29 US10826347B2 (en) 2018-06-22 2018-08-14 Motor sleeve and motor device
US17/039,176 Abandoned US20210013766A1 (en) 2018-06-22 2020-09-30 Motor sleeve and motor device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US16/103,221 Active 2038-11-29 US10826347B2 (en) 2018-06-22 2018-08-14 Motor sleeve and motor device

Country Status (3)

Country Link
US (2) US10826347B2 (en)
CN (2) CN110635601B (en)
TW (1) TWI672892B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210071652A1 (en) * 2018-08-16 2021-03-11 Dongguan Richtek Electronics Co., Ltd. Inflator with motor fixing ring
CN113991920A (en) * 2021-11-17 2022-01-28 江苏航天动力机电有限公司 Permanent magnet motor with electric-control hydraulic adjustable shock-absorbing heat-dissipating housing

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110071585B (en) * 2018-01-23 2021-01-19 台达电子工业股份有限公司 Motor and heat dissipation device thereof
WO2021004656A1 (en) * 2019-07-11 2021-01-14 Sew-Eurodrive Gmbh & Co. Kg Conveyor having an electric motor
CN110855059A (en) * 2019-11-18 2020-02-28 衡阳韵翔电机有限公司 Explosion-proof motor base
CN112060890B (en) * 2020-09-15 2021-12-31 新沂市宏祥电子有限公司 Power device of low heat improvement of new energy automobile
CN113890262A (en) * 2021-09-08 2022-01-04 湖北丰瑞德机械有限公司 Translation door motor fixed baseplate convenient to dismantle installation
CN114243994B (en) * 2021-11-09 2023-11-21 安徽孟凌精密电子有限公司 Brushless motor capable of rapidly radiating heat and mounting method thereof
CN116581930B (en) * 2023-05-12 2023-11-14 常州市金三士机电有限公司 Stepping motor with noise reduction function

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1688891A (en) * 1927-01-10 1928-10-23 Kelvinator Corp Electric motor
GB1248957A (en) * 1968-12-16 1971-10-06 Gen Electric Co Ltd Improvements in or relating to electric motors
US4105905A (en) * 1975-01-08 1978-08-08 General Electric Company Auxiliary cooling device
US4103192A (en) * 1976-06-14 1978-07-25 General Electric Company Heat dissipating motor mounting arrangement
CH633392A5 (en) * 1978-05-03 1982-11-30 Zschokke Wartmann Ag Stator FOR A LUFTGEKUEHLTE ELECTRIC MACHINE.
US4244098A (en) * 1978-05-26 1981-01-13 General Electric Company Method of assembling a dynamoelectric machine and an auxiliary cooling device
US4213498A (en) 1978-11-15 1980-07-22 American Hcp Low-cost flexible plastic heat exchanger
DE8024246U1 (en) * 1980-09-11 1981-01-08 Aluminium-Walzwerke Singen Gmbh, 7700 Singen ENGINE HOUSING IN THE FORM OF A TUBULAR SHEATH
US4465946A (en) * 1981-08-10 1984-08-14 Century Electric, Inc. Interlocking frame assembly for an electric motor stator
JPS58127541A (en) * 1982-01-26 1983-07-29 Toshiba Corp Rotary electric machine
US4839547A (en) * 1988-03-28 1989-06-13 Wertec Corporation Motor frame and motor with increased cooling capacity
DE4243044C2 (en) * 1991-12-20 1996-07-11 Gold Star Co Inverter-motor combination
CA2087763C (en) * 1992-02-11 2002-07-02 Jimmy Cochimin Stator frame for dynamoelectric machine and method for making same
ATA105093A (en) * 1993-05-28 2001-07-15 Steyr Daimler Puch Ag LIQUID-COOLED DRIVE UNIT FOR AN ELECTROMOBILE
US5397950A (en) * 1993-12-23 1995-03-14 Cary Products Co., Inc. Isolation motor mount and gasket
US6435836B1 (en) * 1998-02-09 2002-08-20 Ebara Corporation Fluid machinery
GB2334827B (en) * 1998-02-28 2002-09-25 Brook Motors Ltd Housing support
GB2336039A (en) * 1998-04-03 1999-10-06 Wei Ta Chuang T-shaped heat dissipating fins on motor casing
DE19846156C1 (en) 1998-10-07 2000-07-27 Bosch Gmbh Robert Arrangement of a multi-phase converter
GB9822915D0 (en) 1998-10-21 1998-12-16 Electrodrives Limited Casing
FR2791805B1 (en) 1999-03-30 2001-08-03 Commissariat Energie Atomique EXTREMELY LONG-TERM STORAGE FACILITY OF HEAT PRODUCTS SUCH AS NUCLEAR WASTE
US6437469B1 (en) * 2000-09-25 2002-08-20 Aaon, Inc. Heat dissipating collar for motor
JP3946950B2 (en) 2000-10-17 2007-07-18 三菱電機株式会社 AC generator for vehicles
DE10114321A1 (en) 2001-03-23 2002-10-24 Siemens Ag Electrical machine
US20030006024A1 (en) * 2001-07-05 2003-01-09 Ta-Chin Wang Radiator for a motor of an air compressor
JP3759097B2 (en) 2002-10-24 2006-03-22 ファナック株式会社 Cooling jacket and motor equipped with cooling jacket
JP2005094949A (en) * 2003-09-18 2005-04-07 Yaskawa Electric Corp Air-cooled motor
WO2005107042A1 (en) * 2004-04-01 2005-11-10 Sew-Eurodrive Gmbh & Co. Kg Electric motor and range of electric motors
TW200824233A (en) 2006-11-17 2008-06-01 Hiwin Mikrosystem Corp Radiating cover for a shaft type linear motor
TWM321825U (en) 2007-03-09 2007-11-11 Hardinge Taiwan Prec Machinery Reinforcing structure of main shaft box of processing machine
US20090071624A1 (en) * 2007-09-18 2009-03-19 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Heat sink
US7923875B2 (en) * 2008-04-25 2011-04-12 A.O. Smith Corporation Assembly for an electric machine
US7977832B2 (en) * 2008-05-21 2011-07-12 Nidec Motor Corporation Cooling system for a motor and associated electronics
DE102008028658A1 (en) * 2008-06-18 2009-12-24 Sew-Eurodrive Gmbh & Co. Kg Electric motor, has sensor housing fastened to fan cover surrounding fan wheel, housing forming part fastened to fan cover, and sensor shaft implemented as spreading shaft and connected to shaft in force-fit manner
JP5889512B2 (en) * 2008-12-24 2016-03-22 株式会社東芝 Vehicle drive device
CN201336599Y (en) * 2009-01-05 2009-10-28 马凌华 Housing of motor
DE102010008584A1 (en) * 2010-02-19 2011-08-25 Magna Powertrain Ag & Co Kg Electric drive unit
CN101752945A (en) * 2010-03-12 2010-06-23 湘潭电机股份有限公司 Motor shell with radiating fins and manufacturing method thereof
US8912698B2 (en) * 2011-10-03 2014-12-16 Elco Motor Yachts, LLC Motor assembly with integrated cooling means and enclosed compartment for electronic circuitry
EP2639940B1 (en) * 2012-03-15 2014-09-24 Grundfos Holding A/S Electric motor
CN202602445U (en) * 2012-04-12 2012-12-12 江苏丽岛新材料股份有限公司 Aluminum motor housing
CN202696381U (en) * 2012-05-23 2013-01-23 熊泰原 Variable-frequency motor device for feeder
TWI459690B (en) * 2012-08-09 2014-11-01 Chun Chao Wang Protruding-pole type linear motor and reciprocal double piston compressor with a protruding-pole type linear motor
TWM448849U (en) * 2012-09-28 2013-03-11 Jin-Quan Huang Sheet metal motor housing structure
WO2014094082A1 (en) * 2012-12-21 2014-06-26 Weg Equipamentos Elétricos S.A. - Motores Heat exchange system for casings of rotary electric machines
JP5968811B2 (en) * 2013-03-12 2016-08-10 住友重機械工業株式会社 Motor frame
CN103683685B (en) * 2013-10-22 2016-09-14 宁波腾隆户外用品有限公司 Integrated servo motor
CN106464070B (en) * 2014-04-04 2019-05-28 尼得科安萨工业系统有限公司 Induction motor
EP3151394B1 (en) * 2014-05-26 2020-07-22 Hitachi Industrial Equipment Systems Co., Ltd. Rotating electric machine assembly body
CN204205780U (en) * 2014-09-17 2015-03-11 欣达重工股份有限公司 The radiator structure of generator housing
CN105099043B (en) * 2014-10-10 2018-02-23 青岛三利智能动力有限公司 A kind of variable-frequency motor
WO2016096042A1 (en) * 2014-12-19 2016-06-23 Arcelik Anonim Sirketi Individual cooling fin and an electric motor having the same
CN205051497U (en) * 2015-08-03 2016-02-24 上虞市曹娥电机制造有限公司 Low -noise motor
CN205509791U (en) * 2016-01-29 2016-08-24 沈云明 A motor dissipating heat highly efficiently
CN106451885A (en) * 2016-11-24 2017-02-22 张红卫 Electromotor capable of filtering dust and high in heat dissipation performance
CN206490525U (en) * 2017-03-09 2017-09-12 江苏久知电机技术有限公司 A kind of feed pump drive device and feed pump
CN206559195U (en) * 2017-03-17 2017-10-13 宁波革新电机科技有限公司 A kind of structure improved ventilated machine
CN206834880U (en) * 2017-04-13 2018-01-02 佛山市南海区合信模具有限公司 A kind of coronal card slot type motor housing
CN107104534B (en) * 2017-05-15 2020-07-07 河南质量工程职业学院 Shock attenuation shell structure for motor
TWM548929U (en) 2017-06-30 2017-09-11 東元電機股份有限公司 Inverter connection components
CN207117387U (en) * 2017-08-17 2018-03-16 安徽皖南电机股份有限公司 Frequency conversion controller of motor
CN207442575U (en) * 2017-09-29 2018-06-01 湖南润泰新能源科技有限公司 A kind of shockproof detraction type motor housing
CN207442576U (en) * 2017-09-29 2018-06-01 湖南润泰新能源科技有限公司 A kind of double-layer electric casing
CN207426864U (en) * 2017-11-14 2018-05-29 宜昌博远电子有限公司 A kind of micro motor water-tight device
TWI652884B (en) * 2017-12-20 2019-03-01 東元電機股份有限公司 Motor frame with bumps
CN208608852U (en) * 2018-07-31 2019-03-15 郑州智驱科技有限公司 New-type electric machine outer shell cooling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210071652A1 (en) * 2018-08-16 2021-03-11 Dongguan Richtek Electronics Co., Ltd. Inflator with motor fixing ring
CN113991920A (en) * 2021-11-17 2022-01-28 江苏航天动力机电有限公司 Permanent magnet motor with electric-control hydraulic adjustable shock-absorbing heat-dissipating housing

Also Published As

Publication number Publication date
CN110635601B (en) 2021-02-02
CN111969753B (en) 2021-09-21
CN110635601A (en) 2019-12-31
US20190393758A1 (en) 2019-12-26
US10826347B2 (en) 2020-11-03
TW202002467A (en) 2020-01-01
CN111969753A (en) 2020-11-20
TWI672892B (en) 2019-09-21

Similar Documents

Publication Publication Date Title
US20210013766A1 (en) Motor sleeve and motor device
US7812487B2 (en) Controller for a direct current brushless motor
CN110635632B (en) Motor device and heat dissipation device
US9160207B2 (en) High power brushless DC motor and control box structure with heat dissipation arrangement
US20150369257A1 (en) Motor fan
TWI526621B (en) Fan
JP2006291947A (en) Fan for ventilating electrical and electronic equipment
US20190393759A1 (en) Integrated motor drive and integrated heat dissipation system
US7554227B2 (en) Heat-dissipating device for motor base
KR101973554B1 (en) Fan shroud integrating dual fan
CN103904813A (en) Large-power motor heat-radiation structure
AU2012201818B2 (en) Indoor equipment of air-conditioner
JP4792482B2 (en) Fixing structure between radiator of motor control device and assembly parts
CN113038781A (en) Servo driver with independent air duct structure
JP5532156B2 (en) Blower
JP5217900B2 (en) Blower
JP2002223574A (en) Inverter device
JP3279536B2 (en) Inverter device
JPH07115778A (en) Inverter device
CN211378593U (en) Servo driver with independent air duct structure
WO2019016865A1 (en) Electric motor and ventilation fan
JP4663692B2 (en) Motor drive circuit heat sink
WO2020100195A1 (en) Control board, and outdoor unit for air conditioner
JP2006070836A (en) Motor fan
TW200533273A (en) Cooler applying in electronic apparatus

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION