US20200385920A1 - Magnetic fabric for molding applications - Google Patents

Magnetic fabric for molding applications Download PDF

Info

Publication number
US20200385920A1
US20200385920A1 US16/890,360 US202016890360A US2020385920A1 US 20200385920 A1 US20200385920 A1 US 20200385920A1 US 202016890360 A US202016890360 A US 202016890360A US 2020385920 A1 US2020385920 A1 US 2020385920A1
Authority
US
United States
Prior art keywords
scrim
magnetic
yarns
coating
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/890,360
Inventor
Sudhanshu Srivastava
Warren W. Gerhardt
Emily W. Michaels
Jeffrey A. Stafford
Kurt Neuville
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Milliken and Co
Original Assignee
Milliken and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Milliken and Co filed Critical Milliken and Co
Priority to US16/890,360 priority Critical patent/US20200385920A1/en
Assigned to MILLIKEN & COMPANY reassignment MILLIKEN & COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: STAFFORD, JEFFREY A., GERHARDT, WARREN W., SRIVASTAVA, Sudhanshu, MICHAELS, EMILY W., NEUVILLE, Kurt
Publication of US20200385920A1 publication Critical patent/US20200385920A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/507Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads magnetic
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D25/00Woven fabrics not otherwise provided for
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D9/00Open-work fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/10Open-work fabrics
    • D04B21/12Open-work fabrics characterised by thread material
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/01Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof
    • D06M11/05Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with hydrogen, water or heavy water; with hydrides of metals or complexes thereof; with boranes, diboranes, silanes, disilanes, phosphines, diphosphines, stibines, distibines, arsines, or diarsines or complexes thereof with water, e.g. steam; with heavy water
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/49Oxides or hydroxides of elements of Groups 8, 9, 10 or 18 of the Periodic System; Ferrates; Cobaltates; Nickelates; Ruthenates; Osmates; Rhodates; Iridates; Palladates; Platinates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0006Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0059Organic ingredients with special effects, e.g. oil- or water-repellent, antimicrobial, flame-resistant, magnetic, bactericidal, odour-influencing agents; perfumes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0056Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the compounding ingredients of the macro-molecular coating
    • D06N3/0068Polymeric granules, particles or powder, e.g. core-shell particles, microcapsules
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/06Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with polyvinylchloride or its copolymerisation products
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2201/00Chemical constitution of the fibres, threads or yarns
    • D06N2201/02Synthetic macromolecular fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2203/00Macromolecular materials of the coating layers
    • D06N2203/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N2203/045Vinyl (co)polymers
    • D06N2203/048Polyvinylchloride (co)polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2205/00Condition, form or state of the materials
    • D06N2205/02Dispersion
    • D06N2205/023Emulsion, aqueous dispersion, latex
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/04Properties of the materials having electrical or magnetic properties
    • D06N2209/045Magnetic, paramagnetic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/01Surface features
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • D10B2403/024Fabric incorporating additional compounds
    • D10B2403/0241Fabric incorporating additional compounds enhancing mechanical properties
    • D10B2403/02412Fabric incorporating additional compounds enhancing mechanical properties including several arrays of unbent yarn, e.g. multiaxial fabrics
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/02Cross-sectional features
    • D10B2403/024Fabric incorporating additional compounds
    • D10B2403/0243Fabric incorporating additional compounds enhancing functional properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/10Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
    • Y10T442/102Woven scrim
    • Y10T442/109Metal or metal-coated fiber-containing scrim

Definitions

  • the present invention generally relates to creating magnetic scrims for easier processing for molding applications.
  • foams such as polyurethanes are combined with other textile layers such as scrims during the molding process.
  • the scrims can give the polyurethane additional strength and other characteristics such as fire resistance.
  • the invention relates to a magnetic scrim containing a scrim which contains a plurality of yarns and a magnetic coating covering at least a portion of the yarns of the scrim.
  • the magnetic coating which contains magnetic elements dispersed in a binder, where the magnetic coating is at least about 40% by weight magnetic elements, and where the magnetic coating has an areal density of at least twice the areal density of the scrim.
  • FIG. 1 illustrates one embodiment of a magnetic scrim.
  • FIG. 2 is a photograph of one embodiment of the scrim (before being coated with the magnetic coating).
  • the magnetic scrim 10 contains a scrim 100 having a first side 100 a and a second side 100 b .
  • the scrim 100 contains a plurality of yarns.
  • the magnetic scrim 10 also contains a magnetic coating 120 that covers at least a portion of the yarns of the scrim 100 .
  • This magnetic scrim 10 would be placed in a mold with at least one magnet to hold the scrim in place while the mold is prepared and polyurethane (or other moldable material) is introduced and then cured in the mold.
  • the term “scrim” shall mean a fabric having an open construction used as a base fabric or a reinforcing fabric, which may be manufactured as laid scrim, a woven scrim, a knit scrim, a weft-inserted warp knit scrim, a multi-axial warp knit scrim, a stitch-bonded scrim, or a cross-plied scrim.
  • the scrim contains a plurality of yarns and the yarns may be adhesively or thermally bonded or may be unbonded to each other.
  • the scrim 100 may be any suitable scrim including any suitable light-weight woven, knit, or nonwoven fabric.
  • the scrim layer is a weft inserted warp knit scrim.
  • a weft inserted warp knit scrim 100 contains a plurality of warp yarns 110 , weft yarns 111 , and stitching yarns 113 .
  • the stitching yarns 113 may have any suitable stitching pattern, including tricot stitches or pillar stitches, or other stitches.
  • the weft yarns 111 can be laid in every course (every row of stitches from the stitching yarn), every second course (every second row of stitches from the stitching yarn), every third course (every third row of stitches from the stitching yarn) or more.
  • the scrim 100 comprises a plurality of yarns in a warp direction and a plurality of yarns in a weft direction defined to be approximately perpendicular to the warp direction.
  • at least a portion of the plurality of yarns in a weft direction are polyester texturized polyester yarns.
  • the yarns of the scrim can be any suitable yarns, include any suitable materials, structure, and thickness.
  • the yarns making up the strip-shaped textile forming the strip-shaped substrate 200 may be any suitable yarn.
  • “Yarn”, in this application, as used herein includes a monofilament elongated body, a multifilament elongated body, ribbon, strip, fiber, tape, and the like.
  • the term yarn includes a plurality of any one or combination of the above.
  • the yarns may be of any suitable form such as spun staple yarn, monofilament, or multifilament, single component, bi-component, or multi-component, and have any suitable cross-section shape such as circular, multi-lobal, square or rectangular (tape), and oval.
  • the yarns are monofilament. In another embodiment, the yarns are multifilament. In another embodiment, the yarns contain mono and multifilaments. In one preferred embodiment, at least a portion of the yarns are texturized as this has been found to be beneficial in the coating process. In one embodiment, the weft yarns of the weft inserted warp yarn knit scrim are texturized.
  • Some suitable materials for the yarns include polyamide, aramid (including meta and para forms), rayon, PVA (polyvinyl alcohol), polyester, polyolefin, polyvinyl, nylon (including nylon 6, nylon 6,6, and nylon 4,6), polyethylene naphthalate (PEN), cotton, steel, carbon, fiberglass, steel, polyacrylic, polytrimethylene terephthalate (PTT), polycyclohexane dimethylene terephthalate (PCT), polybutylene terephthalate (PBT), PET modified with polyethylene glycol (PEG), polylactic acid (PLA), polytrimethylene terephthalate, nylons (including nylon 6 and nylon 6,6); regenerated cellulosics (such as rayon or Tencel); elastomeric materials such as spandex; high-performance fibers such as the polyaramids, and polyimides natural fibers such as cotton, linen, ramie, and hemp, proteinaceous materials such as silk, wool, and other animal hairs such as angora, alpaca
  • the magnetic scrim 10 contains a magnetic coating 120 .
  • the magnetic coating 120 preferably covers at least a portion of yarns of the scrim 100 . More preferably, the magnetic coating 120 covers essentially all of the surface area of the yarns in the scrim (defined as covering at least 95% of the surface area of the yarns).
  • the magnetic coating 120 contains magnetic elements and a binder.
  • the magnetic elements 120 have a persistent magnetic field.
  • the term “persistent magnetic field” refers to a magnetic field that persists for an extended period of time, such as the magnetic field of a traditional permanent magnet.
  • the magnetic elements and magnetically responsive elements are magnetically attracted when in close proximity to each other. This magnetic attraction produces a force that draws and reversibly holds together the magnetic scrim 10 and the mold.
  • the magnetic elements can be any suitable material that has a persistent magnetic field.
  • the magnetic elements can be permanent magnets made from materials such as iron, nickel, neodymium, cobalt, alloys of such metals (e.g., BaFe 3 O 4 , SrFe 3 O 4 , AlNiCo) and alloys of rare earth metals, such as NdFeB and CoSm.
  • materials such as iron, nickel, neodymium, cobalt, alloys of such metals (e.g., BaFe 3 O 4 , SrFe 3 O 4 , AlNiCo) and alloys of rare earth metals, such as NdFeB and CoSm.
  • the magnetic elements can have any suitable magnetic flux density.
  • the magnetic flux density of the magnetic elements is one factor that will determine the strength of the attraction between the magnetic elements and the magnetically receptive elements. Therefore, the desired magnetic flux density of the magnetic elements will depend, at least in part, on the desired attractive force between the elements (and substrates attached to those elements).
  • the magnetic elements exhibit a magnetic flux density of about 50 gauss (G) or more (about 5 millitesla (mT) or more), about 100 G or more (about 10 mT or more), about 150 G or more (about 15 mT or more), or about 200 G or more (about 20 mT or more).
  • the magnetic coating preferably comprises a binder and magnetic elements.
  • the binder can be any suitable binder that will adhere to the scrim and bind together the magnetic elements.
  • Suitable binders include, but are not limited to, urethane binders, acrylic binders, silicone binders, thermoplastic binders, thermoset binders, cements, rubber, and geopolymers.
  • the binder preferably remains flexible after curing.
  • the binder preferably is selected from the group consisting of urethane binders, acrylic binders, silicone binders, and mixtures thereof.
  • the magnetic elements can have any suitable particle size.
  • the magnetic elements have a particle size of about 100 microns or less. More preferably, the magnetic elements have a particle size of about 50 microns or less.
  • the particle size of the material can affect the magnetic characteristics exhibited by the magnetic elements.
  • the magnetic elements can be present in the magnetic coating in any suitable amount.
  • the amount of magnetic elements present in the magnetic coating may depend upon several factors, such as the desired strength of the magnetic response and the type of magnetic elements used in the magnetic coating.
  • the magnetic elements (which may be one type of element or mixtures of multiple types of elements) generally account for an appreciable percentage of the overall magnetic coating.
  • the magnetic elements are present in the magnetic coating in an amount of about 20 wt. % or more, about 30 wt. % or more, about 40 wt. % or more, about 50 wt. % or more, or about 60 wt. % or more of the coating.
  • the magnetic elements are present in the magnetic coating in an amount of about 90 wt. % or less. In a more preferred embodiment, the magnetic elements is present in the magnetic coating in an amount of about 20 wt. % to about 90 wt. % (e.g., about 30 wt. % to about 90 wt. %, about 40 wt. % to about 90 wt. %, about 50 wt. % to about 90 wt. %, or about 60 wt. % to about 90 wt. %), about 30 wt. % to about 80 wt. %, about 30 wt. % to about 70 wt. %, or about 40 wt. % to about 60 wt. % of the coating. In another embodiment, the magnetic elements are present in the magnetic coating in an amount of at least about 40 wt. %, more preferably at least about 60 wt. %.
  • the magnetic coating can be applied to the scrim in any suitable amount.
  • the amount of coating applied to the substrate will depend upon several factors, such as the magnetic strength of the magnetic elements, the amount of magnetic elements in the coating, and the desired magnetic flux density to be exhibited by the coating 120 . Due to the amount of coating 120 applied to the scrim 100 and the high content of magnetic elements in the coating, the coating has a high areal density (weight per area). In one embodiment, the magnetic coating has an areal weight of at least about twice that of the areal density of the scrim. In another embodiment, the magnetic coating has an areal weight of at least about 2.5 times that of the areal density of the untreated scrim. In one embodiment, the magnetic coating has an areal weight of at least about 40 g/m 2 . In another embodiment, the magnetic coating has an areal weight of between about 40 and 110 g/m 2 .
  • the magnetic coating 120 is applied to the scrim 100 in any suitable manner.
  • the coating 120 is applied from an aqueous solution (or mixture or emulsion).
  • An aqueous based system is preferred for environmental reasons.
  • the coating is solvent based.
  • the coating 120 is coated by gravure coating, knife coating, curtain coating, printing, and transfer coating.
  • the pattern could be in any suitable pattern.
  • the pattern may be continuous or discontinuous, regular and repeating or random. “Continuous” in this application means that from one edge of the textile to the other edge there is a path that contains the pattern and that at least some of the pattern areas are connected. Examples of continuous patterns include straight lines and a grid. “Discontinuous” in this application means that the areas of the pattern are discontinuous and not touching one another. In a discontinuous pattern, there is no path from one edge of the fabric to the other that contains the pattern. Examples of discontinuous patterns include dots. Regular or repeating patterns mean that the pattern has a repeating structure to it. The pattern may also be a random pattern where there is no repeat to the pattern. In a random pattern, it is preferred that the random pattern is also discontinuous, not continuous.
  • the pattern may take any patterned form including but not limited to indicia, geometric shapes or patterns, lines (straight and curved), grids, and text.
  • the scrim 100 may be coated with additional layers before or after the magnetic coating 120 is applied.
  • the scrim 100 is coated with PVC (polyvinyl chloride) before being coated with the magnetic coating 120 .
  • PVC polyvinyl chloride
  • the PVC pre-coating step may provide stability to the loose knit, giving it a structure that may be easily handled without creating any distortion in the arrangement of the warp and weft yarns.
  • the PVC coating may also keep the warp yarns tightly bundled and the textured weft yarns fixed in a bloomed, high surface-area form.
  • the mold is being magnetizable so that the magnetic scrim will be attracted and attach to the mold.
  • the interior surface of the mold contains iron, nickel, cobalt, an alloys of certain rare earth metals, or mixtures thereof.
  • the attraction between the magnetic scrim and mold is strong enough to hold the scrim in place until other materials are introduced into the mold.

Abstract

The invention relates to a magnetic scrim containing a scrim which contains a plurality of yarns and a magnetic coating covering at least a portion of the yarns of the scrim. The magnetic coating contains magnetic elements and a binder, where the magnetic coating is at least about 40% by weight magnetic elements, and where the magnetic coating has an areal density of at least twice the areal density of the scrim.

Description

    RELATED APPLICATIONS
  • This application claims priority to co-pending U.S. Provisional Patent Application 62/857,078, filed on Jun. 4, 2019, which is herein incorporated by reference in its entirety.
  • FIELD OF THE INVENTION
  • The present invention generally relates to creating magnetic scrims for easier processing for molding applications.
  • BACKGROUND
  • In some molding applications, foams such as polyurethanes are combined with other textile layers such as scrims during the molding process. The scrims can give the polyurethane additional strength and other characteristics such as fire resistance. There is a need for a scrim that is more easily inserted and positioned within the mold to reduce incorrect molding location and operator time to position the scrim.
  • BRIEF SUMMARY
  • The invention relates to a magnetic scrim containing a scrim which contains a plurality of yarns and a magnetic coating covering at least a portion of the yarns of the scrim. The magnetic coating, which contains magnetic elements dispersed in a binder, where the magnetic coating is at least about 40% by weight magnetic elements, and where the magnetic coating has an areal density of at least twice the areal density of the scrim.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates one embodiment of a magnetic scrim.
  • FIG. 2 is a photograph of one embodiment of the scrim (before being coated with the magnetic coating).
  • DETAILED DESCRIPTION
  • Referring now to FIG. 1, there is shown one embodiment of the magnetic scrim 10. The magnetic scrim 10 contains a scrim 100 having a first side 100 a and a second side 100 b. The scrim 100 contains a plurality of yarns. The magnetic scrim 10 also contains a magnetic coating 120 that covers at least a portion of the yarns of the scrim 100.
  • This magnetic scrim 10 would be placed in a mold with at least one magnet to hold the scrim in place while the mold is prepared and polyurethane (or other moldable material) is introduced and then cured in the mold.
  • As used herein, the term “scrim” shall mean a fabric having an open construction used as a base fabric or a reinforcing fabric, which may be manufactured as laid scrim, a woven scrim, a knit scrim, a weft-inserted warp knit scrim, a multi-axial warp knit scrim, a stitch-bonded scrim, or a cross-plied scrim. The scrim contains a plurality of yarns and the yarns may be adhesively or thermally bonded or may be unbonded to each other.
  • The scrim 100 may be any suitable scrim including any suitable light-weight woven, knit, or nonwoven fabric. Preferably, the scrim layer is a weft inserted warp knit scrim. A weft inserted warp knit scrim 100 contains a plurality of warp yarns 110, weft yarns 111, and stitching yarns 113. The stitching yarns 113 may have any suitable stitching pattern, including tricot stitches or pillar stitches, or other stitches. The weft yarns 111 can be laid in every course (every row of stitches from the stitching yarn), every second course (every second row of stitches from the stitching yarn), every third course (every third row of stitches from the stitching yarn) or more. How open or closed (how close together the yarns are within the scrim 100, is determined by the types and sizes of the yarns and the desired properties of the scrim 100 and magnetic scrim 10. One suitable scrim, not coated with the magnetic coating yet, is shown in FIG. 2.
  • In one embodiment the scrim 100 comprises a plurality of yarns in a warp direction and a plurality of yarns in a weft direction defined to be approximately perpendicular to the warp direction. In another embodiment, at least a portion of the plurality of yarns in a weft direction are polyester texturized polyester yarns.
  • The yarns of the scrim can be any suitable yarns, include any suitable materials, structure, and thickness. The yarns making up the strip-shaped textile forming the strip-shaped substrate 200 may be any suitable yarn. “Yarn”, in this application, as used herein includes a monofilament elongated body, a multifilament elongated body, ribbon, strip, fiber, tape, and the like. The term yarn includes a plurality of any one or combination of the above. The yarns may be of any suitable form such as spun staple yarn, monofilament, or multifilament, single component, bi-component, or multi-component, and have any suitable cross-section shape such as circular, multi-lobal, square or rectangular (tape), and oval. In one embodiment, the yarns are monofilament. In another embodiment, the yarns are multifilament. In another embodiment, the yarns contain mono and multifilaments. In one preferred embodiment, at least a portion of the yarns are texturized as this has been found to be beneficial in the coating process. In one embodiment, the weft yarns of the weft inserted warp yarn knit scrim are texturized.
  • Some suitable materials for the yarns include polyamide, aramid (including meta and para forms), rayon, PVA (polyvinyl alcohol), polyester, polyolefin, polyvinyl, nylon (including nylon 6, nylon 6,6, and nylon 4,6), polyethylene naphthalate (PEN), cotton, steel, carbon, fiberglass, steel, polyacrylic, polytrimethylene terephthalate (PTT), polycyclohexane dimethylene terephthalate (PCT), polybutylene terephthalate (PBT), PET modified with polyethylene glycol (PEG), polylactic acid (PLA), polytrimethylene terephthalate, nylons (including nylon 6 and nylon 6,6); regenerated cellulosics (such as rayon or Tencel); elastomeric materials such as spandex; high-performance fibers such as the polyaramids, and polyimides natural fibers such as cotton, linen, ramie, and hemp, proteinaceous materials such as silk, wool, and other animal hairs such as angora, alpaca, and vicuna, fiber reinforced polymers, thermosetting polymers, blends thereof, and mixtures thereof. In a preferred embodiment, the yarns comprise polyester yarns. In another embodiment, the yarns of the magnetic scrim 10 consist essentially of polyester yarns (defined to be mean at least 98% of the yarns are polyester yarns).
  • Referring back to FIG. 1, the magnetic scrim 10 contains a magnetic coating 120. The magnetic coating 120 preferably covers at least a portion of yarns of the scrim 100. More preferably, the magnetic coating 120 covers essentially all of the surface area of the yarns in the scrim (defined as covering at least 95% of the surface area of the yarns). The magnetic coating 120 contains magnetic elements and a binder.
  • The magnetic elements 120 have a persistent magnetic field. As utilized herein, the term “persistent magnetic field” refers to a magnetic field that persists for an extended period of time, such as the magnetic field of a traditional permanent magnet. As is explained in detail below, the magnetic elements and magnetically responsive elements (such as some metals forming the inner walls of the mold) are magnetically attracted when in close proximity to each other. This magnetic attraction produces a force that draws and reversibly holds together the magnetic scrim 10 and the mold. The magnetic elements can be any suitable material that has a persistent magnetic field. For example, the magnetic elements can be permanent magnets made from materials such as iron, nickel, neodymium, cobalt, alloys of such metals (e.g., BaFe3O4, SrFe3O4, AlNiCo) and alloys of rare earth metals, such as NdFeB and CoSm.
  • The magnetic elements can have any suitable magnetic flux density. The magnetic flux density of the magnetic elements is one factor that will determine the strength of the attraction between the magnetic elements and the magnetically receptive elements. Therefore, the desired magnetic flux density of the magnetic elements will depend, at least in part, on the desired attractive force between the elements (and substrates attached to those elements). Preferably, the magnetic elements exhibit a magnetic flux density of about 50 gauss (G) or more (about 5 millitesla (mT) or more), about 100 G or more (about 10 mT or more), about 150 G or more (about 15 mT or more), or about 200 G or more (about 20 mT or more).
  • In a preferred embodiment, the magnetic coating preferably comprises a binder and magnetic elements. The binder can be any suitable binder that will adhere to the scrim and bind together the magnetic elements. Suitable binders include, but are not limited to, urethane binders, acrylic binders, silicone binders, thermoplastic binders, thermoset binders, cements, rubber, and geopolymers. The binder preferably remains flexible after curing. Thus, in a preferred embodiment, the binder preferably is selected from the group consisting of urethane binders, acrylic binders, silicone binders, and mixtures thereof.
  • The magnetic elements can have any suitable particle size. Preferably, the magnetic elements have a particle size of about 100 microns or less. More preferably, the magnetic elements have a particle size of about 50 microns or less. The particle size of the material can affect the magnetic characteristics exhibited by the magnetic elements.
  • The magnetic elements can be present in the magnetic coating in any suitable amount. The amount of magnetic elements present in the magnetic coating may depend upon several factors, such as the desired strength of the magnetic response and the type of magnetic elements used in the magnetic coating. Generally, in order to achieve a sufficiently strong magnetic response, the magnetic elements (which may be one type of element or mixtures of multiple types of elements) generally account for an appreciable percentage of the overall magnetic coating. Preferably, the magnetic elements are present in the magnetic coating in an amount of about 20 wt. % or more, about 30 wt. % or more, about 40 wt. % or more, about 50 wt. % or more, or about 60 wt. % or more of the coating. In another preferred embodiment, the magnetic elements are present in the magnetic coating in an amount of about 90 wt. % or less. In a more preferred embodiment, the magnetic elements is present in the magnetic coating in an amount of about 20 wt. % to about 90 wt. % (e.g., about 30 wt. % to about 90 wt. %, about 40 wt. % to about 90 wt. %, about 50 wt. % to about 90 wt. %, or about 60 wt. % to about 90 wt. %), about 30 wt. % to about 80 wt. %, about 30 wt. % to about 70 wt. %, or about 40 wt. % to about 60 wt. % of the coating. In another embodiment, the magnetic elements are present in the magnetic coating in an amount of at least about 40 wt. %, more preferably at least about 60 wt. %.
  • The magnetic coating can be applied to the scrim in any suitable amount. The amount of coating applied to the substrate will depend upon several factors, such as the magnetic strength of the magnetic elements, the amount of magnetic elements in the coating, and the desired magnetic flux density to be exhibited by the coating 120. Due to the amount of coating 120 applied to the scrim 100 and the high content of magnetic elements in the coating, the coating has a high areal density (weight per area). In one embodiment, the magnetic coating has an areal weight of at least about twice that of the areal density of the scrim. In another embodiment, the magnetic coating has an areal weight of at least about 2.5 times that of the areal density of the untreated scrim. In one embodiment, the magnetic coating has an areal weight of at least about 40 g/m2. In another embodiment, the magnetic coating has an areal weight of between about 40 and 110 g/m2.
  • The magnetic coating 120 is applied to the scrim 100 in any suitable manner. Preferably, the coating 120 is applied from an aqueous solution (or mixture or emulsion). An aqueous based system is preferred for environmental reasons. In other embodiments, the coating is solvent based. In one embodiment, the coating 120 is coated by gravure coating, knife coating, curtain coating, printing, and transfer coating.
  • Through deliberate design of the scrim construction, deliberate placement of the coating via a controlled coating process, or using both of these routes, a patterned deposition of the magnetic coating is possible. This patterned specificity can give a reduced final weight of the coated scrim, reduced cost, and/or design motifs that lend greater functionality to the final article.
  • The pattern, if employed, could be in any suitable pattern. The pattern may be continuous or discontinuous, regular and repeating or random. “Continuous” in this application means that from one edge of the textile to the other edge there is a path that contains the pattern and that at least some of the pattern areas are connected. Examples of continuous patterns include straight lines and a grid. “Discontinuous” in this application means that the areas of the pattern are discontinuous and not touching one another. In a discontinuous pattern, there is no path from one edge of the fabric to the other that contains the pattern. Examples of discontinuous patterns include dots. Regular or repeating patterns mean that the pattern has a repeating structure to it. The pattern may also be a random pattern where there is no repeat to the pattern. In a random pattern, it is preferred that the random pattern is also discontinuous, not continuous. The pattern may take any patterned form including but not limited to indicia, geometric shapes or patterns, lines (straight and curved), grids, and text.
  • The scrim 100 may be coated with additional layers before or after the magnetic coating 120 is applied. In one embodiment, the scrim 100 is coated with PVC (polyvinyl chloride) before being coated with the magnetic coating 120. The PVC pre-coating step may provide stability to the loose knit, giving it a structure that may be easily handled without creating any distortion in the arrangement of the warp and weft yarns. The PVC coating may also keep the warp yarns tightly bundled and the textured weft yarns fixed in a bloomed, high surface-area form.
  • The tightness of the warp yarns compared to the open receptiveness of the weft yarns makes this scrim substrate highly biased towards the addition of any further chemical treatment being concentrated almost exclusively in and on the weft yarns. After the magnetic coating is applied, this pronounced difference may be quantified by bisecting the fabric into separate warp and weft components. An elemental analysis of these separated yarns, detecting and quantifying the elemental signature of the magnetic elements, shows >95% by weight of the magnetic elements localized on the weft yarns.
  • The mold is being magnetizable so that the magnetic scrim will be attracted and attach to the mold. In one embodiment, the interior surface of the mold contains iron, nickel, cobalt, an alloys of certain rare earth metals, or mixtures thereof. Preferably, the attraction between the magnetic scrim and mold is strong enough to hold the scrim in place until other materials are introduced into the mold.
  • All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
  • The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
  • Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.

Claims (19)

What is claimed is:
1. A magnetic scrim comprising:
a scrim comprising a plurality of yarns;
a magnetic coating covering at least a portion of the yarns of the scrim, wherein the magnetic coating comprises magnetic elements and a binder, wherein the magnetic coating is at least about 40% by weight magnetic elements, and wherein the magnetic coating has an areal density of at least twice the areal density of the scrim.
2. The magnetic scrim of claim 1, wherein the scrim is a laid scrim.
3. The magnetic scrim of claim 1, wherein the scrim is a woven scrim.
4. The magnetic scrim of claim 1, wherein the scrim is a knit scrim.
5. The magnetic scrim of claim 4, wherein the scrim is a weft inserted warp knit scrim.
6. The magnetic scrim of claim 1, wherein the yarns of the scrim comprise polyester yarns.
7. The magnetic scrim of claim 6, wherein at least a portion of the polyester yarns are texturized polyester yarns.
8. The magnetic scrim of claim 1, wherein the scrim comprises a plurality of yarns in a warp direction and a plurality of yarns in a weft direction defined to be approximately perpendicular to the warp direction.
9. The magnetic scrim of claim 8, wherein at least a portion of the plurality of yarns in a weft direction are polyester texturized polyester yarns.
10. The magnetic scrim of claim 8, further comprises a plurality of stitching yarns in the warp direction.
11. The magnetic scrim of claim 1, wherein the magnetic elements comprise a material selected from the group consisting of iron, nickel, neodymium, and cobalt.
12. The magnetic scrim of claim 1, wherein the magnetic coating has an areal density of at least 2.5 times the areal density of the scrim.
13. The magnetic scrim of claim 1, wherein the magnetic coating is at least about 70% by weight magnetic elements.
14. The magnetic scrim of claim 1, wherein the magnetic coating is applied onto the scrim from an aqueous mixture.
15. The magnetic scrim of claim 14, wherein magnetic coating is applied by coating.
16. The magnetic scrim of claim 14, wherein magnetic coating is applied by padding.
17. The magnetic scrim of claim 1, wherein the magnetic scrim further comprises a layer of PVC between the yarns and the magnetic coating.
18. The magnetic scrim of claim 1, wherein the magnetic coating is in a pattern.
19. The magnetic scrim of claim 1, wherein the magnetic elements have an average particle size range of between about 50 nm to 50 microns.
US16/890,360 2019-06-04 2020-06-02 Magnetic fabric for molding applications Abandoned US20200385920A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/890,360 US20200385920A1 (en) 2019-06-04 2020-06-02 Magnetic fabric for molding applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962857078P 2019-06-04 2019-06-04
US16/890,360 US20200385920A1 (en) 2019-06-04 2020-06-02 Magnetic fabric for molding applications

Publications (1)

Publication Number Publication Date
US20200385920A1 true US20200385920A1 (en) 2020-12-10

Family

ID=71895157

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/890,360 Abandoned US20200385920A1 (en) 2019-06-04 2020-06-02 Magnetic fabric for molding applications

Country Status (3)

Country Link
US (1) US20200385920A1 (en)
EP (1) EP3980592B1 (en)
WO (1) WO2020247493A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469108A2 (en) * 2003-04-17 2004-10-20 GKD Gebr. Kufferath AG Fabric with active magnetic yarns and assembly of an upper belt with such a fabric and a lower belt

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1123795A (en) * 1965-02-04 1968-08-14 Vauxhall Motors Ltd Vehicle roof liners
US3444025A (en) * 1965-12-21 1969-05-13 Union Carbide Corp Method of bonding non-woven scrim
JPS61245372A (en) * 1986-04-16 1986-10-31 三菱樹脂株式会社 Conductive mesh fabric
DE10249290A1 (en) * 2002-10-22 2004-05-19 Rolf Schuhmacher knitted
EP2831328A4 (en) * 2012-03-26 2015-12-02 Saint Gobain Adfors Canada Ltd Off-angle laid scrims

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469108A2 (en) * 2003-04-17 2004-10-20 GKD Gebr. Kufferath AG Fabric with active magnetic yarns and assembly of an upper belt with such a fabric and a lower belt

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Espacenet translation of EP-1469108-A2. (Year: 2004) *

Also Published As

Publication number Publication date
WO2020247493A1 (en) 2020-12-10
EP3980592B1 (en) 2022-10-26
EP3980592A1 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
CN109642391A (en) Car mat with concealed basal component
US20100025442A1 (en) Tool retaining device
US3078183A (en) Adhesive tape with permanent magnets therein
US8464377B1 (en) Linen fastener
US20110179605A1 (en) Magnetic hook and loop interface system
JP2020509957A5 (en)
US20140159840A1 (en) Magentic mobile device holder
US20200385896A1 (en) Magnetic fabric for molding applications
US20140033394A1 (en) Magnetic clip cord management system
US20200385920A1 (en) Magnetic fabric for molding applications
US20180281660A1 (en) Axle strap with magnet sleeve
CN110494608A (en) Ground cushion is washed with enhancement layer
JP2016036463A (en) Seat pad and manufacturing method thereof
ATE495294T1 (en) GOODS MADE FROM CONTROLLED AIR PERMEABILITY COMPOSITE MATERIAL WITH IMPROVED SURFACE DURABILITY
CN105814247B (en) Needle cloth carrier
US20190111543A1 (en) Abrasive product
US10041207B2 (en) Coated scrim reinforced thermoplastic olefin roofing membrane
EP2375024B1 (en) Holding sealing material
US8578570B1 (en) Silencer patch for hook-and loop closure system
US10974440B2 (en) Adaption of magnetic particles within a resin substrate of a textile article
US10072419B2 (en) Coated scrim reinforced roofing membrane
US20170035214A1 (en) Magnetically attached mattress and foundation system
US11278097B2 (en) Magnetic shoulder straps for a carrying device
JP3580389B2 (en) Magnetic filters and masks
TWI548360B (en) Fastening assembly for being embedded in foam and cushion having the fastening assembly

Legal Events

Date Code Title Description
AS Assignment

Owner name: MILLIKEN & COMPANY, SOUTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SRIVASTAVA, SUDHANSHU;GERHARDT, WARREN W.;MICHAELS, EMILY W.;AND OTHERS;SIGNING DATES FROM 20190625 TO 20190718;REEL/FRAME:052939/0852

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION