US20200378457A1 - Guide assembly - Google Patents

Guide assembly Download PDF

Info

Publication number
US20200378457A1
US20200378457A1 US16/999,610 US202016999610A US2020378457A1 US 20200378457 A1 US20200378457 A1 US 20200378457A1 US 202016999610 A US202016999610 A US 202016999610A US 2020378457 A1 US2020378457 A1 US 2020378457A1
Authority
US
United States
Prior art keywords
sleeve
edge region
brake carrier
sleeve portion
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/999,610
Inventor
Dietmar Knoop
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meritor Heavy Vehicle Braking Systems UK Ltd
Original Assignee
Meritor Heavy Vehicle Braking Systems UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53284118&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20200378457(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Meritor Heavy Vehicle Braking Systems UK Ltd filed Critical Meritor Heavy Vehicle Braking Systems UK Ltd
Priority to US16/999,610 priority Critical patent/US20200378457A1/en
Publication of US20200378457A1 publication Critical patent/US20200378457A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • F16D55/224Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
    • F16D55/225Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads
    • F16D55/226Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes
    • F16D55/2265Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes the axial movement being guided by one or more pins engaging bores in the brake support or the brake housing
    • F16D55/22655Constructional details of guide pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • F16D55/224Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
    • F16D55/225Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads
    • F16D55/226Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes
    • F16D55/2265Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes the axial movement being guided by one or more pins engaging bores in the brake support or the brake housing
    • F16D55/227Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes the axial movement being guided by one or more pins engaging bores in the brake support or the brake housing by two or more pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/005Components of axially engaging brakes not otherwise provided for
    • F16D65/0087Brake housing guide members, e.g. caliper pins; Accessories therefor, e.g. dust boots
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D2055/0004Parts or details of disc brakes
    • F16D2055/007Pins holding the braking members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0084Assembly or disassembly

Definitions

  • the present invention relates to a disc brake.
  • the present invention relates to a guide assembly for a disc brake, to a method for manufacturing a guide assembly and to a disc brake incorporating a guide assembly.
  • Disc brakes conventionally comprise a brake carrier, a caliper and rotor.
  • the brake carrier is arranged to carry brake pads on each side of the rotor.
  • the caliper is slidably mounted on the brake carrier by two or more guide assemblies, such that when the disc brake is actuated, the caliper is able to slide with respect to the brake carrier. As the caliper slides inboard, the brake pads are urged onto the opposing faces of the rotor in a clamping action and a braking action is effected.
  • a guide assembly typically comprises a guide pin along which the caliper can slide and a bore disposed in the caliper for receiving the guide pin.
  • each guide pin comprises a smooth outer sleeve along which the caliper slides and a bolt which extends through the sleeve and is screwed into a bore of the brake carrier to retain the sleeve.
  • the present inventors have recognized that this approach in effect deals with a symptom of the problem rather than the cause.
  • the present inventors have also identified that the cause of the loosening bolt problem is the rotation of the sleeve and the rotation of the sleeve being frictionally transmitted into rotation of the bolt.
  • a first aspect of the invention provides a rotational fixing to rotationally engage a guide sleeve and a brake carrier of a disc brake.
  • the rotational fixing By rotationally engaging the sleeve and brake carrier, the rotational fixing is able to at least impede rotation of the sleeve relative to the disc brake.
  • the rotational fixing is able to at least restrict undesirable rotation of a sleeve caused by a changing torque as a vehicle moves repeatedly forwardly and backwardly. The transmission of rotation from the sleeve to the bolt and consequential loosening of the bolt is also restricted.
  • the rotational fixing for a disc brake may comprise: a sleeve portion of a guide sleeve; and a receiving portion of a brake carrier for receiving the sleeve portion; wherein the sleeve portion and receiving portion have corresponding non-circular cross-sectional profiles such that, when the sleeve portion is received and aligned in the receiving portion, rotation of the guide sleeve relative to the brake carrier is thereby at least restricted.
  • a “non-circular cross-sectional profile” should be understood as meaning that the respective circumference of the sleeve portion and the receiving portion is not a complete circle.
  • the corresponding non-circular cross-sectional profiles of the sleeve portion and the receiving portion may for example comprise a circular region and/or a linear region, may have a regular and non-circular shape, may have angular shape or a non-uniform shape.
  • the rotational fixing for a disc brake may comprise an interconnection to inter-engage a guide sleeve and a brake carrier and thereby at least restrict rotation of the guide sleeve relative to the brake carrier.
  • the rotational fixing for a disc brake may comprise: a deformable sleeve portion of a guide sleeve; and a receiving portion of a brake carrier to receive the sleeve portion; wherein the sleeve portion is deformable to be received and form an interference fit with the receiving portion such that rotation of the sleeve relative to the brake carrier is thereby at least restricted.
  • the rotational fixing for a disc brake may comprise: a sleeve portion of a guide sleeve; a receiving portion of a brake carrier to receive the sleeve portion; and a friction enhancer to enhance the frictional engagement between the sleeve portion and receiving portion, such that when the sleeve portion is received by the receiving portion, rotation of the guide sleeve relative to the brake carrier is at least restricted.
  • a second aspect of the invention relates to a guide assembly for a disc brake comprising: a guide pin comprising a sleeve with a sleeve portion; a receiving portion of a brake carrier to receive the sleeve portion; wherein the sleeve portion and receiving portion have corresponding non-circular cross-sectional profiles such that, when the sleeve portion is received and aligned in the receiving portion, rotation of the sleeve relative to the brake carrier is thereby at least restricted.
  • the receiving portion of the brake carrier may be a recess disposed in the brake carrier.
  • the receiving portion may be a female member integrally formed or attached to the brake carrier.
  • the receiving portion may be a male member protruding from the brake carrier and configured to receive at least a part of the sleeve portion.
  • the non-circular cross-sectional profile of the receiving portion may be defined by an inner edge of the receiving portion.
  • the receiving portion may comprise a circular inner edge region corresponding to the circular outer edge region of the sleeve portion and a non-circular inner edge region corresponding to the non-circular outer edge region of the sleeve portion.
  • the circular inner edge region may be part of a circle (i.e., an arc).
  • the non-circular inner edge region may be linear, substantially flat or angled, or a chord.
  • the non-circular inner edge region of the receiving portion may be located at any angular orientation with respect to the brake carrier. Preferably, it is arranged in a low-stress region of the brake carrier. This, in turn, may be dependent on the orientation in which the brake carrier is installed with respect to the axle of the vehicle.
  • the receiving portion of the brake carrier may further comprise a first transition inner edge region at a first junction between the circular inner edge region and the non-circular inner edge region.
  • the first transition inner edge may, for example, be a first curved corner extending between a first end of a linear inner edge region and a first end of a circular inner edge region of the receiving portion.
  • the sleeve portion of the sleeve may further comprise a first chamfered outer edge region at a first junction between the circular outer edge region and the non-circular outer edge region.
  • the first chamfered outer edge region enhances the surface contact area between the sleeve portion and the first transition inner edge region and this, as a consequence, helps to further impede the rotation of the sleeve portion in the first rotational direction.
  • the receiving portion of the brake carrier may comprise a second transition inner edge region at a second junction between the circular inner edge region and non-circular inner edge region.
  • the second transition inner edge region may, for example, be a second curved corner extending from a second end of a linear inner edge region to a second end of a circular inner edge region.
  • the second transition inner edge region may be configured such that, when the sleeve portion is received and aligned in the receiving portion, the second transition inner edge region is able to abut the sleeve portion so as to restrict rotation of the second rotational direction.
  • the second transition inner edge region may be configured to abut the sleeve portion and thereby at least restrict rotation of the sleeve portion in an anti-clockwise direction.
  • the sleeve portion may further comprise a second chamfered outer edge region at a second junction between the circular outer edge region and the non-circular outer edge region.
  • the guide pin may comprise a fastener and the guide assembly may further comprise a bore disposed in the brake carrier to receive the fastener.
  • the fastener is configured to extend through the sleeve and the bore is arranged in the receiving portion.
  • the bore may be arranged centrally or eccentrically in the receiving portion.
  • the fastener may be a bolt, for example a threaded bolt and the bore disposed in the brake carrier may have a complimentary threaded bore.
  • the corresponding non-circular cross-sectional profiles of the sleeve portion of the sleeve and the receiving portion of the brake carrier not only help to restrict rotation of the sleeve but also advantageously help to minimize operator error when installing or servicing the disc brake. For example, if the operator fails to correctly align the corresponding non-circular regions of the sleeve portion and the receiving portion, but nevertheless tightens the fastener, the guide pin will not extend normal to the brake carrier as required. Thus, the operator will not be able to assemble the caliper because the guide pin will be out of alignment to the complimentary bore of the caliper.
  • a third aspect of the invention provides a disc brake comprising a brake carrier, a caliper and at least one guide assembly according to the second aspect of the invention for slidably mounting the caliper with respect to the brake carrier.
  • a fourth aspect of the invention provides a method for manufacturing a receiving portion of a brake carrier for receiving a sleeve portion of a guide sleeve. If the receiving portion is a recess disposed in the brake carrier, the method of manufacture may comprise cutting a recess in the brake carrier with a circular inner edge region and a non-circular inner edge region.
  • the non-circular path is a linear path.
  • the method may further comprise moving the cutting tool from the circular path to the non-circular path to define a transition inner edge region between the circular inner edge region and the non-circular inner edge region.
  • FIG. 1 is an isometric view showing a disc brake according to the present invention with a preferred embodiment of the guide assembly
  • FIGS. 3 a , 3 b and 3 c are different views showing the sleeve of the preferred guide assembly
  • FIG. 4 is a front view of the brake carrier showing the recess of the preferred guide assembly
  • FIGS. 5 a to 5 g is a series of views showing how a circular cutting tool moves in a circular path to cut the first circular inner edge region of the recess of the preferred guide assembly;
  • FIGS. 6 a and 6 b is a front view of the brake carrier and an enlarged view showing the recess of the preferred guide assembly;
  • FIG. 7 is an exploded perspective view of the preferred guide assembly showing the guide pin and the brake carrier;
  • FIG. 8 is a top view of the preferred guide assembly showing the guide pin mounted on the brake carrier;
  • FIGS. 9 a to 9 c are schematic views showing the corresponding cross-sectional profiles of the sleeve portion and receiving portion for alternative embodiments of the guide assembly.
  • FIGS. 9 d to 9 g are schematic views showing interconnections for alternative embodiments of the guide assembly.
  • a disc brake according to the present invention is indicated generally at 1 .
  • the disc brake comprises a brake carrier 10 .
  • the brake carrier carries an inboard brake pad 12 a and an outboard brake pad 12 b .
  • a rotor 14 (shown in part) is positioned between the brake pads and is rotatable about an axis R.
  • a caliper 16 is slidably mounted with respect to the brake carrier by at least one guide assembly.
  • the disc brake comprises two guide assemblies 18 a , 18 b . Each of the two guide assemblies is a guide assembly according to the preferred embodiment of the invention.
  • Each guide assembly comprises a guide pin 20 along which the caliper 16 can slide and a bore 22 disposed in the caliper for receiving the guide pin.
  • one of the guide pins 20 a is shorter than the other guide pin 20 b in order to accommodate vehicle installation constraints.
  • the guide pin 20 comprises a fastener 24 to attach the guide pin to the brake carrier 10 .
  • the fastener is received by a complimentary bore 26 disposed in the brake carrier.
  • the guide pin 20 further comprises a sleeve 28 at least substantially surrounding the fastener 24 and over which the caliper 16 slides.
  • the sleeve is a hollow, thin walled tube.
  • the outer surface of the sleeve may be coated with PTFE (polytetrafluoroethylene) or any other suitable material to aid the sliding action of the caliper along the guide pin.
  • the sleeve comprises a main body 30 , a first end 32 , a second end 34 and a bore hole 36 extending from the first end to the second end to receive the fastener.
  • the bore 22 disposed in the caliper to receive the guide pin is an elongate hole extending from a first side (inboard) to the second side (outboard) of the caliper 16 .
  • the guide pin 20 will be subject to dynamic loads.
  • the guide assembly of the present invention further comprises a rotational fixing to rotationally engage the sleeve 28 and the brake carrier 10 and thereby at least restrict rotation of the sleeve about its longitudinal axis.
  • the rotational fixing By rotationally engaging the sleeve and the brake carrier, the rotational fixing helpfully minimizes or avoids undesirable rotation of the sleeve.
  • a rotational fixing for the disc brake may comprise a sleeve portion of the sleeve and a receiving portion of the brake carrier for receiving the sleeve portion.
  • the sleeve portion may comprise an end portion of the sleeve, a circumferential flange or rim of the sleeve.
  • the receiving portion may comprise a recess disposed in the brake carrier, a female member integrally formed or attached to the brake carrier or a male member protruding from the brake carrier.
  • the sleeve portion and the receiving portion may comprise corresponding non-circular cross-sectional profiles.
  • the sleeve portion and receiving portion have a must-fit arrangement.
  • the sleeve portion must be correctly aligned relative to the receiving portion for it to fit into the brake receiving portion.
  • rotation of the sleeve relative to the brake carrier is restricted.
  • the sleeve portion of the rotational fixing is a circumferential flange 40 arranged at the first end of the guide sleeve.
  • the cross-sectional profile of the flange is defined by an outer edge of the flange.
  • the flange has a non-circular cross-sectional profile comprising two profile regions.
  • the profile of the flange has a first circular outer edge region 42 and a second flat outer edge region 44 .
  • the desired cross-sectional profile of the flange may, for example, be manufactured by removing a segment of a circular flange of a conventional sleeve.
  • the flange may be manufactured using any conventional cutting, milling or machining techniques, using for example a CNC (Computer Numerically Controlled) lathe or CNC milling machine.
  • a cutting tool may be moved in a linear path to cut away the segment of the circular flange so as to form a flange with a first circular outer edge region and the second flat outer edge region.
  • a circular flange with a diameter of approximately 39.95 mm may be cut along a chord to remove a segment with a depth of approximately 1.75 mm such that the resulting flange has a first circular outer edge region with a radius of approximately 19.97 mm and a second flat outer edge region with a radius of approximately 18.25 mm
  • the receiving portion of the rotational fixing is a recess 46 disposed in the brake carrier to receive the flange of the guide sleeve.
  • the cross-sectional profile of the recess is defined by an inner edge of the recess.
  • the inner edge has a corresponding non-circular cross-sectional profile to the flange.
  • the non-circular cross-sectional profile of the recess comprises a first circular inner edge region 48 and a second flat inner edge region 50 .
  • the flat inner edge region 50 of the recess may be located at any angular orientation with respect to the brake carrier.
  • the flat inner edge region is preferably arranged in a low-stress region of the brake carrier.
  • the orientation of the flat inner edge region may be determined by the orientation of the brake carrier with respect to the axle of the vehicle. In the preferred embodiment depicted in FIGS. 1 to 8 , the flat inner edge region is arranged at a 6 o'clock orientation to the brake carrier.
  • the recess may be manufactured with the desired cross-sectional profile using any conventional cutting, milling or machining techniques, using for example a CNC lathe or CNC milling machine.
  • the recess may be cut in the brake carrier by moving a cutting tool in a circular path to define the circular inner edge region.
  • FIGS. 5 a to 5 g show how a rotating cutting tool may be moved sequentially in a circular path to cut a recess with the circular inner edge region.
  • the rotating cutting tool may also be moved along a linear path to cut the flat inner edge region.
  • the recess may be cut in the brake carrier using a circular cutting tool with a diameter of 25 mm whereby the cutting tool may be moved along a circular path to cut a circular inner edge region with a radius of approximately 20 mm and the cutting tool may be moved along a linear path to cut a flat linear edge region with a radius of approximately 18.95 mm and a flat edge length of approximately 12.5 mm.
  • the recess comprises a first transition inner edge region 52 at a first junction between the circular inner edge region and the flat inner edge region.
  • the first transition inner edge region 52 is a curved corner extending between the first end of the flat inner edge region and the first end of the circular inner edge region.
  • the recess also comprises a second transition inner edge region 54 at a second junction between the circular inner edge region and the flat inner edge region.
  • the second transition inner edge region 54 is a curved corner extending between the second end of the flat inner edge region and the second end of the circular inner edge region.
  • the dimensions and configuration of the sleeve portion and recess are selected such that, when the sleeve portion is received and aligned in the recess, the first transition inner edge region 52 is able to abut the sleeve portion and thereby at least restrict the rotation of the sleeve portion in a first rotational direction—for example, the clockwise direction.
  • the first transition inner edge region 52 preferably mates and abuts the sleeve portion at a first junction 56 between circular outer edge region 42 and the flat outer edge region 44 .
  • the second transition inner edge region 54 is able to abut the sleeve portion and thereby at least restrict the rotation of the sleeve portion in a second rotational direction—for example, the anti-clockwise direction.
  • the second transition inner edge region 54 preferably mates and abuts the sleeve portion at a second junction 58 between the circular outer edge region 42 and the flat outer edge region 44 .
  • the abutting action of the sleeve relative to the brake carrier depends on the tolerances, configuration and dimensions of the sleeve portion and recess.
  • the guide assembly may be configured to provide an abutting action that is able to restrict the rotation of the sleeve relative to the brake carrier to up to a maximum of approximately 10 degrees.
  • the guide assembly may alternatively be configured to provide an abutting action that is able to restrict rotation to up to a maximum of approximately 5 degrees, to up to a maximum of approximately 3 degrees or up to a maximum of approximately 1 degree.
  • the flange 40 may be chamfered at the junctions between the circular outer edge region 42 and flat outer edge region 44 .
  • the sleeve portion may comprise a first chamfered outer edge region 60 at the first junction 56 between the circular outer edge region 42 and the flat outer edge region 44 and a second chamfered outer edge region 62 at the second junction 58 between the circular outer edge region 42 and the flat outer edge region 44 .
  • the first chamfered outer edge region 60 improves the surface contact area between the flange 40 and the first transition inner edge region 52 .
  • the second chamfered outer edge region 62 improves the surface contact area between the flange 40 and the second transition inner edge region 54 .
  • the fastener 24 for attaching the guide pin to the brake carrier is a threaded bolt and the bore 26 for receiving the fastener in the brake carrier is a threaded bore.
  • the bore 26 is located in the recess 46 for receiving the sleeve portion.
  • the bore may be centrally located or eccentrically located in the recess.
  • the bore may be manufactured by any conventional drilling techniques.
  • the bolt 24 is extended through the bore hole 22 of the sleeve, the flange 40 of the sleeve is located in the recess 46 with the profile regions aligned so as to form a rotational engagement between the sleeve and the brake carrier, and the bolt is screwed into the bore 26 in the brake carrier.
  • the guide pin 20 When attached to the brake carrier 10 , the guide pin 20 extends in an axial direction A.
  • Direction A is parallel to an axis R of rotation of the rotor 14 and parallel to the transverse axis of the disc brake.
  • the caliper will be mounted on the guide pin by locating the guide pin in the caliper bore 22 and sliding the caliper along the guide pin sleeve.
  • the disc brake as depicted in FIG. 1 can be actuated.
  • An air actuator (not shown) is provided to move the inboard brake pad 12 a into frictional contact with the rotor.
  • the inboard brake pad 12 a is pushed towards and contacts the rotor, the caliper slides inboard along the guide pin.
  • the outboard brake pad 12 b moves the outboard brake pad 12 b towards the rotor.
  • the rotor becomes clamped between the inboard and outboard brake pads and the rotation of the rotor is frictionally inhibited.
  • the disc brake can only be assembled or serviced if the profile regions of the flange and recess are properly aligned when first locating the flange in the recess. If the flange and recess are not properly aligned, the guide pin will not extend in the correct direction from the brake carrier. As a result, an operator will not be able to mount the caliper on the guide pin. Therefore, it is apparent that the flange and recess not only restrict undesirable rotation of the sleeve, they also usefully protect the disc brake from operator assembly error.
  • the sleeve portion and receiving portion of the rotation fixing may comprise any suitable corresponding non-circular cross-sectional profiles to at least restrict the rotation of the sleeve relative to the brake carrier.
  • the corresponding non-circular cross-sectional profiles may comprise at least one circular region and/or at least one linear region, may have a regular and non-circular shape, may have an angular shape or a non-uniform shape.
  • the sleeve portion 100 comprises a non-circular cross-sectional profile with a flat, linear edge 102 .
  • the receiving portion 200 is a recess disposed in the brake carrier with a corresponding non-circular cross-sectional profile with a flat, linear edge 202 to receive the sleeve portion.
  • the sleeve portion 100 comprises a hexagonal cross-sectional profile 104 .
  • the receiving portion 200 is a recess disposed in the brake carrier with a corresponding hexagonal cross-sectional profile 204 .
  • the sleeve portion 100 comprises a free-form cross-sectional profile 106 .
  • the receiving portion 200 is a recess disposed in the brake carrier with a corresponding free-form cross-sectional profile 206 .
  • the rotational fixing means may additionally or alternatively comprise an interconnection to interlock the sleeve and brake carrier so as to restrict rotation of the sleeve relative to the brake carrier.
  • the interconnection may be locatable between a sleeve portion and receiving portion of a brake carrier.
  • the interconnection may comprise any suitable interconnection for rotationally engaging the sleeve and brake carrier.
  • the interconnection may comprise a pin 300 , for example as depicted in FIG. 9 d .
  • the sleeve portion 100 is received in the receiving portion 200 .
  • the pin 300 extends in axial direction A and the opposing ends of the pin are received in recesses formed in the sleeve portion and brake carrier 10 .
  • the interconnection may comprise a ball 302 , for example as depicted in FIG. 9 e .
  • the sleeve portion 100 is received in the receiving portion 200 .
  • Opposing sides of the ball are received in semi-circular recesses formed in the sleeve portion and brake carrier 10 .
  • the interconnection may comprise a male protrusion and corresponding female indent.
  • the interconnection comprises one or more blades 304 or teeth 306 extending in axial direction A from the end of the sleeve portion 100 into corresponding indents in the brake carrier 10 .
  • the rotational fixing means may comprise a deformable sleeve portion and a receiving portion for receiving the deformable sleeve portion.
  • the deformable sleeve portion is configured to deform as it is located in the receiving portion so as to form an interference fit/press fit connection. Any rotation of the sleeve relative to the brake carrier is at least restricted due the interference fit/press fit connection.
  • the rotational fixing means may comprise a sleeve portion, a receiving portion to receive the sleeve portion and a friction enhancer to enhance the frictional engagement between the sleeve portion and receiving portion and thereby restrict rotation of the sleeve with respect to the brake carrier.
  • the friction enhancer may comprise a knurled surface of the sleeve portion to enhance the frictional grip of the sleeve portion.
  • the friction enhancer may comprise a splayed surface of the sleeve portion to help retain the sleeve portion in the receiving portion.
  • the friction enhancer may comprise adhesive to bond the sleeve portion in the receiving portion.
  • the friction enhancer may comprise a washer locatable between the sleeve portion and receiving portion. The washer may comprise a high friction washer and/or a toothed washer.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)
  • Snaps, Bayonet Connections, Set Pins, And Snap Rings (AREA)

Abstract

A guide assembly for a disc brake. The guide assembly includes a receiving portion of a brake carrier that receives a sleeve portion of a guide pin. The sleeve portion and receiving portion have corresponding non-circular cross-sectional profiles that restrict rotation of the sleeve portion relative to the brake carrier when the sleeve portion is received and aligned in the receiving portion. The present invention further relates to a disc brake that includes a brake carrier, a caliper, and at least one guide assembly and a method of manufacture.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 15/174,102, filed Jun. 6, 2016, now abandoned, the disclosure of which is hereby incorporated in its entirety by reference herein.
  • TECHNICAL FIELD
  • The present invention relates to a disc brake. In addition, the present invention relates to a guide assembly for a disc brake, to a method for manufacturing a guide assembly and to a disc brake incorporating a guide assembly.
  • BACKGROUND
  • Disc brakes are commonly used for braking heavy vehicles such as trucks, buses and coaches.
  • Disc brakes conventionally comprise a brake carrier, a caliper and rotor. The brake carrier is arranged to carry brake pads on each side of the rotor. The caliper is slidably mounted on the brake carrier by two or more guide assemblies, such that when the disc brake is actuated, the caliper is able to slide with respect to the brake carrier. As the caliper slides inboard, the brake pads are urged onto the opposing faces of the rotor in a clamping action and a braking action is effected.
  • A guide assembly typically comprises a guide pin along which the caliper can slide and a bore disposed in the caliper for receiving the guide pin. Typically, each guide pin comprises a smooth outer sleeve along which the caliper slides and a bolt which extends through the sleeve and is screwed into a bore of the brake carrier to retain the sleeve.
  • This arrangement has been proven over many years of usage. However it has been recognized that in certain operating conditions, specifically when a vehicle undergoes a significant number of forward and reverse movements, there is a risk that the bolt of the disc brake may rotate and loosen.
  • Previous attempts to solve this problem have utilized lock patches to inhibit rotation of the bolt.
  • However, the present inventors have recognized that this approach in effect deals with a symptom of the problem rather than the cause. The present inventors have also identified that the cause of the loosening bolt problem is the rotation of the sleeve and the rotation of the sleeve being frictionally transmitted into rotation of the bolt.
  • The present invention seeks to overcome or at least mitigate the problems of the prior art.
  • SUMMARY
  • A first aspect of the invention provides a rotational fixing to rotationally engage a guide sleeve and a brake carrier of a disc brake. By rotationally engaging the sleeve and brake carrier, the rotational fixing is able to at least impede rotation of the sleeve relative to the disc brake. Thus, the rotational fixing is able to at least restrict undesirable rotation of a sleeve caused by a changing torque as a vehicle moves repeatedly forwardly and backwardly. The transmission of rotation from the sleeve to the bolt and consequential loosening of the bolt is also restricted.
  • The rotational fixing for a disc brake may comprise: a sleeve portion of a guide sleeve; and a receiving portion of a brake carrier for receiving the sleeve portion; wherein the sleeve portion and receiving portion have corresponding non-circular cross-sectional profiles such that, when the sleeve portion is received and aligned in the receiving portion, rotation of the guide sleeve relative to the brake carrier is thereby at least restricted.
  • For the purposes of this present invention, a “non-circular cross-sectional profile” should be understood as meaning that the respective circumference of the sleeve portion and the receiving portion is not a complete circle. The corresponding non-circular cross-sectional profiles of the sleeve portion and the receiving portion may for example comprise a circular region and/or a linear region, may have a regular and non-circular shape, may have angular shape or a non-uniform shape.
  • The rotational fixing for a disc brake may comprise an interconnection to inter-engage a guide sleeve and a brake carrier and thereby at least restrict rotation of the guide sleeve relative to the brake carrier.
  • The rotational fixing for a disc brake may comprise: a deformable sleeve portion of a guide sleeve; and a receiving portion of a brake carrier to receive the sleeve portion; wherein the sleeve portion is deformable to be received and form an interference fit with the receiving portion such that rotation of the sleeve relative to the brake carrier is thereby at least restricted.
  • The rotational fixing for a disc brake may comprise: a sleeve portion of a guide sleeve; a receiving portion of a brake carrier to receive the sleeve portion; and a friction enhancer to enhance the frictional engagement between the sleeve portion and receiving portion, such that when the sleeve portion is received by the receiving portion, rotation of the guide sleeve relative to the brake carrier is at least restricted.
  • A second aspect of the invention relates to a guide assembly for a disc brake comprising: a guide pin comprising a sleeve with a sleeve portion; a receiving portion of a brake carrier to receive the sleeve portion; wherein the sleeve portion and receiving portion have corresponding non-circular cross-sectional profiles such that, when the sleeve portion is received and aligned in the receiving portion, rotation of the sleeve relative to the brake carrier is thereby at least restricted.
  • The sleeve portion of the sleeve may be a first end portion of the sleeve or a circumferential flange or rim at a first end of the sleeve.
  • The receiving portion of the brake carrier may be a recess disposed in the brake carrier. Alternatively, the receiving portion may be a female member integrally formed or attached to the brake carrier. The receiving portion may be a male member protruding from the brake carrier and configured to receive at least a part of the sleeve portion.
  • The non-circular cross-sectional profile of the sleeve portion may be defined by an outer edge of the sleeve portion. The sleeve portion may comprise a circular outer edge region and a non-circular outer edge region. The circular outer edge region may be part of a circle (i.e., an arc). The non-circular outer edge region may be linear, substantially flat or angled, or a chord.
  • Likewise, the non-circular cross-sectional profile of the receiving portion may be defined by an inner edge of the receiving portion. The receiving portion may comprise a circular inner edge region corresponding to the circular outer edge region of the sleeve portion and a non-circular inner edge region corresponding to the non-circular outer edge region of the sleeve portion. The circular inner edge region may be part of a circle (i.e., an arc). The non-circular inner edge region may be linear, substantially flat or angled, or a chord.
  • The non-circular inner edge region of the receiving portion may be located at any angular orientation with respect to the brake carrier. Preferably, it is arranged in a low-stress region of the brake carrier. This, in turn, may be dependent on the orientation in which the brake carrier is installed with respect to the axle of the vehicle.
  • The receiving portion of the brake carrier may further comprise a first transition inner edge region at a first junction between the circular inner edge region and the non-circular inner edge region. The first transition inner edge may, for example, be a first curved corner extending between a first end of a linear inner edge region and a first end of a circular inner edge region of the receiving portion.
  • To counter rotational torque acting on the sleeve in a first rotational direction, the first transition inner edge region may be configured such that, when the sleeve portion is received and aligned in the receiving portion, the first transition inner edge region is able to abut the sleeve portion so as to restrict rotation of the sleeve portion in the first rotational direction. For example, the first transition inner edge region may be configured to abut the sleeve portion so as to at least restrict rotation of the sleeve portion in a clockwise direction.
  • The sleeve portion of the sleeve may further comprise a first chamfered outer edge region at a first junction between the circular outer edge region and the non-circular outer edge region. The first chamfered outer edge region enhances the surface contact area between the sleeve portion and the first transition inner edge region and this, as a consequence, helps to further impede the rotation of the sleeve portion in the first rotational direction.
  • The receiving portion of the brake carrier may comprise a second transition inner edge region at a second junction between the circular inner edge region and non-circular inner edge region. The second transition inner edge region may, for example, be a second curved corner extending from a second end of a linear inner edge region to a second end of a circular inner edge region.
  • To counter rotational torque acting on the sleeve in a second rotational direction (opposite to the first rotational direction), the second transition inner edge region may be configured such that, when the sleeve portion is received and aligned in the receiving portion, the second transition inner edge region is able to abut the sleeve portion so as to restrict rotation of the second rotational direction. For example, the second transition inner edge region may be configured to abut the sleeve portion and thereby at least restrict rotation of the sleeve portion in an anti-clockwise direction.
  • To enhance the abutment of the sleeve portion by the second transition region and thereby further impede the rotation of the sleeve portion in the second rotational direction, the sleeve portion may further comprise a second chamfered outer edge region at a second junction between the circular outer edge region and the non-circular outer edge region.
  • To mount the guide pin on the brake carrier, the guide pin may comprise a fastener and the guide assembly may further comprise a bore disposed in the brake carrier to receive the fastener. Preferably, the fastener is configured to extend through the sleeve and the bore is arranged in the receiving portion. The bore may be arranged centrally or eccentrically in the receiving portion. The fastener may be a bolt, for example a threaded bolt and the bore disposed in the brake carrier may have a complimentary threaded bore.
  • The corresponding non-circular cross-sectional profiles of the sleeve portion of the sleeve and the receiving portion of the brake carrier not only help to restrict rotation of the sleeve but also advantageously help to minimize operator error when installing or servicing the disc brake. For example, if the operator fails to correctly align the corresponding non-circular regions of the sleeve portion and the receiving portion, but nevertheless tightens the fastener, the guide pin will not extend normal to the brake carrier as required. Thus, the operator will not be able to assemble the caliper because the guide pin will be out of alignment to the complimentary bore of the caliper.
  • A third aspect of the invention provides a disc brake comprising a brake carrier, a caliper and at least one guide assembly according to the second aspect of the invention for slidably mounting the caliper with respect to the brake carrier.
  • A fourth aspect of the invention provides a method for manufacturing a receiving portion of a brake carrier for receiving a sleeve portion of a guide sleeve. If the receiving portion is a recess disposed in the brake carrier, the method of manufacture may comprise cutting a recess in the brake carrier with a circular inner edge region and a non-circular inner edge region.
  • The method may further comprise: moving a cutting tool in a circular path to define the circular inner edge region; and moving the cutting tool in a non-circular path to define the non-circular inner edge region.
  • If the non-circular inner edge region is a linear inner edge region, then the non-circular path is a linear path.
  • The method may further comprise moving the cutting tool from the circular path to the non-circular path to define a transition inner edge region between the circular inner edge region and the non-circular inner edge region.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Embodiments of the invention will now be described with reference to the accompanying drawings, in which:
  • FIG. 1 is an isometric view showing a disc brake according to the present invention with a preferred embodiment of the guide assembly;
  • FIG. 2 is an enlarged isometric cross-sectional view showing the preferred embodiment of the guide assembly;
  • FIGS. 3a, 3b and 3c are different views showing the sleeve of the preferred guide assembly;
  • FIG. 4 is a front view of the brake carrier showing the recess of the preferred guide assembly;
  • FIGS. 5a to 5g is a series of views showing how a circular cutting tool moves in a circular path to cut the first circular inner edge region of the recess of the preferred guide assembly;
  • FIGS. 6a and 6b is a front view of the brake carrier and an enlarged view showing the recess of the preferred guide assembly;
  • FIG. 7 is an exploded perspective view of the preferred guide assembly showing the guide pin and the brake carrier;
  • FIG. 8 is a top view of the preferred guide assembly showing the guide pin mounted on the brake carrier;
  • FIGS. 9a to 9c are schematic views showing the corresponding cross-sectional profiles of the sleeve portion and receiving portion for alternative embodiments of the guide assembly; and
  • FIGS. 9d to 9g are schematic views showing interconnections for alternative embodiments of the guide assembly.
  • DETAILED DESCRIPTION
  • As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
  • Referring to FIGS. 1 to 9 g, a disc brake according to the present invention is indicated generally at 1. The disc brake comprises a brake carrier 10. The brake carrier carries an inboard brake pad 12 a and an outboard brake pad 12 b. A rotor 14 (shown in part) is positioned between the brake pads and is rotatable about an axis R. A caliper 16 is slidably mounted with respect to the brake carrier by at least one guide assembly. In the embodiment depicted, the disc brake comprises two guide assemblies 18 a, 18 b. Each of the two guide assemblies is a guide assembly according to the preferred embodiment of the invention.
  • Each guide assembly comprises a guide pin 20 along which the caliper 16 can slide and a bore 22 disposed in the caliper for receiving the guide pin. In the embodiment depicted, one of the guide pins 20 a is shorter than the other guide pin 20 b in order to accommodate vehicle installation constraints.
  • The guide pin 20 comprises a fastener 24 to attach the guide pin to the brake carrier 10. The fastener is received by a complimentary bore 26 disposed in the brake carrier.
  • The guide pin 20 further comprises a sleeve 28 at least substantially surrounding the fastener 24 and over which the caliper 16 slides. The sleeve is a hollow, thin walled tube. The outer surface of the sleeve may be coated with PTFE (polytetrafluoroethylene) or any other suitable material to aid the sliding action of the caliper along the guide pin. The sleeve comprises a main body 30, a first end 32, a second end 34 and a bore hole 36 extending from the first end to the second end to receive the fastener.
  • The bore 22 disposed in the caliper to receive the guide pin is an elongate hole extending from a first side (inboard) to the second side (outboard) of the caliper 16.
  • During use, the guide pin 20 will be subject to dynamic loads. To counter rotational torque, the guide assembly of the present invention further comprises a rotational fixing to rotationally engage the sleeve 28 and the brake carrier 10 and thereby at least restrict rotation of the sleeve about its longitudinal axis. By rotationally engaging the sleeve and the brake carrier, the rotational fixing helpfully minimizes or avoids undesirable rotation of the sleeve.
  • By restricting the rotation of the sleeve relative to the brake carrier, the transmission of rotation from the sleeve to the fastener is also restricted. Thus, the subsequent risk of loosening the fastener from the brake carrier is advantageously reduced.
  • A rotational fixing for the disc brake may comprise a sleeve portion of the sleeve and a receiving portion of the brake carrier for receiving the sleeve portion. The sleeve portion may comprise an end portion of the sleeve, a circumferential flange or rim of the sleeve. The receiving portion may comprise a recess disposed in the brake carrier, a female member integrally formed or attached to the brake carrier or a male member protruding from the brake carrier.
  • The sleeve portion and the receiving portion may comprise corresponding non-circular cross-sectional profiles. As a consequence, the sleeve portion and receiving portion have a must-fit arrangement. The sleeve portion must be correctly aligned relative to the receiving portion for it to fit into the brake receiving portion. When the sleeve portion is located in the receiving portion, rotation of the sleeve relative to the brake carrier is restricted.
  • In the preferred embodiment of the guide assembly as shown in FIGS. 1 to 8, the sleeve portion of the rotational fixing is a circumferential flange 40 arranged at the first end of the guide sleeve. The cross-sectional profile of the flange is defined by an outer edge of the flange. In this embodiment, the flange has a non-circular cross-sectional profile comprising two profile regions. The profile of the flange has a first circular outer edge region 42 and a second flat outer edge region 44.
  • The desired cross-sectional profile of the flange may, for example, be manufactured by removing a segment of a circular flange of a conventional sleeve. The flange may be manufactured using any conventional cutting, milling or machining techniques, using for example a CNC (Computer Numerically Controlled) lathe or CNC milling machine. A cutting tool may be moved in a linear path to cut away the segment of the circular flange so as to form a flange with a first circular outer edge region and the second flat outer edge region. By way of example, a circular flange with a diameter of approximately 39.95 mm may be cut along a chord to remove a segment with a depth of approximately 1.75 mm such that the resulting flange has a first circular outer edge region with a radius of approximately 19.97 mm and a second flat outer edge region with a radius of approximately 18.25 mm
  • In the preferred embodiment of the guide assembly, the receiving portion of the rotational fixing is a recess 46 disposed in the brake carrier to receive the flange of the guide sleeve. The cross-sectional profile of the recess is defined by an inner edge of the recess. The inner edge has a corresponding non-circular cross-sectional profile to the flange. The non-circular cross-sectional profile of the recess comprises a first circular inner edge region 48 and a second flat inner edge region 50.
  • The flat inner edge region 50 of the recess may be located at any angular orientation with respect to the brake carrier. The flat inner edge region is preferably arranged in a low-stress region of the brake carrier. The orientation of the flat inner edge region may be determined by the orientation of the brake carrier with respect to the axle of the vehicle. In the preferred embodiment depicted in FIGS. 1 to 8, the flat inner edge region is arranged at a 6 o'clock orientation to the brake carrier.
  • The recess may be manufactured with the desired cross-sectional profile using any conventional cutting, milling or machining techniques, using for example a CNC lathe or CNC milling machine. The recess may be cut in the brake carrier by moving a cutting tool in a circular path to define the circular inner edge region. FIGS. 5a to 5g show how a rotating cutting tool may be moved sequentially in a circular path to cut a recess with the circular inner edge region. The rotating cutting tool may also be moved along a linear path to cut the flat inner edge region. By way of example, the recess may be cut in the brake carrier using a circular cutting tool with a diameter of 25 mm whereby the cutting tool may be moved along a circular path to cut a circular inner edge region with a radius of approximately 20 mm and the cutting tool may be moved along a linear path to cut a flat linear edge region with a radius of approximately 18.95 mm and a flat edge length of approximately 12.5 mm.
  • As the cutting tool moves from the circular path to the linear path and subsequently the linear path to the circular path, transition inner edge regions are formed between the circular inner edge region and the flat inner edge region. In the embodiment, the recess comprises a first transition inner edge region 52 at a first junction between the circular inner edge region and the flat inner edge region. As can be seen in FIG. 6b , the first transition inner edge region 52 is a curved corner extending between the first end of the flat inner edge region and the first end of the circular inner edge region. The recess also comprises a second transition inner edge region 54 at a second junction between the circular inner edge region and the flat inner edge region. The second transition inner edge region 54 is a curved corner extending between the second end of the flat inner edge region and the second end of the circular inner edge region.
  • The dimensions and configuration of the sleeve portion and recess are selected such that, when the sleeve portion is received and aligned in the recess, the first transition inner edge region 52 is able to abut the sleeve portion and thereby at least restrict the rotation of the sleeve portion in a first rotational direction—for example, the clockwise direction. The first transition inner edge region 52 preferably mates and abuts the sleeve portion at a first junction 56 between circular outer edge region 42 and the flat outer edge region 44.
  • Likewise, the second transition inner edge region 54 is able to abut the sleeve portion and thereby at least restrict the rotation of the sleeve portion in a second rotational direction—for example, the anti-clockwise direction. The second transition inner edge region 54 preferably mates and abuts the sleeve portion at a second junction 58 between the circular outer edge region 42 and the flat outer edge region 44.
  • The abutting action of the sleeve relative to the brake carrier depends on the tolerances, configuration and dimensions of the sleeve portion and recess. By way of example, the guide assembly may be configured to provide an abutting action that is able to restrict the rotation of the sleeve relative to the brake carrier to up to a maximum of approximately 10 degrees. The guide assembly may alternatively be configured to provide an abutting action that is able to restrict rotation to up to a maximum of approximately 5 degrees, to up to a maximum of approximately 3 degrees or up to a maximum of approximately 1 degree.
  • To enhance the mating contact between the sleeve portion and the transition regions of the receiving portion, the flange 40 may be chamfered at the junctions between the circular outer edge region 42 and flat outer edge region 44. The sleeve portion may comprise a first chamfered outer edge region 60 at the first junction 56 between the circular outer edge region 42 and the flat outer edge region 44 and a second chamfered outer edge region 62 at the second junction 58 between the circular outer edge region 42 and the flat outer edge region 44. The first chamfered outer edge region 60 improves the surface contact area between the flange 40 and the first transition inner edge region 52. The second chamfered outer edge region 62 improves the surface contact area between the flange 40 and the second transition inner edge region 54. By increasing the surface contact area, the abutting effect of the transition edge regions is improved and the rotation of the sleeve 28 is further restricted.
  • In the preferred embodiment of the guide assembly as shown in FIGS. 1 to 8, the fastener 24 for attaching the guide pin to the brake carrier is a threaded bolt and the bore 26 for receiving the fastener in the brake carrier is a threaded bore. The bore 26 is located in the recess 46 for receiving the sleeve portion. The bore may be centrally located or eccentrically located in the recess. The bore may be manufactured by any conventional drilling techniques.
  • To mount the guide pin on the brake carrier and rotationally engage the sleeve and the brake carrier, the bolt 24 is extended through the bore hole 22 of the sleeve, the flange 40 of the sleeve is located in the recess 46 with the profile regions aligned so as to form a rotational engagement between the sleeve and the brake carrier, and the bolt is screwed into the bore 26 in the brake carrier.
  • When attached to the brake carrier 10, the guide pin 20 extends in an axial direction A. Direction A is parallel to an axis R of rotation of the rotor 14 and parallel to the transverse axis of the disc brake. The caliper will be mounted on the guide pin by locating the guide pin in the caliper bore 22 and sliding the caliper along the guide pin sleeve.
  • When fully assembled, the disc brake as depicted in FIG. 1 can be actuated. An air actuator (not shown) is provided to move the inboard brake pad 12 a into frictional contact with the rotor. When the inboard brake pad 12 a is pushed towards and contacts the rotor, the caliper slides inboard along the guide pin. As the caliper slides inboard, it moves the outboard brake pad 12 b towards the rotor. Hence, the rotor becomes clamped between the inboard and outboard brake pads and the rotation of the rotor is frictionally inhibited.
  • However, due to the corresponding non-circular cross-sectional profiles of the flange and recess, the disc brake can only be assembled or serviced if the profile regions of the flange and recess are properly aligned when first locating the flange in the recess. If the flange and recess are not properly aligned, the guide pin will not extend in the correct direction from the brake carrier. As a result, an operator will not be able to mount the caliper on the guide pin. Therefore, it is apparent that the flange and recess not only restrict undesirable rotation of the sleeve, they also usefully protect the disc brake from operator assembly error.
  • The sleeve portion and receiving portion of the rotation fixing may comprise any suitable corresponding non-circular cross-sectional profiles to at least restrict the rotation of the sleeve relative to the brake carrier. The corresponding non-circular cross-sectional profiles may comprise at least one circular region and/or at least one linear region, may have a regular and non-circular shape, may have an angular shape or a non-uniform shape.
  • In the alternative embodiment of the guide assembly depicted in FIG. 9a the sleeve portion 100 comprises a non-circular cross-sectional profile with a flat, linear edge 102. The receiving portion 200 is a recess disposed in the brake carrier with a corresponding non-circular cross-sectional profile with a flat, linear edge 202 to receive the sleeve portion. In the embodiment depicted in FIG. 9b , the sleeve portion 100 comprises a hexagonal cross-sectional profile 104. The receiving portion 200 is a recess disposed in the brake carrier with a corresponding hexagonal cross-sectional profile 204. In the embodiment depicted in FIG. 9c , the sleeve portion 100 comprises a free-form cross-sectional profile 106. The receiving portion 200 is a recess disposed in the brake carrier with a corresponding free-form cross-sectional profile 206.
  • The rotational fixing means may additionally or alternatively comprise an interconnection to interlock the sleeve and brake carrier so as to restrict rotation of the sleeve relative to the brake carrier. The interconnection may be locatable between a sleeve portion and receiving portion of a brake carrier.
  • The interconnection may comprise any suitable interconnection for rotationally engaging the sleeve and brake carrier. The interconnection may comprise a pin 300, for example as depicted in FIG. 9d . The sleeve portion 100 is received in the receiving portion 200. The pin 300 extends in axial direction A and the opposing ends of the pin are received in recesses formed in the sleeve portion and brake carrier 10. The interconnection may comprise a ball 302, for example as depicted in FIG. 9e . The sleeve portion 100 is received in the receiving portion 200. Opposing sides of the ball are received in semi-circular recesses formed in the sleeve portion and brake carrier 10. The interconnection may comprise a male protrusion and corresponding female indent. For example, as depicted in FIGS. 9f and 9g , the interconnection comprises one or more blades 304 or teeth 306 extending in axial direction A from the end of the sleeve portion 100 into corresponding indents in the brake carrier 10.
  • The rotational fixing means may comprise a deformable sleeve portion and a receiving portion for receiving the deformable sleeve portion. The deformable sleeve portion is configured to deform as it is located in the receiving portion so as to form an interference fit/press fit connection. Any rotation of the sleeve relative to the brake carrier is at least restricted due the interference fit/press fit connection.
  • The rotational fixing means may comprise a sleeve portion, a receiving portion to receive the sleeve portion and a friction enhancer to enhance the frictional engagement between the sleeve portion and receiving portion and thereby restrict rotation of the sleeve with respect to the brake carrier. The friction enhancer may comprise a knurled surface of the sleeve portion to enhance the frictional grip of the sleeve portion. The friction enhancer may comprise a splayed surface of the sleeve portion to help retain the sleeve portion in the receiving portion. The friction enhancer may comprise adhesive to bond the sleeve portion in the receiving portion. The friction enhancer may comprise a washer locatable between the sleeve portion and receiving portion. The washer may comprise a high friction washer and/or a toothed washer.
  • While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.

Claims (10)

What is claimed is:
1. A rotational fixing for a disc brake, the rotational fixing comprising:
a guide pin having a guide sleeve;
a brake carrier having a receiving portion that receives a portion of the guide sleeve; and
a friction enhancer between the brake carrier and the guide sleeve, wherein the friction enhancer provides frictional engagement between the guide sleeve and the brake carrier such that the friction enhancer restricts rotation of the guide sleeve relative to the brake carrier when the portion of the guide sleeve is received in the receiving portion.
2. The rotational fixing of claim 1 wherein the guide sleeve includes a circumferential flange or rim arranged at a first end of the guide sleeve, and the friction enhancer is located on the circumferential flange or rim.
3. The rotational fixing of claim 2 wherein the friction enhancer is a knurled surface.
4. The rotational fixing of claim 3 wherein the knurled surface is provided on an end face of the circumferential flange or rim.
5. The rotational fixing of claim 3 wherein the knurled surface is provided on a circumferentially outer surface of the circumferential flange or rim.
6. The rotational fixing of claim 1 wherein the friction enhancer is located on the brake carrier.
7. The rotational fixing of claim 6 wherein the friction enhancer is a knurled surface.
8. The rotational fixing of claim 1 wherein the friction enhancer includes a washer disposed between the guide sleeve and the receiving portion.
9. The rotational fixing of claim 8 wherein the washer is a high friction washer.
10. The rotational fixing of claim 8 wherein the washer is a toothed washer.
US16/999,610 2015-06-04 2020-08-21 Guide assembly Abandoned US20200378457A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/999,610 US20200378457A1 (en) 2015-06-04 2020-08-21 Guide assembly

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP15170690.0A EP3101301B2 (en) 2015-06-04 2015-06-04 Guide assembly
EP15170690.0 2015-06-04
US15/174,102 US20160356326A1 (en) 2015-06-04 2016-06-06 Guide assembly
US16/999,610 US20200378457A1 (en) 2015-06-04 2020-08-21 Guide assembly

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/174,102 Continuation US20160356326A1 (en) 2015-06-04 2016-06-06 Guide assembly

Publications (1)

Publication Number Publication Date
US20200378457A1 true US20200378457A1 (en) 2020-12-03

Family

ID=53284118

Family Applications (4)

Application Number Title Priority Date Filing Date
US15/174,080 Active US10221904B2 (en) 2015-06-04 2016-06-06 Rotational fixing for a guide pin of a disc brake and method thereof
US15/174,102 Abandoned US20160356326A1 (en) 2015-06-04 2016-06-06 Guide assembly
US16/290,237 Abandoned US20190195299A1 (en) 2015-06-04 2019-03-01 Rotational fixing for a guide pin of a disc brake and method thereof
US16/999,610 Abandoned US20200378457A1 (en) 2015-06-04 2020-08-21 Guide assembly

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US15/174,080 Active US10221904B2 (en) 2015-06-04 2016-06-06 Rotational fixing for a guide pin of a disc brake and method thereof
US15/174,102 Abandoned US20160356326A1 (en) 2015-06-04 2016-06-06 Guide assembly
US16/290,237 Abandoned US20190195299A1 (en) 2015-06-04 2019-03-01 Rotational fixing for a guide pin of a disc brake and method thereof

Country Status (2)

Country Link
US (4) US10221904B2 (en)
EP (5) EP3415781B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3415781B1 (en) * 2015-06-04 2020-04-22 Meritor Heavy Vehicle Braking Systems (UK) Limited Guide assembly
EP3371476B1 (en) * 2015-11-05 2021-12-29 KNORR-BREMSE Systeme für Nutzfahrzeuge GmbH Disk brake for a utility vehicle
EP3492768B1 (en) 2017-11-29 2021-02-24 Meritor Heavy Vehicle Braking Systems (UK) Limited Caliper guide assembly
US11698115B2 (en) * 2019-02-12 2023-07-11 ZF Active Safety US Inc. Sliding mechanism for guide pins of a disc brake assembly
EP3779226B1 (en) * 2019-08-16 2022-07-06 Meritor Heavy Vehicle Braking Systems (UK) Limited A guide assembly for a disc brake
EP3779224B1 (en) * 2019-08-16 2022-10-05 Meritor Heavy Vehicle Braking Systems (UK) Limited A mounting for a guide pin of a disc brake
EP3779225B1 (en) * 2019-08-16 2022-11-16 Meritor Heavy Vehicle Braking Systems (UK) Limited A guide assembly for a disc brake
EP3872360A1 (en) * 2020-02-28 2021-09-01 Meritor Heavy Vehicle Braking Systems (UK) Limited Caliper guide assembly
CN111322325B (en) * 2020-04-07 2021-05-07 马鞍山博越精密机械有限公司 Caliper support with adjustable installation angle and production process
US11773928B2 (en) 2020-12-14 2023-10-03 Arvinmeritor Technology, Llc Brake assembly having a guide pin assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2477969A (en) * 1946-05-04 1949-08-02 Mid Continent Metal Products C Coupling
US5351583A (en) * 1993-03-03 1994-10-04 Patcore, Incorporated Toothless ratchet, clutch, and mechanisms to eliminate backlash

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2527871A (en) * 1946-06-21 1950-10-31 Harding F Bakewell Toolholder
US3213658A (en) * 1963-11-21 1965-10-26 Buckbee Mears Co Forming dome-shaped mesh
FR2142248A5 (en) 1971-06-18 1973-01-26 Dba
IT1162456B (en) 1978-06-29 1987-04-01 Lucas Industries Ltd SINTERED BRAKE PADS SUITABLE FOR USE ON LIGHTWEIGHT VEHICLES
US4244451A (en) * 1979-03-26 1981-01-13 The Bendix Corporation Disc brake and pin assembly therefor
FR2469615A1 (en) * 1979-11-08 1981-05-22 Dba SLIDING CALIPER DISC BRAKE
US4310075A (en) * 1980-03-10 1982-01-12 The Bendix Corporation Disc brake
US4393963A (en) * 1980-09-26 1983-07-19 The Bendix Corporation Disc brake caliper support
US4596316A (en) * 1984-02-10 1986-06-24 Goodyear Aerospace Corporation Electrically actuated aircraft brakes
GB2163225B (en) * 1984-08-18 1988-07-06 Lucas Ind Plc Improvements in self-energising disc brakes
US4762206A (en) * 1985-11-15 1988-08-09 Nippon Air Brake Co., Ltd. Disc brake
DE3614211A1 (en) 1986-04-26 1987-10-29 Goldbeckbau Gmbh Releasable connection between steel girder and prefabricated reinforced-concrete element
DE8633923U1 (en) * 1986-12-18 1988-04-21 Lucas Industries P.L.C., Birmingham, West Midlands Actuating device with automatic adjustment for brakes, in particular of heavy-duty vehicles
JPH048927A (en) * 1990-04-26 1992-01-13 Nissan Motor Co Ltd Floating type disc brake
DE9115195U1 (en) * 1991-12-06 1992-02-06 Lucas Industries P.L.C., Birmingham, West Midlands Actuating device with automatic adjustment for brakes, in particular for trucks and buses
WO1994001963A1 (en) * 1992-07-08 1994-01-20 Joseph Rozgonyi Cellular telephone access control and identification system
JPH06510358A (en) * 1992-07-10 1994-11-17 ベンディクス エスパーナ ソシエダッド アノニマ Device that guides the sliding caliper for disc brakes
DE9305631U1 (en) 1993-04-15 1994-08-25 Lucas Industries P.L.C., Solihull, West Midlands Floating caliper brake, in particular floating caliper partial lining disc brake
FR2705748B1 (en) * 1993-05-25 1995-07-07 Alliedsignal Europ Services Disc brake with sliding caliper.
KR100349530B1 (en) 2000-09-07 2002-08-21 주식회사 만도 Guide rode for disk brake
BR0212557B1 (en) * 2001-09-18 2011-07-26 disc brake, especially for a utility vehicle.
DE10150214B4 (en) 2001-10-12 2020-10-29 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Disc brake, in particular for a utility vehicle
DE10311896A1 (en) * 2003-03-18 2004-09-30 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Disc brake, in particular for commercial vehicles
DE10327623B4 (en) 2003-06-19 2006-07-13 Mtu Aero Engines Gmbh Milling process for the production of components
FR2905155B1 (en) * 2006-08-23 2009-03-27 Bosch Gmbh Robert DISC BRAKE COMPRISING A AXIS HAVING A RANGE HAVING A NON-CIRCULAR PROFILE SECTION
US20080135352A1 (en) 2006-12-12 2008-06-12 Bendix Spicer Foundation Brake Llc Brake caliper vertical mounting assembly joint arrangement
US8051958B1 (en) * 2007-02-16 2011-11-08 Kelsey-Hayes Company Guide pin for disc brake assembly and disc brake assembly including such a guide pin
DE102007053902A1 (en) * 2007-11-09 2009-05-20 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Disc brake for a commercial vehicle
EP2058717B1 (en) * 2007-11-12 2011-07-20 Siemens Aktiengesellschaft Method and device for operating a machine tool
DE102008021233A1 (en) 2008-04-28 2009-10-29 Rud Ketten Rieger & Dietz Gmbh U. Co. Kg Conveyor chain, has chain link with inner and outer straps connected together via hinge joint, and rubber elastic element flexibly twisted and producing resetting moment acting between straps during linear extension of chain
JP5538417B2 (en) * 2008-11-13 2014-07-02 シャシー・ブレークス・インターナショナル・ベスローテン・フェンノートシャップ Sleeve for disc brake caliper and disc brake fitted with such sleeve
DE102010020588A1 (en) 2010-05-14 2011-11-17 Wabco Radbremsen Gmbh Disc brake, in particular for commercial vehicles, and sealing of such a disc brake
DE102012014886A1 (en) 2012-07-26 2014-01-30 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Clamping device of a disc brake for a commercial vehicle
KR102205623B1 (en) * 2012-11-01 2021-01-20 켈시-헤이즈 컴파니 Guide pin for disc brake assembly, disc brake assembly including such a guide pin and method for producing a disc brake assembly including such a guide pin
US9587686B2 (en) * 2012-11-01 2017-03-07 Kelsey-Hayes Company Guide pin for disc brake assembly and disc brake assembly including such a guide pin
EP3415781B1 (en) * 2015-06-04 2020-04-22 Meritor Heavy Vehicle Braking Systems (UK) Limited Guide assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2477969A (en) * 1946-05-04 1949-08-02 Mid Continent Metal Products C Coupling
US5351583A (en) * 1993-03-03 1994-10-04 Patcore, Incorporated Toothless ratchet, clutch, and mechanisms to eliminate backlash

Also Published As

Publication number Publication date
EP3133312B1 (en) 2018-11-07
EP3133312B2 (en) 2024-05-22
US10221904B2 (en) 2019-03-05
EP3101301A1 (en) 2016-12-07
EP3101301B1 (en) 2018-09-19
EP3415781B1 (en) 2020-04-22
EP3101301B2 (en) 2024-03-06
EP3415781A1 (en) 2018-12-19
EP3617542A1 (en) 2020-03-04
EP3441636A1 (en) 2019-02-13
EP3133312A3 (en) 2017-03-22
US20160356325A1 (en) 2016-12-08
EP3441636B1 (en) 2019-10-23
US20160356326A1 (en) 2016-12-08
US20190195299A1 (en) 2019-06-27
EP3133312A2 (en) 2017-02-22
EP3617542B1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
US20200378457A1 (en) Guide assembly
US7610999B2 (en) Wheel hub
US11420465B2 (en) Assembling structure for tire wheel, brake rotor, and hub
US11560929B2 (en) Guide assembly for a disc brake
US20160258499A1 (en) Axis of a land vehicle, land vehicle with such a suspension and disc brake and brake support of such land vehicle
EP1902862A2 (en) Rolling bearing apparatus for wheel
US11603895B2 (en) Mounting for a guide pin of a disc brake
JP2017106516A (en) Disc brake
JP2021028524A (en) Fixture
JP7409645B2 (en) tool holder
JP5494783B2 (en) Manufacturing method of wheel bearing device
EP4031777B1 (en) Brake caliper and spring unit for a brake caliper
JP2009030618A (en) Rolling bearing unit for drive wheel and method of manufacturing the same
JPH056037Y2 (en)
JP2009154629A (en) Wheel bearing device
JP4036918B2 (en) Brake assembly for vehicle and mounting method thereof
JPH0135002Y2 (en)

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION