US20200261970A1 - Device and method for continuously removing impurities from molten metal - Google Patents

Device and method for continuously removing impurities from molten metal Download PDF

Info

Publication number
US20200261970A1
US20200261970A1 US16/865,530 US202016865530A US2020261970A1 US 20200261970 A1 US20200261970 A1 US 20200261970A1 US 202016865530 A US202016865530 A US 202016865530A US 2020261970 A1 US2020261970 A1 US 2020261970A1
Authority
US
United States
Prior art keywords
molten metal
flow path
outlet
impurity removal
removal space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/865,530
Inventor
Kenzo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20200261970A1 publication Critical patent/US20200261970A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/045Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for horizontal casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/118Refining the metal by circulating the metal under, over or around weirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/119Refining the metal by filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/02Use of electric or magnetic effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/04Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like tiltable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/56Means for supporting, manipulating or changing a pouring-nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/12Arrangement of elements for electric heating in or on furnaces with electromagnetic fields acting directly on the material being heated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D25/00Devices or methods for removing incrustations, e.g. slag, metal deposits, dust; Devices or methods for preventing the adherence of slag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/15Tapping equipment; Equipment for removing or retaining slag
    • F27D3/1545Equipment for removing or retaining slag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/15Tapping equipment; Equipment for removing or retaining slag
    • F27D3/1545Equipment for removing or retaining slag
    • F27D3/159Equipment for removing or retaining slag for retaining slag during the pouring of the metal or retaining metal during the pouring of the slag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D2003/0034Means for moving, conveying, transporting the charge in the furnace or in the charging facilities
    • F27D2003/0039Means for moving, conveying, transporting the charge in the furnace or in the charging facilities comprising magnetic means

Definitions

  • the present invention relates to a device and a method for continuously removing impurities from molten metal.
  • productization from molten metal having electrical conductivity (conductivity), that is, non-ferrous molten metal (e.g., Al, Cu, Zn, or Si, alloy including at least two of these, Mg alloy, or the like) or molten metal other than non-ferrous molten metal includes, for example, steps of dissolving raw materials, adjusting components, removing impurities mixed in molten metal, and molding. Removal of impurities is generally referred to as purification of molten metal, and, for example, a ceramic filter is used therefor.
  • the present invention has been made in view of such circumstances, and it is an object thereof to provide a device and a method for continuously removing impurities for enabling continuous manufacture of products while removing impurities from non-ferrous metal or other molten metal containing impurities with high accuracy.
  • a molten metal flow path body having a molten metal flow path for flowing electrically conductive molten metal that has flown from outside toward the metal product manufacturing device;
  • an electrode device composed of an inlet-side electrode and an outlet-side electrode that are provided in the impurity removal space, face each other in a longitudinal direction in which molten metal flows, and can be put into electrical contact with molten metal in the impurity removal space;
  • a magnetic field device composed of a pair of permanent magnets that are provided outside the molten metal flow path forming body, face each other in a width direction intersecting the longitudinal direction, sandwich the impurity removal space of the molten metal flow path forming body in the width direction, have opposite poles facing each other, and can form a magnetic field in molten metal in the impurity removal space,
  • the electrode device and the magnetic field device constitute an urging device that can apply a Lorentz force downward to molten metal in the impurity removal space so as to increase a density of the molten metal and cause impurities in the molten metal to rise up to a surface of the molten metal.
  • a continuous impurity removal method for removing impurities from molten metal in sending electrically conductive molten metal to a metal product manufacturing device in a next stage, the method including:
  • an electrode device composed of an inlet-side electrode and an outlet-side electrode that face each other in a longitudinal direction in which molten metal flows and can be put into electrical contact with molten metal in the impurity removal space;
  • a magnetic field device composed of a pair of permanent magnets that face each other in a width direction intersecting the longitudinal direction, sandwich the impurity removal space of the molten metal flow path forming body in the width direction, have opposite poles facing each other, and can form a magnetic field in molten metal in the impurity removal space;
  • an urging device composed of the electrode device and the magnetic field device to apply a Lorentz force downward to molten metal in the impurity removal space so as to increase a density of the molten metal and cause impurities in the molten metal to rise up to a surface of the molten metal.
  • a molten metal flow path body having a molten metal flow path for flowing electrically conductive molten metal that has flown from outside toward the metal product manufacturing device;
  • an electrode device composed of an inlet-side electrode and an outlet-side electrode that are provided in the impurity removal space, face each other in a longitudinal direction in which molten metal flows, and can be put into electrical contact with molten metal in the impurity removal space;
  • a magnetic field device composed of a pair of permanent magnets that are provided outside the molten metal flow path forming body, face each other in a width direction intersecting the longitudinal direction, sandwich the impurity removal space of the molten metal flow path forming body in the width direction, have opposite poles facing each other, and can form a magnetic field in molten metal in the impurity removal space,
  • the outlet-side electrode is provided in a floating state in the impurity removal space so that a first gap opened vertically is formed between the outlet-side electrode and a bottom surface of the molten metal flow path forming body and a second gap opened in the longitudinal direction is formed between the outlet-side electrode and the outlet-side closed end plate, and
  • the electrode device and the magnetic field device constitute an urging device that can apply a Lorentz force downward to molten metal in the impurity removal space so as to increase a density of the molten metal and cause impurities in the molten metal to rise up to a surface of the molten metal, and can send molten metal on an inner side than the outlet-side electrode in the impurity removal space through the first gap to the second gap.
  • a continuous impurity removal method for removing impurities from molten metal in sending electrically conductive molten metal to a metal product manufacturing device in a next stage, the method including:
  • an electrode device composed of an inlet-side electrode and an outlet-side electrode that face each other in a longitudinal direction in which molten metal flows and can be put into electrical contact with molten metal in the impurity removal space;
  • a magnetic field device composed of a pair of permanent magnets that face each other in a width direction intersecting the longitudinal direction, sandwich the impurity removal space of the molten metal flow path forming body in the width direction, have opposite poles facing each other, and can form a magnetic field in molten metal in the impurity removal space;
  • an urging device composed of the electrode device and the magnetic field device to apply a Lorentz force downward to molten metal in the impurity removal space so as to increase a density of the molten metal and cause impurities in the molten metal to rise up to a surface of the molten metal, and send molten metal on an inner side than the outlet-side electrode through the first gap to the second gap.
  • FIG. 1 is an explanatory plan view illustrating the overall configuration of a device for continuously removing impurities from molten metal according to an embodiment of the present invention.
  • FIG. 2 is an explanatory sectional view taken along line II-II of FIG. 1 .
  • FIG. 3 is an explanatory sectional view taken along line III-III of FIG. 2 .
  • FIG. 4 is an explanatory sectional view taken along line IV-IV of FIG. 2 .
  • FIG. 5 is an explanatory view illustrating a usage state corresponding to a part of FIG. 2 .
  • FIG. 6 is an explanatory view for explaining generation of a Lorentz force.
  • FIG. 7 a is an explanatory view for explaining a pressure state in molten metal.
  • FIG. 7 b is an explanatory view for explaining a pressure state in molten metal.
  • FIG. 8 is an explanatory partial view illustrating a modified example corresponding to FIG. 5 .
  • FIG. 9 a is an explanatory longitudinal sectional view illustrating a specific example of an outlet-side closed end plate.
  • FIG. 9 b is an explanatory longitudinal sectional view illustrating a specific example of an outlet-side closed end plate.
  • FIG. 1 is an explanatory plan view illustrating the entire configuration of an embodiment of a device 100 for continuously removing impurities from molten metal according to the present invention.
  • the metal is a non-ferrous metal having electrical conductivity or another metal.
  • the non-ferrous metal or another metal is a non-ferrous metal of a conductor (electric conductor) such as Al, Cu, Zn, an alloy including at least two of these, or an Mg alloy, or a metal other than the non-ferrous metal.
  • FIG. 1 the flow of molten metal M is indicated by a solid arrow AR 1 , and the movement of impurities IM is indicated by a broken arrow AR 2 . That is, it is shown that the impurities IM are removed laterally while the molten metal M is flowing along the arrow AR 1 .
  • FIG. 1 illustrates a case where a tilting type melting furnace is used as an example.
  • the impurity removing device 100 receives molten metal M from a melting furnace 200 in the preceding stage, allows the molten metal M flow inside the impurity removing device 100 , causes impurities in the molten metal M to positively rise up to the vicinity of the liquid surface during the molten metal M is flowing so that the impurities can be removed by arbitral means, and causes the molten metal M to flow into a mold 300 in the following stage after impurities are removed, so that a product (ingot) such as a billet or a slab, for example, can be manufactured from high-quality molten metal M.
  • a general-purpose melting furnace 200 and a general-purpose mold 300 can be employed. Therefore, for example, the impurity removing device 100 of the present invention can be additionally provided to an existing melting furnace 200 and an existing mold 300 later.
  • the melting furnace 200 is a general-purpose tilting type melting furnace as described above. That is, the melting furnace 200 includes a container-shaped melting furnace main body 1 having an opening 2 at the top. A spout 3 for the molten metal M is formed at a side wall on the front side (left side in the figure) of the tilting type melting furnace main body 1 . A general-purpose gas burner 4 is attached to a rear side wall. The raw material of the electrically conductive metal introduced from the opening 2 is heated by the gas burner 4 to be molten metal M and is housed in the melting furnace main body 1 .
  • FIG. 2 is an explanatory longitudinal sectional view taken along line II-II of FIG. 1 .
  • a hinge mechanism 6 is provided at an outer bottom portion of the melting furnace main body 1 so as to be able to derrick and rotate. As a result, it is configured to be able to derrick and rotate on a horizontal shaft 6 a from an upright state to an inclined pouring state.
  • This melting furnace main body 1 can adjust the amount of molten metal supplied to a gutter main body 10 .
  • the molten metal M is poured from the spout 3 to the impurity removing device 100 in the next stage by tilting the melting furnace main body 1 . This state is illustrated in FIG. 5 .
  • the head h illustrated in FIG. 2 is changed, and the flow rate of the molten metal M from the melting furnace main body 1 to the gutter main body 10 can be changed.
  • the level of the molten metal M in the gutter main body 10 is performed by changing the height of an outlet-side closed end plate 11 .
  • one electrode 13 b which will be described later, can be provided separately from the inlet-side closed end plate 8 .
  • the flow of the molten metal M at this time is as illustrated in FIG. 8 .
  • the impurity removing device 100 that receives the molten metal M from the melting furnace 200 is configured to have a function as a so-called gutter that allows the received molten metal M flow from right to left in FIG. 1 and give the molten metal M to the mold 300 in the next stage, and a selective accumulation function of selectively accumulating impurities in the molten metal M that are caused to rise up to the vicinity of the liquid surface during the flow.
  • the impurity removing device 100 includes the gutter main body (sorting tank) (molten metal flow path body) 10 , and a magnetic field device 12 that sandwiches the gutter main body 10 in the width direction. Furthermore, as can be seen particularly from FIG. 1 , the impurity removing device 100 has an electrode device 13 composed of a pair of electrodes 13 a and 13 b that are housed inside the gutter main body 10 (molten metal flow path) and face each other.
  • the magnetic field device 12 and the electrode device 13 constitute an urging device 30 that applies a Lorentz force f downward to the molten metal M, as will be described later in detail.
  • the gutter main body 10 is configured to guide the molten metal M from the melting furnace 200 to the mold 300 , and the gutter main body 10 is made of a refractory material and has a substantially U-shaped cross section as can be seen from FIG. 3 .
  • the gutter main body 10 can be installed with a gradient so that the left side becomes lower than the right side in FIG. 2 in order to make the flow of the molten metal M smooth.
  • the gutter main body 10 has an inflow auxiliary plate 7 A that receives the molten metal M from the melting furnace 200 , and an inlet-side closed end plate 8 , a main flow path bottom plate 9 , and the outlet-side closed end plate 11 that follow. Furthermore, there are right and left side plates 15 a and 15 b sandwiching these members in the width direction. The right and left side plates 15 a and 15 b , the inlet-side closed end plate 8 , and the outlet-side closed end plate 11 form a main flow path (impurity removal space) 14 as an impurity removal portion.
  • the outlet-side closed end plate 11 can be configured such that the height thereof can be adjusted. Arbitral configuration configured such that the height thereof can be adjusted can be employed.
  • the outlet-side closed end plate 11 may be composed of a main body 11 a and an auxiliary plate 11 b which are bolted to each other, and the auxiliary plate 11 b may be vertically shifted with respect to the main body 11 a.
  • the inlet-side electrode 13 a in the electrode device 13 is provided in close contact with the inlet-side closed end plate 8 , and the outlet-side electrode 13 b is spaced from the outlet-side closed end plate 11 with a gap (second gap) G 2 in the longitudinal direction and is provided in a floating state of floating with a gap (first gap) G 1 in the depth direction.
  • the molten metal M flows through the gaps G 1 and G 2 , flows over the outlet-side closed end plate 11 , or so-called overflows, and flows out from the main flow path 8 through an outflow auxiliary plate 7 B toward the mold 300 as will be described later.
  • a power supply 16 is connected between the pair of electrodes 13 a and 13 b in the electrode device 13 .
  • This power supply 16 is configured to be able to pass an alternating current as well as a direct current. Furthermore, it is configured to switch the polarity of a direct current.
  • the magnetic field device 12 is provided on both right and left sides of the gutter main body 10 as can be seen from FIGS. 1 and 4 .
  • This magnetic field device 12 includes a pair of right and left permanent magnets 12 a and 12 b , and the gutter main body 10 is sandwiched between the pair of permanent magnets 12 a and 12 b .
  • the pair of permanent magnets 12 a and 12 b have opposite poles facing each other, and in this embodiment, the inner sides of the pair of permanent magnets 12 a and 12 b are magnetized respectively to an S pole and an N pole.
  • the lines of magnetic force ML from an upper permanent magnet 12 b in FIG. 4 penetrate the molten metal M in the gutter main body 10 and reach a lower permanent magnet 12 a .
  • the magnetic field device 12 can be constituted of an electromagnet.
  • impurities IM in the molten metal M rise in the molten metal M and reach the liquid level. That is, impurities IM tend to settle in the molten metal M by its own weight. Moreover, a buoyancy due to the molten metal M acts on impurities IM. Thus, when the density of the molten metal M increases, a large buoyancy acts on impurities IM in the molten metal M. Therefore, impurities IM rise or fall according to a difference between the buoyancy and the settlement force.
  • impurities IM rise up to the vicinity of the surface of the molten metal M.
  • Impurities IM that have risen up are automatically or artificially discharged to an impurity receiver 40 via the impurity removing plate 7 C as can be seen from FIG. 3 by arbitral means.
  • the impurity removing plate 7 C has a mountain-shaped cross section.
  • the molten metal M is pushed down by application of pressure as illustrated in FIG. 7 b as described above to decrease the liquid level.
  • the molten metal M flows through the gap G 1 and reaches the gap G 2 as can be seen from FIG. 2 .
  • a head h is generated, and a pressure corresponding to the head h is applied to the molten metal M in the gutter main body 10 as illustrated in FIG. 2 .
  • impurities IM rise in the molten metal M and gather in the vicinity of the liquid surface, the molten metal M flowing through the gap G 1 contains substantially no impurity IM.
  • molten metal M substantially containing no impurity IM exists in the gap G 2 .
  • the liquid level of the molten metal M rises in the gap G 2 . Therefore, the substantially purified molten metal M flows over the outlet-side closed end plate 11 and flows into the mold 30 via the outflow auxiliary plate 7 B. As a result, a high-quality product with less impurities IM can be obtained.
  • h denotes a head of two liquid levels.
  • the magnetic field strength in the molten metal M in FIG. 4 will be denoted by B.
  • B The magnetic field strength in the molten metal M in FIG. 4
  • a Lorentz force f is generated downward.
  • a force F that acts on a bottom portion of the gutter main body 10 is the sum of a force fg due to the gravity and a force fm due to the Lorentz force f, and is expressed as the following expression.
  • the pressure P at a bottom portion of the gutter main body 10 is expressed as the following expression.
  • the apparent density of the molten metal M affected by two influences of the Lorentz force f and the gravity is denoted by ⁇ m
  • the density of mixed impurity particles is denoted by ⁇ s
  • the particle size is denoted by V.
  • the buoyancy fa received from the molten metal M and the force fg due to the gravity simultaneously act on the impurity particles.
  • Fs the force received by the impurity particles
  • the impurity particles move in the molten metal M as follows.
  • the residence time of the molten metal M in the gutter main body may be increased by slowing down the flow speed or lengthening the gutter main body, for example, in the case of separating objects (having small particle size) having a low rise speed.
  • the specific gravity of the molten metal can be easily changed by changing the magnetic field strength or the current value, and an impurity removing operation can be performed according to the type of the molten metal M to be subjected to impurity removal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

A device for continuously removing impurities from molten metal includes a molten metal flow path body, an inlet-side closed end plate and an outlet-side closed end plate are provided in the molten metal flow path body so as to form an impurity removal space, an electrode device composed of an inlet-side electrode and an outlet-side electrode that face each other in a longitudinal direction of the molten metal flow path body, a magnetic field device composed of a pair of permanent magnets that face each other in a width direction, sandwich the impurity removal space, and an urging device composed of the electrode device and the magnetic field device applies a Lorentz force downward to molten metal in the impurity removal space so as to increase a density of the molten metal and cause impurities in the molten metal to rise up to a surface of the molten metal.

Description

    TECHNICAL FIELD
  • The present invention relates to a device and a method for continuously removing impurities from molten metal.
  • BACKGROUND ART
  • Conventionally, productization from molten metal having electrical conductivity (conductivity), that is, non-ferrous molten metal (e.g., Al, Cu, Zn, or Si, alloy including at least two of these, Mg alloy, or the like) or molten metal other than non-ferrous molten metal includes, for example, steps of dissolving raw materials, adjusting components, removing impurities mixed in molten metal, and molding. Removal of impurities is generally referred to as purification of molten metal, and, for example, a ceramic filter is used therefor.
  • However, since an impurity removal method using a filter is, of course, a filtration method, clogging is likely to occur. Therefore, there is a problem such that the workability is deteriorated and the running cost is increased.
  • In other words, in a case of a filter type, how large the mesh is set to is actually an important point. In order to remove not only large impurities but also fine impurities, the mesh must be fine. However, if the mesh is made fine, clogging is more likely to occur. For example, clogging may occur instantaneously, and production may stop.
  • Thus, conventionally, flux is previously introduced into the molten metal prior to removal with a filter. By such introduction, impurities are changed into substances having a large particle size. As a result, it becomes possible to remove impurities while keeping the mesh large to some extent, and it is possible to increase the removal efficiency (trap efficiency) of the filter. However, it is not preferable to introduce flux into the molten metal in terms of product quality in many cases.
  • SUMMARY OF INVENTION Technical Problem
  • As described above, according to a conventional method, it is actually impossible to continuously produce products without stopping production of products while removing impurities, including fine impurities, from molten metal.
  • The present invention has been made in view of such circumstances, and it is an object thereof to provide a device and a method for continuously removing impurities for enabling continuous manufacture of products while removing impurities from non-ferrous metal or other molten metal containing impurities with high accuracy.
  • Solution to Problem
  • An embodiment of the present invention is
  • a device for continuously removing impurities from molten metal, which sends electrically conductive molten metal to a metal product manufacturing device in a next stage, the device including:
  • a molten metal flow path body having a molten metal flow path for flowing electrically conductive molten metal that has flown from outside toward the metal product manufacturing device;
  • an inlet-side closed end plate and an outlet-side closed end plate that are provided in the molten metal flow path body so as to partition a front and a rear of the molten metal flow path and form an impurity removal space;
  • an electrode device composed of an inlet-side electrode and an outlet-side electrode that are provided in the impurity removal space, face each other in a longitudinal direction in which molten metal flows, and can be put into electrical contact with molten metal in the impurity removal space; and
  • a magnetic field device composed of a pair of permanent magnets that are provided outside the molten metal flow path forming body, face each other in a width direction intersecting the longitudinal direction, sandwich the impurity removal space of the molten metal flow path forming body in the width direction, have opposite poles facing each other, and can form a magnetic field in molten metal in the impurity removal space,
  • in which the electrode device and the magnetic field device constitute an urging device that can apply a Lorentz force downward to molten metal in the impurity removal space so as to increase a density of the molten metal and cause impurities in the molten metal to rise up to a surface of the molten metal.
  • Furthermore, an embodiment of the present invention is
  • a continuous impurity removal method for removing impurities from molten metal in sending electrically conductive molten metal to a metal product manufacturing device in a next stage, the method including:
  • preparing a molten metal flow path body having a molten metal flow path for flowing electrically conductive molten metal that has flown from outside toward the metal product manufacturing device;
  • providing an inlet-side closed end plate and an outlet-side closed end plate in the molten metal flow path body so as to partition a front and a rear of the molten metal flow path and form an impurity removal space;
  • providing, in the impurity removal space, an electrode device composed of an inlet-side electrode and an outlet-side electrode that face each other in a longitudinal direction in which molten metal flows and can be put into electrical contact with molten metal in the impurity removal space;
  • providing, outside the molten metal flow path forming body, a magnetic field device composed of a pair of permanent magnets that face each other in a width direction intersecting the longitudinal direction, sandwich the impurity removal space of the molten metal flow path forming body in the width direction, have opposite poles facing each other, and can form a magnetic field in molten metal in the impurity removal space; and
  • causing an urging device composed of the electrode device and the magnetic field device to apply a Lorentz force downward to molten metal in the impurity removal space so as to increase a density of the molten metal and cause impurities in the molten metal to rise up to a surface of the molten metal.
  • Furthermore, an embodiment of the present invention is
  • a device for continuously removing impurities from molten metal, which sends electrically conductive molten metal to a metal product manufacturing device in a next stage, the device including:
  • a molten metal flow path body having a molten metal flow path for flowing electrically conductive molten metal that has flown from outside toward the metal product manufacturing device;
  • an inlet-side closed end plate and an outlet-side closed end plate that are provided in the molten metal flow path body so as to partition a front and a rear of the molten metal flow path and form an impurity removal space;
  • an electrode device composed of an inlet-side electrode and an outlet-side electrode that are provided in the impurity removal space, face each other in a longitudinal direction in which molten metal flows, and can be put into electrical contact with molten metal in the impurity removal space; and
  • a magnetic field device composed of a pair of permanent magnets that are provided outside the molten metal flow path forming body, face each other in a width direction intersecting the longitudinal direction, sandwich the impurity removal space of the molten metal flow path forming body in the width direction, have opposite poles facing each other, and can form a magnetic field in molten metal in the impurity removal space,
  • in which the outlet-side electrode is provided in a floating state in the impurity removal space so that a first gap opened vertically is formed between the outlet-side electrode and a bottom surface of the molten metal flow path forming body and a second gap opened in the longitudinal direction is formed between the outlet-side electrode and the outlet-side closed end plate, and
  • the electrode device and the magnetic field device constitute an urging device that can apply a Lorentz force downward to molten metal in the impurity removal space so as to increase a density of the molten metal and cause impurities in the molten metal to rise up to a surface of the molten metal, and can send molten metal on an inner side than the outlet-side electrode in the impurity removal space through the first gap to the second gap.
  • Furthermore, an embodiment of the present invention is
  • a continuous impurity removal method for removing impurities from molten metal in sending electrically conductive molten metal to a metal product manufacturing device in a next stage, the method including:
  • preparing a molten metal flow path body having a molten metal flow path for flowing electrically conductive molten metal that has flown from outside toward the metal product manufacturing device;
  • providing an inlet-side closed end plate and an outlet-side closed end plate in the molten metal flow path body so as to partition a front and a rear of the molten metal flow path and form an impurity removal space;
  • providing, in the impurity removal space, an electrode device composed of an inlet-side electrode and an outlet-side electrode that face each other in a longitudinal direction in which molten metal flows and can be put into electrical contact with molten metal in the impurity removal space;
  • providing, outside the molten metal flow path forming body, a magnetic field device composed of a pair of permanent magnets that face each other in a width direction intersecting the longitudinal direction, sandwich the impurity removal space of the molten metal flow path forming body in the width direction, have opposite poles facing each other, and can form a magnetic field in molten metal in the impurity removal space;
  • providing the outlet-side electrode in a floating state in the impurity removal space so that a first gap opened vertically is formed between the outlet-side electrode and a bottom surface of the molten metal flow path forming body and a second gap opened in the longitudinal direction is formed between the outlet-side electrode and the outlet-side closed end plate; and
  • causing an urging device composed of the electrode device and the magnetic field device to apply a Lorentz force downward to molten metal in the impurity removal space so as to increase a density of the molten metal and cause impurities in the molten metal to rise up to a surface of the molten metal, and send molten metal on an inner side than the outlet-side electrode through the first gap to the second gap.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is an explanatory plan view illustrating the overall configuration of a device for continuously removing impurities from molten metal according to an embodiment of the present invention.
  • FIG. 2 is an explanatory sectional view taken along line II-II of FIG. 1.
  • FIG. 3 is an explanatory sectional view taken along line III-III of FIG. 2.
  • FIG. 4 is an explanatory sectional view taken along line IV-IV of FIG. 2.
  • FIG. 5 is an explanatory view illustrating a usage state corresponding to a part of FIG. 2.
  • FIG. 6 is an explanatory view for explaining generation of a Lorentz force.
  • FIG. 7a is an explanatory view for explaining a pressure state in molten metal.
  • FIG. 7b is an explanatory view for explaining a pressure state in molten metal.
  • FIG. 8 is an explanatory partial view illustrating a modified example corresponding to FIG. 5.
  • FIG. 9a is an explanatory longitudinal sectional view illustrating a specific example of an outlet-side closed end plate.
  • FIG. 9b is an explanatory longitudinal sectional view illustrating a specific example of an outlet-side closed end plate.
  • DESCRIPTION OF EMBODIMENTS
  • Hereinafter, embodiments of the present invention will be described with reference to the drawings.
  • FIG. 1 is an explanatory plan view illustrating the entire configuration of an embodiment of a device 100 for continuously removing impurities from molten metal according to the present invention. The metal is a non-ferrous metal having electrical conductivity or another metal. The non-ferrous metal or another metal is a non-ferrous metal of a conductor (electric conductor) such as Al, Cu, Zn, an alloy including at least two of these, or an Mg alloy, or a metal other than the non-ferrous metal.
  • In FIG. 1, the flow of molten metal M is indicated by a solid arrow AR1, and the movement of impurities IM is indicated by a broken arrow AR2. That is, it is shown that the impurities IM are removed laterally while the molten metal M is flowing along the arrow AR1.
  • More specifically, FIG. 1 illustrates a case where a tilting type melting furnace is used as an example. As can be seen from FIG. 1, the impurity removing device 100 receives molten metal M from a melting furnace 200 in the preceding stage, allows the molten metal M flow inside the impurity removing device 100, causes impurities in the molten metal M to positively rise up to the vicinity of the liquid surface during the molten metal M is flowing so that the impurities can be removed by arbitral means, and causes the molten metal M to flow into a mold 300 in the following stage after impurities are removed, so that a product (ingot) such as a billet or a slab, for example, can be manufactured from high-quality molten metal M. A general-purpose melting furnace 200 and a general-purpose mold 300 can be employed. Therefore, for example, the impurity removing device 100 of the present invention can be additionally provided to an existing melting furnace 200 and an existing mold 300 later.
  • The melting furnace 200 is a general-purpose tilting type melting furnace as described above. That is, the melting furnace 200 includes a container-shaped melting furnace main body 1 having an opening 2 at the top. A spout 3 for the molten metal M is formed at a side wall on the front side (left side in the figure) of the tilting type melting furnace main body 1. A general-purpose gas burner 4 is attached to a rear side wall. The raw material of the electrically conductive metal introduced from the opening 2 is heated by the gas burner 4 to be molten metal M and is housed in the melting furnace main body 1.
  • FIG. 2 is an explanatory longitudinal sectional view taken along line II-II of FIG. 1. As can be seen from FIG. 2, a hinge mechanism 6 is provided at an outer bottom portion of the melting furnace main body 1 so as to be able to derrick and rotate. As a result, it is configured to be able to derrick and rotate on a horizontal shaft 6 a from an upright state to an inclined pouring state. This melting furnace main body 1 can adjust the amount of molten metal supplied to a gutter main body 10. The molten metal M is poured from the spout 3 to the impurity removing device 100 in the next stage by tilting the melting furnace main body 1. This state is illustrated in FIG. 5. By adjusting the angle at which the melting furnace main body 1 is inclined, the head h illustrated in FIG. 2 is changed, and the flow rate of the molten metal M from the melting furnace main body 1 to the gutter main body 10 can be changed. It is to be noted that the level of the molten metal M in the gutter main body 10 is performed by changing the height of an outlet-side closed end plate 11. Moreover, as illustrated in FIG. 8, one electrode 13 b, which will be described later, can be provided separately from the inlet-side closed end plate 8. The flow of the molten metal M at this time is as illustrated in FIG. 8.
  • The impurity removing device 100 that receives the molten metal M from the melting furnace 200 is configured to have a function as a so-called gutter that allows the received molten metal M flow from right to left in FIG. 1 and give the molten metal M to the mold 300 in the next stage, and a selective accumulation function of selectively accumulating impurities in the molten metal M that are caused to rise up to the vicinity of the liquid surface during the flow.
  • That is, as can be seen particularly from FIG. 2, the impurity removing device 100 includes the gutter main body (sorting tank) (molten metal flow path body) 10, and a magnetic field device 12 that sandwiches the gutter main body 10 in the width direction. Furthermore, as can be seen particularly from FIG. 1, the impurity removing device 100 has an electrode device 13 composed of a pair of electrodes 13 a and 13 b that are housed inside the gutter main body 10 (molten metal flow path) and face each other. The magnetic field device 12 and the electrode device 13 constitute an urging device 30 that applies a Lorentz force f downward to the molten metal M, as will be described later in detail.
  • As can be seen from FIG. 1, the gutter main body 10 is configured to guide the molten metal M from the melting furnace 200 to the mold 300, and the gutter main body 10 is made of a refractory material and has a substantially U-shaped cross section as can be seen from FIG. 3. The gutter main body 10 can be installed with a gradient so that the left side becomes lower than the right side in FIG. 2 in order to make the flow of the molten metal M smooth.
  • As can be seen from FIG. 2, the gutter main body 10 has an inflow auxiliary plate 7A that receives the molten metal M from the melting furnace 200, and an inlet-side closed end plate 8, a main flow path bottom plate 9, and the outlet-side closed end plate 11 that follow. Furthermore, there are right and left side plates 15 a and 15 b sandwiching these members in the width direction. The right and left side plates 15 a and 15 b, the inlet-side closed end plate 8, and the outlet-side closed end plate 11 form a main flow path (impurity removal space) 14 as an impurity removal portion.
  • The outlet-side closed end plate 11 can be configured such that the height thereof can be adjusted. Arbitral configuration configured such that the height thereof can be adjusted can be employed. For example, as can be seen from FIGS. 9a and 9b , the outlet-side closed end plate 11 may be composed of a main body 11 a and an auxiliary plate 11 b which are bolted to each other, and the auxiliary plate 11 b may be vertically shifted with respect to the main body 11 a.
  • The inlet-side electrode 13 a in the electrode device 13 is provided in close contact with the inlet-side closed end plate 8, and the outlet-side electrode 13 b is spaced from the outlet-side closed end plate 11 with a gap (second gap) G2 in the longitudinal direction and is provided in a floating state of floating with a gap (first gap) G1 in the depth direction. As a result, the molten metal M flows through the gaps G1 and G2, flows over the outlet-side closed end plate 11, or so-called overflows, and flows out from the main flow path 8 through an outflow auxiliary plate 7B toward the mold 300 as will be described later.
  • A power supply 16 is connected between the pair of electrodes 13 a and 13 b in the electrode device 13. This power supply 16 is configured to be able to pass an alternating current as well as a direct current. Furthermore, it is configured to switch the polarity of a direct current.
  • The magnetic field device 12 is provided on both right and left sides of the gutter main body 10 as can be seen from FIGS. 1 and 4. This magnetic field device 12 includes a pair of right and left permanent magnets 12 a and 12 b, and the gutter main body 10 is sandwiched between the pair of permanent magnets 12 a and 12 b. The pair of permanent magnets 12 a and 12 b have opposite poles facing each other, and in this embodiment, the inner sides of the pair of permanent magnets 12 a and 12 b are magnetized respectively to an S pole and an N pole. As a result, the lines of magnetic force ML from an upper permanent magnet 12 b in FIG. 4 penetrate the molten metal M in the gutter main body 10 and reach a lower permanent magnet 12 a. Thus, in actual use, a current I flows between the pair of electrodes 13 a and 13 b as can be seen from FIG. 4. Therefore, the lines of magnetic force ML and the current I intersect each other. As a result, a Lorentz force f to push the molten metal M downward is generated in the molten metal M as illustrated in FIG. 6. It is to be noted that the magnetic field device 12 can be constituted of an electromagnet.
  • Next, the operation of the embodiment of the present invention will be described.
  • As can be seen from FIGS. 1 and 2, when electrically conductive metal is introduced into the melting furnace 200 and is heated and molten, the molten metal M is caused to flow from the melting furnace 200 into the main flow path 14 by increase of the molten metal M and the tilt illustrated in FIG. 5.
  • In this main flow path 14, the lines of magnetic force ML and the current I intersect each other as can be seen from FIG. 4. This concept is illustrated in FIG. 6 described above. As a result, a Lorentz force f is generated and acts on the molten metal M as a force in a direction to push the molten metal M downward. As a result, the pressure inside the molten metal M increases as it goes from the surface to a bottom portion. The state of pressure distribution in this case is illustrated in FIG. 7a . That is, the density of the molten metal M becomes larger toward the bottom portion due to the gravity in addition to the Lorentz force f. This density affects greatly the buoyancy of impurities IM contained in the molten metal M. That is, when the density is high, a large buoyancy acts on impurities IM.
  • Therefore, in a state in which the Lorentz force f is generated, impurities IM in the molten metal M rise in the molten metal M and reach the liquid level. That is, impurities IM tend to settle in the molten metal M by its own weight. Moreover, a buoyancy due to the molten metal M acts on impurities IM. Thus, when the density of the molten metal M increases, a large buoyancy acts on impurities IM in the molten metal M. Therefore, impurities IM rise or fall according to a difference between the buoyancy and the settlement force. Thus, by setting the Lorentz force f to an expected value, the buoyancy becomes larger than the settlement force, and impurities IM rise in the molten metal M and reach the vicinity of the liquid surface. This operation is continuously performed in the process of flow of the molten metal M through the main flow path 14.
  • In this way, impurities IM rise up to the vicinity of the surface of the molten metal M. Impurities IM that have risen up are automatically or artificially discharged to an impurity receiver 40 via the impurity removing plate 7C as can be seen from FIG. 3 by arbitral means. As illustrated in FIG. 3, the impurity removing plate 7C has a mountain-shaped cross section.
  • Moreover, in the gutter main body 10, the molten metal M is pushed down by application of pressure as illustrated in FIG. 7b as described above to decrease the liquid level. Along with this, the molten metal M flows through the gap G1 and reaches the gap G2 as can be seen from FIG. 2. As a result, a head h is generated, and a pressure corresponding to the head h is applied to the molten metal M in the gutter main body 10 as illustrated in FIG. 2. Here, since impurities IM rise in the molten metal M and gather in the vicinity of the liquid surface, the molten metal M flowing through the gap G1 contains substantially no impurity IM. That is, molten metal M substantially containing no impurity IM exists in the gap G2. Thus, the liquid level of the molten metal M rises in the gap G2. Therefore, the substantially purified molten metal M flows over the outlet-side closed end plate 11 and flows into the mold 30 via the outflow auxiliary plate 7B. As a result, a high-quality product with less impurities IM can be obtained. In FIG. 2, h denotes a head of two liquid levels.
  • The above-described fact that application of the Lorentz force f can cause impurities IM in the molten metal M to rise in the molten metal M will be described below in detail.
  • The magnetic field strength in the molten metal M in FIG. 4 will be denoted by B. Here, as can be seen from FIGS. 7a and 7b , it is assumed that a Lorentz force f is generated downward. At this time, a force F that acts on a bottom portion of the gutter main body 10 is the sum of a force fg due to the gravity and a force fm due to the Lorentz force f, and is expressed as the following expression.

  • F=fg+fm
  • Here, since the horizontal area A of the gutter main body 10 is A=l×a (l: the length of the gutter main body 10, a: the width of the gutter main body 10), the pressure P at a bottom portion of the gutter main body 10 is expressed as the following expression.
  • P=F/A Furthermore, assuming here that the current density between the pair of electrodes 13 a and 13 b is constant, the Lorentz force f becomes zero at the surface of the molten metal, and I×B×l (N) at a bottom portion. Thus, the pressure is highest at a bottom portion. This state is illustrated in FIGS. 7a and 7 b.
  • Furthermore, the apparent density of the molten metal M affected by two influences of the Lorentz force f and the gravity is denoted by ρm, the density of mixed impurity particles is denoted by ρs, and the particle size is denoted by V. The buoyancy fa received from the molten metal M and the force fg due to the gravity simultaneously act on the impurity particles. At this time, assuming that the force received by the impurity particles is denoted by Fs, the following expression is satisfied.
  • Fs = fa - fg = ρ m × V - ρ s × V = ( ρ m - ρ s ) × V
  • Accordingly, the impurity particles move in the molten metal M as follows.
  • (a) ρm−ρs>0 Rise
  • (b) ρm−ρs<0 Settlement
  • (c) ρm−ρs=0 Floating
  • With the embodiment of the present invention described above, the following advantages can be obtained.
  • (1) Continuous purification of molten metal M is possible, which is consistent with a continuous casting method that has become a standard technology in the industry.
  • (2) Although the rise speed of impurities varies depending on the particle size, density, and the like of impurities, the residence time of the molten metal M in the gutter main body (sorting tank) may be increased by slowing down the flow speed or lengthening the gutter main body, for example, in the case of separating objects (having small particle size) having a low rise speed.
  • (3) Since the purification is neither physical nor mechanical, there is no need to replace a filter, which not only improves the work efficiency but also reduces costs.
  • (4) The specific gravity of the molten metal can be easily changed by changing the magnetic field strength or the current value, and an impurity removing operation can be performed according to the type of the molten metal M to be subjected to impurity removal.

Claims (14)

1. A device for continuously removing impurities from molten metal, which sends electrically conductive molten metal to a metal product manufacturing device in a next stage, the device comprising:
a molten metal flow path body having a molten metal flow path for flowing electrically conductive molten metal that has flown from outside toward the metal product manufacturing device;
an inlet-side closed end plate and an outlet-side closed end plate that are provided in the molten metal flow path body so as to partition a front and a rear of the molten metal flow path and form an impurity removal space;
an electrode device composed of an inlet-side electrode and an outlet-side electrode that are provided in the impurity removal space, face each other in a longitudinal direction in which molten metal flows, and can be put into electrical contact with molten metal in the impurity removal space; and
a magnetic field device composed of a pair of permanent magnets that are provided outside the molten metal flow path forming body, face each other in a width direction intersecting the longitudinal direction, sandwich the impurity removal space of the molten metal flow path forming body in the width direction, have opposite poles facing each other, and can form a magnetic field in molten metal in the impurity removal space,
wherein the electrode device and the magnetic field device constitute an urging device that can apply a Lorentz force downward to molten metal in the impurity removal space so as to increase a density of the molten metal and cause impurities in the molten metal to rise up to a surface of the molten metal.
2. The device for continuously removing impurities from molten metal according to claim 1, wherein a power supply that can adjust an amount of current so as to adjust the Lorentz force is connected with the pair of electrodes in the electrode device.
3. The device for continuously removing impurities from molten metal according to claim 1, wherein the outlet-side closed end plate is configured to be capable of adjusting a mounting position in the molten metal flow path body in the longitudinal direction so as to adjust a length of the impurity removal space.
4. The device for continuously removing impurities from molten metal according to claim 1, wherein the outlet-side electrode is provided in a floating state in the impurity removal space so that a first gap opened vertically is formed between the outlet-side electrode and a bottom surface of the molten metal flow path forming body and a second gap opened in the longitudinal direction is formed between the outlet-side electrode and the outlet-side closed end plate.
5. The device for continuously removing impurities from molten metal according to claim 1, wherein the outlet-side closed end plate is configured such that a height of the outlet-side closed end plate can be adjusted so that an amount of molten metal that overflows can be adjusted.
6. The device for continuously removing impurities from molten metal according to claim 1, wherein a molten metal supply device that supplies molten metal to the molten metal flow path body and can adjust a supply amount is provided in a preceding stage of the molten metal flow path body.
7. A continuous impurity removal method for removing impurities from molten metal in sending electrically conductive molten metal to a metal product manufacturing device in a next stage, the method comprising:
preparing a molten metal flow path body having a molten metal flow path for flowing electrically conductive molten metal that has flown from outside toward the metal product manufacturing device;
providing an inlet-side closed end plate and an outlet-side closed end plate in the molten metal flow path body so as to partition a front and a rear of the molten metal flow path and form an impurity removal space;
providing, in the impurity removal space, an electrode device composed of an inlet-side electrode and an outlet-side electrode that face each other in a longitudinal direction in which molten metal flows and can be put into electrical contact with molten metal in the impurity removal space;
providing, outside the molten metal flow path forming body, a magnetic field device composed of a pair of permanent magnets that face each other in a width direction intersecting the longitudinal direction, sandwich the impurity removal space of the molten metal flow path forming body in the width direction, have opposite poles facing each other, and can form a magnetic field in molten metal in the impurity removal space; and
causing an urging device composed of the electrode device and the magnetic field device to apply a Lorentz force downward to molten metal in the impurity removal space so as to increase a density of the molten metal and cause impurities in the molten metal to rise up to a surface of the molten metal.
8. The method for continuously removing impurities from molten metal according to claim 7, further comprising adjusting an amount of current applied from a power supply to the pair of electrodes in the electrode device so as to adjust the Lorentz force.
9. The method for continuously removing impurities from molten metal according to claim 7, further comprising a step of adjusting a mounting position of the outlet-side closed end plate in the molten metal flow path body in the longitudinal direction so as to adjust a length of the impurity removal space.
10. The method for continuously removing impurities from molten metal according to claim 7, wherein the outlet-side electrode is provided in a floating state in the impurity removal space so that a first gap opened vertically is formed between the outlet-side electrode and a bottom surface of the molten metal flow path forming body and a second gap opened in the longitudinal direction is formed between the outlet-side electrode and the outlet-side closed end plate.
11. The method for continuously removing impurities from molten metal according to claim 7, wherein the outlet-side closed end plate is configured such that a height of the outlet-side closed end plate can be adjusted and an amount of molten metal that overflows can be adjusted.
12. The method for continuously removing impurities according to claim 7, wherein a molten metal supply device provided in a preceding stage of the molten metal flow path body adjusts an amount of molten metal supplied to the molten metal flow path body.
13. A device for continuously removing impurities from molten metal, which sends electrically conductive molten metal to a metal product manufacturing device in a next stage, the device comprising:
a molten metal flow path body having a molten metal flow path for flowing electrically conductive molten metal that has flown from outside toward the metal product manufacturing device;
an inlet-side closed end plate and an outlet-side closed end plate that are provided in the molten metal flow path body so as to partition a front and a rear of the molten metal flow path and form an impurity removal space;
an electrode device composed of an inlet-side electrode and an outlet-side electrode that are provided in the impurity removal space, face each other in a longitudinal direction in which molten metal flows, and can be put into electrical contact with molten metal in the impurity removal space; and
a magnetic field device composed of a pair of permanent magnets that are provided outside the molten metal flow path forming body, face each other in a width direction intersecting the longitudinal direction, sandwich the impurity removal space of the molten metal flow path forming body in the width direction, have opposite poles facing each other, and can form a magnetic field in molten metal in the impurity removal space,
wherein the outlet-side electrode is provided in a floating state in the impurity removal space so that a first gap opened vertically is formed between the outlet-side electrode and a bottom surface of the molten metal flow path forming body and a second gap opened in the longitudinal direction is formed between the outlet-side electrode and the outlet-side closed end plate, and
the electrode device and the magnetic field device constitute an urging device that can apply a Lorentz force downward to molten metal in the impurity removal space so as to increase a density of the molten metal and cause impurities in the molten metal to rise up to a surface of the molten metal, and can send molten metal on an inner side than the outlet-side electrode in the impurity removal space through the first gap to the second gap.
14. A continuous impurity removal method for removing impurities from molten metal in sending electrically conductive molten metal to a metal product manufacturing device in a next stage, the method comprising:
preparing a molten metal flow path body having a molten metal flow path for flowing electrically conductive molten metal that has flown from outside toward the metal product manufacturing device;
providing an inlet-side closed end plate and an outlet-side closed end plate in the molten metal flow path body so as to partition a front and a rear of the molten metal flow path and form an impurity removal space;
providing, in the impurity removal space, an electrode device composed of an inlet-side electrode and an outlet-side electrode that face each other in a longitudinal direction in which molten metal flows and can be put into electrical contact with molten metal in the impurity removal space;
providing, outside the molten metal flow path forming body, a magnetic field device composed of a pair of permanent magnets that face each other in a width direction intersecting the longitudinal direction, sandwich the impurity removal space of the molten metal flow path forming body in the width direction, have opposite poles facing each other, and can form a magnetic field in molten metal in the impurity removal space;
providing the outlet-side electrode in a floating state in the impurity removal space so that a first gap opened vertically is formed between the outlet-side electrode and a bottom surface of the molten metal flow path forming body and a second gap opened in the longitudinal direction is formed between the outlet-side electrode and the outlet-side closed end plate; and
causing an urging device composed of the electrode device and the magnetic field device to apply a Lorentz force downward to molten metal in the impurity removal space so as to increase a density of the molten metal and cause impurities in the molten metal to rise up to a surface of the molten metal, and send molten metal on an inner side than the outlet-side electrode through the first gap to the second gap.
US16/865,530 2017-11-15 2020-05-04 Device and method for continuously removing impurities from molten metal Abandoned US20200261970A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017220376A JP6526769B1 (en) 2017-11-15 2017-11-15 Apparatus for removing impurities from molten metal and method for removing impurities
JP217-220376 2017-11-15
PCT/JP2018/031232 WO2019097799A1 (en) 2017-11-15 2018-08-23 Device and method for continuous removal of impurities from molten metal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031232 Continuation WO2019097799A1 (en) 2017-11-15 2018-08-23 Device and method for continuous removal of impurities from molten metal

Publications (1)

Publication Number Publication Date
US20200261970A1 true US20200261970A1 (en) 2020-08-20

Family

ID=66540193

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/865,530 Abandoned US20200261970A1 (en) 2017-11-15 2020-05-04 Device and method for continuously removing impurities from molten metal

Country Status (6)

Country Link
US (1) US20200261970A1 (en)
EP (1) EP3711878A4 (en)
JP (1) JP6526769B1 (en)
AU (1) AU2018368019A1 (en)
CA (1) CA3081826A1 (en)
WO (1) WO2019097799A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2753847C1 (en) * 2020-10-12 2021-08-24 Публичное акционерное общество "Электромеханика" Method and device for production of metal ingot
CN113441695A (en) * 2021-05-24 2021-09-28 中南大学 Method for removing non-oriented silicon steel inclusions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2020430989B2 (en) * 2020-02-28 2024-06-06 Kenzo Takahashi Molten metal purification apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122011A (en) * 1988-10-31 1990-05-09 Daido Steel Co Ltd Method and apparatus for floating up and separating inclusion
IL100136A (en) * 1991-11-24 1994-12-29 Ontec Ltd Method and device for producing homogeneous alloys
JPH0647506A (en) * 1992-07-30 1994-02-22 Kawasaki Steel Corp Method for cleaning molten metal in tundish and device therefor
JP2002346709A (en) * 2001-05-28 2002-12-04 Sumitomo Metal Ind Ltd Continuous casting tundish, and continuous casting method using the same
JP4772407B2 (en) * 2005-07-15 2011-09-14 高橋 謙三 Molten metal transfer device
JP5431438B2 (en) * 2011-11-10 2014-03-05 高橋 謙三 Molding device for continuous casting with stirring device
JP5815763B2 (en) * 2014-01-24 2015-11-17 高橋 謙三 Permanent magnet type molten metal stirring device, melting furnace having the same, and continuous casting device
CN107119192B (en) * 2017-04-17 2019-02-22 上海大学 The method and device of electromagnetism vortex driving force purifying molten metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2753847C1 (en) * 2020-10-12 2021-08-24 Публичное акционерное общество "Электромеханика" Method and device for production of metal ingot
CN113441695A (en) * 2021-05-24 2021-09-28 中南大学 Method for removing non-oriented silicon steel inclusions

Also Published As

Publication number Publication date
EP3711878A4 (en) 2021-05-12
EP3711878A1 (en) 2020-09-23
WO2019097799A1 (en) 2019-05-23
AU2018368019A1 (en) 2020-06-04
CA3081826A1 (en) 2019-05-23
JP2019089112A (en) 2019-06-13
JP6526769B1 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
US20200261970A1 (en) Device and method for continuously removing impurities from molten metal
KR102130908B1 (en) Non-contacting molten metal flow control
JP5878398B2 (en) Titanium melting equipment
US11161171B2 (en) Molten metal stirring device and continuous casting device system provided with same
CN112272593B (en) In-mold flow control device and in-mold flow control method in thin slab casting
US4167963A (en) Method and apparatus for feeding molten metal to an ingot during solidification
CN1150069C (en) Combined electromagnetic crystallizer for conticasting
US9434000B2 (en) System and method of forming a solid casting
JP6770547B2 (en) How to collect silver
US20230096536A1 (en) Molten metal purification device
SU980937A1 (en) Continuous casting plant
JP2008264834A (en) Tundish for continuous casting
RU2635117C2 (en) Method for refining magnesium and its alloys
JP2020049528A (en) Molten metal purification device
CN214470099U (en) Smelting furnace for metallurgy
RU203368U1 (en) Device for refining liquid metals and alloys
CN108136493A (en) The melting apparatus of electroslag-again
EP3725430A1 (en) Molten material processing device
JP2008178884A (en) Method for continuously casting steel
WO2012090843A1 (en) Impurity separation method, impurity separation device, and continuous casting method
SU599552A1 (en) Mold for electroslag casting
Wang et al. Evolution of the droplet in ESR process under a transverse static magnetic field
UA119446U (en) METHOD OF ELECTRIC SLACING
RU2229528C2 (en) Method of production of ingots
JP2011245550A (en) Continuous casting method and continuous casting device

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION