US20200187500A1 - Pyridine compounds - Google Patents

Pyridine compounds Download PDF

Info

Publication number
US20200187500A1
US20200187500A1 US16/500,541 US201816500541A US2020187500A1 US 20200187500 A1 US20200187500 A1 US 20200187500A1 US 201816500541 A US201816500541 A US 201816500541A US 2020187500 A1 US2020187500 A1 US 2020187500A1
Authority
US
United States
Prior art keywords
alkyl
alkoxy
cycloalkyl
halogen
halogenalkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/500,541
Inventor
Ana Escribano Cuesta
Bernd Mueller
Erica CAMBEIS
Antje Wolf
Nadine Riediger
Marcus Fehr
Jan Klaas Lohmann
Michael Seet
Wassilios Grammenos
Christian Harald WINTER
Violeta TERTERYAN-SEISER
Thomas Grote
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Assigned to BASF SE reassignment BASF SE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CAMBEIS, Erica, SEET, MICHAEL, Escribano Cuesta, Ana, FEHR, MARCUS, GRAMMENOS, WASSILIOS, GROTE, THOMAS, LOHMANN, JAN KLAAS, MUELLER, BERND, RIEDIGER, Nadine, TERTERYAN-SEISER, Violeta, Winter, Christian Harald, WOLF, ANTJE
Publication of US20200187500A1 publication Critical patent/US20200187500A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • A01N43/42Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C1/00Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
    • A01C1/06Coating or dressing seed
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M21/00Apparatus for the destruction of unwanted vegetation, e.g. weeds
    • A01M21/04Apparatus for destruction by steam, chemicals, burning, or electricity
    • A01M21/043Apparatus for destruction by steam, chemicals, burning, or electricity by chemicals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present invention relates to pyridine compounds and the N-oxides and the salts thereof for combating phytopathogenic fungi, and to the use and methods for combating phytopathogenic fungi and to seeds coated with at least one such compound.
  • the invention also relates to processes for preparing these compounds, intermediates, processes for preparing such intermediates, and to compositions comprising at least one compound I.
  • the fungicidal activity of the known fungicidal compounds is unsatisfactory. Based on this, it was an object of the present invention to provide compounds having improved activity and/or a broader activity spectrum against phytopathogenic harmful fungi.
  • Reactive groups are preferably C 1 -C 8 -alkyl halides, C 2 -C 6 -alkenyl halides, C 2 -C 6 -alkynyl halides, benzyl halides, aldehydes, ester, acid chlorides, amides, sulfates, silyl halides or phosphates, e.g. carboxylic acid (W ⁇ OH), aldehydes (W ⁇ H), acid chloride (W ⁇ Cl), amides (W ⁇ NMe 2 ) or phosphates (W ⁇ OCH 3 ).
  • reaction is performed in a range between 0° C. and ambient temperature in the presence of a reactive group and organic base.
  • Suitable base preferably NEt 3 , pyridine NaOH, TEBAC, K 2 CO 3 , NaCO 3 or KOH.
  • solvents are THF, DMF, DMSO, MeOH or water (see for example, Journal of Medicinal Chemistry, 1989, 32(6), 1242-1248; European Journal of Medicinal Chemistry, 2009, 44(10), 4034-4043).
  • Reduction agent can be for example NaBH 4 or NaCNBH 3 .
  • the reaction is performed in a range between 0° C., room temperature and 60° C. in an organic solvent, such as THF, dichloromethane, acetonitrile, MeOH, EtOH or water or in a mixture of organic solvent and water.
  • Compounds of formula II can be also reduced to I-1 via hydrogenation by using a metal catalyst in an organic solvent, water or a mix of water and organic solvent (see for example ChemCatChem, 5(10), 2939-2945; 2013; Organic Letters, 17(12), 2878-2881; 2015).
  • metal catalyst can be used for example Ru, Ir, and Pd, with or without ligands such as phosphines, phosphates, cyclooctadiene, diamines and imidazoles.
  • the reaction can take place at temperature from 0° C. to 100° C.
  • Preferable organic solvent are methanol, acetone, dichloromethane, 2,2,2-trifluoroethanol or DMF.
  • the reaction can also take place the presence of an acid for example HCO 2 H, trifluoro acetic acid and acetic acid.
  • Compounds of the formula II can be provided e.g. starting from alcohols of type III with nitriles of type IV in the presence of an acid in an organic solvent (see for example US 2008/0275242 or WO2005/070917).
  • an acid in an organic solvent
  • sulfuric acid or a sulfonic acid, in particular triflic acid are used as acid.
  • suitable solvents are hydrocarbons, preferably benzene or dichloromethane.
  • the reaction is performed at a temperature from ⁇ 40° C. to 200° C., in particular from ⁇ 10° C. to 120° C., more specifically from 0° C. to 100° C., even more specifically from room or ambient temperature (about 23° C.) to 80° C.
  • Nitriles of type IV are either commercially available or can be prepared by a skilled person from the corresponding halides following literature procedures (see, for example Journal of Organic Chemistry, 76(2), 665-668; 2011; Angewandte Chemie, International Edition, 52(38), 10035-10039; 2013; WO2004/013094).
  • Alcohols of type III can be prepared as described below.
  • organometallic reagents preferably alkyl Grignard or alkyl-Lithium reagents
  • ethereal solvents preferably THF
  • alcohols of type III can be prepared from epoxides Va and compounds VI (see below):
  • the metalation reaction may preferably be carried out using Lithium-organic compounds, such as for example n-butyl lithium, sec-butyl lithium or tert-butyl lithium to result in an exchange of halogen by lithium. Also suitable is the reaction with magnesium resulting in the formation of the respective Grignard reagents. A further possibility is the use of other Grignard reagents such as isopropyl-magnesium-bromide instead of Mg.
  • a typical preparation of compounds of type III can be achieved by reacting compounds of type VII with organometallic reagents, preferably alkyl Grignard or alkyl-Lithium reagents, in ethereal solvents, preferably THF at low temperatures and under inert conditions to furnish compounds of type IV as previously reported (see for example WO2012051036; WO2011042918).
  • organometallic reagents preferably alkyl Grignard or alkyl-Lithium reagents
  • Compounds of type VII can be accessed by reacting a carbonyl compound of type VIII, preferably a carboxylic acid (X ⁇ OH) or an acid chloride (X ⁇ Cl), with NH(OR′)R′′, wherein R′ and R′′ are selected from (C 1 -C 4 )-alkyl, most preferably being methyl, in an organic solvent, preferably THF or dichloromethane.
  • an organic solvent preferably THF or dichloromethane.
  • the reaction is performed in a range between 0° C. and ambient temperature in the presence of an organic base, preferably NEt 3 or pyridine (see e.g. US 20130324506; Tetrahedron: Asymmetry, 17(4), 508-511; 2006).
  • an activating reagent preferably a carbodiimide
  • an activating reagent preferably a carbodiimide
  • compounds of type VIII can be prepared from the corresponding aryl halides of type IX (Hal is halogen, preferably Br or I).
  • aryl halides VI will react with compounds of type IX in the presence of a transition metal catalyst, preferably a copper(I) salt, in an organic solvent, preferably DMF or DMSO, at elevated temperatures.
  • a transition metal catalyst preferably a copper(I) salt
  • organic solvent preferably DMF or DMSO
  • a base preferably potassium phosphate
  • compounds of type III can be prepared as follows.
  • a known or commercially available carbonyl compound can be reacted with an organometallic reagent of type X, preferably a Grignard or an organolithium reagent, readily prepared by a skilled person.
  • the reaction is performed in a temperature range from ⁇ 78° C. to room temperature under inert conditions in an ethereal solvent.
  • Alternatively compounds II can be prepared via intramolecular reaction of amide XI with an electron-rich heterocycle or aryl group.
  • the intramolecular cyclization will take place in the presence of a dehydrating agent in an organic solvent (WO 2008143263, Synthetic Communications 2007, 37, 1331-1338.).
  • a dehydrating agent in an organic solvent (WO 2008143263, Synthetic Communications 2007, 37, 1331-1338.).
  • suitable solvents are hydrocarbons, preferably benzene, toluene or acetonitrile.
  • halogenated solvents can be used, for example dichloromethane, chloroform or chlorobenzene.
  • the reaction is performed at temperature from ⁇ 40° c. to 200° C., in particular from ⁇ 10° C. to 120° C., more specifically from 0° C. to 100° C., even more specifically from room temperature to 100° C.
  • Amides of type XI can accessed by reacting a carbonyl of type XII, preferably a carboxylic acid (X ⁇ OH) or an acid chloride (X ⁇ Cl), with an amines of type XIII in an organic solvent, preferably THF or dichloromethane. Typically the reaction is performed in a range between 0° C. and room temperature in the presence of an organic base, preferably N(C 2 H 5 ) 3 or pyridine (see e.g. WO 8303968). If X ⁇ OH, the addition of an activating agent, preferably a carbodiimide or acid chloride, may be preferred (see e.g Bioorganic & Medicinal Chemistry, 2010, 18, 3088-3115).
  • an activating agent preferably a carbodiimide or acid chloride
  • compounds of type XIII can be synthesized from the correspond nitriles. As described Synlett. 2007, 4 652-654 or Tetrahedron 2012, 68, 2696-2703, nitriles will react with organometallic agents X, preferably Grignard or Lithium reagent, in ethereal solvents, preferably THF at low temperature and under inert conditions to furnish compounds of type XIII. The synthesis of compounds of type XIII can take place in two steps or one pot.
  • organometallic agents X preferably Grignard or Lithium reagent
  • amines of type XIII can synthesized via formation of the correspond carboxylic azide and quench with water (Journal of the American Chemical Society, 1949, 71, 2233-7; Journal of the American Chemical Society, 1990, 112, 297-304) or via Grignard addition to imine (Tetrahedron Letters, 1992, 33, 1689-92; US20030216325)
  • Compound of type II can be also synthesized via Suzuki coupling of halides of type XIV with a boronic acid XV (see for example, Journal of Fluorine Chemistry, 2010, 131, 856-860); wherein R 31 and R 41 together with the groups they are attached to form a tetramethyl-1,3,2-dioxaborolane-ring or independently from one another mean hydrogen or C 1 -C 6 -alkyl to yield compounds I.A.1.
  • Compounds of type XIV, wherein Hal is halogen, preferably chloro and bromo can be obtained by transformation of an amide of type XVI with a halogenating reagent, such as phosphorus oxachloride, phosphorus pentachloride, phosphoric trichloride, phosphorus oxybromide, thionyl chloride or Vilsmeier reagent.
  • a halogenating reagent such as phosphorus oxachloride, phosphorus pentachloride, phosphoric trichloride, phosphorus oxybromide, thionyl chloride or Vilsmeier reagent.
  • the reaction takes place in the presence of an organic solvent, preferably THF, benzene, CCl 4 , or dichloromethane.
  • an organic solvent preferably THF, benzene, CCl 4 , or dichloromethane.
  • the reaction is performed in a range between 0° C. to 180
  • Amides of type XVI can be prepared from compounds of type XVII, wherein R x is a C 1 -C 6 -alkyl.
  • the reaction takes places in the presence of acid, preferably acetic acid, HCl, triflic acid or a mixture of sodium acetate and acetic acid.
  • acid preferably acetic acid, HCl, triflic acid or a mixture of sodium acetate and acetic acid.
  • the reaction in performed net or in polar solvents, preferably in water, methanol or acetonitrile (see WO2016/156085; Pharmaceutical Chemistry Journal, 2005, 39, 405-408).
  • compounds of type XIV can be direct synthesized from compounds of type XVII in the presence of a halogenating reagent, such as sulfonyl chloride.
  • a halogenating reagent such as sulfonyl chloride.
  • the reaction takes places neat or in organic solvents, such as chloroform, dichloromethane or acetonitrile, in a range of temperature from 0° C. to room temperature (see, Tetrahedrons Letters, 2010, 51, 4609; Tetrahedron Letters, 1986, 27(24), 2743-6).
  • Compounds of type XVII can also be obtained by the reaction of alcohol III or alkene IIIa and a C 1 -C 6 -alkyl thiocyanate under acidic conditions, see for example Bioorganic & Medicinal Chemistry Letters, 2013, 23(7), 2181-2186; Pharmaceutical Chemistry Journal, 2005, 39, 405-408.
  • acids are sulfuric acid, HCl or trific acid.
  • the reaction takes place most preferably in water, dichloromethane, toluene or a mixture of solvents, in a range of temperatures from 0° C. to 110° C.
  • Compounds of type XIVa can be synthesized via ring expansion of oxime XVIII in the presence of an acid.
  • suitable acids are for example, sulfuric acid, polyphosphoric acid or POCl 3 .
  • the reaction in performed net or in a polar solvents, preferably in water, methanol or acetonitrile (see Bioorganic & Medicinal Chemistry Letters, 2002, 12(3), 387-390; Medicinal Chemistry Research, 2015, 24(2), 523-532).
  • Oxime of type XVIII can be easily prepared from ketone of type XIX in the presence of hydroxylamine or hydroxylamine hydrochloride in polar solvents such as water, pyridine, ethanol or methanol.
  • polar solvents such as water, pyridine, ethanol or methanol.
  • the reaction can take place in the presence of absence of a base, such as sodium acetate or sodium hydroxide, in a range of temperatures from room temperature to 120° C. (Journal of Organic Chemistry, 2016, 81(1), 336-342).
  • Ketone of type XIX are either commercial available or readily prepared by a skilled person.
  • compounds II-3 can be synthesized from compounds XX, which are commercially available or can be synthesized according to procedures known in literature, in which X 1 denotes for hydrogen or halogen (Cl, Br, I).
  • Compounds XXI (and X 1 denotes for halogen (Cl, Br, I) or C 1 -C 6 -alkoxycarbonyl) can be metalated with Grignard-reagents (X 3 denotes for Cl, Br or I), for example methyl magnesium-X 3 , ethyl magnesium-X 3 , isopropyl-magnesium-X 3 and phenyl magnesium X 3 among others, or lithium organic reagents like methyl-lithium, ethyl-lithium, butyl-lithium and phenyl-lithium among others, and reacted with compounds XXII to yield derivatives XX, whereas R 31 and R 41 independently from each other denote for C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-,
  • esters XXIII can be reacted with carbon monoxide yielding esters XXIII following published literature (Science of Synthesis (2014), 2, 67-93; Comprehensive Inorganic Chemistry 11 (2013), 6, 1-24; RSC Catalysis Series (2015), 21 (New Trends in Cross-Coupling), 479-520; Metal-catalyzed Cross-Coupling Reactions and More (Editor: A. De Meijere) (2014), 1, 133-278; Domino Reactions (Editor L. Tietze) (2014), 7-30; Synthesis 2014, 46 (13), 1689-1708; RSC Advances (2014), 4 (20), 10367-10389), for example using Pd-catalyst (i.e.
  • Pd(dppf)Cl 2 [1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)
  • sodium methanolat in methanol under elevated pressure (10-200 bar) of carbon monoxide
  • Compounds XXIII can be hydrolyzed using acidic or basic conditions, for example hydrochloric or sulfuric acid, or sodium or potassium carbonate, hydrogen carbonate or hydroxide in water or solvent mixtures with water and alcoholic solvents (preferably methanol, ethanol, isopropanol), or acetonitrile, acetone, dimethylformamide or N-methyl pyrrolidine, at temperatures from 0° C. to 100° C. yielding intermediates XXIV.
  • acidic or basic conditions for example hydrochloric or sulfuric acid, or sodium or potassium carbonate, hydrogen carbonate or hydroxide in water or solvent mixtures with water and alcoholic solvents (preferably methanol, ethanol, isopropanol), or acetonitrile, acetone, dimethylformamide or N-methyl pyrrolidine, at temperatures from 0° C. to 100° C. yielding intermediates XXIV.
  • acidic or basic conditions for example hydrochloric or sulfuric acid, or sodium or potassium carbonate,
  • Intermediates XXIV can be activated with reagents like HATU (1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate), CDI (1,1′-Carbonyldiimidazole), DCC (N,N′-Methanetetraylbis[cyclohexanamine]) and others known in literature (Eur. JOC 2013, 4325; Tetrahedron 2004, 60, 2447; Tetrahedron 2005, 61, 10827; Chem. Soc. Rev. 2009, 38, 606; Chem. Rev. 2011, 111, 6557) to further react and yield compounds XXV.
  • reagents like HATU (1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate), CDI (1,1′-Carbony
  • the amides XXVI can be transferred into the triflate XXVII by reaction with trifluoromethyl sulfonic anhydride in an inert solvent, like dichloromethane, chloroform, carbon tetrachloride, benzene, toluene or chlorobenzene in the presence of a base, for example an organic base like pyridine, triethylamine or diisopropyl ethylamine or an aqueous base like solutions of sodium or potassium hydroxide, carbonate or hydrogen carbonate in water at temperatures preferably between 0° C. and 100° C.
  • a base for example an organic base like pyridine, triethylamine or diisopropyl ethylamine or an aqueous base like solutions of sodium or potassium hydroxide, carbonate or hydrogen carbonate in water at temperatures preferably between 0° C. and 100° C.
  • compounds of type II can also be obtained intramolecular cyclization of amines of type XXIX in the presence of an acid.
  • acids are HCl, trifluoroacetic acid, acetic acid or sulfuric acid.
  • the reaction is preform in dichloromethane, water, ethanol, THF or chloroform, at temperature from room temperature to 120° C. (see, Synthesis, 1995, (5), 592-604; Heterocycles, 1988, 27(10), 2403-12).
  • Amines of type XXIX are either commercial available or easily prepared by a skilled person or following the procedures described before.
  • the N-oxides may be prepared from the inventive compounds according to conventional oxidation methods, e. g. by treating compounds I with an organic peracid such as metachloroperbenzoic acid (cf. WO 03/64572 or J. Med. Chem. 38(11), 1892-903, 1995); or with inorganic oxidizing agents such as hydrogen peroxide (cf. J. Heterocyc. Chem. 18(7), 1305-8, 1981) or oxone (cf. J. Am. Chem. Soc. 123(25), 5962-5973, 2001).
  • the oxidation may lead to pure mono-N-oxides or to a mixture of different N-oxides, which can be separated by conventional methods such as chromatography.
  • C n -C m indicates the number of carbon atoms possible in each case in the substituent or substituent moiety in question.
  • halogen refers to fluorine, chlorine, bromine and iodine.
  • C 1 -C 6 -alkyl refers to a straight-chained or branched saturated hydrocarbon group having 1 to 6 carbon atoms, e.g. methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl,
  • C 2 -C 4 -alkyl refers to a straight-chained or branched alkyl group having 2 to 4 carbon atoms, such as ethyl, propyl (n-propyl), 1-methylethyl (iso-propoyl), butyl, 1-methylpropyl (sec.-butyl), 2-methylpropyl (iso-butyl), 1,1-dimethylethyl (tert.-butyl).
  • C 1 -C 6 -halogenalkyl refers to an alkyl group having 1 or 6 carbon atoms as defined above, wherein some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above.
  • C 1 -C 2 -halogenalkyl such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl or pentafluoroethyl.
  • C 1 -C 2 -halogenalkyl such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoro
  • C 1 -C 6 -hydroxyalkyl refers to an alkyl group having 1 or 6 carbon atoms as defined above, wherein some or all of the hydrogen atoms in these groups may be replaced by OH groups.
  • C 1 -C 4 -alkoxy-C 1 -C 4 -alkyl refers to alkyl having 1 to 4 carbon atoms (as defined above), where According to one hydrogen atom of the alkyl radical is replaced by a C 1 -C 4 -alkoxy group (as defined above).
  • C 1 -C 6 -alkoxy-C 1 -C 4 -alkyl refers to alkyl having 1 to 4 carbon atoms (as defined above), where According to one hydrogen atom of the alkyl radical is replaced by a C 1 -C 6 -alkoxy group (as defined above).
  • C 2 -C 6 -alkenyl refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 6 carbon atoms and a double bond in any position.
  • Examples are “C 2 -C 4 -alkenyl” groups, such as ethenyl, 1-propenyl, 2-propenyl (allyl), 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl.
  • C 2 -C 6 -alkynyl refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 6 carbon atoms and containing at least one triple bond.
  • Examples are “C 2 -C 4 -alkynyl” groups, such as ethynyl, prop-1-ynyl, prop-2-ynyl (propargyl), but-1-ynyl, but-2-ynyl, but-3-ynyl, 1-methyl-prop-2-ynyl.
  • C 1 -C 6 -alkoxy refers to a straight-chain or branched alkyl group having 1 to 6 carbon atoms which is bonded via an oxygen, at any position in the alkyl group.
  • Examples are “C 1 -C 4 -alkoxy” groups, such as methoxy, ethoxy, n-propoxy, 1-methylethoxy, butoxy, 1-methyl ⁇ propoxy, 2-methylpropoxy or 1,1-dimethylethoxy.
  • C 1 -C 6 -halogenalkoxy refers to a C 1 -C 6 -alkoxy radical as defined above, wherein some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above.
  • C 1 -C 4 -halogenalkoxy examples are “C 1 -C 4 -halogenalkoxy” groups, such as OCH 2 F, OCHF 2 , OCF 3 , OCH 2 Cl, OCHCl 2 , OCCl 3 , chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 2-fluoroethoxy, 2-chlorothoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, OC 2 F 5 , 2-fluoropropoxy, 3-fluoropropoxy, 2,2-difluoropropoxy, 2,3-difluoro-propoxy, 2 chloropropoxy, 3-
  • C 2 -C 6 -alkenyloxy refers to a straight-chain or branched alkenyl group having 2 to 6 carbon atoms which is bonded via an oxygen, at any position in the alkenyl group. Examples are “C 2 -C 4 -alkenyloxy” groups.
  • C 2 -C 6 -alkynyloxy refers to a straight-chain or branched alkynyl group having 2 to 6 carbon atoms which is bonded via an oxygen, at any position in the alkynyl group. Examples are “C 2 -C 4 -alkynyloxy” groups.
  • C 3 -C 6 -cycloalkyl refers to monocyclic saturated hydrocarbon radicals having 3 to 6 carbon ring members, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl. Accordingly, a saturated three-, four-, five-, six-, seven-, eight-, nine or ten-membered carbocyclyl or carbocycle is a “C 3 -C 10 -cycloalkyl”.
  • C 3 -C 6 -cycloalkenyl refers to a monocyclic partially unsaturated 3-, 4- 5- or 6-membered carbocycle having 3 to 6 carbon ring members and at least one double bond, such as cyclopentenyl, cyclopentadienyl, cyclohexadienyl. Accordingly, a partially unsaturated three-, four-, five-, six-, seven-, eight-, nine or ten-membered carbocyclyl or carbocycle is a “C 3 -C 10 -cycloalkenyl”.
  • C 3 -C 8 -cycloalkyl-C 1 -C 4 -alkyl refers to alkyl having 1 to 4 carbon atoms (as defined above), where According to one hydrogen atom of the alkyl radical is replaced by a cycloalkyl radical having 3 to 8 carbon atoms (as defined above).
  • C 1 -C 6 -alkylthio refers to straight-chain or branched alkyl groups having 1 to 6 carbon atoms (as defined above) bonded via a sulfur atom.
  • C 1 -C 6 -halogenalkylthio refers to straight-chain or branched halogenalkyl group having 1 to 6 carbon atoms (as defined above) bonded through a sulfur atom, at any position in the halogenalkyl group.
  • C( ⁇ O)—C 1 -C 6 -alkyl refers to a radical which is attached through the carbon atom of the group C( ⁇ O) as indicated by the number valence of the carbon atom.
  • the number of valence of carbon is 4, that of nitrogen is 3.
  • saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine or ten-membered heterocyclyl or heterocycle, wherein the heterocyclyl or heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, O and S is to be understood as meaning both saturated and partially unsaturated heterocycles, wherein the ring member atoms of the heterocycle include besides carbon atoms 1, 2, 3 or 4 heteroatoms independently selected from the group of O, N and S.
  • saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine or ten-membered heterocyclyl or heterocycle, wherein the heterocyclyl or heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, O and S is to be understood as meaning both saturated and partially unsaturated heterocycles, wherein the ring member atoms of the heterocycle include besides carbon atoms 1, 2, 3 or 4 heteroatoms independently selected from the group of O, N and S.
  • a 3- or 4-membered saturated heterocycle which contains 1 or 2 heteroatoms from the group consisting of O, N and S as ring members such as oxirane, aziridine, thiirane, oxetane, azetidine, thiethane, [1,2]dioxetane, [1,2]dithietane, [1,2]diazetidine; and a 5- or 6-membered saturated or partially unsaturated heterocycle which contains 1, 2 or 3 heteroatoms from the group consisting of O, N and S as ring members such as 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydrothienyl, 3-tetrahydrothienyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 3-isoxazolidinyl, 4-isoxazolidinyl, 5-isoxazolidinyl, 3-isothiazolidinyl, 4-isothiazolid
  • substituted refers to substituted with 1, 2, 3 or up to the maximum possible number of substituents.
  • 5- or 6-membered heteroaryl or “5- or 6-membered heteroaromatic” refers to aromatic ring systems including besides carbon atoms, 1, 2, 3 or 4 heteroatoms independently selected from the group consisting of N, O and S, for example,
  • a 5-membered heteroaryl such as pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan-2-yl, furan-3-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl,
  • Agriculturally acceptable salts of the inventive compounds encompass especially the salts of those cations or the acid addition salts of those acids whose cations and anions, respectively, have no adverse effect on the fungicidal action of said compounds.
  • Suitable cations are thus in particular the ions of the alkali metals, preferably sodium and potassium, of the alkaline earth metals, preferably calcium, magnesium and barium, of the transition metals, preferably manganese, copper, zinc and iron, and also the ammonium ion which, if desired, may carry one to four C 1 -C 4 -alkyl substituents and/or one phenyl or benzyl substituent, preferably diisopropylammonium, tetramethylammonium, tetrabutylammonium, trimethylbenzylammonium, furthermore phosphonium ions, sulfonium ions, preferably tri(C 1 -C 4 -alkyl)sulfonium, and s
  • Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogensulfate, sulfate, dihydrogenphosphate, hydrogenphosphate, phosphate, nitrate, bicarbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of C 1 -C 4 -alkanoic acids, preferably formate, acetate, propionate and butyrate. They can be formed by reacting such inventive compound with an acid of the corresponding anion, preferably of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.
  • inventive compounds can be present in atropisomers arising from restricted rotation about a single bond of asymmetric groups. They also form part of the subject matter of the present invention.
  • the compounds of formula I and their N-oxides may have one or more centers of chirality, in which case they are present as pure enantiomers or pure diastereomers or as enantiomer or diastereomer mixtures. Both, the pure enantiomers or diastereomers and their mixtures are subject matter of the present invention.
  • R 1 is in each case independently selected from hydrogen, halogen, OH, CN, NO 2 , SH, NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH—SO 2 —R x , C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein R x is C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, unsubstituted aryl or aryl that is substituted with one, two, three, four or five substituents R x1 independently selected from C
  • R 1 is H, halogen or C 1 -C 6 -alkyl, in particular H, CH 3 , Et, F, Cl, more specifically H, CH 3 , F or Cl most preferred H, F or Cl.
  • R 1 is hydrogen
  • R 1 is halogen, in particular Br, F or Cl, more specifically F or Cl.
  • R 1 is F
  • R 1 is Cl
  • R 1 is Br.
  • R 1 is OH
  • R 1 is CN
  • R 1 is NO 2 .
  • R 1 is SH.
  • R 1 is NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 or NH—SO 2 —R x , wherein R x is C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, unsubstituted aryl or aryl that is substituted with one, two, three, four or five substituents R x1 independently selected from C 1 -C 4 -alkyl, halogen, OH, CN, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy, or C 1 -C 4 -halogenalkoxy.
  • C 1 -C 4 -alkyl such as NHCH 3 and N(CH 3 ) 2 .
  • R x is C 1 -C 4 -alkyl, and phenyl that is substituted with one CH 3 , more specifically SO 2 —R x is CH 3 and tosyl group (“Ts”).
  • R 1 is C 1 -C 6 -alkyl, in particular C 1 -C 4 -alkyl, such as CH 3 or CH 2 CH 3 .
  • R 1 is C 1 -C 6 -halogenalkyl, in particular C 1 -C 4 -halogenalkyl, such as CF 3 , CHF 2 , CH 2 F, CCl 3 , CHCl 2 , CH 2 Cl, CF 3 CH 2 , CCl 3 CH 2 or CF 2 CHF 2 .
  • R 1 is C 2 -C 6 -alkenyl or C 2 -C 6 -halogenalkenyl, in particular C 2 -C 4 -alkenyl or C 2 -C 4 -halogenalkenyl, such as CH ⁇ CH 2 , C(CH 3 ) ⁇ CH 2 , CH ⁇ CCl 2 , CH ⁇ CF 2 , CCl ⁇ CCl 2 , CF ⁇ CF 2 , CH ⁇ CH 2 , CH 2 CH ⁇ CCl 2 , CH 2 CH ⁇ CF 2 , CH 2 CCl ⁇ CCl 2 , CH 2 CF ⁇ CF 2 , CCl 2 CH ⁇ CCl 2 , CF 2 CH ⁇ CF 2 , CCl 2 CH ⁇ CCl 2 , CF 2 CH ⁇ CF 2 , CCl 2 CCl ⁇ CCl 2 , or CF 2 CF ⁇ CF 2 .
  • R 1 is C 2 -C 6 -alkynyl or C 2 -C 6 -halogenalkynyl, in particular C 2 -C 4 -alkynyl or C 2 -C 4 -halogenalkynyl, such as C ⁇ CH, C ⁇ CCl, C ⁇ CF. CH 2 C ⁇ CH, CH 2 C ⁇ CCl, or CH 2 C ⁇ CF.
  • R 1 is C 1 -C 6 -alkoxy, in particular C 1 -C 4 -alkoxy, more specifically C 1 -C 2 -alkoxy such as OCH 3 or OCH 2 CH 3 .
  • R 1 is C 1 -C 6 -halogenalkoxy, in particular C 1 -C 4 -halogenalkoxy, more specifically C 1 -C 2 -halogenalkoxy such as OCF 3 , OCHF 2 , OCH 2 F, OCCl 3 , OCHCl 2 or OCH 2 Cl, in particular OCF 3 , OCHF 2 , OCCl 3 or OCHCl 2 .
  • R 1 is C 3 -C 6 -cycloalkyl, in particular cyclopropyl.
  • R 1 is C 3 -C 6 -cycloalkyl, for example cyclopropyl, substituted with one, two, three or up to the maximum possible number of identical or different groups R 1b as defined and preferably herein.
  • R 1 is C 3 -C 6 -halogencycloalkyl.
  • R 1 is fully or partially halogenated cyclopropyl.
  • R 1 is unsubstituted aryl or aryl that is substituted with one, two, three or four R 1b , as defined herein.
  • R 1 is unsubstituted phenyl or phenyl that is substituted with one, two, three or four R 1b , as defined herein.
  • R 1 is unsubstituted 5- or 6-membered heteroaryl. According to still a further embodiment, R 1 is 5- or 6-membered heteroaryl that is substituted with one, two or three R 1b , as defined herein.
  • R 1 is in each case independently selected from hydrogen, halogen, OH, CN, NO 2 , SH, NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH—SO 2 —R x , C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 1 -C 6 -alkoxy and C 3 -C 6 -cycloalkyl; wherein the acyclic moieties of R 1 are not further substituted or carry one, two, three, four or five identical or different groups R 1a as defined below and wherein the carbocyclic, heteroaryl and aryl moieties of R 1 are not further substituted or carry one, two, three, four or five identical or different groups R 1b as defined below.
  • R 1 is independently selected from hydrogen, halogen, CN, OH, C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy, C 6 -alkenyl, C 2 -C 6 -alkynyl, C 3 -C 6 -cycloalkyl, wherein the acyclic and cyclic moieties of R 1 are unsubstituted or substituted by halogen.
  • R 1 is independently selected from hydrogen, halogen, CN, OH, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 1 -C 6 -alkoxy and C 1 -C 6 -halogenalkoxy, in particular independently selected from H, F, Cl, Br, CN, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy.
  • R 1 is independently selected from H, CN, halogen or C 1 -C 6 -alkyl, in particular H, CN, CH 3 , Et, F, Cl, more specifically H, CN, CH 3 , F or Cl most preferred H, CH 3 , F or Cl.
  • R 1a are the possible substituents for the acyclic moieties of R 1 .
  • R 1a is independently selected from halogen, OH, CN, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 4 -halogenalkoxy, C 1 -C 6 -alkylthio, aryl and phenoxy, wherein the aryl group is unsubstituted or unsubstituted or substituted with R 11a selected from the group consisting of halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy, in particular selected from halogen, C 1 -C 2 -alkyl, C 1 -C 2 -halogenalkyl, C 1 -C 2 -alkoxy and C 1 -C 2 -halogenalkoxy, more specifically
  • R 1a is independently selected from halogen, OH, CN, C 1 -C 2 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl and C 1 -C 2 -halogenalkoxy.
  • R 1a is independently selected from F, Cl, OH, CN, C 1 -C 2 -alkoxy, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl and C 1 -C 2 -halogenalkoxy.
  • R 1a is independently selected from halogen, such as F, Cl, Br and I, more specifically F, Cl and Br.
  • R 1a is independently selected from OH, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl and C 1 -C 2 -halogenalkoxy. Specifically, R 1a is independently selected from OH, cyclopropyl and C 1 -C 2 -halogenalkoxy.
  • R 1a is independently selected from aryl and phenoxy, wherein the aryl group is unsubstituted or substituted with R 11a selected from the group consisting of halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy, in particular selected from halogen, C 1 -C 2 -alkyl, C 1 -C 2 -halogenalkyl, C 1 -C 2 -alkoxy and C 1 -C 2 -halogenalkoxy, more specifically selected from halogen, such as F, Cl and Br.
  • R 11a selected from the group consisting of halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy, in particular selected from
  • R 1b are the possible substituents for the carbocyclic, heteroaryl and aryl moieties of R 1 .
  • R 1b according to the invention is independently selected from halogen, OH, CN, C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 4 -halogenalkoxy and C 1 -C 6 -alkylthio;
  • R 1b is independently selected from halogen, CN, C 1 -C 2 -alkyl, C 1 -C 2 -alkoxy, C 1 -C 2 -halogenalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl and C 1 -C 2 -halogenalkoxy.
  • R 1b is independently selected from F, Cl, Br, OH, CN, CH 3 , OCH 3 , CHF 2 , OCHF 2 , cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl, OCF 3 , and OCHF 2 .
  • R 1b is independently selected from halogen, C 1 -C 2 -alkyl, C 1 -C 2 -alkoxy, C 1 -C 2 -halogenalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl and C 1 -C 2 -halogenalkoxy.
  • R 1b is independently selected from halogen, CN, OH, CH 3 , CHF 2 , OCHF 2 , OCF 3 , OCH 3 , cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl and halogenmethoxy, more specifically independently selected from F, Cl, OH, CH 3 , OCH 3 , CHF 2 , OCH 3 , cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl, OCHF 2 and OCF 3 .
  • R x in the substituent NH—SO 2 —R x is in each case independently selected from C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, unsubstituted aryl and aryl that is substituted with one, two, three, four or five substituents R x1 independently selected from C 1 -C 4 -alkyl, halogen, OH, CN, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy.
  • R x is in each case independently selected from C 1 -C 4 -alkyl, halogen, OH, CN and phenyl that is substituted with one, two or three R x1 independently selected from C 1 -C 2 -alkyl, more specifically R x is in each case independently selected from C 1 -C 4 -alkyl and phenyl that is substituted with one CH 3 , more specifically SO 2 —R x is the tosyl group (“Ts”).
  • R 1 Particularly preferred embodiments of R 1 according to the invention are in Table P1 below, wherein each line of lines P1-1 to P1-16 corresponds to one particular embodiment of the invention. Thereby, for every R 1 that is present in the inventive compounds, these specific embodiments and preferences apply independently of the meaning of any other R 1 that may be present in the ring:
  • TABLE P1 “Ts” in the table stands for the tosylgroup SO 2 -(p-CH 3 )phenyl. No. R 1 P1-1 H P1-2 Cl P1-3 F P1-4 Br P1-5 OH P1-6 CN P1-7 NO 2 P1-8 CH 3 P1-9 CH 2 CH 3 P1-10 CH 3 P1-11 CHF 2 P1-12 OCH 3 P1-13 OCH 2 CH 3 P1-14 OCF 3 P1-15 OCHF 2 P1-16 NH-Ts
  • R 2 is in each case independently selected from hydrogen, halogen, OH, CN, NO 2 , SH, NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH—SO 2 —R x , C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein
  • R 2 is H, halogen or C 1 -C 6 -alkyl, in particular H, CH 3 , Et, F, Cl, more specifically H, CH 3 , F or Cl most preferred H, F or Cl.
  • R 2 is halogen, in particular Br, F or Cl, more specifically F or Cl.
  • R 2 is F
  • R 2 is Cl
  • R 2 is Br
  • R 2 is hydrogen
  • R 2 is OH
  • R 2 is CN
  • R 2 is NO 2 .
  • R 2 is SH.
  • R 2 is NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 or NH—SO 2 —R x , wherein R x is C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, unsubstituted aryl or aryl that is substituted with one, two, three, four or five substituents R x2 independently selected from C 1 -C 4 -alkyl, halogen, OH, CN, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy, or C 1 -C 4 -halogenalkoxy.
  • C 1 -C 4 -alkyl such as NHCH 3 and N(CH 3 ) 2 .
  • R x is C 1 -C 4 -alkyl, and phenyl that is substituted with one CH 3 , more specifically SO 2 —R x is CH 3 and tosyl group (“Ts”).
  • R 2 is C 1 -C 6 -alkyl, in particular C 1 -C 4 -alkyl, such as CH 3 or CH 2 CH 3 .
  • R 2 is C 1 -C 6 -halogenalkyl, in particular C 1 -C 4 -halogenalkyl, such as CF 3 , CHF 2 , CH 2 F, CCl 3 , CHCl 2 , CH 2 Cl, CF 3 CH 2 , CCl 3 CH 2 or CF 2 CHF 2 .
  • R 2 is C 2 -C 6 -alkenyl or C 2 -C 6 -halogenalkenyl, in particular C 2 -C 4 -alkenyl or C 2 -C 4 -halogenalkenyl, such as CH ⁇ CH 2 , CH ⁇ CCl 2 , CH ⁇ CF 2 , CCl ⁇ CCl 2 , CF ⁇ CF 2 , CH ⁇ CH 2 , CH 2 CH ⁇ CCl 2 , CH 2 CH ⁇ CF 2 , CH 2 CCl ⁇ CCl 2 , CH 2 CF ⁇ CF 2 , CCl 2 CH ⁇ CCl 2 , CF 2 CH ⁇ CF 2 , CCl 2 CCl ⁇ CCl 2 , or CF 2 CF ⁇ CF 2 .
  • R 2 is C 2 -C 6 -alkynyl or C 2 -C 6 -halogenalkynyl, in particular C 2 -C 4 -alkynyl or C 2 -C 4 -halogenalkynyl, such as C ⁇ CH, C ⁇ CCl, C ⁇ CF. CH 2 C ⁇ CH, CH 2 C ⁇ CCl, or CH 2 C ⁇ CF.
  • R 2 is C 1 -C 6 -alkoxy, in particular C 1 -C 4 -alkoxy, more specifically C 1 -C 2 -alkoxy such as OCH 3 or OCH 2 CH 3 .
  • R 2 is C 1 -C 6 -halogenalkoxy, in particular C 1 -C 4 -halogenalkoxy, more specifically C 1 -C 2 -halogenalkoxy such as OCF 3 , OCHF 2 , OCH 2 F, OCCl 3 , OCHCl 2 or OCH 2 Cl, in particular OCF 3 , OCHF 2 , OCCl 3 or OCHCl 2 .
  • R 2 is C 3 -C 6 -cycloalkyl, in particular cyclopropyl.
  • R 2 is C 3 -C 6 -cycloalkyl, for example cyclopropyl, substituted with one, two, three or up to the maximum possible number of identical or different groups R 2b as defined and preferably herein.
  • R 2 is C 3 -C 6 -halogencycloalkyl.
  • R 2 is fully or partially halogenated cyclopropyl.
  • R 2 is unsubstituted aryl or aryl that is substituted with one, two, three or four R 2b , as defined herein.
  • R 2 is unsubstituted phenyl or phenyl that is substituted with one, two, three or four R 2b , as defined herein.
  • R 2 is unsubstituted 5- or 6-membered heteroaryl. According to still a further embodiment, R 2 is 5- or 6-membered heteroaryl that is substituted with one, two or three R 2b , as defined herein.
  • R 2 is in each case independently selected from hydrogen, halogen, OH, CN, NO 2 , SH, NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH—SO 2 —R x , C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 1 -C 6 -alkoxy and C 3 -C 6 -cycloalkyl; wherein the acyclic moieties of R 2 are not further substituted or carry one, two, three, four or five identical or different groups R 2a as defined below and wherein the cycloalkyl moieties of R 2 are not further substituted or carry one, two, three, four or five identical or different groups R 2b as defined below.
  • R 2 is independently selected from hydrogen, halogen, CN, OH, C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy, C 6 -alkenyl, C 2 -C 6 -alkynyl, C 3 -C 6 -cycloalkyl, wherein the acyclic and cyclic moieties of R 2 are unsubstituted or substituted by halogen.
  • R 2 is independently selected from hydrogen, halogen, OH, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 1 -C 6 -alkoxy and C 1 -C 6 -halogenalkoxy, in particular independently selected from H, F, Cl, Br, CN, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy.
  • R 2 is independently selected from H, CN, halogen or C 1 -C 6 -alkyl, in particular H, CN, CH 3 , Et, F, Cl, more specifically H, CN, CH 3 , F or Cl most preferred H, CH 3 , F or Cl.
  • R 2a are the possible substituents for the acyclic moieties of R 2 .
  • R 2a is independently selected from halogen, OH, CN, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalky, C 1 -C 4 -halogenalkoxy, C 1 -C 6 -alkylthio, aryl and phenoxy, wherein the aryl and phenoxy group is unsubstituted or substituted with R 22a selected from the group consisting of halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy, in particular selected from halogen, C 1 -C 2 -alkyl, C 1 -C 2 -halogenalkyl, C 1 -C 2 -alkoxy and C 1 -C 2 -halogenalkoxy, more specifically selected from halogen, C
  • R 2a is independently selected from halogen, OH, CN, C 1 -C 2 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalky and C 1 -C 2 -halogenalkoxy.
  • R 2a is independently selected from F, Cl, OH, CN, C 1 -C 2 -alkoxy, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl and C 1 -C 2 -halogenalkoxy.
  • R 2a is independently selected from halogen, such as F, Cl, Br and I, more specifically F, Cl and Br.
  • R 2a is independently selected from OH, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalky and C 1 -C 2 -halogenalkoxy. Specifically, R 2a is independently selected from OH, cyclopropyl and C 1 -C 2 -halogenalkoxy.
  • R 2a is independently selected from aryl and phenoxy, wherein the aryl and phenoxy group is unsubstituted or substituted with R 22a selected from the group consisting of halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy, in particular selected from halogen, C 1 -C 2 -alkyl, C 1 -C 2 -halogenalkyl, C 1 -C 2 -alkoxy and C 1 -C 2 -halogenalkoxy, more specifically selected from halogen, such as F, Cl and Br.
  • R 22a selected from the group consisting of halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy, in
  • R 2b are the possible substituents for the carbocyclic, heteroaryl and aryl moieties of R 2 .
  • R 2b according to the invention is independently selected from halogen, OH, CN, C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalky, C 1 -C 4 -halogenalkoxy and C 1 -C 6 -alkylthio;
  • R 2b is independently selected from halogen, CN, C 1 -C 2 -alkyl, C 1 -C 2 -alkoxy, C 1 -C 2 -halogenalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl and C 1 -C 2 -halogenalkoxy.
  • R 2b is independently selected from F, Cl, Br, OH, CN, CH 3 , OCH 3 , CHF 2 , OCHF 2 , cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl, OCF 3 , and OCHF 2 .
  • R 2b is independently selected from halogen, C 1 -C 2 -alkyl, C 1 -C 2 -alkoxy, C 1 -C 2 -halogenalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl and C 1 -C 2 -halogenalkoxy.
  • R 2b is independently selected from halogen, OH, CH 3 , OCH 3 , CN, CHF 2 , OCHF 2 , OCF 3 , OCH 3 cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl and halogenmethoxy, more specifically independently selected from F, Cl, OH, CH 3 , OCH 3 , CHF 2 , OCH 3 , cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl, OCHF 2 and OCF 3 .
  • R 2 is in Table P2 below, wherein each line of lines P2-1 to P2-16 corresponds to one particular embodiment of the invention. Thereby, for every R 2 that is present in the inventive compounds, these specific embodiments and preferences apply independently of the meaning of any other R 2 that may be present in the ring:
  • TABLE P2 “Ts” in the table stands for the tosylgroup SO 2 -(p-CH 3 )phenyl. No. R 2 P2-1 H P2-2 Cl P2-3 F P2-4 Br P2-5 OH P2-6 CN P2-7 NO 2 P2-8 CH 3 P2-9 CH 2 CH 3 P2-10 CF 3 P2-11 CHF 2 P2-12 OCH 3 P2-13 OCH 2 CH 3 P2-14 OCF 3 P2-15 OCHF 2 P2-16 NH-Ts
  • R 3 is in each case independently selected from CH 3 , CH 2 F, CHF 2 and CF 3 .
  • R 3 is CH 3 .
  • R 3 is CH 2 F.
  • R 3 is CHF 2 .
  • R 3 is CF 3 .
  • R 4 is independently selected from halogen, OH, CN, NO 2 , SH, C 1 -C 6 -alkylthio, NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH—SO 2 —R x , C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -halogenalkenyl, C 2 -C 6 -alkynyl, C 2 -C 6 -halogenalkynyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy, C 2 -C 6 -alkenyloxy, C 2 -C 6 -alkynyloxy, CH( ⁇ O), C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)O(C
  • R x is as defined above; wherein the acyclic moieties of R 4 are independently not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R 4a , which independently of one another are selected from: R 4a halogen, OH, CN, NO 2 , SH, NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH(C( ⁇ O)C 1 -C 4 -alkyl), N(C( ⁇ O)C 1 -C 4 -alkyl) 2 , NH—SO 2 —R x , C 1 -C 6 -alkoxy, C 1 -C 4 -halogenalkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 6 -alkylthio, C 1 -C 6 -halogenalkyl
  • R 4 is independently selected from halogen, OH, CN, NO 2 , SH, C 1 -C 6 -alkylthio, NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH—SO 2 —R x , substituted C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -halogenalkenyl, C 2 -C 6 -alkynyl, C 2 -C 6 -halogenalkynyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy, C 2 -C 6 -alkenyloxy, C 2 -C 6 -alkynyloxy, CH( ⁇ O), C( ⁇ O)C 1 -C 6 -alkyl
  • R 4 wherein the aliphatic moieties of R 4 are independently not further substituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R 4a , respectively, which independently of one another are selected from:
  • R 4 is selected from substituted C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -halogenalkenyl, C 3 -C 6 -cycloalkenyl, C 2 -C 6 -alkynyl, C 2 -C 6 -halogenalkynyl, C 3 -C 6 -cycloalkynyl, C 1 -C 6 -alkoxy, CN, CH( ⁇ O), C( ⁇ O)C 2 -C 6 -alkyl, C( ⁇ O)O(C 2 -C 6 -alkyl), CR′ ⁇ NOR′′, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 6 -alkyl-five- and six-member
  • R 4 is selected from C 1 -C 6 -alkyl substituted with halogen, CN, C 1 -C 6 -alkoxy, C 1 -C 4 -halogenalkoxy, C 1 -C 6 -alkylthio, S(O) n —C 1 -C 6 -alkyl, NH—SO 2 —R x , N(C 1 -C 6 -alkyl) 2 , NH—SO 2 —R x , NH(C 1 -C 6 -alkyl), N(C 1 -C 6 -alkyl) 2 , CH( ⁇ O), C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)O(C 1 -C 6 -alkyl), a saturated three-, four-, five-, six-, membered carbo- or heterocycle, aryl, a five- or six-membered heteroaryl; wherein R
  • R 4 is F
  • R 4 is Cl
  • R 4 is Br.
  • R 4 is OH.
  • R 4 is CN
  • R 4 is NO 2 .
  • R 4 is SH.
  • R 4 is C 1 -C 6 -alkylthio, such as SCH 3 , SC 2 H 5 , Sn-propyl, Si-propyl, Sn-butyl, Si-butyl, Stert-butyl, Sn-pentyl, Si-pentyl, CH 2 SCH 3 or CH 2 SCH 2 CH 3 .
  • R 4 is C 1 -C 6 -halogenalkylthio, such as SCF 3 , SCCl 3 , CH 2 SCF 3 or CH 2 SCF 3 .
  • R 4 is selected from CN, substituted C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl or C 1 -C 6 -alkyl which is substituted, C 1 -C 6 -halogenalkyl, phenyl, halogenphenyl and three-, four-, five- or six-membered carbo- and heterocycle, wherein the carbo- and heterocycle is unsubstituted or is substituted with substituents R 4b as defined below. According to one embodiment thereof, the carbocycle is unsubstituted.
  • R 4 is selected from C 1 -C 6 -halogenalkyl, phenyl-CH 2 , halogenphenyl-CH 2 , phenyl, halogenphenyl and three-, four-, five- or six-membered carbo- and heterocycle, wherein the carbo- and heterocycle is unsubstituted or is substituted with substituents R 4b as defined below.
  • R 4 is selected from CN, substituted C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl or C 1 -C 6 -alkyl which is substituted, C 1 -C 6 -halogenalkyl, phenyl, halogenphenyl and three-, four-, five- or six-membered carbo- and heterocycle, wherein the carbo- and heterocycle is unsubstituted or substituted by substituents R 4b as defined below. According to one embodiment thereof, the carbo- and heterocycle is unsubstituted.
  • R 4 is selected from substituted C 1 -C 6 -halogenalkyl, phenyl, halogenphenyl and three-, four-, five- or six-membered carbo- and heterocycle, wherein the carbo- and heterocycle is unsubstituted or substituted by substituents R 4b as defined below.
  • R 4 is selected from CN, substituted C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -halogenalkenyl, C 2 -C 6 -alkynyl, C 2 -C 6 -halogenalkynyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 6 -alkylaryl, five- or six-membered heteroaryl or aryl which is unsubstituted or substituted with halogen or C 1 -C 6 -halogenalkyl, and wherein the acyclic moieties of R 4 are unsubstituted or substituted with identical or different groups R 4a as defined below and wherein wherein the carbocycle, heterocycle and heteroaryl and aryl moieties are unsubstituted
  • R 4 is selected from CN, substituted C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, CN, C 2 -C 6 -alkenyl, C 2 -C 6 -halogenalkenyl, C 2 -C 6 -alkynyl, C 2 -C 6 -halogenalkynyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 6 -alkylaryl, phenyl, pyridine, pyrimidine, thiophene, imidazole, triazol, oxadiazol wherein the acyclic moieties of R 4 are unsubstituted or substituted with identical or different groups R 4a as defined below and wherein wherein the carbocycle, heterocycle and heteroaryl and aryl moieties are unsubstituted or substituted with substituents R
  • R 4 is C 1 -C 6 -alkyl such as CH 3 , C 2 H 5 , n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • R 4 is C 1 -C 6 -alkyl such as CH 3 .
  • R 4 is C 1 -C 6 -alkyl such as C 2 H 5 .
  • R 4 is C 1 -C 6 -alkyl such as CH 3 , C 2 H 5 , n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl which is substituted with at least one group R 4a , which independently of one another are selected from:
  • R 4a halogen, OH, CN, NO 2 , SH, NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH(C( ⁇ O)C 1 -C 4 -alkyl), N(C( ⁇ O)C 1 -C 4 -alkyl) 2 , NH—SO 2 —R x , C 1 -C 6 -alkoxy, C 1 -C 4 -halogenalkoxy, C 1 -C 6 -alkylthio, C 1 -C 6 -halogenalkylthio, S(O) n —C 1 -C 6 -alkyl, S(O) n -aryl, CH( ⁇ O), C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)O(C 1 -C 6 -alkyl), C( ⁇ O)NH(C 1 -C 6 -al
  • R 4 is CH 3 is substituted with at least one group R 4a , which independently of one another are selected from:
  • R 4a halogen, OH, CN, NO 2 , SH, NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH(C( ⁇ O)C 1 -C 4 -alkyl), N(C( ⁇ O)C 1 -C 4 -alkyl) 2 , NH—SO 2 —R x , C 1 -C 6 -alkoxy, C 1 -C 4 -halogenalkoxy, C 1 -C 6 -alkylthio, C 1 -C 6 -halogenalkylthio, S(O) n —C 1 -C 6 -alkyl, S(O) n -aryl, CH( ⁇ O), C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)O(C 1 -C 6 -alkyl), C( ⁇ O)NH(C 1 -C 6 -al
  • R 4 is C 2 H 5 is substituted with at least one group R 4a , which independently of one another are selected from:
  • R 4a halogen, OH, CN, NO 2 , SH, NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH(C( ⁇ O)C 1 -C 4 -alkyl), N(C( ⁇ O)C 1 -C 4 -alkyl) 2 , NH—SO 2 —R x , C 1 -C 6 -alkoxy, C 1 -C 4 -halogenalkoxy, C 1 -C 6 -alkylthio, C 1 -C 6 -halogenalkylthio, S(O) n —C 1 -C 6 -alkyl, S(O) n -aryl, CH( ⁇ O), C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)O(C 1 -C 6 -alkyl), C( ⁇ O)NH(C 1 -C 6 -al
  • R 4 is CH 2 CN.
  • R 4 is CH 2 OH.
  • R 4 is C 1 -C 6 -halogenalkyl, in particular C 1 -C 4 -halogenalkyl, more specifically C 1 -C 2 -halogenalkyl, such as CF 3 , CCl 3 , FCH 2 , ClCH 2 , F 2 CH, Cl 2 CH, CF 3 CH 2 , CCl 3 CH 2 or CF 2 CHF 2 .
  • R 4 is CH 2 F.
  • R 4 is CHF 2 .
  • R 4 is CF 3 .
  • R 4 is C 2 -C 6 -alkenyl, in particular C 2 -C 4 -alkenyl, such as CH ⁇ CH 2 , CH 2 CH ⁇ CH 2 or C(CH 3 )C ⁇ CH 2 .
  • R 4 is C 2 -C 6 -halogenalkenyl, in particular C 2 -C 4 -halogenalkenyl, more specifically C 2 -C 3 -halogenalkenyl such as CH ⁇ CHF, CH ⁇ CHCl, CH ⁇ CF 2 , CH ⁇ CCl 2 , CF ⁇ CF 2 , CCl ⁇ CCl 2 , CH 2 CH ⁇ CHF, CH 2 CH ⁇ CHCl, CH 2 CH ⁇ CF 2 , CH 2 CH ⁇ CCl 2 , CH 2 CF ⁇ CF 2 , CH 2 CCl ⁇ CCl 2 , CF 2 CF ⁇ CF 2 or CCl 2 CCl ⁇ CCl 2 .
  • R 4 is C 2 -C 6 -cycloalkenyl, in particular C 2 -C 4 -cycloalkenyl, such as CH ⁇ CH 2 -cPr.
  • R 4 is C 2 -C 6 -alkynyl or C 2 -C 6 -halogenalkynyl, in particular C 2 -C 4 -alkynyl or C 2 -C 4 -halogenalkynyl, such as C ⁇ CH, C ⁇ C—Cl, C ⁇ C—CH 3 , CH 2 —C ⁇ CH, CH 2 —C ⁇ CCl or CH 2 —C ⁇ C—CH 3 .
  • R 4 is C 2 -C 6 -cycloalkynyl in particular C 2 -C 4 -cycloalkynyl, such as C ⁇ C-cPr.
  • R 4 is C 1 -C 6 -alkoxy, in particular C 1 -C 4 -alkoxy, more specifically C 1 -C 2 -alkoxy such as OCH 3 , CH 2 CH 3 or CH 2 OCH 3 .
  • R 4 is C 1 -C 6 -alkyl-C 1 -C 6 -alkoxy, in particular C 1 -C 4 -alkyl-C 1 -C 4 -alkoxy, more specifically C 1 -C 2 -alkyl-C 1 -C 2 -alkoxy, such as CH 2 OCH 3 or CH 2 OCH 2 CH 3 .
  • R 4 is C 2 -C 6 -alkenyloxy, in particular C 2 -C 4 -alkenyloxy, more specifically C 1 -C 2 -alkenyloxy such as OCH ⁇ CH 2 , OCH 2 CH ⁇ CH 2 OC(CH 3 )CH ⁇ CH 2 , CH 2 OCH ⁇ CH 2 , or CH 2 OCH 2 CH ⁇ CH 2 .
  • R 4 is C 2 -C 6 -alkynyloxy, in particular C 2 -C 4 -alkynyloxy, more specifically C 1 -C 2 -alkynyloxy such as OC ⁇ CH, OCH 2 C ⁇ CH or CH 2 OC ⁇ CH
  • R 4 is C 1 -C 6 -halogenalkoxy, in particular C 1 -C 4 -halogenalkoxy, more specifically C 1 -C 2 -halogenalkoxy such as OCF 3 , OCHF 2 , OCH 2 F, OCCl 3 , OCHCl 2 or OCH 2 Cl, in particular OCF 3 , OCHF 2 , OCCl 3 or OCHCl 2 .
  • R 4 is C 1 -C 6 -alkyl-C 1 -C 6 -halogenalkoxy, in particular C 1 -C 4 -alkyl-C 1 -C 4 -halogenalkoxy, more specifically C 1 -C 2 -alkyl-C 1 -C 2 -halogenalkoxy such as CH 2 OCF 3 , CH 2 OCHF 2 , CH 2 OCH 2 F, CH 2 OCCl 3 , CH 2 OCHCl 2 or CH 2 OCH 2 Cl, in particular CH 2 OCF 3 , CH 2 OCHF 2 , CH 2 OCCl 3 or CH 2 OCHCl 2 .
  • R 4 is CH( ⁇ O), C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)O(C 1 -C 6 -alkyl), C( ⁇ O)NH(C 1 -C 6 -alkyl) or C( ⁇ O)N(C 1 -C 6 -alkyl) 2 , wherein alkyl is CH 3 , C 2 H 5 , n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • R 4 is C 1 -C 4 -alkyl-CH( ⁇ O), C 1 -C 4 -alkyl-C( ⁇ O)C 1 -C 6 -alkyl, C 1 -C 4 -alkyl-C( ⁇ O)O(C 1 -C 6 -alkyl), C 1 -C 4 -alkyl-C( ⁇ O)NH(C 1 -C 6 -alkyl) or C 1 -C 4 -alkyl-C( ⁇ O)N(C 1 -C 6 -alkyl) 2 , especially CH 2 CH( ⁇ O), CH 2 C( ⁇ O)C 1 -C 6 -alkyl, CH 2 C( ⁇ O)O(C 1 -C 6 -alkyl), CH 2 C( ⁇ O)NH(C 1 -C 6 -alkyl) or CH 2 C( ⁇ O)N(C 1 -C 6 -alkyl) 2 wherein alkyl is
  • R 4 is CR′ ⁇ NOR′′ such as C(CH 3 ) ⁇ NOCH 3 , C(CH 3 ) ⁇ NOCH 2 CH 3 or C(CH 3 ) ⁇ NOCF 3 .
  • R 4 is C 1 -C 6 -alkyl-NH(C 1 -C 4 -alkyl) or C 1 -C 6 -alkyl-N(C 1 -C 4 -alkyl) 2 , wherein alkyl is CH 3 , C 2 H 5 , n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • R 4 is C 1 -C 6 -alkylthio, in particular C 1 -C 4 -alkoxy, more specifically C 1 -C 3 -alkylthio such as CH 2 SCH 3 or CH 2 SCH 2 CH 3 .
  • R 4 is C 1 -C 6 -alkyl-S(O) n —C 1 -C 6 -alkyl, wherein alkyl is CH 3 , C 2 H 5 , n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl and n is 1,2 or 3.
  • R 4 is C 1 -C 6 -alkyl-S(O) n —C 1 -C 6 -halogenalkyl, wherein halogenalkyl is CF 3 or CHF 2 and n is 1, 2 or 3.
  • R 4 is C 1 -C 6 -alkyl-S(O) n -aryl, wherein the aryl or phenyl moiety in each case is unsubstituted or substituted with identical or different groups R 4b which independently of one another are selected from halogen, C 1 -C 2 -alkyl, C 1 -C 2 -alkoxy, C 1 -C 2 -halogenalkyl, C 1 -C 2 -halogenalkoxy and S(O) n —C 1 -C 6 -alkyl, in particular F, Cl, Br, CH 3 , OCH 3 , CF 3 , CHF 2 , OCHF 2 , OCF 3 .
  • R 4 is unsubstituted phenyl.
  • R 4 is phenyl, that is substituted with one, two or three, in particular one, halogen, in particular selected from F, Cl and Br, more specifically selected from F and Cl.
  • R 4 is C 1 -C 6 -alkyl-NH—SO 2 —R x wherein R x is C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, unsubstituted aryl or aryl that is substituted with one, two, three, four or five substituents R x2 independently selected from C 1 -C 4 -alkyl, halogen, OH, CN, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy, or C 1 -C 4 -halogenalkoxy, such as CH 2 NHSO 2 CF 3 or CH 2 NHSO 2 CH 3 .
  • R 4 is selected from C 1 -C 6 -alkyl which is substituted, a saturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle, in particular three-, four-, five- or six-membered, wherein the carbocycle is unsubstituted or substituted with substituents R 4b as defined below. According to one embodiment thereof, the carbocycle is unsubstituted.
  • R 4 is selected from C 1 -C 6 -alkyl, especially CH 2 which is substituted with a 3-membered saturated carbocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b is substituted with R 4b .
  • R 4 is selected from C 1 -C 6 -alkyl, especially CH 2 which is substituted with a 4-membered saturated carbocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b is substituted with R 4b .
  • R 4 is selected from C 1 -C 6 -alkyl, especially CH 2 which is substituted with a 5-membered saturated carbocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b is substituted with R 4b .
  • R 4 is selected from C 1 -C 6 -alkyl, especially CH 2 which is substituted with a 6-membered saturated carbocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b is substituted with R 4b .
  • R 4 is C 1 -C 6 -alkylheterocycle, especially CH 2 substituted with a 4-membered saturated heterocycle which contains 1 or 2 heteroatoms, in particular 1 heteroatom, from the group consisting of N, O and S, as ring members.
  • the heterocycle contains one O as heteroatom.
  • the formed heterocycle is oxetane.
  • the heterocycle is unsubstituted, i.e. it does not carry any substituent R 4b .
  • it is substituted with R 4b .
  • R 4 is C 1 -C 6 -alkylheterocycle, especially CH 2 substituted with a 5-membered saturated heterocycle which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S, as ring members.
  • the heterocycle contains one O as heteroatom.
  • the heterocycle is unsubstituted, i.e. it does not carry any substituent R 4b .
  • it is substituted with R 4b .
  • R 4 is C 1 -C 6 -alkylheterocycle, especially CH 2 substituted by a 6-membered saturated heterocycle which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S as ring members.
  • the heterocycle is unsubstituted, i.e. it does not carry any substituent R 4b .
  • it is substituted with R 4b .
  • said 6-membered saturated heterocycle contains 1 or 2, in particular 1, heteroatom(s) O.
  • the respective 6-membered heterocycle is unsubstituted, i.e. it does not carry any substituent R 4b .
  • it is substituted with R 4b .
  • R 4 is C 1 -C 6 -alkylheterocycle, especially CH 2 substituted with a 5-membered saturated heterocycle which contains one N as ring member and optionally one or two groups CH 2 are replaced by C( ⁇ O).
  • R 4 is a partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle, in particular three-, four-, five- or six-membered, wherein the carbocycle is unsubstituted or substituted with substituents R 4b as defined below. According to one embodiment thereof, the carbocycle is unsubstituted.
  • R 4 is a partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, in particular three-, four-, five- or six-membered, wherein the heterocycle contains one, two, three or four heteroatoms selected from N, O and S, and wherein the carbocycle and heterocycle are unsubstituted or substituted with substituents R 4b as defined below. According to one embodiment thereof, the carbocycle or heterocycle is unsubstituted.
  • R 4 is a saturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, in particular three-, four-, five- or six-membered, wherein the heterocycle contains one, two, three or four heteroatoms selected from N, O and S, and wherein the carbocycle and heterocycle are unsubstituted or substituted with substituents R 4b as defined below. According to one embodiment thereof, the carbocycle or heterocycle is unsubstituted.
  • R 4 is a saturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle, in particular three-, four-, five- or six-membered, wherein the carbocycle is unsubstituted or substituted with substituents R 4b as defined below. According to one embodiment thereof, the carbocycle is unsubstituted.
  • R 4 is a 3-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R 4b . According to still another embodiment of formula I, it is substituted with R 4b .
  • R 4 is a 3-membered saturated carbocycle, which is unsubstituted such as cyclopropyl.
  • R 4 is a 3-membered saturated carbocycle, which is substituted with halogen, more specifically by F, such as C 3 H 3 F 2 .
  • R 4 is a 3-membered saturated carbocycle, which is substituted with halogen. More specifically by Cl, such as C 3 H 3 Cl 2 .
  • R 4 is a 4-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R 4b . According to still another embodiment of formula I, it is substituted with R 4b .
  • R 4 is a 5-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R 4b . According to still another embodiment of formula I, it is substituted with R 4b .
  • R 4 is a 6-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R 4b . According to still another embodiment of formula I, it is substituted with R 4b .
  • R 4 is a partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered heterocycle, in particular three-, four-, five- or six-membered, wherein the heterocycle contains one, two, three or four heteroatoms selected from N, O and S, and wherein the heterocycle is unsubstituted or substituted with substituents R 4b as defined below. According to one embodiment thereof, the heterocycle is unsubstituted.
  • R 4 is a saturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered heterocycle, in particular three-, four-, five- or six-membered, wherein the heterocycle contains one, two, three or four heteroatoms selected from N, O and S, and wherein the heterocycle is unsubstituted or substituted with substituents R 4b as defined below. According to one embodiment thereof, the heterocycle is unsubstituted.
  • the heterocycle contains preferably one, two or three, more specifically one or two heteroatoms selected from N, O and S. More specifically, the hetereocycle contains one heteroatom selected from N, O and S. In particular, the heterocycle contains one or two, in particular one 0.
  • R 4 is a 4-membered saturated heterocycle which contains 1 or 2 heteroatoms, in particular 1 heteroatom, from the group consisting of N, O and S, as ring members.
  • the heterocycle contains one O as heteroatom.
  • the formed heterocycle is oxetane.
  • the heterocycle is unsubstituted, i.e. it does not carry any substituent R 4b . According to still another embodiment of formula I, it is substituted with R 4b .
  • R 4 is a 5-membered saturated heterocycle which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S, as ring members.
  • the heterocycle contains one O as heteroatom.
  • the heterocycle is unsubstituted, i.e. it does not carry any substituent R 4b .
  • it is substituted with R 4b .
  • R 4 is a 6-membered saturated heterocycle which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S as ring members.
  • the heterocycle is unsubstituted, i.e. it does not carry any substituent R 4b .
  • it is substituted with R 4b .
  • said 6-membered saturated heterocycle contains 1 or 2, in particular 1, heteroatom(s) O.
  • the respective 6-membered heterocycle is unsubstituted, i.e. it does not carry any substituent R 4b .
  • it is substituted with R 4b .
  • R 4 is phenyl-C 1 -C 6 -alkyl, such as phenyl-CH 2 , wherein the phenyl moiety in each case is unsubstituted or substituted with one, two or three identical or different groups R 4b which independently of one another are selected from CN, halogen, C 1 -C 2 -alkyl, C 1 -C 2 -alkoxy, C 1 -C 2 -halogenalkyl, C 1 -C 2 -halogenalkoxy and S(O) n —C 1 -C 6 -alkyl, in particular from CN, F, Cl, Br, CH 3 , OCH 3 , CF 3 , CHF 2 , OCHF 2 , OCF 3 and S(O) 2 CH 3 .
  • R 4 is aryl, in particular phenyl, wherein the aryl or phenyl moiety in each case is unsubstituted or substituted with identical or different groups R 4b which independently of one another are selected from CN, halogen, C 1 -C 2 -alkyl, C 1 -C 2 -alkoxy, C 1 -C 2 -halogenalkyl, C 1 -C 2 -halogenalkoxy and S(O) n —C 1 -C 6 -alkyl, in particular from CN, F, Cl, Br, CH 3 , OCH 3 , CF 3 , CHF 2 , OCHF 2 , OCF 3 .
  • R 4 is unsubstituted phenyl.
  • R 4 is phenyl, that is substituted with one, two or three, in particular one, halogen, in particular selected from F, Cl and Br, more specifically selected from F and Cl.
  • R 4 is a 5-membered heteroaryl such as pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan-2-yl, furan-3-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-4-
  • R 4 is a 6-membered heteroaryl, such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl.
  • R 4 is C 1 -C 6 -alkyl, especially CH 2 substituted by a 5-membered saturated heteroaryl which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S as ring members.
  • the heteroaryl is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b it is substituted by R 4b .
  • R 4 is C 1 -C 6 -alkyl, especially CH 2 substituted by a 5-membered saturated heteroaryl which contains one N as ring member.
  • the heteroaryl is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b it is substituted by R 4b .
  • R 4 is C 1 -C 6 -alkyl, especially CH 2 substituted by a 5-membered saturated heteroaryl which contains two N as ring members.
  • the heteroaryl is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b it is substituted by R 4b .
  • R 4 is C 1 -C 6 -alkyl, especially CH 2 substituted by a 5-membered saturated heteroaryl which contains three N as ring members.
  • the heteroaryl is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b it is substituted by R 4b .
  • said 5-membered saturated heterocycle contains 1 or 2, in particular 1, heteroatom(s) O.
  • R 4 is C 1 -C 6 -alkyl, especially CH 2 substituted by a 5-membered saturated heteroaryl which contains one S as ring member.
  • the heteroaryl is unsubstituted, i.e. it does not carry any substituent R 4b . According to still another embodiment of formula I, it is substituted by R 4b .
  • R 4 is C 1 -C 6 -alkyl, especially CH 2 substituted by a 5-membered saturated heteroaryl which contains one S and one N as ring members.
  • the heteroaryl is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b it is substituted by R 4b .
  • R 4 is C 1 -C 6 -alkyl, especially CH 2 substituted by a 5-membered saturated heteroaryl which contains one S and two N as ring members.
  • the heteroaryl is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b it is substituted by R 4b .
  • R 4 is C 1 -C 6 -alkyl, especially CH 2 substituted by a 5-membered saturated heteroaryl which contains one oxygen and one N as ring members.
  • the heteroaryl is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b it is substituted by R 4b .
  • R 4 is C 1 -C 6 -alkyl, especially CH 2 substituted by a 5-membered saturated heteroaryl which contains one oxygen and two N as ring members.
  • the heteroaryl is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b it is substituted by R 4b .
  • R 4 is C 1 -C 6 -alkyl, especially CH 2 substituted by a 6-membered saturated heteroaryl which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S as ring members.
  • the heteroaryl is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b it is substituted by R 4b .
  • R 4 is C 1 -C 6 -alkyl, especially CH 2 substituted by a 6-membered saturated heteroaryl which one N as ring member.
  • the heteroaryl is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b it is substituted by R 4b .
  • R 4 is C 1 -C 6 -alkyl, especially CH 2 substituted by a 6-membered saturated heteroaryl which two N as ring members. According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R 4b . According to still another embodiment of formula I, it is substituted by R 4b . According to a further specific embodiment of formula I, R 4 is C 1 -C 6 -alkyl, especially CH 2 substituted by a 10-membered saturated heteroaryl which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S as ring members. According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R 4b .
  • said 10-membered saturated heterocycle contains 1 or 2, in particular 1, heteroatom(s) N.
  • R 4 is C 1 -C 6 -alkyl, especially CH 2 substituted by a 10-membered saturated heteroaryl which one N as ring members.
  • the heteroaryl is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b it is substituted by R 4b .
  • R 4 is CH 2 substituted by a 5-membered heteroaryl such as pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan-2-yl, furan-3-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiathia
  • R 4 is CH 2 substituted by a 6-membered heteroaryl, such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl.
  • a 6-membered heteroaryl such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl.
  • R 4 is selected from C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, CN, C 2 -C 6 -alkenyl, C 2 -C 6 -halogenalkenyl, C 3 -C 6 -cycloalkenyl, C 2 -C 6 -alkynyl, C 2 -C 6 -halogenalkynyl, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkynyl, C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)O(C 1 -C 6 -alkyl), CR′ ⁇ NOR′′, C 3 -C 6 -halogencycloalkyl a saturated three-, four-, five-, six-, membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; and C 1 -C 6 -alkyl
  • the carbocycle, heterocycle, heteroaryl and aryl are unsubstituted.
  • R 4 is selected from CN, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -halogenalkenyl, C 2 -C 6 -alkynyl, C 2 -C 6 -halogenalkynyl, C 1 -C 6 -alkoxy, a saturated three-, four-, five-, six-, membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; and C 1 -C 6 -alkyl substituted by a saturated three-, four-, five-, six-, membered carbocycle, heterocycle, aryl or heteroaryl; wherein the carbocycle, heterocycle, aryl and heteroaryl are unsubstituted or
  • R 4 is selected from C 1 -C 6 -halogenalkyl, CN, C 2 -C 6 -alkenyl, C 2 -C 6 -halogenalkenyl, C 3 -C 6 -cycloalkenyl, C 2 -C 6 -alkynyl, C 2 -C 6 -halogenalkynyl, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkynyl, C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)O(C 1 -C 6 -alkyl), CR′ ⁇ NOR′′, C 3 -C 6 -halogencycloalkyl a saturated three-, four-, five-, six-, membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; and C 1 -C 6 -alkyl substituted by CN, C 1 -C 6 -alkyl substitute
  • the carbocycle, heterocycle, heteroaryl and aryl are unsubstituted.
  • R 4 is selected from CN, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -halogenalkenyl, C 2 -C 6 -alkynyl, C 2 -C 6 -halogenalkynyl, C 1 -C 6 -alkoxy, a saturated three-, four-, five-, six-, membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; and C 1 -C 6 -alkyl substituted by a saturated three-, four-, five-, six-, membered carbocycle, heterocycle, aryl or heteroaryl; wherein the carbocycle, heterocycle, aryl and heteroaryl are unsubstituted or
  • R 4 Particularly preferred embodiments of R 4 according to the invention are in Table P4 below, wherein each line of lines P4-1 to P4-182 corresponds to one particular embodiment of the invention, wherein P4-1 to P4-182 are also in any combination with one another a preferred embodiment of the present invention.
  • the connection point to the carbon atom, to which R 4 is bound is marked with “#” in the drawings.
  • R 3 , R 4 together with the carbon atom to which they are bound form a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- or heterocycle; wherein the heterocycle contains one, two, three or four heteroatoms selected from N, O and S, wherein the heteroatom N may carry one substituent R N selected from C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl and SO 2 Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted with one, two or three substituents selected from CN, C 1 -C 4 -alkyl, halogen, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy; and wherein the heteroatom S may be in the form of its oxide SO or SO 2 , and wherein
  • R 3 and R 4 form a 3-membered saturated carbocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b is substituted with R 4b .
  • R 3 and R 4 form a 4-membered saturated carbocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b is substituted with R 4b .
  • R 3 and R 4 form a 5-membered saturated carbocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b is substituted with R 4b .
  • R 3 and R 4 form a 6-membered saturated carbocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b is substituted with R 4b .
  • R 3 and R 4 form a 7-membered saturated carbocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 4b .
  • R 4b is substituted with R 4b .
  • R 3 and R 4 together with the carbon atom to which they are bound form a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered heterocycle that is unsubstituted or substituted.
  • the heterocycle formed by R 3 and R 4 is saturated.
  • the heterocycle formed by R 3 and R 4 is a saturated unsubstituted or substituted heterocycle, wherein the heterocycle contains one, two or three, more particularly one or two, specifically one, heteroatom(s) selected from NH, NR N , O, S, S( ⁇ O) and S( ⁇ O) 2 , wherein RN is defined and preferably defined above.
  • this saturated heterocycle is unsubstituted.
  • the saturated heterocycle carries one, two, three or four substituents R 34 .
  • said heterocycle is four- or six-membered.
  • the unsubstituted or substituted and saturated or partially unsaturated heterocycle is three-, four-, five- or six-membered and contains one, two or three, more particularly one or two, heteroatoms selected from NH, NR N , O, S, S( ⁇ O) and S( ⁇ O) 2 , wherein R N is as defined above or preferably selected from C 1 -C 2 -alkyl, C 1 -C 2 -halogenalkyl and SO 2 Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted by one C 1 -C 2 -alkyl.
  • said heterocycle is four- or six-membered.
  • the heterocycle formed by R 3 and R 4 contains one, two or three, more specifically one or two, heteroatoms selected from NH and NR N , wherein RN is as defined and preferably defined below, more particularly selected from C 1 -C 2 -alkyl, C 1 -C 2 -halogenalkyl and SO 2 Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted by one methyl.
  • it contains one or two heteroatoms NH, in particular one NH.
  • it contains one or two heteroatoms NR N , in particular one NR N , wherein R N in each case is as defined and preferably defined above.
  • the heterocycle formed by R 3 and R 4 contains one, two or three, more specifically one or two, in particular one, heteroatom(s) selected from S, S( ⁇ O) and S( ⁇ O) 2 .
  • it contains one or two heteroatoms S, in particular one S.
  • it contains one or two heteroatoms S( ⁇ O), in particular one S( ⁇ O).
  • it contains one or two heteroatoms S( ⁇ O) 2 , in particular one S( ⁇ O) 2 .
  • the heterocycle formed by R 3 and R 4 contains one or two heteroatoms O. In one embodiment thereof, it contains one heteroatom O. In another embodiment, it contains two heteroatoms O.
  • the heterocycle formed by R 3 and R 4 is unsubstituted, i.e. it does not carry any substituent R 34 . According to a further embodiment, it carries one, two, three or four R 34 .
  • R 3 and R 4 together form a 4-membered saturated heterocycle which contains 1 or 2 heteroatoms, in particular 1 heteroatom, from the group consisting of NH, NR N , O, S, S( ⁇ O) and S( ⁇ O) 2 , as ring members, wherein R N is defined and preferably defined above.
  • the heterocycle contains one O as heteroatom.
  • the formed heterocycle is oxetane.
  • the heterocycle is unsubstituted, i.e. it does not carry any substituent R 34 .
  • it carries one, two, three or four R 34 .
  • R 3 and R 4 together form a 5-membered saturated heterocycle which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of NH, NR N , O, S, S( ⁇ O) and S( ⁇ O) 2 , as ring members, wherein R N is as defined and preferably defined above.
  • the heterocycle is unsubstituted, i.e. it does not carry any substituent R 34 .
  • it carries one, two, three or four R 34 .
  • R 3 and R 4 together form a 6-membered saturated heterocycle which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of NH, NR N , O, S, S( ⁇ O) and S( ⁇ O) 2 , as ring members, wherein RN is as defined and preferably defined below.
  • the heterocycle is unsubstituted, i.e. it does not carry any substituent R 34 .
  • it carries one, two, three or four R 34 .
  • said 6-membered saturated heterocycle contains 1 or 2 heteroatoms selected from NH and NR N .
  • said 6-membered saturated heterocycle contains 1 or 2 heteroatoms O. According to a further specific embodiment thereof, said 6-membered saturated heterocycle contains 1 or 2 heteroatoms selected from S, S( ⁇ O) and S( ⁇ O) 2 . According to one embodiment thereof, the respective 6-membered heterocycle is unsubstituted, i.e. it does not carry any substituent R 34 . According to a further embodiment, it carries one, two, three or four R 34 .
  • R 3 together with R 4 and with the carbon atom to which they are bound form a saturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle, in particular three-, four-, five- or six-membered carbocycle, more specifically five- or six-membered carbocycle, that is unsubstituted or carries one, two, three or four substituents R 34 as defined below.
  • R 3 and R 4 form a cyclopropyl, that is unsubstituted or carries one, two, three or four substituents R 34 as defined below.
  • R 3 and R 4 form a cyclobutyl, that is unsubstituted or carries one, two, three or four substituents R 34 as defined below.
  • R 3 and R 4 form a cyclopentyl, that is unsubstituted or carries one, two, three or four substituents R 34 as defined below.
  • R 3 and R 4 form a cyclohexyl, that is unsubstituted or carries one, two, three or four substituents R 34 as defined below.
  • R 3 and R 4 form a cycloheptyl, that is unsubstituted or carries one, two, three or four substituents R 34 as defined below.
  • R 34 are the possible substituents for the carbo- or heterocycle formed by R 3 and R 4 and are independently selected from halogen, OH, CN, NO 2 , SH, NH 2 , C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy, C 1 -C 6 -alkylthio, C 1 -C 6 -halogenalkylthio, C 1 -C 4 -alkoxy-C 1 -C 4 -alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents R 34a selected from the group consisting of halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4
  • R 34 is in each case independently selected from halogen, OH, CN, SH, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy and C 1 -C 6 -alkylthio. In one further preferred embodiment, R 34 is in each case independently selected from halogen, C 1 -C 6 -alkyl and C 1 -C 6 -halogenalkyl. In one further particular embodiment, R 34 is in each case independently selected from C 1 -C 6 -alkyl, such as methyl and ethyl.
  • R N is the substituent of the heteroatom NR N that is contained in the heterocycle formed by R 3 and R 4 in some of the inventive compounds.
  • R N is selected from C 1 -C 4 -alkyl, C 1 -C 4 -halogenalk and SO 2 Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted by one, two or three substituents selected from C 1 -C 4 -alkyl.
  • R N is in each case independently selected from C 1 -C 2 -alkyl, C 1 -C 2 -halogenalkyl and SO 2 Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted by one methyl substituents.
  • RN is in each case independently selected from C 1 -C 2 -alkyl, more particularly methyl. In one particular embodiment, RN is in each case independently selected from SO 2 Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted by one methyl.
  • R 3 , R 4 together with the carbon atom to which they are bound form a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- or heterocycle; wherein the carbocycle or heterocycle is unsubstituted or carries one, two, three or four substituents R 34 independently selected from halogen, OH, CN, NO 2 , SH, NH 2 , C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy, C 1 -C 6 -alkylthio, C 1 -C 6 -halogenalkylthio, C 1 -C 4 -alkoxy-C 1 -C 4 -alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted
  • R 3 , R 4 together with the carbon atom to which they are bound form a saturated or partially unsaturated four-, five-, six-membered carbo- or heterocycle; wherein the carbocycle or heterocycle is unsubstituted or carries one, two, three or four substituents R 34 independently selected from halogen, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy.
  • R x in the substituent NH—SO 2 —R x is in each case independently selected from C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, unsubstituted aryl and aryl that is substituted by one, two, three, four or five substituents R x1 independently selected from C 1 -C 4 -alkyl, halogen, OH, CN, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy.
  • R x is in each case independently selected from C 1 -C 4 -alkyl and phenyl that is substituted by one, two or three R x1 independently selected from C 1 -C 2 -alkyl, more specifically R x is in each case independently selected from C 1 -C 4 -alkyl and phenyl that is substituted by one CH 3 , more specifically SO 2 —R x is the tosyl group (“Ts”).
  • R 4a are the possible substituents for the the acyclic moieties of R 4 and the R 4a are in each case independently selected from halogen, OH, CN, NO 2 , SH, NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH(C( ⁇ O)C 1 -C 4 -alkyl), N(C( ⁇ O)C 1 -C 4 -alkyl) 2 , NH—SO 2 —R x , C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 4 -halogenalkoxy, C 1 -C 6 -alkylthio, C 1 -C 6 -halogenalkylthio, S(O) n —C 1 -C 6 -alkyl, S(O) n
  • R 4a is in each case independently selected from halogen, OH, CN, NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH—SO 2 —R x , CH( ⁇ O), C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)O(C 1 -C 6 -alkyl), C( ⁇ O)NH(C 1 -C 6 -alkyl) and CR′ ⁇ NOR′′.
  • R 4a is in each case independently selected from OH, CN, CH( ⁇ O), C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)O(C 1 -C 6 -alkyl), C( ⁇ O)NH(C 1 -C 6 -alkyl) such as CN, CHO, C(O)O(CH 3 ),CO 2 NH(CH 3 ), CO 2 N(CH 3 ) 2 or NHSO 2 CF 3 .
  • R 4a is in each case independently selected from C 1 -C 6 -alkylthio, C 1 -C 6 -halogenalkylthio, S(O) n —C 1 -C 6 -alkyl, S(O) n -aryl, such as SCH 3 , SO 2 CH 3 , SO 2 Ph.
  • R 4a is in each case independently selected from NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH—SO 2 —R x , such as NH(CH 3 ), N(CH 3 ) 2 or NHSO 2 CH 3 , NHSO 2 CF 3 .
  • R 4a is in each case independently selected from C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, such as cyclopropyl or fully or partially halogenated cyclopropyl.
  • R 4a is in each case independently selected from C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy, such as OCF 3 , OCHF 2 , OCH 2 F, OCCl 3 , OCHCl 2 or OCH 2 Cl, in particular OCF 3 , OCHF 2 , OCCl 3 or OCHCl 2 .
  • R 4a is in each case independently selected from heterocarbocycle, wherein the heretocyclocycle is a saturated, two CH 2 groups are replaced by C( ⁇ O) and contains one N as a ring member.
  • R 4a is in each case independently selected from aryl, wherein the aryl is substituted with halogen selected from the group consisting of F, Cl, Br, CH 3 , CHF 2 , OCH 3 , OCHF 3 , CN or SO 2 CH 3 .
  • R 4 is unsubstituted 5- or 6-membered heteroaryl.
  • R 4 is 5- or 6-membered heteroaryl substituted by halogen selected from the group consisting of F, Cl, Br, CH 3 , CHF 2 , OCH 3 , OCHF 3 , CN or SO 2 CH 3 .
  • R 4a is in each case independently selected from halogen, OH, CN, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl and heterocycle, wherein the heretocyclocycle is a saturated and contains one N as a ring member.
  • R 4a is in each case independently selected from halogen, OH, CN, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl and heterocycle, wherein the heretocyclocycle is a saturated, one CH 2 group is replaced by C( ⁇ O) and contains one N as a ring member.
  • R 4a is in each case independently selected from halogen, OH, CN, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl and heterocycle, wherein the heretocyclocycle is a saturated, two CH 2 groups are replaced by C( ⁇ O) and contains one N as a ring member.
  • R 4a is in each case independently selected from halogen, CN, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy, C 3 -C 7 -cycloalkyl, C 3 -C 7 -halogencycloalkyl, aryl, and heteroaryl, wherein the aryl and heteroaryl are substituted from the group consisting of F, Cl, Br, CH 3 , CHF 2 , OCH 3 , OCHF 3 , CN or SO 2 CH 3 .
  • R 4a is in each case independently selected from halogen, phenyl, halogenphenyl and heteroaryl, wherein the halogenphenyl is substituted with halogen selected from the group consisting of F, Cl and Br, in particular selected from F and Cl.
  • R 4a is in each case independently selected from halogen, CN, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy, aryl, and heteroaryl, wherein the aryl and heteroaryl are substituted from the group consisting of F, Cl, Br, CH 3 , CHF 2 , OCH 3 , OCHF 3 , CN or SO 2 CH 3 .
  • R 4a is in each case independently selected from halogen, phenyl, halogenphenyl and heteroaryl, wherein the halogenphenyl is substituted with halogen selected from the group consisting of F, Cl and Br, in particular selected from F and Cl.
  • R 4a is in each case independently selected from halogen, CN, C 1 -C 6 -alkoxy and phenyl; wherein the phenyl is substituted with halogen selected from the group consisting of F, Cl and Br or by C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy.
  • R 4a is in each case independently selected from CN, halogen, C 1 -C 6 -alkoxy, phenyl and heteroaryl, wherein the phenyl and heteroaryl is substituted with halogen selected from the group consisting of F, Cl and Br, in particular selected from F and Cl.
  • R 4b are the possible substituents for the carbocycle, heterocycle, heteroaryl and aryl moieties of R 4 and are independently selected from halogen, OH, CN, NO 2 , SH, NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH(C( ⁇ O)C 1 -C 4 -alkyl), N(C( ⁇ O)C 1 -C 4 -alkyl) 2 , NH—SO 2 —R x , C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 4 -halogenalkoxy, C 1 -C 6 -alkylthio, C 1 -C 6 -halogenalkylthio
  • R 4b is in each case independently selected from halogen, OH, CN, SH, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy, C 1 -C 6 -alkylthio and S(O) n —C 1 -C 6 -alkyl.
  • R 4b is in each case independently selected from halogen, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkyl, C 1 -C 6 -halogenalkoxy and S(O) n —C 1 -C 6 -alkyl.
  • R 4b is in each case independently selected from C 1 -C 6 -alkyl, such as methyl and ethyl.
  • R 4b is in each case independently selected from halogen, such as F, Cl and Br.
  • R 4b is in each case independently selected from C 1 -C 6 -alkoxy, such as OCH 3 .
  • R 4b is in each case independently selected from C 1 -C 4 -halogenalkoxy, such as OCHF 2 and OCF 3 .
  • R 4b is in each case independently selected from S(O) n —C 1 -C 6 -alkyl. such as SO 2 CH 3 .
  • R 5 is H.
  • R 6 is H.
  • R 7 and R 8 together with the carbon atoms to which they are bound together form a phenyl or five- or six-membered heteroaryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein the heteroaryl carries zero, one, two, three or four substituents (R 78 ) o , wherein o is 0, 1, 2 or 3; and R 78 are independently selected from halogen, OH, CN, NO 2 , SH, NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH(C( ⁇ O)C 1 -C 4 -alkyl), N(C( ⁇ O)C 1 -C 4 -alkyl) 2 , NH—SO 2 —R x , CH( ⁇ O), C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)NH(C 1 -C 6
  • R 78a which independently of one another are selected from: R 78a halogen, OH, CN, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -cycloalkenyl, C 3 -C 6 -halogencycloalkyl, C 3 -C 6 -halogencycloalkenyl, C 1 -C 4 -halogenalkoxy, C 1 -C 6 -alkylthio, five- or six-membered heteroaryl, phenyl and phenoxy, wherein the heteroaryl and phenyl group is unsubstituted or carries one, two, three, four or five substituents R 78aa selected from the group consisting of halogen, OH, C 1 -C 4 -alkyl, C
  • R 7 and R 8 together with the carbon atoms to which they are bound form phenyl; wherein the phenyl carries zero, one or two substituents (R 78 ) o , as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • R 7 and R 8 together with the carbon atoms to which they are bound form a five- or six-membered heteroaryl; wherein the heteroaryl contains one or two heteroatoms selected from N, O and S, and wherein the heteroaryl carries zero, one or two substituents (R 78 ) o , as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • R 7 and R 8 together with the carbon atoms to which they are bound form a five- or six-membered heteroaryl; wherein the heteroaryl contains one or two heteroatoms N, and wherein the heteroaryl carries zero, one or two substituents (R 78 ) o , as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • R 7 and R 8 together with the carbon atoms to which they are bound form a five- or six-membered heteroaryl; wherein the heteroaryl contains one or two heteroatoms selected from S and O, and wherein the heteroaryl carries zero, one or two substituents (R 78 ) o , as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • R 7 and R 8 together with the carbon atoms to which they are bound form a five- or six-membered heteroaryl; wherein the heteroaryl contains one heteroatom S, and wherein the heteroaryl carries zero, one or two substituents (R 78 ) o , as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • R 7 and R 8 together with the carbon atoms to which they are bound form a five- or six-membered heteroaryl; wherein the heteroaryl contains one heteroatom O, and wherein the heteroaryl carries zero, one or two substituents (R 78 ) o , as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • R 7 and R 8 together with the carbon atoms to which they are bound form a five-membered heteroaryl; wherein the heteroaryl contains one or two heteroatoms selected from N, O and S, and wherein the heteroaryl carries zero, one or two substituents (R 78 ) o , as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • R 7 and R 8 together with the carbon atoms to which they are bound form a five-membered heteroaryl; wherein the heteroaryl contains one or two heteroatoms N, and wherein the heteroaryl carries zero, one or two substituents (R 78 ) o , as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • R 7 and R 8 together with the carbon atoms to which they are bound form a five-membered heteroaryl; wherein the heteroaryl contains one or two heteroatoms selected from O and S, and wherein the heteroaryl carries zero, one or two substituents (R 78 ) o , as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • R 7 and R 8 together with the carbon atoms to which they are bound form a five-membered heteroaryl; wherein the heteroaryl contains one heteroatom S, and wherein the heteroaryl carries zero, one or two substituents (R 78 ) o , as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2.
  • R 7 and R 8 together with the carbon atoms to which they are bound form a five-membered heteroaryl; wherein the heteroaryl contains one heteroatom 0, and wherein the heteroaryl carries zero, one or two substituents (R 78 ) o , as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • R 7 and R 8 together with the carbon atoms to which they are bound form a six-membered heteroaryl; wherein the heteroaryl contains one or two heteroatoms selected from N, O and S, and wherein the heteroaryl carries zero, one or two substituents (R 78 ) o , as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • R 7 and R 8 together with the carbon atoms to which they are bound form a six-membered heteroaryl; wherein the heteroaryl contains one or two heteroatoms N, and wherein the heteroaryl carries zero, one or two substituents (R 78 ) o , as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • R 78 there can be zero, one, two or three R 78 present, namely for o is 0, 1, 2 or 3.
  • o 0.
  • o is 1.
  • o is 2 or 3. According to one specific embodiment thereof, o is 2, according to a further specific embodiment, o is 3.
  • R 78 is halogen, in particular F, Cl, Br or I, more specifically F, Cl or Br, in particular F or Cl.
  • R 78 is F.
  • R 78 is Cl.
  • R 78 is Br.
  • R 78 is OH.
  • R 78 is CN.
  • R 78 is NO 2 .
  • R 78 is SH.
  • R 78 is NH 2 .
  • R 78 is, NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH(C( ⁇ O)(C 1 -C 4 -alkyl), N(C( ⁇ O)(C 1 -C 4 -alkyl) 2 , wherein C 1 -C 4 -alkyl is CH 3 , C 2 H 5 , n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • R 78 is NH—SO 2 —R x such as NH—SO 2 —CH 3 , NH—SO 2 —CH 2 —CH 3 , NH—SO 2 —CF 3 or NH—SO 2 -Ts.
  • R 78 is CH( ⁇ O), C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)O(C 1 -C 6 -alkyl) or C( ⁇ O)NH(C 1 -C 6 -alkyl), wherein alkyl is CH 3 , C 2 H 5 , n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • R 78 is CR′ ⁇ NOR′′ such as C(CH 3 ) ⁇ NOCH 3 , C(CH 3 ) ⁇ NOCH 2 CH 3 or C(CH 3 ) ⁇ NOCF 3 .
  • R 78 is C 1 -C 6 -alkyl, in particular C 1 -C 4 -alkyl, such as CH 3 , C 2 H 5 , n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl, in particular CH 3 .
  • R 78 is C 1 -C 6 -halogenalkyl, in particular C 1 -C 4 -halogenalkyl, such as CF 3 , CCl 3 , FCH 2 , ClCH 2 , F 2 CH, Cl 2 CH, CF 3 CH 2 , CCl 3 CH 2 or CF 2 CHF 2 .
  • R 78 is C 2 -C 6 -alkenyl, in particular C 2 -C 4 -alkenyl, such as CH ⁇ CH 2 or CH 2 CH ⁇ CH 2 .
  • R 78 is C 3 -C 6 -cycloalkyl, in particular cyclopropyl.
  • R 78 is C 3 -C 6 -halogencycloalkyl.
  • R 1 is fully or partially halogenated cyclopropyl.
  • R 78 is C 3 -C 6 -cycloalkyl-C 2 -C 6 -alkenyl, in particular C 3 -C 6 -cycloalkyl-C 2 -C 4 -alkenyl, more specifically C 3 -C 6 -cycloalkyl-C 2 -C 3 -alkenyl, such as C 3 H 5 —CH ⁇ CH 2 .
  • R 78 is C 2 -C 6 -halogenalkenyl, in particular C 2 -C 4 -halogenalkenyl, more specifically C 2 -C 3 -halogenalkenyl such as CH ⁇ CHF, CH ⁇ CHCl, CH ⁇ CF 2 , CH ⁇ CCl 2 , CH 2 CH ⁇ CHF, CH 2 CH ⁇ CHCl, CH 2 CH ⁇ CF 2 , CH 2 CH ⁇ CCl 2 . CH 2 CF ⁇ CF 2 , CH 2 CCl ⁇ CCl 2 . CF 2 CF ⁇ CF 2 or CCl 2 CCl ⁇ CCl 2 .
  • R 78 is C 2 -C 6 -alkynyl, in particular C 2 -C 4 -alkynyl, more specifically C 2 -C 3 -alkynyl, such as C ⁇ CH.
  • R 78 is C 2 -C 6 -halogenalkynyl, in particular C 2 -C 4 -halogenalkynyl, more specifically C 2 -C 3 -halogenalkynyl.
  • R 78 is C 1 -C 6 -alkoxy, in particular C 1 -C 4 -alkoxy, more specifically C 1 -C 2 -alkoxy such as OCH 3 or OCH 2 CH 3 .
  • R 78 is C 1 -C 6 -halogenalkoxy, in particular C 1 -C 4 -halogenalkoxy, more specifically C 1 -C 2 -halogenalkoxy such as OCF 3 , OCHF 2 , OCH 2 F, OCCl 3 , OCHCl 2 , OCH 2 Cl and OCF 2 CHF 2 , in particular OCF 3 , OCHF 2 and OCF 2 CHF 2 .
  • R 78 is C 2 -C 6 -alkenyloxy, in particular C 2 -C 4 -alkenyloxy, more specifically C 1 -C 2 -alkenyloxy such as OCH ⁇ CH 2 , OCH 2 CH ⁇ CH 2 .
  • R 78 is C 2 -C 6 -alkynyloxy, in particular C 2 -C 4 -alkynyloxy, more specifically C 1 -C 2 -alkynyloxy such as OC ⁇ CH
  • R 78 is S(O) n —C 1 -C 6 -alkyl, wherein alkyl is CH 3 , C 2 H 5 , n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl and n is 1, 2 or 3.
  • R 78 is S(O) n —C 1 -C 6 -halogenalkyl, wherein halogenalkyl is CF 3 or CHF 2 and n is 1, 2 or 3.
  • R 78 is a partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered heterocycle, in particular three-, four-, five- or six-membered, wherein the heterocycle contains one, two, three or four heteroatoms selected from N, O and S, and wherein the heterocycle is unsubstituted or substituted by substituents R 78b as defined below. According to one embodiment thereof, the heterocycle is unsubstituted.
  • R 78 is a saturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered heterocycle, in particular three-, four-, five- or six-membered, wherein the heterocycle contains one, two, three or four heteroatoms selected from N, O and S, and wherein the heterocycle is unsubstituted or substituted by substituents R 78b as defined below. According to one embodiment thereof, the heterocycle is unsubstituted.
  • the heterocycle contains preferably one, two or three, more specifically one or two heteroatoms selected from N, O and S. More specifically, the hetereocycle contains one heteroatom selected from N, O and S. In particular, the heterocycle contains one or two, in particular one O.
  • R 78 is a 4-membered saturated heterocycle which contains 1 or 2 heteroatoms, in particular 1 heteroatom, from the group consisting of N, O and S, as ring members.
  • the heterocycle contains one O as heteroatom.
  • the formed heterocycle is oxetane.
  • the heterocycle is unsubstituted, i.e. it does not carry any substituent R 78b . According to still another embodiment of formula I, it is substituted by R 78b .
  • R 78 is a 5-membered saturated heterocycle which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S, as ring members.
  • the heterocycle contains one O as heteroatom.
  • the heterocycle is unsubstituted, i.e. it does not carry any substituent R 78b . According to still another embodiment of formula I, it is substituted by R 78b .
  • R 78 is a 6-membered saturated heterocycle which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S as ring members.
  • the heterocycle is unsubstituted, i.e. it does not carry any substituent R 78b .
  • it is substituted by R 78b .
  • said 6-membered saturated heterocycle contains 1 or 2, in particular 1, heteroatom(s) O.
  • the respective 6-membered heterocycle is unsubstituted, i.e. it does not carry any substituent R 78b .
  • it is substituted by R 78b .
  • R 78 is phenyl-C 1 -C 6 -alkyl, such as phenyl-CH 2 , wherein the phenyl moiety in each case is unsubstituted or substituted by one, two or three identical or different groups R 78b which independently of one another are selected from halogen, C 1 -C 2 -alkyl, C 1 -C 2 -alkoxy, C 1 -C 2 -halogenalkyl and C 1 -C 2 -halogenalkoxy, in particular CN, F, Cl, Br, CH 3 , OCH 3 , CHF 2 , CF 3 OCHF 2 , and OCF 3 .
  • R 78 is unsubstituted phenyl or phenyl that is substituted by one, two, three or four R 78b , as defined and preferably herein.
  • R 78 is unsubstituted phenyl or phenyl that is substituted by one, two, three or four R 78b , as defined herein.
  • R 78 is unsubstituted phenyl.
  • R 78 is a 5-membered heteroaryl such as pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan-2-yl, furan-3-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-4
  • R 78 is a 6-membered heteroaryl, such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl.
  • R 78 is in each case independently selected from halogen, CN, C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 1 -C 6 -alkoxy, C 3 -C 6 -alkenyloxy, C 3 -C 6 -alkynyloxy, C 3 -C 6 -cycloalkyl, S(O) n —C 1 -C 6 -alkyl, three-, four-, five- or six-membered saturated or partially unsaturated heterocycle, five- or six-membered heteroaryl and phenyl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein the acyclic moieties of R 78 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R 78a as defined and preferably defined herein,
  • R 78 is in each case independently selected from halogen, CN, C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy, C 3 -C 6 -alkenyloxy, C 3 -C 6 -alkynyloxy, C 3 -C 6 -cycloalkyl, S(O) n —C 1 -C 6 -alkyl, three-, four-, five- or six-membered saturated or partially unsaturated heterocycle, five- or six-membered heteroaryl and phenyl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein the acyclic moieties of R 78 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different
  • the acyclic and cyclic moieties of R 78 are not further substituted, according to another embodiment, the acyclic moieties of R 78 carry one, two, three or four identical or different groups R 78a as defined and preferably defined herein.
  • R 78 is in each case independently selected from halogen, CN, C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 1 -C 6 -alkoxy, C 3 -C 6 -alkenyloxy, C 3 -C 6 -alkynyloxy, C 3 -C 6 -cycloalkyl and S(O) n —C 1 -C 6 -alkyl, wherein the acyclic moieties of R 78 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R 78a as defined and preferably defined herein, and wherein the cycloalkyl moieties of R 78 are not further substituted or carry one, two, three, four, five or up to the maximum number of identical or different groups R 78b as defined and preferably defined herein.
  • R 78 is in each case independently selected from halogen, CN, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy, C 3 -C 6 -alkenyloxy, C 3 -C 6 -alkynyloxy, C 3 -C 6 -cycloalkyl and S(O) n —C 1 -C 6 -alkyl, wherein the acyclic moieties of R 78 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R 78a as defined and preferably defined herein, and wherein the cycloalkyl moieties of R 78 are not further substituted or carry one, two, three, four, five or up to the maximum
  • the acyclic and cyclic moieties of R 78 are not further substituted, according to another embodiment, the acyclic moieties of R 78 carry one, two, three or four identical or different groups R 78a as defined and preferably defined herein.
  • R 78 is in each case independently selected from halogen, C 1 -C 6 -alkyl and C 1 -C 6 -alkoxy, wherein the acyclic moieties of R 78 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R 78a defined and preferably defined herein.
  • R 78 is in each case independently selected from CN, halogen, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 1 -C 6 -alkoxy and C 1 -C 6 -halogenalkoxy, wherein the acyclic moieties of R 78 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R 78a defined and preferably defined herein.
  • the acyclic and cyclic moieties of R 78 are not further substituted, according to another embodiment, the acyclic moieties of R 78 carry one, two, three or four identical or different groups R 78a as defined and preferably defined herein.
  • R 78 is in each case independently selected from halogen, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy or CN.
  • R 78a are the possible substituents for the acyclic moieties of R 78 .
  • R 78a is independently selected from halogen, OH, CN, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -cycloalkenyl, C 3 -C 6 -halogencycloalkyl, C 3 -C 6 -halogencycloalkenyl, C 1 -C 4 -halogenalkoxy, C 1 -C 6 -alkylthio, five- or six-membered heteroaryl, phenyl and phenoxy, wherein the heteroaryl and phenyl group is unsubstituted or carries one, two, three, four or five substituents R 78a′ selected from the group consisting of halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4
  • R 78a is independently selected from halogen, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl and C 1 -C 4 -halogenalkoxy.
  • R 78a is independently selected from F, Cl, Br, I, C 1 -C 2 -alkoxy, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl and C 1 -C 2 -halogenalkoxy.
  • R 78a is independently halogen, in particular selected from F, Cl, Br and I, more specifically F, Cl and Br.
  • R 78b are the possible substituents for the cycloalkyl, heterocycle, heteroaryl and phenyl moieties of R 78 .
  • R 78b according to the invention is independently selected from halogen, OH, CN, C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 4 -halogenalkoxy and C 1 -C 6 -alkylthio.
  • R 78b is independently selected from halogen, CN, C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenalkyl and C 1 -C 4 -halogenalkoxy, in particular halogen, C 1 -C 4 -alkyl and C 1 -C 4 -alkoxy.
  • R 78b is independently selected from F, Cl, CN, CH 3 , OCH 3 and halogenmethoxy.
  • R 7 and R 8 optionally substituted by (R 78 ) o , according to the invention are in Table P78 below, wherein each line of lines P78-1 to P78-82 corresponds to one particular embodiment of the invention, wherein P78-1 to P78-82 are also in any combination with one another a preferred embodiment of the present invention.
  • the positions of the heteroaryls marked with “#” represents the connection points (carbon atoms 5′ and 6′ in formula I) with the remaining skeleton of the compounds of formula I:
  • R 9 is in each case independently selected from H, halogen, OH, CN, NO 2 , SH, NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH(C 2 -C 4 -alkenyl), N(C 2 -C 4 -alkenyl) 2 , NH(C 2 -C 4 -alkynyl), N(C 2 -C 4 -alkynyl) 2 , NH(C 3 -C 6 -cycloalkyl), N(C 3 -C 6 -cycloalkyl) 2 , N(C 2 -C 4 -alkyl)(C 2 -C 4 -alkenyl), N(C 2 -C 4 -alkyl)(C 2 -C 4 -alkynyl), N(C 2 -C 4 -alkyl)(C 3 -C 6 -cycloalky
  • R 9 is selected from the group consisting of H, halogen, CN, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -halogenalkenyl, C 2 -C 6 -alkynyl, C 2 -C 6 -halogenalkynyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, and OR Y .
  • R 9 is H.
  • R 9 is halogen, in particular F, Cl, Br or I, more specifically F, Cl or Br, in particular F or Cl.
  • R 9 is F.
  • R 9 is Cl
  • R 9 is Br.
  • R 9 is OH.
  • R 9 is CN
  • R 9 is NO 2 .
  • R 9 is SH.
  • R 9 is NH 2 .
  • R 9 is, NH(C 1 -C 4 -alkyl), in particular NH(CH 3 ), NH(C 2 H 5 ).
  • R 9 is N(C 1 -C 4 -alkyl) 2 , in particular NH(CH 3 ) 2 , NH(C 2 H 5 ) 2 .
  • R 9 is, NH(C 2 -C 4 -alkenyl), in particular NH(CH ⁇ CH 2 ), NH(CH 2 CH ⁇ CH 2 ).
  • R 9 is, N(C 2 -C 4 -alkenyl) 2 , in particular N(CH ⁇ CH 2 ) 2 , N(CH 2 CH ⁇ CH 2 ) 2 .
  • R 9 is, NH(C 2 -C 4 -alkynyl), in particular NH(C ⁇ CH), NH(CH 2 C ⁇ CH).
  • R 9 is, N(C 2 -C 4 -alkynyl) 2 , in particular N(C ⁇ CH) 2 , N(CH 2 C ⁇ CH) 2 .
  • R 9 is, NH(C 3 -C 6 -cycloalkyl), in particular NH(C 3 H 7 ), NH(C 4 H 9 ).
  • R 9 is, N(C 3 -C 6 -cycloalkyl) 2 , in particular N(C 3 H 7 ) 2 , N(C 4 H 9 ) 2 .
  • R 9 is N(C 1 -C 4 -alkyl)(C 2 -C 4 -alkenyl), in particular N(CH 3 )(CH ⁇ CH 2 ), N(CH 3 )(CH 2 CH ⁇ CH 2 ), N(C 2 H 5 )(CH ⁇ CH 2 ), N(C 2 H 5 )(CH 2 CH ⁇ CH 2 ).
  • R 9 is N(C 1 -C 4 -alkyl)(C 2 -C 4 -alkynyl), in particular N(CH 3 )(C ⁇ CH), N(CH 3 )(CH 2 C ⁇ CH), N(C 2 H 5 )(C ⁇ CH), N(C 2 H 5 )(CH 2 C ⁇ CH).
  • R 9 is N(C 1 -C 4 -alkyl)(C 3 -C 6 -cycloalkyl), in particular N(CH 3 )(C 3 H 7 ), N(CH 3 )(C 4 H 9 ), N(C 2 H 5 )(C 3 H 7 ), N(CH 3 )(C 4 H 9 ).
  • R 9 is N(C 2 -C 4 -alkenyl)(C 2 -C 4 -alkynyl), in particular N(CH ⁇ CH 2 )(C ⁇ CH), N(CH 2 CH ⁇ CH 2 )(CH 2 C ⁇ CH), N(CH ⁇ CH 2 )(C ⁇ CH), N(CH 2 CH ⁇ CH 2 )(CH 2 C ⁇ CH).
  • R 9 is N(C 2 -C 4 -alkenyl)(C 3 -C 6 -cycloalkyl), in particular N(CH ⁇ CH 2 )(C 3 H 7 ), N(CH 2 CH ⁇ CH 2 )(C 4 H 9 ), N(CH ⁇ CH 2 )(C 3 H 7 ), N(CH 2 CH ⁇ CH 2 )(C 4 H 9 ).
  • R 9 is N(C 2 -C 4 -alkynyl)(C 3 -C 6 -cycloalkyl), in particular N(C ⁇ CH)(C 3 H 7 ), N(CH 2 C ⁇ CH)(C 4 H 9 ), N(C ⁇ CH)(C 3 H 7 ), N(CH 2 C ⁇ CH)(C 4 H 9 ).
  • R 9 is, NH(C( ⁇ O)(C 1 -C 4 -alkyl), in particular NH(C( ⁇ O)(CH 3 ), NH(C( ⁇ O)(C 2 H 5 ).
  • R 9 is N(C( ⁇ O)(C 1 -C 4 -alkyl) 2 , in particular N(C( ⁇ O)(CH 3 ) 2 , N(C( ⁇ O)(C 2 H 5 ) 2 .
  • R 9 is NH—SO 2 —R x such as NH—SO 2 —CH 3 , NH—SO 2 —CH 2 —CH 3 , NH—SO 2 —CF 3 , NH—SO 2 -Ts.
  • R 9 is S(O) n —C 1 -C 6 -alkyl such as SCH 3 , S( ⁇ O) CH 3 , S(O) 2 CH 3 .
  • R 9 is S(O) n -aryl such as S-phenyl, S( ⁇ O) phenyl, S(O) 2 phenyl.
  • R 9 is S(O) n —C 2 -C 6 -alkenyl such as SCH ⁇ CH 2 , S( ⁇ O)CH ⁇ CH 2 , S(O) 2 CH ⁇ CH 2 , SCH 2 CH ⁇ CH 2 , S( ⁇ O)CH 2 CH ⁇ CH 2 , S(O) 2 CH 2 CH ⁇ CH 2 .
  • R 9 is S(O) n —C 2 -C 6 -alkynyl such as SC ⁇ CH, S( ⁇ O)C ⁇ CH, S(O) 2 C ⁇ CH, SCH 2 C ⁇ CH, S( ⁇ O)CH 2 C ⁇ CH, S(O) 2 CH 2 C ⁇ CH.
  • R 9 is CH( ⁇ O).
  • R 9 is C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)O(C 1 -C 6 -alkyl), C( ⁇ O)NH(C 1 -C 6 -alkyl) or C( ⁇ O)N(C 1 -C 6 -alkyl) 2 , wherein alkyl is CH 3 , C 2 H 5 , n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • R 9 is C( ⁇ O)C 2 -C 6 -alkenyl, C( ⁇ O)O(C 2 -C 6 -alkenyl), ( ⁇ O)NH(C 2 -C 6 -alkenyl) or C( ⁇ O)N(C 2 -C 6 -alkenyl) 2 , wherein alkenyl is CH ⁇ CH 2 , CH 2 CH ⁇ CH 2 .
  • R 9 is C( ⁇ O)C 2 -C 6 -alkynyl, C( ⁇ O)O(C 2 -C 6 -alkynyl), C( ⁇ O)NH(C 2 -C 6 -alkynyl) or C( ⁇ O)N(C 2 -C 6 -alkynyl) 2 , wherein alkynyl is C ⁇ CH, CH 2 C ⁇ CH.
  • R 9 is C( ⁇ O)C 3 -C 6 -cycloalkyl, C( ⁇ O)O(C 3 -C 6 -cycloalkyl), C( ⁇ O)NH(C 3 -C 6 -cycloalkyl) or C( ⁇ O)N(C 3 -C 7 -cycloalkyl) 2 , wherein cycloalkyl is cyclopropyl (C 3 H 7 ) or cyclobutyl (C 4 H 9 ).
  • R 9 is CH( ⁇ S).
  • R 9 is C( ⁇ S)C 1 -C 6 -alkyl, C( ⁇ S)OC 1 -C 6 -alkyl, C( ⁇ S)NH(C 1 -C 6 -alkyl) or C( ⁇ S)NH(C 1 -C 6 -alkyl), wherein alkyl is CH 3 , C 2 H 5 , n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • R 9 is C( ⁇ S)C 2 -C 6 -alkenyl, C( ⁇ S)OC 2 -C 6 -alkenyl, C( ⁇ S)NH(C 2 -C 6 -alkenyl) or C( ⁇ S)N(C 2 -C 6 -alkenyl) 2 , wherein alkenyl is CH ⁇ CH 2 , CH 2 CH ⁇ CH 2 .
  • R 9 is C( ⁇ S)C 2 -C 6 -alkynyl, C( ⁇ S)O(C 2 -C 6 -alkynyl), C( ⁇ S)NH(C 2 -C 6 -alkynyl) or C( ⁇ S)N(C 2 -C 6 -alkynyl) 2 , wherein alkynyl is C ⁇ CH, CH 2 C ⁇ CH.
  • R 9 is C( ⁇ S)C 3 -C 6 -cycloalkyl, C( ⁇ S)O(C 3 -C 7 -cycloalkyl), C( ⁇ S)NH(C 3 -C 7 -cycloalkyl) or, C( ⁇ S)N(C 3 -C 7 -cycloalkyl) 2 , wherein cycloalkyl is cyclopropyl (C 3 H 7 ) or cyclobutyl (C 4 H 9 ).
  • R 9 is C 1 -C 6 -alkyl, in particular C 1 -C 4 -alkyl, such as CH 3 . or C 2 H 5 , in particular CH 3 or CH 2 CH 3 .
  • R 9 is C 1 -C 6 -halogenalkyl, in particular C 1 -C 4 -halogenalkyl, such as CF 3 , CCl 3 , FCH 2 , ClCH 2 , F 2 CH, Cl 2 CH, CF 3 CH 2 , CCl 3 CH 2 or CF 2 CHF 2 .
  • R 9 is C 2 -C 6 -alkenyl, in particular C 2 -C 4 -alkenyl, such as CH ⁇ CH 2 , C(CH 3 ) ⁇ CH 2 , CH 2 CH ⁇ CH 2 .
  • R 9 is C 2 -C 6 -halogenalkenyl, in particular C 2 -C 4 -halogenalkenyl, more specifically C 2 -C 3 -halogenalkenyl such as CH ⁇ CHF, CH ⁇ CHCl, CH ⁇ CF 2 , CH ⁇ CCl 2 , CH 2 CH ⁇ CHF, CH 2 CH ⁇ CHCl, CH 2 CH ⁇ CF 2 , CH 2 CH ⁇ CCl 2 , CF 2 CH ⁇ CF 2 , CCl 2 CH ⁇ CCl 2 , CF 2 CF ⁇ CF 2 , CCl 2 CCl ⁇ CCl 2 .
  • R 9 is C 2 -C 6 -alkynyl or C 2 -C 6 -halogenalkynyl, in particular C 2 -C 4 -alkynyl or C 2 -C 4 -halogenalkynyl, such as C ⁇ CH, CH 2 C ⁇ CH, C ⁇ CCl, CH 2 C ⁇ CCl, or CCl 2 C ⁇ CCl.
  • R 9 is OR Y , wherein R Y is C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -halogenalkenyl, C 2 -C 6 -alkynyl, C 2 -C 6 -halogenalkynyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl.
  • R 9 is OR, wherein R Y is C 1 -C 6 -alkyl, in particular C 1 -C 4 -alkyl, more specifically C 1 -C 2 -alkoxy. R 9 is such as OCH 3 or OCH 2 CH 3 .
  • R 9 is OR Y , wherein R Y is C 1 -C 6 -halogenalkyl, in particular C 1 -C 4 -halogenalkyl, more specifically C 1 -C 2 -halogenalkyl.
  • R 9 is such as OCF 3 , OCHF 2 , OCH 2 F, OCCl 3 , OCHCl 2 or OCH 2 Cl, in particular OCF 3 , OCHF 2 , OCCl 3 or OCHCl 2 .
  • R 9 is OR, wherein R Y C 2 -C 6 -alkenyl, in particular C 2 -C 4 -alkenyl, more specifically C 1 -C 2 -alkenyl.
  • R 9 is such as OCH ⁇ CH 2 , OCH 2 CH ⁇ CH 2 .
  • R 9 is OR Y , wherein R Y C 2 -C 6 -halogenalkenyl, in particular C 2 -C 4 -halogenalkenyl, more specifically C 1 -C 2 -halogenalkenyl.
  • R 9 is OR Y , wherein R Y C 2 -C 6 -alkynyl, in particular C 2 -C 6 -alkynyl, in particular C 2 -C 4 -alkynyl, more specifically C 1 -C 2 -alkynyl.
  • R 9 is such as OC ⁇ CH,
  • R 9 is OR Y , wherein R Y C 2 -C 6 -halogenalkynyl, in particular C 2 -C 6 -halogenalkynyl, in particular C 2 -C 4 -halogenalkynyl, more specifically C 1 -C 2 -halogenalkynyl.
  • R 9 is such as OC ⁇ CCl, OCH 2 C ⁇ CCl, or OCCl 2 C ⁇ CCl.
  • R 9 is is OR Y , wherein R Y C 3 -C 6 -cycloalkenyl, in particular cyclopropenyl.
  • R 9 is C 3 -C 6 -cycloalkyl, in particular cyclopropyl.
  • R 9 is C 3 -C 6 -halogencycloalkyl.
  • R 9b is fully or partially halogenated cyclopropyl, such as 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl.
  • R 9 is phenyl-C 1 -C 6 -alkyl, such as phenyl-CH 2 , wherein the phenyl moiety in each case is unsubstituted or substituted by one, two or three identical or different groups R 9b which independently of one another are selected from halogen, C 1 -C 2 -alkyl, C 1 -C 2 -alkoxy, C 1 -C 2 -halogenalkyl and C 1 -C 2 -halogenalkoxy, in particular F, Cl, Br, CH 3 , OCH 3 , CF 3 and OCF 3 .
  • R 9 is aryl, in particular phenyl, wherein the aryl or phenyl moiety in each case is unsubstituted or substituted with identical or different groups R 9b which independently of one another are selected from CN, halogen, C 1 -C 2 -alkyl, C 1 -C 2 -alkoxy, C 1 -C 2 -halogenalkyl and C 1 -C 2 -halogenalkoxy, in particular CN, F, Cl, Br, CH 3 , OCH 3 , CHF 2 , OCHF 2 , CF 3 and OCF 3 .
  • R 9 is unsubstituted phenyl.
  • R 9 is phenyl, that is substituted with one, two or three, in particular one, halogen, in particular selected from F, Cl and Br, more specifically selected from F and Cl.
  • R 9 is a 5-membered heteroaryl such as pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan-2-yl, furan-3-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-4-
  • R 9 is a 6-membered heteroaryl such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl.
  • R 9 is in each case independently selected from H, halogen, CN, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy, C 3 -C 6 -alkenyloxy, C 3 -C 6 -alkynyloxy, C 3 -C 6 -cycloalkyl and C 3 -C 6 -halogencycloalkyl, wherein the acyclic moieties of R 9 are unsubstituted or substituted with identical or different groups R 9a as defined and preferably defined herein, and wherein the carbocyclic, phenyl and heteroaryl moieties of R 9 are unsubstituted or substituted with identical or different groups R 9b as defined and preferably defined herein.
  • R 9 is in each case independently selected from halogen, CN, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy; wherein the acyclic moieties of R 9 are unsubstituted or substituted with identical or different groups R 9a as defined and preferably defined herein.
  • R 9 is in each case independently selected from CN, halogen, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkynyl, OR Y , C 3 -C 6 -cycloalkyl; wherein R Y is C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl or C 2 -C 6 -alkynyl.
  • R 9a are the possible substituents for the acyclic moieties of R 9 .
  • R 9a is independently selected from halogen, OH, CN, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 4 -halogenalkoxy, C 1 -C 6 -alkylthio, aryl and phenoxy, wherein the aryl and phenyl group is unsubstituted or substituted with substituents R 91a selected from the group consisting of halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy.
  • R 9a is independently selected from halogen, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl and C 1 -C 4 -halogenalkoxy.
  • R 9a is independently selected from F, Cl, Br, I, C 1 -C 2 -alkoxy, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl and C 1 -C 2 -halogenalkoxy.
  • R 9a is independently halogen, in particular selected from F, Cl, Br and I, more specifically F, Cl and Br.
  • R 9b are the possible substituents for the carbocyclic, heteroaryl and phenyl moieties of R 9 .
  • R 9b according to the invention is independently selected from halogen, OH, CN, C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 4 -halogenalkoxy and C 1 -C 6 -alkylthio.
  • R 9b is independently selected from halogen, CN, C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenalkyl and C 1 -C 4 -halogenalkoxy, in particular halogen, C 1 -C 4 -alkyl and C 1 -C 4 -alkoxy.
  • R 9b is independently selected from F, Cl, CN, CH 3 , OCH 3 and halogenmethoxy.
  • R 9 Particularly preferred embodiments of R 9 according to the invention are in Table P9 below, wherein each line of lines P9-1 to P9-43 corresponds to one particular embodiment of the invention, wherein P9-1 to P9-43 are also in any combination with one another a preferred embodiment of the present invention.
  • the connection point to the carbon atom, to which R 9 is bound is marked with “#” in the drawings.
  • R 10 is in each case independently selected from H, halogen, OH, CN, NO 2 , SH, NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH(C 2 -C 4 -alkenyl), N(C 2 -C 4 -alkenyl) 2 , NH(C 2 -C 4 -alkynyl), N(C 2 -C 4 -alkynyl) 2 , NH(C 3 -C 6 -cycloalkyl), N(C 3 -C 6 -cycloalkyl) 2 , N(C 2 -C 4 -alkyl)(C 2 -C 4 -alkenyl), N(C 2 -C 4 -alkyl)(C 2 -C 4 -alkynyl), N(C 2 -C 4 -alkyl)(C 3 -C 6 -cycloalky
  • R 10 is selected from the group consisting of H, halogen, CN, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -halogenalkenyl, C 2 -C 6 -alkynyl, C 2 -C 6 -halogenalkynyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy and OR Y .
  • R 10 is H.
  • R 10 is selected from the group consisting of halogen, CN, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -halogenalkenyl, C 2 -C 6 -alkynyl, C 2 -C 6 -halogenalkynyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy and OR Y .
  • R 10 is halogen, in particular F, Cl, Br or I, more specifically F, Cl or Br, in particular F or Cl.
  • R 10 is F.
  • R 10 is Cl
  • R 10 is Br.
  • R 10 is OH.
  • R 10 is CN.
  • R 10 is NO 2 .
  • R 10 is SH.
  • R 10 is NH 2 .
  • R 10 is, NH(C 1 -C 4 -alkyl), in particular NH(CH 3 ), NH(C 2 H 5 ).
  • R 10 is, N(C 1 -C 4 -alkyl) 2 , in particular NH(CH 3 ) 2 , NH(C 2 H 5 ) 2 .
  • R 10 is, NH(C 2 -C 4 -alkenyl), in particular NH(CH ⁇ CH 2 ), NH(CH 2 CH ⁇ CH 2 ).
  • R 10 is, N(C 2 -C 4 -alkenyl) 2 , in particular N(CH ⁇ CH 2 ) 2 , N(CH 2 CH ⁇ CH 2 ) 2 .
  • R 10 is, NH(C 2 -C 4 -alkynyl), in particular NH(C ⁇ CH), NH(CH 2 C ⁇ CH).
  • R 10 is, N(C 2 -C 4 -alkynyl) 2 , in particular N(C ⁇ CH) 2 , N(CH 2 C ⁇ CH) 2 .
  • R 10 is, NH(C 3 -C 6 -cycloalkyl), in particular NH(C 3 H 7 ), NH(C 4 H 9 ).
  • R 10 is, N(C 3 -C 6 -cycloalkyl) 2 , in particular N(C 3 H 7 ) 2 , N(C 4 H 9 ) 2 .
  • R 10 is N(C 1 -C 4 -alkyl)(C 2 -C 4 -alkenyl), in particular N(CH 3 )(CH ⁇ CH 2 ), N(CH 3 )(CH 2 CH ⁇ CH 2 ), N(C 2 H 5 )(CH ⁇ CH 2 ), N(C 2 H 5 )(CH 2 CH ⁇ CH 2 ).
  • R 10 is N(C 1 -C 4 -alkyl)(C 2 -C 4 -alkynyl), in particular N(CH 3 )(C ⁇ CH), N(CH 3 )(CH 2 C ⁇ CH), N(C 2 H 5 )(C ⁇ CH), N(C 2 H 5 )(CH 2 C ⁇ CH).
  • R 10 is N(C 1 -C 4 -alkyl)(C 3 -C 6 -cycloalkyl), in particular N(CH 3 )(C 3 H 7 ), N(CH 3 )(C 4 H 9 ), N(C 2 H 5 )(C 3 H 7 ), N(CH 3 )(C 4 H 9 ).
  • R 10 is N(C 2 -C 4 -alkenyl)(C 2 -C 4 -alkynyl), in particular N(CH ⁇ CH 2 )(C ⁇ CH), N(CH 2 CH ⁇ CH 2 )(CH 2 C ⁇ CH), N(CH ⁇ CH 2 )(C ⁇ CH), N(CH 2 CH ⁇ CH 2 )(CH 2 C ⁇ CH).
  • R 10 is N(C 2 -C 4 -alkenyl)(C 3 -C 6 -cycloalkyl), in particular N(CH ⁇ CH 2 )(C 3 H 7 ), N(CH 2 CH ⁇ CH 2 )(C 4 H 9 ), N(CH ⁇ CH 2 )(C 3 H 7 ), N(CH 2 CH ⁇ CH 2 )(C 4 H 9 ).
  • R 10 is N(C 2 -C 4 -alkynyl)(C 3 -C 6 -cycloalkyl), in particular N(C ⁇ CH)(C 3 H 7 ), N(CH 2 C ⁇ CH)(C 4 H 9 ), N(C ⁇ CH)(C 3 H 7 ), N(CH 2 C ⁇ CH)(C 4 H 9 ).
  • R 10 is, NH(C( ⁇ O)(C 1 -C 4 -alkyl), in particular NH(C( ⁇ O)(CH 3 ), NH(C( ⁇ O)(C 2 H 5 ).
  • R 10 is N(C( ⁇ O)(C 1 -C 4 -alkyl) 2 , in particular N(C( ⁇ O)(CH 3 ) 2 , N(C( ⁇ O)(C 2 H 5 ) 2 .
  • R 10 is NH—SO 2 —R x such as NH—SO 2 —CH 3 , NH—SO 2 —CH 2 —CH 3 , NH—SO 2 —CF 3 , NH—SO 2 -Ts.
  • R 10 is S(O) n —C 1 -C 6 -alkyl such as SCH 3 , S( ⁇ O) CH 3 , S(O) 2 CH 3 .
  • R 10 is S(O) n -aryl such as S-phenyl, S( ⁇ O) phenyl, S(O) 2 phenyl.
  • R 10 is S(O) n —C 2 -C 6 -alkenyl such as SCH ⁇ CH 2 , S( ⁇ O)CH ⁇ CH 2 , S(O) 2 CH ⁇ CH 2 , SCH 2 CH ⁇ CH 2 , S( ⁇ O)CH 2 CH ⁇ CH 2 , S(O) 2 CH 2 CH ⁇ CH 2 .
  • R 10 is S(O) n —C 2 -C 6 -alkynyl such as SC ⁇ CH, S( ⁇ O)C ⁇ CH, S(O) 2 C ⁇ CH, SCH 2 C ⁇ CH, S( ⁇ O)CH 2 C ⁇ CH, S(O) 2 CH 2 C ⁇ CH.
  • R 10 is CH( ⁇ O).
  • R 10 is C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)O(C 1 -C 6 -alkyl), C( ⁇ O)NH(C 1 -C 6 -alkyl) or C( ⁇ O)N(C 1 -C 6 -alkyl) 2 , wherein alkyl is CH 3 , C 2 H 5 , n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • R 10 is C( ⁇ O)C 2 -C 6 -alkenyl, C( ⁇ O)O(C 2 -C 6 -alkenyl), C( ⁇ O)NH(C 2 -C 6 -alkenyl) or C( ⁇ O)N(C 2 -C 6 -alkenyl) 2 , wherein alkenyl is CH ⁇ CH 2 , C(CH 3 ) ⁇ CH 2 , CH 2 CH ⁇ CH 2 .
  • R 10 is C( ⁇ O)C 2 -C 6 -alkynyl, C( ⁇ O)O(C 2 -C 6 -alkynyl), C( ⁇ O)NH(C 2 -C 6 -alkynyl) or C( ⁇ O)N(C 2 -C 6 -alkynyl) 2 ), wherein alkynyl is C ⁇ CH, CH 2 C ⁇ CH,
  • R 10 is C( ⁇ O)C 3 -C 6 -cycloalkyl, C( ⁇ O)O(C 3 -C 6 -cycloalkyl), C( ⁇ O)NH(C 3 -C 6 -cycloalkyl) or C( ⁇ O)N(C 3 -C 7 -cycloalkyl) 2 , wherein cycloalkyl is cyclopropyl (C 3 H 7 ) or cyclobutyl (C 4 H 9 ).
  • R 10 is CH( ⁇ S).
  • R 10 is C( ⁇ S)C 1 -C 6 -alkyl, C( ⁇ S)OC 1 -C 6 -alkyl, C( ⁇ S)NH(C 1 -C 6 -alkyl) or C( ⁇ S)NH(C 1 -C 6 -alkyl), wherein alkyl is CH 3 , C 2 H 5 , n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • R 10 is C( ⁇ S)C 2 -C 6 -alkenyl, C( ⁇ S)OC 2 -C 6 -alkenyl, C( ⁇ S)NH(C 2 -C 6 -alkenyl) or C( ⁇ S)N(C 2 -C 6 -alkenyl) 2 , wherein alkenyl is CH ⁇ CH 2 , CH 2 CH ⁇ CH 2 .
  • R 10 is C( ⁇ S)C 2 -C 6 -alkynyl, C( ⁇ S)O(C 2 -C 6 -alkynyl), C( ⁇ S)NH(C 2 -C 6 -alkynyl) or C( ⁇ S)N(C 2 -C 6 -alkynyl), wherein alkynyl is C ⁇ CH, CH 2 C ⁇ CH.
  • R 10 is C( ⁇ S)C 3 -C 6 -cycloalkyl, C( ⁇ S)O(C 3 -C 7 -cycloalkyl), C( ⁇ S)NH(C 3 -C 7 -cycloalkyl) or, C( ⁇ S)N(C 3 -C 7 -cycloalkyl) 2 , wherein cycloalkyl is cyclopropyl (C 3 H 7 ) or cyclobutyl (C 4 H 9 ).
  • R 10 is C 1 -C 6 -alkyl, in particular C 1 -C 4 -alkyl, such as CH 3 . or C 2 H 5 , in particular CH 3 or CH 2 CH 3 .
  • R 10 is C 1 -C 6 -halogenalkyl, in particular C 1 -C 4 -halogenalkyl, such as CF 3 , CCl 3 , FCH 2 , ClCH 2 , F 2 CH, Cl 2 CH, CF 3 CH 2 , CCl 3 CH 2 or CF 2 CHF 2 .
  • R 10 is C 2 -C 6 -alkenyl, in particular C 2 -C 4 -alkenyl, such as CH ⁇ CH 2 .
  • R 10 is C 2 -C 6 -halogenalkenyl, in particular C 2 -C 4 -halogenalkenyl, more specifically C 2 -C 3 -halogenalkenyl such as CH ⁇ CHF, CH ⁇ CHCl, CH ⁇ CF 2 , CH ⁇ CCl 2 , CH 2 CH ⁇ CHF, CH 2 CH ⁇ CHCl, CH 2 CH ⁇ CF 2 , CH 2 CH ⁇ CCl 2 , CF 2 CH ⁇ CF 2 , CCl 2 CH ⁇ CCl 2 , CF 2 CF ⁇ CF 2 , CCl 2 CCl ⁇ CCl 2 .
  • R 10 is C 2 -C 6 -alkynyl or C 2 -C 6 -halogenalkynyl, in particular C 2 -C 4 -alkynyl or C 2 -C 4 -halogenalkynyl, such as C ⁇ CH, CH 2 C ⁇ CH, C ⁇ CCl, CH 2 C ⁇ CCl, or CCl 2 C ⁇ CCl.
  • R 10 is OR Y , wherein R Y is C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -halogenalkenyl, C 2 -C 6 -alkynyl, C 2 -C 6 -halogenalkynyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl.
  • R 10 is OR Y , wherein R Y is C 1 -C 6 -alkyl, in particular C 1 -C 4 -alkyl, more specifically C 1 -C 2 -alkoxy. R 10 is such as OCH 3 or OCH 2 CH 3 .
  • R 10 is OR Y , wherein R Y is C 1 -C 6 -halogenalkyl, in particular C 1 -C 4 -halogenalkyl, more specifically C 1 -C 2 -halogenalkyl.
  • R 10 is such as OCF 3 , OCHF 2 , OCH 2 F, OCCl 3 , OCHCl 2 or OCH 2 Cl, in particular OCF 3 , OCHF 2 , OCCl 3 or OCHCl 2 .
  • R 10 is OR Y , wherein R Y C 2 -C 6 -alkenyl, in particular C 2 -C 4 -alkenyl, more specifically C 1 -C 2 -alkenyl.
  • R 10 is such as OCH ⁇ CH 2 , OCH 2 CH ⁇ CH 2 .
  • R 10 is OR Y , wherein R Y C 2 -C 6 -alkynyl, in particular C 2 -C 6 -alkynyl, in particular C 2 -C 4 -alkynyl, more specifically C 1 -C 2 -alkynyl.
  • R 10 is such as OC ⁇ CH, OC ⁇ CCl, OCH 2 C ⁇ CCl, or OCCl 2 C ⁇ CCl
  • R 10 is OR Y , wherein R Y is C 3 -C 6 -cycloalkyl, in particular cyclopropyl.
  • R 10 is OR Y , wherein R Y is C 3 -C 6 -halogencycloalkyl.
  • R 1 is fully or partially halogenated cyclopropyl.
  • R 10 is is OR Y , wherein R Y C 3 -C 6 -cycloalkenyl, in particular cyclopropenyl.
  • R 10 is C 3 -C 6 -cycloalkyl, in particular cyclopropyl.
  • R 10 is C 3 -C 6 -halogencycloalkyl.
  • R 10b is fully or partially halogenated cyclopropyl, such as 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl
  • R 10 is phenyl-C 1 -C 6 -alkyl, such as phenyl-CH 2 , wherein the phenyl moiety in each case is unsubstituted or substituted by one, two or three identical or different groups R 10b which independently of one another are selected from halogen, C 1 -C 2 -alkyl, C 1 -C 2 -alkoxy, C 1 -C 2 -halogenalkyl and C 1 -C 2 -halogenalkoxy, in particular F, Cl, Br, CH 3 , OCH 3 , CF 3 and OCF 3 .
  • R 10 is aryl, in particular phenyl, wherein the aryl or phenyl moiety in each case is unsubstituted or substituted with identical or different groups R 10b which independently of one another are selected from CN, halogen, C 1 -C 2 -alkyl, C 1 -C 2 -alkoxy, C 1 -C 2 -halogenalkyl and C 1 -C 2 -halogenalkoxy, in particular CN, F, Cl, Br, CH 3 , OCH 3 , CHF 2 , OCHF 2 , CF 3 and OCF 3 .
  • R 10 is unsubstituted phenyl.
  • R 10 is phenyl, that is substituted with one, two or three, in particular one, halogen, in particular selected from F, Cl and Br, more specifically selected from F and Cl.
  • R 10 is a 5-membered heteroaryl such as pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan-2-yl, furan-3-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-4-
  • R 9 is a 6-membered heteroaryl such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl.
  • R 10 is in each case independently selected from H, halogen, CN, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy, C 3 -C 6 -alkenyloxy, C 3 -C 6 -alkynyloxy, C 3 -C 6 -cycloalkyl and C 3 -C 6 -halogencycloalkyl, wherein the acyclic moieties of R 10 are unsubstituted or substituted with identical or different groups R 10a as defined and preferably defined herein, and wherein the carbocyclic, phenyl and heteroaryl moieties of R 10 are unsubstituted or substituted with identical or different groups R 10b as defined and preferably defined herein.
  • R 10 is in each case independently selected from halogen, CN, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy; wherein the acyclic moieties of R 10 are unsubstituted or substituted with identical or different groups R 10a as defined and preferably defined herein.
  • R 10 is in each case independently selected from CN, halogen, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkynyl, OR Y , C 3 -C 6 -cycloalkyl; wherein R Y is C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl or C 2 -C 6 -alkynyl.
  • R 10a are the possible substituents for the acyclic moieties of R 10 .
  • R 10a is independently selected from halogen, OH, CN, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 4 -halogenalkoxy, C 1 -C 6 -alkylthio, aryl and phenoxy, wherein the aryl and phenyl group is unsubstituted or substituted with substituents R 101a selected from the group consisting of halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy.
  • R 10a is independently selected from halogen, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl and C 1 -C 4 -halogenalkoxy.
  • R 10a is independently selected from F, Cl, Br, I, C 1 -C 2 -alkoxy, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl and C 1 -C 2 -halogenalkoxy.
  • R 100 is independently halogen, in particular selected from F, Cl, Br and I, more specifically F, Cl and Br.
  • R 10b are the possible substituents for the carbocyclic, heteroaryl and phenyl moieties of R 10 .
  • R 10b according to the invention is independently selected from halogen, OH, CN, C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 4 -halogenalkoxy and C 1 -C 6 -alkylthio.
  • R 10b is independently selected from halogen, CN, C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenalkyl and C 1 -C 4 -halogenalkoxy, in particular halogen, C 1 -C 4 -alkyl and C 1 -C 4 -alkoxy.
  • R 10b is independently selected from F, Cl, CN, CH 3 , OCH 3 and halogenmethoxy.
  • R 10 Particularly preferred embodiments of R 10 according to the invention are in Table P10 below, wherein each line of lines P10-1 to P10-43 corresponds to one particular embodiment of the invention, wherein P10-1 to P10-43 are also in any combination with one another a preferred embodiment of the present invention.
  • the connection point to the carbon atom, to which R 10 is bound is marked with “#” in the drawings.
  • R 9 , R 10 together with the carbon atoms to which they are bound form a five-, six-, or seven-membered carbo-, heterocyclic or heteroaromatic ring; wherein the heterocyclic or heteroaromatic ring contains 1, 2, 3 or 4 heteroatoms selected from N, O and S, wherein N may carry one substituent RN selected from C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl and SO 2 Ph, wherein Ph is unsubstituted or substituted with substituents selected from C 1 -C 4 -alkyl, halogen, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy, and CN; and wherein S may be in the form of its oxide SO or SO 2 ; and wherein in each case one or two CH 2 groups of the carbo- or heterocycle may be replaced by a group independently selected
  • R N is in each case independently selected from SO 2 Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted with one methyl.
  • R 9 and R 10 together with the carbon atoms to which they are bound form a saturated or partially unsaturated five-, six- or seven-membered carbo- and heterocycle that is unsubstituted or substituted.
  • R 9 and R 10 form a 3-membered saturated carbocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 11 .
  • R 11 it is substituted with R 11 .
  • R 9 and R 10 form a 4-membered saturated carbocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 11 .
  • R 11 it is substituted with R 11 .
  • R 9 and R 10 form a 5-membered saturated carbocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 11 .
  • R 11 it is substituted with R 11 .
  • R 9 and R 10 form a 6-membered saturated carbocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 11 .
  • R 11 it is substituted with R 11 .
  • R 9 and R 10 form a 7-membered saturated carbocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 11 .
  • R 11 it is substituted with R 11 .
  • R 9 and R 10 form a 3-membered saturated heterocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 11 .
  • R 11 it is substituted with R 11 .
  • R 9 and R 10 form a 4-membered saturated heterocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 11 .
  • R 11 it is substituted with R 11 .
  • R 9 and R 10 form a 5-membered saturated heterocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 11 .
  • R 11 it is substituted with R 11 .
  • R 9 and R 10 form a 6-membered saturated heterocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 11 .
  • R 11 it is substituted with R 11 .
  • R 9 and R 10 form a 7-membered saturated heterocycle.
  • the carbocycle is unsubstituted, i.e. it does not carry any substituent R 11 .
  • R 11 it is substituted with R 11 .
  • R 9 and R 10 form a 5-membered saturated heteroaryl.
  • the heteroaryl is unsubstituted, i.e. it does not carry any substituent R 11 .
  • R 11 it is substituted with R 11 .
  • R 9 and R 10 form a 6-membered heteroaryl.
  • the heteroaryl is unsubstituted, i.e. it does not carry any substituent R 11 .
  • R 11 is substituted with R 11 .
  • R 11 is in each case independently selected from halogen, OH, CN, NO 2 , SH, NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH—SO 2 —R x , C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 1 -C 6 -alkoxy, saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- and heterocycle, five- or six-membered heteroaryl and aryl; wherein the heterocycle and heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein in each case one or two CH 2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C( ⁇ O) and C( ⁇ S); and where
  • R x is as defined above; wherein the acyclic moieties of R 11 are unsubstituted or substituted with identical or different groups R 11a which independently of one another are selected from: R 11a halogen, OH, CN, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 4 -halogenalkoxy, C 1 -C 6 -alkylthio, aryl and phenoxy, wherein the aryl group is unsubstituted or unsubstituted or substituted with R 11a selected from the group consisting of halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenalkoxy, CN, C 3 -C 6 -cycloalkyl, C 3 -
  • m is 0.
  • m is 1.
  • m is 2 or 3. According to one specific embodiment thereof, m is 2. According to still another embodiment of formula I, m is 3.
  • R 11 is halogen, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 1 -C 6 -alkoxy or, C 1 -C 6 -halogenalkoxy, in particular CH 3 , Et, CHF 2 , OCH 3 , OCHF 2 , OCF 3 , F, Cl, more specifically H, CH 3 , F or Cl most preferred F or Cl.
  • R 11 is halogen, in particular Br, F or Cl, more specifically F or Cl.
  • R 11 is OH.
  • R 11 is CN
  • R 11 is NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 or NH—SO 2 —R x , wherein R x is C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, unsubstituted aryl or aryl that is substituted with one, two, three, four or five substituents R x1 independently selected from C 1 -C 4 -alkyl.
  • R 11 is C 1 -C 6 -alkyl, in particular C 1 -C 4 -alkyl, such as CH 3 .
  • R 11 is C 1 -C 6 -halogenalkyl, in particular C 1 -C 4 -halogenalkyl, such as CF 3 , CHF 2 , CH 2 F, CCl 3 , CHCl 2 or CH 2 Cl.
  • R 11 is C 2 -C 6 -alkenyl or C 2 -C 6 -halogenalkenyl, in particular C 2 -C 4 -alkenyl or C 2 -C 4 -halogenalkenyl, such as CH ⁇ CH 2 , C(CH 3 ) ⁇ CH 2 , CH 2 CH ⁇ CH 2 , CH ⁇ CHF, CH ⁇ CHCl, CH ⁇ CF 2 , CH ⁇ CCl 2 , CF ⁇ CF 2 , CCl ⁇ CCl 2 , CH 2 CH ⁇ CHF, CH 2 CH ⁇ CHCl, CH 2 CH ⁇ CF 2 , CH 2 CH ⁇ CCl 2 , CH 2 CF ⁇ CF 2 , CH 2 CCl ⁇ CCl 2 , CF 2 CF ⁇ CF 2 or CCl 2 CCl ⁇ CCl 2 .
  • R 11 is C 2 -C 6 -alkynyl or C 2 -C 6 -halogenalkynyl, in particular C 2 -C 4 -alkynyl or C 2 -C 4 -halogenalkynyl, such as C ⁇ CH, CH 2 C ⁇ CH, C ⁇ C—Cl, C ⁇ C—CH 3 , CH 2 C ⁇ CH, CH 2 C ⁇ CCl or CH 2 C ⁇ C—CH 3 .
  • R 11 is C 1 -C 6 -alkoxy, in particular C 1 -C 4 -alkoxy, more specifically C 1 -C 2 -alkoxy such as OCH 3 or OCH 2 CH 3 .
  • R 11 is C 1 -C 6 -halogenalkoxy, in particular C 1 -C 4 -halogenalkoxy, more specifically C 1 -C 2 -halogenalkoxy such as OCF 3 , OCHF 2 , OCH 2 F, OCCl 3 , OCHCl 2 or OCH 2 Cl, in particular OCF 3 , OCHF 2 , OCCl 3 or OCHCl 2 .
  • R 11 is C 3 -C 6 -cycloalkyl, in particular cyclopropyl.
  • R 11 is C 3 -C 6 -cycloalkyl, for example cyclopropyl, substituted with one, two, three or up to the maximum possible number of identical or different groups R 11b as defined and preferably herein.
  • R 11 is C 3 -C 6 -halogencycloalkyl.
  • R 11 is fully or partially halogenated cyclopropyl.
  • R 11 is unsubstituted aryl or aryl that is substituted with one, two, three or four R 11b , as defined herein.
  • R 11 is unsubstituted phenyl or phenyl that is substituted with one, two, three or four R 11b , as defined herein.
  • R 11 is unsubstituted 5- or 6-membered heteroaryl. According to still a further embodiment, R 11 is 5- or 6-membered heteroaryl that is substituted with one, two or three R 11b , as defined herein.
  • R 11 is in each case independently selected from halogen, OH, CN, NO 2 , SH, NH 2 , NH(C 1 -C 4 -alkyl), N(C 1 -C 4 -alkyl) 2 , NH—SO 2 —R x , C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 1 -C 6 -alkoxy and C 3 -C 6 -cycloalkyl; wherein the acyclic moieties of R 11 are not further substituted or carry one, two, three, four or five identical or different groups R 11a as defined below and wherein the carbocyclic, heterocyclic and heteroaryl moieties of R 11 are not further substituted or carry one, two, three, four or five identical or different groups R 11b as defined below.
  • R 11 is independently selected from halogen, OH, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 1 -C 6 -alkoxy and C 1 -C 6 -halogenalkoxy, in particular independently selected from F, Cl, Br, CN, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy.
  • R 11a are the possible substituents for the acyclic moieties of R 11 .
  • R 11a is independently selected from halogen, OH, CN, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 4 -halogenalkoxy, C 1 -C 6 -alkylthio, aryl and phenoxy, wherein the aryl and phenyl group is unsubstituted or unsubstituted or substituted with R 111a selected from the group consisting of halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenalkoxy, CN, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 4 -alkylthio.
  • R 11a is independently selected from halogen, OH, CN, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 4 -halogenalkoxy, C 1 -C 6 -alkylthio, aryl and phenoxy, wherein the aryl and phenyl group is unsubstituted or unsubstituted or substituted with R 111a selected from the group consisting of halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy, in particular selected from halogen, C 1 -C 2 -alkyl, C 1 -C 2 -halogenalkyl, C 1 -C 2 -alkoxy, C 1 -C 2 -halogen
  • R 11a is independently selected from halogen, OH, CN, C 1 -C 2 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl and C 1 -C 2 -halogenalkoxy.
  • R 11a is independently selected from F, Cl, OH, CN, C 1 -C 2 -alkoxy, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl and C 1 -C 2 -halogenalkoxy.
  • R 11a is independently selected from halogen, such as F, Cl, Br and I, more specifically F, Cl and Br.
  • R 11a is independently selected from OH, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl and C 1 -C 2 -halogenalkoxy. Specifically, R 11a is independently selected from OH, cyclopropyl and C 1 -C 2 -halogenalkoxy.
  • R 11b are the possible substituents for the carbocyclic, heterocyclic and heteroaryl moieties of R 11 .
  • R 11b according to the invention is independently selected from halogen, OH, CN, C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl and C 1 -C 4 -halogenalkoxy.
  • R 11b is independently selected from halogen, CN, C 1 -C 2 -alkyl, C 1 -C 2 -alkoxy, C 1 -C 2 -halogenalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalky and C 1 -C 2 -halogenalkoxy.
  • R 11b is independently selected from F, Cl, OH, CN, CH 3 , OCH 3 , cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl and halogenmethoxy.
  • R 11b is independently selected from C 1 -C 2 -alkyl, C 1 -C 2 -alkoxy, C 1 -C 2 -halogenalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl and C 1 -C 2 -halogenalkoxy.
  • R 1b is independently selected from OH, CH 3 , OCH 3 , cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl and halogenmethoxy, more specifically independently selected from OH, CH 3 , OCH 3 , cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl cyclopropyl and OCHF 2 .
  • R 12 is in each case independently selected from hydrogen, OH, CH( ⁇ O), C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)C 2 -C 6 -alkenyl, C( ⁇ O)C 3 -C 6 -cycloalkyl, C( ⁇ O)O(C 1 -C 6 -alkyl), C( ⁇ O)O(C 2 -C 6 -alkenyl), C( ⁇ O)O(C 2 -C 6 -alkynyl), C( ⁇ O)O(C 3 -C 6 -cycloalkyl), C( ⁇ O)NH(C 1 -C 6 -alkyl), C( ⁇ O)NH(C 2 -C 6 -alkenyl), C( ⁇ O)NH(C 2 -C 6 -alkynyl), C( ⁇ O) NH(C 3 -C 6 -cycloalkyl), C( ⁇ O)N(C 1 -C 6 -alkyl
  • R 12a is the substituent of the acyclic moieties of R 12 .
  • the acyclic moieties of R 12 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R 12a which independently of one another are selected from halogen, OH, CN, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -cycloalkenyl, C 3 -C 6 -halogencycloalkyl, C 3 -C 6 -halogencycloalkenyl, C 1 -C 4 -halogenalkoxy, C 1 -C 6 -alkylthio, five- or six-membered heteroaryl, aryl and phenoxy, wherein the heteroaryl, aryl and phenoxy group is unsubstituted or carries one, two, three, four or five substituents R 78a′ selected from the group consisting of halogen,
  • R 12 The carbocyclic, phenyl, heterocyclic and heteroaryl moieties of R 12 are not further substituted or carry one, two, three, four, five or up to the maximum number of identical or different groups R 12b which independently of one another are selected from halogen, OH, CN, C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 4 -halogenalkoxy and C 1 -C 6 -alkylthio.
  • R 12b which independently of one another are selected from halogen, OH, CN, C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -hal
  • R 12 is H.
  • R 12 is OH.
  • R 12 is CH( ⁇ O).
  • R 12 is C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)O(C 1 -C 6 -alkyl), C( ⁇ O)NH(C 1 -C 6 -alkyl) or C( ⁇ O)N(C 1 -C 6 -alkyl) 2 , wherein alkyl is CH 3 , C 2 H 5 , n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • R 12 is C( ⁇ O)C 2 -C 6 -alkenyl, C( ⁇ O)O(C 2 -C 6 -alkenyl), C( ⁇ O)NH(C 2 -C 6 -alkenyl) or C( ⁇ O)N(C 2 -C 6 -alkenyl) 2 ), wherein alkenyl is CH ⁇ CH 2 , CH 2 CH ⁇ CH 2 .
  • R 12 is C( ⁇ O)C 2 -C 6 -alkynyl, C( ⁇ O)O(C 2 -C 6 -alkynyl), C( ⁇ O)NH(C 2 -C 6 -alkynyl) or C( ⁇ O)N(C 2 -C 6 -alkynyl) 2 , wherein alkynyl is C ⁇ CH, CH 2 C ⁇ CH.
  • R 12 is C( ⁇ O)C 3 -C 6 -cycloalkyl, C( ⁇ O)O(C 3 -C 6 -cycloalkyl), C( ⁇ O)NH(C 3 -C 6 -cycloalkyl) or C( ⁇ O)N(C 3 -C 6 -cycloalkyl) 2 , wherein cycloalkyl is cyclopropyl (C 3 H 7 ) or cyclobutyl (C 4 H 9 ).
  • R 12 is CH( ⁇ S).
  • R 12 is C( ⁇ S)C 1 -C 6 -alkyl, C( ⁇ S)O(C 1 -C 6 -alkyl), C( ⁇ S)NH(C 1 -C 6 -alkyl) or C( ⁇ S)N(C 1 -C 6 -alkyl) 2 , wherein alkyl is CH 3 , C 2 H 5 , n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • R 12 is C( ⁇ S)C 2 -C 6 -alkenyl, C( ⁇ S)O(C 2 -C 6 -alkenyl), C( ⁇ S)NH(C 2 -C 6 -alkenyl) or C( ⁇ S)N(C 2 -C 6 -alkenyl) 2 , wherein alkenyl is CH ⁇ CH 2 , CH 2 CH ⁇ CH 2 .
  • R 12 is C( ⁇ S)O(C 2 -C 6 -alkynyl), C( ⁇ S)NH(C 2 -C 6 -alkynyl) or C( ⁇ S)N(C 2 -C 6 -alkynyl) 2 , wherein alkynyl is C ⁇ CH, CH 2 C ⁇ CH.
  • R 12 is C( ⁇ S)C 3 -C 6 -cycloalkyl, C( ⁇ S)O(C 3 -C 6 -cycloalkyl) or C( ⁇ S)N(C 3 -C 6 -cycloalkyl) 2 , wherein cycloalkyl is cyclopropyl (C 3 H 7 ) or cyclobutyl (C 4 H 9 ).
  • R 12 is C 1 -C 6 -alkyl, such as CH 3 , C 2 H 5 , n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • R 12 is C 1 -C 6 -alkyl, in particular C 1 -C 4 -alkyl, such as CH 3 , C 2 H 5 , n-propyl, i-propyl.
  • R 12 is C 1 -C 6 -halogenalkyl, in particular C 1 -C 4 -halogenalkyl, such as CF 3 , CCl 3 , FCH 2 , ClCH 2 , F 2 CH, Cl 2 CH, CF 3 CH 2 , CCl 3 CH 2 or CF 2 CHF 2 .
  • R 12 is C 3 -C 6 -cycloalkyl, in particular cyclopropyl.
  • R 12 is C 3 -C 6 -halogencycloalkyl.
  • R 12b is fully or partially halogenated cyclopropyl, such as 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl.
  • R 12 is C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy, in particular C 1 -C 3 -alkoxy, C 1 -C 3 -halogenalkoxy, such as CH 2 OCH 3 , CH 2 OCF 3 or CH 2 OCHF 2 .
  • R 12 is OR Y , wherein R Y is C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -halogenalkenyl, C 2 -C 6 -alkynyl, C 2 -C 6 -halogenalkynyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, phenyl and phenyl-C 1 -C 6 -alkyl; wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogen
  • R 12 is OR Y , wherein R Y is C 1 -C 6 -alkyl, in particular C 1 -C 4 -alkyl, more specifically C 1 -C 2 -alkyl.
  • R 12 is such as OCH 3 or OCH 2 CH 3 .
  • R 12 is OR, wherein R Y is C 1 -C 6 -halogenalkyl, in particular C 1 -C 4 -halogenalkyl, more specifically C 1 -C 2 -halogenalkyl.
  • R 12 is such as OCF 3 , OCHF 2 , OCH 2 F, OCCl 3 , OCHCl 2 or OCH 2 Cl, in particular OCF 3 , OCHF 2 , OCCl 3 or OCHCl 2 .
  • R 12 is OR Y , wherein R Y C 2 -C 6 -alkenyl, in particular C 2 -C 4 -alkenyl, more specifically C 1 -C 2 -alkenyl.
  • R 12 is such as OCH ⁇ CH 2 , OCH 2 CH ⁇ CH 2 .
  • R 12 is OR Y , wherein R Y C 2 -C 6 -alkynyl, in particular C 2 -C 6 -alkynyl, in particular C 2 -C 4 -alkynyl, more specifically C 1 -C 2 -alkynyl.
  • R 12 is such as OC ⁇ CH
  • R 12 is OR Y , wherein R Y is C 3 -C 6 -halogencycloalkyl.
  • R 1 is fully or partially halogenated cyclopropyl.
  • R 12 is is OR Y , wherein R Y and phenyl; wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy.
  • R 12 is is OR Y , wherein R Y phenyl-C 1 -C 6 -alkyl, such as phenyl-CH 2 , herein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy.
  • R 12 is such as OCH 2 Ph.
  • R 12 is C 2 -C 6 -alkenyl, in particular C 2 -C 4 -alkenyl, such as CH ⁇ CH 2 , C(CH 3 ) ⁇ CH 2 , CH 2 CH ⁇ CH 2 .
  • R 12 is C 2 -C 6 -halogenalkenyl, in particular C 2 -C 4 -halogenalkenyl, more specifically C 2 -C 3 -halogenalkenyl such as CH ⁇ CHF, CH ⁇ CHCl, CH ⁇ CF 2 , CH ⁇ CCl 2 , CH 2 CH ⁇ CHF, CH 2 CH ⁇ CHCl, CH 2 CH ⁇ CF 2 , CH 2 CH ⁇ CCl 2 , CF 2 CH ⁇ CF 2 , CCl 2 CH ⁇ CCl 2 , CF 2 CF ⁇ CF 2 , CCl 2 CCl ⁇ CCl 2 .
  • R 12 is C 2 -C 6 -alkynyl or C 2 -C 6 -halogenalkynyl, in particular C 2 -C 4 -alkynyl or C 2 -C 4 -halogenalkynyl, such as C ⁇ CH, CH 2 C ⁇ CH.
  • R 12 is S(O) n —C 1 -C 6 -alkyl such as SCH 3 , S( ⁇ O) CH 3 , S(O) 2 CH 3 .
  • R 12 is S(O) n —C 1 -C 6 -halogenalkyl such as SCF 3 , S( ⁇ O)CF 3 , S(O) 2 CF 3 , SCHF 2 , S( ⁇ O)CHF 2 , S(O) 2 CHF 2 .
  • R 12 is S(O) n -aryl such as S-phenyl, S( ⁇ O) phenyl, S(O) 2 phenyl, wherein the phenyl group is unsubstituted or carries one, two, three, four or five substituents R 78a′ selected from the group consisting of halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy;
  • R 12 is S(O) n —C 2 -C 6 -alkenyl such as SCH ⁇ CH 2 , S( ⁇ O)CH ⁇ CH 2 , S(O) 2 CH ⁇ CH 2 , SCH 2 CH ⁇ CH 2 , S( ⁇ O)CH 2 CH ⁇ CH 2 , S(O) 2 CH 2 CH ⁇ CH 2 .
  • R 12 is S(O) n —C 2 -C 6 -alkynyl such as SC ⁇ CH, S( ⁇ O)C ⁇ CH, S(O) 2 C ⁇ CH, SCH 2 C ⁇ CH, S( ⁇ O)CH 2 C ⁇ CH, S(O) 2 CH 2 C ⁇ CH.
  • R 12 is SO 2 —NH(C 1 -C 6 -alkyl), is C 1 -C 6 -alkyl, in particular C 1 -C 4 -alkyl, more specifically C 1 -C 2 -alkyl.
  • R 12 is such as SO 2 NHCH 3 or SO 2 NHCH 2 CH 3 .
  • R 12 is SO 2 —NH(C 1 -C 6 -halogenalkyl), wherein C 1 -C 6 -halogenalkyl, in particular C 1 -C 4 -halogenalkyl, more specifically C 1 -C 2 -halogenalkyl.
  • R 12 is such as SO 2 NHCF 3 , SO 2 NHCHF 2 , SO 2 NHCH 2 F, SO 2 NHCCl 3 , SO 2 NHCHCl 2 or SO 2 NHCH 2 Cl, in particular SO 2 NHCF 3 , SO 2 NHCHF 2 , SO 2 NHCCl 3 or SO 2 NHCHCl 2 .
  • R 12 is SO 2 —NHaryl, wherein the aryl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy.
  • R 12 is such as SO 2 NHPh.
  • R 12 is tri-(C 1 -C 6 alkyl)silyl, in particular C 1 -C 4 -alkyl, such as CH 3 . or C 2 H 5 .
  • R 12 is such as OSi(CH 3 ) 3
  • R 12 is di-(C 1 -C 6 alkoxy)phosphoryl), in particular C 1 -C 4 -alkoxy, such as OCH 3 . or OC 2 H 5 .
  • R 12 is such as OPO(OCH 3 ) 2 .
  • R 12 is phenyl-C 1 -C 6 -alkyl, such as phenyl-CH 2 , wherein the phenyl moiety in each case is unsubstituted or substituted by one, two or three identical or different groups R 12b which independently of one another are selected from halogen, C 1 -C 2 -alkyl, C 1 -C 2 -alkoxy, C 1 -C 2 -halogenalkyl and C 1 -C 2 -halogenalkoxy, in particular F, Cl, Br, CH 3 , OCH 3 , CF 3 and OCF 3 .
  • R 12 is aryl, in particular phenyl, wherein the aryl or phenyl moiety in each case is unsubstituted or substituted by identical or different groups R 12b which independently of one another are selected from halogen, C 1 -C 2 -alkyl, C 1 -C 2 -alkoxy, C 1 -C 2 -halogenalkyl and C 1 -C 2 -halogenalkoxy, in particular F, Cl, Br, CH 3 , OCH 3 , CF 3 and OCF 3 .
  • R 12 is unsubstituted phenyl.
  • R 12 is phenyl, that is substituted by one, two or three, in particular one, halogen, in particular selected from F, Cl and Br, more specifically selected from F and Cl.
  • R 12 is a 5-membered heteroaryl such as pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan-2-yl, furan-3-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-4-
  • R 12 is a 6-membered heteroaryl such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl.
  • R 12 is in each case independently selected from H, halogen, OH, CN, C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 1 -C 6 -alkoxy, C 1 -C 6 -halogenalkoxy, C 3 -C 6 -alkenyloxy, C 3 -C 6 -alkynyloxy and C 3 -C 6 -cycloalkyl wherein the acyclic moieties of R 12 are unsubstituted or substituted with identical or different groups R 12a as defined and preferably defined herein, and wherein the carbocyclic, phenyl and heteroaryl moieties of R 12 are unsubstituted or substituted with identical or different groups R 12b as defined and preferably defined herein.
  • R 12 is in each case independently selected from H, halogen, OH, CN, C 1 -C 6 -alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, C 1 -C 6 -alkoxy, C 3 -C 6 -alkenyloxy, C 3 -C 6 -alkynyloxy and C 3 -C 6 -cycloalkyl, wherein the acyclic moieties of R 12 are unsubstituted or substituted with identical or different groups R 12a as defined and preferably defined herein, and wherein the cycloalkyl moieties of R 12 are unsubstituted or substituted with identical or different groups R 12b as defined and preferably defined herein.
  • R 12 is in each case independently selected from H and OR Y , wherein R Y is most preferably C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -halogenalkenyl, C 2 -C 6 -alkynyl, C 2 -C 6 -halogenalkynyl, phenyl and phenyl-C 1 -C 6 -alkyl; wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy.
  • R 12 is in each case independently selected from H and OR Y , wherein R Y is most preferably C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, phenyl and phenyl-C 1 -C 6 -alkyl; wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, C 1 -C 4 -alkyl, C 1 -C 4 -halogenalkyl, C 1 -C 4 -alkoxy and C 1 -C 4 -halogenalkoxy.
  • R 12 is in each case independently selected from H, CH( ⁇ O), C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)O(C 1 -C 6 -alkyl) and C( ⁇ O)NH(C 1 -C 6 -alkyl), C( ⁇ O)N(C 1 -C 6 -alkyl) 2 , C( ⁇ O)C 2 -C 6 -alkenyl, C( ⁇ O)O(C 2 -C 6 -alkenyl), C( ⁇ O)NH(C 2 -C 6 -alkenyl), C( ⁇ O)N(C 2 -C 6 -alkenyl) 2 , C( ⁇ O)C 2 -C 6 -alkynyl, C( ⁇ O)O(C 2 -C 6 -alkynyl), C( ⁇ O)NH(C 2 -C 6 -alkynyl), C( ⁇ O)N(C 2 -C 6 -alkyn
  • R 12 is in each case independently selected from H, C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)O(C 1 -C 6 -alkyl), C( ⁇ O)NH(C 1 -C 6 -alkyl), C( ⁇ O)N(C 1 -C 6 -alkyl) 2 , C( ⁇ O)C 2 -C 6 -alkenyl, C( ⁇ O)O(C 2 -C 6 -alkenyl), C( ⁇ O)NH(C 2 -C 6 -alkenyl), C( ⁇ O)N(C 2 -C 6 -alkenyl) 2 , wherein the acyclic moieties of R 12 are unsubstituted or substituted with identical or different groups R 12a as defined and preferably defined herein, and wherein the cycloalkyl moieties of R 12 are unsubstituted or substituted with identical or different groups R 12b as defined and
  • R 12 is in each case independently selected from H, S(O) n —C 1 -C 6 -alkyl, S(O) n —C 1 -C 6 -halogenalkyl, S(O) n —C 1 -C 6 -alkoxy, S(O) n —C 2 -C 6 -alkenyl, S(O) n —C 2 -C 6 -alkynyl, S(O) n aryl, wherein the acyclic moieties of R 12 are unsubstituted or substituted with identical or different groups R 12a as defined and preferably defined herein, and wherein the aryl moieties of R 12 are unsubstituted or substituted with identical or different groups R 12b as defined and preferably defined herein.
  • R 12 is in each case independently selected from H, SO 2 —NH(C 1 -C 6 -alkyl), SO 2 —NH(C 1 -C 6 -halogenalkyl), SO 2 —NHphenyl, wherein the acyclic moieties of R 12 are unsubstituted or substituted with identical or different groups R 12a as defined and preferably defined herein, and wherein the aryl moieties of R 12 are unsubstituted or substituted with identical or different groups R 12b as defined and preferably defined herein.
  • R 12 is in each case independently selected from H, C 1 -C 6 -alkyl, C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)O(C 1 -C 6 -alkyl), S(O) n —C 1 -C 6 -alkyl, S(O) n aryl, wherein the acyclic moieties of R 12 are unsubstituted or substituted with identical or different groups R 12a as defined and preferably defined herein, and wherein the aryl moieties of R 12 are unsubstituted or substituted with identical or different groups R 12b as defined and preferably defined herein.
  • R 12 is in each case independently selected from H, C( ⁇ O)C 1 -C 6 -alkyl, C( ⁇ O)OC 1 -C 6 -alkyl, C( ⁇ O)NHC 1 -C 6 -alkyl, S(O) 2 —C 1 -C 6 -alkyl, S(O) 2 -aryl, SO 2 —NH(C 1 -C 6 -alkyl), OR Y , or C 1 -C 4 -alkyl; wherein R Y is C 1 -C 6 -alkyl, C 1 -C 6 -halogenalkyl, C 2 -C 6 -alkenyl or C 2 -C 6 -alkynyl.
  • R 12a is independently selected from halogen, C 1 -C 6 -alkoxy, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl and C 1 -C 4 -halogenalkoxy.
  • R 12a is independently selected from F, Cl, Br, I, C 1 -C 2 -alkoxy, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F 2 -cyclopropyl, 1,1-Cl 2 -cyclopropyl and C 1 -C 2 -halogenalkoxy.
  • R 12a is independently halogen, in particular selected from F, Cl, Br and I, more specifically F, Cl and Br.
  • R 12b are the possible substituents for the cycloalkyl, heteroaryl and phenyl moieties of R 12 .
  • R 12b according to the invention is independently selected from halogen, OH, CN, C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenalkyl, C 3 -C 6 -cycloalkyl, C 3 -C 6 -halogencycloalkyl, C 1 -C 4 -halogenalkoxy and C 1 -C 6 -alkylthio.
  • R 12b is independently selected from halogen, CN, C 1 -C 4 -alkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -halogenalkyl and C 1 -C 4 -halogenalkoxy, in particular halogen, C 1 -C 4 -alkyl and C 1 -C 4 -alkoxy.
  • R 12b is independently selected from F, Cl, CN, CH 3 , CHF 2 , CF 3 OCH 3 and halogenmethoxy.
  • R 12 Particularly preferred embodiments of R 12 according to the invention are in Table P12 below, wherein each line of lines P12-1 to P12-50 corresponds to one particular embodiment of the invention, wherein P12-1 to P12-50 are also in any combination with one another a preferred embodiment of the present invention.
  • the connection point to the carbon atom, to which R 12 is bound is marked with “#” in the drawings.
  • Particular embodiments of the compounds I are the following compounds: I-A, I-B, I-C, I-D, I-E, I-F, I-G; II-A, II-B, II-C, II-D, II-E, II-F, II-G; III-A, III-B, III-C, III-D, III-E, III-F, III-G; IV-A, IV-B, IV-C, IV-D, IV-E, IV-F, IV-G.
  • the substituents R 4 , R 9 , R 10 and R 12 are independently as defined in claim 1 or preferably defined below:
  • Table 1-1 Compounds of the formula I-A, I-B, I-C, I-D, I-E, I-F, I-G in which R 12 is H and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds I-A.1-1.A-1 to I-A.1-1.A-550, I-B.1-1.A-1 to I-B.1-1.A-550, I-C.1-1.A-1 to I-C.1-1.A-550, I-D.1-1.A-1 to I-D.1-1.A-550, I-E.1-1.A-1 to I-E.1-1.A-550, I-F.1-1.A-1 to I-F.1-1.A-550, I-G.1-1.A-1 to I-G.1-1.A-550).
  • Table 1-2 Compounds of the formula I-A, I-B, I-C, I-D, I-E, I-F, I-G in which R 12 is CH 3 and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds I-A.1-2.A-1 to I-A.1-2.A-550, I-B.1-2.A-1 to I-B.1-2.A-550, I-C.1-2.A-1 to I-C.1-2.A-550, I-D.1-2.A-1 to I-D.1-2.A-550, I-E.1-2.A-1 to I-E.1-2.A-550, I-F.1-2.A-1 to I-F.1-2.A-550, I-G.1-2.A-1 to I-G.1-2.A-550).
  • Table 1-3 Compounds of the formula I-A, I-B, I-C, I-D, I-E, I-F, I-G in which R 12 is CH 2 CH ⁇ CH 2 and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds I-A.1-3.A-1 to I-A.1-3.A-550, I-B.1-3.A-1 to I-B.1-3.A-550, I-C.1-3.A-1 to I-C.1-3.A-550, I-D.1-3.A-1 to I-D.1-3.A-550, I-E.1-3.A-1 to I-E.1-3.A-550, I-F.1-3.A-1 to I-F.1-3.A-550, I-G.1-3.A-1 to I-G.1-3.A-550).
  • Table 1-4 Compounds of the formula I-A, I-B, I-C, I-D, I-E, I-F, I-G in which R 12 is C( ⁇ O)OCH 3 and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds I-A.1-4.A-1 to I-A.1-4.A-550, I-B.1-4.A-1 to I-B.1-4.A-550, I-C.1-4.A-1 to I-C.1-4.A-550, I-D.1-4.A-1 to I-D.1-4.A-550, I-E.1-4.A-1 to I-E.1-4.A-550, I-F.1-4.A-1 to I-F.1-4.A-550, I-G.1-4.A-1 to I-G.1-4.A-550).
  • Table 1-5 Compounds of the formula I-A, I-B, I-C, I-D, I-E, I-F, I-G in which R 12 is SO 2 NHCH 3 and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds I-A.1-5.A-1 to I-A.1-5.A-550, I-B.1-5.A-1 to I-B.1-5.A-550, I-C.1-5.A-1 to I-C.1-5.A-550, I-D.1-5.A-1 to I-D.1-5.A-550, I-E.1-5.A-1 to I-E.1-5.A-550, I-F.1-5.A-1 to I-F.1-5.A-550, I-G.1-5.A-1 to I-G.1-5.A-550).
  • Table 2-1 Compounds of the formula II-A, II-B, II-C, II-D, II-E, II-F, II-G in which R 12 is H and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds II-A.2-1.A-1 to II-A.2-1.A-550, II-B.2-1.A-1 to II-B.2-1.A-550, II-C.2-1.A-1 to II-C.2-1.A-550, II-D.2-1.A-1 to II-D.2-1.A-550, II-E.2-1.A-1 to II-E.2-1.A-550, II-F.2-1.A-1 to II-F.2-1.A-550, II-G.2-1.A-1 to II-G.2-1.A-550).
  • Table 2-2 Compounds of the formula II-A, II-B, II-C, II-D, II-E, II-F, II-G in which R 12 is CH 3 and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds II-A.2-2.A-1 to II-A.2-2.A-550, II-B.2-2.A-1 to II-B.2-2.A-550, II-C.2-2.A-1 to II-C.2-2.A-550, II-D.2-2.A-1 to II-D.2-2.A-550, II-E.2-2.A-1 to II-E.2-2.A-550, II-F.2-2.A-1 to II-F.2-2.A-550, II-G.2-2.A-1 to II-G.2-2.A-550).
  • Table 2-3 Compounds of the formula II-A, II-B, II-C, II-D, II-E, II-F, II-G in which R 12 is CH 2 CH ⁇ CH 2 and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds II-A.2-3.A-1 to II-A.2-3.A-550, II-B.2-3.A-1 to II-B.2-3.A-550, II-C.2-3.A-1 to II-C.2-3.A-550, II-D.2-3.A-1 to II-D.2-3.A-550, II-E.2-3.A-1 to II-E.2-3.A-550, II-F.2-3.A-1 to II-F.2-3.A-550, II-G.2-3.A-1 to II-G.2-3.A-550).
  • Table 2-4 Compounds of the formula II-A, II-B, II-C, II-D, II-E, II-F, II-G in which R 12 is C( ⁇ O)OCH 3 and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds II-A.2-4.A-1 to II-A.2-4.A-550, II-B.2-4.A-1 to II-B.2-4.A-550, II-C.2-4.A-1 to II-C.2-4.A-550, II-D.2-4.A-1 to II-D.2-4.A-550, II-E.2-4.A-1 to II-E.2-4.A-550, II-F.2-4.A-1 to II-F.2-4.A-550, II-G.2-4.A-1 to II-G.2-4.A-550).
  • Table 2-5 Compounds of the formula II-A, II-B, II-C, II-D, II-E, II-F, II-G in which R 12 is SO 2 NHCH 3 and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds II-A.2-5.A-1 to II-A.2-5.A-550, II-B.2-5.A-1 to II-B.2-5.A-550, II-C.2-5.A-1 to II-C.2-5.A-550, II-D.2-5.A-1 to II-D.2-5.A-550, II-E.2-5.A-1 to II-E.2-5.A-550, II-F.2-5.A-1 to II-F.2-5.A-550, II-G.2-5.A-1 to II-G.2-5.A-550).
  • Table 3-1 Compounds of the formula III-A, III-B, III-C, III-D, III-E, III-F, III-G in which R 12 is H and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds III-A.3-1.A-1 to III-A.3-1.A-550, III-B.3-1.A-1 to III-B.3-1.A-550, III-C.3-1.A-1 to III-C.3-1.A-550, III-D.3-1.A-1 to III-D.3-1.A-550, III-E.3-1.A-1 to III-E.3-1.A-550, III-F.3-1.A-1 to III-F.3-1.A-550, III-G.3-1.A-1 to III-G.3-1.A-550).
  • Table 3-2 Compounds of the formula III-A, III-B, III-C, III-D, III-E, III-F, III-G in which R 12 is CH 3 and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds III-A.3-2.A-1 to III-A.3-2.A-550, III-B.3-2.A-1 to III-B.3-2.A-550, III-C.3-2.A-1 to III-C.3-2.A-550, III-D.3-2.A-1 to III-D.3-2.A-550, III-E.3-2.A-1 to III-E.3-2.A-550, III-F.3-2.A-1 to III-F.3-2.A-550, III-G.3-2.A-1 to III-G.3-2.A-550).
  • Table 3-3 Compounds of the formula III-A, III-B, III-C, III-D, III-E, III-F, III-G in which R 12 is CH 2 CH ⁇ CH 2 and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds III-A.3-3.A-1 to III-A.3-3.A-550, III-B.3-3.A-1 to III-B.3-3.A-550, III-C.3-3.A-1 to III-C.3-3.A-550, III-D.3-3.A-1 to III-D.3-3.A-550, III-E.3-3.A-1 to III-E.3-3.A-550, III-F.3-3.A-1 to III-F.3-3.A-550, III-G.3-3.A-1 to III-G.3-3.A-550).
  • Table 3-4 Compounds of the formula III-A, III-B, III-C, III-D, III-E, III-F, III-G in which R 12 is C( ⁇ O)OCH 3 and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds III-A.3-4.A-1 to III-A.3-4.A-550, III-B.3-4.A-1 to III-B.3-4.A-550, III-C.3-4.A-1 to III-C.3-4.A-550, III-D.3-4.A-1 to III-D.3-4.A-550, III-E.3-4.A-1 to III-E.3-4.A-550, III-F.3-4.A-1 to III-F.3-4.A-550, III-G.3-4.A-1 to III-G.3-4.A-550).
  • Table 3-5 Compounds of the formula III-A, III-B, III-C, III-D, III-E, III-F, III-G in which R 12 is SO 2 NHCH 3 and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds III-A.3-5.A-1 to III-A.3-5.A-550, III-B.3-5.A-1 to III-B.3-5.A-550, III-C.3-5.A-1 to III-C.3-5.A-550, III-D.3-5.A-1 to III-D.3-5.A-550, III-E.3-5.A-1 to III-E.3-5.A-550, III-F.3-5.A-1 to III-F.3-5.A-550, III-G.3-5.A-1 to III-G.3-5.A-550).
  • Table 4-1 Compounds of the formula IV-A, IV-B, IV-C, IV-D, IV-E, IV-F, IV-G in which R 12 is H and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds IV-A.4-1.A-1 to IV-A.4-1.A-550, IV-B.4-1.A-1 to IV-B.4-1.A-550, IV-C.4-1.A-1 to IV-C.4-1.A-550, IV-D.4-1.A-1 to IV-D.4-1.A-550, IV-E.4-1.A-1 to IV-E.4-1.A-550, IV-F.4-1.A-1 to IV-F.4-1.A-550, IV-G.4-1.A-1 to IV-G.4-1.A-550).
  • Table 4-2 Compounds of the formula IV-A, IV-B, IV-C, IV-D, IV-E, IV-F, IV-G in which R 12 is CH 3 and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds IV-A.4-2.A-1 to IV-A.4-2.A-550, IV-B.4-2.A-1 to IV-B.4-2.A-550, IV-C.4-2.A-1 to IV-C.4-2.A-550, IV-D.4-2.A-1 to IV-D.4-2.A-550, IV-E.4-2.A-1 to IV-E.4-2.A-550, IV-F.4-2.A-1 to IV-F.4-2.A-550, IV-G.4-2.A-1 to IV-G.4-2.A-550).
  • Table 4-3 Compounds of the formula IV-A, IV-B, IV-C, IV-D, IV-E, IV-F, IV-G in which R 12 is CH 2 CH ⁇ CH 2 and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds IV-A.4-3.A-1 to IV-A.4-3.A-550, IV-B.4-3.A-1 to IV-B.4-3.A-550, IV-C.4-3.A-1 to IV-C.4-3.A-550, IV-D.4-3.A-1 to IV-D.4-3.A-550, IV-E.4-3.A-1 to IV-E.4-3.A-550, IV-F.4-3.A-1 to IV-F.4-3.A-550, IV-G.4-3.A-1 to IV-G.4-3.A-550).
  • Table 4-4 Compounds of the formula IV-A, IV-B, IV-C, IV-D, IV-E, IV-F, IV-G in which R 12 is C( ⁇ O)OCH 3 and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds IV-A.4-4.A-1 to IV-A.4-4.A-550, IV-B.4-4.A-1 to IV-B.4-4.A-550, IV-C.4-4.A-1 to IV-C.4-4.A-550, IV-D.4-4.A-1 to IV-D.4-4.A-550, IV-E.4-4.A-1 to IV-E.4-4.A-550, IV-F.4-4.A-1 to IV-F.4-4.A-550, IV-G.4-4.A-1 to IV-G.4-4.A-550).
  • Table 4-5 Compounds of the formula IV-A, IV-B, IV-C, IV-D, IV-E, IV-F, IV-G in which R 12 is SO 2 NHCH 3 and the meaning for the combination of R 4 , R 9 and R 10 for each individual compound corresponds in each case to one line of Table A (compounds IV-A.4-5.A-1 to IV-A.4-5.A-550, IV-B.4-5.A-1 to IV-B.4-5.A-550, IV-C.4-5.A-1 to IV-C.4-5.A-550, IV-D.4-5.A-1 to IV-D.4-5.A-550, IV-E.4-5.A-1 to IV-E.4-5.A-550, IV-F.4-5.A-1 to IV-F.4-5.A-550, IV-G.4-5.A-1 to IV-G.4-5.A-550).
  • the compounds I and the compositions according to the invention, respectively, are suitable as fungicides. They are distinguished by an outstanding effectiveness against a broad spectrum of phytopathogenic fungi, including soil-borne fungi, which derive especially from the classes of the Plasmodiophoromycetes, Peronosporomycetes (syn. Oomycetes), Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes (syn. Fungi imperfecti). Some are systemically effective and they can be used in crop protection as foliar fungicides, fungicides for seed dressing and soil fungicides. Moreover, they are suitable for controlling harmful fungi, which inter alia occur in wood or roots of plants.
  • the compounds I and the compositions according to the invention are particularly important in the control of a multitude of phytopathogenic fungi on various cultivated plants, such as cereals, e. g. wheat, rye, barley, triticale, oats or rice; beet, e. g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e. g.
  • compounds I and compositions thereof are used for controlling a multitude of fungi on field crops, such as potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.
  • field crops such as potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.
  • plant propagation material is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and young plants, which are to be transplanted after germination or after emergence from soil. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring.
  • treatment of plant propagation materials with compounds I and compositions thereof, respectively is used for controlling a multitude of fungi on cereals, such as wheat, rye, barley and oats; rice, corn, cotton and soybeans.
  • cultiva plants is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering including but not limiting to agricultural biotech products on the market or in development (cf. http://cera-gmc.org/, see GM crop database therein).
  • Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination.
  • one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant.
  • Such genetic modifications also include but are not limited to targeted post-translational modification of protein(s), oligo- or polypeptides e. g. by glycosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties.
  • auxin herbicides such as
  • herbicides e. bromoxynil or ioxynil herbicides as a result of conventional methods of breeding or genetic engineering. Furthermore, plants have been made resistant to multiple classes of herbicides through multiple genetic modifications, such as resistance to both glyphosate and glufosinate or to both glyphosate and a herbicide from another class such as ALS inhibitors, HPPD inhibitors, auxin herbicides, or ACCase inhibitors.
  • These herbicide resistance technologies are e. g. described in Pest Managem. Sci. 61, 2005, 246; 61, 2005, 258; 61, 2005, 277; 61, 2005, 269; 61, 2005, 286; 64, 2008, 326; 64, 2008, 332; Weed Sci.
  • mutagenesis e.g. Clearfield® summer rape (Canola, BASF SE, Germany) being tolerant to imidazolinones, e. g. imazamox, or ExpressSun® sunflowers (DuPont, USA) being tolerant to sulfonyl ureas, e. g. tribenuron.
  • plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus , particularly from Bacillus thuringiensis , such as 6-endotoxins, e. g. CryIA(b), CryIA(c), CryIF, CryIF(a2), CryIIA(b), CryIIIA, CryIIIB(b1) or Cry9c; vegetative insecticidal proteins (VIP), e. g. VIP1, VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, e. g. Photorhabdus spp.
  • VIP vegetative insecticidal proteins
  • toxins produced by animals such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins
  • toxins produced by fungi such Streptomycetes toxins, plant lectins, such as pea or barley lectins; agglutinins
  • proteinase inhibitors such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors
  • ribosome-inactivating proteins (RIP) such as ricin, maize-RIP, abrin, luffin, saporin or bryodin
  • steroid metabolism enzymes such as 3-hydroxysteroid oxidase, ecdysteroid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase
  • ion channel blockers such as blockers of sodium or calcium channels
  • these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins.
  • Hybrid proteins are characterized by a new combination of protein domains, (see, e. g. WO 02/015701).
  • Further examples of such toxins or genetically modified plants capable of synthesizing such toxins are disclosed, e. g., in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/18810 und WO 03/52073.
  • the methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e. g.
  • insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins tolerance to harmful pests from all taxonomic groups of arthropods, especially to beetles (Coeloptera), two-winged insects (Diptera), and moths (Lepidoptera) and to nematodes (Nematoda).
  • Genetically modified plants capable to synthesize one or more insecticidal proteins are, e.
  • WO 03/018810 MON 863 from Monsanto Europe S.A., Belgium (corn cultivars producing the Cry3Bb1 toxin), IPC 531 from Monsanto Europe S.A., Belgium (cotton cultivars producing a modified version of the Cry1Ac toxin) and 1507 from Pioneer Overseas Corporation, Belgium (corn cultivars producing the Cry1F toxin and PAT enzyme).
  • plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens.
  • proteins are the so-called “pathogenesis-related proteins” (PR proteins, see, e. g. EP-A 392 225), plant disease resistance genes (e. g. potato cultivars, which express resistance genes acting against Phytophthora infestans derived from the Mexican wild potato Solanum bulbocastanum ) or T4-lysozym (e. g. potato cultivars capable of synthesizing these proteins with increased resistance against bacteria such as Erwinia amylvora ).
  • PR proteins pathogenesis-related proteins
  • plant disease resistance genes e. g. potato cultivars, which express resistance genes acting against Phytophthora infestans derived from the Mexican wild potato Solanum bulbocastanum
  • T4-lysozym e. g. potato cultivars capable of
  • plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the productivity (e. g. bio mass production, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting environmental factors or tolerance to pests and fungal, bacterial or viral pathogens of those plants.
  • productivity e. g. bio mass production, grain yield, starch content, oil content or protein content
  • plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, e. g. oil crops that produce health-promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g. Nexera® rape, DOW Agro Sciences, Canada).
  • plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve raw material production, e. g. potatoes that produce increased amounts of amylopectin (e. g. Amflora® potato, BASF SE, Germany).
  • a modified amount of substances of content or new substances of content specifically to improve raw material production, e. g. potatoes that produce increased amounts of amylopectin (e. g. Amflora® potato, BASF SE, Germany).
  • the compounds I and compositions thereof, respectively, are particularly suitable for controlling the following plant diseases:
  • Albugo spp. (white rust) on ornamentals, vegetables (e. g. A. candida ) and sunflowers (e. g. A. tragopogonis ); Alternaria spp. ( Alternaria leaf spot) on vegetables, rape ( A. brassicola or brassicae ), sugar beets ( A. tenuis ), fruits, rice, soybeans, potatoes (e. g. A. solani or A. alternata ), tomatoes (e. g. A. solani or A. alternata ) and wheat; Aphanomyces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e. g. A.
  • tritici anthracnose
  • Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.), e. g. Southern leaf blight ( D. maydis ) or Northern leaf blight ( B. zeicola ) on corn, e. g. spot blotch ( B. sorokiniana ) on cereals and e. g. B. oryzae on rice and turfs
  • Blumeria (formerly Erysiphe ) graminis (powdery mildew) on cereals (e. g.
  • Botrytis cinerea (teleomorph: Botryotinia fuckeliana : grey mold) on fruits and berries (e. g. strawberries), vegetables (e. g. lettuce, carrots, celery and cabbages), rape, flowers, vines, forestry plants and wheat; Bremia lactucae (downy mildew) on lettuce; Ceratocystis (syn. Ophiostoma ) spp. (rot or wilt) on broad-leaved trees and evergreens, e. g. C. ulmi (Dutch elm disease) on elms; Cercospora spp. ( Cercospora leaf spots) on corn (e. g.
  • Gray leaf spot C. zeae - maydis ), rice, sugar beets (e. g. C. beticola ), sugar cane, vegetables, coffee, soybeans (e. g. C. sojina or C. kikuchii ) and rice; Cladosporium spp. on tomatoes (e. g. C. fulvum : leaf mold) and cereals, e. g. C. herbarum (black ear) on wheat; Claviceps purpurea (ergot) on cereals; Cochliobolus (anamorph: Helminthosporium of Bipolaris ) spp. (leaf spots) on corn ( C. carbonum ), cereals (e. g.
  • C. sativus anamorph: B. sorokiniana
  • rice e. g. C. miyabeanus , anamorph: H. oryzae
  • Colletotrichum teleomorph: Glomerella
  • spp. anthracnose on cotton (e. g. C. gossypi )
  • corn e. g. C. graminicola : Anthracnose stalk rot
  • soft fruits e. g. C. coccodes : black dot
  • beans e. g. C. lindemuthianum
  • soybeans e. g. C. truncatum or C.
  • Corticium spp. e. g. C. sasakii (sheath blight) on rice; Corynespora cassiicola (leaf spots) on soybeans and ornamentals; Cycloconium spp., e. g. C. oleaginum on olive trees; Cylindrocarpon spp. (e. g. fruit tree canker or young vine decline, teleomorph: Nectria or Neonectria spp.) on fruit trees, vines (e. g. C.
  • liriodendri teleomorph: Neonectria liriodendri : Black Foot Disease) and ornamentals; Dematophora (teleomorph: Rosellinia ) necatrix (root and stem rot) on soybeans; Diaporthe spp., e. g. D. phaseolorum (damping off) on soybeans; Drechslera (syn. Helminthosporium , teleomorph: Pyrenophora ) spp. on corn, cereals, such as barley (e. g. D. teres , net blotch) and wheat (e. g. D. D.
  • tritici - repentis tritici - repentis : tan spot), rice and turf; Esca (dieback, apoplexy) on vines, caused by Formitiporia (syn. Phellinus ) punctata, F. mediterranea, Phaeomoniella chlamydospora (earlier Phaeoacremonium chlamydosporum ), Phaeoacremonium aleophilum and/or Botryosphaeria obtusa; Elsinoe spp. on pome fruits ( E. pyri ), soft fruits ( E. veneta : anthracnose) and vines ( E.
  • ampelina anthracnose
  • Entyloma oryzae leaf smut
  • Epicoccum spp. black mold
  • Erysiphe spp. potowdery mildew
  • sugar beets E. betae
  • vegetables e. g. E. pisi
  • cucurbits e. g. E. cichoracearum
  • cabbages e. g. E. cruciferarum
  • Eutypa lata Eutypa canker or dieback, anamorph: Cytosporina lata , syn.
  • Microsphaera diffusa (powdery mildew) on soybeans
  • Monilinia spp. e. g. M. laxa, M. fructicola and M. fructigena (bloom and twig blight, brown rot) on stone fruits and other rosaceous plants
  • Mycosphaerella spp. on cereals, bananas, soft fruits and ground nuts, such as e. g. M. graminicola (anamorph: Septoria tritici, Septoria blotch) on wheat or M. fijiensis (black Sigatoka disease) on bananas
  • Peronospora spp. downy mildew) on cabbage (e. g. P.
  • brassicae ), rape (e. g. P. parasitica ), onions (e. g. P. destructor ), tobacco ( P. tabacina ) and soybeans (e. g. P. manshurica ); Phakopsora pachyrhizi and P. meibomiae (soybean rust) on soybeans; Phialophora spp. e. g. on vines (e. g. P. tracheiphila and P. tetraspora ) and soybeans (e. g. P. gregata : stem rot); Phoma lingam (root and stem rot) on rape and cabbage and P.
  • rape e. g. P. parasitica
  • onions e. g. P. destructor
  • tobacco P. tabacina
  • soybeans e. g. P. manshurica
  • betae root rot, leaf spot and damping-off on sugar beets
  • Phomopsis spp. on sunflowers, vines (e. g. P. viticola : can and leaf spot)
  • soybeans e. g. stem rot: P. phaseoli , teleomorph: Diaporthe phaseolorum
  • Physoderma maydis brown spots
  • Phytophthora spp. wilt, root, leaf, fruit and stem root
  • various plants such as paprika and cucurbits (e. g. P. capsici ), soybeans (e. g. P. megasperma , syn. P. sojae ), potatoes and tomatoes (e. g. P.
  • Plasmodiophora brassicae club root
  • Plasmopara spp. e. g. P. viticola (grapevine downy mildew) on vines and P. halstedii ion sunflowers
  • Podosphaera spp. powdery mildew on rosaceous plants, hop, pome and soft fruits, e. g. P. leucotricha on apples
  • Polymyxa spp. e. g. on cereals, such as barley and wheat ( P.
  • Pseudocercosporella herpotrichoides eyespot, teleomorph: Tapesia yallundae ) on cereals, e. g. wheat or barley
  • Pseudoperonospora downy mildew
  • Pseudopezicula tracheiphila red fire disease or ‘rotbrenner’, anamorph: Phialophora ) on vines
  • Puccinia spp. rusts
  • P. oryzae (teleomorph: Magnaporthe grisea , rice blast) on rice and P. grisea on turf and cereals; Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e. g. P. ultimum or P. aphanidermatum ); Ramularia spp., e. g. R. collo - cygni ( Ramularia leaf spots, Physiological leaf spots) on barley and R. beticola on sugar beets; Rhizoctonia spp.
  • R. solani root and stem rot
  • S. solani silk and stem rot
  • S. solani silk and stem rot
  • S. solani silk blight
  • rice or R. cerealis Rhizoctonia spring blight
  • Rhizopus stolonifer black mold, soft rot
  • strawberries carrots, cabbage, vines and tomatoes
  • Rhynchosporium secalis scald
  • Sarocladium oryzae and S. attenuatum sheath rot) on rice
  • Sclerotinia spp Sclerotinia spp.
  • seed rot or white mold on vegetables and field crops, such as rape, sunflowers (e. g. S. scerotiorum ) and soybeans (e. g. S. rolfsiior S. scerotiorum ); Septoria spp. on various plants, e. g. S. glycines (brown spot) on soybeans, S. tritici ( Septoria blotch) on wheat and S . (syn. Stagonospora ) nodorum ( Stagonospora blotch) on cereals; Uncinula (syn.
  • Erysiphe ) necator prowdery mildew, anamorph: Oidium tuckeri ) on vines
  • Setospaeria spp. leaf blight
  • corn e. g. S. turcicum , syn. Helminthosporium turcicum
  • turf e. g. S. turcicum , syn. Helminthosporium turcicum
  • Sphacelotheca spp. (smut) on corn, e. g. S. reiliana : head smut), sorghum und sugar cane
  • Sphaerotheca fuliginea prowdery mildew
  • Spongospora subterranea powdery scab
  • the compounds I and compositions thereof, respectively, are also suitable for controlling harmful fungi in the protection of stored products or harvest and in the protection of materials.
  • protection of materials is to be understood to denote the protection of technical and non-living materials, such as adhesives, glues, wood, paper and paperboard, textiles, leather, paint dispersions, plastics, cooling lubricants, fiber or fabrics, against the infestation and destruction by harmful microorganisms, such as fungi and bacteria.
  • Ascomycetes such as Ophiostoma spp., Ceratocystis spp., Aureobasidium pullulans, Scerophoma spp., Chaetomium spp., Humicola spp., Petriella spp., Trichurus spp.; Basidiomycetes such as Coniophora spp., Coriolus spp., Gloeophyllum spp., Lentinus spp., Pleurotus spp., Poria spp., Serpula spp.
  • yeast fungi are worthy of note: Candida spp. and Saccharomyces cerevisae.
  • the method of treatment according to the invention can also be used in the field of protecting stored products or harvest against attack of fungi and microorganisms.
  • the term “stored products” is understood to denote natural substances of plant or animal origin and their processed forms, which have been taken from the natural life cycle and for which long-term protection is desired.
  • Stored products of crop plant origin such as plants or parts thereof, for example stalks, leafs, tubers, seeds, fruits or grains, can be protected in the freshly harvested state or in processed form, such as pre-dried, moistened, comminuted, ground, pressed or roasted, which process is also known as post-harvest treatment.
  • stored products are timber, whether in the form of crude timber, such as construction timber, electricity pylons and barriers, or in the form of finished articles, such as furniture or objects made from wood.
  • Stored products of animal origin are hides, leather, furs, hairs and the like.
  • the combinations according the present invention can prevent disadvantageous effects such as decay, discoloration or mold.
  • stored products is understood to denote natural substances of plant origin and their processed forms, more preferably fruits and their processed forms, such as pomes, stone fruits, soft fruits and citrus fruits and their processed forms.
  • the compounds I and compositions thereof, respectively, may be used for improving the health of a plant.
  • the invention also relates to a method for improving plant health by treating a plant, its propagation material and/or the locus where the plant is growing or is to grow with an effective amount of compounds I and compositions thereof, respectively.
  • plant health is to be understood to denote a condition of the plant and/or its products which is determined by several indicators alone or in combination with each other such as yield (e. g. increased biomass and/or increased content of valuable ingredients), plant vigor (e. g. improved plant growth and/or greener leaves (“greening effect”)), quality (e. g. improved content or composition of certain ingredients) and tolerance to abiotic and/or biotic stress.
  • yield e. g. increased biomass and/or increased content of valuable ingredients
  • plant vigor e. g. improved plant growth and/or greener leaves (“greening effect”)
  • quality e. g. improved content or composition of certain ingredients
  • tolerance to abiotic and/or biotic stress e. g. improved content or composition of certain ingredients
  • the compounds of formula I can be present in different crystal modifications whose biological activity may differ. They are likewise subject matter of the present invention.
  • the compounds I are employed as such or in form of compositions by treating the fungi or the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms to be protected from fungal attack with a fungicidally effective amount of the active substances.
  • the application can be carried out both before and after the infection of the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms by the fungi.
  • Plant propagation materials may be treated with compounds I as such or a composition comprising at least one compound I prophylactically either at or before planting or transplanting.
  • the invention also relates to agrochemical compositions comprising an auxiliary and at least one compound I according to the invention.
  • An agrochemical composition comprises a fungicidally effective amount of a compound I.
  • the term “effective amount” denotes an amount of the composition or of the compounds I, which is sufficient for controlling harmful fungi on cultivated plants or in the protection of materials and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the fungal species to be controlled, the treated cultivated plant or material, the climatic conditions and the specific compound I used.
  • compositions e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof.
  • composition types are suspensions (e. g. SC, OD, FS), emulsifiable concentrates (e. g. EC), emulsions (e. g. EW, EO, ES, ME), capsules (e. g. CS, ZC), pastes, pastilles, wettable powders or dusts (e. g. WP, SP, WS, DP, DS), pressings (e. g.
  • compositions types are defined in the “Catalogue of pesticide formulation types and international coding system”, Technical Monograph No. 2, 6 th Ed. May 2008, CropLife International.
  • compositions are prepared in a known manner, such as described by Mollet and Grubemann, Formulation technology, Wiley VCH, Weinheim, 2001; or Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005.
  • Suitable auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibilizers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.
  • Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e. g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetrahydronaphthalene, alkylated naphthalenes; alcohols, e. g. ethanol, propanol, butanol, benzyl alcohol, cyclohexanol; glycols; DMSO; ketones, e. g. cyclohexanone; esters, e. g.
  • mineral oil fractions of medium to high boiling point e. g. kerosene, diesel oil
  • oils of vegetable or animal origin oils of vegetable or animal origin
  • aliphatic, cyclic and aromatic hydrocarbons e. g. toluene, paraffin, tetrahydronaphthalene, al
  • lactates carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e. g. N-methyl pyrrolidone, fatty acid dimethyl amides; and mixtures thereof.
  • Suitable solid carriers or fillers are mineral earths, e. g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e. g. cellulose, starch; fertilizers, e. g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e. g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.
  • mineral earths e. g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide
  • polysaccharides e. g. cellulose, star
  • Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emulsifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon's, Vol. 1: Emulsifiers & Detergents, McCutcheon's Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).
  • Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof.
  • sulfonates are alkylaryl sulfonates, diphenyl sulfonates, alpha-olefin sulfonates, lignin sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkyl naphthalenes, sulfosuccinates or sulfosuccinamates.
  • Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters.
  • Examples of phosphates are phosphate esters.
  • Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.
  • Suitable nonionic surfactants are alkoxylates, N-substituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof.
  • alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents.
  • Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide.
  • N-substituted fatty acid amides are fatty acid glucamides or fatty acid alkanolamides.
  • esters are fatty acid esters, glycerol esters or monoglycerides.
  • sugar-based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or alkylpolyglucosides.
  • polymeric surfactants are home- or copolymers of vinyl pyrrolidone, vinyl alcohols, or vinyl acetate.
  • Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines.
  • Suitable amphoteric surfactants are alkylbetains and imidazolines.
  • Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide and polypropylene oxide.
  • Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinyl amines or polyethylene amines.
  • Suitable adjuvants are compounds, which have a negligible or even no pesticidal activity themselves, and which improve the biological performance of the compound I on the target.
  • examples are surfactants, mineral or vegetable oils, and other auxiliaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.
  • Suitable thickeners are polysaccharides (e. g. xanthan gum, carboxymethyl cellulose), inorganic clays (organically modified or unmodified), polycarboxylates, and silicates.
  • Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothiazolinones and benzisothiazolinones.
  • Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin.
  • Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids.
  • Suitable colorants are pigments of low water solubility and water-soluble dyes.
  • examples are inorganic colorants (e. g. iron oxide, titan oxide, iron hexacyanoferrate) and organic colorants (e. g. alizarin-, azo- and phthalocyanine colorants).
  • Suitable tackifiers or binders are polyvinyl pyrrolidones, polyvinyl acetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.
  • composition types and their preparation are:
  • a compound I and 5-15 wt % wetting agent e. g. alcohol alkoxylates
  • a water-soluble solvent e. g. alcohols
  • a compound I and 1-10 wt % dispersant e. g. polyvinyl pyrrolidone
  • organic solvent e. g. cyclohexanone
  • emulsifiers e. g. calcium dodecylbenzenesulfonate and castor oil ethoxylate
  • water-insoluble organic solvent e. g. aromatic hydrocarbon
  • Emulsions (EW, EO, ES)
  • emulsifiers e. g. calcium dodecylbenzenesulfonate and castor oil ethoxylate
  • 20-40 wt % water-insoluble organic solvent e. g. aromatic hydrocarbon
  • a compound I In an agitated ball mill, 20-60 wt % of a compound I are comminuted with addition of 2-10 wt % dispersants and wetting agents (e. g. sodium lignosulfonate and alcohol ethoxylate), 0.1-2 wt % thickener (e. g. xanthan gum) and water ad 100 wt % to give a fine active substance suspension. Dilution with water gives a stable suspension of the active substance.
  • dispersants and wetting agents e. g. sodium lignosulfonate and alcohol ethoxylate
  • 0.1-2 wt % thickener e. g. xanthan gum
  • water ad 100 wt % to give a fine active substance suspension. Dilution with water gives a stable suspension of the active substance.
  • binder e. g. polyvinyl alcohol
  • a compound I 50-80 wt % of a compound I are ground finely with addition of dispersants and wetting agents (e. g. sodium lignosulfonate and alcohol ethoxylate) ad 100 wt % and prepared as water-dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance.
  • dispersants and wetting agents e. g. sodium lignosulfonate and alcohol ethoxylate
  • wt % of a compound I are ground in a rotor-stator mill with addition of 1-5 wt % dispersants (e. g. sodium lignosulfonate), 1-3 wt % wetting agents (e. g. alcohol ethoxylate) and solid carrier (e. g. silica gel) ad 100 wt %. Dilution with water gives a stable dispersion or solution of the active substance.
  • dispersants e. g. sodium lignosulfonate
  • wetting agents e. g. alcohol ethoxylate
  • solid carrier e. g. silica gel
  • a compound I In an agitated ball mill, 5-25 wt % of a compound I are comminuted with addition of 3-10 wt % dispersants (e. g. sodium lignosulfonate), 1-5 wt % thickener (e. g. carboxymethyl cellulose) and water ad 100 wt % to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance.
  • dispersants e. g. sodium lignosulfonate
  • 1-5 wt % thickener e. g. carboxymethyl cellulose
  • wt % of a compound I are added to 5-30 wt % organic solvent blend (e. g. fatty acid dimethyl amide and cyclohexanone), 10-25 wt % surfactant blend (e. g. alcohol ethoxylate and arylphenol ethoxylate), and water ad 100%. This mixture is stirred for 1 h to produce spontaneously a thermodynamically stable microemulsion.
  • organic solvent blend e. g. fatty acid dimethyl amide and cyclohexanone
  • surfactant blend e. g. alcohol ethoxylate and arylphenol ethoxylate
  • An oil phase comprising 5-50 wt % of a compound I, 0-40 wt % water insoluble organic solvent (e. g. aromatic hydrocarbon), 2-15 wt % acrylic monomers (e. g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e. g. polyvinyl alcohol). Radical polymerization results in the formation of poly(meth)acrylate microcapsules.
  • an oil phase comprising 5-50 wt % of a compound I according to the invention, 0-40 wt % water insoluble organic solvent (e. g. aromatic hydrocarbon), and an isocyanate monomer (e. g.
  • diphenylmethene-4,4′-diisocyanatae are dispersed into an aqueous solution of a protective colloid (e. g. polyvinyl alcohol).
  • a protective colloid e. g. polyvinyl alcohol.
  • the addition of a polyamine results in the formation of polyurea microcapsules.
  • the monomers amount to 1-10 wt %.
  • the wt % relate to the total CS composition.
  • 1-10 wt % of a compound I are ground finely and mixed intimately with solid carrier (e. g. finely divided kaolin) ad 100 wt %.
  • solid carrier e. g. finely divided kaolin
  • a compound I is ground finely and associated with solid carrier (e. g. silicate) ad 100 wt %.
  • solid carrier e. g. silicate
  • Granulation is achieved by extrusion, spray-drying or fluidized bed.
  • organic solvent e. g. aromatic hydrocarbon
  • compositions types i) to xiii) may optionally comprise further auxiliaries, such as 0.1-1 wt % bactericides, 5-15 wt % anti-freezing agents, 0.1-1 wt % anti-foaming agents, and 0.1-1 wt % colorants.
  • auxiliaries such as 0.1-1 wt % bactericides, 5-15 wt % anti-freezing agents, 0.1-1 wt % anti-foaming agents, and 0.1-1 wt % colorants.
  • the agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, more preferably between 1 and 70%, and in particular between 10 and 60%, by weight of active substance.
  • the active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).
  • compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40%, in the ready-to-use preparations. Application can be carried out before or during sowing.
  • Methods for applying compound I and compositions thereof, respectively, onto plant propagation material, especially seeds include dressing, coating, pelleting, dusting, and soaking as well as in-furrow application methods.
  • compound I or the compositions thereof, respectively are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.
  • the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha, and in particular from 0.1 to 0.75 kg per ha.
  • amounts of active substance of from 0.1 to 1000 g, preferably from 1 to 1000 g, more preferably from 1 to 100 g and most preferably from 5 to 100 g, per 100 kilogram of plant propagation material (preferably seeds) are generally required.
  • the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.
  • oils, wetters, adjuvants, fertilizer, or micronutrients, and further pesticides may be added to the active substances or the compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix).
  • pesticides e. g. herbicides, insecticides, fungicides, growth regulators, safeners, biopesticides
  • These agents can be admixed with the compositions according to the invention in a weight ratio of 1:100 to 100:1, preferably 1:10 to 10:1.
  • a pesticide is generally a chemical or biological agent (such as pestidal active ingredient, compound, composition, virus, bacterium, antimicrobial or disinfectant) that through its effect deters, incapacitates, kills or otherwise discourages pests.
  • Target pests can include insects, plant pathogens, weeds, mollusks, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, spread disease or are vectors for disease.
  • pesticide includes also plant growth regulators that alter the expected growth, flowering, or reproduction rate of plants; defoliants that cause leaves or other foliage to drop from a plant, usually to facilitate harvest; desiccants that promote drying of living tissues, such as unwanted plant tops; plant activators that activate plant physiology for defense of against certain pests; safeners that reduce unwanted herbicidal action of pesticides on crop plants; and plant growth promoters that affect plant physiology e.g. to increase plant growth, biomass, yield or any other quality parameter of the harvestable goods of a crop plant.
  • Biopesticides have been defined as a form of pesticides based on microorganisms (bacteria, fungi, viruses, nematodes, etc.) or natural products (compounds, such as metabolites, proteins, or extracts from biological or other natural sources) (U.S. Environmental Protection Agency: http://www.epa.gov/pesticides/biopesticides/). Biopesticides fall into two major classes, microbial and biochemical pesticides:
  • the user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system.
  • the agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained.
  • 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.
  • composition according to the invention such as parts of a kit or parts of a binary or ternary mixture may be mixed by the user himself in a spray tank or any other kind of vessel used for applications (e. g. seed treater drums, seed pelleting machinery, knapsack sprayer) and further auxiliaries may be added, if appropriate.
  • a spray tank or any other kind of vessel used for applications (e. g. seed treater drums, seed pelleting machinery, knapsack sprayer) and further auxiliaries may be added, if appropriate.
  • one embodiment of the invention is a kit for preparing a usable pesticidal composition, the kit comprising a) a composition comprising component 1) as defined herein and at least one auxiliary; and b) a composition comprising component 2) as defined herein and at least one auxiliary; and optionally c) a composition comprising at least one auxiliary and optionally a further active component 3) as defined herein.
  • pesticides II e. g. pesticidally-active substances and biopesticides
  • the compounds I in conjunction with which the compounds I can be used, is intended to illustrate the possible combinations but does not limit them:
  • abscisic acid M.1.1
  • amidochlor ancymidol
  • 6-benzylaminopurine brassinolide, butralin
  • chlormequat chlormequat chloride, choline chloride, cyclanilide, daminozide, dikegulac, dimethipin, 2,6-dimethylpuridine, ethephon, flumetralin, flurprimidol, fluthiacet, forchlorfenuron, gibberellic acid, inabenfide, indole-3-acetic acid, maleic hydrazide, mefluidide, mepiquat, mepiquat chloride, naphthaleneacetic acid, N-6-benzyladenine, paclobutrazol, prohexadione, prohexadione-calcium, prohydrojasmon, thidiazuron, triapenthenol, tributyl phosphorotrithioate, 2,3,5-tri-
  • component 2 The active substances referred to as component 2, their preparation and their activity e. g. against harmful fungi is known (cf.: http://www.alanwood.net/pesticides/); these substances are commercially available.
  • the compounds described by IUPAC nomenclature, their preparation and their pesticidal activity are also known (cf. Can. J. Plant Sci.
  • the present invention furthermore relates to agrochemical compositions comprising a mixture of at least one compound I (component 1) and at least one further active substance useful for plant protection, e. g. selected from the groups A) to O) (component 2), in particular one further fungicide, e. g. one or more fungicide from the groups A) to K), as described above, and if desired one suitable solvent or solid carrier.
  • agrochemical compositions comprising a mixture of at least one compound I (component 1) and at least one further active substance useful for plant protection, e. g. selected from the groups A) to O) (component 2), in particular one further fungicide, e. g. one or more fungicide from the groups A) to K), as described above, and if desired one suitable solvent or solid carrier.
  • Those mixtures are of particular interest, since many of them at the same application rate show higher efficiencies against harmful fungi.
  • the order of application is not essential for working of the present invention.
  • the time between both applications may vary e. g. between 2 hours to 7 days. Also a broader range is possible ranging from 0.25 hour to 30 days, preferably from 0.5 hour to 14 days, particularly from 1 hour to 7 days or from 1.5 hours to 5 days, even more preferred from 2 hours to 1 day.
  • the pesticide II is applied as last treatment.
  • the solid material (dry matter) of the biopesticides (with the exception of oils such as Neem oil) are considered as active components (e. g. to be obtained after drying or evaporation of the extraction or suspension medium in case of liquid formulations of the microbial pesticides).
  • the weight ratios and percentages used herein for a biological extract such as Quillay extract are based on the total weight of the dry content (solid material) of the respective extract(s).
  • the total weight ratios of compositions comprising at least one microbial pesticide in the form of viable microbial cells including dormant forms can be determined using the amount of CFU of the respective microorganism to calculate the total weight of the respective active component with the following equation that 1 ⁇ 10 10 CFU equals one gram of total weight of the respective active component.
  • Colony forming unit is measure of viable microbial cells, in particular fungal and bacterial cells.
  • CFU may also be understood as the number of (juvenile) individual nematodes in case of (entomopathogenic) nematode biopesticides, such as Steinernema feltiae.
  • the weight ratio of the component 1) and the component 2) generally depends from the properties of the active components used, usually it is in the range of from 1:10,000 to 10,000:1, often it is in the range of from 1:100 to 100:1, regularly in the range of from 1:50 to 50:1, preferably in the range of from 1:20 to 20:1, more preferably in the range of from 1:10 to 10:1, even more preferably in the range of from 1:4 to 4:1 and in particular in the range of from 1:2 to 2:1.
  • the weight ratio of the component 1) and the component 2) usually is in the range of from 1000:1 to 1:1, often in the range of from 100:1 to 1:1, regularly in the range of from 50:1 to 1:1, preferably in the range of from 20:1 to 1:1, more preferably in the range of from 10:1 to 1:1, even more preferably in the range of from 4:1 to 1:1 and in particular in the range of from 2:1 to 1:1.
  • the weight ratio of the component 1) and the component 2) usually is in the range of from 20,000:1 to 1:10, often in the range of from 10,000:1 to 1:1, regularly in the range of from 5,000:1 to 5:1, preferably in the range of from 5,000:1 to 10:1, more preferably in the range of from 2,000:1 to 30:1, even more preferably in the range of from 2,000:1 to 100:1 and in particular in the range of from 1,000:1 to 100:1.
  • the weight ratio of the component 1) and the component 2) usually is in the range of from 1:1 to 1:1000, often in the range of from 1:1 to 1:100, regularly in the range of from 1:1 to 1:50, preferably in the range of from 1:1 to 1:20, more preferably in the range of from 1:1 to 1:10, even more preferably in the range of from 1:1 to 1:4 and in particular in the range of from 1:1 to 1:2.
  • the weight ratio of the component 1) and the component 2) usually is in the range of from 10:1 to 1:20,000, often in the range of from 1:1 to 1:10,000, regularly in the range of from 1:5 to 1:5,000, preferably in the range of from 1:10 to 1:5,000, more preferably in the range of from 1:30 to 1:2,000, even more preferably in the range of from 1:100 to 1:2,000 to and in particular in the range of from 1:100 to 1:1,000.
  • the weight ratio of component 1) and component 2) depends from the properties of the active substances used, usually it is in the range of from 1:100 to 100:1, regularly in the range of from 1:50 to 50:1, preferably in the range of from 1:20 to 20:1, more preferably in the range of from 1:10 to 10:1 and in particular in the range of from 1:4 to 4:1, and the weight ratio of component 1) and component 3) usually it is in the range of from 1:100 to 100:1, regularly in the range of from 1:50 to 50:1, preferably in the range of from 1:20 to 20:1, more preferably in the range of from 1:10 to 10:1 and in particular in the range of from 1:4 to 4:1.
  • any further active components are, if desired, added in a ratio of from 20:1 to 1:20 to the component 1).
  • the application rates preferably range from about 1 ⁇ 10 6 to 5 ⁇ 10 16 (or more) CFU/ha, preferably from about 1 ⁇ 10 8 to about 1 ⁇ 10 13 CFU/ha, and even more preferably from about 1 ⁇ 10 9 to 5 ⁇ 10 15 CFU/ha and particularly preferred even more preferably from 1 ⁇ 10 12 to 5 ⁇ 10 14 CFU/ha.
  • (entomopathogenic) nematodes as microbial pesticides (e. g.
  • the application rates preferably range inform about 1 ⁇ 10 5 to 1 ⁇ 10 12 (or more), more preferably from 1 ⁇ 10 8 to 1 ⁇ 10 11 , even more preferably from 5 ⁇ 10 8 to 1 ⁇ 10 10 individuals (e. g. in the form of eggs, juvenile or any other live stages, preferably in an infective juvenile stage) per ha.
  • the application rates with respect to plant propagation material preferably range from about 1 ⁇ 10 6 to 1 ⁇ 10 12 (or more) CFU/seed.
  • the concentration is about 1 ⁇ 10 6 to about 1 ⁇ 10 9 CFU/seed.
  • the application rates with respect to plant propagation material also preferably range from about 1 ⁇ 10 7 to 1 ⁇ 10 14 (or more) CFU per 100 kg of seed, preferably from 1 ⁇ 10 9 to about 1 ⁇ 10 12 CFU per 100 kg of seed.
  • mixtures comprising as component 2) at least one active substance selected from inhibitors of complex III at Q o site in group A), more preferably selected from compounds (A.1.1), (A.1.4), (A.1.8), (A.1.9), (A.1.10), (A.1.12), (A.1.13), (A.1.14), (A.1.17), (A.1.21), (A.1.24), (A.1.25), (A.1.26), (A.1.27), (A.1.30), (A.1.31), (A.1.32), (A.1.34) and (A.1.35); particularly selected from (A.1.1), (A.1.4), (A.1.8), (A.1.9), (A.1.13), (A.1.14), (A.1.24), (A.1.25), (A.1.26), (A.1.27), (A.1.30), (A.1.31), (A.1.32), (A.1.34) and (A.1.35).1.30), (A.1.31), (A.1.32), (A.1.34) and
  • mixtures comprising as component 2) at least one active substance selected from inhibitors of complex III at Q i site in group A), more preferably selected from compounds (A.2.1), (A.2.3) and (A.2.4); particularly selected from (A.2.3) and (A.2.4).
  • mixtures comprising as component 2) at least one active substance selected from inhibitors of complex II in group A), more preferably selected from compounds (A.3.2), (A.3.3), (A.3.4), (A.3.7), (A.3.9), (A.3.11), (A.3.12), (A.3.15), (A.3.16), (A.3.17), (A.3.18), (A.3.19), (A.3.20), (A.3.21), (A.3.22), (A.3.23), (A.3.24), (A.3.25), (A.3.27), (A.3.28), (A.3.29), (A.3.31), (A.3.32), (A.3.33), (A.3.34), (A.3.35), (A.3.36), (A.3.37), (A.3.38) and (A.3.39); particularly selected from (A.3.2), (A.3.3), (A.3.4), (A.3.7), (A.3.9), (A.3.12), (A.3.15), (A.3.17), (A.3.1
  • mixtures comprising as component 2) at least one active substance selected from other respiration inhibitors in group A), more preferably selected from compounds (A.4.5) and (A.4.11); in particular (A.4.11).
  • mixtures comprising as component 2) at least one active substance selected from C14 demethylase inhibitors in group B), more preferably selected from compounds (B.1.4), (B.1.5), (B.1.8), (B.1.10), (B.1.11), (B.1.12), (B.1.13), (B.1.17), (B.1.18), (B.1.21), (B.1.22), (B.1.23), (B.1.25), (B.1.26), (B.1.29), (B.1.34), (B.1.37), (B.1.38), (B.1.43) and (B.1.46); particularly selected from (B.1.5), (B.1.8), (B.1.10), (B.1.17), (B.1.22), (B.1.23), (B.1.25), (B.1.33), (B.1.34), (B.1.37), (B.138), (B.1.43) and (B.1.46).
  • mixtures comprising as component 2) at least one active substance selected from Delta14-reductase inhibitors in group B), more preferably selected from compounds (B.2.4), (B.2.5), (B.2.6) and (B.2.8); in particular (B.2.4).
  • mixtures comprising as component 2) at least one active substance selected from phenylamides and acyl amino acid fungicides in group C), more preferably selected from compounds (C.1.1), (C.1.2), (C.1.4) and (C.1.5); particularly selected from (C.1.1) and (C.1.4).
  • mixtures comprising as component 2) at least one active substance selected from other nucleic acid synthesis inhibitors in group C), more preferably selected from compounds (C.2.6), (C.2.7) and (C.2.8).
  • mixtures comprising as component 2) at least one active substance selected from group D), more preferably selected from compounds (D.1.1), (D.1.2), (D.1.5), (D.2.4) and (D.2.6); particularly selected from (D.1.2), (D.1.5) and (D.2.6).
  • mixtures comprising as component 2) at least one active substance selected from group E), more preferably selected from compounds (E.1.1), (E.1.3), (E.2.2) and (E.2.3); in particular (E.1.3).
  • mixtures comprising as component 2) at least one active substance selected from group F), more preferably selected from compounds (F.1.2), (F.1.4) and (F.1.5).
  • mixtures comprising as component 2) at least one active substance selected from group G), more preferably selected from compounds (G.3.1), (G.3.3), (G.3.6), (G.5.1), (G.5.2), (G.5.3), (G.5.4), (G.5.5), G.5.6), G.5.7), (G.5.8), (G.5.9), (G.5.10) and (G.5.11); particularly selected from (G.3.1), (G.5.1), (G.5.2) and (G.5.3).
  • active substance selected from group G more preferably selected from compounds (G.3.1), (G.3.3), (G.3.6), (G.5.1), (G.5.2), (G.5.3), (G.5.4), (G.5.5), G.5.6), G.5.7), (G.5.8), (G.5.9), (G.5.10) and (G.5.11); particularly selected from (G.3.1), (G.5.1), (G.5.2) and (G.5.3).
  • mixtures comprising as component 2) at least one active substance selected from group H), more preferably selected from compounds (H.2.2), (H.2.3), (H.2.5), (H.2.7), (H.2.8), (H.3.2), (H.3.4), (H.3.5), (H.4.9) and (H.4.10); particularly selected from (H.2.2), (H.2.5), (H.3.2), (H.4.9) and (H.4.10).
  • mixtures comprising as component 2) at least one active substance selected from group I), more preferably selected from compounds (I.2.2) and (I.2.5).
  • mixtures comprising as component 2) at least one active substance selected from group J), more preferably selected from compounds (J.1.2), (J.1.5), (J.1.8), (J.1.11) and (J.1.12); in particular (J.1.5).
  • mixtures comprising as component 2) at least one active substance selected from group K), more preferably selected from compounds (K.1.41), (K.1.42), (K.1.44), (K.1.45), (K.1.47) and (K.1.49); particularly selected from (K.1.41), (K.1.44), (K.1.45), (K.1.47) and (K.1.49).
  • the biopesticides from group L1) and/or L2) may also have insecticidal, acaricidal, molluscidal, pheromone, nematicidal, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity.
  • the biopesticides from group L3) and/or L4) may also have fungicidal, bactericidal, viricidal, plant defense activator, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity.
  • the biopesticides from group L5) may also have fungicidal, bactericidal, viricidal, plant defense activator, insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity.
  • amyloliquefaciens spp. plantarum FZB24 isolated from soil in Brandenburg, Germany also called SB3615; DSM 96-2; J. Plant Dis. Prot. 105, 181-197, 1998; e. g. Taegro® from Novozyme Biologicals, Inc., USA
  • plantarum MBI600 isolated from faba bean in Sutton Bonington, Nottinghamshire, U.K. at least before 1988 (also called 1430; NRRL B-50595; US 2012/0149571 A1; e. g. Integral® from BASF Corp., USA), B. amyloliquefaciens spp. plantarum QST-713 isolated from peach orchard in 1995 in California, U.S.A. (NRRL B-21661; e. g. Serenade® MAX from Bayer Crop Science LP, USA), B. amyloliquefaciens spp. plantarumTJ1000 isolated in 1992 in South Dakoda, U.S.A.
  • pumilus INR-7 otherwise referred to as BU-F22 and BU-F33 isolated at least before 1993 from cucumber infested by Erwinia tracheiphila (NRRL B-50185, NRRL B-50153; U.S. Pat. No. 8,445,255), B. pumilus KFP9F isolated from the rhizosphere of grasses in South Africa at least before 2008 (NRRL B-50754; WO 2014/029697; e. g. BAC-UP or FUSION-P from BASF Agricultural Specialities (Pty) Ltd., South Africa), B.
  • pumilus QST 2808 was isolated from soil collected in Pohnpei, Federated States of Micronesia, in 1998 (NRRL B-30087; e. g. Sonata® or Ballad® Plus from Bayer Crop Science LP, USA), B. simplex ABU 288 (NRRL B-50304; U.S. Pat. No. 8,445,255), B. subtilis FB17 also called UD 1022 or UD10-22 isolated from red beet roots in North America (ATCC PTA-11857; System. Appl. Microbiol. 27, 372-379, 2004; US 2010/0260735; WO 2011/109395); B. thuringiensis ssp.
  • bassiana JW-1 (ATCC 74040; e. g. Naturalis® from CBC (Europe) S.r.l., Italy), B. bassiana PPRI 5339 isolated from the larva of the tortoise beetle Conchyloctenia punctata (NRRL 50757; e. g. BroadBand® from BASF Agricultural Specialities (Pty) Ltd., South Africa), Bradyrhizobium elkanii strains SEMIA 5019 (also called 29W) isolated in Rio de Janeiro, Brazil and SEMIA 587 isolated in 1967 in the State of Rio Grande do Sul, from an area previously inoculated with a North American isolate, and used in commercial inoculants since 1968 (Appl. Environ. Microbiol.
  • B. japonicum 532c isolated from Wisconsin field in U.S.A. (Nitragin 61A152; Can. J. Plant. Sci. 70, 661-666, 1990; e. g. in Rhizoflo®, Histick®, Hicoat® Super from BASF Agricultural Specialties Ltd., Canada), B. japonicum E-109 variant of strain USDA 138 (INTA E109, SEMIA 5085; Eur. J. Soil Biol. 45, 28-35, 2009; Biol. Fertil. Soils 47, 81-89, 2011); B.
  • SEMIA 5079 isolated from soil in Cerrados region, Brazil by Embrapa-Cerrados used in commercial inoculants since 1992 (CPAC 15; e. g. GELFIX 5 or ADHERE 60 from BASF Agricultural Specialties Ltd., Brazil), B. japonicum SEMIA 5080 obtained under lab conditions by Embrapa-Cerrados in Brazil and used in commercial inoculants since 1992, being a natural variant of SEMIA 586 (CB1809) originally isolated in U.S.A. (CPAC 7; e. g.
  • HearNPV Helicoverpa armigera nucleopolyhedrovirus
  • HNSNPV Helicoverpa armigera nucleopolyhedrovirus
  • HzSNPV Helicoverpa zea single capsid nucleopolyhedrovirus
  • ABA-NPV-U Helicoverpa zea nucleopolyhedrovirus ABA-NPV-U
  • Heterorhabditis bacteriophora e. g. Nemasys® G from BASF Agricultural Specialities Limited, UK
  • Isaria fumosorosea Apopka-97 isolated from mealy bug on gynura in Apopka, Fla., U.S.A. ATCC 20874; Biocontrol Science Technol. 22(7), 747-761, 2012; e. g. PFR-97TM or PreFeRal® from Certis LLC, USA
  • Metarhizium anisopliae var. anisopliae F52 also called 275 or V275 isolated from codling moth in Austria (DSM 3884, ATCC 90448; e.
  • ClarivaTM PN from Syngenta Crop Protection, LLC, USA
  • Penicillium bilaiae also called P. bilaii
  • ATCC 18309 ATCC 74319
  • ATCC 20851 ATCC 20851
  • ATCC 22348 ATCC 743178
  • WO 1995/017806 e. g. Jump Start®, Provide® from Novozymes Biologicals BioAg Group, Canada
  • Reynoutria sachalinensis extract EP 0307510 B1; e. g. Regalia® SC from Marrone BioInnovations, Davis, Calif., USA or Milsana® from BioFa AG, Germany
  • Steinernema carpocapsae e. g. Millenium® from BASF Agricultural Specialities Limited, UK
  • S. feltiae e. g.
  • the at least one pesticide II is selected from the groups L1) to L5):
  • the present invention furthermore relates to agrochemical compositions comprising a mixture of XXX (component 1) and at least one biopesticide selected from the group L) (component 2), in particular at least one biopesticide selected from the groups L1) and L2), as described above, and if desired at least one suitable auxiliary.
  • the present invention furthermore relates to agrochemical compositions comprising a mixture of XXX (component 1) and at least one biopesticide selected from the group L) (component 2), in particular at least one biopesticide selected from the groups L3) and L4), as described above, and if desired at least one suitable auxiliary.
  • mixtures comprising as pesticide II (component 2) a biopesticide selected from the groups L1), L3) and L5), preferably selected from strains denoted above as (L.1.2), (L.1.3), (L.1.4), (L.1.5), (L.1.6), (L.1.7), (L.1.8), (L.1.10), (L.1.11), (L.1.12), (L.1.13), (L.1.14), (L.1.15), (L.1.17), (L.1.18), (L.1.19), (L.1.20), (L.1.21), (L.3.1); (L.3.9), (L.3.16), (L.3.17), (L.5.1), (L.5.2), (L.5.3), (L.5.4), (L.5.5), (L.5.6), (L.5.7), (L.5.8); (L.4.2), and (L.4.1); even more preferably selected from (L.1.2), (L.1.6), (L.1.7), (L.1.8), (L.1.11),
  • mixtures comprising as pesticide II (component 2) a biopesticide selected from the groups L1), L3) and L5), preferably selected from strains denoted above as (L1.1), (L.1.2), (L.1.3), (L.1.6), (L.1.7), (L.1.9), (L.1.11), (L.1.12), (L.1.13), (L.1.14), (L.1.15), (L.1.17), (L.1.18), (L.1.22), (L.1.23), (L.1.24), (L.2.2); (L.3.2), (L.3.3), (L.3.4), (L.3.5), (L.3.6), (L.3.7), (L.3.8), (L.3.10), (L.3.11), (L.3.12), (L.3.13), (L.3.14), (L.3.15), (L.3.18), (L.3.19); (L.4.2), even more preferably selected from (L.1.2), (L.1.7), (L.1.11), (L.1.11), (L
  • the mixtures of active substances can be prepared as compositions comprising besides the active ingredients at least one inert ingredient (auxiliary) by usual means, e. g. by the means given for the compositions of compounds I. Concerning usual ingredients of such compositions reference is made to the explanations given for the compositions containing compounds I.
  • the microbial pesticides selected from groups L1), L3) and L5) embrace not only the isolated, pure cultures of the respective microorganism as defined herein, but also its cell-free extract, its suspensions in a whole broth culture or as a metabolite-containing culture medium or a purified metabolite obtained from a whole broth culture of the microorganism.
  • compositions When living microorganisms, such as pesticides II from groups L1), L3) and L5), form part of the compositions, such compositions can be prepared as compositions comprising besides the active ingredients at least one auxiliary by usual means (e. g. H. D. Burges: Formulation of Micobial Biopesticides, Springer, 1998).
  • Suitable customary types of such compositions are suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof.
  • Examples for composition types are suspensions, capsules, pastes, pastilles, wettable powders or dusts, pressings, granules, insecticidal articles, as well as gel formulations.
  • each formulation type or choice of auxiliary should not influence the viability of the microorganism during storage of the composition and when finally applied to the soil, plant or plant propagation material.
  • Suitable formulations are e. g. mentioned in WO 2008/002371, U.S. Pat. Nos. 6,955,912, 5,422,107.
  • the active compounds were formulated separately as a stock solution having a concentration of 10000 ppm in dimethyl sulfoxide.
  • the stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
  • a spore suspension of Botrci cinerea in a DOB medium solution was then added.
  • the plates were placed in a water vapor-saturated chamber at a temperature of 18° C. Using an absorption photometer, the MTPs were measured at 405 nm 9 days after the inoculation.
  • the stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
  • MTP micro titer plate
  • a spore suspension of Pyricularia oryzae in a DOB medium solution was then added.
  • the plates were placed in a water vapor-saturated chamber at a temperature of 18° C. Using an absorption photometer, the MTPs were measured at 405 nm 9 days after the inoculation.
  • the measured parameters were compared to the growth of the active compound-free control variant (100%) and the fungus-free and active compound-free blank value to determine the relative growth in % of the pathogens in the respective active compounds.
  • the stock solution were prepared: a mixture of acetone and/or dimethylsulfoxide and the wetting agent/emulsifier Wettol, which is based on ethoxylated alkylphenoles, in a relation (volume) solvent-emulsifier of 99 to 1 was added to 25 mg of the compound to give a total of 5 ml.
  • Wettol which is based on ethoxylated alkylphenoles
  • This stock solution was diluted with the described solvent-emulsifier-water mixture to the given concentration.
  • Example 1 Preventative Fungicidal Control of Botrytis cinerea on Leaves of Green Pepper
  • Young seedlings of green pepper were grown in pots to the 4 to 5 leaf stage. These plants were sprayed to run-off with an aqueous suspension, containing the concentration of active ingredient or their mixture mentioned in the table below. The next day the plants were inoculated with an aqueous biomalt solution containing the spore suspension of Botrytis cinerea . Then the plants were immediately transferred to a humid chamber. After 5 days at 22 to 24° C. and a relative humidity close to 100% the extent of fungal attack on the leaves was visually assessed as % diseased leaf area.
  • Young seedlings of green pepper were grown in pots to the 4 to 5 leaf stage. These plants were sprayed to run-off with an aqueous suspension, containing the concentration of active ingredient or their mixture mentioned in the table below. The plants were then cultivated in the greenhouse for 7 days and then inoculated with an aqueous biomalt solution containing the spore suspension of Botrytis cinerea . Then the plants were immediately transferred to a humid chamber. After 5 days at 22 to 24° C. and a relative humidity close to 100% the extent of fungal attack on the leaves was visually assessed as % diseased leaf area.

Abstract

The present invention relates to compounds of formula I
Figure US20200187500A1-20200618-C00001
wherein the variables are defined as given in the description and claims. The invention further relates to uses and composition for compounds of formula I.

Description

  • The present invention relates to pyridine compounds and the N-oxides and the salts thereof for combating phytopathogenic fungi, and to the use and methods for combating phytopathogenic fungi and to seeds coated with at least one such compound. The invention also relates to processes for preparing these compounds, intermediates, processes for preparing such intermediates, and to compositions comprising at least one compound I.
  • In many cases, in particular at low application rates, the fungicidal activity of the known fungicidal compounds is unsatisfactory. Based on this, it was an object of the present invention to provide compounds having improved activity and/or a broader activity spectrum against phytopathogenic harmful fungi.
  • Surprisingly, this object is achieved by the use of the inventive pyridine compounds of formula I having favorable fungicidal activity against phytopathogenic fungi.
  • Accordingly, the present invention relates to the compounds of formula I
  • Figure US20200187500A1-20200618-C00002
  • wherein
    • R1 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein
      • Rx is C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl or aryl that is substituted by 1, 2, 3, 4 or 5 substituents Rx1 independently selected from C1-C4-alkyl, halogen, OH, CN, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
      • wherein the aliphatic moieties of R1 are unsubstituted or substituted with identical or different groups R1a which independently of one another are selected from:
      • R1a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl group is unsubstituted or carries 1, 2, 3, 4 or 5 substituents R11a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
      • wherein the cycloalkyl, heteroaryl and aryl moieties of R1 are not further substituted or carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups R1b which independently of one another are selected from:
      • R1b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
    • R2 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein
      • Rx is C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl or aryl that is substituted by 1, 2, 3, 4 or 5 substituents Rx1 independently selected from C1-C4-alkyl, halogen, OH, CN, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
      • wherein the aliphatic moieties of R2 are unsubstituted or substituted with identical or different groups R2a which independently of one another are selected from:
      • R2a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl group is unsubstituted or carries 1, 2, 3, 4 or 5 substituents R11a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
      • wherein the cycloalkyl, heteroaryl and aryl moieties of R1 are not further substituted or carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups R2b which independently of one another are selected from:
      • R2b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
    • R3 is in each case independently selected from CH3, CH2F, CHF2 and CF3;
    • R4 is independently selected from halogen, OH, CN, NO2, SH, C1-C6-alkylthio, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S), and wherein the heterocycle and the heteroaryl contain independently one, two, three or four heteroatoms selected from N, O and S; and wherein R′ and R″ are independently selected from H, C1-C4-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- and heterocycle, five- or six-membered heteroaryl or aryl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S, and wherein R′ and R″ are independently unsubstituted or substituted by R′″ which is independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and phenyl; or
      • wherein the aliphatic moieties of and R4 are independently not further substituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R4a, respectively, which independently of one another are selected from:
      • R4a halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkoxy, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, S(O)n-aryl, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, aryl, phenoxy, a five-, six- or ten-membered heteroaryl; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S), five- or six-membered heteroaryl and aryl; wherein the heterocycle and the heteroaryl contain independently 1, 2, 3 or 4 heteroatoms selected from N, O and S; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S); wherein the carbocyclic, heterocyclic, aryl and phenyl groups are independently unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkylthio, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, and S(O)n—C1-C6-alkyl; and wherein Rx, R′, R″ and R″ are as defined above
      • wherein the carbocyclic, heterocyclic, heteroaryl and aryl moieties of R4 are independently not further substituted or carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups R4b, respectively, which independently of one another are selected from:
      • R4b halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or substituted with substituents selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
      • and wherein Rx is as defined above; or
      • n is 0, 1, 2 or
    • R3, R4 together with the carbon atom to which they are bound (marked with * in formula I) form a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle; wherein the heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, O and S, wherein N may carry one substituent RN selected from C1-C4-alkyl, C1-C4-halogenalkyl and SO2Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted by 1, 2 or 3 substituents selected from CN, C1-C4-alkyl, halogen, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy; and wherein S may be in the form of its oxide SO or SO2, and wherein the carbocycle or heterocycle is unsubstituted or carries one, two, three or four substituents R34 independently selected from halogen, OH, CN, NO2, SH, NH2, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or substituted with substituents R34a selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S);
    • R5, R6 is hydrogen,
    • R7, R8 together with the carbon atoms to which they are bound form a ring A, wherein the ring A is phenyl or five- or six-membered heteroaryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S, and wherein the ring A is substituent by (R78)o, wherein
      • o is 0, 1, 2 or 3; and
      • R78 are independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, CH(═O), C(═O)C1-C6-alkyl, C(═O)NH(C1-C6-alkyl), CR′═NOR″, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, S(O)n—C1-C6-alkyl, three-, four-, five- or six-membered saturated or partially unsaturated heterocycle, five- or six-membered heteroaryl and phenyl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein n, R′ and R″ is as defined above;
        • and
        • wherein the aliphatic moieties of R78 are not further substituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R78a which independently of one another are selected from:
        • R78a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halogencycloalkyl, C3-C6-halogencycloalkenyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, five- or six-membered heteroaryl, phenyl and phenoxy, wherein the heteroaryl, phenyl and phenoxy group is unsubstituted or substituted with R78aa selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
        • wherein the alicyclic, phenyl, heterocyclic and heteroaryl moieties of R78 are unsubstituted or substituted with identical or different groups R78b which independently of one another are selected from:
        • R78b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, and C1-C6-alkylthio;
    • R9 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C2-C4-alkenyl), N(C2-C4-alkenyl)2, NH(C2-C4-alkynyl), N(C2-C4-alkynyl)2, NH(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, N(C1-C4-alkyl)(C2-C4-alkenyl), N(C1-C4-alkyl)(C2-C4-alkynyl), N(C1-C4-alkyl)(C3-C6-cycloalkyl), N(C2-C4-alkenyl)(C2-C4-alkynyl), N(C2-C4-alkenyl)(C3-C6-cycloalkyl), N(C2-C4-alkynyl)(C3-C6-cycloalkyl), NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, S(O)n—C1-C6-alkyl, S(O)n-aryl, C1-C6-cycloalkylthio, S(O)n—C2-C6-alkenyl, S(O)n—C2-C6-alkynyl, CH(═O), C(═O)C1-C6-alkyl, C(═O)C2-C6-alkenyl, C(═O)C2-C6-alkynyl, C(═O)C3-C6-cycloalkyl, C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, C(═O)N(C2-C6-alkenyl)2, C(═O)N(C2-C6-alkynyl)2, C(═O)N(C3-C7-cycloalkyl)2, CH(═S), C(═S)C1-C6-alkyl, C(═S)C2-C6-alkenyl, C(═S)C2-C6-alkynyl, C(═S)C3-C6-cycloalkyl, C(═S)O(C2-C6-alkenyl), C(═S)O(C2-C6-alkynyl), C(═S)O(C3-C7-cycloalkyl), C(═S)NH(C1-C6-alkyl), C(═S)NH(C2-C6-alkenyl), C(═S)NH(C2-C6-alkynyl), C(═S)NH(C3-C7-cycloalkyl),C(═S)N(C1-C6-alkyl)2, C(═S)N(C2-C6-alkenyl)2, C(═S)N(C2-C6-alkynyl)2, C(═S)N(C3-C7-cycloalkyl)2, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, ORY, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein
    • Rx is as defined above;
      • RY is C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, phenyl and phenyl-C1-C6-alkyl; wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
      • wherein the acyclic moieties of R9 are unsubstituted or substituted by groups R9a which independently of one another are selected from:
      • R9a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio and phenoxy, wherein the phenyl group is unsubstituted or substituted by substituents R91a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
      • wherein the carbocyclic, heteroaryl and aryl moieties of R9 are unsubstituted or substituted by groups R9b which independently of one another are selected from:
      • R9b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
      • and wherein n is defined as above
    • R10 is in each case independently selected from the substituents as defined for R9, wherein the possible substituents for R10 are R10a and R10b, respectively, which correspond to R9a and R9b, respectively;
    • R9, R10 together with the carbon atoms to which they are bound form a five-, six-, or seven-membered carbo-, heterocyclic or heteroaromatic ring; wherein the heterocyclic or heteroaromatic ring contains 1, 2, 3 or 4 heteroatoms selected from N, O and S, wherein N may carry one substituent RN selected from C1-C4-alkyl, C1-C4-halogenalkyl and SO2Ph, wherein Ph is unsubstituted or substituted by substituents selected from C1-C4-alkyl, halogen, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, and CN; and wherein S may be in the form of its oxide SO or SO2; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S); and wherein the carbo-, heterocyclic or heteroaromatic ring is substituent by (R11)m, wherein m is 0, 1, 2, 3 or 4;
    • R11 is in each case independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- and heterocycle, five- or six-membered heteroaryl and aryl; wherein the heterocycle and heteroaryl contains 1, 2 or 3 heteroatoms selected from N, O and S; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S); and wherein
      • Rx is as defined above;
        wherein the acyclic moieties of R11 are unsubstituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R11a which independently of one another are selected from:
      • R11a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio and phenoxy, wherein the phenyl group is unsubstituted or unsubstituted or substituted with R11a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, CN, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-alkylthio;
        wherein the carbocyclic, heterocyclic, heteroaryl and aryl moieties of R11 are unsubstituted or substituted with identical or different groups R11b which independently of one another are selected from:
      • R11b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, and C1-C6-alkylthio;
    • R12 is in each case independently selected from hydrogen, OH, CH(═O), C(═O)C1-C6-alkyl, C(═O)C2-C6-alkenyl, C(═O)C2-C6-alkynyl, C(═O)C3-C6-cycloalkyl, C(═O)O(C1-C6-alkyl), C(═O)O(C2-C6-alkenyl), C(═O)O(C2-C6-alkynyl), C(═O)O(C3-C6-cycloalkyl), C(═O)NH(C1-C6-alkyl), C(═O)NH(C2-C6-alkenyl), C(═O)NH(C2-C6-alkynyl), C(═O)NH(C3-C6-cycloalkyl), C(═O)N(C1-C6-alkyl)2, C(═O)N(C2-C6-alkenyl)2, C(═O)N(C2-C6-alkynyl)2, C(═O)N(C3-C6-cycloalkyl)2, CH(═S), C(═S)C1-C6-alkyl, C(═S)C2-C6-alkenyl, C(═S)C2-C6-alkynyl, C(═S)C3-C6-cycloalkyl, C(═S)O(C1-C6-alkyl), C(═S)O(C2-C6-alkenyl), C(═S)O(C2-C6-alkynyl), C(═S)O(C3-C6-cycloalkyl), C(═S)NH(C1-C6-alkyl), C(═S)NH(C2-C6-alkenyl), C(═S)NH(C2-C6-alkynyl), C(═S)NH(C3-C6-cycloalkyl), C(═S)N(C1-C6-alkyl)2, C(═S)N(C2-C6-alkenyl)2, C(═S)N(C2-C6-alkynyl)2, C(═S)N(C3-C6-cycloalkyl)2, C1-C6-alkyl, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, ORY, C1-C6-alkylthio, C1-C6-halogenalkylthio, C2-C6-alkenyl, C2-C6-halogenalkenyl C2-C6-alkynyl, C2-C6-halogenalkynyl, S(O)n—C1-C6-alkyl, S(O)n—C1-C6-halogenalkyl, S(O)n—C1-C6-alkoxy, S(O)n—C2-C6-alkenyl, S(O)n—C2-C6-alkynyl, S(O)naryl, SO2—NH(C1-C6-alkyl), SO2—NH(C1-C6-halogenalkyl), SO2—NH-aryl, tri-(C1-C6 alkyl)silyl and di-(C1-C6 alkoxy)phosphoryl), five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein the aryl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
      • RY is defined as above;
      • wherein the acyclic moieties of R12 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R12a which independently of one another are selected from:
      • R12a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halogencycloalkyl, C3-C6-halogencycloalkenyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, five- or six-membered heteroaryl, phenyl and phenoxy, wherein the heteroaryl, phenyl and phenoxy group is unsubstituted or carries one, two, three, four or five substituents R78a′ selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
        • wherein the alicyclic, phenyl, heterocyclic and heteroaryl moieties of R12 are not further substituted or carry one, two, three, four, five or up to the maximum number of identical or different groups R12b which independently of one another are selected from:
      • R12b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
      • and wherein n is defined as above;
        with the proviso that if R7, R8 together with the carbon atoms to which they are bound form a ring A, wherein the ring A is phenyl
    • R1 is hydrogen; and
    • R4 cannot be an unsubstituted C1-C6-alkyl;
      and the N-oxides and the agriculturally acceptable salts thereof.
  • The numbering of the ring members in the compounds of the present invention is as given in formula I above:
  • Figure US20200187500A1-20200618-C00003
  • Compounds of formula I, when R12 is not proton, can be accessed e.g. starting from compounds of the formula I-1 (R12 is proton) A skilled person will realize that compounds of type I can be reached via reaction with a reactive group R12—W. Reactive groups are preferably C1-C8-alkyl halides, C2-C6-alkenyl halides, C2-C6-alkynyl halides, benzyl halides, aldehydes, ester, acid chlorides, amides, sulfates, silyl halides or phosphates, e.g. carboxylic acid (W═OH), aldehydes (W═H), acid chloride (W═Cl), amides (W═NMe2) or phosphates (W═OCH3).
  • Figure US20200187500A1-20200618-C00004
  • Typically the reaction is performed in a range between 0° C. and ambient temperature in the presence of a reactive group and organic base. Suitable base preferably NEt3, pyridine NaOH, TEBAC, K2CO3, NaCO3 or KOH. Most preferably solvents are THF, DMF, DMSO, MeOH or water (see for example, Journal of Medicinal Chemistry, 1989, 32(6), 1242-1248; European Journal of Medicinal Chemistry, 2009, 44(10), 4034-4043).
  • Compounds of formula I-1 can be accessed e.g. starting from compounds of the formula II via a reduction agent in an organic solvent (see for example WO2009095253, WO2008143263). Reduction agent can be for example NaBH4 or NaCNBH3.Typically the reaction is performed in a range between 0° C., room temperature and 60° C. in an organic solvent, such as THF, dichloromethane, acetonitrile, MeOH, EtOH or water or in a mixture of organic solvent and water.
  • Figure US20200187500A1-20200618-C00005
  • Compounds of formula II can be also reduced to I-1 via hydrogenation by using a metal catalyst in an organic solvent, water or a mix of water and organic solvent (see for example ChemCatChem, 5(10), 2939-2945; 2013; Organic Letters, 17(12), 2878-2881; 2015). As metal catalyst can be used for example Ru, Ir, and Pd, with or without ligands such as phosphines, phosphates, cyclooctadiene, diamines and imidazoles. The reaction can take place at temperature from 0° C. to 100° C. Preferable organic solvent are methanol, acetone, dichloromethane, 2,2,2-trifluoroethanol or DMF. The reaction can also take place the presence of an acid for example HCO2H, trifluoro acetic acid and acetic acid.
  • Compounds of the formula II can be provided e.g. starting from alcohols of type III with nitriles of type IV in the presence of an acid in an organic solvent (see for example US 2008/0275242 or WO2005/070917). Preferably, sulfuric acid or a sulfonic acid, in particular triflic acid, are used as acid. Most suitable solvents are hydrocarbons, preferably benzene or dichloromethane.
  • Figure US20200187500A1-20200618-C00006
  • Depending on the nature of the starting materials, the reaction is performed at a temperature from −40° C. to 200° C., in particular from −10° C. to 120° C., more specifically from 0° C. to 100° C., even more specifically from room or ambient temperature (about 23° C.) to 80° C.
  • Nitriles of type IV are either commercially available or can be prepared by a skilled person from the corresponding halides following literature procedures (see, for example Journal of Organic Chemistry, 76(2), 665-668; 2011; Angewandte Chemie, International Edition, 52(38), 10035-10039; 2013; WO2004/013094).
  • Alcohols of type III can be prepared as described below. A skilled person will realize that compounds of type V can be reacted with organometallic reagents, preferably alkyl Grignard or alkyl-Lithium reagents, in ethereal solvents, preferably THF at low temperatures and under inert conditions to furnish compounds of type III.
  • Figure US20200187500A1-20200618-C00007
  • Alternatively, alcohols of type III can be prepared from epoxides Va and compounds VI (see below):
  • Figure US20200187500A1-20200618-C00008
  • The metalation reaction may preferably be carried out using Lithium-organic compounds, such as for example n-butyl lithium, sec-butyl lithium or tert-butyl lithium to result in an exchange of halogen by lithium. Also suitable is the reaction with magnesium resulting in the formation of the respective Grignard reagents. A further possibility is the use of other Grignard reagents such as isopropyl-magnesium-bromide instead of Mg.
  • A typical preparation of compounds of type III can be achieved by reacting compounds of type VII with organometallic reagents, preferably alkyl Grignard or alkyl-Lithium reagents, in ethereal solvents, preferably THF at low temperatures and under inert conditions to furnish compounds of type IV as previously reported (see for example WO2012051036; WO2011042918).
  • Figure US20200187500A1-20200618-C00009
  • Compounds of type VII can be accessed by reacting a carbonyl compound of type VIII, preferably a carboxylic acid (X═OH) or an acid chloride (X═Cl), with NH(OR′)R″, wherein R′ and R″ are selected from (C1-C4)-alkyl, most preferably being methyl, in an organic solvent, preferably THF or dichloromethane. Typically the reaction is performed in a range between 0° C. and ambient temperature in the presence of an organic base, preferably NEt3 or pyridine (see e.g. US 20130324506; Tetrahedron: Asymmetry, 17(4), 508-511; 2006). If X═OH, the addition of an activating reagent, preferably a carbodiimide, may be preferred (see for example ChemMedChem, 7(12), 2101-2112; 2012; 2011038204; Journal of Organic Chemistry, 76(1), 164-169; 2011).
  • Figure US20200187500A1-20200618-C00010
  • If required, compounds of type VIII can be prepared from the corresponding aryl halides of type IX (Hal is halogen, preferably Br or I). As described (Tetrahedron, 68(9), 2113-2120; 2012; Chemical Communications (Cambridge, United Kingdom), 49(60), 6767-6769; 2013), aryl halides VI will react with compounds of type IX in the presence of a transition metal catalyst, preferably a copper(I) salt, in an organic solvent, preferably DMF or DMSO, at elevated temperatures. Typically a base, preferably potassium phosphate, is added.
  • Figure US20200187500A1-20200618-C00011
  • If appropriate, compounds of type III can be prepared as follows. A known or commercially available carbonyl compound can be reacted with an organometallic reagent of type X, preferably a Grignard or an organolithium reagent, readily prepared by a skilled person. Preferably, the reaction is performed in a temperature range from −78° C. to room temperature under inert conditions in an ethereal solvent.
  • Figure US20200187500A1-20200618-C00012
  • Alternatively compounds II can also be accessed by reacting a nitrile IV with an olefin IIIa under acidic conditions as described elsewhere (U.S. Pat. No. 7,632,783, B2, page 60, method A).
  • Figure US20200187500A1-20200618-C00013
  • Alternatively compounds II can be prepared via intramolecular reaction of amide XI with an electron-rich heterocycle or aryl group. The intramolecular cyclization will take place in the presence of a dehydrating agent in an organic solvent (WO 2008143263, Synthetic Communications 2007, 37, 1331-1338.). Preferably, phosphoryl chloride (POCl3), POCl3/P2O5, H3PO4/P2O5, SnCl4 or BF3 are used as dehydrating agent. Most suitable solvents are hydrocarbons, preferably benzene, toluene or acetonitrile. Alternatively halogenated solvents can be used, for example dichloromethane, chloroform or chlorobenzene.
  • Figure US20200187500A1-20200618-C00014
  • Depending on the nature of starting materials, the reaction is performed at temperature from −40° c. to 200° C., in particular from −10° C. to 120° C., more specifically from 0° C. to 100° C., even more specifically from room temperature to 100° C.
  • Amides of type XI can accessed by reacting a carbonyl of type XII, preferably a carboxylic acid (X═OH) or an acid chloride (X═Cl), with an amines of type XIII in an organic solvent, preferably THF or dichloromethane. Typically the reaction is performed in a range between 0° C. and room temperature in the presence of an organic base, preferably N(C2H5)3 or pyridine (see e.g. WO 8303968). If X═OH, the addition of an activating agent, preferably a carbodiimide or acid chloride, may be preferred (see e.g Bioorganic & Medicinal Chemistry, 2010, 18, 3088-3115).
  • Figure US20200187500A1-20200618-C00015
  • If required, compounds of type XIII can be synthesized from the correspond nitriles. As described Synlett. 2007, 4 652-654 or Tetrahedron 2012, 68, 2696-2703, nitriles will react with organometallic agents X, preferably Grignard or Lithium reagent, in ethereal solvents, preferably THF at low temperature and under inert conditions to furnish compounds of type XIII. The synthesis of compounds of type XIII can take place in two steps or one pot.
  • Figure US20200187500A1-20200618-C00016
  • Alternatively, amines of type XIII can synthesized via formation of the correspond carboxylic azide and quench with water (Journal of the American Chemical Society, 1949, 71, 2233-7; Journal of the American Chemical Society, 1990, 112, 297-304) or via Grignard addition to imine (Tetrahedron Letters, 1992, 33, 1689-92; US20030216325)
  • Compound of type II can be also synthesized via Suzuki coupling of halides of type XIV with a boronic acid XV (see for example, Journal of Fluorine Chemistry, 2010, 131, 856-860); wherein R31 and R41 together with the groups they are attached to form a tetramethyl-1,3,2-dioxaborolane-ring or independently from one another mean hydrogen or C1-C6-alkyl to yield compounds I.A.1.
  • Figure US20200187500A1-20200618-C00017
  • Compounds of type XIV, wherein Hal is halogen, preferably chloro and bromo, can be obtained by transformation of an amide of type XVI with a halogenating reagent, such as phosphorus oxachloride, phosphorus pentachloride, phosphoric trichloride, phosphorus oxybromide, thionyl chloride or Vilsmeier reagent. The reaction takes place in the presence of an organic solvent, preferably THF, benzene, CCl4, or dichloromethane. Typically the reaction is performed in a range between 0° C. to 180° C. (see as reference, Journal of Medicinal Chemistry, 2004, 47, 663-672; Journal of Organic Chemistry, 1980, 45, 80-89; Bulletin des Societes Chimiques Belges, 1991, 100, 169-174).
  • Figure US20200187500A1-20200618-C00018
  • Amides of type XVI can be prepared from compounds of type XVII, wherein Rx is a C1-C6-alkyl. The reaction takes places in the presence of acid, preferably acetic acid, HCl, triflic acid or a mixture of sodium acetate and acetic acid. Typically the reaction in performed net or in polar solvents, preferably in water, methanol or acetonitrile (see WO2016/156085; Pharmaceutical Chemistry Journal, 2005, 39, 405-408).
  • Figure US20200187500A1-20200618-C00019
  • Alternatively, compounds of type XIV can be direct synthesized from compounds of type XVII in the presence of a halogenating reagent, such as sulfonyl chloride. The reaction takes places neat or in organic solvents, such as chloroform, dichloromethane or acetonitrile, in a range of temperature from 0° C. to room temperature (see, Tetrahedrons Letters, 2010, 51, 4609; Tetrahedron Letters, 1986, 27(24), 2743-6).
  • Compounds of type XVII can also be obtained by the reaction of alcohol III or alkene IIIa and a C1-C6-alkyl thiocyanate under acidic conditions, see for example Bioorganic & Medicinal Chemistry Letters, 2013, 23(7), 2181-2186; Pharmaceutical Chemistry Journal, 2005, 39, 405-408. Preferably acids are sulfuric acid, HCl or trific acid. The reaction takes place most preferably in water, dichloromethane, toluene or a mixture of solvents, in a range of temperatures from 0° C. to 110° C.
  • Figure US20200187500A1-20200618-C00020
  • Compounds of type XIVa can be synthesized via ring expansion of oxime XVIII in the presence of an acid. Most suitable acids are for example, sulfuric acid, polyphosphoric acid or POCl3. Typically the reaction in performed net or in a polar solvents, preferably in water, methanol or acetonitrile (see Bioorganic & Medicinal Chemistry Letters, 2002, 12(3), 387-390; Medicinal Chemistry Research, 2015, 24(2), 523-532).
  • Figure US20200187500A1-20200618-C00021
  • Oxime of type XVIII can be easily prepared from ketone of type XIX in the presence of hydroxylamine or hydroxylamine hydrochloride in polar solvents such as water, pyridine, ethanol or methanol. The reaction can take place in the presence of absence of a base, such as sodium acetate or sodium hydroxide, in a range of temperatures from room temperature to 120° C. (Journal of Organic Chemistry, 2016, 81(1), 336-342).
  • Figure US20200187500A1-20200618-C00022
  • Ketone of type XIX are either commercial available or readily prepared by a skilled person.
  • Alternatively compounds II-3 can be synthesized from compounds XX, which are commercially available or can be synthesized according to procedures known in literature, in which X1 denotes for hydrogen or halogen (Cl, Br, I).
  • Compounds XXI (and X1 denotes for halogen (Cl, Br, I) or C1-C6-alkoxycarbonyl) can be metalated with Grignard-reagents (X3 denotes for Cl, Br or I), for example methyl magnesium-X3, ethyl magnesium-X3, isopropyl-magnesium-X3 and phenyl magnesium X3 among others, or lithium organic reagents like methyl-lithium, ethyl-lithium, butyl-lithium and phenyl-lithium among others, and reacted with compounds XXII to yield derivatives XX, whereas R31 and R41 independently from each other denote for C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, five- or six-membered heteroaryl and aryl.
  • Figure US20200187500A1-20200618-C00023
  • Subsequently compounds XX (X2═Cl, Br, I) can be reacted with carbon monoxide yielding esters XXIII following published literature (Science of Synthesis (2014), 2, 67-93; Comprehensive Inorganic Chemistry 11 (2013), 6, 1-24; RSC Catalysis Series (2015), 21 (New Trends in Cross-Coupling), 479-520; Metal-catalyzed Cross-Coupling Reactions and More (Editor: A. De Meijere) (2014), 1, 133-278; Domino Reactions (Editor L. Tietze) (2014), 7-30; Synthesis 2014, 46 (13), 1689-1708; RSC Advances (2014), 4 (20), 10367-10389), for example using Pd-catalyst (i.e. Pd(dppf)Cl2 ([1,1′-bis(diphenylphosphino)ferrocene]dichloropalladium(II)) and sodium methanolat in methanol under elevated pressure (10-200 bar) of carbon monoxide.
  • Figure US20200187500A1-20200618-C00024
  • Compounds XXIII can be hydrolyzed using acidic or basic conditions, for example hydrochloric or sulfuric acid, or sodium or potassium carbonate, hydrogen carbonate or hydroxide in water or solvent mixtures with water and alcoholic solvents (preferably methanol, ethanol, isopropanol), or acetonitrile, acetone, dimethylformamide or N-methyl pyrrolidine, at temperatures from 0° C. to 100° C. yielding intermediates XXIV.
  • Figure US20200187500A1-20200618-C00025
  • Intermediates XXIV can be activated with reagents like HATU (1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate), CDI (1,1′-Carbonyldiimidazole), DCC (N,N′-Methanetetraylbis[cyclohexanamine]) and others known in literature (Eur. JOC 2013, 4325; Tetrahedron 2004, 60, 2447; Tetrahedron 2005, 61, 10827; Chem. Soc. Rev. 2009, 38, 606; Chem. Rev. 2011, 111, 6557) to further react and yield compounds XXV.
  • Figure US20200187500A1-20200618-C00026
  • Furthermore compounds XXV are oxidized with MnO2, hypochlorite, activated DMSO, Cr(VI)-containing reagents or employing other oxidizing conditions known in literature (Korean Chemical Society (2015), 36(12), 2799; Hudlicky, Oxidations in Organic Chemistry, American Chemical Society, Washington D.C., 1990; Acc. Chem. Res. 2002, 35, 774; JACS 1984, 106, 3374; Tetrahedron Letters 56 (2015) 6878; Backvall, Modern Oxidation Methods, Wiley, Weinheim 2004; Tojo, Oxidation of Alcohols to Aldehydes and Ketones, Springer 2006) to provide carbonyl compounds XXVI.
  • Figure US20200187500A1-20200618-C00027
  • Subsequently the amides XXVI can be transferred into the triflate XXVII by reaction with trifluoromethyl sulfonic anhydride in an inert solvent, like dichloromethane, chloroform, carbon tetrachloride, benzene, toluene or chlorobenzene in the presence of a base, for example an organic base like pyridine, triethylamine or diisopropyl ethylamine or an aqueous base like solutions of sodium or potassium hydroxide, carbonate or hydrogen carbonate in water at temperatures preferably between 0° C. and 100° C.
  • Figure US20200187500A1-20200618-C00028
  • These compounds XXVII are reacted with fluorination reagents (Kirsch, Modern Fluoroorganic Chemistry, Wiley 2013)) like deoxo-fluor (BAST, bis(2-methoxyethyl)aminosulfur trifluoride, Journal of Fluorine Chemistry (2016), 182, 41; Singh, et al. Synthesis 17, 2561, (2002)), DAST (Diethylaminoschwefeltrifluorid, Hudlicky Org. React. 35, 513, (1988)), Fluolead (4-tert-Butyl-2,6-dimethylphenylsulfur trifluoride, WO 2013118915; US 20080039660), Diethylaminodifluorosulfinium tetrafluoroborate (XtalFluor-E) or morpholinodifluorosulfinium tetrafluoroborate (XtalFluor-M) (Journal of organic chemistry (2010), 75(10), 3401) to yield difluoro compounds XXVIII.
  • Figure US20200187500A1-20200618-C00029
  • Subsequently these triflates XXVII can be reacted under Suzuki conditions (European Journal of Organic Chemistry (2008), (12), 2013) with boronic acids XV, in which R311 and R411 together with the groups they are attached to form a tetramethyl-1,3,2-dioxaborolane-ring or independently from one another mean hydrogen or C1-C6-alkyl to yield compounds II.
  • Alternatively, compounds of type II can also be obtained intramolecular cyclization of amines of type XXIX in the presence of an acid. Most preferably acids are HCl, trifluoroacetic acid, acetic acid or sulfuric acid. The reaction is preform in dichloromethane, water, ethanol, THF or chloroform, at temperature from room temperature to 120° C. (see, Synthesis, 1995, (5), 592-604; Heterocycles, 1988, 27(10), 2403-12).
  • Figure US20200187500A1-20200618-C00030
  • Amines of type XXIX are either commercial available or easily prepared by a skilled person or following the procedures described before.
  • The N-oxides may be prepared from the inventive compounds according to conventional oxidation methods, e. g. by treating compounds I with an organic peracid such as metachloroperbenzoic acid (cf. WO 03/64572 or J. Med. Chem. 38(11), 1892-903, 1995); or with inorganic oxidizing agents such as hydrogen peroxide (cf. J. Heterocyc. Chem. 18(7), 1305-8, 1981) or oxone (cf. J. Am. Chem. Soc. 123(25), 5962-5973, 2001). The oxidation may lead to pure mono-N-oxides or to a mixture of different N-oxides, which can be separated by conventional methods such as chromatography.
  • In the following, the intermediate compounds are further described. A skilled person will readily understand that the preferences for the substituents, also in particular the ones given in the tables below for the respective substituents, given herein in connection with compounds I apply for the intermediates accordingly. Thereby, the substituents in each case have independently of each other or more preferably in combination the meanings as defined herein.
  • If the synthesis yields mixtures of isomers, a separation is generally not necessarily required since in some cases the individual isomers can be interconverted during work-up for use or during application (e. g. under the action of light, acids or bases). Such conversions may also take place after use, e. g. in the treatment of plants in the treated plant, or in the harmful fungus to be controlled.
  • In the definitions of the variables given above, collective terms are used which are generally representative for the substituents in question. The term “Cn-Cm” indicates the number of carbon atoms possible in each case in the substituent or substituent moiety in question.
  • The term “halogen” refers to fluorine, chlorine, bromine and iodine.
  • The term “C1-C6-alkyl” refers to a straight-chained or branched saturated hydrocarbon group having 1 to 6 carbon atoms, e.g. methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, hexyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethyl-1-methylpropyl and 1-ethyl-2-methylpropyl. Likewise, the term “C2-C4-alkyl” refers to a straight-chained or branched alkyl group having 2 to 4 carbon atoms, such as ethyl, propyl (n-propyl), 1-methylethyl (iso-propoyl), butyl, 1-methylpropyl (sec.-butyl), 2-methylpropyl (iso-butyl), 1,1-dimethylethyl (tert.-butyl).
  • The term “C1-C6-halogenalkyl” refers to an alkyl group having 1 or 6 carbon atoms as defined above, wherein some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above. Examples are “C1-C2-halogenalkyl” groups such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl or pentafluoroethyl.
  • The term “C1-C6-hydroxyalkyl” refers to an alkyl group having 1 or 6 carbon atoms as defined above, wherein some or all of the hydrogen atoms in these groups may be replaced by OH groups.
  • The term “C1-C4-alkoxy-C1-C4-alkyl” refers to alkyl having 1 to 4 carbon atoms (as defined above), where According to one hydrogen atom of the alkyl radical is replaced by a C1-C4-alkoxy group (as defined above). Likewise, the term “C1-C6-alkoxy-C1-C4-alkyl” refers to alkyl having 1 to 4 carbon atoms (as defined above), where According to one hydrogen atom of the alkyl radical is replaced by a C1-C6-alkoxy group (as defined above).
  • The term “C2-C6-alkenyl” refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 6 carbon atoms and a double bond in any position. Examples are “C2-C4-alkenyl” groups, such as ethenyl, 1-propenyl, 2-propenyl (allyl), 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl.
  • The term “C2-C6-alkynyl” refers to a straight-chain or branched unsaturated hydrocarbon radical having 2 to 6 carbon atoms and containing at least one triple bond. Examples are “C2-C4-alkynyl” groups, such as ethynyl, prop-1-ynyl, prop-2-ynyl (propargyl), but-1-ynyl, but-2-ynyl, but-3-ynyl, 1-methyl-prop-2-ynyl.
  • The term “C1-C6-alkoxy” refers to a straight-chain or branched alkyl group having 1 to 6 carbon atoms which is bonded via an oxygen, at any position in the alkyl group. Examples are “C1-C4-alkoxy” groups, such as methoxy, ethoxy, n-propoxy, 1-methylethoxy, butoxy, 1-methyl¬propoxy, 2-methylpropoxy or 1,1-dimethylethoxy.
  • The term “C1-C6-halogenalkoxy” refers to a C1-C6-alkoxy radical as defined above, wherein some or all of the hydrogen atoms in these groups may be replaced by halogen atoms as mentioned above. Examples are “C1-C4-halogenalkoxy” groups, such as OCH2F, OCHF2, OCF3, OCH2Cl, OCHCl2, OCCl3, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 2-fluoroethoxy, 2-chlorothoxy, 2-bromoethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, OC2F5, 2-fluoropropoxy, 3-fluoropropoxy, 2,2-difluoropropoxy, 2,3-difluoro-propoxy, 2 chloropropoxy, 3-chloropropoxy, 2,3-dichloropropoxy, 2-bromopropoxy, 3 bromopropoxy, 3,3,3-trifluoropropoxy, 3,3,3-trichloropropoxy, OCH2—C2F5, OCF2—C2F5, 1-fluoromethyl-2-fluoroethoxy, 1-chloromethyl-2-chloroethoxy, 1-bromomethyl-2-bromoethoxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy or nonafluorobutoxy.
  • The term “C2-C6-alkenyloxy” refers to a straight-chain or branched alkenyl group having 2 to 6 carbon atoms which is bonded via an oxygen, at any position in the alkenyl group. Examples are “C2-C4-alkenyloxy” groups.
  • The term “C2-C6-alkynyloxy” refers to a straight-chain or branched alkynyl group having 2 to 6 carbon atoms which is bonded via an oxygen, at any position in the alkynyl group. Examples are “C2-C4-alkynyloxy” groups.
  • The term “C3-C6-cycloalkyl” refers to monocyclic saturated hydrocarbon radicals having 3 to 6 carbon ring members, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl. Accordingly, a saturated three-, four-, five-, six-, seven-, eight-, nine or ten-membered carbocyclyl or carbocycle is a “C3-C10-cycloalkyl”.
  • The term “C3-C6-cycloalkenyl” refers to a monocyclic partially unsaturated 3-, 4- 5- or 6-membered carbocycle having 3 to 6 carbon ring members and at least one double bond, such as cyclopentenyl, cyclopentadienyl, cyclohexadienyl. Accordingly, a partially unsaturated three-, four-, five-, six-, seven-, eight-, nine or ten-membered carbocyclyl or carbocycle is a “C3-C10-cycloalkenyl”.
  • The term “C3-C8-cycloalkyl-C1-C4-alkyl” refers to alkyl having 1 to 4 carbon atoms (as defined above), where According to one hydrogen atom of the alkyl radical is replaced by a cycloalkyl radical having 3 to 8 carbon atoms (as defined above).
  • The term “C1-C6-alkylthio” as used herein refers to straight-chain or branched alkyl groups having 1 to 6 carbon atoms (as defined above) bonded via a sulfur atom. Accordingly, the term “C1-C6-halogenalkylthio” as used herein refers to straight-chain or branched halogenalkyl group having 1 to 6 carbon atoms (as defined above) bonded through a sulfur atom, at any position in the halogenalkyl group.
  • The term “C(═O)—C1-C6-alkyl” refers to a radical which is attached through the carbon atom of the group C(═O) as indicated by the number valence of the carbon atom. The number of valence of carbon is 4, that of nitrogen is 3. Likewise the following terms are to be construed: NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, C(═O)—NH(C1-C6-alkyl), C(═O)—N(C1-C6-alkyl)2.
  • The term “saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine or ten-membered heterocyclyl or heterocycle, wherein the heterocyclyl or heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, O and S” is to be understood as meaning both saturated and partially unsaturated heterocycles, wherein the ring member atoms of the heterocycle include besides carbon atoms 1, 2, 3 or 4 heteroatoms independently selected from the group of O, N and S. For example:
  • a 3- or 4-membered saturated heterocycle which contains 1 or 2 heteroatoms from the group consisting of O, N and S as ring members such as oxirane, aziridine, thiirane, oxetane, azetidine, thiethane, [1,2]dioxetane, [1,2]dithietane, [1,2]diazetidine; and
    a 5- or 6-membered saturated or partially unsaturated heterocycle which contains 1, 2 or 3 heteroatoms from the group consisting of O, N and S as ring members such as 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydrothienyl, 3-tetrahydrothienyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 3-isoxazolidinyl, 4-isoxazolidinyl, 5-isoxazolidinyl, 3-isothiazolidinyl, 4-isothiazolidinyl, 5-isothiazolidinyl, 3-pyrazolidinyl, 4-pyrazolidinyl, 5-pyrazolidinyl, 2-oxazolidinyl, 4-oxazolidinyl, 5-oxazolidinyl, 2-thiazolidinyl, 4-thiazolidinyl, 5-thiazolidinyl, 2-imidazolidinyl, 4-imidazolidinyl, 1,2,4-oxadiazolidin-3-yl, 1,2,4-oxadiazolidin-5-yl, 1,2,4-thiadiazolidin-3-yl, 1,2,4-thiadiazolidin-5-yl, 1,2,4-triazolidin-3-yl, 1,3,4-oxadiazolidin-2-yl, 1,3,4-thiadiazolidin-2-yl, 1,3,4-triazolidin-2-yl, 2,3-dihydrofur-2-yl, 2,3-dihydrofur-3-yl, 2,4-dihydrofur-2-yl, 2,4-dihydrofur-3-yl, 2,3-dihydrothien-2-yl, 2,3-dihydrothien-3-yl, 2,4-dihydrothien-2-yl, 2,4-dihydrothien-3-yl, 2-pyrrolin-2-yl, 2-pyrrolin-3-yl, 3-pyrrolin-2-yl, 3-pyrrolin-3-yl, 2-isoxazolin-3-yl, 3-isoxazolin-3-yl, 4-isoxazolin-3-yl, 2-isoxazolin-4-yl, 3-isoxazolin-4-yl, 4-isoxazolin-4-yl, 2-isoxazolin-5-yl, 3-isoxazolin-5-yl, 4-isoxazolin-5-yl, 2-isothiazolin-3-yl, 3-isothiazolin-3-yl, 4-isothiazolin-3-yl, 2-isothiazolin-4-yl, 3-isothiazolin-4-yl, 4-isothiazolin-4-yl, 2-isothiazolin-5-yl, 3-isothiazolin-5-yl, 4-isothiazolin-5-yl, 2,3-dihydropyrazol-1-yl, 2,3-dihydropyrazol-2-yl, 2,3-dihydropyrazol-3-yl, 2,3-dihydropyrazol-4-yl, 2,3-dihydropyrazol-5-yl, 3,4-dihydropyrazol-1-yl, 3,4-dihydropyrazol-3-yl, 3,4-dihydropyrazol-4-yl, 3,4-dihydropyrazol-5-yl, 4,5-dihydropyrazol-1-yl, 4,5-dihydropyrazol-3-yl, 4,5-dihydropyrazol-4-yl, 4,5-dihydropyrazol-5-yl, 2,3-dihydrooxazol-2-yl, 2,3-dihydrooxazol-3-yl, 2,3-dihydrooxazol-4-yl, 2,3-dihydrooxazol-5-yl, 3,4-dihydrooxazol-2-yl, 3,4-dihydrooxazol-3-yl, 3,4-dihydrooxazol-4-yl, 3,4-dihydrooxazol-5-yl, 3,4-dihydrooxazol-2-yl, 3,4-dihydrooxazol-3-yl, 3,4-dihydrooxazol-4-yl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1,3-dioxan-5-yl, 2-tetrahydropyranyl, 4-tetrahydropyranyl, 2-tetrahydrothienyl, 3-hexahydropyridazinyl, 4-hexahydropyridazinyl, 2-hexahydropyrimidinyl, 4-hexahydropyrimidinyl, 5-hexahydropyrimidinyl, 2-piperazinyl, 1,3,5-hexahydrotriazin-2-yl and 1,2,4-hexahydrotriazin-3-yl and also the corresponding -ylidene radicals; and
    a 7-membered saturated or partially unsaturated heterocycle such as tetra- and hexahydroazepinyl, such as 2,3,4,5-tetrahydro[1H]azepin-1-,-2-,-3-,-4-,-5-,-6- or -7-yl, 3,4,5,6-tetrahydro[2H]azepin-2-,-3-,-4-,-5-,-6- or -7-yl, 2,3,4,7-tetrahydro[1H]azepin-1-,-2-,-3-,-4-,-5-,-6- or -7-yl, 2,3,6,7-tetrahydro[1H]azepin-1-,-2-,-3-,-4-,-5-,-6- or -7-yl, hexahydroazepin-1-,-2-,-3- or -4-yl, tetra- and hexahydrooxepinyl such as 2,3,4,5-tetrahydro[1H]oxepin-2-,-3-,-4-,-5-,-6- or -7-yl, 2,3,4,7-tetrahydro[1H]oxepin-2-,-3-,-4-,-5-,-6- or -7-yl, 2,3,6,7-tetrahydro[1H]oxepin-2-, -3-,-4-,-5-,-6- or -7-yl, hexahydroazepin-1-,-2-,-3- or -4-yl, tetra- and hexahydro-1,3-diazepinyl, tetra- and hexahydro-1,4-diazepinyl, tetra- and hexahydro-1,3-oxazepinyl, tetra- and hexahydro-1,4-oxazepinyl, tetra- and hexahydro-1,3-dioxepinyl, tetra- and hexahydro-1,4-dioxepinyl and the corresponding -ylidene radicals.
  • The term “substituted” refers to substituted with 1, 2, 3 or up to the maximum possible number of substituents.
  • The term “5- or 6-membered heteroaryl” or “5- or 6-membered heteroaromatic” refers to aromatic ring systems including besides carbon atoms, 1, 2, 3 or 4 heteroatoms independently selected from the group consisting of N, O and S, for example,
  • a 5-membered heteroaryl such as pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan-2-yl, furan-3-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, 1,2,4-triazolyl-1-yl, 1,2,4-triazol-3-yl 1,2,4-triazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl and 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl; or
    a 6-membered heteroaryl, such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl.
  • Agriculturally acceptable salts of the inventive compounds encompass especially the salts of those cations or the acid addition salts of those acids whose cations and anions, respectively, have no adverse effect on the fungicidal action of said compounds. Suitable cations are thus in particular the ions of the alkali metals, preferably sodium and potassium, of the alkaline earth metals, preferably calcium, magnesium and barium, of the transition metals, preferably manganese, copper, zinc and iron, and also the ammonium ion which, if desired, may carry one to four C1-C4-alkyl substituents and/or one phenyl or benzyl substituent, preferably diisopropylammonium, tetramethylammonium, tetrabutylammonium, trimethylbenzylammonium, furthermore phosphonium ions, sulfonium ions, preferably tri(C1-C4-alkyl)sulfonium, and sulfoxonium ions, preferably tri(C1-C4-alkyl)sulfoxonium. Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogensulfate, sulfate, dihydrogenphosphate, hydrogenphosphate, phosphate, nitrate, bicarbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of C1-C4-alkanoic acids, preferably formate, acetate, propionate and butyrate. They can be formed by reacting such inventive compound with an acid of the corresponding anion, preferably of hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.
  • The inventive compounds can be present in atropisomers arising from restricted rotation about a single bond of asymmetric groups. They also form part of the subject matter of the present invention.
  • Depending on the substitution pattern, the compounds of formula I and their N-oxides may have one or more centers of chirality, in which case they are present as pure enantiomers or pure diastereomers or as enantiomer or diastereomer mixtures. Both, the pure enantiomers or diastereomers and their mixtures are subject matter of the present invention.
  • In the following, particular embodiments of the inventive compounds are described. Therein, specific meanings of the respective substituents are further detailed, wherein the meanings are in each case on their own but also in any combination with one another, particular embodiments of the present invention.
  • Furthermore, in respect of the variables, generally, the embodiments of the compounds I also apply to the intermediates.
  • R1 according to the invention is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl;
    wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein
    Rx is C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl or aryl that is substituted with one, two, three, four or five substituents Rx1 independently selected from C1-C4-alkyl, halogen, OH, CN, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
    wherein the acyclic moieties of R1 are unsubstituted or substituted with identical or different groups R1a which independently of one another are selected from:
    R1a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalky, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl and phenoxy group is unsubstituted or unsubstituted or substituted with R11a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
    wherein the carbocyclic, heteroaryl and aryl moieties of R1 are unsubstituted or substituted with identical or different groups R1b which independently of one another are selected from:
    R1b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio.
  • For every R1 that is present in the inventive compounds, the following embodiments and preferences apply independently of the meaning of any other R1 that may be present in the ring.
  • According to one embodiment of formula I, R1 is H, halogen or C1-C6-alkyl, in particular H, CH3, Et, F, Cl, more specifically H, CH3, F or Cl most preferred H, F or Cl.
  • According to another embodiment of formula I, R1 is hydrogen.
  • According to still another embodiment of formula I, R1 is halogen, in particular Br, F or Cl, more specifically F or Cl.
  • According to another embodiment of formula I, R1 is F
  • According to another embodiment of formula I, R1 is Cl
  • According to another embodiment of formula I, R1 is Br.
  • According to still another embodiment of formula I, R1 is OH.
  • According to still another embodiment of formula I, R1 is CN.
  • According to still another embodiment of formula I, R1 is NO2.
  • According to still another embodiment of formula I, R1 is SH.
  • According to still another embodiment of formula I R1 is NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2 or NH—SO2—Rx, wherein Rx is C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl or aryl that is substituted with one, two, three, four or five substituents Rx1 independently selected from C1-C4-alkyl, halogen, OH, CN, C1-C4-halogenalkyl, C1-C4-alkoxy, or C1-C4-halogenalkoxy. In particular C1-C4-alkyl, such as NHCH3 and N(CH3)2. In particular Rx is C1-C4-alkyl, and phenyl that is substituted with one CH3, more specifically SO2—Rx is CH3 and tosyl group (“Ts”).
  • According to still another embodiment of formula I, R1 is C1-C6-alkyl, in particular C1-C4-alkyl, such as CH3 or CH2CH3.
  • According to still another embodiment of formula I, R1 is C1-C6-halogenalkyl, in particular C1-C4-halogenalkyl, such as CF3, CHF2, CH2F, CCl3, CHCl2, CH2Cl, CF3CH2, CCl3CH2 or CF2CHF2.
  • According to still another embodiment of formula I, R1 is C2-C6-alkenyl or C2-C6-halogenalkenyl, in particular C2-C4-alkenyl or C2-C4-halogenalkenyl, such as CH═CH2, C(CH3)═CH2, CH═CCl2, CH═CF2, CCl═CCl2, CF═CF2, CH═CH2, CH2CH═CCl2, CH2CH═CF2, CH2CCl═CCl2, CH2CF═CF2, CCl2CH═CCl2, CF2CH═CF2, CCl2CCl═CCl2, or CF2CF═CF2.
  • According to still another embodiment of formula I, R1 is C2-C6-alkynyl or C2-C6-halogenalkynyl, in particular C2-C4-alkynyl or C2-C4-halogenalkynyl, such as C≡CH, C≡CCl, C≡CF. CH2C≡CH, CH2C≡CCl, or CH2C≡CF.
  • According to still another embodiment of formula I, R1 is C1-C6-alkoxy, in particular C1-C4-alkoxy, more specifically C1-C2-alkoxy such as OCH3 or OCH2CH3.
  • According to still another embodiment of formula I, R1 is C1-C6-halogenalkoxy, in particular C1-C4-halogenalkoxy, more specifically C1-C2-halogenalkoxy such as OCF3, OCHF2, OCH2F, OCCl3, OCHCl2 or OCH2Cl, in particular OCF3, OCHF2, OCCl3 or OCHCl2.
  • According to still another embodiment of formula I R1 is C3-C6-cycloalkyl, in particular cyclopropyl.
  • According to still another embodiment of formula I, R1 is C3-C6-cycloalkyl, for example cyclopropyl, substituted with one, two, three or up to the maximum possible number of identical or different groups R1b as defined and preferably herein.
  • According to still another embodiment of formula I, R1 is C3-C6-halogencycloalkyl. In a special embodiment R1 is fully or partially halogenated cyclopropyl.
  • According to still another embodiment of formula I, R1 is unsubstituted aryl or aryl that is substituted with one, two, three or four R1b, as defined herein. In particular, R1 is unsubstituted phenyl or phenyl that is substituted with one, two, three or four R1b, as defined herein.
  • According to still another embodiment of formula I, R1 is unsubstituted 5- or 6-membered heteroaryl. According to still a further embodiment, R1 is 5- or 6-membered heteroaryl that is substituted with one, two or three R1b, as defined herein.
  • According to still another embodiment of formula I, R1 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy and C3-C6-cycloalkyl; wherein the acyclic moieties of R1 are not further substituted or carry one, two, three, four or five identical or different groups R1a as defined below and wherein the carbocyclic, heteroaryl and aryl moieties of R1 are not further substituted or carry one, two, three, four or five identical or different groups R1b as defined below.
  • According to still another embodiment of formula I, R1 is independently selected from hydrogen, halogen, CN, OH, C1-C6-alkyl, C1-C6-alkoxy, C6-alkenyl, C2-C6-alkynyl, C3-C6-cycloalkyl, wherein the acyclic and cyclic moieties of R1 are unsubstituted or substituted by halogen.
  • According to still another embodiment of formula I, R1 is independently selected from hydrogen, halogen, CN, OH, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy and C1-C6-halogenalkoxy, in particular independently selected from H, F, Cl, Br, CN, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy.
  • According to still another embodiment of formula I, R1 is independently selected from H, CN, halogen or C1-C6-alkyl, in particular H, CN, CH3, Et, F, Cl, more specifically H, CN, CH3, F or Cl most preferred H, CH3, F or Cl.
  • R1a are the possible substituents for the acyclic moieties of R1.
  • R1a according to the invention is independently selected from halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl group is unsubstituted or unsubstituted or substituted with R11a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy, in particular selected from halogen, C1-C2-alkyl, C1-C2-halogenalkyl, C1-C2-alkoxy and C1-C2-halogenalkoxy, more specifically selected from halogen, such as F, Cl and Br.
  • In to one embodiment R1a is independently selected from halogen, OH, CN, C1-C2-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and C1-C2-halogenalkoxy. Specifically, R1a is independently selected from F, Cl, OH, CN, C1-C2-alkoxy, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl and C1-C2-halogenalkoxy.
  • According to one embodiment R1a is independently selected from halogen, such as F, Cl, Br and I, more specifically F, Cl and Br.
  • According to still another embodiment of formula I, R1a is independently selected from OH, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and C1-C2-halogenalkoxy. Specifically, R1a is independently selected from OH, cyclopropyl and C1-C2-halogenalkoxy.
  • According to still another embodiment of formula I, R1a is independently selected from aryl and phenoxy, wherein the aryl group is unsubstituted or substituted with R11a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy, in particular selected from halogen, C1-C2-alkyl, C1-C2-halogenalkyl, C1-C2-alkoxy and C1-C2-halogenalkoxy, more specifically selected from halogen, such as F, Cl and Br.
  • R1b are the possible substituents for the carbocyclic, heteroaryl and aryl moieties of R1.
  • R1b according to the invention is independently selected from halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
  • According to one embodiment thereof R1b is independently selected from halogen, CN, C1-C2-alkyl, C1-C2-alkoxy, C1-C2-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and C1-C2-halogenalkoxy. Specifically, R1b is independently selected from F, Cl, Br, OH, CN, CH3, OCH3, CHF2, OCHF2, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl, OCF3, and OCHF2.
  • According to still another embodiment thereof R1b is independently selected from halogen, C1-C2-alkyl, C1-C2-alkoxy, C1-C2-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and C1-C2-halogenalkoxy. Specifically, R1b is independently selected from halogen, CN, OH, CH3, CHF2, OCHF2, OCF3, OCH3, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl and halogenmethoxy, more specifically independently selected from F, Cl, OH, CH3, OCH3, CHF2, OCH3, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl, OCHF2 and OCF3.
  • Rx in the substituent NH—SO2—Rx is in each case independently selected from C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl and aryl that is substituted with one, two, three, four or five substituents Rx1 independently selected from C1-C4-alkyl, halogen, OH, CN, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy. In particular, Rx is in each case independently selected from C1-C4-alkyl, halogen, OH, CN and phenyl that is substituted with one, two or three Rx1 independently selected from C1-C2-alkyl, more specifically Rx is in each case independently selected from C1-C4-alkyl and phenyl that is substituted with one CH3, more specifically SO2—Rx is the tosyl group (“Ts”).
  • Particularly preferred embodiments of R1 according to the invention are in Table P1 below, wherein each line of lines P1-1 to P1-16 corresponds to one particular embodiment of the invention. Thereby, for every R1 that is present in the inventive compounds, these specific embodiments and preferences apply independently of the meaning of any other R1 that may be present in the ring:
  • TABLE P1
    “Ts” in the table stands for the tosylgroup SO2-(p-CH3)phenyl.
    No. R1
    P1-1 H
    P1-2 Cl
    P1-3 F
    P1-4 Br
    P1-5 OH
    P1-6 CN
    P1-7 NO2
    P1-8 CH3
    P1-9 CH2CH3
    P1-10 CH3
    P1-11 CHF2
    P1-12 OCH3
    P1-13 OCH2CH3
    P1-14 OCF3
    P1-15 OCHF2
    P1-16 NH-Ts
  • R2 according to the invention is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein
    • Rx is C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl or aryl that is substituted with one, two, three, four or five substituents Rx2 independently selected from C1-C4-alkyl, halogen, OH, CN, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
      wherein the acyclic moieties of R2 are unsubstituted or substituted with identical or different groups R2a which independently of one another are selected from:
      R2a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalky, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl group is unsubstituted or substituted with R21a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
      wherein the carbocyclic, heteroaryl and aryl moieties of R2 are unsubstituted or substituted with identical or different groups R2b which independently of one another are selected from:
      R2b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalky, C1-C4-halogenalkoxy and C1-C6-alkylthio.
  • For every R2 that is present in the inventive compounds, the following embodiments and preferences apply independently of the meaning of the other R2 that may be present in the ring.
  • According to one embodiment of formula I, R2 is H, halogen or C1-C6-alkyl, in particular H, CH3, Et, F, Cl, more specifically H, CH3, F or Cl most preferred H, F or Cl.
  • According to another of formula I, R2 is halogen, in particular Br, F or Cl, more specifically F or Cl.
  • According to another embodiment of formula I, R2 is F
  • According to another embodiment of formula I, R2 is Cl
  • According to another embodiment of formula I, R2 is Br.
  • According to still another embodiment of formula I, R2 is hydrogen.
  • According to still another embodiment of formula I, R2 is OH.
  • According to still another embodiment of formula I, R2 is CN.
  • According to still another embodiment of formula I, R2 is NO2.
  • According to still another embodiment of formula I, R2 is SH.
  • In a further specific embodiment R2 is NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2 or NH—SO2—Rx, wherein Rx is C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl or aryl that is substituted with one, two, three, four or five substituents Rx2 independently selected from C1-C4-alkyl, halogen, OH, CN, C1-C4-halogenalkyl, C1-C4-alkoxy, or C1-C4-halogenalkoxy. In particular C1-C4-alkyl, such as NHCH3 and N(CH3)2. In particular Rx is C1-C4-alkyl, and phenyl that is substituted with one CH3, more specifically SO2—Rx is CH3 and tosyl group (“Ts”).
  • According to still another embodiment of formula I, R2 is C1-C6-alkyl, in particular C1-C4-alkyl, such as CH3 or CH2CH3.
  • According to still another embodiment of formula I, R2 is C1-C6-halogenalkyl, in particular C1-C4-halogenalkyl, such as CF3, CHF2, CH2F, CCl3, CHCl2, CH2Cl, CF3CH2, CCl3CH2 or CF2CHF2.
  • According to still a further embodiment, R2 is C2-C6-alkenyl or C2-C6-halogenalkenyl, in particular C2-C4-alkenyl or C2-C4-halogenalkenyl, such as CH═CH2, CH═CCl2, CH═CF2, CCl═CCl2, CF═CF2, CH═CH2, CH2CH═CCl2, CH2CH═CF2, CH2CCl═CCl2, CH2CF═CF2, CCl2CH═CCl2, CF2CH═CF2, CCl2CCl═CCl2, or CF2CF═CF2.
  • According to still a further embodiment, R2 is C2-C6-alkynyl or C2-C6-halogenalkynyl, in particular C2-C4-alkynyl or C2-C4-halogenalkynyl, such as C≡CH, C≡CCl, C≡CF. CH2C≡CH, CH2C≡CCl, or CH2C≡CF.
  • According to still another embodiment of formula I, R2 is C1-C6-alkoxy, in particular C1-C4-alkoxy, more specifically C1-C2-alkoxy such as OCH3 or OCH2CH3.
  • According to still another embodiment of formula I, R2 is C1-C6-halogenalkoxy, in particular C1-C4-halogenalkoxy, more specifically C1-C2-halogenalkoxy such as OCF3, OCHF2, OCH2F, OCCl3, OCHCl2 or OCH2Cl, in particular OCF3, OCHF2, OCCl3 or OCHCl2.
  • In a further specific embodiment R2 is C3-C6-cycloalkyl, in particular cyclopropyl.
  • In a further specific embodiment, R2 is C3-C6-cycloalkyl, for example cyclopropyl, substituted with one, two, three or up to the maximum possible number of identical or different groups R2b as defined and preferably herein.
  • According to still another embodiment of formula I, R2 is C3-C6-halogencycloalkyl. In a special embodiment R2 is fully or partially halogenated cyclopropyl.
  • According to still another embodiment of formula I, R2 is unsubstituted aryl or aryl that is substituted with one, two, three or four R2b, as defined herein. In particular, R2 is unsubstituted phenyl or phenyl that is substituted with one, two, three or four R2b, as defined herein.
  • According to still another embodiment of formula I, R2 is unsubstituted 5- or 6-membered heteroaryl. According to still a further embodiment, R2 is 5- or 6-membered heteroaryl that is substituted with one, two or three R2b, as defined herein.
  • According to still another embodiment of formula I, R2 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy and C3-C6-cycloalkyl; wherein the acyclic moieties of R2 are not further substituted or carry one, two, three, four or five identical or different groups R2a as defined below and wherein the cycloalkyl moieties of R2 are not further substituted or carry one, two, three, four or five identical or different groups R2b as defined below.
  • According to still another embodiment of formula I, R2 is independently selected from hydrogen, halogen, CN, OH, C1-C6-alkyl, C1-C6-alkoxy, C6-alkenyl, C2-C6-alkynyl, C3-C6-cycloalkyl, wherein the acyclic and cyclic moieties of R2 are unsubstituted or substituted by halogen.
  • According to still another embodiment of formula I, R2 is independently selected from hydrogen, halogen, OH, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy and C1-C6-halogenalkoxy, in particular independently selected from H, F, Cl, Br, CN, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy.
  • According to still another embodiment of formula I, R2 is independently selected from H, CN, halogen or C1-C6-alkyl, in particular H, CN, CH3, Et, F, Cl, more specifically H, CN, CH3, F or Cl most preferred H, CH3, F or Cl.
  • R2a are the possible substituents for the acyclic moieties of R2.
  • R2a according to the invention is independently selected from halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalky, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl and phenoxy group is unsubstituted or substituted with R22a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy, in particular selected from halogen, C1-C2-alkyl, C1-C2-halogenalkyl, C1-C2-alkoxy and C1-C2-halogenalkoxy, more specifically selected from halogen, such as F, Cl and Br.
  • According to one embodiment R2a is independently selected from halogen, OH, CN, C1-C2-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalky and C1-C2-halogenalkoxy. Specifically, R2a is independently selected from F, Cl, OH, CN, C1-C2-alkoxy, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl and C1-C2-halogenalkoxy.
  • According to one embodiment R2a is independently selected from halogen, such as F, Cl, Br and I, more specifically F, Cl and Br.
  • According to still another embodiment of formula I, R2a is independently selected from OH, C3-C6-cycloalkyl, C3-C6-halogencycloalky and C1-C2-halogenalkoxy. Specifically, R2a is independently selected from OH, cyclopropyl and C1-C2-halogenalkoxy.
  • According to still another embodiment of formula I, R2a is independently selected from aryl and phenoxy, wherein the aryl and phenoxy group is unsubstituted or substituted with R22a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy, in particular selected from halogen, C1-C2-alkyl, C1-C2-halogenalkyl, C1-C2-alkoxy and C1-C2-halogenalkoxy, more specifically selected from halogen, such as F, Cl and Br.
  • R2b are the possible substituents for the carbocyclic, heteroaryl and aryl moieties of R2.
  • R2b according to the invention is independently selected from halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalky, C1-C4-halogenalkoxy and C1-C6-alkylthio;
  • According to one embodiment thereof R2b is independently selected from halogen, CN, C1-C2-alkyl, C1-C2-alkoxy, C1-C2-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and C1-C2-halogenalkoxy. Specifically, R2b is independently selected from F, Cl, Br, OH, CN, CH3, OCH3, CHF2, OCHF2, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl, OCF3, and OCHF2.
  • According to still another embodiment thereof R2b is independently selected from halogen, C1-C2-alkyl, C1-C2-alkoxy, C1-C2-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and C1-C2-halogenalkoxy. Specifically, R2b is independently selected from halogen, OH, CH3, OCH3, CN, CHF2, OCHF2, OCF3, OCH3 cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl and halogenmethoxy, more specifically independently selected from F, Cl, OH, CH3, OCH3, CHF2, OCH3, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl, OCHF2 and OCF3.
  • Particularly preferred embodiments of R2 according to the invention are in Table P2 below, wherein each line of lines P2-1 to P2-16 corresponds to one particular embodiment of the invention. Thereby, for every R2 that is present in the inventive compounds, these specific embodiments and preferences apply independently of the meaning of any other R2 that may be present in the ring:
  • TABLE P2
    “Ts” in the table stands for the tosylgroup SO2-(p-CH3)phenyl.
    No. R2
    P2-1 H
    P2-2 Cl
    P2-3 F
    P2-4 Br
    P2-5 OH
    P2-6 CN
    P2-7 NO2
    P2-8 CH3
    P2-9 CH2CH3
    P2-10 CF3
    P2-11 CHF2
    P2-12 OCH3
    P2-13 OCH2CH3
    P2-14 OCF3
    P2-15 OCHF2
    P2-16 NH-Ts
  • R3 is in each case independently selected from CH3, CH2F, CHF2 and CF3.
  • According to one embodiment R3 is CH3.
  • According to another embodiment R3 is CH2F.
  • According to still another embodiment R3 is CHF2.
  • According to another embodiment R3 is CF3.
  • R4 is independently selected from halogen, OH, CN, NO2, SH, C1-C6-alkylthio, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S), and wherein the heterocycle and heteroaryl contain independently one, two, three or four heteroatoms selected from N, O and S; and wherein R′ and R″ are independently selected from H, C1-C4-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- and heterocycle, five- or six-membered heteroaryl or aryl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S, and wherein R′ and R″ are independently unsubstituted or substituted with R′″ which is independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and phenyl;
  • wherein Rx is as defined above;
    wherein the acyclic moieties of R4 are independently not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R4a, which independently of one another are selected from:
    R4a halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkoxy, C1-C4-halogenalkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, S(O)n-aryl, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- or heterocycle, a five-, six- or ten-membered heteroaryl, aryl or phenoxy, wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S), and wherein the heterocycle and heteroaryl contains independently one, two, three or four heteroatoms selected from N, O and S; wherein the carbo-, heterocyclic, heteroaryl and phenyl groups are independently unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkylthio, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, and S(O)n—C1-C6-alkyl; and wherein Rx, R′ and R″ are as defined above; n is 0, 1, 2; and
    wherein the carbo-, heterocyclic, heteroaryl and aryl moieties of R4 are independently unsubstituted or substituted with identical or different groups R4b, which independently of one another are selected from:
    R4b halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy; and wherein Rx and n are as defined above.
  • According to one embodiment of formula I, R4 is independently selected from halogen, OH, CN, NO2, SH, C1-C6-alkylthio, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, substituted C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S), and wherein the heterocycle and the heteroaryl contain independently one, two, three or four heteroatoms selected from N, O and S; and wherein R′ and R″ are independently selected from H, C1-C4-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- and heterocycle, five- or six-membered heteroaryl or aryl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S, and wherein R′ and R″ are independently unsubstituted or substituted by R′″ which is independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and phenyl; or
  • wherein the aliphatic moieties of R4 are independently not further substituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R4a, respectively, which independently of one another are selected from:
    • R4a halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, C1-C6-alkoxy, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, S(O)n-aryl, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, aryl, phenoxy, a five-, six- or ten-membered heteroaryl; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S), five- or six-membered heteroaryl and aryl; wherein the heterocycle and the heteroaryl contain independently 1, 2, 3 or 4 heteroatoms selected from N, O and S; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S); wherein the carbocyclic, heterocyclic, aryl and phenyl groups are independently unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkylthio, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, and S(O)n—C1-C6-alkyl; and wherein Rx, R′, R″ and R″ are as defined above
      • wherein the carbocyclic, heterocyclic, heteroaryl and aryl moieties of R4 are independently not further substituted or carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups R4b, respectively, which independently of one another are selected from:
    • R4b halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or substituted with substituents selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy.
  • According to one embodiment of formula I, R4 is selected from substituted C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C3-C6-cycloalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C3-C6-cycloalkynyl, C1-C6-alkoxy, CN, CH(═O), C(═O)C2-C6-alkyl, C(═O)O(C2-C6-alkyl), CR′═NOR″, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C6-alkyl-five- and six-membered heteroaryl, a five- or six-membered heteroaryl, benzyl, aryl; wherein R′ and R″ are defined below; and wherein the acyclic moieties of R4 are unsubstituted or substituted with identical or different groups R4a as defined below and wherein wherein the carbocycle, heterocycle and heteroaryl and aryl moieties are unsubstituted or substituted with substituents R4b as defined below.
  • According to one embodiment of formula I, R4 is selected from C1-C6-alkyl substituted with halogen, CN, C1-C6-alkoxy, C1-C4-halogenalkoxy, C1-C6-alkylthio, S(O)n—C1-C6-alkyl, NH—SO2—Rx, N(C1-C6-alkyl)2, NH—SO2—Rx, NH(C1-C6-alkyl), N(C1-C6-alkyl)2, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), a saturated three-, four-, five-, six-, membered carbo- or heterocycle, aryl, a five- or six-membered heteroaryl; wherein Rx is defined below; and wherein the acyclic moieties of R4 are unsubstituted or substituted with identical or different groups R4a as defined below and wherein wherein the carbocycle, heterocycle and heteroaryl and aryl moieties are unsubstituted or substituted with substituents R4b as defined below.
  • According to another embodiment of formula I, R4 is F
  • According to another embodiment of formula I, R4 is Cl
  • According to another embodiment of formula I, R4 is Br.
  • According to still another embodiment of formula I, R4 is OH.
  • According to still another embodiment of formula I, R4 is CN.
  • According to still another embodiment of formula I, R4 is NO2.
  • According to still another embodiment of formula I, R4 is SH.
  • According to still another embodiment of formula I, R4 is C1-C6-alkylthio, such as SCH3, SC2H5, Sn-propyl, Si-propyl, Sn-butyl, Si-butyl, Stert-butyl, Sn-pentyl, Si-pentyl, CH2SCH3 or CH2SCH2CH3.
  • According to still another embodiment of formula I, R4 is C1-C6-halogenalkylthio, such as SCF3, SCCl3, CH2SCF3 or CH2SCF3.
  • According to still another embodiment of formula I, R4 is selected from CN, substituted C1-C6-alkyl, C1-C6-halogenalkyl or C1-C6-alkyl which is substituted, C1-C6-halogenalkyl, phenyl, halogenphenyl and three-, four-, five- or six-membered carbo- and heterocycle, wherein the carbo- and heterocycle is unsubstituted or is substituted with substituents R4b as defined below. According to one embodiment thereof, the carbocycle is unsubstituted. In a particular embodiment, R4 is selected from C1-C6-halogenalkyl, phenyl-CH2, halogenphenyl-CH2, phenyl, halogenphenyl and three-, four-, five- or six-membered carbo- and heterocycle, wherein the carbo- and heterocycle is unsubstituted or is substituted with substituents R4b as defined below.
  • According to still another embodiment of formula I, R4 is selected from CN, substituted C1-C6-alkyl, C1-C6-halogenalkyl or C1-C6-alkyl which is substituted, C1-C6-halogenalkyl, phenyl, halogenphenyl and three-, four-, five- or six-membered carbo- and heterocycle, wherein the carbo- and heterocycle is unsubstituted or substituted by substituents R4b as defined below. According to one embodiment thereof, the carbo- and heterocycle is unsubstituted. In a particular embodiment, R4 is selected from substituted C1-C6-halogenalkyl, phenyl, halogenphenyl and three-, four-, five- or six-membered carbo- and heterocycle, wherein the carbo- and heterocycle is unsubstituted or substituted by substituents R4b as defined below.
  • According to another embodiment of formula I, R4 is selected from CN, substituted C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C6-alkylaryl, five- or six-membered heteroaryl or aryl which is unsubstituted or substituted with halogen or C1-C6-halogenalkyl, and wherein the acyclic moieties of R4 are unsubstituted or substituted with identical or different groups R4a as defined below and wherein wherein the carbocycle, heterocycle and heteroaryl and aryl moieties are unsubstituted or substituted with substituents R4b as defined below.
  • According to still another embodiment of formula I, R4 is selected from CN, substituted C1-C6-alkyl, C1-C6-halogenalkyl, CN, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C6-alkylaryl, phenyl, pyridine, pyrimidine, thiophene, imidazole, triazol, oxadiazol wherein the acyclic moieties of R4 are unsubstituted or substituted with identical or different groups R4a as defined below and wherein wherein the carbocycle, heterocycle and heteroaryl and aryl moieties are unsubstituted or substituted with substituents R4b as defined below.
  • According to still another embodiment of formula I, R4 is C1-C6-alkyl such as CH3, C2H5, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • According to still another embodiment of formula I, R4 is C1-C6-alkyl such as CH3.
  • According to still another embodiment of formula I, R4 is C1-C6-alkyl such as C2H5.
  • According to still another embodiment of formula I, R4 is C1-C6-alkyl such as CH3, C2H5, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl which is substituted with at least one group R4a, which independently of one another are selected from:
  • R4a halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkoxy, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, S(O)n-aryl, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″ a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, five-, six- or ten-membered heteroaryl, aryl or phenoxy, wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S), and wherein the heterocycle and heteroaryl contains independently one, two, three or four heteroatoms selected from N, O and S; wherein the carbocyclic, heterocyclic, heteroaryl, aryl groups are independently unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkylthio, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, and S(O)n—C1-C6-alkyl.
  • According to still another embodiment of formula I, R4 is CH3 is substituted with at least one group R4a, which independently of one another are selected from:
  • R4a halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkoxy, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, S(O)n-aryl, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, five-, six- or ten-membered heteroaryl, an aryl or phenoxy, wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S), and wherein the heterocycle and heteroaryl contains independently one, two, three or four heteroatoms selected from N, O and S; wherein the carbocyclic, heterocyclic, heteroaryl, heteroaryl and phenyl groups are independently unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkylthio, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, and S(O)n—C1-C6-alkyl.
  • According to still another embodiment of formula I, R4 is C2H5 is substituted with at least one group R4a, which independently of one another are selected from:
  • R4a halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkoxy, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, S(O)n-aryl, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″ saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, five-, six- or ten-membered heteroaryl, phenyl or phenoxy; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S), and wherein the heterocycle and heteroaryl contains independently one, two, three or four heteroatoms selected from N, O and S; wherein the carbocyclic, heterocyclic, heteroaryl, aryl and phenyl groups are independently unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkylthio, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, and S(O)n—C1-C6-alkyl.
  • According to still another embodiment of formula I, R4 is CH2CN.
  • According to still another embodiment of formula I, R4 is CH2OH.
  • According to still another embodiment of formula I, R4 is C1-C6-halogenalkyl, in particular C1-C4-halogenalkyl, more specifically C1-C2-halogenalkyl, such as CF3, CCl3, FCH2, ClCH2, F2CH, Cl2CH, CF3CH2, CCl3CH2 or CF2CHF2.
  • According to still another embodiment of formula I, R4 is CH2F.
  • According to still another embodiment of formula I, R4 is CHF2.
  • According to still another embodiment of formula I, R4 is CF3.
  • According to still a further embodiment of formula I, R4 is C2-C6-alkenyl, in particular C2-C4-alkenyl, such as CH═CH2, CH2CH═CH2 or C(CH3)C═CH2.
  • According to a further specific embodiment of formula I, R4 is C2-C6-halogenalkenyl, in particular C2-C4-halogenalkenyl, more specifically C2-C3-halogenalkenyl such as CH═CHF, CH═CHCl, CH═CF2, CH═CCl2, CF═CF2, CCl═CCl2, CH2CH═CHF, CH2CH═CHCl, CH2CH═CF2, CH2CH═CCl2, CH2CF═CF2, CH2CCl═CCl2, CF2CF═CF2 or CCl2CCl═CCl2.
  • According to still a further embodiment of formula I, R4 is C2-C6-cycloalkenyl, in particular C2-C4-cycloalkenyl, such as CH═CH2-cPr.
  • According to still a further embodiment of formula I, R4 is C2-C6-alkynyl or C2-C6-halogenalkynyl, in particular C2-C4-alkynyl or C2-C4-halogenalkynyl, such as C≡CH, C≡C—Cl, C≡C—CH3, CH2—C≡CH, CH2—C≡CCl or CH2—C≡C—CH3.
  • According to still a further embodiment of formula I, R4 is C2-C6-cycloalkynyl in particular C2-C4-cycloalkynyl, such as C≡C-cPr.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkoxy, in particular C1-C4-alkoxy, more specifically C1-C2-alkoxy such as OCH3, CH2CH3 or CH2OCH3.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl-C1-C6-alkoxy, in particular C1-C4-alkyl-C1-C4-alkoxy, more specifically C1-C2-alkyl-C1-C2-alkoxy, such as CH2OCH3 or CH2OCH2CH3.
  • According to a further specific embodiment of formula I, R4 is C2-C6-alkenyloxy, in particular C2-C4-alkenyloxy, more specifically C1-C2-alkenyloxy such as OCH═CH2, OCH2CH═CH2 OC(CH3)CH═CH2, CH2OCH═CH2, or CH2OCH2CH═CH2.
  • According to a further specific embodiment of formula I, R4 is C2-C6-alkynyloxy, in particular C2-C4-alkynyloxy, more specifically C1-C2-alkynyloxy such as OC≡CH, OCH2C≡CH or CH2OC≡CH
  • According to a further specific embodiment of formula I, R4 is C1-C6-halogenalkoxy, in particular C1-C4-halogenalkoxy, more specifically C1-C2-halogenalkoxy such as OCF3, OCHF2, OCH2F, OCCl3, OCHCl2 or OCH2Cl, in particular OCF3, OCHF2, OCCl3 or OCHCl2.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl-C1-C6-halogenalkoxy, in particular C1-C4-alkyl-C1-C4-halogenalkoxy, more specifically C1-C2-alkyl-C1-C2-halogenalkoxy such as CH2OCF3, CH2OCHF2, CH2OCH2F, CH2OCCl3, CH2OCHCl2 or CH2OCH2Cl, in particular CH2OCF3, CH2OCHF2, CH2OCCl3 or CH2OCHCl2.
  • According to a further specific embodiment of formula I, R4 is CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl) or C(═O)N(C1-C6-alkyl)2, wherein alkyl is CH3, C2H5, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • According to a further specific embodiment of formula I, R4 is C1-C4-alkyl-CH(═O), C1-C4-alkyl-C(═O)C1-C6-alkyl, C1-C4-alkyl-C(═O)O(C1-C6-alkyl), C1-C4-alkyl-C(═O)NH(C1-C6-alkyl) or C1-C4-alkyl-C(═O)N(C1-C6-alkyl)2, especially CH2CH(═O), CH2C(═O)C1-C6-alkyl, CH2C(═O)O(C1-C6-alkyl), CH2C(═O)NH(C1-C6-alkyl) or CH2C(═O)N(C1-C6-alkyl)2 wherein alkyl is CH3, C2H5, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • According to a further specific embodiment of formula I, R4 is CR′═NOR″ such as C(CH3)═NOCH3, C(CH3)═NOCH2CH3 or C(CH3)═NOCF3.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl-NH(C1-C4-alkyl) or C1-C6-alkyl-N(C1-C4-alkyl)2, wherein alkyl is CH3, C2H5, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkylthio, in particular C1-C4-alkoxy, more specifically C1-C3-alkylthio such as CH2SCH3 or CH2SCH2CH3.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl-S(O)n—C1-C6-alkyl, wherein alkyl is CH3, C2H5, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl and n is 1,2 or 3.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl-S(O)n—C1-C6-halogenalkyl, wherein halogenalkyl is CF3 or CHF2 and n is 1, 2 or 3.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl-S(O)n-aryl, wherein the aryl or phenyl moiety in each case is unsubstituted or substituted with identical or different groups R4b which independently of one another are selected from halogen, C1-C2-alkyl, C1-C2-alkoxy, C1-C2-halogenalkyl, C1-C2-halogenalkoxy and S(O)n—C1-C6-alkyl, in particular F, Cl, Br, CH3, OCH3, CF3, CHF2, OCHF2, OCF3. According to one embodiment, R4 is unsubstituted phenyl. According to another embodiment, R4 is phenyl, that is substituted with one, two or three, in particular one, halogen, in particular selected from F, Cl and Br, more specifically selected from F and Cl.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl-NH—SO2—Rx wherein Rx is C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl or aryl that is substituted with one, two, three, four or five substituents Rx2 independently selected from C1-C4-alkyl, halogen, OH, CN, C1-C4-halogenalkyl, C1-C4-alkoxy, or C1-C4-halogenalkoxy, such as CH2NHSO2CF3 or CH2NHSO2CH3.
  • According to still another embodiment of formula I, R4 is selected from C1-C6-alkyl which is substituted, a saturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle, in particular three-, four-, five- or six-membered, wherein the carbocycle is unsubstituted or substituted with substituents R4b as defined below. According to one embodiment thereof, the carbocycle is unsubstituted.
  • According to one embodiment, R4 is selected from C1-C6-alkyl, especially CH2 which is substituted with a 3-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to one embodiment, R4 is selected from C1-C6-alkyl, especially CH2 which is substituted with a 4-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to one embodiment, R4 is selected from C1-C6-alkyl, especially CH2 which is substituted with a 5-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to one embodiment, R4 is selected from C1-C6-alkyl, especially CH2 which is substituted with a 6-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkylheterocycle, especially CH2 substituted with a 4-membered saturated heterocycle which contains 1 or 2 heteroatoms, in particular 1 heteroatom, from the group consisting of N, O and S, as ring members. According to one embodiment, the heterocycle contains one O as heteroatom. For example, the formed heterocycle is oxetane. According to one embodiment thereof, the heterocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkylheterocycle, especially CH2 substituted with a 5-membered saturated heterocycle which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S, as ring members. According to one embodiment, the heterocycle contains one O as heteroatom. According to one embodiment thereof, the heterocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkylheterocycle, especially CH2 substituted by a 6-membered saturated heterocycle which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S as ring members. According to one embodiment thereof, the heterocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b. According to one specific embodiment thereof, said 6-membered saturated heterocycle contains 1 or 2, in particular 1, heteroatom(s) O. According to one embodiment thereof, the respective 6-membered heterocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkylheterocycle, especially CH2 substituted with a 5-membered saturated heterocycle which contains one N as ring member and optionally one or two groups CH2 are replaced by C(═O).
  • According to still another embodiment of formula I, R4 is a partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle, in particular three-, four-, five- or six-membered, wherein the carbocycle is unsubstituted or substituted with substituents R4b as defined below. According to one embodiment thereof, the carbocycle is unsubstituted.
  • According to still another embodiment of formula I, R4 is a partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, in particular three-, four-, five- or six-membered, wherein the heterocycle contains one, two, three or four heteroatoms selected from N, O and S, and wherein the carbocycle and heterocycle are unsubstituted or substituted with substituents R4b as defined below. According to one embodiment thereof, the carbocycle or heterocycle is unsubstituted.
  • According to still a further embodiment, R4 is a saturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, in particular three-, four-, five- or six-membered, wherein the heterocycle contains one, two, three or four heteroatoms selected from N, O and S, and wherein the carbocycle and heterocycle are unsubstituted or substituted with substituents R4b as defined below. According to one embodiment thereof, the carbocycle or heterocycle is unsubstituted.
  • According to still another embodiment of formula I, R4 is a saturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle, in particular three-, four-, five- or six-membered, wherein the carbocycle is unsubstituted or substituted with substituents R4b as defined below. According to one embodiment thereof, the carbocycle is unsubstituted.
  • According to one embodiment, R4 is a 3-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to one embodiment, R4 is a 3-membered saturated carbocycle, which is unsubstituted such as cyclopropyl.
  • According to one embodiment, R4 is a 3-membered saturated carbocycle, which is substituted with halogen, more specifically by F, such as C3H3F2.
  • According to one embodiment, R4 is a 3-membered saturated carbocycle, which is substituted with halogen. More specifically by Cl, such as C3H3Cl2.
  • According to one embodiment, R4 is a 4-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to one embodiment, R4 is a 5-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to one embodiment, R4 is a 6-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to still another embodiment of formula I, R4 is a partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered heterocycle, in particular three-, four-, five- or six-membered, wherein the heterocycle contains one, two, three or four heteroatoms selected from N, O and S, and wherein the heterocycle is unsubstituted or substituted with substituents R4b as defined below. According to one embodiment thereof, the heterocycle is unsubstituted.
  • According to still another embodiment of formula I, R4 is a saturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered heterocycle, in particular three-, four-, five- or six-membered, wherein the heterocycle contains one, two, three or four heteroatoms selected from N, O and S, and wherein the heterocycle is unsubstituted or substituted with substituents R4b as defined below. According to one embodiment thereof, the heterocycle is unsubstituted.
  • According to still another embodiment of formula I, in the embodiments of R4 described above, the heterocycle contains preferably one, two or three, more specifically one or two heteroatoms selected from N, O and S. More specifically, the hetereocycle contains one heteroatom selected from N, O and S. In particular, the heterocycle contains one or two, in particular one 0.
  • According to one embodiment, R4 is a 4-membered saturated heterocycle which contains 1 or 2 heteroatoms, in particular 1 heteroatom, from the group consisting of N, O and S, as ring members. According to one embodiment, the heterocycle contains one O as heteroatom. For example, the formed heterocycle is oxetane. According to one embodiment thereof, the heterocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to still another embodiment of formula I, R4 is a 5-membered saturated heterocycle which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S, as ring members. According to one embodiment, the heterocycle contains one O as heteroatom. According to one embodiment thereof, the heterocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to still another embodiment of formula I, R4 is a 6-membered saturated heterocycle which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S as ring members. According to one embodiment thereof, the heterocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b. According to one specific embodiment thereof, said 6-membered saturated heterocycle contains 1 or 2, in particular 1, heteroatom(s) O. According to one embodiment thereof, the respective 6-membered heterocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to still another embodiment of formula I, R4 is phenyl-C1-C6-alkyl, such as phenyl-CH2, wherein the phenyl moiety in each case is unsubstituted or substituted with one, two or three identical or different groups R4b which independently of one another are selected from CN, halogen, C1-C2-alkyl, C1-C2-alkoxy, C1-C2-halogenalkyl, C1-C2-halogenalkoxy and S(O)n—C1-C6-alkyl, in particular from CN, F, Cl, Br, CH3, OCH3, CF3, CHF2, OCHF2, OCF3 and S(O)2CH3.
  • According to still another embodiment of formula I, R4 is aryl, in particular phenyl, wherein the aryl or phenyl moiety in each case is unsubstituted or substituted with identical or different groups R4b which independently of one another are selected from CN, halogen, C1-C2-alkyl, C1-C2-alkoxy, C1-C2-halogenalkyl, C1-C2-halogenalkoxy and S(O)n—C1-C6-alkyl, in particular from CN, F, Cl, Br, CH3, OCH3, CF3, CHF2, OCHF2, OCF3. According to one embodiment, R4 is unsubstituted phenyl. According to another embodiment, R4 is phenyl, that is substituted with one, two or three, in particular one, halogen, in particular selected from F, Cl and Br, more specifically selected from F and Cl.
  • According to still another embodiment of formula I, R4 is a 5-membered heteroaryl such as pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan-2-yl, furan-3-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, 1,2,4-triazolyl-1-yl, 1,2,4-triazol-3-yl 1,2,4-triazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl and 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl.
  • According to still another embodiment of formula I, R4 is a 6-membered heteroaryl, such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl, especially CH2 substituted by a 5-membered saturated heteroaryl which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S as ring members. According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted by R4b.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl, especially CH2 substituted by a 5-membered saturated heteroaryl which contains one N as ring member. According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted by R4b.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl, especially CH2 substituted by a 5-membered saturated heteroaryl which contains two N as ring members. According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted by R4b.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl, especially CH2 substituted by a 5-membered saturated heteroaryl which contains three N as ring members. According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted by R4b. According to one specific embodiment thereof, said 5-membered saturated heterocycle contains 1 or 2, in particular 1, heteroatom(s) O.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl, especially CH2 substituted by a 5-membered saturated heteroaryl which contains one S as ring member.
  • According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted by R4b.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl, especially CH2 substituted by a 5-membered saturated heteroaryl which contains one S and one N as ring members. According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted by R4b.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl, especially CH2 substituted by a 5-membered saturated heteroaryl which contains one S and two N as ring members. According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted by R4b.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl, especially CH2 substituted by a 5-membered saturated heteroaryl which contains one oxygen and one N as ring members. According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted by R4b.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl, especially CH2 substituted by a 5-membered saturated heteroaryl which contains one oxygen and two N as ring members. According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted by R4b.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl, especially CH2 substituted by a 6-membered saturated heteroaryl which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S as ring members. According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted by R4b.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl, especially CH2 substituted by a 6-membered saturated heteroaryl which one N as ring member. According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted by R4b.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl, especially CH2 substituted by a 6-membered saturated heteroaryl which two N as ring members. According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted by R4b. According to a further specific embodiment of formula I, R4 is C1-C6-alkyl, especially CH2 substituted by a 10-membered saturated heteroaryl which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S as ring members. According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R4b.
  • According to still another embodiment of formula I, it is substituted by R4b. According to one specific embodiment thereof, said 10-membered saturated heterocycle contains 1 or 2, in particular 1, heteroatom(s) N.
  • According to a further specific embodiment of formula I, R4 is C1-C6-alkyl, especially CH2 substituted by a 10-membered saturated heteroaryl which one N as ring members. According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted by R4b.
  • According to still another embodiment of formula I, R4 is CH2 substituted by a 5-membered heteroaryl such as pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan-2-yl, furan-3-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, 1,2,4-triazolyl-1-yl, 1,2,4-triazol-3-yl 1,2,4-triazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl and 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl.
  • According to still another embodiment of formula I, R4 is CH2 substituted by a 6-membered heteroaryl, such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl.
  • According to a further particular embodiment, R4 is selected from C1-C6-alkyl, C1-C6-halogenalkyl, CN, C2-C6-alkenyl, C2-C6-halogenalkenyl, C3-C6-cycloalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C3-C6-cycloalkynyl, C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), CR′═NOR″, C3-C6-halogencycloalkyl a saturated three-, four-, five-, six-, membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; and C1-C6-alkyl substituted by CN, C1-C6-alkoxy, C1-C4-halogenalkoxy, C1-C6-alkylthio, S(O)n—C1-C6-alkyl, NH—SO2—Rx, NH(C1-C6-alkyl), N(C1-C6-alkyl)2, C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), a saturated three-, four-, five-, six-, membered carbocycle, heterocycle, aryl or heteroaryl; wherein the carbocycle, heterocycle, aryl and heteroaryl is unsubstituted or carries one, two, three or four substituents R4b as defined below. According to one embodiment thereof, the carbocycle, heterocycle, heteroaryl and aryl are unsubstituted. In a particular embodiment, R4 is selected from CN, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, a saturated three-, four-, five-, six-, membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; and C1-C6-alkyl substituted by a saturated three-, four-, five-, six-, membered carbocycle, heterocycle, aryl or heteroaryl; wherein the carbocycle, heterocycle, aryl and heteroaryl are unsubstituted or carries one, two, three or four substituents R4b as defined below.
  • According to a further particular embodiment, R4 is selected from C1-C6-halogenalkyl, CN, C2-C6-alkenyl, C2-C6-halogenalkenyl, C3-C6-cycloalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C3-C6-cycloalkynyl, C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), CR′═NOR″, C3-C6-halogencycloalkyl a saturated three-, four-, five-, six-, membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; and C1-C6-alkyl substituted by CN, C1-C6-alkoxy, C1-C4-halogenalkoxy, C1-C6-alkylthio, S(O)n—C1-C6-alkyl, NH—SO2—Rx, NH(C1-C6-alkyl), N(C1-C6-alkyl)2, C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), a saturated three-, four-, five-, six-, membered carbocycle, heterocycle, aryl or heteroaryl; wherein the carbocycle, heterocycle, aryl and heteroaryl is unsubstituted or carries one, two, three or four substituents R4b as defined below. According to one embodiment thereof, the carbocycle, heterocycle, heteroaryl and aryl are unsubstituted. In a particular embodiment, R4 is selected from CN, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, a saturated three-, four-, five-, six-, membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; and C1-C6-alkyl substituted by a saturated three-, four-, five-, six-, membered carbocycle, heterocycle, aryl or heteroaryl; wherein the carbocycle, heterocycle, aryl and heteroaryl are unsubstituted or carries one, two, three or four substituents R4b as defined below.
  • Particularly preferred embodiments of R4 according to the invention are in Table P4 below, wherein each line of lines P4-1 to P4-182 corresponds to one particular embodiment of the invention, wherein P4-1 to P4-182 are also in any combination with one another a preferred embodiment of the present invention. The connection point to the carbon atom, to which R4 is bound is marked with “#” in the drawings.
  • TABLE P4
    No. R4
    P4-1 CH3
    P4-2 CH2CH3
    P4-3 CF3
    P4-4 CH2F
    P4-5 CH2Cl
    P4-6 CHF2
    P4-7 CHCl2
    P4-8 CH2CF3
    P4-9 CH2CCl3
    P4-10 CF2CHF2
    P4-11 CH2OCH3
    P4-12 CH2OCH2F
    P4-13 CH2OCHF2
    P4-14 CH2OCF3
    P4-15 CH2OCF2CHF2
    P4-16 CH2NHMe
    P4-17 CH2SMe
    P4-18 CH2SOMe
    P4-19 CH2SO2Me
    P4-20 CH2NMe2
    P4-21 CH2NSO2CF3
    P4-22 CH2NSO2CH3
    P4-23 CN
    P4-24 CH2CN
    P4-25 CHO
    P4-26 COMe
    P4-27 CO2Me
    P4-28 CH2CHO
    P4-29 CH2COMe
    P4-30 CH2CO2Me
    P4-31
    Figure US20200187500A1-20200618-C00031
    P4-32
    Figure US20200187500A1-20200618-C00032
    P4-33
    Figure US20200187500A1-20200618-C00033
    P4-34
    Figure US20200187500A1-20200618-C00034
    P4-35
    Figure US20200187500A1-20200618-C00035
    P4-36
    Figure US20200187500A1-20200618-C00036
    P4-37
    Figure US20200187500A1-20200618-C00037
    P4-38
    Figure US20200187500A1-20200618-C00038
    P4-39
    Figure US20200187500A1-20200618-C00039
    P4-40
    Figure US20200187500A1-20200618-C00040
    P4-41
    Figure US20200187500A1-20200618-C00041
    P4-42
    Figure US20200187500A1-20200618-C00042
    P4-43
    Figure US20200187500A1-20200618-C00043
    P4-44
    Figure US20200187500A1-20200618-C00044
    P4-45
    Figure US20200187500A1-20200618-C00045
    P4-46
    Figure US20200187500A1-20200618-C00046
    P4-47
    Figure US20200187500A1-20200618-C00047
    P4-48
    Figure US20200187500A1-20200618-C00048
    P4-49
    Figure US20200187500A1-20200618-C00049
    P4-50
    Figure US20200187500A1-20200618-C00050
    P4-51
    Figure US20200187500A1-20200618-C00051
    P4-52
    Figure US20200187500A1-20200618-C00052
    P4-53
    Figure US20200187500A1-20200618-C00053
    P4-54
    Figure US20200187500A1-20200618-C00054
    P4-55
    Figure US20200187500A1-20200618-C00055
    P4-56
    Figure US20200187500A1-20200618-C00056
    P4-57
    Figure US20200187500A1-20200618-C00057
    P4-58
    Figure US20200187500A1-20200618-C00058
    P4-59
    Figure US20200187500A1-20200618-C00059
    P4-60
    Figure US20200187500A1-20200618-C00060
    P4-61
    Figure US20200187500A1-20200618-C00061
    P4-62
    Figure US20200187500A1-20200618-C00062
    P4-63 C6H5
    P4-64 4-Cl—C6H4
    P4-65 3-Cl—C6H4
    P4-66 2-Cl—C6H4
    P4-67 2,4-Cl2—C6H3
    P4-68 4-F—C6H4
    P4-69 3-F—C6H4
    P4-70 2-F—C6H4
    P4-71 2,4-F2—C6H3
    P4-72 2,4-MeO—C6H4
    P4-73 3-MeO—C6H4
    P4-74 2-MeO—C6H4
    P4-75 4-MeO2S—C6H4
    P4-76 3-MeO2S—C6H4
    P4-77 2-MeO2S—C6H4
    P4-78 —CH2—C6H5
    P4-79 —CH2—C6H4—4-F
    P4-80 —CH2—C6H4—4-Cl
    P4-81 —CH2—C6H3—2,4-Cl2
    P4-82 —CH2—C6H4—4-SO2Me
    P4-83 3-py
    P4-84 2-py
    P4-85 4-py
    P4-86
    Figure US20200187500A1-20200618-C00063
    P4-87
    Figure US20200187500A1-20200618-C00064
    P4-88
    Figure US20200187500A1-20200618-C00065
    P4-89
    Figure US20200187500A1-20200618-C00066
    P4-90
    Figure US20200187500A1-20200618-C00067
    P4-91
    Figure US20200187500A1-20200618-C00068
    P4-92
    Figure US20200187500A1-20200618-C00069
    P4-93
    Figure US20200187500A1-20200618-C00070
    P4-94
    Figure US20200187500A1-20200618-C00071
    P4-95
    Figure US20200187500A1-20200618-C00072
    P4-96
    Figure US20200187500A1-20200618-C00073
    P4-97
    Figure US20200187500A1-20200618-C00074
    P4-98
    Figure US20200187500A1-20200618-C00075
    P4-99
    Figure US20200187500A1-20200618-C00076
    P4-100
    Figure US20200187500A1-20200618-C00077
    P4-101
    Figure US20200187500A1-20200618-C00078
    P4-102
    Figure US20200187500A1-20200618-C00079
    P4-103
    Figure US20200187500A1-20200618-C00080
    P4-104
    Figure US20200187500A1-20200618-C00081
    P4-105
    Figure US20200187500A1-20200618-C00082
    P4-106
    Figure US20200187500A1-20200618-C00083
    P4-107
    Figure US20200187500A1-20200618-C00084
    P4-108
    Figure US20200187500A1-20200618-C00085
    P4-109
    Figure US20200187500A1-20200618-C00086
    P4-110
    Figure US20200187500A1-20200618-C00087
    P4-111
    Figure US20200187500A1-20200618-C00088
    P4-112
    Figure US20200187500A1-20200618-C00089
    P4-113
    Figure US20200187500A1-20200618-C00090
    P4-114
    Figure US20200187500A1-20200618-C00091
    P4-115
    Figure US20200187500A1-20200618-C00092
    P4-116
    Figure US20200187500A1-20200618-C00093
    P4-117
    Figure US20200187500A1-20200618-C00094
    P4-118
    Figure US20200187500A1-20200618-C00095
    P4-119
    Figure US20200187500A1-20200618-C00096
    P4-120
    Figure US20200187500A1-20200618-C00097
    P4-121
    Figure US20200187500A1-20200618-C00098
    P4-122
    Figure US20200187500A1-20200618-C00099
    P4-123
    Figure US20200187500A1-20200618-C00100
    P4-124
    Figure US20200187500A1-20200618-C00101
    P4-125
    Figure US20200187500A1-20200618-C00102
    P4-126
    Figure US20200187500A1-20200618-C00103
    P4-127
    Figure US20200187500A1-20200618-C00104
    P4-128
    Figure US20200187500A1-20200618-C00105
    P4-129
    Figure US20200187500A1-20200618-C00106
    P4-130
    Figure US20200187500A1-20200618-C00107
    P4-131
    Figure US20200187500A1-20200618-C00108
    P4-132
    Figure US20200187500A1-20200618-C00109
    P4-133
    Figure US20200187500A1-20200618-C00110
    P4-134
    Figure US20200187500A1-20200618-C00111
    P4-135
    Figure US20200187500A1-20200618-C00112
    P4-136
    Figure US20200187500A1-20200618-C00113
    P4-137
    Figure US20200187500A1-20200618-C00114
    P4-138
    Figure US20200187500A1-20200618-C00115
    P4-139
    Figure US20200187500A1-20200618-C00116
    P4-140
    Figure US20200187500A1-20200618-C00117
    P4-141
    Figure US20200187500A1-20200618-C00118
    P4-142
    Figure US20200187500A1-20200618-C00119
    P4-143
    Figure US20200187500A1-20200618-C00120
    P4-144
    Figure US20200187500A1-20200618-C00121
    P4-145
    Figure US20200187500A1-20200618-C00122
    P4-146
    Figure US20200187500A1-20200618-C00123
    P4-147
    Figure US20200187500A1-20200618-C00124
    P4-148
    Figure US20200187500A1-20200618-C00125
    P4-149
    Figure US20200187500A1-20200618-C00126
    P4-150
    Figure US20200187500A1-20200618-C00127
    P4-151
    Figure US20200187500A1-20200618-C00128
    P4-152
    Figure US20200187500A1-20200618-C00129
    P4-153
    Figure US20200187500A1-20200618-C00130
    P4-154
    Figure US20200187500A1-20200618-C00131
    P4-155
    Figure US20200187500A1-20200618-C00132
    P4-156
    Figure US20200187500A1-20200618-C00133
    P4-157
    Figure US20200187500A1-20200618-C00134
    P4-158
    Figure US20200187500A1-20200618-C00135
    P4-159
    Figure US20200187500A1-20200618-C00136
    P4-160
    Figure US20200187500A1-20200618-C00137
    P4-161
    Figure US20200187500A1-20200618-C00138
    P4-162
    Figure US20200187500A1-20200618-C00139
    P4-163
    Figure US20200187500A1-20200618-C00140
    P4-164
    Figure US20200187500A1-20200618-C00141
    P4-165
    Figure US20200187500A1-20200618-C00142
    P4-166
    Figure US20200187500A1-20200618-C00143
    P4-167
    Figure US20200187500A1-20200618-C00144
    P4-168
    Figure US20200187500A1-20200618-C00145
    P4-169
    Figure US20200187500A1-20200618-C00146
    P4-170
    Figure US20200187500A1-20200618-C00147
    P4-171
    Figure US20200187500A1-20200618-C00148
    P4-172
    Figure US20200187500A1-20200618-C00149
    P4-173
    Figure US20200187500A1-20200618-C00150
    P4-174
    Figure US20200187500A1-20200618-C00151
    P4-175
    Figure US20200187500A1-20200618-C00152
    P4-176
    Figure US20200187500A1-20200618-C00153
    P4-177
    Figure US20200187500A1-20200618-C00154
    P4-178
    Figure US20200187500A1-20200618-C00155
    P4-179
    Figure US20200187500A1-20200618-C00156
    P4-180
    Figure US20200187500A1-20200618-C00157
    P4-181
    Figure US20200187500A1-20200618-C00158
    P4-182
    Figure US20200187500A1-20200618-C00159
    (py = pyridyl)
  • According to still another embodiment of formula I, R3, R4 together with the carbon atom to which they are bound form a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- or heterocycle; wherein the heterocycle contains one, two, three or four heteroatoms selected from N, O and S, wherein the heteroatom N may carry one substituent RN selected from C1-C4-alkyl, C1-C4-halogenalkyl and SO2Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted with one, two or three substituents selected from CN, C1-C4-alkyl, halogen, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy; and wherein the heteroatom S may be in the form of its oxide SO or SO2, and wherein the carbocycle or heterocycle is unsubstituted or carries one, two, three or four substituents R34 independently selected from halogen, OH, CN, NO2, SH, NH2, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents R34a selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S).
  • According to one embodiment, R3 and R4 form a 3-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to one embodiment, R3 and R4 form a 4-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to one embodiment, R3 and R4 form a 5-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to one embodiment, R3 and R4 form a 6-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to one embodiment, R3 and R4 form a 7-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R4b. According to still another embodiment of formula I, it is substituted with R4b.
  • According to one embodiment, R3 and R4 together with the carbon atom to which they are bound form a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered heterocycle that is unsubstituted or substituted. According to a further embodiment, the heterocycle formed by R3 and R4 is saturated.
  • According to a further embodiment, the heterocycle formed by R3 and R4 is a saturated unsubstituted or substituted heterocycle, wherein the heterocycle contains one, two or three, more particularly one or two, specifically one, heteroatom(s) selected from NH, NRN, O, S, S(═O) and S(═O)2, wherein RN is defined and preferably defined above. According to one embodiment, this saturated heterocycle is unsubstituted. According to a further embodiment, the saturated heterocycle carries one, two, three or four substituents R34. In one further particular embodiment, said heterocycle is four- or six-membered.
  • According to a further embodiment, the unsubstituted or substituted and saturated or partially unsaturated heterocycle is three-, four-, five- or six-membered and contains one, two or three, more particularly one or two, heteroatoms selected from NH, NRN, O, S, S(═O) and S(═O)2, wherein RN is as defined above or preferably selected from C1-C2-alkyl, C1-C2-halogenalkyl and SO2Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted by one C1-C2-alkyl. In one further particular embodiment, said heterocycle is four- or six-membered.
  • According to a further embodiment, the heterocycle formed by R3 and R4 contains one, two or three, more specifically one or two, heteroatoms selected from NH and NRN, wherein RN is as defined and preferably defined below, more particularly selected from C1-C2-alkyl, C1-C2-halogenalkyl and SO2Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted by one methyl. In one embodiment thereof, it contains one or two heteroatoms NH, in particular one NH. In another embodiment, it contains one or two heteroatoms NRN, in particular one NRN, wherein RN in each case is as defined and preferably defined above.
  • According to a further embodiment, the heterocycle formed by R3 and R4 contains one, two or three, more specifically one or two, in particular one, heteroatom(s) selected from S, S(═O) and S(═O)2. In one embodiment thereof, it contains one or two heteroatoms S, in particular one S. In another embodiment, it contains one or two heteroatoms S(═O), in particular one S(═O). In still another embodiment, it contains one or two heteroatoms S(═O)2, in particular one S(═O)2.
  • According to a further embodiment, the heterocycle formed by R3 and R4 contains one or two heteroatoms O. In one embodiment thereof, it contains one heteroatom O. In another embodiment, it contains two heteroatoms O.
  • According to a further embodiment, the heterocycle formed by R3 and R4 is unsubstituted, i.e. it does not carry any substituent R34. According to a further embodiment, it carries one, two, three or four R34.
  • According to one particular embodiment, R3 and R4 together form a 4-membered saturated heterocycle which contains 1 or 2 heteroatoms, in particular 1 heteroatom, from the group consisting of NH, NRN, O, S, S(═O) and S(═O)2, as ring members, wherein RN is defined and preferably defined above. In one embodiment, the heterocycle contains one O as heteroatom. For example, the formed heterocycle is oxetane. According to one embodiment thereof, the heterocycle is unsubstituted, i.e. it does not carry any substituent R34. According to a further embodiment, it carries one, two, three or four R34.
  • According to a further particular embodiment, R3 and R4 together form a 5-membered saturated heterocycle which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of NH, NRN, O, S, S(═O) and S(═O)2, as ring members, wherein RN is as defined and preferably defined above. According to one embodiment thereof, the heterocycle is unsubstituted, i.e. it does not carry any substituent R34. According to a further embodiment, it carries one, two, three or four R34.
  • According to a further particular embodiment, R3 and R4 together form a 6-membered saturated heterocycle which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of NH, NRN, O, S, S(═O) and S(═O)2, as ring members, wherein RN is as defined and preferably defined below. According to one embodiment thereof, the heterocycle is unsubstituted, i.e. it does not carry any substituent R34. According to a further embodiment, it carries one, two, three or four R34. According to one specific embodiment thereof, said 6-membered saturated heterocycle contains 1 or 2 heteroatoms selected from NH and NRN. According to a further specific embodiment thereof, said 6-membered saturated heterocycle contains 1 or 2 heteroatoms O. According to a further specific embodiment thereof, said 6-membered saturated heterocycle contains 1 or 2 heteroatoms selected from S, S(═O) and S(═O)2. According to one embodiment thereof, the respective 6-membered heterocycle is unsubstituted, i.e. it does not carry any substituent R34. According to a further embodiment, it carries one, two, three or four R34.
  • According to one further embodiment R3 together with R4 and with the carbon atom to which they are bound form a saturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle, in particular three-, four-, five- or six-membered carbocycle, more specifically five- or six-membered carbocycle, that is unsubstituted or carries one, two, three or four substituents R34 as defined below. According to one embodiment thereof, R3 and R4 form a cyclopropyl, that is unsubstituted or carries one, two, three or four substituents R34 as defined below. According to a further embodiment thereof, R3 and R4 form a cyclobutyl, that is unsubstituted or carries one, two, three or four substituents R34 as defined below. According to still a further embodiment thereof, R3 and R4 form a cyclopentyl, that is unsubstituted or carries one, two, three or four substituents R34 as defined below. According to still a further embodiment thereof, R3 and R4 form a cyclohexyl, that is unsubstituted or carries one, two, three or four substituents R34 as defined below. According to still a further embodiment thereof, R3 and R4 form a cycloheptyl, that is unsubstituted or carries one, two, three or four substituents R34 as defined below.
  • R34 are the possible substituents for the carbo- or heterocycle formed by R3 and R4 and are independently selected from halogen, OH, CN, NO2, SH, NH2, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents R34a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S).
  • In one preferred embodiment, R34 is in each case independently selected from halogen, OH, CN, SH, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy, C1-C6-halogenalkoxy and C1-C6-alkylthio. In one further preferred embodiment, R34 is in each case independently selected from halogen, C1-C6-alkyl and C1-C6-halogenalkyl. In one further particular embodiment, R34 is in each case independently selected from C1-C6-alkyl, such as methyl and ethyl.
  • RN is the substituent of the heteroatom NRN that is contained in the heterocycle formed by R3 and R4 in some of the inventive compounds. RN is selected from C1-C4-alkyl, C1-C4-halogenalk and SO2Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted by one, two or three substituents selected from C1-C4-alkyl. In one preferred embodiment, RN is in each case independently selected from C1-C2-alkyl, C1-C2-halogenalkyl and SO2Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted by one methyl substituents. In one particular embodiment, RN is in each case independently selected from C1-C2-alkyl, more particularly methyl. In one particular embodiment, RN is in each case independently selected from SO2Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted by one methyl.
  • According to still another embodiment of formula I, R3, R4 together with the carbon atom to which they are bound form a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- or heterocycle; wherein the carbocycle or heterocycle is unsubstituted or carries one, two, three or four substituents R34 independently selected from halogen, OH, CN, NO2, SH, NH2, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents R34a selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy.
  • According to still another embodiment of formula I, R3, R4 together with the carbon atom to which they are bound form a saturated or partially unsaturated four-, five-, six-membered carbo- or heterocycle; wherein the carbocycle or heterocycle is unsubstituted or carries one, two, three or four substituents R34 independently selected from halogen, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy, C1-C6-halogenalkoxy.
  • Particularly preferred embodiments of combinations of R3 and R4 according to the invention are in Table P34 below, wherein each line of lines P34-1 to P34-190 corresponds to one particular embodiment of the invention, wherein P34-1 to P34-190 are also in any combination with one another a preferred embodiment of the present invention. The carbon atom, to which R3 and R4 are bound is marked with * in the drawings. “Ts” in the drawings stands for the tosyl group SO2-(p-CH3)phenyl.
  • TABLE P34
    No. R3 R4
    P34-1 CH3 CH3
    P34-2 CH3 CH2CH3
    P34-3 CH3 CF3
    P34-4 CH3 CHF2
    P34-5 CH3 CH2F
    P34-6 CH3 CN
    P34-7 CH3 CH2Cl
    P34-8 CH3 CH2CH2Cl
    P34-9 CH3 CH2CH2OCH3
    P34-10 CH3
    Figure US20200187500A1-20200618-C00160
    P34-11 CH3
    Figure US20200187500A1-20200618-C00161
    P34-12 CH3
    Figure US20200187500A1-20200618-C00162
    P34-13 CH3
    Figure US20200187500A1-20200618-C00163
    P34-14 CH3
    Figure US20200187500A1-20200618-C00164
    P34-15 CH3
    Figure US20200187500A1-20200618-C00165
    P34-16 CH3
    Figure US20200187500A1-20200618-C00166
    P34-17 CH3
    Figure US20200187500A1-20200618-C00167
    P34-18 CH3
    Figure US20200187500A1-20200618-C00168
    P34-19 CH3
    Figure US20200187500A1-20200618-C00169
    P34-20 CH3 C6H5
    P34-21 CH3 4-F—C6H4
    P34-22 CH3 —CH2—C6H5
    P34-23 CH3 —CH2—C6H4—4-F
    P34-24 CH3 3-py
    P34-25 CH3 2-py
    P34-26 CH3 4-py
    P34-27 CH3
    Figure US20200187500A1-20200618-C00170
    P34-28 CH3
    Figure US20200187500A1-20200618-C00171
    P34-29 CH3
    Figure US20200187500A1-20200618-C00172
    P34-30 CH3
    Figure US20200187500A1-20200618-C00173
    P34-31 CH3
    Figure US20200187500A1-20200618-C00174
    P34-32 CH3
    Figure US20200187500A1-20200618-C00175
    P34-33 CH3
    Figure US20200187500A1-20200618-C00176
    P34-34 CH3
    Figure US20200187500A1-20200618-C00177
    P34-35 CH3
    Figure US20200187500A1-20200618-C00178
    P34-36 CH3
    Figure US20200187500A1-20200618-C00179
    P34-37 CH3
    Figure US20200187500A1-20200618-C00180
    P34-38 CH3
    Figure US20200187500A1-20200618-C00181
    P34-39 CH3
    Figure US20200187500A1-20200618-C00182
    P34-40 CH2F CH3
    P34-41 CH2F CH2CH3
    P34-42 CH2F CF3
    P34-43 CH2F CHF2
    P34-44 CH2F CH2F
    P34-45 CH2F CN
    P34-46 CH2F CH2Cl
    P34-47 CH2F CH2CH2Cl
    P34-48 CH2F CH2CH2OCH3
    P34-49 CH2F
    Figure US20200187500A1-20200618-C00183
    P34-50 CH2F
    Figure US20200187500A1-20200618-C00184
    P34-51 CH2F
    Figure US20200187500A1-20200618-C00185
    P34-52 CH2F
    Figure US20200187500A1-20200618-C00186
    P34-53 CH2F
    Figure US20200187500A1-20200618-C00187
    P34-54 CH2F
    Figure US20200187500A1-20200618-C00188
    P34-55 CH2F
    Figure US20200187500A1-20200618-C00189
    P34-56 CH2F
    Figure US20200187500A1-20200618-C00190
    P34-57 CH2F
    Figure US20200187500A1-20200618-C00191
    P34-58 CH2F
    Figure US20200187500A1-20200618-C00192
    P34-59 CH2F C6H5
    P34-60 CH2F 4-F—C6H4
    P34-61 CH2F —CH2—C6H5
    P34-62 CH2F —CH2—C6H4—4-F
    P34-63 CH2F 3-py
    P34-64 CH2F 2-py
    P34-65 CH2F 4-py
    P34-66 CH2F
    Figure US20200187500A1-20200618-C00193
    P34-67 CH2F
    Figure US20200187500A1-20200618-C00194
    P34-68 CH2F
    Figure US20200187500A1-20200618-C00195
    P34-69 CH2F
    Figure US20200187500A1-20200618-C00196
    P34-70 CH2F
    Figure US20200187500A1-20200618-C00197
    P34-71 CH2F
    Figure US20200187500A1-20200618-C00198
    P34-72 CH2F
    Figure US20200187500A1-20200618-C00199
    P34-73 CH2F
    Figure US20200187500A1-20200618-C00200
    P34-74 CH2F
    Figure US20200187500A1-20200618-C00201
    P34-75 CH2F
    Figure US20200187500A1-20200618-C00202
    P34-76 CH2F
    Figure US20200187500A1-20200618-C00203
    P34-77 CH2F
    Figure US20200187500A1-20200618-C00204
    P34-78 CH2F
    Figure US20200187500A1-20200618-C00205
    P34-79 CHF2 CH3
    P34-80 CHF2 CH2CH3
    P34-81 CHF2 CF3
    P34-82 CHF2 CHF2
    P34-83 CHF2 CH2F
    P34-84 CHF2 CN
    P34-85 CHF2 CH2Cl
    P34-86 CHF2 CH2CH2Cl
    P34-87 CHF2 CH2CH2OCH3
    P34-88 CHF2
    Figure US20200187500A1-20200618-C00206
    P34-89 CHF2
    Figure US20200187500A1-20200618-C00207
    P34-90 CHF2
    Figure US20200187500A1-20200618-C00208
    P34-91 CHF2
    Figure US20200187500A1-20200618-C00209
    P34-92 CHF2
    Figure US20200187500A1-20200618-C00210
    P34-93 CHF2
    Figure US20200187500A1-20200618-C00211
    P34-94 CHF2
    Figure US20200187500A1-20200618-C00212
    P34-95 CHF2
    Figure US20200187500A1-20200618-C00213
    P34-96 CHF2
    Figure US20200187500A1-20200618-C00214
    P34-97 CHF2
    Figure US20200187500A1-20200618-C00215
    P34-98 CHF2 C6H5
    P34-99 CHF2 4-F—C6H4
    P34-100 CHF2 —CH2—C6H5
    P34-101 CHF2 —CH2—C6H4—4-F
    P34-102 CHF2 3-py
    P34-103 CHF2 2-py
    P34-104 CHF2 4-py
    P34-105 CHF2
    Figure US20200187500A1-20200618-C00216
    P34-106 CHF2
    Figure US20200187500A1-20200618-C00217
    P34-107 CHF2
    Figure US20200187500A1-20200618-C00218
    P34-108 CHF2
    Figure US20200187500A1-20200618-C00219
    P34-109 CHF2
    Figure US20200187500A1-20200618-C00220
    P34-110 CHF2
    Figure US20200187500A1-20200618-C00221
    P34-111 CHF2
    Figure US20200187500A1-20200618-C00222
    P34-112 CHF2
    Figure US20200187500A1-20200618-C00223
    P34-113 CHF2
    Figure US20200187500A1-20200618-C00224
    P34-114 CHF2
    Figure US20200187500A1-20200618-C00225
    P34-115 CHF2
    Figure US20200187500A1-20200618-C00226
    P34-116 CHF2
    Figure US20200187500A1-20200618-C00227
    P34-117 CHF2
    Figure US20200187500A1-20200618-C00228
    P34-118 CF3 CH3
    P34-119 CF3 CH2CH3
    P34-120 CF3 CF3
    P34-121 CF3 CHF2
    P34-122 CF3 CH2F
    P34-123 CF3 CN
    P34-124 CF3 CH2Cl
    P34-125 CF3 CH2CH2Cl
    P34-126 CF3 CH2CH2OCH3
    P34-127 CF3
    Figure US20200187500A1-20200618-C00229
    P34-128 CF3
    Figure US20200187500A1-20200618-C00230
    P34-129 CF3
    Figure US20200187500A1-20200618-C00231
    P34-130 CF3
    Figure US20200187500A1-20200618-C00232
    P34-131 CF3
    Figure US20200187500A1-20200618-C00233
    P35-132 CF3
    Figure US20200187500A1-20200618-C00234
    P34-133 CF3
    Figure US20200187500A1-20200618-C00235
    P34-134 CF3
    Figure US20200187500A1-20200618-C00236
    P34-135 CF3
    Figure US20200187500A1-20200618-C00237
    P34-136 CF3
    Figure US20200187500A1-20200618-C00238
    P34-137 CF3 C6H5
    P34-138 CF3 4-F—C6H4
    P34-139 CF3 —CH2—C6H5
    P34-140 CF3 —CH2—C6H4—4-F
    P34-141 CF3 3-py
    P34-142 CF3 2-py
    P34-143 CF3 4-py
    P34-144 CF3
    Figure US20200187500A1-20200618-C00239
    P34-145 CF3
    Figure US20200187500A1-20200618-C00240
    P34-146 CF3
    Figure US20200187500A1-20200618-C00241
    P34-147 CF3
    Figure US20200187500A1-20200618-C00242
    P34-148 CF3
    Figure US20200187500A1-20200618-C00243
    P34-149 CF3
    Figure US20200187500A1-20200618-C00244
    P34-150 CF3
    Figure US20200187500A1-20200618-C00245
    P34-151 CF3
    Figure US20200187500A1-20200618-C00246
    P34-152 CF3
    Figure US20200187500A1-20200618-C00247
    P34-153 CF3
    Figure US20200187500A1-20200618-C00248
    P34-154 CF3
    Figure US20200187500A1-20200618-C00249
    P34-155 CF3
    Figure US20200187500A1-20200618-C00250
    P34-156 CF3
    Figure US20200187500A1-20200618-C00251
    P34-157
    Figure US20200187500A1-20200618-C00252
    P34-158
    Figure US20200187500A1-20200618-C00253
    P34-159
    Figure US20200187500A1-20200618-C00254
    P34-160
    Figure US20200187500A1-20200618-C00255
    P34-161
    Figure US20200187500A1-20200618-C00256
    P34-162
    Figure US20200187500A1-20200618-C00257
    P34-163
    Figure US20200187500A1-20200618-C00258
    P34-164
    Figure US20200187500A1-20200618-C00259
    P34-165
    Figure US20200187500A1-20200618-C00260
    P34-166
    Figure US20200187500A1-20200618-C00261
    P34-167
    Figure US20200187500A1-20200618-C00262
    P34-168
    Figure US20200187500A1-20200618-C00263
    P34-169
    Figure US20200187500A1-20200618-C00264
    P34-170
    Figure US20200187500A1-20200618-C00265
    P34-171
    Figure US20200187500A1-20200618-C00266
    P34-172
    Figure US20200187500A1-20200618-C00267
    P34-173
    Figure US20200187500A1-20200618-C00268
    P34-174
    Figure US20200187500A1-20200618-C00269
    P34-175
    Figure US20200187500A1-20200618-C00270
    P34-176
    Figure US20200187500A1-20200618-C00271
    P34-177
    Figure US20200187500A1-20200618-C00272
    P34-178
    Figure US20200187500A1-20200618-C00273
    P34-179
    Figure US20200187500A1-20200618-C00274
    P34-180
    Figure US20200187500A1-20200618-C00275
    P34-181
    Figure US20200187500A1-20200618-C00276
    P34-182
    Figure US20200187500A1-20200618-C00277
    P34-183
    Figure US20200187500A1-20200618-C00278
    P34-184
    Figure US20200187500A1-20200618-C00279
    P34-185
    Figure US20200187500A1-20200618-C00280
    P34-186
    Figure US20200187500A1-20200618-C00281
    P34-187
    Figure US20200187500A1-20200618-C00282
    P34-188
    Figure US20200187500A1-20200618-C00283
    P34-189
    Figure US20200187500A1-20200618-C00284
    P34-190
    Figure US20200187500A1-20200618-C00285
  • Rx in the substituent NH—SO2—Rx is in each case independently selected from C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl and aryl that is substituted by one, two, three, four or five substituents Rx1 independently selected from C1-C4-alkyl, halogen, OH, CN, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy. In particular, Rx is in each case independently selected from C1-C4-alkyl and phenyl that is substituted by one, two or three Rx1 independently selected from C1-C2-alkyl, more specifically Rx is in each case independently selected from C1-C4-alkyl and phenyl that is substituted by one CH3, more specifically SO2—Rx is the tosyl group (“Ts”).
  • R4a are the possible substituents for the the acyclic moieties of R4 and the R4a are in each case independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, S(O)n-aryl, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, five-, six- or ten-membered heteroaryl, aryl, phenoxy; wherein in each case one or two CH2 groups of the carbocycle and heterocycle may be replaced by a group independently selected from C(═O) and C(═S); wherein the heterocycle and heteroaryl contain independently one, two, three or four heteroatoms selected from N, O and S; wherein the carbocyclic, heterocyclic, phenyl and heteroaryl groups are independently unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkylthio, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy and S(O)n—C1-C6-alkyl; wherein n is 0, 1 and 2;
  • According to one preferred embodiment, R4a is in each case independently selected from halogen, OH, CN, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl) and CR′═NOR″.
  • According to one preferred embodiment, R4a is in each case independently selected from OH, CN, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl) such as CN, CHO, C(O)O(CH3),CO2NH(CH3), CO2N(CH3)2 or NHSO2CF3.
  • According to one preferred embodiment, R4a is in each case independently selected from C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, S(O)n-aryl, such as SCH3, SO2CH3, SO2Ph.
  • According to one preferred embodiment, R4a is in each case independently selected from NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, such as NH(CH3), N(CH3)2 or NHSO2CH3, NHSO2CF3.
  • According to one preferred embodiment, R4a is in each case independently selected from C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, such as cyclopropyl or fully or partially halogenated cyclopropyl.
  • According to one preferred embodiment, R4a is in each case independently selected from C1-C6-alkoxy, C1-C6-halogenalkoxy, such as OCF3, OCHF2, OCH2F, OCCl3, OCHCl2 or OCH2Cl, in particular OCF3, OCHF2, OCCl3 or OCHCl2.
  • According to one preferred embodiment, R4a is in each case independently selected from heterocarbocycle, wherein the heretocyclocycle is a saturated, two CH2 groups are replaced by C(═O) and contains one N as a ring member.
  • According to one preferred embodiment, R4a is in each case independently selected from aryl, wherein the aryl is substituted with halogen selected from the group consisting of F, Cl, Br, CH3, CHF2, OCH3, OCHF3, CN or SO2CH3.
  • According to one prefer embodiment, R4 is unsubstituted 5- or 6-membered heteroaryl. According to still a further embodiment, R4 is 5- or 6-membered heteroaryl substituted by halogen selected from the group consisting of F, Cl, Br, CH3, CHF2, OCH3, OCHF3, CN or SO2CH3.
  • According to one preferred embodiment, R4a is in each case independently selected from halogen, OH, CN, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and heterocycle, wherein the heretocyclocycle is a saturated and contains one N as a ring member.
  • According to one preferred embodiment, R4a is in each case independently selected from halogen, OH, CN, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and heterocycle, wherein the heretocyclocycle is a saturated, one CH2 group is replaced by C(═O) and contains one N as a ring member.
  • According to one preferred embodiment, R4a is in each case independently selected from halogen, OH, CN, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and heterocycle, wherein the heretocyclocycle is a saturated, two CH2 groups are replaced by C(═O) and contains one N as a ring member.
  • According to one preferred embodiment, R4a is in each case independently selected from halogen, CN, C1-C6-alkoxy, C1-C6-halogenalkoxy, C3-C7-cycloalkyl, C3-C7-halogencycloalkyl, aryl, and heteroaryl, wherein the aryl and heteroaryl are substituted from the group consisting of F, Cl, Br, CH3, CHF2, OCH3, OCHF3, CN or SO2CH3. According to one further preferred embodiment, R4a is in each case independently selected from halogen, phenyl, halogenphenyl and heteroaryl, wherein the halogenphenyl is substituted with halogen selected from the group consisting of F, Cl and Br, in particular selected from F and Cl.
  • According to one preferred embodiment, R4a is in each case independently selected from halogen, CN, C1-C6-alkoxy, C1-C6-halogenalkoxy, aryl, and heteroaryl, wherein the aryl and heteroaryl are substituted from the group consisting of F, Cl, Br, CH3, CHF2, OCH3, OCHF3, CN or SO2CH3. According to one further preferred embodiment, R4a is in each case independently selected from halogen, phenyl, halogenphenyl and heteroaryl, wherein the halogenphenyl is substituted with halogen selected from the group consisting of F, Cl and Br, in particular selected from F and Cl.
  • According to one further preferred embodiment, R4a is in each case independently selected from halogen, CN, C1-C6-alkoxy and phenyl; wherein the phenyl is substituted with halogen selected from the group consisting of F, Cl and Br or by C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy. According to one further preferred embodiment, R4a is in each case independently selected from CN, halogen, C1-C6-alkoxy, phenyl and heteroaryl, wherein the phenyl and heteroaryl is substituted with halogen selected from the group consisting of F, Cl and Br, in particular selected from F and Cl.
  • R4b are the possible substituents for the carbocycle, heterocycle, heteroaryl and aryl moieties of R4 and are independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or substituted with substituents selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy.
  • According to one preferred embodiment, R4b is in each case independently selected from halogen, OH, CN, SH, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C1-C6-alkylthio and S(O)n—C1-C6-alkyl. According to one further preferred embodiment, R4b is in each case independently selected from halogen, C1-C6-alkoxy, C1-C6-halogenalkyl, C1-C6-halogenalkoxy and S(O)n—C1-C6-alkyl. According to one further particular embodiment, R4b is in each case independently selected from C1-C6-alkyl, such as methyl and ethyl. According to one further particular embodiment, R4b is in each case independently selected from halogen, such as F, Cl and Br. According to one further particular embodiment, R4b is in each case independently selected from C1-C6-alkoxy, such as OCH3. According to one further particular embodiment, R4b is in each case independently selected from C1-C4-halogenalkoxy, such as OCHF2 and OCF3. According to one further particular embodiment, R4b is in each case independently selected from S(O)n—C1-C6-alkyl. such as SO2CH3.
  • R5 is H. R6 is H.
  • R7 and R8 together with the carbon atoms to which they are bound together form a phenyl or five- or six-membered heteroaryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein the heteroaryl carries zero, one, two, three or four substituents (R78)o, wherein o is 0, 1, 2 or 3; and
    R78 are independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, CH(═O), C(═O)C1-C6-alkyl, C(═O)NH(C1-C6-alkyl), CR′═NOR″, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, S(O)n—C1-C6-alkyl, three-, four-, five- or six-membered saturated or partially unsaturated heterocycle, five- or six-membered heteroaryl and phenyl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein n, Rx, R′ and R″ are as defined above.
    and wherein the acyclic moieties of R78 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R78a which independently of one another are selected from:
    R78a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halogencycloalkyl, C3-C6-halogencycloalkenyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, five- or six-membered heteroaryl, phenyl and phenoxy, wherein the heteroaryl and phenyl group is unsubstituted or carries one, two, three, four or five substituents R78aa selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
    wherein the carbocyclic, phenyl, heterocyclic and heteroaryl moieties of R78 are not further substituted or carry one, two, three, four, five or up to the maximum number of identical or different groups R78b which independently of one another are selected from:
    R78b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio.
  • According to one embodiment, R7 and R8 together with the carbon atoms to which they are bound form phenyl; wherein the phenyl carries zero, one or two substituents (R78)o, as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • According to one embodiment, R7 and R8 together with the carbon atoms to which they are bound form a five- or six-membered heteroaryl; wherein the heteroaryl contains one or two heteroatoms selected from N, O and S, and wherein the heteroaryl carries zero, one or two substituents (R78)o, as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • According to a further embodiment, R7 and R8 together with the carbon atoms to which they are bound form a five- or six-membered heteroaryl; wherein the heteroaryl contains one or two heteroatoms N, and wherein the heteroaryl carries zero, one or two substituents (R78)o, as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • According to a further embodiment, R7 and R8 together with the carbon atoms to which they are bound form a five- or six-membered heteroaryl; wherein the heteroaryl contains one or two heteroatoms selected from S and O, and wherein the heteroaryl carries zero, one or two substituents (R78)o, as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • According to a further embodiment, R7 and R8 together with the carbon atoms to which they are bound form a five- or six-membered heteroaryl; wherein the heteroaryl contains one heteroatom S, and wherein the heteroaryl carries zero, one or two substituents (R78)o, as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • According to a further embodiment, R7 and R8 together with the carbon atoms to which they are bound form a five- or six-membered heteroaryl; wherein the heteroaryl contains one heteroatom O, and wherein the heteroaryl carries zero, one or two substituents (R78)o, as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • According to one embodiment, R7 and R8 together with the carbon atoms to which they are bound form a five-membered heteroaryl; wherein the heteroaryl contains one or two heteroatoms selected from N, O and S, and wherein the heteroaryl carries zero, one or two substituents (R78)o, as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • According to one embodiment, R7 and R8 together with the carbon atoms to which they are bound form a five-membered heteroaryl; wherein the heteroaryl contains one or two heteroatoms N, and wherein the heteroaryl carries zero, one or two substituents (R78)o, as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • According to one embodiment, R7 and R8 together with the carbon atoms to which they are bound form a five-membered heteroaryl; wherein the heteroaryl contains one or two heteroatoms selected from O and S, and wherein the heteroaryl carries zero, one or two substituents (R78)o, as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • According to one embodiment, R7 and R8 together with the carbon atoms to which they are bound form a five-membered heteroaryl; wherein the heteroaryl contains one heteroatom S, and wherein the heteroaryl carries zero, one or two substituents (R78)o, as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2.
  • According to one embodiment, R7 and R8 together with the carbon atoms to which they are bound form a five-membered heteroaryl; wherein the heteroaryl contains one heteroatom 0, and wherein the heteroaryl carries zero, one or two substituents (R78)o, as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • According to a further embodiment, R7 and R8 together with the carbon atoms to which they are bound form a six-membered heteroaryl; wherein the heteroaryl contains one or two heteroatoms selected from N, O and S, and wherein the heteroaryl carries zero, one or two substituents (R78)o, as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • According to a further embodiment, R7 and R8 together with the carbon atoms to which they are bound form a six-membered heteroaryl; wherein the heteroaryl contains one or two heteroatoms N, and wherein the heteroaryl carries zero, one or two substituents (R78)o, as defined and preferably defined herein, wherein o is 0, 1 or 2. According to one specific embodiment, o is 0. According to a further embodiment, o is 1 or 2. Particular embodiments thereof are listed in Table P78.
  • According to the invention, there can be zero, one, two or three R78 present, namely for o is 0, 1, 2 or 3.
  • According to one embodiment, o is 0.
  • According to a further embodiment, o is 1.
  • According to a further embodiment, o is 2 or 3. According to one specific embodiment thereof, o is 2, according to a further specific embodiment, o is 3.
  • For every R78 that is present in the inventive compounds, the following embodiments and preferences apply independently of the meaning of any other R78 that may be present in the ring. Furthermore, the particular embodiments and preferences given herein for R78 apply independently for each of o=1, o=2 and o=3.
  • According to one specific embodiment, R78 is halogen, in particular F, Cl, Br or I, more specifically F, Cl or Br, in particular F or Cl.
  • According to still another embodiment of formula I, R78 is F.
  • According to still another embodiment of formula I, R78 is Cl.
  • According to still another embodiment of formula I, R78 is Br.
  • According to a further specific embodiment, R78 is OH.
  • According to a further specific embodiment, R78 is CN.
  • According to a further specific embodiment, R78 is NO2.
  • According to still another embodiment of formula I, R78 is SH.
  • According to still another embodiment of formula I, R78 is NH2.
  • According to still another embodiment of formula I, R78 is, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)(C1-C4-alkyl), N(C(═O)(C1-C4-alkyl)2, wherein C1-C4-alkyl is CH3, C2H5, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • According to a further specific embodiment of formula I, R78 is NH—SO2—Rx such as NH—SO2—CH3, NH—SO2—CH2—CH3, NH—SO2—CF3 or NH—SO2-Ts.
  • According to a further specific embodiment of formula I, R78 is CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl) or C(═O)NH(C1-C6-alkyl), wherein alkyl is CH3, C2H5, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • According to a further specific embodiment of formula I, R78 is CR′═NOR″ such as C(CH3)═NOCH3, C(CH3)═NOCH2CH3 or C(CH3)═NOCF3.
  • According to a further specific embodiment, R78 is C1-C6-alkyl, in particular C1-C4-alkyl, such as CH3, C2H5, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl, in particular CH3.
  • According to a further specific embodiment, R78 is C1-C6-halogenalkyl, in particular C1-C4-halogenalkyl, such as CF3, CCl3, FCH2, ClCH2, F2CH, Cl2CH, CF3CH2, CCl3CH2 or CF2CHF2. According to still a further embodiment, R78 is C2-C6-alkenyl, in particular C2-C4-alkenyl, such as CH═CH2 or CH2 CH═CH2.
  • According to still another embodiment of formula I R78 is C3-C6-cycloalkyl, in particular cyclopropyl.
  • According to still another embodiment of formula I, R78 is C3-C6-halogencycloalkyl. In a special embodiment R1 is fully or partially halogenated cyclopropyl.
  • According to still a further embodiment, R78 is C3-C6-cycloalkyl-C2-C6-alkenyl, in particular C3-C6-cycloalkyl-C2-C4-alkenyl, more specifically C3-C6-cycloalkyl-C2-C3-alkenyl, such as C3H5—CH═CH2.
  • According to a further specific embodiment, R78 is C2-C6-halogenalkenyl, in particular C2-C4-halogenalkenyl, more specifically C2-C3-halogenalkenyl such as CH═CHF, CH═CHCl, CH═CF2, CH═CCl2, CH2CH═CHF, CH2CH═CHCl, CH2CH═CF2, CH2CH═CCl2. CH2CF═CF2, CH2CCl═CCl2. CF2CF═CF2 or CCl2CCl═CCl2.
  • According to still a further embodiment, R78 is C2-C6-alkynyl, in particular C2-C4-alkynyl, more specifically C2-C3-alkynyl, such as C═CH.
  • According to still a further embodiment, R78 is C2-C6-halogenalkynyl, in particular C2-C4-halogenalkynyl, more specifically C2-C3-halogenalkynyl.
  • According to a further specific embodiment, R78 is C1-C6-alkoxy, in particular C1-C4-alkoxy, more specifically C1-C2-alkoxy such as OCH3 or OCH2CH3.
  • According to a further specific embodiment, R78 is C1-C6-halogenalkoxy, in particular C1-C4-halogenalkoxy, more specifically C1-C2-halogenalkoxy such as OCF3, OCHF2, OCH2F, OCCl3, OCHCl2, OCH2Cl and OCF2CHF2, in particular OCF3, OCHF2 and OCF2CHF2.
  • According to a further specific embodiment of formula I, R78 is C2-C6-alkenyloxy, in particular C2-C4-alkenyloxy, more specifically C1-C2-alkenyloxy such as OCH═CH2, OCH2CH═CH2.
  • According to a further specific embodiment of formula I, R78 is C2-C6-alkynyloxy, in particular C2-C4-alkynyloxy, more specifically C1-C2-alkynyloxy such as OC≡CH
  • According to a further specific embodiment of formula I, R78 is S(O)n—C1-C6-alkyl, wherein alkyl is CH3, C2H5, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl and n is 1, 2 or 3.
  • According to a further specific embodiment of formula I, R78 is S(O)n—C1-C6-halogenalkyl, wherein halogenalkyl is CF3 or CHF2 and n is 1, 2 or 3.
  • According to still another embodiment of formula I, R78 is a partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered heterocycle, in particular three-, four-, five- or six-membered, wherein the heterocycle contains one, two, three or four heteroatoms selected from N, O and S, and wherein the heterocycle is unsubstituted or substituted by substituents R78b as defined below. According to one embodiment thereof, the heterocycle is unsubstituted.
  • According to still another embodiment of formula I, R78 is a saturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered heterocycle, in particular three-, four-, five- or six-membered, wherein the heterocycle contains one, two, three or four heteroatoms selected from N, O and S, and wherein the heterocycle is unsubstituted or substituted by substituents R78b as defined below. According to one embodiment thereof, the heterocycle is unsubstituted.
  • According to still another embodiment of formula I, in the embodiments of R78 described above, the heterocycle contains preferably one, two or three, more specifically one or two heteroatoms selected from N, O and S. More specifically, the hetereocycle contains one heteroatom selected from N, O and S. In particular, the heterocycle contains one or two, in particular one O.
  • According to one embodiment, R78 is a 4-membered saturated heterocycle which contains 1 or 2 heteroatoms, in particular 1 heteroatom, from the group consisting of N, O and S, as ring members. According to one embodiment, the heterocycle contains one O as heteroatom. For example, the formed heterocycle is oxetane. According to one embodiment thereof, the heterocycle is unsubstituted, i.e. it does not carry any substituent R78b. According to still another embodiment of formula I, it is substituted by R78b.
  • According to still another embodiment of formula I, R78 is a 5-membered saturated heterocycle which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S, as ring members. According to one embodiment, the heterocycle contains one O as heteroatom.
  • According to one embodiment thereof, the heterocycle is unsubstituted, i.e. it does not carry any substituent R78b. According to still another embodiment of formula I, it is substituted by R78b.
  • According to still another embodiment of formula I, R78 is a 6-membered saturated heterocycle which contains 1, 2 or 3, in particular 1 or 2, heteroatoms from the group consisting of N, O and S as ring members. According to one embodiment thereof, the heterocycle is unsubstituted, i.e. it does not carry any substituent R78b. According to still another embodiment of formula I, it is substituted by R78b. According to one specific embodiment thereof, said 6-membered saturated heterocycle contains 1 or 2, in particular 1, heteroatom(s) O. According to one embodiment thereof, the respective 6-membered heterocycle is unsubstituted, i.e. it does not carry any substituent R78b. According to still another embodiment of formula I, it is substituted by R78b.
  • According to still another embodiment of formula I, R78 is phenyl-C1-C6-alkyl, such as phenyl-CH2, wherein the phenyl moiety in each case is unsubstituted or substituted by one, two or three identical or different groups R78b which independently of one another are selected from halogen, C1-C2-alkyl, C1-C2-alkoxy, C1-C2-halogenalkyl and C1-C2-halogenalkoxy, in particular CN, F, Cl, Br, CH3, OCH3, CHF2, CF3 OCHF2, and OCF3.
  • According to still a further specific embodiment, R78 is unsubstituted phenyl or phenyl that is substituted by one, two, three or four R78b, as defined and preferably herein. In particular, R78 is unsubstituted phenyl or phenyl that is substituted by one, two, three or four R78b, as defined herein. In one embodiment R78 is unsubstituted phenyl.
  • According to still another embodiment of formula I, R78 is a 5-membered heteroaryl such as pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan-2-yl, furan-3-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, 1,2,4-triazolyl-1-yl, 1,2,4-triazol-3-yl 1,2,4-triazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl and 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl.
  • According to still another embodiment of formula I, R78 is a 6-membered heteroaryl, such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl.
  • According to one further embodiment, R78 is in each case independently selected from halogen, CN, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-alkenyloxy, C3-C6-alkynyloxy, C3-C6-cycloalkyl, S(O)n—C1-C6-alkyl, three-, four-, five- or six-membered saturated or partially unsaturated heterocycle, five- or six-membered heteroaryl and phenyl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein the acyclic moieties of R78 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R78a as defined and preferably defined herein, and wherein the heterocyclic, alicyclic, phenyl and heteroaryl moieties of R78 are not further substituted or carry one, two, three, four, five or up to the maximum number of identical or different groups R78b as defined and preferably defined herein.
  • According to one further embodiment, R78 is in each case independently selected from halogen, CN, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C3-C6-alkenyloxy, C3-C6-alkynyloxy, C3-C6-cycloalkyl, S(O)n—C1-C6-alkyl, three-, four-, five- or six-membered saturated or partially unsaturated heterocycle, five- or six-membered heteroaryl and phenyl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein the acyclic moieties of R78 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R78a as defined and preferably defined herein, and wherein the heterocyclic, alicyclic, phenyl and heteroaryl moieties of R78 are not further substituted or carry one, two, three, four, five or up to the maximum number of identical or different groups R78b as defined and preferably defined herein. According to one specific embodiment, the acyclic and cyclic moieties of R78 are not further substituted, according to another embodiment, the acyclic moieties of R78 carry one, two, three or four identical or different groups R78a as defined and preferably defined herein.
  • According to a further embodiment, R78 is in each case independently selected from halogen, CN, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-alkenyloxy, C3-C6-alkynyloxy, C3-C6-cycloalkyl and S(O)n—C1-C6-alkyl, wherein the acyclic moieties of R78 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R78a as defined and preferably defined herein, and wherein the cycloalkyl moieties of R78 are not further substituted or carry one, two, three, four, five or up to the maximum number of identical or different groups R78b as defined and preferably defined herein.
  • According to a further embodiment, R78 is in each case independently selected from halogen, CN, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C3-C6-alkenyloxy, C3-C6-alkynyloxy, C3-C6-cycloalkyl and S(O)n—C1-C6-alkyl, wherein the acyclic moieties of R78 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R78a as defined and preferably defined herein, and wherein the cycloalkyl moieties of R78 are not further substituted or carry one, two, three, four, five or up to the maximum number of identical or different groups R78b as defined and preferably defined herein. According to one specific embodiment, the acyclic and cyclic moieties of R78 are not further substituted, according to another embodiment, the acyclic moieties of R78 carry one, two, three or four identical or different groups R78a as defined and preferably defined herein.
  • According to still a further embodiment, R78 is in each case independently selected from halogen, C1-C6-alkyl and C1-C6-alkoxy, wherein the acyclic moieties of R78 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R78a defined and preferably defined herein.
  • According to still a further embodiment, R78 is in each case independently selected from CN, halogen, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy and C1-C6-halogenalkoxy, wherein the acyclic moieties of R78 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R78a defined and preferably defined herein. According to one specific embodiment, the acyclic and cyclic moieties of R78 are not further substituted, according to another embodiment, the acyclic moieties of R78 carry one, two, three or four identical or different groups R78a as defined and preferably defined herein.
  • According to still a further embodiment, R78 is in each case independently selected from halogen, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy, C1-C6-halogenalkoxy or CN.
  • R78a are the possible substituents for the acyclic moieties of R78. R78a is independently selected from halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halogencycloalkyl, C3-C6-halogencycloalkenyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, five- or six-membered heteroaryl, phenyl and phenoxy, wherein the heteroaryl and phenyl group is unsubstituted or carries one, two, three, four or five substituents R78a′ selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy.
  • According to one embodiment R78a is independently selected from halogen, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and C1-C4-halogenalkoxy. Specifically, R78a is independently selected from F, Cl, Br, I, C1-C2-alkoxy, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl and C1-C2-halogenalkoxy.
  • According to a further embodiment, R78a is independently halogen, in particular selected from F, Cl, Br and I, more specifically F, Cl and Br.
  • R78b are the possible substituents for the cycloalkyl, heterocycle, heteroaryl and phenyl moieties of R78. R78b according to the invention is independently selected from halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio.
  • According to one embodiment thereof R78b is independently selected from halogen, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl and C1-C4-halogenalkoxy, in particular halogen, C1-C4-alkyl and C1-C4-alkoxy. Specifically, R78b is independently selected from F, Cl, CN, CH3, OCH3 and halogenmethoxy.
  • Particularly preferred embodiments of R7 and R8, optionally substituted by (R78)o, according to the invention are in Table P78 below, wherein each line of lines P78-1 to P78-82 corresponds to one particular embodiment of the invention, wherein P78-1 to P78-82 are also in any combination with one another a preferred embodiment of the present invention. Thereby, the positions of the heteroaryls marked with “#” represents the connection points (carbon atoms 5′ and 6′ in formula I) with the remaining skeleton of the compounds of formula I:
  • TABLE P78
    “No. R7 + R8
    P78-1
    Figure US20200187500A1-20200618-C00286
    P78-2
    Figure US20200187500A1-20200618-C00287
    P78-3
    Figure US20200187500A1-20200618-C00288
    P78-4
    Figure US20200187500A1-20200618-C00289
    P78-5
    Figure US20200187500A1-20200618-C00290
    P78-6
    Figure US20200187500A1-20200618-C00291
    P78-7
    Figure US20200187500A1-20200618-C00292
    P78-8
    Figure US20200187500A1-20200618-C00293
    P78-9
    Figure US20200187500A1-20200618-C00294
    P78-10
    Figure US20200187500A1-20200618-C00295
    P78-11
    Figure US20200187500A1-20200618-C00296
    P78-12
    Figure US20200187500A1-20200618-C00297
    P78-13
    Figure US20200187500A1-20200618-C00298
    P78-14
    Figure US20200187500A1-20200618-C00299
    P78-15
    Figure US20200187500A1-20200618-C00300
    P78-16
    Figure US20200187500A1-20200618-C00301
    P78-17
    Figure US20200187500A1-20200618-C00302
    P78-18
    Figure US20200187500A1-20200618-C00303
    P78-19
    Figure US20200187500A1-20200618-C00304
    P78-20
    Figure US20200187500A1-20200618-C00305
    P78-21
    Figure US20200187500A1-20200618-C00306
    P78-22
    Figure US20200187500A1-20200618-C00307
    P78-23
    Figure US20200187500A1-20200618-C00308
    P78-24
    Figure US20200187500A1-20200618-C00309
    P78-25
    Figure US20200187500A1-20200618-C00310
    P78-26
    Figure US20200187500A1-20200618-C00311
    P78-27
    Figure US20200187500A1-20200618-C00312
    P78-28
    Figure US20200187500A1-20200618-C00313
    P78-29
    Figure US20200187500A1-20200618-C00314
    P78-30
    Figure US20200187500A1-20200618-C00315
    P78-31
    Figure US20200187500A1-20200618-C00316
    P78-32
    Figure US20200187500A1-20200618-C00317
    P78-33
    Figure US20200187500A1-20200618-C00318
    P78-34
    Figure US20200187500A1-20200618-C00319
    P78-35
    Figure US20200187500A1-20200618-C00320
    P78-36
    Figure US20200187500A1-20200618-C00321
    P78-37
    Figure US20200187500A1-20200618-C00322
    P78-38
    Figure US20200187500A1-20200618-C00323
    P78-39
    Figure US20200187500A1-20200618-C00324
    P78-40
    Figure US20200187500A1-20200618-C00325
    P78-41
    Figure US20200187500A1-20200618-C00326
    P78-42
    Figure US20200187500A1-20200618-C00327
    P78-43
    Figure US20200187500A1-20200618-C00328
    P78-44
    Figure US20200187500A1-20200618-C00329
    P78-45
    Figure US20200187500A1-20200618-C00330
    P78-46
    Figure US20200187500A1-20200618-C00331
    P78-47
    Figure US20200187500A1-20200618-C00332
    P78-48
    Figure US20200187500A1-20200618-C00333
    P78-49
    Figure US20200187500A1-20200618-C00334
    P78-50
    Figure US20200187500A1-20200618-C00335
    P78-51
    Figure US20200187500A1-20200618-C00336
    P78-52
    Figure US20200187500A1-20200618-C00337
    P78-53
    Figure US20200187500A1-20200618-C00338
    P78-54
    Figure US20200187500A1-20200618-C00339
    P78-55
    Figure US20200187500A1-20200618-C00340
    P78-56
    Figure US20200187500A1-20200618-C00341
    P78-57
    Figure US20200187500A1-20200618-C00342
    P78-58
    Figure US20200187500A1-20200618-C00343
    P78-59
    Figure US20200187500A1-20200618-C00344
    P78-60
    Figure US20200187500A1-20200618-C00345
    P78-61
    Figure US20200187500A1-20200618-C00346
    P78-62
    Figure US20200187500A1-20200618-C00347
    P78-63
    Figure US20200187500A1-20200618-C00348
    P78-64
    Figure US20200187500A1-20200618-C00349
    P78-65
    Figure US20200187500A1-20200618-C00350
    P78-66
    Figure US20200187500A1-20200618-C00351
    P78-67
    Figure US20200187500A1-20200618-C00352
    P78-68
    Figure US20200187500A1-20200618-C00353
    P78-69
    Figure US20200187500A1-20200618-C00354
    P78-70
    Figure US20200187500A1-20200618-C00355
    P78-71
    Figure US20200187500A1-20200618-C00356
    P78-72
    Figure US20200187500A1-20200618-C00357
    P78-73
    Figure US20200187500A1-20200618-C00358
    P78-74
    Figure US20200187500A1-20200618-C00359
    P78-75
    Figure US20200187500A1-20200618-C00360
    P78-76
    Figure US20200187500A1-20200618-C00361
    P78-77
    Figure US20200187500A1-20200618-C00362
    P78-78
    Figure US20200187500A1-20200618-C00363
    P78-79
    Figure US20200187500A1-20200618-C00364
    P78-80
    Figure US20200187500A1-20200618-C00365
    P78-81
    Figure US20200187500A1-20200618-C00366
    P78-82
    Figure US20200187500A1-20200618-C00367
  • R9 is in each case independently selected from H, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C2-C4-alkenyl), N(C2-C4-alkenyl)2, NH(C2-C4-alkynyl), N(C2-C4-alkynyl)2, NH(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, N(C2-C4-alkyl)(C2-C4-alkenyl), N(C2-C4-alkyl)(C2-C4-alkynyl), N(C2-C4-alkyl)(C3-C6-cycloalkyl), N(C2-C4-alkenyl)(C2-C4-alkynyl), N(C2-C4-alkenyl)(C3-C6-cycloalkyl), N(C2-C4-alkynyl)(C3-C6-cycloalkyl), NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, S(O)n—C1-C6-alkyl, S(O)n-aryl, C1-C6-cycloalkylthio, S(O)n—C2-C6-alkenyl, S(O)n—C2-C6-alkynyl, CH(═O), C(═O)C1-C6-alkyl, C(═O)C2-C6-alkenyl, C(═O)C2-C6-alkynyl, C(═O)C3-C6-cycloalkyl, C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, C(═O)N(C2-C6-alkenyl)2, C(═O)N(C2-C6-alkynyl)2, C(═O)N(C3-C7-cycloalkyl)2, CH(═S), C(═S)C1-C6-alkyl, C(═S)C2-C6-alkenyl, C(═S)C2-C6-alkynyl, C(═S)C3-C6-cycloalkyl, (═S)O(C2-C6-alkenyl), C(═S)O(C2-C6-alkynyl), C(═S)O(C3-C7-cycloalkyl), C(═S)NH(C1-C6-alkyl), C(═S)NH(C2-C6-alkenyl), C(═S)NH(C2-C6-alkynyl), C(═S)NH(C3-C7-cycloalkyl),C(═S)N(C1-C6-alkyl)2, C(═S)N(C2-C6-alkenyl)2, C(═S)N(C2-C6-alkynyl)2, C(═S)N(C3-C7-cycloalkyl)2, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, ORY, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein
      • Rx is as defined above;
      • RY is C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl; phenyl and phenyl-C1-C6-alkyl; wherein the phenyl group is unsubstituted or substituted with substituents selected from the group consisting of halogen, CN, OH, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy and C1-C6-halogenalkoxy;
      • wherein the acyclic moieties of R9 are unsubstituted or substituted with groups R9a which independently of one another are selected from:
      • R9a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl and phenoxy group is unsubstituted or substituted with substituents R91a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
      • wherein the carbocycle, heteroaryl and aryl moieties of R9 are unsubstituted or substituted with groups R9b which independently of one another are selected from:
      • R9b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio.
  • According to one embodiment of formula I, R9 is selected from the group consisting of H, halogen, CN, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, and ORY.
  • According to one embodiment of formula I, R9 is H.
  • According to still another embodiment of formula I, R9 is halogen, in particular F, Cl, Br or I, more specifically F, Cl or Br, in particular F or Cl.
  • According to still another embodiment of formula I, R9 is F.
  • According to still another embodiment of formula I, R9 is Cl.
  • According to still another embodiment of formula I, R9 is Br.
  • According to still another embodiment of formula I, R9 is OH.
  • According to still another embodiment of formula I, R9 is CN.
  • According to still another embodiment of formula I, R9 is NO2.
  • According to still another embodiment of formula I, R9 is SH.
  • According to still another embodiment of formula I, R9 is NH2.
  • According to still another embodiment of formula I, R9 is, NH(C1-C4-alkyl), in particular NH(CH3), NH(C2H5).
  • According to still another embodiment of formula I, R9 is N(C1-C4-alkyl)2, in particular NH(CH3)2, NH(C2H5)2.
  • According to still another embodiment of formula I, R9 is, NH(C2-C4-alkenyl), in particular NH(CH═CH2), NH(CH2CH═CH2).
  • According to still another embodiment of formula I, R9 is, N(C2-C4-alkenyl)2, in particular N(CH═CH2)2, N(CH2CH═CH2)2.
  • According to still another embodiment of formula I, R9 is, NH(C2-C4-alkynyl), in particular NH(C≡CH), NH(CH2C≡CH).
  • According to still another embodiment of formula I, R9 is, N(C2-C4-alkynyl)2, in particular N(C≡CH)2, N(CH2C≡CH)2.
  • According to still another embodiment of formula I, R9 is, NH(C3-C6-cycloalkyl), in particular NH(C3H7), NH(C4H9).
  • According to still another embodiment of formula I, R9 is, N(C3-C6-cycloalkyl)2, in particular N(C3H7)2, N(C4H9)2.
  • According to still another embodiment of formula I, R9 is N(C1-C4-alkyl)(C2-C4-alkenyl), in particular N(CH3)(CH═CH2), N(CH3)(CH2CH═CH2), N(C2H5)(CH═CH2), N(C2H5)(CH2CH═CH2).
  • According to still another embodiment of formula I, R9 is N(C1-C4-alkyl)(C2-C4-alkynyl), in particular N(CH3)(C≡CH), N(CH3)(CH2C≡CH), N(C2H5)(C≡CH), N(C2H5)(CH2C≡CH).
  • According to still another embodiment of formula I, R9 is N(C1-C4-alkyl)(C3-C6-cycloalkyl), in particular N(CH3)(C3H7), N(CH3)(C4H9), N(C2H5)(C3H7), N(CH3)(C4H9).
  • According to still another embodiment of formula I, R9 is N(C2-C4-alkenyl)(C2-C4-alkynyl), in particular N(CH═CH2)(C≡CH), N(CH2CH═CH2)(CH2C≡CH), N(CH═CH2)(C≡CH), N(CH2CH═CH2)(CH2C≡CH).
  • According to still another embodiment of formula I, R9 is N(C2-C4-alkenyl)(C3-C6-cycloalkyl), in particular N(CH═CH2)(C3H7), N(CH2CH═CH2)(C4H9), N(CH═CH2)(C3H7), N(CH2CH═CH2)(C4H9).
  • According to still another embodiment of formula I, R9 is N(C2-C4-alkynyl)(C3-C6-cycloalkyl), in particular N(C≡CH)(C3H7), N(CH2C≡CH)(C4H9), N(C≡CH)(C3H7), N(CH2C≡CH)(C4H9).
  • According to still another embodiment of formula I, R9 is, NH(C(═O)(C1-C4-alkyl), in particular NH(C(═O)(CH3), NH(C(═O)(C2H5).
  • According to still another embodiment of formula I, R9 is N(C(═O)(C1-C4-alkyl)2, in particular N(C(═O)(CH3)2, N(C(═O)(C2H5)2.
  • According to a further specific embodiment of formula I, R9 is NH—SO2—Rx such as NH—SO2—CH3, NH—SO2—CH2—CH3, NH—SO2—CF3, NH—SO2-Ts.
  • According to still another embodiment of formula I, R9 is S(O)n—C1-C6-alkyl such as SCH3, S(═O) CH3, S(O)2CH3.
  • According to still another embodiment of formula I, R9 is S(O)n-aryl such as S-phenyl, S(═O) phenyl, S(O)2phenyl.
  • According to still another embodiment of formula I, R9 is S(O)n—C2-C6-alkenyl such as SCH═CH2, S(═O)CH═CH2, S(O)2CH═CH2, SCH2CH═CH2, S(═O)CH2CH═CH2, S(O)2CH2CH═CH2.
  • According to still another embodiment of formula I, R9 is S(O)n—C2-C6-alkynyl such as SC≡CH, S(═O)C≡CH, S(O)2C≡CH, SCH2C≡CH, S(═O)CH2C≡CH, S(O)2CH2C≡CH.
  • According to a further specific embodiment of formula I, R9 is CH(═O).
  • According to a further specific embodiment of formula I, R9 is C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl) or C(═O)N(C1-C6-alkyl)2, wherein alkyl is CH3, C2H5, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • According to a further specific embodiment of formula I, R9 is C(═O)C2-C6-alkenyl, C(═O)O(C2-C6-alkenyl), (═O)NH(C2-C6-alkenyl) or C(═O)N(C2-C6-alkenyl)2, wherein alkenyl is CH═CH2, CH2CH═CH2.
  • According to a further specific embodiment of formula I, R9 is C(═O)C2-C6-alkynyl, C(═O)O(C2-C6-alkynyl), C(═O)NH(C2-C6-alkynyl) or C(═O)N(C2-C6-alkynyl)2, wherein alkynyl is C≡CH, CH2C≡CH.
  • According to a further specific embodiment of formula I, R9 is C(═O)C3-C6-cycloalkyl, C(═O)O(C3-C6-cycloalkyl), C(═O)NH(C3-C6-cycloalkyl) or C(═O)N(C3-C7-cycloalkyl)2, wherein cycloalkyl is cyclopropyl (C3H7) or cyclobutyl (C4H9).
  • According to a further specific embodiment of formula I, R9 is CH(═S).
  • According to a further specific embodiment of formula I, R9 is C(═S)C1-C6-alkyl, C(═S)OC1-C6-alkyl, C(═S)NH(C1-C6-alkyl) or C(═S)NH(C1-C6-alkyl), wherein alkyl is CH3, C2H5, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • According to a further specific embodiment of formula I, R9 is C(═S)C2-C6-alkenyl, C(═S)OC2-C6-alkenyl, C(═S)NH(C2-C6-alkenyl) or C(═S)N(C2-C6-alkenyl)2, wherein alkenyl is CH═CH2, CH2CH═CH2.
  • According to a further specific embodiment of formula I, R9 is C(═S)C2-C6-alkynyl, C(═S)O(C2-C6-alkynyl), C(═S)NH(C2-C6-alkynyl) or C(═S)N(C2-C6-alkynyl)2, wherein alkynyl is C≡CH, CH2C≡CH.
  • According to a further specific embodiment of formula I, R9 is C(═S)C3-C6-cycloalkyl, C(═S)O(C3-C7-cycloalkyl), C(═S)NH(C3-C7-cycloalkyl) or, C(═S)N(C3-C7-cycloalkyl)2, wherein cycloalkyl is cyclopropyl (C3H7) or cyclobutyl (C4H9).
  • According to still another embodiment of formula I, R9 is C1-C6-alkyl, in particular C1-C4-alkyl, such as CH3. or C2H5, in particular CH3 or CH2CH3.
  • According to still another embodiment of formula I, R9 is C1-C6-halogenalkyl, in particular C1-C4-halogenalkyl, such as CF3, CCl3, FCH2, ClCH2, F2CH, Cl2CH, CF3CH2, CCl3CH2 or CF2CHF2.
  • According to still a further embodiment of formula I, R9 is C2-C6-alkenyl, in particular C2-C4-alkenyl, such as CH═CH2, C(CH3)═CH2, CH2CH═CH2.
  • According to a further specific embodiment of formula I, R9 is C2-C6-halogenalkenyl, in particular C2-C4-halogenalkenyl, more specifically C2-C3-halogenalkenyl such as CH═CHF, CH═CHCl, CH═CF2, CH═CCl2, CH2CH═CHF, CH2CH═CHCl, CH2CH═CF2, CH2CH═CCl2, CF2CH═CF2, CCl2CH═CCl2, CF2CF═CF2, CCl2CCl═CCl2.
  • According to still a further embodiment of formula I, R9 is C2-C6-alkynyl or C2-C6-halogenalkynyl, in particular C2-C4-alkynyl or C2-C4-halogenalkynyl, such as C≡CH, CH2C≡CH, C≡CCl, CH2C≡CCl, or CCl2C≡CCl.
  • According to a further specific embodiment of formula I, R9 is ORY, wherein RY is C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl.
  • According to a further specific embodiment of formula I, R9 is OR, wherein RY is C1-C6-alkyl, in particular C1-C4-alkyl, more specifically C1-C2-alkoxy. R9 is such as OCH3 or OCH2CH3.
  • According to a further specific embodiment of formula I, R9 is ORY, wherein RY is C1-C6-halogenalkyl, in particular C1-C4-halogenalkyl, more specifically C1-C2-halogenalkyl. R9 is such as OCF3, OCHF2, OCH2F, OCCl3, OCHCl2 or OCH2Cl, in particular OCF3, OCHF2, OCCl3 or OCHCl2.
  • According to a further specific embodiment of formula I, R9 is OR, wherein RY C2-C6-alkenyl, in particular C2-C4-alkenyl, more specifically C1-C2-alkenyl. R9 is such as OCH═CH2, OCH2CH═CH2.
  • According to a further specific embodiment of formula I, R9 is ORY, wherein RY C2-C6-halogenalkenyl, in particular C2-C4-halogenalkenyl, more specifically C1-C2-halogenalkenyl.
  • According to a further specific embodiment of formula I, R9 is ORY, wherein RY C2-C6-alkynyl, in particular C2-C6-alkynyl, in particular C2-C4-alkynyl, more specifically C1-C2-alkynyl. R9 is such as OC≡CH,
  • According to a further specific embodiment of formula I, R9 is ORY, wherein RY C2-C6-halogenalkynyl, in particular C2-C6-halogenalkynyl, in particular C2-C4-halogenalkynyl, more specifically C1-C2-halogenalkynyl. R9 is such as OC≡CCl, OCH2C≡CCl, or OCCl2C≡CCl.
  • According to still another embodiment of formula I, R9 is is ORY, wherein RY C3-C6-cycloalkenyl, in particular cyclopropenyl.
  • According to still another embodiment of formula I, R9 is C3-C6-cycloalkyl, in particular cyclopropyl.
  • According to still another embodiment of formula I, R9 is C3-C6-halogencycloalkyl. In a special embodiment R9b is fully or partially halogenated cyclopropyl, such as 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl.
  • According to still another embodiment of formula I, R9 is phenyl-C1-C6-alkyl, such as phenyl-CH2, wherein the phenyl moiety in each case is unsubstituted or substituted by one, two or three identical or different groups R9b which independently of one another are selected from halogen, C1-C2-alkyl, C1-C2-alkoxy, C1-C2-halogenalkyl and C1-C2-halogenalkoxy, in particular F, Cl, Br, CH3, OCH3, CF3 and OCF3.
  • According to still another embodiment of formula I, R9 is aryl, in particular phenyl, wherein the aryl or phenyl moiety in each case is unsubstituted or substituted with identical or different groups R9b which independently of one another are selected from CN, halogen, C1-C2-alkyl, C1-C2-alkoxy, C1-C2-halogenalkyl and C1-C2-halogenalkoxy, in particular CN, F, Cl, Br, CH3, OCH3, CHF2, OCHF2, CF3 and OCF3. According to one embodiment, R9 is unsubstituted phenyl. According to another embodiment, R9 is phenyl, that is substituted with one, two or three, in particular one, halogen, in particular selected from F, Cl and Br, more specifically selected from F and Cl.
  • According to still another embodiment of formula I, R9 is a 5-membered heteroaryl such as pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan-2-yl, furan-3-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, 1,2,4-triazolyl-1-yl, 1,2,4-triazol-3-yl 1,2,4-triazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl and 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl.
  • According to still another embodiment of formula I, R9 is a 6-membered heteroaryl such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl.
  • According to still another embodiment of formula I, R9 is in each case independently selected from H, halogen, CN, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C3-C6-alkenyloxy, C3-C6-alkynyloxy, C3-C6-cycloalkyl and C3-C6-halogencycloalkyl, wherein the acyclic moieties of R9 are unsubstituted or substituted with identical or different groups R9a as defined and preferably defined herein, and wherein the carbocyclic, phenyl and heteroaryl moieties of R9 are unsubstituted or substituted with identical or different groups R9b as defined and preferably defined herein.
  • According to still another embodiment of formula I, R9 is in each case independently selected from halogen, CN, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy; wherein the acyclic moieties of R9 are unsubstituted or substituted with identical or different groups R9a as defined and preferably defined herein.
  • According to still another embodiment of formula I, R9 is in each case independently selected from CN, halogen, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkynyl, ORY, C3-C6-cycloalkyl; wherein RY is C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl or C2-C6-alkynyl.
  • R9a are the possible substituents for the acyclic moieties of R9.
  • According to one embodiment R9a is independently selected from halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl and phenyl group is unsubstituted or substituted with substituents R91a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy.
  • According to one embodiment R9a is independently selected from halogen, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and C1-C4-halogenalkoxy. Specifically, R9a is independently selected from F, Cl, Br, I, C1-C2-alkoxy, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl and C1-C2-halogenalkoxy.
  • According to still another embodiment of formula I, R9a is independently halogen, in particular selected from F, Cl, Br and I, more specifically F, Cl and Br.
  • R9b are the possible substituents for the carbocyclic, heteroaryl and phenyl moieties of R9. R9b according to the invention is independently selected from halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio.
  • According to one embodiment thereof R9b is independently selected from halogen, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl and C1-C4-halogenalkoxy, in particular halogen, C1-C4-alkyl and C1-C4-alkoxy. Specifically, R9b is independently selected from F, Cl, CN, CH3, OCH3 and halogenmethoxy.
  • Particularly preferred embodiments of R9 according to the invention are in Table P9 below, wherein each line of lines P9-1 to P9-43 corresponds to one particular embodiment of the invention, wherein P9-1 to P9-43 are also in any combination with one another a preferred embodiment of the present invention. The connection point to the carbon atom, to which R9 is bound is marked with “#” in the drawings.
  • TABLE P9
    No. R9
    P9-1 H
    P9-2 CH3
    P9-3 CH2F
    P9-4 CHF2
    P9-5 CF3
    P9-6 C2H5
    P9-7 CH(CH3)2
    P9-8 CH2CH2CH3
    P9-9 CH2CH2CH2CH3
    P9-10 CH2CH(CH3)2
    P9-11 C(CH3)3
    P9-12 CH2CH2CH2CH2CH3
    P9-13 CH═CH2
    P9-14 CH2CH═CH2
    P9-15 C≡CH
    P9-16 CH2C≡CH
    P9-17 CH2CH2CH(CH3)2
    P9-18 OH
    P9-19 OCH3
    P9-20 OCHF2
    P9-21 OC2H5
    P9-22 CN
    P9-23 F
    P9-24 Cl
    P9-25 Br
    P9-26 NO2
    P9-27 NH2
    P9-28 CO—NH2
    P9-29 CO—NH(CH3)
    P9-30 CO—N(CH3)2
    P9-31 HNCH3
    P9-32 HNC2H5
    P9-33 (CH3)2N
    P9-34 SO2H
    P9-35 SO2—CH3
    P9-36 SO—CH3
    P9-37 S—CH3
    P9-38
    Figure US20200187500A1-20200618-C00368
    P9-39
    Figure US20200187500A1-20200618-C00369
    P9-40
    Figure US20200187500A1-20200618-C00370
    P9-41
    Figure US20200187500A1-20200618-C00371
    P9-42
    Figure US20200187500A1-20200618-C00372
    P9-43
    Figure US20200187500A1-20200618-C00373
  • R10 is in each case independently selected from H, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C2-C4-alkenyl), N(C2-C4-alkenyl)2, NH(C2-C4-alkynyl), N(C2-C4-alkynyl)2, NH(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, N(C2-C4-alkyl)(C2-C4-alkenyl), N(C2-C4-alkyl)(C2-C4-alkynyl), N(C2-C4-alkyl)(C3-C6-cycloalkyl), N(C2-C4-alkenyl)(C2-C4-alkynyl), N(C2-C4-alkenyl)(C3-C6-cycloalkyl), N(C2-C4-alkynyl)(C3-C6-cycloalkyl), NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, S(O)n—C1-C6-alkyl, S(O)n-aryl, C1-C6-cycloalkylthio, S(O)n—C2-C6-alkenyl, S(O)n—C2-C6-alkynyl, CH(═O), C(═O)C1-C6-alkyl, C(═O)C2-C6-alkenyl, C(═O)C2-C6-alkynyl, C(═O)C3-C6-cycloalkyl, C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, C(═O)N(C2-C6-alkenyl)2, C(═O)N(C2-C6-alkynyl)2, C(═O)N(C3-C7-cycloalkyl)2, CH(═S), C(═S)C1-C6-alkyl, C(═S)C2-C6-alkenyl, C(═S)C2-C6-alkynyl, C(═S)C3-C6-cycloalkyl, C(═S)O(C2-C6-alkenyl), C(═S)O(C2-C6-alkynyl), C(═S)O(C3-C7-cycloalkyl), C(═S)NH(C1-C6-alkyl), C(═S)NH(C2-C6-alkenyl), C(═S)NH(C2-C6-alkynyl), C(═S)NH(C3-C7-cycloalkyl),C(═S)N(C1-C6-alkyl)2, C(═S)N(C2-C6-alkenyl)2, C(═S)N(C2-C6-alkynyl)2, C(═S)N(C3-C7-cycloalkyl)2, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, ORY, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein
      • Rx is as defined above;
      • RY is as defined above;
      • wherein the acyclic moieties of R10 are unsubstituted or substituted with groups R10a which independently of one another are selected from:
      • R10a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl and phenyl group is unsubstituted or substituted with substituents R10a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
      • wherein the carbocyclic, heteroaryl and aryl moieties of R10 are unsubstituted or substituted with groups R10b which independently of one another are selected from:
      • R10b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio.
  • According to one embodiment of formula I, R10 is selected from the group consisting of H, halogen, CN, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy and ORY.
  • According to one embodiment of formula I, R10 is H.
  • R10 is selected from the group consisting of halogen, CN, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy and ORY.
  • According to still another embodiment of formula I, R10 is halogen, in particular F, Cl, Br or I, more specifically F, Cl or Br, in particular F or Cl.
  • According to still another embodiment of formula I, R10 is F.
  • According to still another embodiment of formula I, R10 is Cl.
  • According to still another embodiment of formula I, R10 is Br.
  • According to still another embodiment of formula I, R10 is OH.
  • According to still another embodiment of formula I, R10 is CN.
  • According to still another embodiment of formula I, R10 is NO2.
  • According to still another embodiment of formula I, R10 is SH.
  • According to still another embodiment of formula I, R10 is NH2.
  • According to still another embodiment of formula I, R10 is, NH(C1-C4-alkyl), in particular NH(CH3), NH(C2H5).
  • According to still another embodiment of formula I, R10 is, N(C1-C4-alkyl)2, in particular NH(CH3)2, NH(C2H5)2.
  • According to still another embodiment of formula I, R10 is, NH(C2-C4-alkenyl), in particular NH(CH═CH2), NH(CH2CH═CH2).
  • According to still another embodiment of formula I, R10 is, N(C2-C4-alkenyl)2, in particular N(CH═CH2)2, N(CH2CH═CH2)2.
  • According to still another embodiment of formula I, R10 is, NH(C2-C4-alkynyl), in particular NH(C≡CH), NH(CH2C≡CH).
  • According to still another embodiment of formula I, R10 is, N(C2-C4-alkynyl)2, in particular N(C≡CH)2, N(CH2C≡CH)2.
  • According to still another embodiment of formula I, R10 is, NH(C3-C6-cycloalkyl), in particular NH(C3H7), NH(C4H9).
  • According to still another embodiment of formula I, R10 is, N(C3-C6-cycloalkyl)2, in particular N(C3H7)2, N(C4H9)2.
  • According to still another embodiment of formula I, R10 is N(C1-C4-alkyl)(C2-C4-alkenyl), in particular N(CH3)(CH═CH2), N(CH3)(CH2CH═CH2), N(C2H5)(CH═CH2), N(C2H5)(CH2CH═CH2).
  • According to still another embodiment of formula I, R10 is N(C1-C4-alkyl)(C2-C4-alkynyl), in particular N(CH3)(C≡CH), N(CH3)(CH2C≡CH), N(C2H5)(C≡CH), N(C2H5)(CH2C≡CH).
  • According to still another embodiment of formula I, R10 is N(C1-C4-alkyl)(C3-C6-cycloalkyl), in particular N(CH3)(C3H7), N(CH3)(C4H9), N(C2H5)(C3H7), N(CH3)(C4H9).
  • According to still another embodiment of formula I, R10 is N(C2-C4-alkenyl)(C2-C4-alkynyl), in particular N(CH═CH2)(C≡CH), N(CH2CH═CH2)(CH2C≡CH), N(CH═CH2)(C≡CH), N(CH2CH═CH2)(CH2C≡CH).
  • According to still another embodiment of formula I, R10 is N(C2-C4-alkenyl)(C3-C6-cycloalkyl), in particular N(CH═CH2)(C3H7), N(CH2CH═CH2)(C4H9), N(CH═CH2)(C3H7), N(CH2CH═CH2)(C4H9).
  • According to still another embodiment of formula I, R10 is N(C2-C4-alkynyl)(C3-C6-cycloalkyl), in particular N(C≡CH)(C3H7), N(CH2C≡CH)(C4H9), N(C≡CH)(C3H7), N(CH2C≡CH)(C4H9).
  • According to still another embodiment of formula I, R10 is, NH(C(═O)(C1-C4-alkyl), in particular NH(C(═O)(CH3), NH(C(═O)(C2H5).
  • According to still another embodiment of formula I, R10 is N(C(═O)(C1-C4-alkyl)2, in particular N(C(═O)(CH3)2, N(C(═O)(C2H5)2.
  • According to a further specific embodiment of formula I, R10 is NH—SO2—Rx such as NH—SO2—CH3, NH—SO2—CH2—CH3, NH—SO2—CF3, NH—SO2-Ts.
  • According to still another embodiment of formula I, R10 is S(O)n—C1-C6-alkyl such as SCH3, S(═O) CH3, S(O)2CH3.
  • According to still another embodiment of formula I, R10 is S(O)n-aryl such as S-phenyl, S(═O) phenyl, S(O)2phenyl.
  • According to still another embodiment of formula I, R10 is S(O)n—C2-C6-alkenyl such as SCH═CH2, S(═O)CH═CH2, S(O)2CH═CH2, SCH2CH═CH2, S(═O)CH2CH═CH2, S(O)2CH2CH═CH2.
  • According to still another embodiment of formula I, R10 is S(O)n—C2-C6-alkynyl such as SC≡CH, S(═O)C≡CH, S(O)2C≡CH, SCH2C≡CH, S(═O)CH2C≡CH, S(O)2CH2C≡CH.
  • According to a further specific embodiment of formula I, R10 is CH(═O).
  • According to a further specific embodiment of formula I, R10 is C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl) or C(═O)N(C1-C6-alkyl)2, wherein alkyl is CH3, C2H5, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • According to a further specific embodiment of formula I, R10 is C(═O)C2-C6-alkenyl, C(═O)O(C2-C6-alkenyl), C(═O)NH(C2-C6-alkenyl) or C(═O)N(C2-C6-alkenyl)2, wherein alkenyl is CH═CH2, C(CH3)═CH2, CH2CH═CH2.
  • According to a further specific embodiment of formula I, R10 is C(═O)C2-C6-alkynyl, C(═O)O(C2-C6-alkynyl), C(═O)NH(C2-C6-alkynyl) or C(═O)N(C2-C6-alkynyl)2), wherein alkynyl is C≡CH, CH2C≡CH,
  • According to a further specific embodiment of formula I, R10 is C(═O)C3-C6-cycloalkyl, C(═O)O(C3-C6-cycloalkyl), C(═O)NH(C3-C6-cycloalkyl) or C(═O)N(C3-C7-cycloalkyl)2, wherein cycloalkyl is cyclopropyl (C3H7) or cyclobutyl (C4H9).
  • According to a further specific embodiment of formula I, R10 is CH(═S).
  • According to a further specific embodiment of formula I, R10 is C(═S)C1-C6-alkyl, C(═S)OC1-C6-alkyl, C(═S)NH(C1-C6-alkyl) or C(═S)NH(C1-C6-alkyl), wherein alkyl is CH3, C2H5, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • According to a further specific embodiment of formula I, R10 is C(═S)C2-C6-alkenyl, C(═S)OC2-C6-alkenyl, C(═S)NH(C2-C6-alkenyl) or C(═S)N(C2-C6-alkenyl)2, wherein alkenyl is CH═CH2, CH2CH═CH2.
  • According to a further specific embodiment of formula I, R10 is C(═S)C2-C6-alkynyl, C(═S)O(C2-C6-alkynyl), C(═S)NH(C2-C6-alkynyl) or C(═S)N(C2-C6-alkynyl), wherein alkynyl is C≡CH, CH2C≡CH.
  • According to a further specific embodiment of formula I, R10 is C(═S)C3-C6-cycloalkyl, C(═S)O(C3-C7-cycloalkyl), C(═S)NH(C3-C7-cycloalkyl) or, C(═S)N(C3-C7-cycloalkyl)2, wherein cycloalkyl is cyclopropyl (C3H7) or cyclobutyl (C4H9).
  • According to still another embodiment of formula I, R10 is C1-C6-alkyl, in particular C1-C4-alkyl, such as CH3. or C2H5, in particular CH3 or CH2CH3.
  • According to still another embodiment of formula I, R10 is C1-C6-halogenalkyl, in particular C1-C4-halogenalkyl, such as CF3, CCl3, FCH2, ClCH2, F2CH, Cl2CH, CF3CH2, CCl3CH2 or CF2CHF2.
  • According to still a further embodiment of formula I, R10 is C2-C6-alkenyl, in particular C2-C4-alkenyl, such as CH═CH2.
  • According to a further specific embodiment of formula I, R10 is C2-C6-halogenalkenyl, in particular C2-C4-halogenalkenyl, more specifically C2-C3-halogenalkenyl such as CH═CHF, CH═CHCl, CH═CF2, CH═CCl2, CH2CH═CHF, CH2CH═CHCl, CH2CH═CF2, CH2CH═CCl2, CF2CH═CF2, CCl2CH═CCl2, CF2CF═CF2, CCl2CCl═CCl2.
  • According to still a further embodiment of formula I, R10 is C2-C6-alkynyl or C2-C6-halogenalkynyl, in particular C2-C4-alkynyl or C2-C4-halogenalkynyl, such as C≡CH, CH2 C≡CH, C≡CCl, CH2C≡CCl, or CCl2C≡CCl.
  • According to a further specific embodiment of formula I, R10 is ORY, wherein RY is C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl.
  • According to a further specific embodiment of formula I, R10 is ORY, wherein RY is C1-C6-alkyl, in particular C1-C4-alkyl, more specifically C1-C2-alkoxy. R10 is such as OCH3 or OCH2CH3.
  • According to a further specific embodiment of formula I, R10 is ORY, wherein RY is C1-C6-halogenalkyl, in particular C1-C4-halogenalkyl, more specifically C1-C2-halogenalkyl. R10 is such as OCF3, OCHF2, OCH2F, OCCl3, OCHCl2 or OCH2Cl, in particular OCF3, OCHF2, OCCl3 or OCHCl2.
  • According to a further specific embodiment of formula I, R10 is ORY, wherein RY C2-C6-alkenyl, in particular C2-C4-alkenyl, more specifically C1-C2-alkenyl. R10 is such as OCH═CH2, OCH2CH═CH2.
  • According to a further specific embodiment of formula I, R10 is ORY, wherein RY C2-C6-alkynyl, in particular C2-C6-alkynyl, in particular C2-C4-alkynyl, more specifically C1-C2-alkynyl. R10 is such as OC≡CH, OC≡CCl, OCH2C≡CCl, or OCCl2C≡CCl
  • According to still another embodiment of formula I R10 is ORY, wherein RY is C3-C6-cycloalkyl, in particular cyclopropyl.
  • According to still another embodiment of formula I, R10 is ORY, wherein RY is C3-C6-halogencycloalkyl.
  • In a special embodiment R1 is fully or partially halogenated cyclopropyl.
  • According to still another embodiment of formula I, R10 is is ORY, wherein RY C3-C6-cycloalkenyl, in particular cyclopropenyl.
  • According to still another embodiment of formula I, R10 is C3-C6-cycloalkyl, in particular cyclopropyl.
  • According to still another embodiment of formula I, R10 is C3-C6-halogencycloalkyl. In a special embodiment R10b is fully or partially halogenated cyclopropyl, such as 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl
  • According to still another embodiment of formula I, R10 is phenyl-C1-C6-alkyl, such as phenyl-CH2, wherein the phenyl moiety in each case is unsubstituted or substituted by one, two or three identical or different groups R10b which independently of one another are selected from halogen, C1-C2-alkyl, C1-C2-alkoxy, C1-C2-halogenalkyl and C1-C2-halogenalkoxy, in particular F, Cl, Br, CH3, OCH3, CF3 and OCF3.
  • According to still another embodiment of formula I, R10 is aryl, in particular phenyl, wherein the aryl or phenyl moiety in each case is unsubstituted or substituted with identical or different groups R10b which independently of one another are selected from CN, halogen, C1-C2-alkyl, C1-C2-alkoxy, C1-C2-halogenalkyl and C1-C2-halogenalkoxy, in particular CN, F, Cl, Br, CH3, OCH3, CHF2, OCHF2, CF3 and OCF3. According to one embodiment, R10 is unsubstituted phenyl. According to another embodiment, R10 is phenyl, that is substituted with one, two or three, in particular one, halogen, in particular selected from F, Cl and Br, more specifically selected from F and Cl.
  • According to still another embodiment of formula I, R10 is a 5-membered heteroaryl such as pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan-2-yl, furan-3-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, 1,2,4-triazolyl-1-yl, 1,2,4-triazol-3-yl 1,2,4-triazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl and 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl.
  • According to still another embodiment of formula I, R9 is a 6-membered heteroaryl such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl.
  • According to still another embodiment of formula I, R10 is in each case independently selected from H, halogen, CN, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C3-C6-alkenyloxy, C3-C6-alkynyloxy, C3-C6-cycloalkyl and C3-C6-halogencycloalkyl, wherein the acyclic moieties of R10 are unsubstituted or substituted with identical or different groups R10a as defined and preferably defined herein, and wherein the carbocyclic, phenyl and heteroaryl moieties of R10 are unsubstituted or substituted with identical or different groups R10b as defined and preferably defined herein.
  • According to still another embodiment of formula I, R10 is in each case independently selected from halogen, CN, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy; wherein the acyclic moieties of R10 are unsubstituted or substituted with identical or different groups R10a as defined and preferably defined herein.
  • According to still another embodiment of formula I, R10 is in each case independently selected from CN, halogen, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkynyl, ORY, C3-C6-cycloalkyl; wherein RY is C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl or C2-C6-alkynyl.
  • R10a are the possible substituents for the acyclic moieties of R10.
  • According to one embodiment R10a is independently selected from halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl and phenyl group is unsubstituted or substituted with substituents R101a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy.
  • According to one embodiment R10a is independently selected from halogen, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and C1-C4-halogenalkoxy. Specifically, R10a is independently selected from F, Cl, Br, I, C1-C2-alkoxy, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl and C1-C2-halogenalkoxy.
  • According to still another embodiment of formula I, R100 is independently halogen, in particular selected from F, Cl, Br and I, more specifically F, Cl and Br.
  • R10b are the possible substituents for the carbocyclic, heteroaryl and phenyl moieties of R10. R10b according to the invention is independently selected from halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio.
  • According to one embodiment thereof R10b is independently selected from halogen, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl and C1-C4-halogenalkoxy, in particular halogen, C1-C4-alkyl and C1-C4-alkoxy. Specifically, R10b is independently selected from F, Cl, CN, CH3, OCH3 and halogenmethoxy.
  • Particularly preferred embodiments of R10 according to the invention are in Table P10 below, wherein each line of lines P10-1 to P10-43 corresponds to one particular embodiment of the invention, wherein P10-1 to P10-43 are also in any combination with one another a preferred embodiment of the present invention. The connection point to the carbon atom, to which R10 is bound is marked with “#” in the drawings.
  • TABLE P10
    No. R10
    P10-1 H
    P10-2 CH3
    P10-3 CH2F
    P10-4 CHF2
    P10-5 CF3
    P10-6 C2H5
    P10-7 CH(CH3)2
    P10-8 CH2CH2CH3
    P10-9 CH2CH2CH2CH3
    P10-10 CH2CH(CH3)2
    P10-11 C(CH3)3
    P10-12 CH2CH2CH2CH2CH3
    P10-13 CH═CH2
    P10-14 CH2CH═CH2
    P10-15 C≡CH
    P10-16 CH2C≡CH
    P10-17 CH2CH2CH(CH3)2
    P10-18 OH
    P10-19 OCH3
    P10-20 OCHF2
    P10-21 OC2H5
    P10-22 CN
    P10-23 F
    P10-24 Cl
    P10-25 Br
    P10-26 NO2
    P10-27 NH2
    P10-28 CO—NH2
    P10-29 CO—NH(CH3)
    P10-30 CO—N(CH3)2
    P10-31 HNCH3
    P10-32 HNC2H5
    P10-33 (CH3)2N
    P10-34 SO2H
    P10-35 SO2—CH3
    P10-36 SO—CH3
    P10-37 S—CH3
    P10-38
    Figure US20200187500A1-20200618-C00374
    P109-39
    Figure US20200187500A1-20200618-C00375
    P10-40
    Figure US20200187500A1-20200618-C00376
    P10-41
    Figure US20200187500A1-20200618-C00377
    P10-42
    Figure US20200187500A1-20200618-C00378
    P10-43
    Figure US20200187500A1-20200618-C00379
  • According to still another embodiment of formula I, R9, R10 together with the carbon atoms to which they are bound form a five-, six-, or seven-membered carbo-, heterocyclic or heteroaromatic ring; wherein the heterocyclic or heteroaromatic ring contains 1, 2, 3 or 4 heteroatoms selected from N, O and S, wherein N may carry one substituent RN selected from C1-C4-alkyl, C1-C4-halogenalkyl and SO2Ph, wherein Ph is unsubstituted or substituted with substituents selected from C1-C4-alkyl, halogen, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy, and CN; and wherein S may be in the form of its oxide SO or SO2; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S); and wherein the carbo-, heterocyclic or heteroaromatic ring is substituent by (R11)m wherein m is 0, 1, 2, 3 or 4;
      • RN is the substituent of the heteroatom N that is contained in the heterocycle formed by R9 and R10 in some of the inventive compounds. RN is selected from C1-C4-alkyl, C1-C4-halogenalkyl and SO2Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted with one, two or three substituents selected from C1-C4-alkyl. In one preferred embodiment, RN is in each case independently selected from C1-C2-alkyl, C1-C2-halogenalkyl and SO2Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted with one methyl substituents. In one particular embodiment, RN is in each case independently selected from C1-C2-alkyl, more particularly methyl.
  • In one particular embodiment, RN is in each case independently selected from SO2Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted with one methyl.
  • According to still another embodiment of formula I, R9 and R10 together with the carbon atoms to which they are bound form a saturated or partially unsaturated five-, six- or seven-membered carbo- and heterocycle that is unsubstituted or substituted.
  • According to one embodiment, R9 and R10 form a 3-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R11. According to still another embodiment of formula I, it is substituted with R11.
  • According to one embodiment, R9 and R10 form a 4-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R11. According to still another embodiment of formula I, it is substituted with R11.
  • According to one embodiment, R9 and R10 form a 5-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R11. According to still another embodiment of formula I, it is substituted with R11.
  • According to one embodiment, R9 and R10 form a 6-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R11. According to still another embodiment of formula I, it is substituted with R11.
  • According to one embodiment, R9 and R10 form a 7-membered saturated carbocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R11. According to still another embodiment of formula I, it is substituted with R11.
  • According to one embodiment, R9 and R10 form a 3-membered saturated heterocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R11. According to still another embodiment of formula I, it is substituted with R11.
  • According to one embodiment, R9 and R10 form a 4-membered saturated heterocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R11. According to still another embodiment of formula I, it is substituted with R11.
  • According to one embodiment, R9 and R10 form a 5-membered saturated heterocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R11. According to still another embodiment of formula I, it is substituted with R11.
  • According to one embodiment, R9 and R10 form a 6-membered saturated heterocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R11. According to still another embodiment of formula I, it is substituted with R11.
  • According to one embodiment, R9 and R10 form a 7-membered saturated heterocycle. According to one embodiment thereof, the carbocycle is unsubstituted, i.e. it does not carry any substituent R11. According to still another embodiment of formula I, it is substituted with R11.
  • According to one embodiment, R9 and R10 form a 5-membered saturated heteroaryl. According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R11. According to still another embodiment of formula I, it is substituted with R11.
  • According to one embodiment, R9 and R10 form a 6-membered heteroaryl. According to one embodiment thereof, the heteroaryl is unsubstituted, i.e. it does not carry any substituent R11. According to still another embodiment of formula I, it is substituted with R11.
  • R11 according to the invention is in each case independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- and heterocycle, five- or six-membered heteroaryl and aryl; wherein the heterocycle and heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S); and wherein
  • Rx is as defined above;
    wherein the acyclic moieties of R11 are unsubstituted or substituted with identical or different groups R11a which independently of one another are selected from:
    R11a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl group is unsubstituted or unsubstituted or substituted with R11a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, CN, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-alkylthio;
    wherein the carbocyclic, heterocyclic, heteroaryl and aryl of R11 are unsubstituted or substituted with identical or different groups R11b which independently of one another are selected from:
    R11b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio.
  • For every R11 that is present in the inventive compounds, the following embodiments and preferences apply independently of the meaning of any other R11 that may be present in the ring.
  • According to one embodiment of formula I, wherein m is 0, 1, 2, 3 or 4.
  • According to still another embodiment of formula I, m is 0.
  • According to still another embodiment of formula I, m is 1.
  • According to still another embodiment of formula I, m is 2 or 3. According to one specific embodiment thereof, m is 2. According to still another embodiment of formula I, m is 3.
  • According to one embodiment of formula I, R11 is halogen, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy or, C1-C6-halogenalkoxy, in particular CH3, Et, CHF2, OCH3, OCHF2, OCF3, F, Cl, more specifically H, CH3, F or Cl most preferred F or Cl.
  • According to still another embodiment of formula I, R11 is halogen, in particular Br, F or Cl, more specifically F or Cl.
  • According to still another embodiment of formula I, R11 is OH.
  • According to still another embodiment of formula I, R11 is CN.
  • According to still another embodiment of formula I R11 is NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2 or NH—SO2—Rx, wherein Rx is C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl or aryl that is substituted with one, two, three, four or five substituents Rx1 independently selected from C1-C4-alkyl.
  • According to still another embodiment of formula I, R11 is C1-C6-alkyl, in particular C1-C4-alkyl, such as CH3.
  • According to still another embodiment of formula I, R11 is C1-C6-halogenalkyl, in particular C1-C4-halogenalkyl, such as CF3, CHF2, CH2F, CCl3, CHCl2 or CH2Cl.
  • According to still another embodiment of formula I, R11 is C2-C6-alkenyl or C2-C6-halogenalkenyl, in particular C2-C4-alkenyl or C2-C4-halogenalkenyl, such as CH═CH2, C(CH3)═CH2, CH2CH═CH2, CH═CHF, CH═CHCl, CH═CF2, CH═CCl2, CF═CF2, CCl═CCl2, CH2CH═CHF, CH2CH═CHCl, CH2CH═CF2, CH2CH═CCl2, CH2CF═CF2, CH2CCl═CCl2, CF2CF═CF2 or CCl2CCl═CCl2.
  • According to still another embodiment of formula I, R11 is C2-C6-alkynyl or C2-C6-halogenalkynyl, in particular C2-C4-alkynyl or C2-C4-halogenalkynyl, such as C≡CH, CH2C≡CH, C≡C—Cl, C≡C—CH3, CH2C≡CH, CH2C≡CCl or CH2C≡C—CH3.
  • According to still another embodiment of formula I, R11 is C1-C6-alkoxy, in particular C1-C4-alkoxy, more specifically C1-C2-alkoxy such as OCH3 or OCH2CH3.
  • According to still another embodiment of formula I, R11 is C1-C6-halogenalkoxy, in particular C1-C4-halogenalkoxy, more specifically C1-C2-halogenalkoxy such as OCF3, OCHF2, OCH2F, OCCl3, OCHCl2 or OCH2Cl, in particular OCF3, OCHF2, OCCl3 or OCHCl2.
  • According to still another embodiment of formula I R11 is C3-C6-cycloalkyl, in particular cyclopropyl.
  • According to still another embodiment of formula I, R11 is C3-C6-cycloalkyl, for example cyclopropyl, substituted with one, two, three or up to the maximum possible number of identical or different groups R11b as defined and preferably herein.
  • According to still another embodiment of formula I, R11 is C3-C6-halogencycloalkyl. In a special embodiment R11 is fully or partially halogenated cyclopropyl.
  • According to still another embodiment of formula I, R11 is unsubstituted aryl or aryl that is substituted with one, two, three or four R11b, as defined herein. In particular, R11 is unsubstituted phenyl or phenyl that is substituted with one, two, three or four R11b, as defined herein.
  • According to still another embodiment of formula I, R11 is unsubstituted 5- or 6-membered heteroaryl. According to still a further embodiment, R11 is 5- or 6-membered heteroaryl that is substituted with one, two or three R11b, as defined herein.
  • According to still another embodiment of formula I, R11 is in each case independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy and C3-C6-cycloalkyl; wherein the acyclic moieties of R11 are not further substituted or carry one, two, three, four or five identical or different groups R11a as defined below and wherein the carbocyclic, heterocyclic and heteroaryl moieties of R11 are not further substituted or carry one, two, three, four or five identical or different groups R11b as defined below.
  • According to still another embodiment of formula I, R11 is independently selected from halogen, OH, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy and C1-C6-halogenalkoxy, in particular independently selected from F, Cl, Br, CN, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy.
  • R11a are the possible substituents for the acyclic moieties of R11.
  • R11a according to the invention is independently selected from halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl and phenyl group is unsubstituted or unsubstituted or substituted with R111a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, CN, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-alkylthio.
  • R11a according to the invention is independently selected from halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl and phenyl group is unsubstituted or unsubstituted or substituted with R111a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy, in particular selected from halogen, C1-C2-alkyl, C1-C2-halogenalkyl, C1-C2-alkoxy, C1-C2-halogenalkoxy, more specifically selected from halogen, such as F, Cl and Br.
  • In to one embodiment R11a is independently selected from halogen, OH, CN, C1-C2-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and C1-C2-halogenalkoxy. Specifically, R11a is independently selected from F, Cl, OH, CN, C1-C2-alkoxy, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl and C1-C2-halogenalkoxy.
  • According to one embodiment R11a is independently selected from halogen, such as F, Cl, Br and I, more specifically F, Cl and Br.
  • According to still another embodiment of formula I, R11a is independently selected from OH, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and C1-C2-halogenalkoxy. Specifically, R11a is independently selected from OH, cyclopropyl and C1-C2-halogenalkoxy.
  • R11b are the possible substituents for the carbocyclic, heterocyclic and heteroaryl moieties of R11.
  • R11b according to the invention is independently selected from halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and C1-C4-halogenalkoxy.
  • According to one embodiment thereof R11b is independently selected from halogen, CN, C1-C2-alkyl, C1-C2-alkoxy, C1-C2-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalky and C1-C2-halogenalkoxy. Specifically, R11b is independently selected from F, Cl, OH, CN, CH3, OCH3, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl and halogenmethoxy.
  • According to still another embodiment thereof R11b is independently selected from C1-C2-alkyl, C1-C2-alkoxy, C1-C2-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and C1-C2-halogenalkoxy. Specifically, R1b is independently selected from OH, CH3, OCH3, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl and halogenmethoxy, more specifically independently selected from OH, CH3, OCH3, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl cyclopropyl and OCHF2.
  • Particularly preferred embodiments of combinations of R9 and R10 according to the invention are in Table P35 below, wherein each line of lines P35-1 to P35-305 corresponds to one particular embodiment of the invention, wherein P35-1 to P35-305 are also in any combination with one another a preferred embodiment of the present invention. The carbon atom, to which R9 bound is marked with * in the drawings and the carbon atom, to which R10 is bound is marked with # in the drawings. cPr stands for cyclopropyl.
  • TABLE P35
    line R9 R10
    P35-1 H H
    P35-2 H F
    P35-3 H Cl
    P35-4 H Br
    P35-5 H CH3
    P35-6 H CH2CH3
    P35-7 H CH2F
    P35-8 H CHF2
    P35-9 H CF3
    P35-10 H OCH3
    P35-11 H OCH2F
    P35-12 H OCHF2
    P35-13 H OCF3
    P35-14 H cPr
    P35-15 H C≡CH
    P35-16 H CN
    P35-17 H S—CH3
    P35-18 F H
    P35-19 F F
    P35-20 F Cl
    P35-21 F Br
    P35-22 F CH3
    P35-23 F CH2CH3
    P35-24 F CH2F
    P35-25 F CHF2
    P35-26 F CF3
    P35-27 F OCH3
    P35-28 F OCH2F
    P35-29 F OCHF2
    P35-30 F OCF3
    P35-31 F cPr
    P35-32 F C≡CH
    P35-33 F CN
    P35-34 F S—CH3
    P35-35 Cl H
    P35-36 Cl F
    P35-37 Cl Cl
    P35-38 Cl Br
    P35-39 Cl CH3
    P35-40 Cl CH2CH3
    P35-41 Cl CH2F
    P35-42 Cl CHF2
    P35-43 Cl CF3
    P35-44 Cl OCH3
    P35-45 Cl OCH2F
    P35-46 Cl OCHF2
    P35-47 Cl OCF3
    P35-48 Cl cPr
    P35-49 Cl C≡CH
    P35-50 Cl CN
    P35-51 Cl S—CH3
    P35-52 Br H
    P35-53 Br F
    P35-54 Br Cl
    P35-55 Br Br
    P35-56 Br CH3
    P35-57 Br CH2CH3
    P35-58 Br CH2F
    P35-59 Br CHF2
    P35-60 Br CF3
    P35-61 Br OCH3
    P35-62 Br OCH2F
    P35-63 Br OCHF2
    P35-64 Br OCF3
    P35-65 Br cPr
    P35-66 Br C≡CH
    P35-67 Br CN
    P35-68 Br S—CH3
    P35-69 CH3 H
    P35-70 CH3 F
    P35-71 CH3 Cl
    P35-72 CH3 Br
    P35-73 CH3 CH3
    P35-74 CH3 CH2CH3
    P35-75 CH3 CH2F
    P35-76 CH3 CHF2
    P35-77 CH3 CF3
    P35-78 CH3 OCH3
    P35-79 CH3 OCH2F
    P35-80 CH3 OCHF2
    P35-81 CH3 OCF3
    P35-82 CH3 cPr
    P35-83 CH3 C≡CH
    P35-84 CH3 CN
    P35-85 CH3 S—CH3
    P35-86 CH2CH3 H
    P35-87 CH2CH3 F
    P35-88 CH2CH3 Cl
    P35-89 CH2CH3 Br
    P35-90 CH2CH3 CH3
    P35-91 CH2CH3 CH2CH3
    P35-92 CH2CH3 CH2F
    P35-93 CH2CH3 CHF2
    P35-94 CH2CH3 CF3
    P35-95 CH2CH3 OCH3
    P35-96 CH2CH3 OCH2F
    P35-97 CH2CH3 OCHF2
    P35-98 CH2CH3 OCF3
    P35-99 CH2CH3 cPr
    P35-100 CH2CH3 C≡CH
    P35-101 CH2CH3 CN
    P35-102 CH2CH3 S—CH3
    P35-103 CH2F H
    P35-104 CH2F F
    P35-105 CH2F Cl
    P35-106 CH2F Br
    P35-107 CH2F CH3
    P35-108 CH2F CH2CH3
    P35-109 CH2F CH2F
    P35-110 CH2F CHF2
    P35-111 CH2F CF3
    P35-112 CH2F OCH3
    P35-113 CH2F OCH2F
    P35-114 CH2F OCHF2
    P35-115 CH2F OCF3
    P35-116 CH2F cPr
    P35-117 CH2F C≡CH
    P35-118 CH2F CN
    P35-119 CH2F S—CH3
    P35-120 CHF2 H
    P35-121 CHF2 F
    P35-122 CHF2 Cl
    P35-123 CHF2 Br
    P35-124 CHF2 CH3
    P35-125 CHF2 CH2CH3
    P35-126 CHF2 CH2F
    P35-127 CHF2 CHF2
    P35-128 CHF2 CF3
    P35-129 CHF2 OCH3
    P35-130 CHF2 OCH2F
    P35-131 CHF2 OCHF2
    P35-132 CHF2 OCF3
    P35-133 CHF2 cPr
    P35-134 CHF2 C≡CH
    P35-135 CHF2 CN
    P35-136 CHF2 S—CH3
    P35-137 CF3 H
    P35-138 CF3 F
    P35-139 CF3 Cl
    P35-140 CF3 Br
    P35-141 CF3 CH3
    P35-142 CF3 CH2CH3
    P35-143 CF3 CH2F
    P35-144 CF3 CHF2
    P35-145 CF3 CF3
    P35-146 CF3 OCH3
    P35-147 CF3 OCH2F
    P35-148 CF3 OCHF2
    P35-149 CF3 OCF3
    P35-150 CF3 cPr
    P35-151 CF3 C≡CH
    P35-152 CF3 CN
    P35-153 CF3 S—CH3
    P35-154 OCH3 H
    P35-155 OCH3 F
    P35-156 OCH3 Cl
    P35-157 OCH3 Br
    P35-158 OCH3 CH3
    P35-159 OCH3 CH2CH3
    P35-160 OCH3 CH2F
    P35-161 OCH3 CHF2
    P35-162 OCH3 CF3
    P35-163 OCH3 OCH3
    P35-164 OCH3 OCH2F
    P35-165 OCH3 OCHF2
    P35-166 OCH3 OCF3
    P35-167 OCH3 cPr
    P35-168 OCH3 C≡CH
    P35-169 OCH3 CN
    P35-170 OCH3 S—CH3
    P35-171 OCH2F H
    P35-172 OCH2F F
    P35-173 OCH2F Cl
    P35-174 OCH2F Br
    P35-175 OCH2F CH3
    P35-176 OCH2F CH2CH3
    P35-177 OCH2F CH2F
    P35-178 OCH2F CHF2
    P35-179 OCH2F CF3
    P35-180 OCH2F OCH3
    P35-181 OCH2F OCH2F
    P35-182 OCH2F OCHF2
    P35-183 OCH2F OCF3
    P35-184 OCH2F cPr
    P35-185 OCH2F C≡CH
    P35-186 OCH2F CN
    P35-187 OCH2F S—CH3
    P35-188 OCHF2 H
    P35-189 OCHF2 F
    P35-190 OCHF2 Cl
    P35-191 OCHF2 Br
    P35-192 OCHF2 CH3
    P35-193 OCHF2 CH2CH3
    P35-194 OCHF2 CH2F
    P35-195 OCHF2 CHF2
    P35-196 OCHF2 CF3
    P35-197 OCHF2 OCH3
    P35-198 OCHF2 OCH2F
    P35-199 OCHF2 OCHF2
    P35-200 OCHF2 OCF3
    P35-201 OCHF2 cPr
    P35-202 OCHF2 C≡CH
    P35-203 OCHF2 CN
    P35-204 OCHF2 S—CH3
    P35-205 OCF3 H
    P35-206 OCF3 F
    P35-207 OCF3 Cl
    P35-208 OCF3 Br
    P35-209 OCF3 CH3
    P35-210 OCF3 CH2CH3
    P35-211 OCF3 CH2F
    P35-212 OCF3 CHF2
    P35-213 OCF3 CF3
    P35-214 OCF3 OCH3
    P35-215 OCF3 OCH2F
    P35-216 OCF3 OCHF2
    P35-217 OCF3 OCF3
    P35-218 OCF3 cPr
    P35-219 OCF3 C≡CH
    P35-220 OCF3 CN
    P35-221 OCF3 S—CH3
    P35-222 cPr H
    P35-223 cPr F
    P35-224 cPr Cl
    P35-225 cPr Br
    P35-226 cPr CH3
    P35-227 cPr CH2CH3
    P35-228 cPr CH2F
    P35-229 cPr CHF2
    P35-230 cPr CF3
    P35-231 cPr OCH3
    P35-232 cPr OCH2F
    P35-233 cPr OCHF2
    P35-234 cPr OCF3
    P35-235 cPr cPr
    P35-236 cPr C≡CH
    P35-237 cPr CN
    P35-238 cPr S—CH3
    P35-239 C≡CH H
    P35-240 C≡CH F
    P35-241 C≡CH Cl
    P35-242 C≡CH Br
    P35-243 C≡CH CH3
    P35-244 C≡CH CH2CH3
    P35-245 C≡CH CH2F
    P35-246 C≡CH CHF2
    P35-247 C≡CH CF3
    P35-248 C≡CH OCH3
    P35-249 C≡CH OCH2F
    P35-250 C≡CH OCHF2
    P35-251 C≡CH OCF3
    P35-252 C≡CH cPr
    P35-253 C≡CH C≡CH
    P35-254 C≡CH CN
    P35-255 C≡CH S—CH3
    P35-256 CN H
    P35-257 CN F
    P35-258 CN Cl
    P35-259 CN Br
    P35-260 CN CH3
    P35-261 CN CH2CH3
    P35-262 CN CH2F
    P35-263 CN CHF2
    P35-264 CN CF3
    P35-265 CN OCH3
    P35-266 CN OCH2F
    P35-267 CN OCHF2
    P35-268 CN OCF3
    P35-269 CN cPr
    P35-270 CN C≡CH
    P35-271 CN CN
    P35-272 CN S—CH3
    P35-273 S—CH3 H
    P35-274 S—CH3 F
    P35-275 S—CH3 Cl
    P35-276 S—CH3 Br
    P35-277 S—CH3 CH3
    P35-278 S—CH3 CH2CH3
    P35-279 S—CH3 CH2F
    P35-280 S—CH3 CHF2
    P35-281 S—CH3 CF3
    P35-282 S—CH3 OCH3
    P35-283 S—CH3 OCH2F
    P35-284 S—CH3 OCHF2
    P35-285 S—CH3 OCF3
    P35-286 S—CH3 cPr
    P35-287 S—CH3 C≡CH
    P35-288 S—CH3 CN
    P35-289 S—CH3 S—CH3
    P35-290
    Figure US20200187500A1-20200618-C00380
    P35-291
    Figure US20200187500A1-20200618-C00381
    P35-292
    Figure US20200187500A1-20200618-C00382
    P35-293
    Figure US20200187500A1-20200618-C00383
    P35-294
    Figure US20200187500A1-20200618-C00384
    P35-295
    Figure US20200187500A1-20200618-C00385
    P35-296
    Figure US20200187500A1-20200618-C00386
    P35-297
    Figure US20200187500A1-20200618-C00387
    P35-298
    Figure US20200187500A1-20200618-C00388
    P35-299
    Figure US20200187500A1-20200618-C00389
    P35-300
    Figure US20200187500A1-20200618-C00390
    P35-301
    Figure US20200187500A1-20200618-C00391
    P35-302
    Figure US20200187500A1-20200618-C00392
    P35-303
    Figure US20200187500A1-20200618-C00393
    P35-304
    Figure US20200187500A1-20200618-C00394
    P35-305
    Figure US20200187500A1-20200618-C00395
  • R12 is in each case independently selected from hydrogen, OH, CH(═O), C(═O)C1-C6-alkyl, C(═O)C2-C6-alkenyl, C(═O)C3-C6-cycloalkyl, C(═O)O(C1-C6-alkyl), C(═O)O(C2-C6-alkenyl), C(═O)O(C2-C6-alkynyl), C(═O)O(C3-C6-cycloalkyl), C(═O)NH(C1-C6-alkyl), C(═O)NH(C2-C6-alkenyl), C(═O)NH(C2-C6-alkynyl), C(═O) NH(C3-C6-cycloalkyl), C(═O)N(C1-C6-alkyl)2, C(═O)N(C2-C6-alkenyl)2, C(═O)N(C2-C6-alkynyl)2, C(═O)N(C3-C6-cycloalkyl)2, CH(═S), C(═S)C1-C6-alkyl, C(═S)C2-C6-alkenyl, C(═S)C2-C6-alkynyl, C(═S)C3-C6-cycloalkyl, C(═S)O(C1-C6-alkyl), C(═S)O(C2-C6-alkenyl), C(═S)O(C2-C6-alkynyl), C(═S)O(C3-C6-cycloalkyl), C(═S)NH(C1-C6-alkyl), C(═S)NH(C2-C6-alkenyl), C(═S)NH(C2-C6-alkynyl), C(═S)NH(C3-C6-cycloalkyl), C(═S)N(C1-C6-alkyl)2, C(═S)N(C2-C6-alkenyl)2, C(═S)N(C2-C6-alkynyl)2, C(═S)N(C3-C6-cycloalkyl)2, O1—O6-alkyl, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, ORY, C1-C6-alkylthio, C1-C6-halogenalkylthio, C2-C6-alkenyl, C2-C6-halogenalkenyl C2-C6-alkynyl, C2-C6-halogenalkynyl, S(O)n—C1-C6-alkyl, S(O)n—C1-C6-halogenalkyl, S(O)n—C1-C6-alkoxy, S(O)n—C2-C6-alkenyl, S(O)n—C2-C6-alkynyl, S(O)n-aryl, SO2—NH(C1-C6-alkyl), SO2—NH(C1-C6-halogenalkyl), SO2—NH-aryl, tri-(C1-C6 alkyl)silyl and di-(C1-C6 alkoxy)phosphoryl), five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein the aryl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy; wherein n and RY are as defined above.
  • R12a is the substituent of the acyclic moieties of R12. The acyclic moieties of R12 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R12a which independently of one another are selected from halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halogencycloalkyl, C3-C6-halogencycloalkenyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, five- or six-membered heteroaryl, aryl and phenoxy, wherein the heteroaryl, aryl and phenoxy group is unsubstituted or carries one, two, three, four or five substituents R78a′ selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
    R12b is the substituted of carbocyclic, phenyl, heterocyclic and heteroaryl moieties of R12. The carbocyclic, phenyl, heterocyclic and heteroaryl moieties of R12 are not further substituted or carry one, two, three, four, five or up to the maximum number of identical or different groups R12b which independently of one another are selected from halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio.
  • According to one embodiment of formula I, R12 is H.
  • According to still another embodiment of formula I, R12 is OH.
  • According to a further specific embodiment of formula I, R12 is CH(═O).
  • According to a further specific embodiment of formula I, R12 is C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl) or C(═O)N(C1-C6-alkyl)2, wherein alkyl is CH3, C2H5, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • According to a further specific embodiment of formula I, R12 is C(═O)C2-C6-alkenyl, C(═O)O(C2-C6-alkenyl), C(═O)NH(C2-C6-alkenyl) or C(═O)N(C2-C6-alkenyl)2), wherein alkenyl is CH═CH2, CH2CH═CH2.
  • According to a further specific embodiment of formula I, R12 is C(═O)C2-C6-alkynyl, C(═O)O(C2-C6-alkynyl), C(═O)NH(C2-C6-alkynyl) or C(═O)N(C2-C6-alkynyl)2, wherein alkynyl is C≡CH, CH2C≡CH.
  • According to a further specific embodiment of formula I, R12 is C(═O)C3-C6-cycloalkyl, C(═O)O(C3-C6-cycloalkyl), C(═O)NH(C3-C6-cycloalkyl) or C(═O)N(C3-C6-cycloalkyl)2, wherein cycloalkyl is cyclopropyl (C3H7) or cyclobutyl (C4H9).
  • According to a further specific embodiment of formula I, R12 is CH(═S).
  • According to a further specific embodiment of formula I, R12 is C(═S)C1-C6-alkyl, C(═S)O(C1-C6-alkyl), C(═S)NH(C1-C6-alkyl) or C(═S)N(C1-C6-alkyl)2, wherein alkyl is CH3, C2H5, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • According to a further specific embodiment of formula I, R12 is C(═S)C2-C6-alkenyl, C(═S)O(C2-C6-alkenyl), C(═S)NH(C2-C6-alkenyl) or C(═S)N(C2-C6-alkenyl)2, wherein alkenyl is CH═CH2, CH2CH═CH2.
  • According to a further specific embodiment of formula I, R12 is C(═S)O(C2-C6-alkynyl), C(═S)NH(C2-C6-alkynyl) or C(═S)N(C2-C6-alkynyl)2, wherein alkynyl is C≡CH, CH2C≡CH.
  • According to a further specific embodiment of formula I, R12 is C(═S)C3-C6-cycloalkyl, C(═S)O(C3-C6-cycloalkyl) or C(═S)N(C3-C6-cycloalkyl)2, wherein cycloalkyl is cyclopropyl (C3H7) or cyclobutyl (C4H9).
  • According to still another embodiment of formula I, R12 is C1-C6-alkyl, such as CH3, C2H5, n-propyl, i-propyl, n-butyl, i-butyl, tert-butyl, n-pentyl or i-pentyl.
  • According to still another embodiment of formula I, R12 is C1-C6-alkyl, in particular C1-C4-alkyl, such as CH3, C2H5, n-propyl, i-propyl.
  • According to still another embodiment of formula I, R12 is C1-C6-halogenalkyl, in particular C1-C4-halogenalkyl, such as CF3, CCl3, FCH2, ClCH2, F2CH, Cl2CH, CF3CH2, CCl3CH2 or CF2CHF2.
  • According to still another embodiment of formula I R12 is C3-C6-cycloalkyl, in particular cyclopropyl.
  • According to still another embodiment of formula I, R12 is C3-C6-halogencycloalkyl. In a special embodiment R12b is fully or partially halogenated cyclopropyl, such as 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl.
  • According to still another embodiment of formula I, R12 is C1-C4-alkoxy and C1-C4-halogenalkoxy, in particular C1-C3-alkoxy, C1-C3-halogenalkoxy, such as CH2OCH3, CH2OCF3 or CH2OCHF2.
  • According to a further specific embodiment of formula I, R12 is ORY, wherein RY is C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, phenyl and phenyl-C1-C6-alkyl; wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
  • According to a further specific embodiment of formula I, R12 is ORY, wherein RY is C1-C6-alkyl, in particular C1-C4-alkyl, more specifically C1-C2-alkyl. R12 is such as OCH3 or OCH2CH3.
  • According to a further specific embodiment of formula I, R12 is OR, wherein RY is C1-C6-halogenalkyl, in particular C1-C4-halogenalkyl, more specifically C1-C2-halogenalkyl. R12 is such as OCF3, OCHF2, OCH2F, OCCl3, OCHCl2 or OCH2Cl, in particular OCF3, OCHF2, OCCl3 or OCHCl2.
  • According to a further specific embodiment of formula I, R12 is ORY, wherein RY C2-C6-alkenyl, in particular C2-C4-alkenyl, more specifically C1-C2-alkenyl. R12 is such as OCH═CH2, OCH2CH═CH2.
  • According to a further specific embodiment of formula I, R12 is ORY, wherein RY C2-C6-alkynyl, in particular C2-C6-alkynyl, in particular C2-C4-alkynyl, more specifically C1-C2-alkynyl. R12 is such as OC≡CH
  • According to still another embodiment of formula I, R12 is ORY, wherein RY is C3-C6-halogencycloalkyl. In a special embodiment R1 is fully or partially halogenated cyclopropyl.
  • According to still another embodiment of formula I, R12 is is ORY, wherein RY and phenyl; wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy.
  • According to still another embodiment of formula I, R12 is is ORY, wherein RY phenyl-C1-C6-alkyl, such as phenyl-CH2, herein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy. R12 is such as OCH2Ph.
  • According to still a further embodiment of formula I, R12 is C2-C6-alkenyl, in particular C2-C4-alkenyl, such as CH═CH2, C(CH3)═CH2, CH2CH═CH2.
  • According to a further specific embodiment of formula I, R12 is C2-C6-halogenalkenyl, in particular C2-C4-halogenalkenyl, more specifically C2-C3-halogenalkenyl such as CH═CHF, CH═CHCl, CH═CF2, CH═CCl2, CH2CH═CHF, CH2CH═CHCl, CH2CH═CF2, CH2CH═CCl2, CF2CH═CF2, CCl2CH═CCl2, CF2CF═CF2, CCl2CCl═CCl2.
  • According to still a further embodiment of formula I, R12 is C2-C6-alkynyl or C2-C6-halogenalkynyl, in particular C2-C4-alkynyl or C2-C4-halogenalkynyl, such as C≡CH, CH2C≡CH.
  • According to still another embodiment of formula I, R12 is S(O)n—C1-C6-alkyl such as SCH3, S(═O) CH3, S(O)2CH3.
  • According to still another embodiment of formula I, R12 is S(O)n—C1-C6-halogenalkyl such as SCF3, S(═O)CF3, S(O)2CF3, SCHF2, S(═O)CHF2, S(O)2CHF2.
  • According to still another embodiment of formula I, R12 is S(O)n-aryl such as S-phenyl, S(═O) phenyl, S(O)2phenyl, wherein the phenyl group is unsubstituted or carries one, two, three, four or five substituents R78a′ selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
  • According to still another embodiment of formula I, R12 is S(O)n—C2-C6-alkenyl such as SCH═CH2, S(═O)CH═CH2, S(O)2CH═CH2, SCH2CH═CH2, S(═O)CH2CH═CH2, S(O)2CH2CH═CH2.
  • According to still another embodiment of formula I, R12 is S(O)n—C2-C6-alkynyl such as SC≡CH, S(═O)C≡CH, S(O)2C≡CH, SCH2C≡CH, S(═O)CH2C≡CH, S(O)2CH2C≡CH.
  • According to still another embodiment of formula I, R12 is SO2—NH(C1-C6-alkyl), is C1-C6-alkyl, in particular C1-C4-alkyl, more specifically C1-C2-alkyl. R12 is such as SO2NHCH3 or SO2NHCH2CH3.
  • According to still another embodiment of formula I, R12 is SO2—NH(C1-C6-halogenalkyl), wherein C1-C6-halogenalkyl, in particular C1-C4-halogenalkyl, more specifically C1-C2-halogenalkyl. R12 is such as SO2NHCF3, SO2NHCHF2, SO2NHCH2F, SO2NHCCl3, SO2NHCHCl2 or SO2NHCH2Cl, in particular SO2NHCF3, SO2NHCHF2, SO2NHCCl3 or SO2NHCHCl2.
  • According to still another embodiment of formula I, R12 is SO2—NHaryl, wherein the aryl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy. R12 is such as SO2NHPh.
  • According to still another embodiment of formula I, R12 is tri-(C1-C6 alkyl)silyl, in particular C1-C4-alkyl, such as CH3. or C2H5. R12 is such as OSi(CH3)3
  • According to still another embodiment of formula I, R12 is di-(C1-C6 alkoxy)phosphoryl), in particular C1-C4-alkoxy, such as OCH3. or OC2H5. R12 is such as OPO(OCH3)2.
  • According to still another embodiment of formula I, R12 is phenyl-C1-C6-alkyl, such as phenyl-CH2, wherein the phenyl moiety in each case is unsubstituted or substituted by one, two or three identical or different groups R12b which independently of one another are selected from halogen, C1-C2-alkyl, C1-C2-alkoxy, C1-C2-halogenalkyl and C1-C2-halogenalkoxy, in particular F, Cl, Br, CH3, OCH3, CF3 and OCF3.
  • According to still another embodiment of formula I, R12 is aryl, in particular phenyl, wherein the aryl or phenyl moiety in each case is unsubstituted or substituted by identical or different groups R12b which independently of one another are selected from halogen, C1-C2-alkyl, C1-C2-alkoxy, C1-C2-halogenalkyl and C1-C2-halogenalkoxy, in particular F, Cl, Br, CH3, OCH3, CF3 and OCF3.
  • According to one embodiment, R12 is unsubstituted phenyl. According to another embodiment, R12 is phenyl, that is substituted by one, two or three, in particular one, halogen, in particular selected from F, Cl and Br, more specifically selected from F and Cl.
  • According to still another embodiment of formula I, R12 is a 5-membered heteroaryl such as pyrrol-1-yl, pyrrol-2-yl, pyrrol-3-yl, thien-2-yl, thien-3-yl, furan-2-yl, furan-3-yl, pyrazol-1-yl, pyrazol-3-yl, pyrazol-4-yl, pyrazol-5-yl, imidazol-1-yl, imidazol-2-yl, imidazol-4-yl, imidazol-5-yl, oxazol-2-yl, oxazol-4-yl, oxazol-5-yl, isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl, thiazol-2-yl, thiazol-4-yl, thiazol-5-yl, isothiazol-3-yl, isothiazol-4-yl, isothiazol-5-yl, 1,2,4-triazolyl-1-yl, 1,2,4-triazol-3-yl 1,2,4-triazol-5-yl, 1,2,4-oxadiazol-3-yl, 1,2,4-oxadiazol-5-yl and 1,2,4-thiadiazol-3-yl, 1,2,4-thiadiazol-5-yl.
  • According to still another embodiment of formula I, R12 is a 6-membered heteroaryl such as pyridin-2-yl, pyridin-3-yl, pyridin-4-yl, pyridazin-3-yl, pyridazin-4-yl, pyrimidin-2-yl, pyrimidin-4-yl, pyrimidin-5-yl, pyrazin-2-yl and 1,3,5-triazin-2-yl and 1,2,4-triazin-3-yl.
  • According to still another embodiment of formula I, R12 is in each case independently selected from H, halogen, OH, CN, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C3-C6-alkenyloxy, C3-C6-alkynyloxy and C3-C6-cycloalkyl wherein the acyclic moieties of R12 are unsubstituted or substituted with identical or different groups R12a as defined and preferably defined herein, and wherein the carbocyclic, phenyl and heteroaryl moieties of R12 are unsubstituted or substituted with identical or different groups R12b as defined and preferably defined herein.
  • According to still another embodiment of formula I, R12 is in each case independently selected from H, halogen, OH, CN, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-alkenyloxy, C3-C6-alkynyloxy and C3-C6-cycloalkyl, wherein the acyclic moieties of R12 are unsubstituted or substituted with identical or different groups R12a as defined and preferably defined herein, and wherein the cycloalkyl moieties of R12 are unsubstituted or substituted with identical or different groups R12b as defined and preferably defined herein.
  • According to still another embodiment of formula I, R12 is in each case independently selected from H and ORY, wherein RY is most preferably C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, phenyl and phenyl-C1-C6-alkyl; wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy.
  • According to still another embodiment of formula I, R12 is in each case independently selected from H and ORY, wherein RY is most preferably C2-C6-alkenyl, C2-C6-alkynyl, phenyl and phenyl-C1-C6-alkyl; wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy.
  • According to still another embodiment of formula I, R12 is in each case independently selected from H, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl) and C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, C(═O)C2-C6-alkenyl, C(═O)O(C2-C6-alkenyl), C(═O)NH(C2-C6-alkenyl), C(═O)N(C2-C6-alkenyl)2, C(═O)C2-C6-alkynyl, C(═O)O(C2-C6-alkynyl), C(═O)NH(C2-C6-alkynyl), C(═O)N(C2-C6-alkynyl)2C(═O)C3-C6-cycloalkyl, C(═O)O(C3-C6-cycloalkyl), C(═O)NH(C3-C6-cycloalkyl) and C(═O)N(C3-C6-cycloalkyl)2, wherein the acyclic moieties of R12 are unsubstituted or substituted with identical or different groups R12a as defined and preferably defined herein, and wherein the cycloalkyl moieties of R12 are unsubstituted or substituted with identical or different groups R12b as defined and preferably defined herein.
  • According to still another embodiment of formula I, R12 is in each case independently selected from H, C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, C(═O)C2-C6-alkenyl, C(═O)O(C2-C6-alkenyl), C(═O)NH(C2-C6-alkenyl), C(═O)N(C2-C6-alkenyl)2, wherein the acyclic moieties of R12 are unsubstituted or substituted with identical or different groups R12a as defined and preferably defined herein, and wherein the cycloalkyl moieties of R12 are unsubstituted or substituted with identical or different groups R12b as defined and preferably defined herein.
  • According to still another embodiment of formula I, R12 is in each case independently selected from H, S(O)n—C1-C6-alkyl, S(O)n—C1-C6-halogenalkyl, S(O)n—C1-C6-alkoxy, S(O)n—C2-C6-alkenyl, S(O)n—C2-C6-alkynyl, S(O)naryl, wherein the acyclic moieties of R12 are unsubstituted or substituted with identical or different groups R12a as defined and preferably defined herein, and wherein the aryl moieties of R12 are unsubstituted or substituted with identical or different groups R12b as defined and preferably defined herein.
  • According to still another embodiment of formula I, R12 is in each case independently selected from H, SO2—NH(C1-C6-alkyl), SO2—NH(C1-C6-halogenalkyl), SO2—NHphenyl, wherein the acyclic moieties of R12 are unsubstituted or substituted with identical or different groups R12a as defined and preferably defined herein, and wherein the aryl moieties of R12 are unsubstituted or substituted with identical or different groups R12b as defined and preferably defined herein.
  • According to still another embodiment of formula I, R12 is in each case independently selected from H, C1-C6-alkyl, C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), S(O)n—C1-C6-alkyl, S(O)naryl, wherein the acyclic moieties of R12 are unsubstituted or substituted with identical or different groups R12a as defined and preferably defined herein, and wherein the aryl moieties of R12 are unsubstituted or substituted with identical or different groups R12b as defined and preferably defined herein.
  • According to still another embodiment of formula I, R12 is in each case independently selected from H, C(═O)C1-C6-alkyl, C(═O)OC1-C6-alkyl, C(═O)NHC1-C6-alkyl, S(O)2—C1-C6-alkyl, S(O)2-aryl, SO2—NH(C1-C6-alkyl), ORY, or C1-C4-alkyl; wherein RY is C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl or C2-C6-alkynyl.
  • According to one embodiment R12a is independently selected from halogen, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and C1-C4-halogenalkoxy. Specifically, R12a is independently selected from F, Cl, Br, I, C1-C2-alkoxy, cyclopropyl, 1-F-cyclopropyl, 1-Cl-cyclopropyl, 1,1-F2-cyclopropyl, 1,1-Cl2-cyclopropyl and C1-C2-halogenalkoxy.
  • According to still another embodiment of formula I, R12a is independently halogen, in particular selected from F, Cl, Br and I, more specifically F, Cl and Br.
  • R12b are the possible substituents for the cycloalkyl, heteroaryl and phenyl moieties of R12. R12b according to the invention is independently selected from halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio.
  • According to one embodiment thereof R12b is independently selected from halogen, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl and C1-C4-halogenalkoxy, in particular halogen, C1-C4-alkyl and C1-C4-alkoxy. Specifically, R12b is independently selected from F, Cl, CN, CH3, CHF2, CF3OCH3 and halogenmethoxy.
  • Particularly preferred embodiments of R12 according to the invention are in Table P12 below, wherein each line of lines P12-1 to P12-50 corresponds to one particular embodiment of the invention, wherein P12-1 to P12-50 are also in any combination with one another a preferred embodiment of the present invention. The connection point to the carbon atom, to which R12 is bound is marked with “#” in the drawings.
  • TABLE P12
    No. R12
    P12-1 H
    P12-2 CH3
    P12-3 CH2F
    P12-4 CHF2
    P12-5 CF3
    P12-6 C2H5
    P12-7 C3H7
    P12-8 CH(CH3)2
    P12-9 CH2CH2CH3
    P12-10 CH2CH2CH2CH3
    P12-11 CH2CH(CH3)2
    P12-12 C(CH3)3
    P12-13 CH2CH2CH2CH2CH3
    P12-14 CH═CH2
    P12-15 CH2CH═CH2
    P12-16 C≡CH
    P12-17 CH2C≡CH
    P12-18 CH2CH2CH(CH3)2
    P12-19 OH
    P12-20 OCH3
    P12-21 OCHF2
    P12-22 OC2H5
    P12-23 OCH2OCH3
    P12-24 OCH2Ph
    P12-25 OCH2CH═CH2
    P12-26 C(O)CH3
    P12-27 C(O)OCH3
    P12-28 C(O)OCH2CH3
    P12-29 C(O)OCH(CH3)2
    P12-30 C(O)OC(CH3)3
    P12-31 CO—NH2
    P12-32 CO—NH(CH3)
    P12-33 CO—N(CH3)2
    P12-34 SO2H
    P12-35 SO2—CH3
    P12-36 SO—CH3
    P12-37 S—CH3
    P12-38 SO2NHCH3
    P12-39 SO2NHCF3
    P12-40 SO2NHPh
    P12-41 SO2Ph
    P12-42 SO2C6H4-4-CH3
    P12-43 Si(CH3)3
    P12-44 PO(OCH3)2
    P12-45
    Figure US20200187500A1-20200618-C00396
    P12-46
    Figure US20200187500A1-20200618-C00397
    P12-47
    Figure US20200187500A1-20200618-C00398
    P12-48
    Figure US20200187500A1-20200618-C00399
    P12-49
    Figure US20200187500A1-20200618-C00400
    P12-50
    Figure US20200187500A1-20200618-C00401
  • Particular embodiments of the compounds I are the following compounds: I-A, I-B, I-C, I-D, I-E, I-F, I-G; II-A, II-B, II-C, II-D, II-E, II-F, II-G; III-A, III-B, III-C, III-D, III-E, III-F, III-G; IV-A, IV-B, IV-C, IV-D, IV-E, IV-F, IV-G. In these formulae, the substituents R4, R9, R10 and R12 are independently as defined in claim 1 or preferably defined below:
  • Figure US20200187500A1-20200618-C00402
    Figure US20200187500A1-20200618-C00403
    Figure US20200187500A1-20200618-C00404
    Figure US20200187500A1-20200618-C00405
    Figure US20200187500A1-20200618-C00406
  • Table 1-1 Compounds of the formula I-A, I-B, I-C, I-D, I-E, I-F, I-G in which R12 is H and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds I-A.1-1.A-1 to I-A.1-1.A-550, I-B.1-1.A-1 to I-B.1-1.A-550, I-C.1-1.A-1 to I-C.1-1.A-550, I-D.1-1.A-1 to I-D.1-1.A-550, I-E.1-1.A-1 to I-E.1-1.A-550, I-F.1-1.A-1 to I-F.1-1.A-550, I-G.1-1.A-1 to I-G.1-1.A-550).
  • Table 1-2 Compounds of the formula I-A, I-B, I-C, I-D, I-E, I-F, I-G in which R12 is CH3 and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds I-A.1-2.A-1 to I-A.1-2.A-550, I-B.1-2.A-1 to I-B.1-2.A-550, I-C.1-2.A-1 to I-C.1-2.A-550, I-D.1-2.A-1 to I-D.1-2.A-550, I-E.1-2.A-1 to I-E.1-2.A-550, I-F.1-2.A-1 to I-F.1-2.A-550, I-G.1-2.A-1 to I-G.1-2.A-550).
  • Table 1-3 Compounds of the formula I-A, I-B, I-C, I-D, I-E, I-F, I-G in which R12 is CH2CH═CH2 and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds I-A.1-3.A-1 to I-A.1-3.A-550, I-B.1-3.A-1 to I-B.1-3.A-550, I-C.1-3.A-1 to I-C.1-3.A-550, I-D.1-3.A-1 to I-D.1-3.A-550, I-E.1-3.A-1 to I-E.1-3.A-550, I-F.1-3.A-1 to I-F.1-3.A-550, I-G.1-3.A-1 to I-G.1-3.A-550).
  • Table 1-4 Compounds of the formula I-A, I-B, I-C, I-D, I-E, I-F, I-G in which R12 is C(═O)OCH3 and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds I-A.1-4.A-1 to I-A.1-4.A-550, I-B.1-4.A-1 to I-B.1-4.A-550, I-C.1-4.A-1 to I-C.1-4.A-550, I-D.1-4.A-1 to I-D.1-4.A-550, I-E.1-4.A-1 to I-E.1-4.A-550, I-F.1-4.A-1 to I-F.1-4.A-550, I-G.1-4.A-1 to I-G.1-4.A-550).
  • Table 1-5 Compounds of the formula I-A, I-B, I-C, I-D, I-E, I-F, I-G in which R12 is SO2NHCH3 and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds I-A.1-5.A-1 to I-A.1-5.A-550, I-B.1-5.A-1 to I-B.1-5.A-550, I-C.1-5.A-1 to I-C.1-5.A-550, I-D.1-5.A-1 to I-D.1-5.A-550, I-E.1-5.A-1 to I-E.1-5.A-550, I-F.1-5.A-1 to I-F.1-5.A-550, I-G.1-5.A-1 to I-G.1-5.A-550).
  • Table 2-1 Compounds of the formula II-A, II-B, II-C, II-D, II-E, II-F, II-G in which R12 is H and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds II-A.2-1.A-1 to II-A.2-1.A-550, II-B.2-1.A-1 to II-B.2-1.A-550, II-C.2-1.A-1 to II-C.2-1.A-550, II-D.2-1.A-1 to II-D.2-1.A-550, II-E.2-1.A-1 to II-E.2-1.A-550, II-F.2-1.A-1 to II-F.2-1.A-550, II-G.2-1.A-1 to II-G.2-1.A-550).
  • Table 2-2 Compounds of the formula II-A, II-B, II-C, II-D, II-E, II-F, II-G in which R12 is CH3 and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds II-A.2-2.A-1 to II-A.2-2.A-550, II-B.2-2.A-1 to II-B.2-2.A-550, II-C.2-2.A-1 to II-C.2-2.A-550, II-D.2-2.A-1 to II-D.2-2.A-550, II-E.2-2.A-1 to II-E.2-2.A-550, II-F.2-2.A-1 to II-F.2-2.A-550, II-G.2-2.A-1 to II-G.2-2.A-550).
  • Table 2-3 Compounds of the formula II-A, II-B, II-C, II-D, II-E, II-F, II-G in which R12 is CH2CH═CH2 and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds II-A.2-3.A-1 to II-A.2-3.A-550, II-B.2-3.A-1 to II-B.2-3.A-550, II-C.2-3.A-1 to II-C.2-3.A-550, II-D.2-3.A-1 to II-D.2-3.A-550, II-E.2-3.A-1 to II-E.2-3.A-550, II-F.2-3.A-1 to II-F.2-3.A-550, II-G.2-3.A-1 to II-G.2-3.A-550).
  • Table 2-4 Compounds of the formula II-A, II-B, II-C, II-D, II-E, II-F, II-G in which R12 is C(═O)OCH3 and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds II-A.2-4.A-1 to II-A.2-4.A-550, II-B.2-4.A-1 to II-B.2-4.A-550, II-C.2-4.A-1 to II-C.2-4.A-550, II-D.2-4.A-1 to II-D.2-4.A-550, II-E.2-4.A-1 to II-E.2-4.A-550, II-F.2-4.A-1 to II-F.2-4.A-550, II-G.2-4.A-1 to II-G.2-4.A-550).
  • Table 2-5 Compounds of the formula II-A, II-B, II-C, II-D, II-E, II-F, II-G in which R12 is SO2NHCH3 and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds II-A.2-5.A-1 to II-A.2-5.A-550, II-B.2-5.A-1 to II-B.2-5.A-550, II-C.2-5.A-1 to II-C.2-5.A-550, II-D.2-5.A-1 to II-D.2-5.A-550, II-E.2-5.A-1 to II-E.2-5.A-550, II-F.2-5.A-1 to II-F.2-5.A-550, II-G.2-5.A-1 to II-G.2-5.A-550).
  • Table 3-1 Compounds of the formula III-A, III-B, III-C, III-D, III-E, III-F, III-G in which R12 is H and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds III-A.3-1.A-1 to III-A.3-1.A-550, III-B.3-1.A-1 to III-B.3-1.A-550, III-C.3-1.A-1 to III-C.3-1.A-550, III-D.3-1.A-1 to III-D.3-1.A-550, III-E.3-1.A-1 to III-E.3-1.A-550, III-F.3-1.A-1 to III-F.3-1.A-550, III-G.3-1.A-1 to III-G.3-1.A-550).
  • Table 3-2 Compounds of the formula III-A, III-B, III-C, III-D, III-E, III-F, III-G in which R12 is CH3 and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds III-A.3-2.A-1 to III-A.3-2.A-550, III-B.3-2.A-1 to III-B.3-2.A-550, III-C.3-2.A-1 to III-C.3-2.A-550, III-D.3-2.A-1 to III-D.3-2.A-550, III-E.3-2.A-1 to III-E.3-2.A-550, III-F.3-2.A-1 to III-F.3-2.A-550, III-G.3-2.A-1 to III-G.3-2.A-550).
  • Table 3-3 Compounds of the formula III-A, III-B, III-C, III-D, III-E, III-F, III-G in which R12 is CH2CH═CH2 and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds III-A.3-3.A-1 to III-A.3-3.A-550, III-B.3-3.A-1 to III-B.3-3.A-550, III-C.3-3.A-1 to III-C.3-3.A-550, III-D.3-3.A-1 to III-D.3-3.A-550, III-E.3-3.A-1 to III-E.3-3.A-550, III-F.3-3.A-1 to III-F.3-3.A-550, III-G.3-3.A-1 to III-G.3-3.A-550).
  • Table 3-4 Compounds of the formula III-A, III-B, III-C, III-D, III-E, III-F, III-G in which R12 is C(═O)OCH3 and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds III-A.3-4.A-1 to III-A.3-4.A-550, III-B.3-4.A-1 to III-B.3-4.A-550, III-C.3-4.A-1 to III-C.3-4.A-550, III-D.3-4.A-1 to III-D.3-4.A-550, III-E.3-4.A-1 to III-E.3-4.A-550, III-F.3-4.A-1 to III-F.3-4.A-550, III-G.3-4.A-1 to III-G.3-4.A-550).
  • Table 3-5 Compounds of the formula III-A, III-B, III-C, III-D, III-E, III-F, III-G in which R12 is SO2NHCH3 and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds III-A.3-5.A-1 to III-A.3-5.A-550, III-B.3-5.A-1 to III-B.3-5.A-550, III-C.3-5.A-1 to III-C.3-5.A-550, III-D.3-5.A-1 to III-D.3-5.A-550, III-E.3-5.A-1 to III-E.3-5.A-550, III-F.3-5.A-1 to III-F.3-5.A-550, III-G.3-5.A-1 to III-G.3-5.A-550).
  • Table 4-1 Compounds of the formula IV-A, IV-B, IV-C, IV-D, IV-E, IV-F, IV-G in which R12 is H and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds IV-A.4-1.A-1 to IV-A.4-1.A-550, IV-B.4-1.A-1 to IV-B.4-1.A-550, IV-C.4-1.A-1 to IV-C.4-1.A-550, IV-D.4-1.A-1 to IV-D.4-1.A-550, IV-E.4-1.A-1 to IV-E.4-1.A-550, IV-F.4-1.A-1 to IV-F.4-1.A-550, IV-G.4-1.A-1 to IV-G.4-1.A-550).
  • Table 4-2 Compounds of the formula IV-A, IV-B, IV-C, IV-D, IV-E, IV-F, IV-G in which R12 is CH3 and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds IV-A.4-2.A-1 to IV-A.4-2.A-550, IV-B.4-2.A-1 to IV-B.4-2.A-550, IV-C.4-2.A-1 to IV-C.4-2.A-550, IV-D.4-2.A-1 to IV-D.4-2.A-550, IV-E.4-2.A-1 to IV-E.4-2.A-550, IV-F.4-2.A-1 to IV-F.4-2.A-550, IV-G.4-2.A-1 to IV-G.4-2.A-550).
  • Table 4-3 Compounds of the formula IV-A, IV-B, IV-C, IV-D, IV-E, IV-F, IV-G in which R12 is CH2CH═CH2 and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds IV-A.4-3.A-1 to IV-A.4-3.A-550, IV-B.4-3.A-1 to IV-B.4-3.A-550, IV-C.4-3.A-1 to IV-C.4-3.A-550, IV-D.4-3.A-1 to IV-D.4-3.A-550, IV-E.4-3.A-1 to IV-E.4-3.A-550, IV-F.4-3.A-1 to IV-F.4-3.A-550, IV-G.4-3.A-1 to IV-G.4-3.A-550).
  • Table 4-4 Compounds of the formula IV-A, IV-B, IV-C, IV-D, IV-E, IV-F, IV-G in which R12 is C(═O)OCH3 and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds IV-A.4-4.A-1 to IV-A.4-4.A-550, IV-B.4-4.A-1 to IV-B.4-4.A-550, IV-C.4-4.A-1 to IV-C.4-4.A-550, IV-D.4-4.A-1 to IV-D.4-4.A-550, IV-E.4-4.A-1 to IV-E.4-4.A-550, IV-F.4-4.A-1 to IV-F.4-4.A-550, IV-G.4-4.A-1 to IV-G.4-4.A-550).
  • Table 4-5 Compounds of the formula IV-A, IV-B, IV-C, IV-D, IV-E, IV-F, IV-G in which R12 is SO2NHCH3 and the meaning for the combination of R4, R9 and R10 for each individual compound corresponds in each case to one line of Table A (compounds IV-A.4-5.A-1 to IV-A.4-5.A-550, IV-B.4-5.A-1 to IV-B.4-5.A-550, IV-C.4-5.A-1 to IV-C.4-5.A-550, IV-D.4-5.A-1 to IV-D.4-5.A-550, IV-E.4-5.A-1 to IV-E.4-5.A-550, IV-F.4-5.A-1 to IV-F.4-5.A-550, IV-G.4-5.A-1 to IV-G.4-5.A-550).
  • TABLE A
    No. R4 R9 R10
    A-1 CH2F CH3 CH3
    A-2 CHF2 CH3 CH3
    A-3 CF3 CH3 CH3
    A-4 CH2Cl CH3 CH3
    A-5 CH2CH2Cl CH3 CH3
    A-6 CN CH3 CH3
    A-7 CH2CH2OCH3 CH3 CH3
    A-8 CH═CH2 CH3 CH3
    A-9 CCH CH3 CH3
    A-10
    Figure US20200187500A1-20200618-C00407
    CH3 CH3
    A-11
    Figure US20200187500A1-20200618-C00408
    CH3 CH3
    A-12 C6H5 CH3 CH3
    A-13 —CH2—C6H5 CH3 CH3
    A-14 2-py CH3 CH3
    A-15 3-py CH3 CH3
    A-16
    Figure US20200187500A1-20200618-C00409
    CH3 CH3
    A-17
    Figure US20200187500A1-20200618-C00410
    CH3 CH3
    A-18
    Figure US20200187500A1-20200618-C00411
    CH3 CH3
    A-19
    Figure US20200187500A1-20200618-C00412
    CH3 CH3
    A-20
    Figure US20200187500A1-20200618-C00413
    CH3 CH3
    A-21
    Figure US20200187500A1-20200618-C00414
    CH3 CH3
    A-22
    Figure US20200187500A1-20200618-C00415
    CH3 CH3
    A-23 CH2F CHF2 CH3
    A-24 CHF2 CHF2 CH3
    A-25 CF3 CHF2 CH3
    A-26 CH2Cl CHF2 CH3
    A-27 CH2CH2Cl CHF2 CH3
    A-28 CN CHF2 CH3
    A-29 CH2CH2OCH3 CHF2 CH3
    A-30 CH═CH2 CHF2 CH3
    A-31 CCH CHF2 CH3
    A-32
    Figure US20200187500A1-20200618-C00416
    CHF2 CH3
    A-33
    Figure US20200187500A1-20200618-C00417
    CHF2 CH3
    A-34 C6H5 CHF2 CH3
    A-35 —CH2—C6H5 CHF2 CH3
    A-36 2-py CHF2 CH3
    A-37 3-py CHF2 CH3
    A-38
    Figure US20200187500A1-20200618-C00418
    CHF2 CH3
    A-39
    Figure US20200187500A1-20200618-C00419
    CHF2 CH3
    A-40
    Figure US20200187500A1-20200618-C00420
    CHF2 CH3
    A-41
    Figure US20200187500A1-20200618-C00421
    CHF2 CH3
    A-42
    Figure US20200187500A1-20200618-C00422
    CHF2 CH3
    A-43
    Figure US20200187500A1-20200618-C00423
    CHF2 CH3
    A-44
    Figure US20200187500A1-20200618-C00424
    CHF2 CH3
    A-45 CH2F CF3 CH3
    A-46 CHF2 CF3 CH3
    A-47 CF3 CF3 CH3
    A-48 CH2Cl CF3 CH3
    A-49 CH2CH2Cl CF3 CH3
    A-50 CN CF3 CH3
    A-51 CH2CH2OCH3 CF3 CH3
    A-52 CH═CH2 CF3 CH3
    A-53 CCH CF3 CH3
    A-54
    Figure US20200187500A1-20200618-C00425
    CF3 CH3
    A-55
    Figure US20200187500A1-20200618-C00426
    CF3 CH3
    A-56 C6H5 CF3 CH3
    A-57 —CH2—C6H5 CF3 CH3
    A-58 2-py CF3 CH3
    A-59 3-py CF3 CH3
    A-60
    Figure US20200187500A1-20200618-C00427
    CF3 CH3
    A-61
    Figure US20200187500A1-20200618-C00428
    CF3 CH3
    A-62
    Figure US20200187500A1-20200618-C00429
    CF3 CH3
    A-63
    Figure US20200187500A1-20200618-C00430
    CF3 CH3
    A-64
    Figure US20200187500A1-20200618-C00431
    CF3 CH3
    A-65
    Figure US20200187500A1-20200618-C00432
    CF3 CH3
    A-66
    Figure US20200187500A1-20200618-C00433
    CF3 CH3
    A-67 CH2F Cl CH3
    A-68 CHF2 Cl CH3
    A-69 CF3 Cl CH3
    A-70 CH2Cl Cl CH3
    A-71 CH2CH2Cl Cl CH3
    A-72 CN Cl CH3
    A-73 CH2CH2OCH3 Cl CH3
    A-74 CH═CH2 Cl CH3
    A-75 CCH Cl CH3
    A-76
    Figure US20200187500A1-20200618-C00434
    Cl CH3
    A-77
    Figure US20200187500A1-20200618-C00435
    Cl CH3
    A-78 C6H5 Cl CH3
    A-79 —CH2—C6H5 Cl CH3
    A-80 2-py Cl CH3
    A-81 3-py Cl CH3
    A-82
    Figure US20200187500A1-20200618-C00436
    Cl CH3
    A-83
    Figure US20200187500A1-20200618-C00437
    Cl CH3
    A-84
    Figure US20200187500A1-20200618-C00438
    Cl CH3
    A-85
    Figure US20200187500A1-20200618-C00439
    Cl CH3
    A-86
    Figure US20200187500A1-20200618-C00440
    Cl CH3
    A-87
    Figure US20200187500A1-20200618-C00441
    Cl CH3
    A-88
    Figure US20200187500A1-20200618-C00442
    Cl CH3
    A-89 CH2F OCH3 CH3
    A-90 CHF2 OCH3 CH3
    A-91 CF3 OCH3 CH3
    A-92 CH2Cl OCH3 CH3
    A-93 CH2CH2Cl OCH3 CH3
    A-94 CN OCH3 CH3
    A-95 CH2CH2OCH3 OCH3 CH3
    A-96 CH═CH2 OCH3 CH3
    A-97 CCH OCH3 CH3
    A-98
    Figure US20200187500A1-20200618-C00443
    OCH3 CH3
    A-99
    Figure US20200187500A1-20200618-C00444
    OCH3 CH3
    A-100 C6H5 OCH3 CH3
    A-101 —CH2—C6H5 OCH3 CH3
    A-102 2-py OCH3 CH3
    A-103 3-py OCH3 CH3
    A-104
    Figure US20200187500A1-20200618-C00445
    OCH3 CH3
    A-105
    Figure US20200187500A1-20200618-C00446
    OCH3 CH3
    A-106
    Figure US20200187500A1-20200618-C00447
    OCH3 CH3
    A-107
    Figure US20200187500A1-20200618-C00448
    OCH3 CH3
    A-108
    Figure US20200187500A1-20200618-C00449
    OCH3 CH3
    A-109
    Figure US20200187500A1-20200618-C00450
    OCH3 CH3
    A-110
    Figure US20200187500A1-20200618-C00451
    OCH3 CH3
    A-111 CH2F CH3 CHF2
    A-112 CHF2 CH3 CHF2
    A-113 CF3 CH3 CHF2
    A-114 CH2Cl CH3 CHF2
    A-115 CH2CH2Cl CH3 CHF2
    A-116 CN CH3 CHF2
    A-117 CH2CH2OCH3 CH3 CHF2
    A-118 CH═CH2 CH3 CHF2
    A-119 CCH CH3 CHF2
    A-120
    Figure US20200187500A1-20200618-C00452
    CH3 CHF2
    A-121
    Figure US20200187500A1-20200618-C00453
    CH3 CHF2
    A-122 C6H5 CH3 CHF2
    A-123 —CH2—C6H5 CH3 CHF2
    A-124 2-py CH3 CHF2
    A-125 3-py CH3 CHF2
    A-126
    Figure US20200187500A1-20200618-C00454
    CH3 CHF2
    A-127
    Figure US20200187500A1-20200618-C00455
    CH3 CHF2
    A-128
    Figure US20200187500A1-20200618-C00456
    CH3 CHF2
    A-129
    Figure US20200187500A1-20200618-C00457
    CH3 CHF2
    A-130
    Figure US20200187500A1-20200618-C00458
    CH3 CHF2
    A-131
    Figure US20200187500A1-20200618-C00459
    CH3 CHF2
    A-132
    Figure US20200187500A1-20200618-C00460
    CH3 CHF2
    A-133 CH2F CHF2 CHF2
    A-134 CHF2 CHF2 CHF2
    A-135 CF3 CHF2 CHF2
    A-136 CH2Cl CHF2 CHF2
    A-137 CH2CH2Cl CHF2 CHF2
    A-138 CN CHF2 CHF2
    A-139 CH2CH2OCH3 CHF2 CHF2
    A-140 CH═CH2 CHF2 CHF2
    A-141 CCH CHF2 CHF2
    A-142
    Figure US20200187500A1-20200618-C00461
    CHF2 CHF2
    A-143
    Figure US20200187500A1-20200618-C00462
    CHF2 CHF2
    A-144 C6H5 CHF2 CHF2
    A-145 —CH2—C6H5 CHF2 CHF2
    A-146 2-py CHF2 CHF2
    A-147 3-py CHF2 CHF2
    A-148
    Figure US20200187500A1-20200618-C00463
    CHF2 CHF2
    A-149
    Figure US20200187500A1-20200618-C00464
    CHF2 CHF2
    A-150
    Figure US20200187500A1-20200618-C00465
    CHF2 CHF2
    A-151
    Figure US20200187500A1-20200618-C00466
    CHF2 CHF2
    A-152
    Figure US20200187500A1-20200618-C00467
    CHF2 CHF2
    A-153
    Figure US20200187500A1-20200618-C00468
    CHF2 CHF2
    A-154
    Figure US20200187500A1-20200618-C00469
    CHF2 CHF2
    A-155 CH2F CF3 CHF2
    A-156 CHF2 CF3 CHF2
    A-157 CF3 CF3 CHF2
    A-158 CH2Cl CF3 CHF2
    A-159 CH2CH2Cl CF3 CHF2
    A-160 CN CF3 CHF2
    A-161 CH2CH2OCH3 CF3 CHF2
    A-162 CH═CH2 CF3 CHF2
    A-163 CCH CF3 CHF2
    A-164
    Figure US20200187500A1-20200618-C00470
    CF3 CHF2
    A-165
    Figure US20200187500A1-20200618-C00471
    CF3 CHF2
    A-166 C6H5 CF3 CHF2
    A-167 —CH2—C6H5 CF3 CHF2
    A-168 2-py CF3 CHF2
    A-169 3-py CF3 CHF2
    A-170
    Figure US20200187500A1-20200618-C00472
    CF3 CHF2
    A-171
    Figure US20200187500A1-20200618-C00473
    CF3 CHF2
    A-172
    Figure US20200187500A1-20200618-C00474
    CF3 CHF2
    A-173
    Figure US20200187500A1-20200618-C00475
    CF3 CHF2
    A-174
    Figure US20200187500A1-20200618-C00476
    CF3 CHF2
    A-175
    Figure US20200187500A1-20200618-C00477
    CF3 CHF2
    A-176
    Figure US20200187500A1-20200618-C00478
    CF3 CHF2
    A-177 CH2F Cl CHF2
    A-178 CHF2 Cl CHF2
    A-179 CF3 Cl CHF2
    A-180 CH2Cl Cl CHF2
    A-181 CH2CH2Cl Cl CHF2
    A-182 CN Cl CHF2
    A-183 CH2CH2OCH3 Cl CHF2
    A-184 CH═CH2 Cl CHF2
    A-185 CCH Cl CHF2
    A-186
    Figure US20200187500A1-20200618-C00479
    Cl CHF2
    A-187
    Figure US20200187500A1-20200618-C00480
    Cl CHF2
    A-188 C6H5 Cl CHF2
    A-189 —CH2—C6H5 Cl CHF2
    A-190 2-py Cl CHF2
    A-191 3-py Cl CHF2
    A-192
    Figure US20200187500A1-20200618-C00481
    Cl CHF2
    A-193
    Figure US20200187500A1-20200618-C00482
    Cl CHF2
    A-194
    Figure US20200187500A1-20200618-C00483
    Cl CHF2
    A-195
    Figure US20200187500A1-20200618-C00484
    Cl CHF2
    A-196
    Figure US20200187500A1-20200618-C00485
    Cl CHF2
    A-197
    Figure US20200187500A1-20200618-C00486
    Cl CHF2
    A-198
    Figure US20200187500A1-20200618-C00487
    Cl CHF2
    A-199 CH2F OCH3 CHF2
    A-200 CHF2 OCH3 CHF2
    A-201 CF3 OCH3 CHF2
    A-202 CH2Cl OCH3 CHF2
    A-203 CH2CH2Cl OCH3 CHF2
    A-204 CN OCH3 CHF2
    A-205 CH2CH2OCH3 OCH3 CHF2
    A-206 CH═CH2 OCH3 CHF2
    A-207 CCH OCH3 CHF2
    A-208
    Figure US20200187500A1-20200618-C00488
    OCH3 CHF2
    A-209
    Figure US20200187500A1-20200618-C00489
    OCH3 CHF2
    A-210 C6H5 OCH3 CHF2
    A-211 —CH2—C6H5 OCH3 CHF2
    A-212 2-py OCH3 CHF2
    A-213 3-py OCH3 CHF2
    A-214
    Figure US20200187500A1-20200618-C00490
    OCH3 CHF2
    A-215
    Figure US20200187500A1-20200618-C00491
    OCH3 CHF2
    A-216
    Figure US20200187500A1-20200618-C00492
    OCH3 CHF2
    A-217
    Figure US20200187500A1-20200618-C00493
    OCH3 CHF2
    A-218
    Figure US20200187500A1-20200618-C00494
    OCH3 CHF2
    A-219
    Figure US20200187500A1-20200618-C00495
    OCH3 CHF2
    A-220
    Figure US20200187500A1-20200618-C00496
    OCH3 CHF2
    A-221 CH2F CH3 CF3
    A-222 CHF2 CH3 CF3
    A-223 CF3 CH3 CF3
    A-224 CH2Cl CH3 CF3
    A-225 CH2CH2Cl CH3 CF3
    A-226 CN CH3 CF3
    A-227 CH2CH2OCH3 CH3 CF3
    A-228 CH═CH2 CH3 CF3
    A-229 CCH CH3 CF3
    A-230
    Figure US20200187500A1-20200618-C00497
    CH3 CF3
    A-231
    Figure US20200187500A1-20200618-C00498
    CH3 CF3
    A-232 C6H5 CH3 CF3
    A-233 —CH2—C6H5 CH3 CF3
    A-234 2-py CH3 CF3
    A-235 3-py CH3 CF3
    A-236
    Figure US20200187500A1-20200618-C00499
    CH3 CF3
    A-237
    Figure US20200187500A1-20200618-C00500
    CH3 CF3
    A-238
    Figure US20200187500A1-20200618-C00501
    CH3 CF3
    A-239
    Figure US20200187500A1-20200618-C00502
    CH3 CF3
    A-240
    Figure US20200187500A1-20200618-C00503
    CH3 CF3
    A-241
    Figure US20200187500A1-20200618-C00504
    CH3 CF3
    A-242
    Figure US20200187500A1-20200618-C00505
    CH3 CF3
    A-243 CH2F CHF2 CF3
    A-244 CHF2 CHF2 CF3
    A-245 CF3 CHF2 CF3
    A-246 CH2Cl CHF2 CF3
    A-247 CH2CH2Cl CHF2 CF3
    A-248 CN CHF2 CF3
    A-249 CH2CH2OCH3 CHF2 CF3
    A-250 CH═CH2 CHF2 CF3
    A-251 CCH CHF2 CF3
    A-252
    Figure US20200187500A1-20200618-C00506
    CHF2 CF3
    A-253
    Figure US20200187500A1-20200618-C00507
    CHF2 CF3
    A-254 C6H5 CHF2 CF3
    A-255 —CH2—C6H5 CHF2 CF3
    A-256 2-py CHF2 CF3
    A-257 3-py CHF2 CF3
    A-258
    Figure US20200187500A1-20200618-C00508
    CHF2 CF3
    A-259
    Figure US20200187500A1-20200618-C00509
    CHF2 CF3
    A-260
    Figure US20200187500A1-20200618-C00510
    CHF2 CF3
    A-261
    Figure US20200187500A1-20200618-C00511
    CHF2 CF3
    A-262
    Figure US20200187500A1-20200618-C00512
    CHF2 CF3
    A-263
    Figure US20200187500A1-20200618-C00513
    CHF2 CF3
    A-264
    Figure US20200187500A1-20200618-C00514
    CHF2 CF3
    A-265 CH2F CF3 CF3
    A-266 CHF2 CF3 CF3
    A-267 CF3 CF3 CF3
    A-268 CH2Cl CF3 CF3
    A-269 CH2CH2Cl CF3 CF3
    A-270 CN CF3 CF3
    A-271 CH2CH2OCH3 CF3 CF3
    A-272 CH═CH2 CF3 CF3
    A-273 CCH CF3 CF3
    A-274
    Figure US20200187500A1-20200618-C00515
    CF3 CF3
    A-275
    Figure US20200187500A1-20200618-C00516
    CF3 CF3
    A-276 C6H5 CF3 CF3
    A-277 —CH2—C6H5 CF3 CF3
    A-278 2-py CF3 CF3
    A-279 3-py CF3 CF3
    A-280
    Figure US20200187500A1-20200618-C00517
    CF3 CF3
    A-281
    Figure US20200187500A1-20200618-C00518
    CF3 CF3
    A-282
    Figure US20200187500A1-20200618-C00519
    CF3 CF3
    A-283
    Figure US20200187500A1-20200618-C00520
    CF3 CF3
    A-284
    Figure US20200187500A1-20200618-C00521
    CF3 CF3
    A-285
    Figure US20200187500A1-20200618-C00522
    CF3 CF3
    A-286
    Figure US20200187500A1-20200618-C00523
    CF3 CF3
    A-287 CH2F Cl CF3
    A-288 CHF2 Cl CF3
    A-289 CF3 Cl CF3
    A-290 CH2Cl Cl CF3
    A-291 CH2CH2Cl Cl CF3
    A-292 CN Cl CF3
    A-293 CH2CH2OCH3 Cl CF3
    A-294 CH═CH2 Cl CF3
    A-295 CCH Cl CF3
    A-296
    Figure US20200187500A1-20200618-C00524
    Cl CF3
    A-297
    Figure US20200187500A1-20200618-C00525
    Cl CF3
    A-298 C6H5 Cl CF3
    A-299 —CH2—C6H5 Cl CF3
    A-300 2-py Cl CF3
    A-301 3-py Cl CF3
    A-302
    Figure US20200187500A1-20200618-C00526
    Cl CF3
    A-303
    Figure US20200187500A1-20200618-C00527
    Cl CF3
    A-304
    Figure US20200187500A1-20200618-C00528
    Cl CF3
    A-305
    Figure US20200187500A1-20200618-C00529
    Cl CF3
    A-306
    Figure US20200187500A1-20200618-C00530
    Cl CF3
    A-307
    Figure US20200187500A1-20200618-C00531
    Cl CF3
    A-308
    Figure US20200187500A1-20200618-C00532
    Cl CF3
    A-309 CH2F OCH3 CF3
    A-310 CHF2 OCH3 CF3
    A-311 CF3 OCH3 CF3
    A-312 CH2Cl OCH3 CF3
    A-313 CH2CH2Cl OCH3 CF3
    A-314 CN OCH3 CF3
    A-315 CH2CH2OCH3 OCH3 CF3
    A-316 CH═CH2 OCH3 CF3
    A-317 CCH OCH3 CF3
    A-318
    Figure US20200187500A1-20200618-C00533
    OCH3 CF3
    A-319
    Figure US20200187500A1-20200618-C00534
    OCH3 CF3
    A-320 C6H5 OCH3 CF3
    A-321 —CH2—C6H5 OCH3 CF3
    A-322 2-py OCH3 CF3
    A-323 3-py OCH3 CF3
    A-324
    Figure US20200187500A1-20200618-C00535
    OCH3 CF3
    A-325
    Figure US20200187500A1-20200618-C00536
    OCH3 CF3
    A-326
    Figure US20200187500A1-20200618-C00537
    OCH3 CF3
    A-327
    Figure US20200187500A1-20200618-C00538
    OCH3 CF3
    A-328
    Figure US20200187500A1-20200618-C00539
    OCH3 CF3
    A-329
    Figure US20200187500A1-20200618-C00540
    OCH3 CF3
    A-330
    Figure US20200187500A1-20200618-C00541
    OCH3 CF3
    A-331 CH2F CH3 Cl
    A-332 CHF2 CH3 Cl
    A-333 CF3 CH3 Cl
    A-334 CH2Cl CH3 Cl
    A-335 CH2CH2Cl CH3 Cl
    A-336 CN CH3 Cl
    A-337 CH2CH2OCH3 CH3 Cl
    A-338 CH═CH2 CH3 Cl
    A-339 CCH CH3 Cl
    A-340
    Figure US20200187500A1-20200618-C00542
    CH3 Cl
    A-341
    Figure US20200187500A1-20200618-C00543
    CH3 Cl
    A-342 C6H5 CH3 Cl
    A-343 —CH2—C6H5 CH3 Cl
    A-344 2-py CH3 Cl
    A-345 3-py CH3 Cl
    A-346
    Figure US20200187500A1-20200618-C00544
    CH3 Cl
    A-347
    Figure US20200187500A1-20200618-C00545
    CH3 Cl
    A-348
    Figure US20200187500A1-20200618-C00546
    CH3 Cl
    A-349
    Figure US20200187500A1-20200618-C00547
    CH3 Cl
    A-350
    Figure US20200187500A1-20200618-C00548
    CH3 Cl
    A-351
    Figure US20200187500A1-20200618-C00549
    CH3 Cl
    A-352
    Figure US20200187500A1-20200618-C00550
    CH3 Cl
    A-353 CH2F CHF2 Cl
    A-354 CHF2 CHF2 Cl
    A-355 CF3 CHF2 Cl
    A-356 CH2Cl CHF2 Cl
    A-357 CH2CH2Cl CHF2 Cl
    A-358 CN CHF2 Cl
    A-359 CH2CH2OCH3 CHF2 Cl
    A-360 CH═CH2 CHF2 Cl
    A-361 CCH CHF2 Cl
    A-362
    Figure US20200187500A1-20200618-C00551
    CHF2 Cl
    A-363
    Figure US20200187500A1-20200618-C00552
    CHF2 Cl
    A-364 C6H5 CHF2 Cl
    A-365 —CH2—C6H5 CHF2 Cl
    A-366 2-py CHF2 Cl
    A-367 3-py CHF2 Cl
    A-368
    Figure US20200187500A1-20200618-C00553
    CHF2 Cl
    A-369
    Figure US20200187500A1-20200618-C00554
    CHF2 Cl
    A-370
    Figure US20200187500A1-20200618-C00555
    CHF2 Cl
    A-371
    Figure US20200187500A1-20200618-C00556
    CHF2 Cl
    A-372
    Figure US20200187500A1-20200618-C00557
    CHF2 Cl
    A-373
    Figure US20200187500A1-20200618-C00558
    CHF2 Cl
    A-374
    Figure US20200187500A1-20200618-C00559
    CHF2 Cl
    A-375 CH2F CF3 Cl
    A-376 CHF2 CF3 Cl
    A-377 CF3 CF3 Cl
    A-378 CH2Cl CF3 Cl
    A-379 CH2CH2Cl CF3 Cl
    A-380 CN CF3 Cl
    A-381 CH2CH2OCH3 CF3 Cl
    A-382 CH═CH2 CF3 Cl
    A-383 CCH CF3 Cl
    A-384
    Figure US20200187500A1-20200618-C00560
    CF3 Cl
    A-385
    Figure US20200187500A1-20200618-C00561
    CF3 Cl
    A-386 C6H5 CF3 Cl
    A-387 —CH2—C6H5 CF3 Cl
    A-388 2-py CF3 Cl
    A-389 3-py CF3 Cl
    A-390
    Figure US20200187500A1-20200618-C00562
    CF3 Cl
    A-391
    Figure US20200187500A1-20200618-C00563
    CF3 Cl
    A-392
    Figure US20200187500A1-20200618-C00564
    CF3 Cl
    A-393
    Figure US20200187500A1-20200618-C00565
    CF3 Cl
    A-394
    Figure US20200187500A1-20200618-C00566
    CF3 Cl
    A-395
    Figure US20200187500A1-20200618-C00567
    CF3 Cl
    A-396
    Figure US20200187500A1-20200618-C00568
    CF3 Cl
    A-397 CH2F Cl Cl
    A-398 CHF2 Cl Cl
    A-399 CF3 Cl Cl
    A-400 CH2Cl Cl Cl
    A-401 CH2CH2Cl Cl Cl
    A-402 CN Cl Cl
    A-403 CH2CH2OCH3 Cl Cl
    A-404 CH═CH2 Cl Cl
    A-405 CCH Cl Cl
    A-406
    Figure US20200187500A1-20200618-C00569
    Cl Cl
    A-407
    Figure US20200187500A1-20200618-C00570
    Cl Cl
    A-408 C6H5 Cl Cl
    A-409 —CH2—C6H5 Cl Cl
    A-410 2-py Cl Cl
    A-411 3-py Cl Cl
    A-412
    Figure US20200187500A1-20200618-C00571
    Cl Cl
    A-413
    Figure US20200187500A1-20200618-C00572
    Cl Cl
    A-414
    Figure US20200187500A1-20200618-C00573
    Cl Cl
    A-415
    Figure US20200187500A1-20200618-C00574
    Cl Cl
    A-416
    Figure US20200187500A1-20200618-C00575
    Cl Cl
    A-417
    Figure US20200187500A1-20200618-C00576
    Cl Cl
    A-418
    Figure US20200187500A1-20200618-C00577
    Cl Cl
    A-419 CH2F OCH3 Cl
    A-420 CHF2 OCH3 Cl
    A-421 CF3 OCH3 Cl
    A-422 CH2Cl OCH3 Cl
    A-423 CH2CH2Cl OCH3 Cl
    A-424 CN OCH3 Cl
    A-425 CH2CH2OCH3 OCH3 Cl
    A-426 CH═CH2 OCH3 Cl
    A-427 CCH OCH3 Cl
    A-428
    Figure US20200187500A1-20200618-C00578
    OCH3 Cl
    A-429
    Figure US20200187500A1-20200618-C00579
    OCH3 Cl
    A-430 C6H5 OCH3 Cl
    A-431 —CH2—C6H5 OCH3 Cl
    A-432 2-py OCH3 Cl
    A-433 3-py OCH3 Cl
    A-434
    Figure US20200187500A1-20200618-C00580
    OCH3 Cl
    A-435
    Figure US20200187500A1-20200618-C00581
    OCH3 Cl
    A-436
    Figure US20200187500A1-20200618-C00582
    OCH3 Cl
    A-437
    Figure US20200187500A1-20200618-C00583
    OCH3 Cl
    A-438
    Figure US20200187500A1-20200618-C00584
    OCH3 Cl
    A-439
    Figure US20200187500A1-20200618-C00585
    OCH3 Cl
    A-440
    Figure US20200187500A1-20200618-C00586
    OCH3 Cl
    A-441 CH2F CH3 OCH3
    A-442 CHF2 CH3 OCH3
    A-443 CF3 CH3 OCH3
    A-444 CH2Cl CH3 OCH3
    A-445 CH2CH2Cl CH3 OCH3
    A-446 CN CH3 OCH3
    A-447 CH2CH2OCH3 CH3 OCH3
    A-448 CH═CH2 CH3 OCH3
    A-449 CCH CH3 OCH3
    A-450
    Figure US20200187500A1-20200618-C00587
    CH3 OCH3
    A-451
    Figure US20200187500A1-20200618-C00588
    CH3 OCH3
    A-452 C6H5 CH3 OCH3
    A-453 —CH2—C6H5 CH3 OCH3
    A-454 2-py CH3 OCH3
    A-455 3-py CH3 OCH3
    A-456
    Figure US20200187500A1-20200618-C00589
    CH3 OCH3
    A-457
    Figure US20200187500A1-20200618-C00590
    CH3 OCH3
    A-458
    Figure US20200187500A1-20200618-C00591
    CH3 OCH3
    A-459
    Figure US20200187500A1-20200618-C00592
    CH3 OCH3
    A-460
    Figure US20200187500A1-20200618-C00593
    CH3 OCH3
    A-461
    Figure US20200187500A1-20200618-C00594
    CH3 OCH3
    A-462
    Figure US20200187500A1-20200618-C00595
    CH3 OCH3
    A-463 CH2F CHF2 OCH3
    A-464 CHF2 CHF2 OCH3
    A-465 CF3 CHF2 OCH3
    A-466 CH2Cl CHF2 OCH3
    A-467 CH2CH2Cl CHF2 OCH3
    A-468 CN CHF2 OCH3
    A-469 CH2CH2OCH3 CHF2 OCH3
    A-470 CH═CH2 CHF2 OCH3
    A-471 CCH CHF2 OCH3
    A-472
    Figure US20200187500A1-20200618-C00596
    CHF2 OCH3
    A-473
    Figure US20200187500A1-20200618-C00597
    CHF2 OCH3
    A-474 C6H5 CHF2 OCH3
    A-475 —CH2—C6H5 CHF2 OCH3
    A-476 2-py CHF2 OCH3
    A-477 3-py CHF2 OCH3
    A-478
    Figure US20200187500A1-20200618-C00598
    CHF2 OCH3
    A-479
    Figure US20200187500A1-20200618-C00599
    CHF2 OCH3
    A-480
    Figure US20200187500A1-20200618-C00600
    CHF2 OCH3
    A-481
    Figure US20200187500A1-20200618-C00601
    CHF2 OCH3
    A-482
    Figure US20200187500A1-20200618-C00602
    CHF2 OCH3
    A-483
    Figure US20200187500A1-20200618-C00603
    CHF2 OCH3
    A-484
    Figure US20200187500A1-20200618-C00604
    CHF2 OCH3
    A-485 CH2F CF3 OCH3
    A-486 CHF2 CF3 OCH3
    A-487 CF3 CF3 OCH3
    A-488 CH2Cl CF3 OCH3
    A-489 CH2CH2Cl CF3 OCH3
    A-490 CN CF3 OCH3
    A-491 CH2CH2OCH3 CF3 OCH3
    A-492 CH═CH2 CF3 OCH3
    A-493 CCH CF3 OCH3
    A-494
    Figure US20200187500A1-20200618-C00605
    CF3 OCH3
    A-495
    Figure US20200187500A1-20200618-C00606
    CF3 OCH3
    A-496 C6H5 CF3 OCH3
    A-497 —CH2—C6H5 CF3 OCH3
    A-498 2-py CF3 OCH3
    A-499 3-py CF3 OCH3
    A-500
    Figure US20200187500A1-20200618-C00607
    CF3 OCH3
    A-501
    Figure US20200187500A1-20200618-C00608
    CF3 OCH3
    A-502
    Figure US20200187500A1-20200618-C00609
    CF3 OCH3
    A-503
    Figure US20200187500A1-20200618-C00610
    CF3 OCH3
    A-504
    Figure US20200187500A1-20200618-C00611
    CF3 OCH3
    A-505
    Figure US20200187500A1-20200618-C00612
    CF3 OCH3
    A-506
    Figure US20200187500A1-20200618-C00613
    CF3 OCH3
    A-507 CH2F Cl OCH3
    A-508 CHF2 Cl OCH3
    A-509 CF3 Cl OCH3
    A-510 CH2Cl Cl OCH3
    A-511 CH2CH2Cl Cl OCH3
    A-512 CN Cl OCH3
    A-513 CH2CH2OCH3 Cl OCH3
    A-514 CH═CH2 Cl OCH3
    A-515 CCH Cl OCH3
    A-516
    Figure US20200187500A1-20200618-C00614
    Cl OCH3
    A-517
    Figure US20200187500A1-20200618-C00615
    Cl OCH3
    A-518 C6H5 Cl OCH3
    A-519 —CH2—C6H5 Cl OCH3
    A-520 2-py Cl OCH3
    A-521 3-py Cl OCH3
    A-522
    Figure US20200187500A1-20200618-C00616
    Cl OCH3
    A-523
    Figure US20200187500A1-20200618-C00617
    Cl OCH3
    A-524
    Figure US20200187500A1-20200618-C00618
    Cl OCH3
    A-525
    Figure US20200187500A1-20200618-C00619
    Cl OCH3
    A-526
    Figure US20200187500A1-20200618-C00620
    Cl OCH3
    A-527
    Figure US20200187500A1-20200618-C00621
    Cl OCH3
    A-528
    Figure US20200187500A1-20200618-C00622
    Cl OCH3
    A-529 CH2F OCH3 OCH3
    A-530 CHF2 OCH3 OCH3
    A-531 CF3 OCH3 OCH3
    A-532 CH2Cl OCH3 OCH3
    A-533 CH2CH2Cl OCH3 OCH3
    A-534 CN OCH3 OCH3
    A-535 CH2CH2OCH3 OCH3 OCH3
    A-536 CH═CH2 OCH3 OCH3
    A-537 CCH OCH3 OCH3
    A-538
    Figure US20200187500A1-20200618-C00623
    OCH3 OCH3
    A-539
    Figure US20200187500A1-20200618-C00624
    OCH3 OCH3
    A-540 C6H5 OCH3 OCH3
    A-541 —CH2—C6H5 OCH3 OCH3
    A-542 2-py OCH3 OCH3
    A-543 3-py OCH3 OCH3
    A-544
    Figure US20200187500A1-20200618-C00625
    OCH3 OCH3
    A-545
    Figure US20200187500A1-20200618-C00626
    OCH3 OCH3
    A-546
    Figure US20200187500A1-20200618-C00627
    OCH3 OCH3
    A-547
    Figure US20200187500A1-20200618-C00628
    OCH3 OCH3
    A-548
    Figure US20200187500A1-20200618-C00629
    OCH3 OCH3
    A-549
    Figure US20200187500A1-20200618-C00630
    OCH3 OCH3
    A-550
    Figure US20200187500A1-20200618-C00631
    OCH3 OCH3
  • The compounds I and the compositions according to the invention, respectively, are suitable as fungicides. They are distinguished by an outstanding effectiveness against a broad spectrum of phytopathogenic fungi, including soil-borne fungi, which derive especially from the classes of the Plasmodiophoromycetes, Peronosporomycetes (syn. Oomycetes), Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes (syn. Fungi imperfecti). Some are systemically effective and they can be used in crop protection as foliar fungicides, fungicides for seed dressing and soil fungicides. Moreover, they are suitable for controlling harmful fungi, which inter alia occur in wood or roots of plants.
  • The compounds I and the compositions according to the invention are particularly important in the control of a multitude of phytopathogenic fungi on various cultivated plants, such as cereals, e. g. wheat, rye, barley, triticale, oats or rice; beet, e. g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e. g. apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries, blackberries or gooseberries; leguminous plants, such as lentils, peas, alfalfa or soybeans; oil plants, such as rape, mustard, olives, sunflowers, coconut, cocoa beans, castor oil plants, oil palms, ground nuts or soybeans; cucurbits, such as squashes, cucumber or melons; fiber plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruits or mandarins; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, cucurbits or paprika; lauraceous plants, such as avocados, cinnamon or camphor; energy and raw material plants, such as corn, soybean, rape, sugar cane or oil palm; corn; tobacco; nuts; coffee; tea; bananas; vines (table grapes and grape juice grape vines); hop; turf; sweet leaf (also called Stevia); natural rubber plants or ornamental and forestry plants, such as flowers, shrubs, broad-leaved trees or evergreens, e. g. conifers; and on the plant propagation material, such as seeds, and the crop material of these plants.
  • Preferably, compounds I and compositions thereof, respectively are used for controlling a multitude of fungi on field crops, such as potatoes sugar beets, tobacco, wheat, rye, barley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.
  • The term “plant propagation material” is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. potatoes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and young plants, which are to be transplanted after germination or after emergence from soil. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring.
  • Preferably, treatment of plant propagation materials with compounds I and compositions thereof, respectively, is used for controlling a multitude of fungi on cereals, such as wheat, rye, barley and oats; rice, corn, cotton and soybeans.
  • The term “cultivated plants” is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering including but not limiting to agricultural biotech products on the market or in development (cf. http://cera-gmc.org/, see GM crop database therein). Genetically modified plants are plants, which genetic material has been so modified by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination. Typically, one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant. Such genetic modifications also include but are not limited to targeted post-translational modification of protein(s), oligo- or polypeptides e. g. by glycosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties.
  • Plants that have been modified by breeding, mutagenesis or genetic engineering, e. g. have been rendered tolerant to applications of specific classes of herbicides, such as auxin herbicides such as dicamba or 2,4-D; bleacher herbicides such as hydroxylphenylpyruvate dioxygenase (HPPD) inhibitors or phytoene desaturase (PDS) inhibitors; acetolactate synthase (ALS) inhibitors such as sulfonyl ureas or imidazolinones; enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitors, such as glyphosate; glutamine synthetase (GS) inhibitors such as glufosinate; protoporphyrinogen-IX oxidase inhibitors; lipid biosynthesis inhibitors such as acetyl CoA carboxylase (ACCase) inhibitors; or oxynil (i. e. bromoxynil or ioxynil) herbicides as a result of conventional methods of breeding or genetic engineering. Furthermore, plants have been made resistant to multiple classes of herbicides through multiple genetic modifications, such as resistance to both glyphosate and glufosinate or to both glyphosate and a herbicide from another class such as ALS inhibitors, HPPD inhibitors, auxin herbicides, or ACCase inhibitors. These herbicide resistance technologies are e. g. described in Pest Managem. Sci. 61, 2005, 246; 61, 2005, 258; 61, 2005, 277; 61, 2005, 269; 61, 2005, 286; 64, 2008, 326; 64, 2008, 332; Weed Sci. 57, 2009, 108; Austral. J. Agricult. Res. 58, 2007, 708; Science 316, 2007, 1185; and references quoted therein. Several cultivated plants have been rendered tolerant to herbicides by conventional methods of breeding (mutagenesis), e. g. Clearfield® summer rape (Canola, BASF SE, Germany) being tolerant to imidazolinones, e. g. imazamox, or ExpressSun® sunflowers (DuPont, USA) being tolerant to sulfonyl ureas, e. g. tribenuron. Genetic engineering methods have been used to render cultivated plants such as soybean, cotton, corn, beets and rape, tolerant to herbicides such as glyphosate and glufosinate, some of which are commercially available under the trade names RoundupReady® (glyphosate-tolerant, Monsanto, U.S.A.), Cultivance® (imidazolinone tolerant, BASF SE, Germany) and LibertyLink® (glufosinate-tolerant, Bayer CropScience, Germany).
  • Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as 6-endotoxins, e. g. CryIA(b), CryIA(c), CryIF, CryIF(a2), CryIIA(b), CryIIIA, CryIIIB(b1) or Cry9c; vegetative insecticidal proteins (VIP), e. g. VIP1, VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, e. g. Photorhabdus spp. or Xenorhabdus spp.; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins; toxins produced by fungi, such Streptomycetes toxins, plant lectins, such as pea or barley lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroid oxidase, ecdysteroid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase; ion channel blockers, such as blockers of sodium or calcium channels; juvenile hormone esterase; diuretic hormone receptors (helicokinin receptors); stilbene synthase, bibenzyl synthase, chitinases or glucanases. In the context of the present invention these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins. Hybrid proteins are characterized by a new combination of protein domains, (see, e. g. WO 02/015701). Further examples of such toxins or genetically modified plants capable of synthesizing such toxins are disclosed, e. g., in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/18810 und WO 03/52073. The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e. g. in the publications mentioned above. These insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins tolerance to harmful pests from all taxonomic groups of arthropods, especially to beetles (Coeloptera), two-winged insects (Diptera), and moths (Lepidoptera) and to nematodes (Nematoda). Genetically modified plants capable to synthesize one or more insecticidal proteins are, e. g., described in the publications mentioned above, and some of which are commercially available such as YieldGard® (corn cultivars producing the Cry1Ab toxin), YieldGard® Plus (corn cultivars producing Cry1Ab and Cry3Bb1 toxins), Starlink® (corn cultivars producing the Cry9c toxin), Herculex® RW (corn cultivars producing Cry34Ab1, Cry35Ab1 and the enzyme phosphinothricin-N-acetyltransferase [PAT]); NuCOTN® 33B (cotton cultivars producing the Cry1Ac toxin), Bollgard® I (cotton cultivars producing the Cry1Ac toxin), Bollgard® II (cotton cultivars producing Cry1Ac and Cry2Ab2 toxins); VIPCOT® (cotton cultivars producing a VIP-toxin); NewLeaf® (potato cultivars producing the Cry3A toxin); Bt-Xtra®, NatureGard®, KnockOut®, BiteGard®, Protecta®, Bt11 (e. g. Agrisure® CB) and Bt176 from Syngenta Seeds SAS, France, (corn cultivars producing the Cry1Ab toxin and PAT enyzme), MIR604 from Syngenta Seeds SAS, France (corn cultivars producing a modified version of the Cry3A toxin, c.f. WO 03/018810), MON 863 from Monsanto Europe S.A., Belgium (corn cultivars producing the Cry3Bb1 toxin), IPC 531 from Monsanto Europe S.A., Belgium (cotton cultivars producing a modified version of the Cry1Ac toxin) and 1507 from Pioneer Overseas Corporation, Belgium (corn cultivars producing the Cry1F toxin and PAT enzyme).
  • Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens. Examples of such proteins are the so-called “pathogenesis-related proteins” (PR proteins, see, e. g. EP-A 392 225), plant disease resistance genes (e. g. potato cultivars, which express resistance genes acting against Phytophthora infestans derived from the Mexican wild potato Solanum bulbocastanum) or T4-lysozym (e. g. potato cultivars capable of synthesizing these proteins with increased resistance against bacteria such as Erwinia amylvora). The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e. g. in the publications mentioned above.
  • Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the productivity (e. g. bio mass production, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting environmental factors or tolerance to pests and fungal, bacterial or viral pathogens of those plants.
  • Furthermore, plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, e. g. oil crops that produce health-promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g. Nexera® rape, DOW Agro Sciences, Canada).
  • Furthermore, plants are also covered that contain by the use of recombinant DNA techniques a modified amount of substances of content or new substances of content, specifically to improve raw material production, e. g. potatoes that produce increased amounts of amylopectin (e. g. Amflora® potato, BASF SE, Germany).
  • The compounds I and compositions thereof, respectively, are particularly suitable for controlling the following plant diseases:
  • Albugo spp. (white rust) on ornamentals, vegetables (e. g. A. candida) and sunflowers (e. g. A. tragopogonis); Alternaria spp. (Alternaria leaf spot) on vegetables, rape (A. brassicola or brassicae), sugar beets (A. tenuis), fruits, rice, soybeans, potatoes (e. g. A. solani or A. alternata), tomatoes (e. g. A. solani or A. alternata) and wheat; Aphanomyces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e. g. A. tritici(anthracnose) on wheat and A. hordei on barley; Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.), e. g. Southern leaf blight (D. maydis) or Northern leaf blight (B. zeicola) on corn, e. g. spot blotch (B. sorokiniana) on cereals and e. g. B. oryzae on rice and turfs; Blumeria (formerly Erysiphe) graminis (powdery mildew) on cereals (e. g. on wheat or barley); Botrytis cinerea (teleomorph: Botryotinia fuckeliana: grey mold) on fruits and berries (e. g. strawberries), vegetables (e. g. lettuce, carrots, celery and cabbages), rape, flowers, vines, forestry plants and wheat; Bremia lactucae (downy mildew) on lettuce; Ceratocystis (syn. Ophiostoma) spp. (rot or wilt) on broad-leaved trees and evergreens, e. g. C. ulmi(Dutch elm disease) on elms; Cercospora spp. (Cercospora leaf spots) on corn (e. g. Gray leaf spot: C. zeae-maydis), rice, sugar beets (e. g. C. beticola), sugar cane, vegetables, coffee, soybeans (e. g. C. sojina or C. kikuchii) and rice; Cladosporium spp. on tomatoes (e. g. C. fulvum: leaf mold) and cereals, e. g. C. herbarum (black ear) on wheat; Claviceps purpurea (ergot) on cereals; Cochliobolus (anamorph: Helminthosporium of Bipolaris) spp. (leaf spots) on corn (C. carbonum), cereals (e. g. C. sativus, anamorph: B. sorokiniana) and rice (e. g. C. miyabeanus, anamorph: H. oryzae); Colletotrichum (teleomorph: Glomerella) spp. (anthracnose) on cotton (e. g. C. gossypi), corn (e. g. C. graminicola: Anthracnose stalk rot), soft fruits, potatoes (e. g. C. coccodes: black dot), beans (e. g. C. lindemuthianum) and soybeans (e. g. C. truncatum or C. gloeosporioides); Corticium spp., e. g. C. sasakii (sheath blight) on rice; Corynespora cassiicola (leaf spots) on soybeans and ornamentals; Cycloconium spp., e. g. C. oleaginum on olive trees; Cylindrocarpon spp. (e. g. fruit tree canker or young vine decline, teleomorph: Nectria or Neonectria spp.) on fruit trees, vines (e. g. C. liriodendri, teleomorph: Neonectria liriodendri: Black Foot Disease) and ornamentals; Dematophora (teleomorph: Rosellinia) necatrix (root and stem rot) on soybeans; Diaporthe spp., e. g. D. phaseolorum (damping off) on soybeans; Drechslera (syn. Helminthosporium, teleomorph: Pyrenophora) spp. on corn, cereals, such as barley (e. g. D. teres, net blotch) and wheat (e. g. D. tritici-repentis: tan spot), rice and turf; Esca (dieback, apoplexy) on vines, caused by Formitiporia (syn. Phellinus) punctata, F. mediterranea, Phaeomoniella chlamydospora (earlier Phaeoacremonium chlamydosporum), Phaeoacremonium aleophilum and/or Botryosphaeria obtusa; Elsinoe spp. on pome fruits (E. pyri), soft fruits (E. veneta: anthracnose) and vines (E. ampelina: anthracnose); Entyloma oryzae (leaf smut) on rice; Epicoccum spp. (black mold) on wheat; Erysiphe spp. (powdery mildew) on sugar beets (E. betae), vegetables (e. g. E. pisi), such as cucurbits (e. g. E. cichoracearum), cabbages, rape (e. g. E. cruciferarum); Eutypa lata (Eutypa canker or dieback, anamorph: Cytosporina lata, syn. Libertella blepharis) on fruit trees, vines and ornamental woods; Exserohilum (syn. Helminthosporium) spp. on corn (e. g. E. turcicum); Fusarium (teleomorph: Gibberella) spp. (wilt, root or stem rot) on various plants, such as F. graminearum or F. culmorum (root rot, scab or head blight) on cereals (e. g. wheat or barley), F. oxysporum on tomatoes, F. solani (f. sp. glycines now syn. F. virguliforme) and F. tucumaniae and F. brasiliense each causing sudden death syndrome on soybeans, and F. verticillioides on corn; Gaeumannomyces graminis (take-all) on cereals (e. g. wheat or barley) and corn; Gibberella spp. on cereals (e. g. G. zeae) and rice (e. g. G. fujikuror Bakanae disease); Glomerella cingulata on vines, pome fruits and other plants and G. gossypii on cotton; Grainstaining complex on rice; Guignardia bidwellii (black rot) on vines; Gymnosporangium spp. on rosaceous plants and junipers, e. g. G. sabinae (rust) on pears; Helminthosporium spp. (syn. Drechslera, teleomorph: Cochliobolus) on corn, cereals and rice; Hemileia spp., e. g. H. vastatrix (coffee leaf rust) on coffee; Isariopsis clavispora (syn. Cladosporium vitis) on vines; Macrophomina phaseolina (syn. phaseoli) (root and stem rot) on soybeans and cotton; Microdochium (syn. Fusarium) nivale (pink snow mold) on cereals (e. g. wheat or barley); Microsphaera diffusa (powdery mildew) on soybeans; Monilinia spp., e. g. M. laxa, M. fructicola and M. fructigena (bloom and twig blight, brown rot) on stone fruits and other rosaceous plants; Mycosphaerella spp. on cereals, bananas, soft fruits and ground nuts, such as e. g. M. graminicola (anamorph: Septoria tritici, Septoria blotch) on wheat or M. fijiensis (black Sigatoka disease) on bananas; Peronospora spp. (downy mildew) on cabbage (e. g. P. brassicae), rape (e. g. P. parasitica), onions (e. g. P. destructor), tobacco (P. tabacina) and soybeans (e. g. P. manshurica); Phakopsora pachyrhizi and P. meibomiae (soybean rust) on soybeans; Phialophora spp. e. g. on vines (e. g. P. tracheiphila and P. tetraspora) and soybeans (e. g. P. gregata: stem rot); Phoma lingam (root and stem rot) on rape and cabbage and P. betae (root rot, leaf spot and damping-off) on sugar beets; Phomopsis spp. on sunflowers, vines (e. g. P. viticola: can and leaf spot) and soybeans (e. g. stem rot: P. phaseoli, teleomorph: Diaporthe phaseolorum); Physoderma maydis (brown spots) on corn; Phytophthora spp. (wilt, root, leaf, fruit and stem root) on various plants, such as paprika and cucurbits (e. g. P. capsici), soybeans (e. g. P. megasperma, syn. P. sojae), potatoes and tomatoes (e. g. P. infestans: late blight) and broadleaved trees (e. g. P. ramorum: sudden oak death); Plasmodiophora brassicae (club root) on cabbage, rape, radish and other plants; Plasmopara spp., e. g. P. viticola (grapevine downy mildew) on vines and P. halstedii ion sunflowers; Podosphaera spp. (powdery mildew) on rosaceous plants, hop, pome and soft fruits, e. g. P. leucotricha on apples; Polymyxa spp., e. g. on cereals, such as barley and wheat (P. graminis) and sugar beets (P. betae) and thereby transmitted viral diseases; Pseudocercosporella herpotrichoides (eyespot, teleomorph: Tapesia yallundae) on cereals, e. g. wheat or barley; Pseudoperonospora (downy mildew) on various plants, e. g. P. cubensis on cucurbits or P. humili on hop; Pseudopezicula tracheiphila (red fire disease or ‘rotbrenner’, anamorph: Phialophora) on vines; Puccinia spp. (rusts) on various plants, e. g. P. triticina (brown or leaf rust), P. striiformis (stripe or yellow rust), P. hordei (dwarf rust), P. graminis (stem or black rust) or P. recondita (brown or leaf rust) on cereals, such as e. g. wheat, barley or rye, P. kuehnii(orange rust) on sugar cane and P. asparagion asparagus; Pyrenophora (anamorph: Drechslera) tritici-repentis (tan spot) on wheat or P. teres (net blotch) on barley; Pyricularia spp., e. g. P. oryzae (teleomorph: Magnaporthe grisea, rice blast) on rice and P. grisea on turf and cereals; Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e. g. P. ultimum or P. aphanidermatum); Ramularia spp., e. g. R. collo-cygni (Ramularia leaf spots, Physiological leaf spots) on barley and R. beticola on sugar beets; Rhizoctonia spp. on cotton, rice, potatoes, turf, corn, rape, potatoes, sugar beets, vegetables and various other plants, e. g. R. solani (root and stem rot) on soybeans, R. solani(sheath blight) on rice or R. cerealis (Rhizoctonia spring blight) on wheat or barley; Rhizopus stolonifer(black mold, soft rot) on strawberries, carrots, cabbage, vines and tomatoes; Rhynchosporium secalis (scald) on barley, rye and triticale; Sarocladium oryzae and S. attenuatum (sheath rot) on rice; Sclerotinia spp. (stem rot or white mold) on vegetables and field crops, such as rape, sunflowers (e. g. S. scerotiorum) and soybeans (e. g. S. rolfsiior S. scerotiorum); Septoria spp. on various plants, e. g. S. glycines (brown spot) on soybeans, S. tritici(Septoria blotch) on wheat and S. (syn. Stagonospora) nodorum (Stagonospora blotch) on cereals; Uncinula (syn. Erysiphe) necator (powdery mildew, anamorph: Oidium tuckeri) on vines; Setospaeria spp. (leaf blight) on corn (e. g. S. turcicum, syn. Helminthosporium turcicum) and turf; Sphacelotheca spp. (smut) on corn, (e. g. S. reiliana: head smut), sorghum und sugar cane; Sphaerotheca fuliginea (powdery mildew) on cucurbits; Spongospora subterranea (powdery scab) on potatoes and thereby transmitted viral diseases; Stagonospora spp. on cereals, e. g. S. nodorum (Stagonospora blotch, teleomorph: Leptosphaeria [syn. Phaeosphaeria] nodorum) on wheat; Synchytrium endobioticum on potatoes (potato wart disease); Taphrina spp., e. g. T. deformans (leaf curl disease) on peaches and T. pruni (plum pocket) on plums; Thielaviopsis spp. (black root rot) on tobacco, pome fruits, vegetables, soybeans and cotton, e. g. T. basicola (syn. Chalara elegans); Tilletia spp. (common bunt or stinking smut) on cereals, such as e. g. T. tritici(syn. T. caries, wheat bunt) and T. controversa (dwarf bunt) on wheat; Typhula incarnata (grey snow mold) on barley or wheat; Urocystis spp., e. g. U. occulta (stem smut) on rye; Uromyces spp. (rust) on vegetables, such as beans (e. g. U. appendiculatus, syn. U. phaseoli) and sugar beets (e. g. U. betae); Ustilago spp. (loose smut) on cereals (e. g. U. nuda and U. avaenae), corn (e. g. U. maydis: corn smut) and sugar cane; Venturia spp. (scab) on apples (e. g. V. inaequalis) and pears; and Verticillium spp. (wilt) on various plants, such as fruits and ornamentals, vines, soft fruits, vegetables and field crops, e. g. V. dahliae on strawberries, rape, potatoes and tomatoes.
  • The compounds I and compositions thereof, respectively, are also suitable for controlling harmful fungi in the protection of stored products or harvest and in the protection of materials.
  • The term “protection of materials” is to be understood to denote the protection of technical and non-living materials, such as adhesives, glues, wood, paper and paperboard, textiles, leather, paint dispersions, plastics, cooling lubricants, fiber or fabrics, against the infestation and destruction by harmful microorganisms, such as fungi and bacteria. As to the protection of wood and other materials, the particular attention is paid to the following harmful fungi: Ascomycetes such as Ophiostoma spp., Ceratocystis spp., Aureobasidium pullulans, Scerophoma spp., Chaetomium spp., Humicola spp., Petriella spp., Trichurus spp.; Basidiomycetes such as Coniophora spp., Coriolus spp., Gloeophyllum spp., Lentinus spp., Pleurotus spp., Poria spp., Serpula spp. and Tyromyces spp., Deuteromycetes such as Aspergillus spp., Cladosporium spp., Penicillium spp., Trichoderma spp., Alternaria spp., Paecilomyces spp. and Zygomycetes such as Mucor spp., and in addition in the protection of stored products and harvest the following yeast fungi are worthy of note: Candida spp. and Saccharomyces cerevisae.
  • The method of treatment according to the invention can also be used in the field of protecting stored products or harvest against attack of fungi and microorganisms. According to the present invention, the term “stored products” is understood to denote natural substances of plant or animal origin and their processed forms, which have been taken from the natural life cycle and for which long-term protection is desired. Stored products of crop plant origin, such as plants or parts thereof, for example stalks, leafs, tubers, seeds, fruits or grains, can be protected in the freshly harvested state or in processed form, such as pre-dried, moistened, comminuted, ground, pressed or roasted, which process is also known as post-harvest treatment. Also falling under the definition of stored products is timber, whether in the form of crude timber, such as construction timber, electricity pylons and barriers, or in the form of finished articles, such as furniture or objects made from wood. Stored products of animal origin are hides, leather, furs, hairs and the like. The combinations according the present invention can prevent disadvantageous effects such as decay, discoloration or mold. Preferably “stored products” is understood to denote natural substances of plant origin and their processed forms, more preferably fruits and their processed forms, such as pomes, stone fruits, soft fruits and citrus fruits and their processed forms.
  • The compounds I and compositions thereof, respectively, may be used for improving the health of a plant. The invention also relates to a method for improving plant health by treating a plant, its propagation material and/or the locus where the plant is growing or is to grow with an effective amount of compounds I and compositions thereof, respectively.
  • The term “plant health” is to be understood to denote a condition of the plant and/or its products which is determined by several indicators alone or in combination with each other such as yield (e. g. increased biomass and/or increased content of valuable ingredients), plant vigor (e. g. improved plant growth and/or greener leaves (“greening effect”)), quality (e. g. improved content or composition of certain ingredients) and tolerance to abiotic and/or biotic stress. The above identified indicators for the health condition of a plant may be interdependent or may result from each other.
  • The compounds of formula I can be present in different crystal modifications whose biological activity may differ. They are likewise subject matter of the present invention.
  • The compounds I are employed as such or in form of compositions by treating the fungi or the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms to be protected from fungal attack with a fungicidally effective amount of the active substances. The application can be carried out both before and after the infection of the plants, plant propagation materials, such as seeds, soil, surfaces, materials or rooms by the fungi.
  • Plant propagation materials may be treated with compounds I as such or a composition comprising at least one compound I prophylactically either at or before planting or transplanting.
  • The invention also relates to agrochemical compositions comprising an auxiliary and at least one compound I according to the invention.
  • An agrochemical composition comprises a fungicidally effective amount of a compound I. The term “effective amount” denotes an amount of the composition or of the compounds I, which is sufficient for controlling harmful fungi on cultivated plants or in the protection of materials and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the fungal species to be controlled, the treated cultivated plant or material, the climatic conditions and the specific compound I used.
  • The compounds I, their N-oxides and salts can be converted into customary types of agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for composition types are suspensions (e. g. SC, OD, FS), emulsifiable concentrates (e. g. EC), emulsions (e. g. EW, EO, ES, ME), capsules (e. g. CS, ZC), pastes, pastilles, wettable powders or dusts (e. g. WP, SP, WS, DP, DS), pressings (e. g. BR, TB, DT), granules (e. g. WG, SG, GR, FG, GG, MG), insecticidal articles (e. g. LN), as well as gel formulations for the treatment of plant propagation materials such as seeds (e. g. GF). These and further compositions types are defined in the “Catalogue of pesticide formulation types and international coding system”, Technical Monograph No. 2, 6th Ed. May 2008, CropLife International.
  • The compositions are prepared in a known manner, such as described by Mollet and Grubemann, Formulation technology, Wiley VCH, Weinheim, 2001; or Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005.
  • Suitable auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, dispersants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibilizers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.
  • Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e. g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetrahydronaphthalene, alkylated naphthalenes; alcohols, e. g. ethanol, propanol, butanol, benzyl alcohol, cyclohexanol; glycols; DMSO; ketones, e. g. cyclohexanone; esters, e. g. lactates, carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e. g. N-methyl pyrrolidone, fatty acid dimethyl amides; and mixtures thereof.
  • Suitable solid carriers or fillers are mineral earths, e. g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e. g. cellulose, starch; fertilizers, e. g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e. g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.
  • Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emulsifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon's, Vol. 1: Emulsifiers & Detergents, McCutcheon's Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).
  • Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof. Examples of sulfonates are alkylaryl sulfonates, diphenyl sulfonates, alpha-olefin sulfonates, lignin sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkyl naphthalenes, sulfosuccinates or sulfosuccinamates. Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters. Examples of phosphates are phosphate esters. Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.
  • Suitable nonionic surfactants are alkoxylates, N-substituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof. Examples of alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents. Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide. Examples of N-substituted fatty acid amides are fatty acid glucamides or fatty acid alkanolamides. Examples of esters are fatty acid esters, glycerol esters or monoglycerides. Examples of sugar-based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or alkylpolyglucosides. Examples of polymeric surfactants are home- or copolymers of vinyl pyrrolidone, vinyl alcohols, or vinyl acetate.
  • Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines. Suitable amphoteric surfactants are alkylbetains and imidazolines. Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide and polypropylene oxide. Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinyl amines or polyethylene amines.
  • Suitable adjuvants are compounds, which have a negligible or even no pesticidal activity themselves, and which improve the biological performance of the compound I on the target. Examples are surfactants, mineral or vegetable oils, and other auxiliaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.
  • Suitable thickeners are polysaccharides (e. g. xanthan gum, carboxymethyl cellulose), inorganic clays (organically modified or unmodified), polycarboxylates, and silicates.
  • Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothiazolinones and benzisothiazolinones.
  • Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin.
  • Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids.
  • Suitable colorants (e. g. in red, blue, or green) are pigments of low water solubility and water-soluble dyes. Examples are inorganic colorants (e. g. iron oxide, titan oxide, iron hexacyanoferrate) and organic colorants (e. g. alizarin-, azo- and phthalocyanine colorants).
  • Suitable tackifiers or binders are polyvinyl pyrrolidones, polyvinyl acetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.
  • Examples for composition types and their preparation are:
  • i) Water-Soluble Concentrates (SL, LS)
  • 10-60 wt % of a compound I and 5-15 wt % wetting agent (e. g. alcohol alkoxylates) are dissolved in water and/or in a water-soluble solvent (e. g. alcohols) ad 100 wt %. The active substance dissolves upon dilution with water.
  • ii) Dispersible Concentrates (DC)
  • 5-25 wt % of a compound I and 1-10 wt % dispersant (e. g. polyvinyl pyrrolidone) are dissolved in organic solvent (e. g. cyclohexanone) ad 100 wt %. Dilution with water gives a dispersion.
  • iii) Emulsifiable Concentrates (EC)
  • 15-70 wt % of a compound I and 5-10 wt % emulsifiers (e. g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in water-insoluble organic solvent (e. g. aromatic hydrocarbon) ad 100 wt %. Dilution with water gives an emulsion.
  • iv) Emulsions (EW, EO, ES)
  • 5-40 wt % of a compound I and 1-10 wt % emulsifiers (e. g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in 20-40 wt % water-insoluble organic solvent (e. g. aromatic hydrocarbon). This mixture is introduced into water ad 100 wt % by means of an emulsifying machine and made into a homogeneous emulsion. Dilution with water gives an emulsion.
  • v) Suspensions (SC, OD, FS)
  • In an agitated ball mill, 20-60 wt % of a compound I are comminuted with addition of 2-10 wt % dispersants and wetting agents (e. g. sodium lignosulfonate and alcohol ethoxylate), 0.1-2 wt % thickener (e. g. xanthan gum) and water ad 100 wt % to give a fine active substance suspension. Dilution with water gives a stable suspension of the active substance. For FS type composition up to 40 wt % binder (e. g. polyvinyl alcohol) is added.
  • vi) Water-Dispersible Granules and Water-Soluble Granules (WG, SG)
  • 50-80 wt % of a compound I are ground finely with addition of dispersants and wetting agents (e. g. sodium lignosulfonate and alcohol ethoxylate) ad 100 wt % and prepared as water-dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance.
  • vii) Water-Dispersible Powders and Water-Soluble Powders (WP, SP, WS)
  • 50-80 wt % of a compound I are ground in a rotor-stator mill with addition of 1-5 wt % dispersants (e. g. sodium lignosulfonate), 1-3 wt % wetting agents (e. g. alcohol ethoxylate) and solid carrier (e. g. silica gel) ad 100 wt %. Dilution with water gives a stable dispersion or solution of the active substance.
  • viii) Gel (GW, GF)
  • In an agitated ball mill, 5-25 wt % of a compound I are comminuted with addition of 3-10 wt % dispersants (e. g. sodium lignosulfonate), 1-5 wt % thickener (e. g. carboxymethyl cellulose) and water ad 100 wt % to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance.
  • ix) Microemulsion (ME)
  • 5-20 wt % of a compound I are added to 5-30 wt % organic solvent blend (e. g. fatty acid dimethyl amide and cyclohexanone), 10-25 wt % surfactant blend (e. g. alcohol ethoxylate and arylphenol ethoxylate), and water ad 100%. This mixture is stirred for 1 h to produce spontaneously a thermodynamically stable microemulsion.
  • x) Microcapsules (CS)
  • An oil phase comprising 5-50 wt % of a compound I, 0-40 wt % water insoluble organic solvent (e. g. aromatic hydrocarbon), 2-15 wt % acrylic monomers (e. g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e. g. polyvinyl alcohol). Radical polymerization results in the formation of poly(meth)acrylate microcapsules. Alternatively, an oil phase comprising 5-50 wt % of a compound I according to the invention, 0-40 wt % water insoluble organic solvent (e. g. aromatic hydrocarbon), and an isocyanate monomer (e. g. diphenylmethene-4,4′-diisocyanatae) are dispersed into an aqueous solution of a protective colloid (e. g. polyvinyl alcohol). The addition of a polyamine (e. g. hexamethylenediamine) results in the formation of polyurea microcapsules. The monomers amount to 1-10 wt %. The wt % relate to the total CS composition.
  • xi) Dustable Powders (DP, DS)
  • 1-10 wt % of a compound I are ground finely and mixed intimately with solid carrier (e. g. finely divided kaolin) ad 100 wt %.
  • xii) Granules (GR, FG)
  • 0.5-30 wt % of a compound I is ground finely and associated with solid carrier (e. g. silicate) ad 100 wt %. Granulation is achieved by extrusion, spray-drying or fluidized bed.
  • xiii) Ultra-Low Volume Liquids (UL)
  • 1-50 wt % of a compound I are dissolved in organic solvent (e. g. aromatic hydrocarbon) ad 100 wt %.
  • The compositions types i) to xiii) may optionally comprise further auxiliaries, such as 0.1-1 wt % bactericides, 5-15 wt % anti-freezing agents, 0.1-1 wt % anti-foaming agents, and 0.1-1 wt % colorants.
  • The agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, more preferably between 1 and 70%, and in particular between 10 and 60%, by weight of active substance. The active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).
  • For the purposes of treatment of plant propagation materials, particularly seeds, solutions for seed treatment (LS), Suspoemulsions (SE), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES), emulsifiable concentrates (EC), and gels (GF) are usually employed. The compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40%, in the ready-to-use preparations. Application can be carried out before or during sowing. Methods for applying compound I and compositions thereof, respectively, onto plant propagation material, especially seeds, include dressing, coating, pelleting, dusting, and soaking as well as in-furrow application methods. Preferably, compound I or the compositions thereof, respectively, are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.
  • When employed in plant protection, the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha, and in particular from 0.1 to 0.75 kg per ha.
  • In treatment of plant propagation materials such as seeds, e. g. by dusting, coating or drenching seed, amounts of active substance of from 0.1 to 1000 g, preferably from 1 to 1000 g, more preferably from 1 to 100 g and most preferably from 5 to 100 g, per 100 kilogram of plant propagation material (preferably seeds) are generally required.
  • When used in the protection of materials or stored products, the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.
  • Various types of oils, wetters, adjuvants, fertilizer, or micronutrients, and further pesticides (e. g. herbicides, insecticides, fungicides, growth regulators, safeners, biopesticides) may be added to the active substances or the compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix). These agents can be admixed with the compositions according to the invention in a weight ratio of 1:100 to 100:1, preferably 1:10 to 10:1.
  • A pesticide is generally a chemical or biological agent (such as pestidal active ingredient, compound, composition, virus, bacterium, antimicrobial or disinfectant) that through its effect deters, incapacitates, kills or otherwise discourages pests. Target pests can include insects, plant pathogens, weeds, mollusks, birds, mammals, fish, nematodes (roundworms), and microbes that destroy property, cause nuisance, spread disease or are vectors for disease. The term “pesticide” includes also plant growth regulators that alter the expected growth, flowering, or reproduction rate of plants; defoliants that cause leaves or other foliage to drop from a plant, usually to facilitate harvest; desiccants that promote drying of living tissues, such as unwanted plant tops; plant activators that activate plant physiology for defense of against certain pests; safeners that reduce unwanted herbicidal action of pesticides on crop plants; and plant growth promoters that affect plant physiology e.g. to increase plant growth, biomass, yield or any other quality parameter of the harvestable goods of a crop plant.
  • Biopesticides have been defined as a form of pesticides based on microorganisms (bacteria, fungi, viruses, nematodes, etc.) or natural products (compounds, such as metabolites, proteins, or extracts from biological or other natural sources) (U.S. Environmental Protection Agency: http://www.epa.gov/pesticides/biopesticides/). Biopesticides fall into two major classes, microbial and biochemical pesticides:
      • (1) Microbial pesticides consist of bacteria, fungi or viruses (and often include the metabolites that bacteria and fungi produce). Entomopathogenic nematodes are also classified as microbial pesticides, even though they are multi-cellular.
      • (2) Biochemical pesticides are naturally occurring substances that control pests or provide other crop protection uses as defined below, but are relatively non-toxic to mammals.
  • The user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system. Usually, the agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained. Usually, 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.
  • According to one embodiment, individual components of the composition according to the invention such as parts of a kit or parts of a binary or ternary mixture may be mixed by the user himself in a spray tank or any other kind of vessel used for applications (e. g. seed treater drums, seed pelleting machinery, knapsack sprayer) and further auxiliaries may be added, if appropriate.
  • When living microorganisms, such as microbial pesticides from groups L1), L3) and L5), form part of such kit, it must be taken care that choice and amounts of the components (e. g. chemical pesticides) and of the further auxiliaries should not influence the viability of the microbial pesticides in the composition mixed by the user. Especially for bactericides and solvents, compatibility with the respective microbial pesticide has to be taken into account.
  • Consequently, one embodiment of the invention is a kit for preparing a usable pesticidal composition, the kit comprising a) a composition comprising component 1) as defined herein and at least one auxiliary; and b) a composition comprising component 2) as defined herein and at least one auxiliary; and optionally c) a composition comprising at least one auxiliary and optionally a further active component 3) as defined herein.
  • Mixing the compounds I or the compositions comprising them in the use form as fungicides with other fungicides results in many cases in an expansion of the fungicidal spectrum of activity being obtained or in a prevention of fungicide resistance development. Furthermore, in many cases, synergistic effects are obtained.
  • The following list of pesticides II (e. g. pesticidally-active substances and biopesticides), in conjunction with which the compounds I can be used, is intended to illustrate the possible combinations but does not limit them:
  • A) Respiration Inhibitors
      • Inhibitors of complex III at Qo site: azoxystrobin (A.1.1), coumethoxystrobin (A.1.2), coumoxystrobin (A.1.3), dimoxystrobin (A.1.4), enestroburin (A.1.5), fenaminstrobin (A.1.6), fenoxystrobin/flufenoxystrobin (A.1.7), fluoxastrobin (A.1.8), kresoxim-methyl (A.1.9), mandestrobin (A.1.10), metominostrobin (A.1.11), orysastrobin (A.1.12), picoxystrobin (A.1.13), pyraclostrobin (A.1.14), pyrametostrobin (A.1.15), pyraoxystrobin (A.1.16), trifloxystrobin (A.1.17), 2-(2-(3-(2,6-dichlorophenyl)-1-methyl-allylideneaminooxymethyl)-phenyl)-2-methoxyimino-N-methyl-acetamide (A.1.18), pyribencarb (A.1.19), triclopyricarb/chlorodincarb (A.1.20), famoxadone (A.1.21), fenamidone (A.1.21), methyl-N-[2-[(1,4-dimethyl-5-phenylpyrazol-3-yl)oxylmethyl]phenyl]-N-methoxy-carbamate (A.1.22), 1 [3-chloro-2-[[1-(4-chlorophenyl)-1H-pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (A.1.23), 1-[3-bromo-2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]phenyl]-4-methyl-tetrazol-5-one (A.1.24), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one (A.1.25), 1-[2-[[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (A.1.26), 1-[2-[[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxymethyl]-3-fluoro-phenyl]-4-methyl-tetrazol-5-one (A.1.27), 1-[3-cyclopropyl-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (A.1.30), 1-[3-(difluoromethoxy)-2-[[2-methyl-4-(1-methyl pyrazol-3-yl)phenoxy]methyl]phenyl]-4-methyl-tetrazol-5-one (A.1.31), 1-methyl-4-[3-methyl-2-[[2-methyl-4-(1-methylpyrazol-3-yl)phenoxy]methy]phenyl]tetrazol-5-one (A.1.32), (Z,2E)-5-[1-(2,4-dichlorophenyl)pyrazol-3-yl]-oxy-2-methoxyimino-N,3-dimethylpent-3-enamide (A.1.34), (Z,2E)-5-[1-(4-chlorophenyl)pyrazol-3-yl]oxy-2-methoxyimino-N,3-dimethyl-1-pent-3-enamide (A.1.35), pyriminostrobin (A.1.36), bifujunzhi (A.1.37), 2-(ortho-((2,5-dimethylphenyl-oxymethylen)phenyl)-3-methoxy-acrylic acid methylester (A.1.38);
      • inhibitors of complex III at Qi site: cyazofamid (A.2.1), amisulbrom (A.2.2), [(6S,7R,8R)-8-benzyl-3-[(3-hydroxy-4-methoxy-pyridine-2-carb y no]-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl] 2-methylpropanoate (A.2.3), fenpicoxamid (A.2.4);
      • inhibitors of complex II: benodanil (A.3.1), benzovindiflupyr (A.3.2), bixafen (A.3.3), boscalid (A.3.4), carboxin (A.3.5), fenfuram (A.3.6), fluopyram (A.3.7), flutolanil (A.3.8), fluxapyroxad (A.3.9), furametpyr (A.3.10), isofetamid (A.3.11), isopyrazam (A.3.12), mepronil (A.3.13), oxycarboxin (A.3.14), penflufen (A.3.15), penthiopyrad (A.3.16), pydiflumetofen (A.3.17), pyraziflumid (A.3.18), sedaxane (A.3.19), tecloftalam (A.3.20), thifluzamide (A.3.21), 3-(difluoromethyl)-1-methyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide (A.3.22), 3-(trifluoromethyl)-1-methyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide (A.3.23), 1,3-dimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide (A.3.24), 3-(trifluoromethyl)-1,5-dimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide (A.3.25), 1,3,5-trimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide (A.3.26), 3-(difluoromethyl)-1,5-dimethyl-N-(1,1,3-trimethylindan-4-yl)pyrazole-4-carboxamide (A.3.27), 3-(difluoromethyl)-N-(7-fluoro-1,1,3-trimethyl-indan-4-yl)-1-methyl-pyrazole-4-carboxamide (A.3.28), N-[(5-chloro-2-isopropyl-phenyl)methyl]-N-cyclopropyl-5-fluoro-1,3-dimethyl-pyrazole-4-carboxamide (A.3.29), methyl (E)-2-[2-[(5-cyano-2-methyl-phenoxy)methyl]phenyl]-3-methoxy-prop-2-enoate (A.3.30), N-[(5-chloro-2-isopropyl-phenyl)methyl]-N-cyclopropyl-3-(difluoromethyl)-5-fluoro-1-methyl-pyrazole-4-carboxamide (A.3.31), 2-(difluoromethyl)-N-(1,1,3-trimethyl-indan-4-yl)pyridine-3-carboxamide (A.3.32), 2-(difluoromethyl)-N-[(3R)-1,1,3-trimethylindan-4-yl]pyridine-3-carboxamide (A.3.33), 2-(difluoromethyl)-N-(3-ethyl-1,1-dimethyl-indan-4-yl)pyridine-3-carboxamide (A.3.34), 2-(difluoromethyl)-N-[(3R)-3-ethyl-1,1-dimethyl-indan-4-yl]pyridine-3-carboxamide (A.3.35), 2-(difluoromethyl)-N-(1,1-dimethyl-3-propyl-indan-4-yl)pyridine-3-carboxamide (A.3.36), 2-(difluoromethyl)-N-[(3R)-1,1-dimethyl-3-propyl-indan-4-yl]pyridine-3-carboxamide (A.3.37), 2-(difluoromethyl)-N-(3-isobutyl-1,1-dimethyl-indan-4-yl)pyridine-3-carboxamide (A.3.38), 2-(difluoromethyl)-N-[(3R)-3-isobutyl-1,1-dimethyl-indan-4-yl]pyridine-3-carboxamide (A.3.39);
      • other respiration inhibitors: diflumetorim (A.4.1); nitrophenyl derivates: binapacryl (A.4.2), dinobuton (A.4.3), dinocap (A.4.4), fluazinam (A.4.5), meptyldinocap (A.4.6), ferimzone (A.4.7); organometal compounds: fentin salts, e. g. fentin-acetate (A.4.8), fentin chloride (A.4.9) or fentin hydroxide (A.4.10); ametoctradin (A.4.11); silthiofam (A.4.12);
    B) Sterol Biosynthesis Inhibitors (SBI Fungicides)
      • C14 demethylase inhibitors: triazoles: azaconazole (B.1.1), bitertanol (B.1.2), bromuconazole (B.1.3), cyproconazole (B.1.4), difenoconazole (B.1.5), diniconazole (B.1.6), diniconazole-M (B.1.7), epoxiconazole (B.1.8), fenbuconazole (B.1.9), fluquinconazole (B.1.10), flusilazole (B.1.11), flutriafol (B.1.12), hexaconazole (B.1.13), imibenconazole (B.1.14), ipconazole (B.1.15), metconazole (B.1.17), myclobutanil (B.1.18), oxpoconazole (B.1.19), paclobutrazole (B.1.20), penconazole (B.1.21), propiconazole (B.1.22), prothioconazole (B.1.23), simeconazole (B.1.24), tebuconazole (B.1.25), tetraconazole (B.1.26), triadimefon (B.1.27), triadimenol (B.1.28), triticonazole (B.1.29), uniconazole (B.1.30), ipfentrifluconazole, (B.1.37), mefentrifluconazole (B.1.38), 2-(chloromethyl)-2-methyl-5-(p-tolylmethyl)-1-(1,2,4-triazol-1-ylmethyl)cyclopentanol (B.1.43); imidazoles: imazalil (B.1.44), pefurazoate (B.1.45), prochloraz (B.1.46), triflumizol (B.1.47); pyrimidines, pyridines and piperazines: fenarimol (B.1.49), pyrifenox (B. 1.50), triforine (B.1.51), [3-(4-chloro-2-fluoro-phenyl)-5-(2,4-difluorophenyl)isoxazol-4-yl]-(3-pyridyl)methanol (B.1.52);
      • Delta14-reductase inhibitors: aldimorph (B.2.1), dodemorph (B.2.2), dodemorph-acetate (B.2.3), fenpropimorph (B.2.4), tridemorph (B.2.5), fenpropidin (B.2.6), piperalin (B.2.7), spiroxamine (B.2.8);
      • Inhibitors of 3-keto reductase: fenhexamid (B.3.1);
      • Other Sterol biosynthesis inhibitors: chlorphenomizole (B.4.1);
    C) Nucleic Acid Synthesis Inhibitors
      • phenylamides or acyl amino acid fungicides: benalaxyl (C.1.1), benalaxyl-M (C.1.2), kiralaxyl (C.1.3), metalaxyl (C.1.4), metalaxyl-M (C.1.5), ofurace (C.1.6), oxadixyl (C.1.7);
      • other nucleic acid synthesis inhibitors: hymexazole (C.2.1), octhilinone (C.2.2), oxolinic acid (C.2.3), bupirimate (C.2.4), 5-fluorocytosine (C.2.5), 5-fluoro-2-(p-tolylmethoxy)pyrimidin-4-amine (C.2.6), 5-fluoro-2-(4-fluorophenylmethoxy)pyrimidin-4-amine (C.2.7), 5-fluoro-2-(4-chlorophenylmethoxy)pyrimidin-4 amine (C.2.8);
    D) Inhibitors of Cell Division and Cytoskeleton
      • tubulin inhibitors: benomyl (D.1.1), carbendazim (D.1.2), fuberidazole (D1.3), thiabendazole (D.1.4), thiophanate-methyl (D.1.5), 3-chloro-4-(2,6-difluorophenyl)-6-methyl-5-phenyl-pyridazine (D.1.6), 3-chloro-6-methyl-5-phenyl-4-(2,4,6-trifluorophenyl)pyridazine (D.1.7), N-ethyl-2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]butanamide (D.1.8), N-ethyl-2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-2-methylsulfanyl-acetamide (D.1.9), 2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-N-(2-fluoroethyl)butanamide (D.1.10), 2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-N-(2-fluoroethyl)-2-methoxy-acetamide (D.1.11), 2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-N-propyl-butanamide (D.1.12), 2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-2-methoxy-N-propyl-acetamide (D.1.13), 2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-2-methylsulfanyl-N-propyl-acetamide (D.1.14), 2-[(3-ethynyl-8-methyl-6-quinolyl)oxy]-N-(2-fluoroethyl)-2-methylsulfanyl-acetamide (D.1.15), 4-(2-bromo-4-fluoro-phenyl)-N-(2-chloro-6-fluoro-phenyl)-2,5-dimethyl-pyrazol-3-amine (D.1.16);
      • other cell division inhibitors: diethofencarb (D.2.1), ethaboxam (D.2.2), pencycuron (D.2.3), fluopicolide (D.2.4), zoxamide (D.2.5), metrafenone (D.2.6), pyriofenone (D.2.7);
    E) Inhibitors of Amino Acid and Protein Synthesis
      • methionine synthesis inhibitors: cyprodinil (E.1.1), mepanipyrim (E.1.2), pyrimethanil (E.1.3);
      • protein synthesis inhibitors: blasticidin-S (E.2.1), kasugamycin (E.2.2), kasugamycin hydrochloride-hydrate (E.2.3), mildiomycin (E.2.4), streptomycin (E.2.5), oxytetracyclin (E.2.6);
    F) Signal Transduction Inhibitors
      • MAP/histidine kinase inhibitors: fluoroimid (F.1.1), iprodione (F.1.2), procymidone (F.1.3), vinclozolin (F.1.4), fludioxonil (F.1.5);
      • G protein inhibitors: quinoxyfen (F.2.1);
    G) Lipid and Membrane Synthesis Inhibitors
      • Phospholipid biosynthesis inhibitors: edifenphos (G.1.1), iprobenfos (G.1.2), pyrazophos (G.1.3), isoprothiolane (G.1.4);
      • lipid peroxidation: dicloran (G.2.1), quintozene (G.2.2), tecnazene (G.2.3), tolclofos-methyl (G.2.4), biphenyl (G.2.5), chloroneb (G.2.6), etridiazole (G.2.7);
      • phospholipid biosynthesis and cell wall deposition: dimethomorph (G.3.1), flumorph (G.3.2), mandipropamid (G.3.3), pyrimorph (G.3.4), benthiavalicarb (G.3.5), iprovalicarb (G.3.6), valifenalate (G.3.7);
      • compounds affecting cell membrane permeability and fatty acides: propamocarb (G.4.1);
      • inhibitors of oxysterol binding protein: oxathiapiprolin (G.5.1), 2-{3-[2-(1-{[3,5-bis(difluoromethyl-1H-pyrazol-1-yl]acetyl}piperidin-4-yl)-1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}phenyl methanesulfonate (G.5.2), 2-{3-[2-(1-{[3,5-bis(difluoromethyl)-1H-pyrazol-1-yl]acetyl}piperidin-4-yl) 1,3-thiazol-4-yl]-4,5-dihydro-1,2-oxazol-5-yl}-3-chlorophenyl methanesulfonate (G.5.3), 4-[1-[2-[3-(difluoromethyl)-5-methyl-pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-ylpyridine-2-carboxamide (G.5.4), 4-[1-[2-[3,5-bis(difluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.5), 4-[1-[2-[3-(difluoromethyl)-5-(trifluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.6), 4-[1-[2-[5-cyclopropyl-3-(difluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.7), 4-[1-[2-[5-methyl-3-(trifluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.8), 4-[1-[2-[5-(difluoromethyl)-3-(trifluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.9), 4-[1-[2-[3,5-bis(trifluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.10), (4-[1-[2-[5-cyclopropyl-3-(trifluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]-N-tetralin-1-yl-pyridine-2-carboxamide (G.5.11);
        H) Inhibitors with Multi Site Action
      • inorganic active substances: Bordeaux mixture (H.1.1), copper (H.1.2), copper acetate (H.1.3), copper hydroxide (H.1.4), copper oxychloride (H.1.5), basic copper sulfate (H.1.6), sulfur (H.1.7);
      • thio- and dithiocarbamates: ferbam (H.2.1), mancozeb (H.2.2), maneb (H.2.3), metam (H.2.4), metiram (H.2.5), propineb (H.2.6), thiram (H.2.7), zineb (H.2.8), ziram (H.2.9);
      • organochlorine compounds: anilazine (H.3.1), chlorothalonil (H.3.2), captafol (H.3.3), captan (H.3.4), folpet (H.3.5), dichlofluanid (H.3.6), dichlorophen (H.3.7), hexachlorobenzene (H.3.8), pentachlorphenole (H.3.9) and its salts, phthalide (H.3.10), tolylfluanid (H.3.11);
      • guanidines and others: guanidine (H.4.1), dodine (H.4.2), dodine free base (H.4.3), guazatine (H.4.4), guazatine-acetate (H.4.5), iminoctadine (H.4.6), iminoctadine-triacetate (H.4.7), iminoctadine-tris(albesilate) (H.4.8), dithianon (H.4.9), 2,6-dimethyl-1H,5H-[1,4]dithiino[2,3-c:5,6-c′]dipyrrole-1,3,5,7(2H,6H)-tetraone (H.4.10);
    I) Cell Wall Synthesis Inhibitors
      • inhibitors of glucan synthesis: validamycin (1.1.1), polyoxin B (1.1.2);
      • melanin synthesis inhibitors: pyroquilon (1.2.1), tricyclazole (1.2.2), carpropamid (1.2.3), dicyclomet (1.2.4), fenoxanil (1.2.5);
    J) Plant Defence Inducers
      • acibenzolar-S-methyl (J.1.1), probenazole (J.1.2), isotianil (J.1.3), tiadinil (J.1.4), prohexadione-calcium (J.1.5); phosphonates: fosetyl (J.1.6), fosetyl-aluminum (J.1.7), phosphorous acid and its salts (J.1.8), calcium phosphonate (J.1.11), potassium phosphonate (J.1.12), potassium or sodium bicarbonate (J.1.9), 4-cyclopropyl-N-(2,4-dimethoxyphenyl)thiadiazole-5-carboxamide (J.1.10);
    K) Unknown Mode of Action
      • bronopol (K.1.1), chinomethionat (K.1.2), cyflufenamid (K.1.3), cymoxanil (K.1.4), dazomet (K.1.5), debacarb (K.1.6), diclocymet (K.1.7), diclomezine (K.1.8), difenzoquat (K.1.9), difenzoquat-methylsulfate (K.1.10), diphenylamin (K.1.11), fenitropan (K.1.12), fenpyrazamine (K.1.13), flumetover (K.1.14), flusulfamide (K.1.15), flutianil (K.1.16), harpin (K.1.17), methasulfocarb (K.1.18), nitrapyrin (K.1.19), nitrothal-isopropyl (K.1.20), tolprocarb (K.1.21), oxin-copper (K.1.22), proquinazid (K.1.23), tebufloquin (K.1.24), tecloftalam (K.1.25), triazoxide (K.1.26), N′-(4-(4-chloro-3-trifluoromethyl-phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-N-methyl formamidine (K.1.27), N′-(4-(4-fluoro-3-trifluoromethyl-phenoxy)-2,5-dimethyl-phenyl)-N-ethyl-N-methyl formamidine (K.1.28), N′-[4-[[3-[(4-chlorophenyl)methyl]-1,2,4-thiadiazol-5-yl]-oxy]-2,5-dimethyl-phenyl]-N-ethyl-N-methyl-formamidine (K.1.29), N′-(5-bromo-6-indan-2-yloxy-2-methyl-3-pyridyl)-N-ethyl-N-methyl-formamidine (K.1.30), N′-[5-bromo-6-[1-(3,5-difluorophenyl)ethoxy]-2-methyl-3-pyridyl]-N-ethyl-N-methyl-formamidine (K.1.31), N′-[5-bromo-6-(4-isopropylcyclohexoxy)-2-methyl-3-pyridyl]-N-ethyl-N-methyl-formamidine (K.1.32), N′-[5-bromo-2-methyl-6-(1-phenylethoxy)-3-pyridyl]-N-ethyl-N-methyl-formamidine (K.1.33), N′-(2-methyl-5-trifluoromethyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-N-ethyl-N-methyl formamidine (K.1.34), N′-(5-difluoromethyl-2-methyl-4-(3-trimethylsilanyl-propoxy)-phenyl)-N-ethyl-N-methyl formamidine (K. 1.35), 2-(4-chloro-phenyl)-N-[4-(3,4-dimethoxy-phenyl)-isoxazol-5-yl]-2-prop-2-ynyloxy-acetamide (K.1.36), 3-[5-(4-chloro-phenyl)-2,3-dimethyl-isoxazolidin-3-yl]-pyridine (pyrisoxazole) (K.1.37), 3-[5-(4-methylphenyl)-2,3-dimethyl-isoxazolidin-3 yl]-pyridine (K.1.38), 5-chloro-1-(4,6-dimethoxy-pyrimidin-2-yl)-2-methyl-1H-benzoimidazole (K.1.39), ethyl (Z)-3-amino-2-cyano-3-phenyl-prop-2-enoate (K.1.40), picarbutrazox (K.1.41), pentyl N-[6-[[(Z)-[(1-methyltetrazol-5-yl)-phenyl-methylene]amino]oxymethyl]-2-pyridyl]carbamate (K.1.42), but-3-ynyl N-[6-[[(Z)-[(1-methyltetrazol-5-yl)-phenyl-methylene]amino]oxymethyl]-2-pyridyl]carbamate (K.1.43), 2-[2-[(7,8-difluoro-2-methyl-3-quinolyl)oxy]-6-fluoro-phenyl]propan-2-ol (K.1.44), 2-[2-fluoro-6-[(8-fluoro-2-methyl-3-quinolyl)oxy]phen-yl]propan-2-ol (K.1.45), quinofumelin (K.1.47), 9-fluoro-2,2-dimethyl-5-(3-quinolyl)-3H-1,4-benzoxazepine (K.1.49), 2-(6-benzyl-2-pyridyl)quinazoline (K.1.50), 2-[6-(3-fluoro-4-methoxy-phenyl)-5-methyl-2-pyridyl]quinazoline (K.1.51), dichlobentiazox (K.1.52), N′-(2,5-dimethyl-4-phenoxyphenyl)-N-ethyl-N-methyl-formamidine (K.1.53);
    L) Biopesticides
      • L1) Microbial pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: Ampelomyces quisqualis, Aspergillus flavus, Aureobasidium pullulans, Bacillus altitudinis, B. amyloliquefaciens, B. megaterium, B. mojavensis, B. mycoides, B. pumilus, B. simplex, B. solisalsi, B. subtilis, B. subtilis var. amyloliquefaciens, Candida oleophila, C. saitoana, Clavibacter michiganensis (bacteriophages), Coniothyrium minitans, Cryphonectria parasitica, Cryptococcus albidus, Dilophosphora alopecuri, Fusarium oxysporum, Clonostachys rosea f. catenulate (also named Gliocladium catenulatum), Gliocladium roseum, Lysobacterantibioticus, L. enzymogenes, Metschnikowia fructicola, Microdochium dimerum, Microsphaeropsis ochracea, Muscodor albus, Paenibacillus alvei, Paenibacllus polymyxa, Pantoea vagans, Penicllium bilaiae, Phlebiopsis gigantea, Pseudomonas sp., Pseudomonas chloraphis, Pseudozyma flocculosa, Pichia anomala, Pythium oligandrum, Sphaerodes mycoparasitica, Streptomyces griseoviridis, S. lydicus, S. violaceusniger, Talaromyces flavus, Trichoderma asperelloides, T. asperellum, T. atroviride, T. fertile, T. gamsil T. harmatum, T. harzianum, T. polysporum, T. stromaticum, T. virens, T. viride, Typhula phacorrhiza, Ulocladium oudemansi Verticillium dahlia, zucchini yellow mosaic virus (avirulent strain);
      • L2) Biochemical pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: harpin protein, Reynoutria sachalinensis extract;
      • L3) Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity: Agrobacterium radiobacter, Bacillus cereus, B. firmus, B. thuringiensis, B. thuringiensis ssp. aizawai, B. t. ssp. israelensis, B. t. ssp. galleriae, B. t. ssp. kurstaki, B. t. ssp. tenebrionis, Beauveria bassiana, B. brongniarti Burkholderia spp., Chromobacterium subtsugae, Cydia pomonella granulovirus (CpGV), Cryptophlebia leucotreta granulovirus (CrleGV), Flavobacterium spp., Helicoverpa armigera nucleopolyhedrovirus (HearN PV), Helicoverpa zea nucleopolyhedrovirus (HzN PV), Helicoverpa zea single capsid nucleopolyhedrovirus (HzSN PV), Heterorhabditis bacteriophora, Isaria fumosorosea, Lecanicillium longisporum, L. muscarium, Metarhizium anisopliae, Metarhizium anisopliae var. anisopliae, M. anisopliae var. acridum, Nomuraea rileyi, Paecilomyces fumosoroseus, P. liliacinus, Paenibacillus popilliae, Pasteuria spp., P. nishizawae, P. penetrans, P. ramosa, P. thornea, P. usgae, Pseudomonas fluorescens, Spodoptera littoralis nucleopolyhedrovirus (SpliNPV), Steinernema carpocapsae, S. feltiae, S. krausse Streptomyces galbus, S. microflavus;
      • L4) Biochemical pesticides with insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity: L-carvone, citral, (E,Z)-7,9-dodecadien-1-yl acetate, ethyl formate, (E,Z)-2,4-ethyl decadienoate (pear ester), (Z,Z,E)-7,11,13-hexadecatrienal, heptyl butyrate, isopropyl myristate, lavanulyl senecioate, cis-jasmone, 2-methyl 1-butanol, methyl eugenol, methyl jasmonate, (E,Z)-2,13-octadecadien-1-ol, (E,Z)-2,13-octadecadien-1-ol acetate, (E,Z)-3,13-octadecadien-1-ol, R-1-octen-3-ol, pentatermanone, (E,Z,Z)-3,8,11-tetradecatrienyl acetate, (Z,E)-9,12-tetradecadien-1-yl acetate, Z-7-tetradecen-2-one, Z-9-tetradecen-1-yl acetate, Z-11-tetradecenal, Z-11-tetradecen-1-ol, extract of Chenopodium ambrosiodes, Neem oil, Quillay extract;
      • L5) Microbial pesticides with plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity: Azospirillum amazonense, A. brasilense, A. lipoferum, A. irakense, A. halopraeferens, Bradyrhizobium spp., B. elkanii, B. japonicum, B. laoningense, B. lupini, Delftia acidovorans, Glomus intraradices, Mesorhizobium spp., Rhizobium leguminosarum bv. phaseoli, R. l. bv. trifolii R. l. bv. viciae, R. tropici Sinorhizobium meliloti;
    M) Growth Regulators
  • abscisic acid (M.1.1), amidochlor, ancymidol, 6-benzylaminopurine, brassinolide, butralin, chlormequat, chlormequat chloride, choline chloride, cyclanilide, daminozide, dikegulac, dimethipin, 2,6-dimethylpuridine, ethephon, flumetralin, flurprimidol, fluthiacet, forchlorfenuron, gibberellic acid, inabenfide, indole-3-acetic acid, maleic hydrazide, mefluidide, mepiquat, mepiquat chloride, naphthaleneacetic acid, N-6-benzyladenine, paclobutrazol, prohexadione, prohexadione-calcium, prohydrojasmon, thidiazuron, triapenthenol, tributyl phosphorotrithioate, 2,3,5-tri-iodobenzoic acid, trinexapac-ethyl and uniconazole;
  • N) Herbicides from Classes N.1 to N.15
    • N.1 Lipid biosynthesis inhibitors: alloxydim, alloxydim-sodium, butroxydim, clethodim, clodinafop, clodinafop-propargyl, cycloxydim, cyhalofop, cyhalofop-butyl, diclofop, diclofopmethyl, fenoxaprop, fenoxaprop-ethyl, fenoxaprop-P, fenoxaprop-P-ethyl, fluazifop, fluazifopbutyl, fluazifop-P, fluazifop-P-butyl, haloxyfop, haloxyfop-methyl, haloxyfop-P, haloxyfop-P-methyl, metamifop, pinoxaden, profoxydim, propaquizafop, quizalofop, quizalofop-ethyl, quizalofop-tefuryl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl, sethoxydim, tepraloxydim, tralkoxydim, 4-(4′-chloro-4-cyclo¬propyl-2′-fluoro[1,1′-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one (CAS 1312337-72-6); 4-(2′,4′-dichloro-4-cyclopropyl[1,1′-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one (CAS 1312337-45-3); 4-(4′-chloro-4-ethyl-2′-fluoro[1,1′-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one (CAS 1033757-93-5); 4-(2′,4′-Dichloro-4-ethyl[1,1′-biphenyl]-3-yl)-2,2,6,6-tetramethyl-2H-pyran-3,5(4H,6H)-dione (CAS 1312340-84-3); 5-(acetyloxy)-4-(4′-chloro-4-cyclopropyl-2′-fluoro[1,1′-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one (CAS 1312337-48-6); 5-(acetyloxy)-4-(2′,4′-dichloro-4-cyclopropyl-[1,1′-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one; 5-(acetyloxy)-4-(4′-chloro-4-ethyl-2′-fluoro[1,1′-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one (CAS 1312340-82-1); 5-(acetyloxy)-4-(2′,4′-dichloro-4-ethyl[1,1′-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one (CAS 1033760-55-2); 4-(4′-chloro-4-cyclopropyl-2′-fluoro[1,1′-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester (CAS 1312337-51-1); 4-(2′,4′-dichloro-4-cyclopropyl-[1,1′-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester; 4-(4′-chloro-4-ethyl-2′-fluoro[1,1′-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester (CAS 1312340-83-2); 4-(2′,4′-dichloro-4-ethyl¬[1,1′-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester (CAS 1033760-58-5); benfuresate, butylate, cycloate, dalapon, dimepiperate, EPTC, esprocarb, ethofumesate, flupropanate, molinate, orbencarb, pebulate, prosulfocarb, TCA, thiobencarb, tiocarbazil, triallate and vernolate;
    • N.2 ALS inhibitors: amidosulfuron, azimsulfuron, bensulfuron, bensulfuron-methyl, chlorimuron, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethametsulfuron, ethametsulfuron-methyl, ethoxysulfuron, flazasulfuron, flucetosulfuron, flupyrsulfuron, flupyrsulfuronmethyl-sodium, foramsulfuron, halosulfuron, halosulfuron-methyl, imazosulfuron, iodosulfuron, iodosulfuron-methyl-sodium, iofensulfuron, iofensulfuron-sodium, mesosulfuron, metazosulfuron, metsulfuron, metsulfuron-methyl, nicosulfuron, orthosulfamuron, oxasulfuron, primisulfuron, primisulfuron-methyl, propyrisulfuron, prosulfuron, pyrazosulfuron, pyrazosulfuron-ethyl, rimsulfuron, sulfometuron, sulfometuron-methyl, sulfosulfuron, thifensulfuron, thifensulfuron-methyl, triasulfuron, tribenuron, tribenuron-methyl, trifloxysulfuron, triflusulfuron, triflusulfuron-methyl, tritosulfuron, imazamethabenz, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazethapyr; cloransulam, cloransulam-methyl, diclosulam, flumetsulam, florasulam, metosulam, penoxsulam, pyrimisulfan and pyroxsulam; bispyribac, bispyribac-sodium, pyribenzoxim, pyriftalid, pyriminobac, pyriminobac-methyl, pyrithiobac, pyrithiobac-sodium, 4-[[[2-[(4,6-dimethoxy-2-pyrimidinyl)oxy]phenyl]methyl]amino]-benzoic acid-1-methyl¬ethyl ester (CAS 420138-41-6), 4-[[[2-[(4,6-dimethoxy-2-pyrimidinyl)oxy]phenyl]¬methyl]amino]-benzoic acid propyl ester (CAS 420138-40-5), N-(4-bromophenyl)-2-[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzenemethanamine (CAS 420138-01-8); flucarbazone, flucarbazone-sodium, propoxycarbazone, propoxycarbazone-sodium, thiencarbazone, thiencarbazone-methyl; triafamone;
    • N.3 Photosynthesis inhibitors: amicarbazone; chlorotriazine; ametryn, atrazine, chloridazone, cyanazine, desmetryn, dimethametryn, hexazinone, metribuzin, prometon, prometryn, propazine, simazine, simetryn, terbumeton, terbuthylazin, terbutryn, trietazin; chlorobromuron, chlorotoluron, chloroxuron, dimefuron, diuron, fluometuron, isoproturon, isouron, linuron, metamitron, methabenzthiazuron, metobenzuron, metoxuron, monolinuron, neburon, siduron, tebuthiuron, thiadiazuron, desmedipham, karbutilat, phenmedipham, phenmediphamethyl, bromofenoxim, bromoxynil and its salts and esters, ioxynil and its salts and esters, bromacil, lenacil, terbacil, bentazon, bentazon-sodium, pyridate, pyridafol, pentanochlor, propanil; diquat, diquat-dibromide, paraquat, paraquat-dichloride, paraquat-dimetilsulfate;
    • N.4 protoporphyrinogen-IX oxidase inhibitors: acifluorfen, acifluorfen-sodium, azafenidin, bencarbazone, benzfendizone, bifenox, butafenacil, carfentrazone, carfentrazone-ethyl, chlormethoxyfen, cinidon-ethyl, fluazolate, flufenpyr, flufenpyr-ethyl, flumiclorac, flumiclorac-pentyl, flumioxazin, fluoroglycofen, fluoroglycofen-ethyl, fluthiacet, fluthiacet-methyl, fomesafen, halosafen, lactofen, oxadiargyl, oxadiazon, oxyfluorfen, pentoxazone, profluazol, pyraclonil, pyraflufen, pyraflufen-ethyl, saflufenacil, sulfentrazone, thidiazimin, tiafenacil, trifludimoxazin, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6), N-ethyl-3-(2,6-dichloro-4-trifluoro-methylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452098-92-9), N tetrahydrofurfuryl-3-(2,6-dichloro-4-trifluoromethyl phenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 915396-43-9), N-ethyl-3-(2-chloro-6-fluoro-4-trifluoromethyl phenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452099-05-7), N tetrahydro¬furfuryl-3-(2-chloro-6-fluoro-4-trifluoro¬methylphenoxy)-5-methyl-1H-pyrazole-1-carboxamide (CAS 452100-03-7), 3-[7-fluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl]-1,5-dimethyl-6-thioxo-[1,3,5]triazinan-2,4-dione (CAS 451484-50-7), 2-(2,2,7-trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-4,5,6,7-tetrahydro-isoindole-1,3-dione (CAS 1300118-96-0), 1-methyl-6-trifluoro¬methyl-3-(2,2,7-tri-fluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1,4]oxazin-6-yl)-1H-pyrimidine-2,4-dione (CAS 1304113-05-0), methyl (E)-4-[2-chloro-5-[4-chloro-5-(difluoromethoxy)-1H-methyl-pyrazol-3-yl]-4-fluoro-phenoxy]-3-methoxy-but-2-enoate (CAS 948893-00-3), 3-[7-chloro-5-fluoro-2-(trifluoromethyl)-1H-benzimidazol-4-yl]-1-methyl-6-(trifluoromethyl)-1H-pyrimidine-2,4-dione (CAS 212754-02-4);
    • N.5 Bleacher herbicides: beflubutamid, diflufenican, fluridone, flurochloridone, flurtamone, norflurazon, picolinafen, 4-(3-trifluoromethyl¬phenoxy)-2-(4-trifluoromethylphenyl)¬pyrimidine (CAS 180608-33-7); benzobicyclon, benzofenap, bicyclopyrone, clomazone, fenquintrione, isoxaflutole, mesotrione, pyrasulfotole, pyrazolynate, pyrazoxyfen, sulcotrione, tefuryltrione, tembotrione, tolpyralate, topramezone; aclonifen, amitrole, flumeturon;
    • N.6 EPSP synthase inhibitors: glyphosate, glyphosate-isopropylammonium, glyposate-potassium, glyphosate-trimesium (sulfosate);
    • N.7 Glutamine synthase inhibitors: bilanaphos (bialaphos), bilanaphos-sodium, glufosinate, glufosinate-P, glufosinate-ammonium;
    • N.8 DHP synthase inhibitors: asulam;
    • N.9 Mitosis inhibitors: benfluralin, butralin, dinitramine, ethalfluralin, fluchloralin, oryzalin, pendimethalin, prodiamine, trifluralin; amiprophos, amiprophos-methyl, butamiphos; chlorthal, chlorthal-dimethyl, dithiopyr, thiazopyr, propyzamide, tebutam; carbetamide, chlorpropham, flamprop, flamprop-isopropyl, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, propham;
    • N.10 VLCFA inhibitors: acetochlor, alachlor, butachlor, dimethachlor, dimethenamid, dimethenamid-P, metazachlor, metolachlor, metolachlor-S, pethoxamid, pretilachlor, propachlor, propisochlor, thenylchlor, flufenacet, mefenacet, diphenamid, naproanilide, napropamide, napropamide-M, fentrazamide, anilofos, cafenstrole, fenoxasulfone, ipfencarbazone, piperophos, pyroxasulfone, isoxazoline compounds of the formulae II.1, II.2, II.3, II.4, II.5, II.6, II.7, II.8 and II.9
  • Figure US20200187500A1-20200618-C00632
    Figure US20200187500A1-20200618-C00633
    • N.11 Cellulose biosynthesis inhibitors: chlorthiamid, dichlobenil, flupoxam, indaziflam, isoxaben, triaziflam, 1-cyclohexyl-5-pentafluorphenyloxy-14-[1,2,4,6]thiatriazin-3-ylamine (CAS 175899-01-1);
    • N.12 Decoupler herbicides: dinoseb, dinoterb, DNOC and its salts;
    • N.13 Auxinic herbicides: 2,4-D and its salts and esters, clacyfos, 2,4-DB and its salts and esters, aminocyclopyrachlor and its salts and esters, aminopyralid and its salts such as aminopyralid-dimethylammonium, aminopyralid-tris(2-hydroxypropyl)ammonium and its esters, benazolin, benazolin-ethyl, chloramben and its salts and esters, clomeprop, clopyralid and its salts and esters, dicamba and its salts and esters, dichlorprop and its salts and esters, dichlorprop-P and its salts and esters, fluroxypyr, fluroxypyr-butometyl, fluroxypyr-meptyl, halauxifen and its salts and esters (CAS 943832-60-8); MCPA and its salts and esters, MCPA-thioethyl, MCPB and its salts and esters, mecoprop and its salts and esters, mecoprop-P and its salts and esters, picloram and its salts and esters, quinclorac, quinmerac, TBA (2,3,6) and its salts and esters, triclopyr and its salts and esters, 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-5-fluoropyridine-2-carboxylic acid, benzyl 4-amino-3-chloro-6-(4-chloro-2-fluoro-3-methoxyphenyl)-5-fluoropyridine-2-carboxylate (CAS 1390661-72-9);
    • N.14 Auxin transport inhibitors: diflufenzopyr, diflufenzopyr-sodium, naptalam and naptalam-sodium;
    • N.15 Other herbicides: bromobutide, chlorflurenol, chlorflurenol-methyl, cinmethylin, cumyluron, cyclopyrimorate (CAS 499223-49-3) and its salts and esters, dalapon, dazomet, difenzoquat, difenzoquat-metilsulfate, dimethipin, DSMA, dymron, endothal and its salts, etobenzanid, flurenol, flurenol-butyl, flurprimidol, fosamine, fosamine-ammonium, indanofan, maleic hydrazide, mefluidide, metam, methiozolin (CAS 403640-27-7), methyl azide, methyl bromide, methyl-dymron, methyl iodide, MSMA, oleic acid, oxaziclomefone, pelargonic acid, pyributicarb, quinoclamine, tridiphane;
      O) Insecticides from classes O.1 to O.29
    • O.1 Acetylcholine esterase (AChE) inhibitors: aldicarb, alanycarb, bendiocarb, benfuracarb, butocarboxim, butoxycarboxim, carbaryl, carbofuran, carbosulfan, ethiofencarb, fenobucarb, formetanate, furathiocarb, isoprocarb, methiocarb, methomyl, metolcarb, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, trimethacarb, XMC, xylylcarb and triazamate; acephate, azamethiphos, azinphos-ethyl, azinphosmethyl, cadusafos, chlorethoxyfos, chlorfenvinphos, chlormephos, chlorpyrifos, chlorpyrifos-methyl, coumaphos, cyanophos, demeton-S-methyl, diazinon, dichlorvos/DDVP, dicrotophos, dimethoate, dimethylvinphos, disulfoton, EPN, ethion, ethoprophos, famphur, fenamiphos, fenitrothion, fenthion, fosthiazate, heptenophos, imicyafos, isofenphos, isopropyl O-(methoxyaminothio-phosphoryl) salicylate, isoxathion, malathion, mecarbam, methamidophos, methidathion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, parathion, parathion-methyl, phenthoate, phorate, phosalone, phosmet, phosphamidon, phoxim, pirimiphos-methyl, profenofos, propetamphos, prothiofos, pyraclofos, pyridaphenthion, quinalphos, sulfotep, tebupirimfos, temephos, terbufos, tetrachlorvinphos, thiometon, triazophos, trichlorfon, vamidothion;
    • O.2 GABA-gated chloride channel antagonists: endosulfan, chlordane; ethiprole, fipronil, flufiprole, pyrafluprole, pyriprole;
    • O.3 Sodium channel modulators: acrinathrin, allethrin, d-cis-trans allethrin, d-trans allethrin, bifenthrin, bioallethrin, bioallethrin S-cylclopentenyl, bioresmethrin, cycloprothrin, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, gamma-cyhalothrin, cypermethrin, alphacypermethrin, beta-cypermethrin, theta-cypermethrin, zeta-cypermethrin, cyphenothrin, deltamethrin, empenthrin, esfenvalerate, etofenprox, fenpropathrin, fenvalerate, flucythrinate, flumethrin, tau-fluvalinate, halfenprox, heptafluthrin, imiprothrin, meperfluthrin, metofluthrin, momfluorothrin, permethrin, phenothrin, prallethrin, profluthrin, pyrethrin (pyrethrum), resmethrin, silafluofen, tefluthrin, tetramethylfluthrin, tetramethrin, tralomethrin and transfluthrin; DDT, methoxychlor;
    • O.4 Nicotinic acetylcholine receptor agonists (nAChR): acetamiprid, clothianidin, cycloxaprid, dinotefuran, imidacloprid, nitenpyram, thiacloprid, thiamethoxam; (2E)-1-[(6-chloropyridin-3-yl)methyl]-N′-nitro-2-pentylidenehydrazinecarboximidamide; 1-[(6-chloropyridin-3-yl)methyl]-7-methyl-8-nitro-5-propoxy-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine; nicotine;
    • O.5 Nicotinic acetylcholine receptor allosteric activators: spinosad, spinetoram;
    • O.6 Chloride channel activators: abamectin, emamectin benzoate, ivermectin, lepimectin, milbemectin;
    • O.7 Juvenile hormone mimics: hydroprene, kinoprene, methoprene; fenoxycarb, pyriproxyfen;
    • O.8 miscellaneous non-specific (multi-site) inhibitors: methyl bromide and other alkyl halides; chloropicrin, sulfuryl fluoride, borax, tartar emetic;
    • O.9 Selective homopteran feeding blockers: pymetrozine, flonicamid;
    • O.10 Mite growth inhibitors: clofentezine, hexythiazox, diflovidazin; etoxazole;
    • O.11 Microbial disruptors of insect midgut membranes: Bacillus thuringiensis, Bacillus sphaericus and the insecticdal proteins they produce: Bacillus thuringiensis subsp. israelensis, Bacillus sphaericus, Bacillus thuringiensis subsp. aizawai, Bacillus thuringiensis subsp. kurstaki, Bacillus thuringiensis subsp. tenebrionis, the Bt crop proteins: Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab, mCry3A, Cry3Ab, Cry3Bb, Cry34/35Ab1;
    • O.12 Inhibitors of mitochondrial ATP synthase: diafenthiuron; azocyclotin, cyhexatin, fenbutatin oxide, propargite, tetradifon;
    • O.13 Uncouplers of oxidative phosphorylation via disruption of the proton gradient: chlorfenapyr, DNOC, sulfluramid;
    • O.14 Nicotinic acetylcholine receptor (nAChR) channel blockers: bensultap, cartap hydrochloride, thiocyclam, thiosultap sodium;
    • O.15 Inhibitors of the chitin biosynthesis type 0: bistrifluron, chlorfluazuron, diflubenzuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, noviflumuron, teflubenzuron, triflumuron;
    • O.16 Inhibitors of the chitin biosynthesis type 1: buprofezin;
    • O.17 Moulting disruptors: cyromazine;
    • O.18 Ecdyson receptor agonists: methoxyfenozide, tebufenozide, halofenozide, fufenozide, chromafenozide;
    • O.19 Octopamin receptor agonists: amitraz;
    • O.20 Mitochondrial complex III electron transport inhibitors: hydramethylnon, acequinocyl, fluacrypyrim;
    • O.21 Mitochondrial complex I electron transport inhibitors: fenazaquin, fenpyroximate, pyrimidifen, pyridaben, tebufenpyrad, tolfenpyrad; rotenone;
    • O.22 Voltage-dependent sodium channel blockers: indoxacarb, metaflumizone, 2-[2-(4-cyanophenyl)-1-[3-(trifluoromethyl)phenyl]ethylidene]-N-[4-(difluoromethoxy)phenyl]-hydrazinecarboxamide, N-(3-chloro-2-methylphenyl)-2-[(4-chlorophenyl)-[4-[methyl(methylsulfonyl)-amino]phenyl]methylene]-hydrazinecarboxamide;
    • O.23 Inhibitors of the of acetyl CoA carboxylase: spirodiclofen, spiromesifen, spirotetramat;
    • O.24 Mitochondrial complex IV electron transport inhibitors: aluminium phosphide, calcium phosphide, phosphine, zinc phosphide, cyanide;
    • O.25 Mitochondrial complex II electron transport inhibitors: cyenopyrafen, cyflumetofen;
    • O.26 Ryanodine receptor-modulators: flubendiamide, chlorantraniliprole, cyantraniliprole, cyclaniliprole, tetraniliprole; (R)-3-chloro-N1-{2-methyl-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)-ethyl]phenyl}-N2-(1-methyl-2-methylsulfonylethyl)phthalamide, (S)-3-chloro-N1-{2-methyl-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]phenyl}-N2-(1-methyl-2-methylsulfonylethyl)-phthalamide, methyl-2-[3,5-dibromo-2-({[3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazol-5-yl]-carbonyl}amino)benzoyl]-1,2-dimethylhydrazinecarboxylate; N-[4,6-dichloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; N-[4-chloro-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; N-[4-chloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-6-methyl-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; N-[4,6-dichloro-2-[(di-2-propyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; N-[4,6-dibromo-2-[(diethyl-lambda-4-sulfanylidene)carbamoyl]-phenyl]-2-(3-chloro-2-pyridyl)-5-(trifluoromethyl)pyrazole-3-carboxamide; N-[2-(5-amino-1,3,4-thiadiazol-2-yl)-4-chloro-6-methylphenyl]-3-bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazole-5-carboxamide; 3-chloro-1-(3-chloro-2-pyridinyl)-N-[2,4-dichloro-6-[[(1-cyano-1-methylethyl)amino]carbonyl]phenyl]-1H-pyrazole-5-carboxamide; 3-bromo-N-[2,4-dichloro-6-(methylcarbamoyl)phenyl]-1-(3,5-dichloro-2-pyridyl)-1H-pyrazole-5-carboxamide; N-[4-chloro-2-[[(1,1-dimethylethyl)amino]carbonyl]-6-methylphenyl]-1-(3-chloro-2-pyridinyl)-3-(fluoromethoxy)-1H-pyrazole-5-carboxamide; cyhalodiamide;
    • O.27. insecticidal active compounds of unknown or uncertain mode of action: afidopyropen, afoxolaner, azadirachtin, amidoflumet, benzoximate, bifenazate, broflanilide, bromopropylate, chinomethionat, cryolite, dicloromezotiaz, dicofol, flufenerim, flometoquin, fluensulfone, fluhexafon, fluopyram, flupyradifurone, fluralaner, metoxadiazone, piperonyl butoxide, pyflubumide, pyridalyl, pyrifluquinazon, sulfoxaflor, tioxazafen, triflumezopyrim, 11-(4-chloro-2,6-dimethylphenyl)-12-hydroxy-1,4-dioxa-9-azadispiro[4.2.4.2]-tetradec-11-en-10-one, 3-(4′-fluoro-2,4-di methyl biphenyl-3-yl)-4-hydroxy-8-oxa-1-azaspiro[4.5]dec-3-en-2-one, 1-[2-fluoro-4-methyl-5-[(2,2,2-trifluoroethyl)sulfinyl]phenyl]-3-(trifluoromethyl)-1H-1,2,4-triazole-5-amine, Bacillus firmus; (E/Z)—N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide; (E/Z)—N-[1-[(6-chloro-5-fluoro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide; (E/Z)-2,2,2-trifluoro-N-[1-[(6-fluoro-3-pyridyl)methyl]-2-pyridylidene]acetamide; (E/Z)—N-[1-[(6-bromo-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide; (E/Z)—N-[1-[1-(6-chloro-3-pyridyl)ethyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide; (E/Z)—N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2-difluoro-acetamide; (E/Z)-2-chloro-N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2-difluoro-acetamide; (E/Z)—N-[1-[(2-chloropyrimidin-5-yl)methyl]-2-pyridylidene]-2,2,2-trifluoro-acetamide; (E/Z)—N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2,3,3,3-pentafluoro-propanamide.); N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-thioacetamide; N-[1-[(6-chloro-3-pyridyl)methyl]-2-pyridylidene]-2,2,2-trifluoro-N′-isopropyl-acetamidine; fluazaindolizine; 4-[5-(3,5-dichlorophenyl)-5-(trifluoromethyl)-4H-isoxazol-3-yl]-2-methyl-N-(1-oxothietan-3-yl)benzamide; fluxametamide; 5-[3-[2,6-dichloro-4-(3,3-dichloroallyloxy)phenoxy]propoxy]-1H-pyrazole; 3-(benzoylmethylamino)-N-[2-bromo-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]-6-(trifluoromethyl)phenyl]-2-fluoro-benzamide; 3-(benzoylmethylamino)-2-fluoro-N-[2-iodo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6-(trifluoromethyl)phenyl]-benzamide; N-[3-[[[2-iodo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6-(trifluoromethyl)phenyl]amino]carbonyl]phenyl]-N-methylbenzamide; N-[3-[[[2-bromo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6-(trifluoromethyl)phenyl]amino]carbonyl]-2-fluorophenyl]-4-fluoro-N-methyl-benzamide; 4-fluoro-N-[2-fluoro-3-[[[2-iodo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6-(trifluoromethyl)phenyl]amino]carbonyl]phenyl]-N-methyl-benzamide; 3-fluoro-N-[2-fluoro-3-[[[2-iodo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6(trifluoromethyl)phenyl]amino]carbonyl]phenyl]-N-methyl-benzamide; 2-chloro-N-[3-[[[2-iodo-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]-6-(trifluoromethyl)phenyl]amino]carbonyl]phenyl]-3-pyridinecarboxamide; 4-cyano-N-[2-cyano-5-[[2,6-dibromo-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]carbamoyl]phenyl]-2-methyl-benzamide; 4-cyano-3-[(4-cyano-2-methyl-benzoyl)amino]-N-[2,6-dichloro-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]-2-fluoro-benzamide; N-[5-[[2-chloro-6-cyano-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]carbamoyl]-2-cyano-phenyl]-4-cyano-2-methyl-benzamide; N-[5-[[2-bromo-6-chloro-4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]carbamoyl]-2-cyano-phenyl]-4-cyano-2-methyl-benzamide; N-[5-[[2-bromo-6-chloro-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]carbamoyl]-2-cyano-phenyl]-4-cyano-2-methyl-benzamide; 4-cyano-N-[2-cyano-5-[[2,6-dichloro-4-[1,2,2,3,3,3-hexafluoro-1-(trifluoromethyl)propyl]phenyl]carbamoyl]phenyl]-2-methyl-benzamide; 4-cyano-N-[2-cyano-5-[[2,6-dichloro-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]phenyl]carbamoyl]phenyl]-2-methyl-benzamide; N-[5-[[2-bromo-6-chloro-4-[1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl]phenyl]carbamoyl]-2-cyano-phenyl]-4-cyano-2-methyl-benzamide; 2-(1,3-dioxan-2-yl)-6-[2-(3-pyridinyl)-5-thiazolyl]-pyridine; 2-[6-[2-(5-fluoro-3-pyridinyl)-5-thiazolyl]-2-pyridinyl]-pyrimidine; 2-[6-[2-(3-pyridinyl)-5-thiazolyl]-2-pyridinyl]-pyrimidine; N-methylsulfonyl-6-[2-(3-pyridyl)thiazol-5-yl]pyridine-2-carboxamide; N-methylsulfonyl-6-[2-(3-pyridyl)thiazol-5-yl]pyridine-2-carboxamide; N-ethyl-N-[4-methyl-2-(3-pyridyl)thiazol-5-yl]-3-methylthio-propanamide; N-methyl-N-[4-methyl-2-(3-pyridyl)thiazol-5-yl]-3-methylthiopropanamide; N,2-dimethyl-N-[4-methyl-2-(3-pyridyl)thiazol-5-yl]-3-methylthio-propanamide; N-ethyl-2-methyl-N-[4-methyl-2-(3-pyridyl)thiazol-5-yl]-3-methylthio-propanamide; N-[4-chloro-2-(3-pyridyl)thiazol-5-yl]-N-ethyl-2-methyl-3-methylthio-propanamide; N-[4-chloro-2-(3-pyridyl)thiazol-5-yl]-N,2-dimethyl-3-methylthio-propanamide; N-[4-chloro-2-(3-pyridyl)thiazol-5-yl]-N-methyl-3-methylthio-propanamide; N-[4-chloro-2-(3-pyridyl)thiazol-5-yl]-N-ethyl-3-methylthio-propanamide; 1-[(6-chloro-3-pyridinyl)methyl]-1,2,3,5,6,7-hexahydro-5-methoxy-7-methyl-8-nitro-imidazo[1,2-a]pyridine; 1-[(6-chloropyridin-3-yl)methyl]-7-methyl-8-nitro-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridin-5-ol; 1-isopropyl-N,5-dimethyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; 1-(1,2-dimethylpropyl)-N-ethyl-5-methyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; N,5-dimethyl-N-pyridazin-4-yl-1-(2,2,2-trifluoro-1-methyl-ethyl)pyrazole-4-carboxamide; 1-[1-(1-cyanocyclopropyl)ethyl]-N-ethyl-5-methyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; N-ethyl-1-(2-fluoro-1-methyl-propyl)-5-methyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; 1-(1,2-dimethylpropyl)-N,5-dimethyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; 1-[1-(1-cyanocyclopropyl)ethyl]-N,5-dimethyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; N-methyl-1-(2-fluoro-1-methyl-propyl]-5-methyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; 1-(4,4-difluorocyclohexyl)-N-ethyl-5-methyl-N-pyridazin-4-yl-pyrazole-4-carboxamide; 1-(4,4-difluorocyclohexyl)-N,5-dimethyl-N-pyridazin-4-yl-pyrazole-4-carboxamide, N-(1-methylethyl)-2-(3-pyridinyl)-2H-indazole-4-carboxamide; N-cyclopropyl-2-(3-pyridinyl)-2H-indazole-4-carboxamide; N-cyclohexyl-2-(3-pyridinyl)-2H-indazole-4-carboxamide; 2-(3-pyridinyl)-N-(2,2,2-trifluoroethyl)-2H-indazole-4-carboxamide; 2-(3-pyridinyl)-N-[(tetrahydro-2-furanyl)methyl]-2H-indazole-5-carboxamide; methyl 2-[[2-(3-pyridinyl)-2H-indazol-5-yl]carbonyl]hydrazinecarboxylate; N-[(2,2-difluorocyclopropyl)methyl]-2-(3-pyridinyl)-2H-indazole-5-carboxamide; N-(2,2-difluoropropyl)-2-(3-pyridinyl)-2H-indazole-5-carboxamide; 2-(3-pyridinyl)-N-(2-pyrimidinylmethyl)-2H-indazole-5-carboxamide; N-[(5-methyl-2-pyrazinyl)methyl]-2-(3-pyridinyl)-2H-indazole-5-carboxamide, N-[3-chloro-1-(3-pyridyl)pyrazol-4-yl]-N-ethyl-3-(3,3,3-trifluoropropylsulfanyl)propanamide; N-[3-chloro-1-(3-pyridyl)pyrazol-4-yl]-N-ethyl-3-(3,3,3-trifluoropropylsulfinyl)propanamide; N-[3-chloro-1-(3-pyridyl)pyrazol-4-yl]-3-[(2,2-difluorocyclopropyl)methylsulfanyl]-N-ethyl-propanamide; N-[3-chloro-1-(3-pyridyl)pyrazol-4-yl]-3-[(2,2-difluorocyclopropyl)methylsulfinyl]-N-ethyl-propanamide; sarolaner, lotilaner.
  • The active substances referred to as component 2, their preparation and their activity e. g. against harmful fungi is known (cf.: http://www.alanwood.net/pesticides/); these substances are commercially available. The compounds described by IUPAC nomenclature, their preparation and their pesticidal activity are also known (cf. Can. J. Plant Sci. 48(6), 587-94, 1968; EP-A 141 317; EP-A 152 031; EP-A 226 917; EP-A 243 970; EP-A 256 503; EP-A 428 941; EP-A 532 022; EP-A 1 028 125; EP-A 1 035 122; EP-A 1 201 648; EP-A 1 122 244, JP 2002316902; DE 19650197; DE 10021412; DE 102005009458; U.S. Pat. Nos. 3,296,272; 3,325,503; WO 98/46608; WO 99/14187; WO 99/24413; WO 99/27783; WO 00/29404; WO 00/46148; WO 00/65913; WO 01/54501; WO 01/56358; WO 02/22583; WO 02/40431; WO 03/10149; WO 03/11853; WO 03/14103; WO 03/16286; WO 03/53145; WO 03/61388; WO 03/66609; WO 03/74491; WO 04/49804; WO 04/83193; WO 05/120234; WO 05/123689; WO 05/123690; WO 05/63721; WO 05/87772; WO 05/87773; WO 06/15866; WO 06/87325; WO 06/87343; WO 07/82098; WO 07/90624, WO 10/139271, WO 11/028657, WO 12/168188, WO 07/006670, WO 11/77514; WO 13/047749, WO 10/069882, WO 13/047441, WO 03/16303, WO 09/90181, WO 13/007767, WO 13/010862, WO 13/127704, WO 13/024009, WO 13/24010, WO 13/047441, WO 13/162072, WO 13/092224, WO 11/135833, CN 1907024, CN 1456054, CN 103387541, CN 1309897, WO 12/84812, CN 1907024, WO 09094442, WO 14/60177, WO 13/116251, WO 08/013622, WO 15/65922, WO 94/01546, EP 2865265, WO 07/129454, WO 12/165511, WO 11/081174, WO 13/47441).
  • The present invention furthermore relates to agrochemical compositions comprising a mixture of at least one compound I (component 1) and at least one further active substance useful for plant protection, e. g. selected from the groups A) to O) (component 2), in particular one further fungicide, e. g. one or more fungicide from the groups A) to K), as described above, and if desired one suitable solvent or solid carrier. Those mixtures are of particular interest, since many of them at the same application rate show higher efficiencies against harmful fungi. Furthermore, combating harmful fungi with a mixture of compounds I and at least one fungicide from groups A) to K), as described above, is more efficient than combating those fungi with individual compounds I or individual fungicides from groups A) to K).
  • By applying compounds I together with at least one active substance from groups A) to O) a synergistic effect can be obtained, i.e. more then simple addition of the individual effects is obtained (synergistic mixtures).
  • This can be obtained by applying the compounds I and at least one further active substance simultaneously, either jointly (e. g. as tank-mix) or separately, or in succession, wherein the time interval between the individual applications is selected to ensure that the active substance applied first still occurs at the site of action in a sufficient amount at the time of application of the further active substance(s). The order of application is not essential for working of the present invention.
  • When applying compound I and a pesticide II sequentially the time between both applications may vary e. g. between 2 hours to 7 days. Also a broader range is possible ranging from 0.25 hour to 30 days, preferably from 0.5 hour to 14 days, particularly from 1 hour to 7 days or from 1.5 hours to 5 days, even more preferred from 2 hours to 1 day. In case of a mixture comprising a pesticide II selected from group L), it is preferred that the pesticide II is applied as last treatment.
  • According to the invention, the solid material (dry matter) of the biopesticides (with the exception of oils such as Neem oil) are considered as active components (e. g. to be obtained after drying or evaporation of the extraction or suspension medium in case of liquid formulations of the microbial pesticides).
  • In accordance with the present invention, the weight ratios and percentages used herein for a biological extract such as Quillay extract are based on the total weight of the dry content (solid material) of the respective extract(s).
  • The total weight ratios of compositions comprising at least one microbial pesticide in the form of viable microbial cells including dormant forms, can be determined using the amount of CFU of the respective microorganism to calculate the total weight of the respective active component with the following equation that 1×1010 CFU equals one gram of total weight of the respective active component. Colony forming unit is measure of viable microbial cells, in particular fungal and bacterial cells. In addition, here “CFU” may also be understood as the number of (juvenile) individual nematodes in case of (entomopathogenic) nematode biopesticides, such as Steinernema feltiae.
  • In the binary mixtures and compositions according to the invention the weight ratio of the component 1) and the component 2) generally depends from the properties of the active components used, usually it is in the range of from 1:10,000 to 10,000:1, often it is in the range of from 1:100 to 100:1, regularly in the range of from 1:50 to 50:1, preferably in the range of from 1:20 to 20:1, more preferably in the range of from 1:10 to 10:1, even more preferably in the range of from 1:4 to 4:1 and in particular in the range of from 1:2 to 2:1.
  • According to further embodiments of the binary mixtures and compositions, the weight ratio of the component 1) and the component 2) usually is in the range of from 1000:1 to 1:1, often in the range of from 100:1 to 1:1, regularly in the range of from 50:1 to 1:1, preferably in the range of from 20:1 to 1:1, more preferably in the range of from 10:1 to 1:1, even more preferably in the range of from 4:1 to 1:1 and in particular in the range of from 2:1 to 1:1.
  • According to further embodiments of the mixtures and compositions, the weight ratio of the component 1) and the component 2) usually is in the range of from 20,000:1 to 1:10, often in the range of from 10,000:1 to 1:1, regularly in the range of from 5,000:1 to 5:1, preferably in the range of from 5,000:1 to 10:1, more preferably in the range of from 2,000:1 to 30:1, even more preferably in the range of from 2,000:1 to 100:1 and in particular in the range of from 1,000:1 to 100:1.
  • According to a further embodiments of the binary mixtures and compositions, the weight ratio of the component 1) and the component 2) usually is in the range of from 1:1 to 1:1000, often in the range of from 1:1 to 1:100, regularly in the range of from 1:1 to 1:50, preferably in the range of from 1:1 to 1:20, more preferably in the range of from 1:1 to 1:10, even more preferably in the range of from 1:1 to 1:4 and in particular in the range of from 1:1 to 1:2.
  • According to further embodiments of the mixtures and compositions, the weight ratio of the component 1) and the component 2) usually is in the range of from 10:1 to 1:20,000, often in the range of from 1:1 to 1:10,000, regularly in the range of from 1:5 to 1:5,000, preferably in the range of from 1:10 to 1:5,000, more preferably in the range of from 1:30 to 1:2,000, even more preferably in the range of from 1:100 to 1:2,000 to and in particular in the range of from 1:100 to 1:1,000.
  • In the ternary mixtures, i.e. compositions according to the invention comprising the component 1) and component 2) and a compound III (component 3), the weight ratio of component 1) and component 2) depends from the properties of the active substances used, usually it is in the range of from 1:100 to 100:1, regularly in the range of from 1:50 to 50:1, preferably in the range of from 1:20 to 20:1, more preferably in the range of from 1:10 to 10:1 and in particular in the range of from 1:4 to 4:1, and the weight ratio of component 1) and component 3) usually it is in the range of from 1:100 to 100:1, regularly in the range of from 1:50 to 50:1, preferably in the range of from 1:20 to 20:1, more preferably in the range of from 1:10 to 10:1 and in particular in the range of from 1:4 to 4:1.
  • Any further active components are, if desired, added in a ratio of from 20:1 to 1:20 to the component 1).
  • These ratios are also suitable for inventive mixtures applied by seed treatment.
  • When mixtures comprising microbial pesticides are employed in crop protection, the application rates preferably range from about 1×106 to 5×1016 (or more) CFU/ha, preferably from about 1×108 to about 1×1013 CFU/ha, and even more preferably from about 1×109 to 5×1015 CFU/ha and particularly preferred even more preferably from 1×1012 to 5×1014 CFU/ha. In the case of (entomopathogenic) nematodes as microbial pesticides (e. g. Steinernema feltiae), the application rates preferably range inform about 1×105 to 1×1012 (or more), more preferably from 1×108 to 1×1011, even more preferably from 5×108 to 1×1010 individuals (e. g. in the form of eggs, juvenile or any other live stages, preferably in an infective juvenile stage) per ha.
  • When mixtures comprising microbial pesticides are employed in seed treatment, the application rates with respect to plant propagation material preferably range from about 1×106 to 1×1012 (or more) CFU/seed. Preferably, the concentration is about 1×106 to about 1×109 CFU/seed. In the case of the microbial pesticides II, the application rates with respect to plant propagation material also preferably range from about 1×107 to 1×1014 (or more) CFU per 100 kg of seed, preferably from 1×109 to about 1×1012 CFU per 100 kg of seed.
  • Preference is also given to mixtures comprising as component 2) at least one active substance selected from inhibitors of complex III at Qo site in group A), more preferably selected from compounds (A.1.1), (A.1.4), (A.1.8), (A.1.9), (A.1.10), (A.1.12), (A.1.13), (A.1.14), (A.1.17), (A.1.21), (A.1.24), (A.1.25), (A.1.26), (A.1.27), (A.1.30), (A.1.31), (A.1.32), (A.1.34) and (A.1.35); particularly selected from (A.1.1), (A.1.4), (A.1.8), (A.1.9), (A.1.13), (A.1.14), (A.1.17), (A.1.24), (A.1.25), (A.1.26), (A.1.27), (A.1.30), (A.1.31), (A.1.32), (A.1.34) and (A.1.35).
  • Preference is also given to mixtures comprising as component 2) at least one active substance selected from inhibitors of complex III at Qi site in group A), more preferably selected from compounds (A.2.1), (A.2.3) and (A.2.4); particularly selected from (A.2.3) and (A.2.4).
  • Preference is also given to mixtures comprising as component 2) at least one active substance selected from inhibitors of complex II in group A), more preferably selected from compounds (A.3.2), (A.3.3), (A.3.4), (A.3.7), (A.3.9), (A.3.11), (A.3.12), (A.3.15), (A.3.16), (A.3.17), (A.3.18), (A.3.19), (A.3.20), (A.3.21), (A.3.22), (A.3.23), (A.3.24), (A.3.25), (A.3.27), (A.3.28), (A.3.29), (A.3.31), (A.3.32), (A.3.33), (A.3.34), (A.3.35), (A.3.36), (A.3.37), (A.3.38) and (A.3.39); particularly selected from (A.3.2), (A.3.3), (A.3.4), (A.3.7), (A.3.9), (A.3.12), (A.3.15), (A.3.17), (A.3.19), (A.3.22), (A.3.23), (A.3.24), (A.3.25), (A.3.27), (A.3.29), (A.3.31), (A.3.32), (A.3.33), (A.3.34), (A.3.35), (A.3.36), (A.3.37), (A.3.38) and (A.3.39).
  • Preference is also given to mixtures comprising as component 2) at least one active substance selected from other respiration inhibitors in group A), more preferably selected from compounds (A.4.5) and (A.4.11); in particular (A.4.11).
  • Preference is also given to mixtures comprising as component 2) at least one active substance selected from C14 demethylase inhibitors in group B), more preferably selected from compounds (B.1.4), (B.1.5), (B.1.8), (B.1.10), (B.1.11), (B.1.12), (B.1.13), (B.1.17), (B.1.18), (B.1.21), (B.1.22), (B.1.23), (B.1.25), (B.1.26), (B.1.29), (B.1.34), (B.1.37), (B.1.38), (B.1.43) and (B.1.46); particularly selected from (B.1.5), (B.1.8), (B.1.10), (B.1.17), (B.1.22), (B.1.23), (B.1.25), (B.1.33), (B.1.34), (B.1.37), (B.138), (B.1.43) and (B.1.46).
  • Preference is also given to mixtures comprising as component 2) at least one active substance selected from Delta14-reductase inhibitors in group B), more preferably selected from compounds (B.2.4), (B.2.5), (B.2.6) and (B.2.8); in particular (B.2.4).
  • Preference is also given to mixtures comprising as component 2) at least one active substance selected from phenylamides and acyl amino acid fungicides in group C), more preferably selected from compounds (C.1.1), (C.1.2), (C.1.4) and (C.1.5); particularly selected from (C.1.1) and (C.1.4).
  • Preference is also given to mixtures comprising as component 2) at least one active substance selected from other nucleic acid synthesis inhibitors in group C), more preferably selected from compounds (C.2.6), (C.2.7) and (C.2.8).
  • Preference is also given to mixtures comprising as component 2) at least one active substance selected from group D), more preferably selected from compounds (D.1.1), (D.1.2), (D.1.5), (D.2.4) and (D.2.6); particularly selected from (D.1.2), (D.1.5) and (D.2.6).
  • Preference is also given to mixtures comprising as component 2) at least one active substance selected from group E), more preferably selected from compounds (E.1.1), (E.1.3), (E.2.2) and (E.2.3); in particular (E.1.3).
  • Preference is also given to mixtures comprising as component 2) at least one active substance selected from group F), more preferably selected from compounds (F.1.2), (F.1.4) and (F.1.5).
  • Preference is also given to mixtures comprising as component 2) at least one active substance selected from group G), more preferably selected from compounds (G.3.1), (G.3.3), (G.3.6), (G.5.1), (G.5.2), (G.5.3), (G.5.4), (G.5.5), G.5.6), G.5.7), (G.5.8), (G.5.9), (G.5.10) and (G.5.11); particularly selected from (G.3.1), (G.5.1), (G.5.2) and (G.5.3).
  • Preference is also given to mixtures comprising as component 2) at least one active substance selected from group H), more preferably selected from compounds (H.2.2), (H.2.3), (H.2.5), (H.2.7), (H.2.8), (H.3.2), (H.3.4), (H.3.5), (H.4.9) and (H.4.10); particularly selected from (H.2.2), (H.2.5), (H.3.2), (H.4.9) and (H.4.10).
  • Preference is also given to mixtures comprising as component 2) at least one active substance selected from group I), more preferably selected from compounds (I.2.2) and (I.2.5).
  • Preference is also given to mixtures comprising as component 2) at least one active substance selected from group J), more preferably selected from compounds (J.1.2), (J.1.5), (J.1.8), (J.1.11) and (J.1.12); in particular (J.1.5).
  • Preference is also given to mixtures comprising as component 2) at least one active substance selected from group K), more preferably selected from compounds (K.1.41), (K.1.42), (K.1.44), (K.1.45), (K.1.47) and (K.1.49); particularly selected from (K.1.41), (K.1.44), (K.1.45), (K.1.47) and (K.1.49).
  • The biopesticides from group L1) and/or L2) may also have insecticidal, acaricidal, molluscidal, pheromone, nematicidal, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity. The biopesticides from group L3) and/or L4) may also have fungicidal, bactericidal, viricidal, plant defense activator, plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity. The biopesticides from group L5) may also have fungicidal, bactericidal, viricidal, plant defense activator, insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity.
  • Many of these biopesticides have been deposited under deposition numbers mentioned herein (the prefices such as ATCC or DSM refer to the acronym of the respective culture collection, for details see e. g. here: http://www.wfcc.info/ccinfo/collection/by_acronym/), are referred to in literature, registered and/or are commercially available: mixtures of Aureobasidium pullulans DSM 14940 and DSM 14941 isolated in 1989 in Konstanz, Germany (e. g. blastospores in BlossomProtect® from bio-ferm GmbH, Austria), Azospirillum brasilense Sp245 originally isolated in wheat region of South Brazil (Passo Fundo) at least prior to 1980 (BR 11005; e. g. GELFIX® Gramineas from BASF Agricultural Specialties Ltd., Brazil), A. brasilense strains Ab-V5 and Ab-V6 (e. g. in AzoMax from Novozymes BioAg Produtos papra Agricultura Ltda., Quattro Barras, Brazil or Simbiose-Maiz® from Simbiose-Agro, Brazil; Plant Soil 331, 413-425, 2010), Bacillus amyloliquefaciens strain AP-188 (NRRL B-50615 and B-50331; U.S. Pat. No. 8,445,255); B. amyloliquefaciens spp. plantarum D747 isolated from air in Kikugawa-shi, Japan (US 20130236522 A1; FERM BP-8234; e. g. Double Nickel™ 55 WDG from Certis LLC, USA), B. amyloliquefaciens spp. plantarum FZB24 isolated from soil in Brandenburg, Germany (also called SB3615; DSM 96-2; J. Plant Dis. Prot. 105, 181-197, 1998; e. g. Taegro® from Novozyme Biologicals, Inc., USA), B. amyloliquefaciens ssp. plantarum FZB42 isolated from soil in Brandenburg, Germany (DSM 23117; J. Plant Dis. Prot. 105, 181-197, 1998; e. g. RhizoVital® 42 from AbiTEP GmbH, Germany), B. amyloliquefaciens ssp. plantarum MBI600 isolated from faba bean in Sutton Bonington, Nottinghamshire, U.K. at least before 1988 (also called 1430; NRRL B-50595; US 2012/0149571 A1; e. g. Integral® from BASF Corp., USA), B. amyloliquefaciens spp. plantarum QST-713 isolated from peach orchard in 1995 in California, U.S.A. (NRRL B-21661; e. g. Serenade® MAX from Bayer Crop Science LP, USA), B. amyloliquefaciens spp. plantarumTJ1000 isolated in 1992 in South Dakoda, U.S.A. (also called 1 BE; ATCC BAA-390; CA 2471555 A1; e. g. QuickRoots™ from TJ Technologies, Watertown, S. Dak., USA), B. firmus CNCM I-1582, a variant of parental strain EIP-N1 (CNCM I-1556) isolated from soil of central plain area of Israel (WO 2009/126473, U.S. Pat. No. 6,406,690; e. g. Votivo® from Bayer CropScience LP, USA), B. pumilus GHA 180 isolated from apple tree rhizosphere in Mexico (IDAC 260707-01; e. g. PRO-MIX® BX from Premier Horticulture, Quebec, Canada), B. pumilus INR-7 otherwise referred to as BU-F22 and BU-F33 isolated at least before 1993 from cucumber infested by Erwinia tracheiphila (NRRL B-50185, NRRL B-50153; U.S. Pat. No. 8,445,255), B. pumilus KFP9F isolated from the rhizosphere of grasses in South Africa at least before 2008 (NRRL B-50754; WO 2014/029697; e. g. BAC-UP or FUSION-P from BASF Agricultural Specialities (Pty) Ltd., South Africa), B. pumilus QST 2808 was isolated from soil collected in Pohnpei, Federated States of Micronesia, in 1998 (NRRL B-30087; e. g. Sonata® or Ballad® Plus from Bayer Crop Science LP, USA), B. simplex ABU 288 (NRRL B-50304; U.S. Pat. No. 8,445,255), B. subtilis FB17 also called UD 1022 or UD10-22 isolated from red beet roots in North America (ATCC PTA-11857; System. Appl. Microbiol. 27, 372-379, 2004; US 2010/0260735; WO 2011/109395); B. thuringiensis ssp. aizawai ABTS-1857 isolated from soil taken from a lawn in Ephraim, Wis., U.S.A., in 1987 (also called ABG-6346; ATCC SD-1372; e. g. XenTari® from BioFa AG, Monsingen, Germany), B. t. ssp. kurstaki ABTS-351 identical to HD-1 isolated in 1967 from diseased Pink Bollworm black larvae in Brownsville, Tex., U.S.A. (ATCC SD-1275; e. g. Dipel® DF from Valent BioSciences, IL, USA), B. t. ssp. kurstaki SB4 isolated from E. saccharina larval cadavers (NRRL B-50753; e. g. Beta Pro® from BASF Agricultural Specialities (Pty) Ltd., South Africa), B. t. ssp. tenebrionis NB-176-1, a mutant of strain NB-125, a wild type strain isolated in 1982 from a dead pupa of the beetle Tenebrio molitor (DSM 5480; EP 585 215 B1; e. g. Novodor® from Valent BioSciences, Switzerland), Beauveria bassiana GHA (ATCC 74250; e. g. BotaniGard® 22WGP from Laverlam Int. Corp., USA), B. bassiana JW-1 (ATCC 74040; e. g. Naturalis® from CBC (Europe) S.r.l., Italy), B. bassiana PPRI 5339 isolated from the larva of the tortoise beetle Conchyloctenia punctata (NRRL 50757; e. g. BroadBand® from BASF Agricultural Specialities (Pty) Ltd., South Africa), Bradyrhizobium elkanii strains SEMIA 5019 (also called 29W) isolated in Rio de Janeiro, Brazil and SEMIA 587 isolated in 1967 in the State of Rio Grande do Sul, from an area previously inoculated with a North American isolate, and used in commercial inoculants since 1968 (Appl. Environ. Microbiol. 73(8), 2635, 2007; e. g. GELFIX 5 from BASF Agricultural Specialties Ltd., Brazil), B. japonicum 532c isolated from Wisconsin field in U.S.A. (Nitragin 61A152; Can. J. Plant. Sci. 70, 661-666, 1990; e. g. in Rhizoflo®, Histick®, Hicoat® Super from BASF Agricultural Specialties Ltd., Canada), B. japonicum E-109 variant of strain USDA 138 (INTA E109, SEMIA 5085; Eur. J. Soil Biol. 45, 28-35, 2009; Biol. Fertil. Soils 47, 81-89, 2011); B. japonicum strains deposited at SEMIA known from Appl. Environ. Microbiol. 73(8), 2635, 2007: SEMIA 5079 isolated from soil in Cerrados region, Brazil by Embrapa-Cerrados used in commercial inoculants since 1992 (CPAC 15; e. g. GELFIX 5 or ADHERE 60 from BASF Agricultural Specialties Ltd., Brazil), B. japonicum SEMIA 5080 obtained under lab conditions by Embrapa-Cerrados in Brazil and used in commercial inoculants since 1992, being a natural variant of SEMIA 586 (CB1809) originally isolated in U.S.A. (CPAC 7; e. g. GELFIX 5 or ADHERE 60 from BASF Agricultural Specialties Ltd., Brazil); Burkholderia sp. A396 isolated from soil in Nikko, Japan, in 2008 (NRRL B-50319; WO 2013/032693; Marrone Bio Innovations, Inc., USA), Coniothyrium minitans CON/M/91-08 isolated from oilseed rape (WO 1996/021358; DSM 9660; e. g. Contans® WG, Intercept® WG from Bayer CropScience AG, Germany), harpin (alpha-beta) protein (Science 257, 85-88, 1992; e. g. Messenger™ or HARP-N-Tek from Plant Health Care plc, U.K.), Helicoverpa armigera nucleopolyhedrovirus (HearNPV) (J. Invertebrate Pathol. 107, 112-126, 2011; e. g. Helicovex® from Adermatt Biocontrol, Switzerland; Diplomata® from Koppert, Brazil; Vivus® Max from AgBiTech Pty Ltd., Queensland, Australia), Helicoverpa zea single capsid nucleopolyhedrovirus (HzSNPV) (e. g. Gemstar® from Certis LLC, USA), Helicoverpa zea nucleopolyhedrovirus ABA-NPV-U (e. g. Heligen® from AgBiTech Pty Ltd., Queensland, Australia), Heterorhabditis bacteriophora (e. g. Nemasys® G from BASF Agricultural Specialities Limited, UK), Isaria fumosorosea Apopka-97 isolated from mealy bug on gynura in Apopka, Fla., U.S.A. (ATCC 20874; Biocontrol Science Technol. 22(7), 747-761, 2012; e. g. PFR-97™ or PreFeRal® from Certis LLC, USA), Metarhizium anisopliae var. anisopliae F52 also called 275 or V275 isolated from codling moth in Austria (DSM 3884, ATCC 90448; e. g. Met52® Novozymes Biologicals BioAg Group, Canada), Metschnikowia fructicola 277 isolated from grapes in the central part of Israel (U.S. Pat. No. 6,994,849; NRRL Y-30752; e. g. formerly Shemer® from Agrogreen, Israel), Paeciomyces ilacinus 251 isolated from infected nematode eggs in the Philippines (AGAL 89/030550; WO1991/02051; Crop Protection 27, 352-361, 2008; e. g. BioAct® from Bayer CropScience AG, Germany and MeloCon® from Certis, USA), Paenibacillus alvei NAS6G6 isolated from the rhizosphere of grasses in South Africa at least before 2008 (WO 2014/029697; NRRL B-50755; e.g. BAC-UP from BASF Agricultural Specialities (Pty) Ltd., South Africa), Pasteuria nishizawae Pn1 isolated from a soybean field in the mid-2000s in Illinois, U.S.A. (ATCC SD-5833; Federal Register 76(22), 5808, Feb. 2, 2011; e.g. Clariva™ PN from Syngenta Crop Protection, LLC, USA), Penicillium bilaiae (also called P. bilaii) strains ATCC 18309 (=ATCC 74319), ATCC 20851 and/or ATCC 22348 (=ATCC 74318) originally isolated from soil in Alberta, Canada (Fertilizer Res. 39, 97-103, 1994; Can. J. Plant Sci. 78(1), 91-102, 1998; U.S. Pat. No. 5,026,417,
  • WO 1995/017806; e. g. Jump Start®, Provide® from Novozymes Biologicals BioAg Group, Canada), Reynoutria sachalinensis extract (EP 0307510 B1; e. g. Regalia® SC from Marrone BioInnovations, Davis, Calif., USA or Milsana® from BioFa AG, Germany), Steinernema carpocapsae (e. g. Millenium® from BASF Agricultural Specialities Limited, UK), S. feltiae (e. g. Nemashield® from BioWorks, Inc., USA; Nemasys® from BASF Agricultural Specialities Limited, UK), Streptomyces microflavus NRRL B-50550 (WO 2014/124369; Bayer CropScience, Germany), Trichoderma asperelloides JM41R isolated in South Africa (NRRL 50759; also referred to as T. fertile; e. g. Trichoplus® from BASF Agricultural Specialities (Pty) Ltd., South Africa), T. harzianum T-22 also called KRL-AG2 (ATCC 20847; BioControl 57, 687-696, 2012; e. g. Plantshield® from BioWorks Inc., USA or SabrEx™ from Advanced Biological Marketing Inc., Van Wert, Ohio, USA).
  • According to one embodiment of the inventive mixtures, the at least one pesticide II is selected from the groups L1) to L5):
    • L1) Microbial pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: Aureobasidium pullulans DSM 14940 and DSM 14941 (L1.1), Bacillus amyloliquefaciens AP-188 (L.1.2), B. amyloliquefaciens ssp. plantarum D747 (L.1.3), B. amyloliquefaciens ssp. plantarum FZB24 (L.1.4), B. amyloliquefaciens ssp. plantarum FZB42 (L.1.5), B. amyloliquefaciens ssp. plantarum MBI600 (L. 1.6), B. amyloliquefaciens ssp. plantarum QST-713 (L.1.7), B. amyloliquefaciens ssp. plantarum TJ 1000 (L.1.8), B. pumilus GB34 (L.1.9), B. pumilus GHA 180 (L.1.10), B. pumilus INR-7 (L.1.11), B. pumilus KFP9F (L.1.12), B. pumilus QST 2808 (L.1.13), B. simplex ABU 288 (L.1.14), B. subtilis FB17 (L. 1.15), Coniothyrium minitans CON/M/91-08 (L. 1.16), Metschnikowia fructicola NRRL Y-30752 (L.1.17), Paenibacillus alvei NAS6G6 (L.1.18), Penicillium bilaiae ATCC 22348 (L.1.19), P. bilaiae ATCC 20851 (L.1.20), Penicillium bilaiae ATCC 18309 (L.1.21), Streptomyces microflavus NRRL B-50550 (L.1.22), Trichoderma asperelloides JM41R (L.1.23), T. harzianum T-22 (L.1.24);
    • L2) Biochemical pesticides with fungicidal, bactericidal, viricidal and/or plant defense activator activity: harpin protein (L.2.1), Reynoutria sachalinensis extract (L.2.2);
    • L3) Microbial pesticides with insecticidal, acaricidal, molluscidal and/or nematicidal activity: Bacillus firmus I-1582 (L.3.1); B. thuringiensis ssp. aizawai ABTS-1857 (L.3.2), B. t. ssp. kurstaki ABTS-351 (L.3.3), B. t. ssp. kurstaki SB4 (L.3.4), B. t. ssp. tenebrionis NB-176-1 (L.3.5), Beauveria bassiana GHA (L.3.6), B. bassiana JW-1 (L.3.7), B. bassiana PPRI 5339 (L.3.8), Burkholderia sp. A396 (L.3.9), Helicoverpa armigera nucleopolyhedrovirus (HearNPV) (L.3.10), Helicoverpa zea nucleopolyhedrovirus (HzN PV) ABA-NPV-U (L.3.11), Helicoverpa zea single capsid nucleopolyhedrovirus (HzSNPV) (L.3.12), Heterohabditis bacteriophora (L.3.13), Isaria fumosorosea Apopka-97 (L.3.14), Metarhizium anisopliae var. anisopliae F52 (L.3.15), Paecilomyces lilacinus 251 (L.3.16), Pasteuria nishizawae Pn1 (L.3.17), Steinernema carpocapsae (L.3.18), S. feltiae (L.3.19);
    • L4) Biochemical pesticides with insecticidal, acaricidal, molluscidal, pheromone and/or nematicidal activity: cis-jasmone (L.4.1), methyl jasmonate (L.4.2), Quillay extract (L.4.3);
    • L5) Microbial pesticides with plant stress reducing, plant growth regulator, plant growth promoting and/or yield enhancing activity: Azospirillum brasilense Ab-V5 and Ab-V6 (L.5.1), A. brasilense Sp245 (L.5.2), Bradyrhizobium elkanii SEMIA 587 (L.5.3), B. elkanii SEMIA 5019 (L.5.4), B. japonicum 532c (L.5.5), B. japonicum E-109 (L.5.6), B. japonicum SEMIA 5079 (L.5.7), B. japonicum SEMIA 5080 (L.5.8).
  • The present invention furthermore relates to agrochemical compositions comprising a mixture of XXX (component 1) and at least one biopesticide selected from the group L) (component 2), in particular at least one biopesticide selected from the groups L1) and L2), as described above, and if desired at least one suitable auxiliary.
  • The present invention furthermore relates to agrochemical compositions comprising a mixture of XXX (component 1) and at least one biopesticide selected from the group L) (component 2), in particular at least one biopesticide selected from the groups L3) and L4), as described above, and if desired at least one suitable auxiliary.
  • Preference is also given to mixtures comprising as pesticide II (component 2) a biopesticide selected from the groups L1), L3) and L5), preferably selected from strains denoted above as (L.1.2), (L.1.3), (L.1.4), (L.1.5), (L.1.6), (L.1.7), (L.1.8), (L.1.10), (L.1.11), (L.1.12), (L.1.13), (L.1.14), (L.1.15), (L.1.17), (L.1.18), (L.1.19), (L.1.20), (L.1.21), (L.3.1); (L.3.9), (L.3.16), (L.3.17), (L.5.1), (L.5.2), (L.5.3), (L.5.4), (L.5.5), (L.5.6), (L.5.7), (L.5.8); (L.4.2), and (L.4.1); even more preferably selected from (L.1.2), (L.1.6), (L.1.7), (L.1.8), (L.1.11), (L.1.12), (L.1.13), (L.1.14), (L.1.15), (L.1.18), (L.1.19), (L.1.20), (L.1.21), (L.3.1); (L.3.9), (L.3.16), (L.3.17), (L.5.1), (L.5.2), (L.5.5), (L.5.6); (L.4.2), and (L.4.1). These mixtures are particularly suitable for treatment of propagation materials, i. e. seed treatment purposes and likewise for soil treatment. These seed treatment mixtures are particularly suitable for crops such as cereals, corn and leguminous plants such as soybean.
  • Preference is also given to mixtures comprising as pesticide II (component 2) a biopesticide selected from the groups L1), L3) and L5), preferably selected from strains denoted above as (L1.1), (L.1.2), (L.1.3), (L.1.6), (L.1.7), (L.1.9), (L.1.11), (L.1.12), (L.1.13), (L.1.14), (L.1.15), (L.1.17), (L.1.18), (L.1.22), (L.1.23), (L.1.24), (L.2.2); (L.3.2), (L.3.3), (L.3.4), (L.3.5), (L.3.6), (L.3.7), (L.3.8), (L.3.10), (L.3.11), (L.3.12), (L.3.13), (L.3.14), (L.3.15), (L.3.18), (L.3.19); (L.4.2), even more preferably selected from (L.1.2), (L.1.7), (L.1.11), (L.1.13), (L.1.14), (L.1.15), (L.1.18), (L.1.23), (L.3.3), (L.3.4), (L.3.6), (L.3.7), (L.3.8), (L.3.10), (L.3.11), (L.3.12), (L.3.15), and (L.4.2). These mixtures are particularly suitable for foliar treatment. These mixtures for foliar treatment are particularly suitable for vegetables, fruits, vines, cereals, corn, leguminous crops such as soybeans.
  • The mixtures of active substances can be prepared as compositions comprising besides the active ingredients at least one inert ingredient (auxiliary) by usual means, e. g. by the means given for the compositions of compounds I. Concerning usual ingredients of such compositions reference is made to the explanations given for the compositions containing compounds I.
  • According to one embodiment, the microbial pesticides selected from groups L1), L3) and L5) embrace not only the isolated, pure cultures of the respective microorganism as defined herein, but also its cell-free extract, its suspensions in a whole broth culture or as a metabolite-containing culture medium or a purified metabolite obtained from a whole broth culture of the microorganism.
  • When living microorganisms, such as pesticides II from groups L1), L3) and L5), form part of the compositions, such compositions can be prepared as compositions comprising besides the active ingredients at least one auxiliary by usual means (e. g. H. D. Burges: Formulation of Micobial Biopesticides, Springer, 1998). Suitable customary types of such compositions are suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for composition types are suspensions, capsules, pastes, pastilles, wettable powders or dusts, pressings, granules, insecticidal articles, as well as gel formulations. Herein, it has to be taken into account that each formulation type or choice of auxiliary should not influence the viability of the microorganism during storage of the composition and when finally applied to the soil, plant or plant propagation material. Suitable formulations are e. g. mentioned in WO 2008/002371, U.S. Pat. Nos. 6,955,912, 5,422,107.
  • SYNTHESIS EXAMPLE
  • With due modification of the starting compounds, the procedures shown in the synthesis examples below were used to obtain further compounds I. The resulting compounds, together with physical data, are listed in Table I below.
    • HPLC-MS: HPLC-column Kinetex XB C18 1.7μ (50×2.1 mm); eluent: acetonitrile/water+0.1% TFA (5 gradient from 5:95 to 100:0 in 1.5 min at 60° C., flow gradient from 0.8 to 1.0 ml/min in 1.5 min). MS: Quadrupol Electrospray Ionisation, 80 V (positive mode).
    Example 1) Synthesis of 3-(3,3-dichloroallyl)-1-[6-(difluoromethyl)-5-methyl-3-pyridyl]-3-methyl-2,4-dihydro-1H-isoquinoline (I-1) 1. Synthesis of 2-(2,2-dichlorocyclopropyl)-1-phenyl-propan-2-ol
  • The mixture of 2,2-dichlorocyclopropyl methyl ketone (2,645 g, 18.8 mmol) in THF (100 mL) was added BnMgCl (56.3 mL, 56.3 mmol) dropwise at 0° C. under N2, the mixture was stirred for 3 h at 0° C. The reaction mixture was quenched with aq. NH4Cl (50 mL) and extracted with MTBE (50 mL), dried over Na2SO4 and concentrated, the residue was purified by column (PE:EtOAc=40:1) to give the tittle compound (2.7 g, 60%) as yellow oil.
  • 1H-NMR (CDCl3, δ in ppm): 1.43-1.54 (m, 3H), 1.58 (dd, J=8.38, 7.06 Hz, 1H), 1.65-1.72 (m, 1H), 2.81-2.93 (m, 2H), 7.13-7.42 (m, 5H).
  • 2. Synthesis of [(1E)-5,5-dichloro-2-methyl-penta-1,4-dienyl]benzene
  • The solution of 2-(2,2-dichlorocyclopropyl)-1-phenyl-propan-2-ol (0.4 g, 1.64 mmol) in toluene (20 mL) was added p-TsOH (156 mg, 0.82 mmol) under N2, the solution was heated to 80° C. for 16 h. The reaction mixture was concentrated, the residue was purified by column (PE) to give the tittle compound (254 mg, crude) as colorless oil.
  • 3. Synthesis of methyl 5-[3-(3,3-dichloroallyl)-3-methyl-4H-isoquinolin-1-yl]-3-methyl-pyridine-2-carboxylate
  • The solution of methyl 5-cyano-3-methyl-pyridine-2-carboxylate (105 mg, 0.6 mmol) and [(1E)-5,5-dichloro-2-methyl-penta-1,4-dienyl]benzene (270 mg, 1.2 mmol) were in DCM (20 mL) was added TfOH (450 mg, 3 mmol) dropwise at 0° C. under N2, the mixture was stirred for 1.5 h at 0° C. The reaction mixture was quenched with aq. NaHCO3 (30 mL) and extracted with DCM (20 mL), the organic layer was dried over Na2SO4 and concentrated, the residue was purified by Pre-TLC (PE:EtOAc=1:1) to give the tittle compound (111 mg, 46%) as red oil.
  • 1H-NMR (CDCl3, δ in ppm): 1.22 (s, 3H), 2.43-2.58 (m, 2H), 2.66 (s, 3H), 2.73-2.93 (m, 2H), 3.96-4.04 (m, 3H), 6.01-6.09 (m, 1H). 7.14 (d, J=7.50 Hz, 1H). 7.21-7.28 (m, 2H). 7.37-7.46 (m, 1H), 7.85 (s, 1H), 8.69 (s, 1H).
  • 4. Synthesis of 5-[3-(3,3-dichloroallyl)-3-methyl-4H-isoquinolin-1-yl]-3-methyl-pyridine-2-carbaldehyde
  • The mixture of 5-[3-(3,3-dichloroallyl)-3-methyl-4H-isoquinolin-1-yl]-3-methyl-pyridine-2-carboxylic acid (360 mg, 0.89 mmol) in DCM (20 mL) was added DIBAL-H (1.34 mL, 1.34 mmol) dropwise at −78° C. under N2, the mixture was stirred for 1 h at −78° C. The reaction mixture was quenched with aq. NH4Cl (30 mL) and extracted with DCM (30 mL), dried over Na2SO4 and concentrated to give the tittle compound (360 mg, crude) as yellow solid.
  • 1H-NMR (CDCl3, δ in ppm): 2.37 (s, 5H), 2.47-2.60 (m, 3H), 2.74 (s, 3H), 2.77-2.95 (m, 3H), 6.08 (t, J=7.59 Hz, 1H), 7.40-7.48 (m, 1H), 7.85 (s, 1H), 8.83 (s, 1H), 10.27 (s, 1H).
  • 5. Synthesis of 3-(3,3-dichloroallyl)-1-[6-(difluoromethyl)-5-methyl-3-pyridyl]-3-methyl-4H-isoquinoline
  • The solution of 5-[3-(3,3-dichloroallyl)-3-methyl-4H-isoquinolin-1-yl]-3-methyl-pyridine-2-carbaldehyde (0.5 g, 1.34 mmol) in DCM (40 mL) was added DAST (1,534 g, 6.7 mmol) dropwise at 0° C. under N2, the solution was stirred for 1 h at 0° C. The reaction mixture was quenched with aq. NaHCO3 (60 mL) and extracted with DCM (30 mL), dried over Na2SO4 and concentrated, the residue was purified by Pre-TLC (PE:EtOAc=3:1) to give tittle compound (180 mg, 34%) as colorless oil.
  • 1H-NMR (CDCl3, δ in ppm): 1.25 (s, 3H), 2.45-2.55 (m, 2H), 2.6 (s, 3H), 2.75 (d, 1H), 2.95 (d, 1H), 6.05 (t, 1H), 6.61-6.90 (t, 1H), 7.15 (d, 1H), 7.20-7.25 (m, 1H+1H), 7.45 (t, 1H), 7.83 (s, 1H), 8.61 (s, 1H).
  • *HPLC-MS: Rt=1.097 min; M++H=394.9
  • 6. Synthesis of 3-(3,3-dichloroallyl)-1-[6-(difluoromethyl)-5-methyl-3-pyridyl]-3-methyl-2,4-dihydro-1H-isoquinoline
  • To a solution of 3-(3,3-dichloroallyl)-1-[6-(difluoromethyl)-5-methyl-3-pyridyl]-3-methyl-4H-isoquinoline (0.500 g, 1.26 mmol) in MeOH (6 mL) and acetic acid (2 mL), sodium cyanoborohydride (0.079 g, 1.26 mmol) were added at 0° C. The reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was diluted with AcOEt and water, quenched with Na2CO3 to pH 9. After phase separation, the aqueous phase extracted EtOAc. The combined organic phase were washed with aq. NaCl, dried over Na2SO4 and concentrated to give the tittle compound (0.471 g, 90%) as diasteromeric mixture (yellow oil).
  • 1H-NMR (CDCl3, δ in ppm): 1.2-1.3 (s, 3HM+3Hm), 2.3-2.6 (m, 3HM+3Hm+2HM+2Hm), 2.75 (d, 1HM), 2.95 (d, 1HM), 2.9-3.1 (s+s, 1Hm+1Hm), 5.1 (s, 1Hm), 5.2 (s, 1HM), 6.1 (t, 1Hm), 6.2 (t, 1HM), 6.6 (d, 1Hm), 6.5-6.9 (overlap t, 1HM+1Hm), 7.1-7.3 (m, 4HM, 4Hm), 7.55 (s, 1HM+1Hm), 8.55 (s, 1HM+1Hm).
  • *HPLC-MS: Rt=0.929 min; M++H=397.1 Table I:
  • The positions of the heteroaryls given as “R7+R8” marked with “#” represents the connection points (carbon atoms 5′ and 6′ in formula I) with the remaining skeleton of the compounds of formula
  • Figure US20200187500A1-20200618-C00634
  • Mp [°C.]; HPLC-MS
    (Rt [min], M+ + H);
    No. R1 R2 R3 R4 R7 + R8 R9 R10 R12 1H-NMR (δ in ppm)
    I-1 H H CH3
    Figure US20200187500A1-20200618-C00635
    Figure US20200187500A1-20200618-C00636
    CHF2 CH3 H 0.929 min; M+ + H = 397.1
    I-2 H H CF3 CF3
    Figure US20200187500A1-20200618-C00637
    CHF2 CH3 H  1.30 min; M+ + H = 411.0
    I-3 H H CH3
    Figure US20200187500A1-20200618-C00638
    Figure US20200187500A1-20200618-C00639
    CHF2 CH3 CH3 Isomerengemisch RT 1.025, M+ + H = 411.0; RT 1.077, M+ + H = 411.0;
    I-4 H H CH3
    Figure US20200187500A1-20200618-C00640
    Figure US20200187500A1-20200618-C00641
    CHF2 CH3 H RT 0.969. M+ + H 415.0
    I-5 H H CH3
    Figure US20200187500A1-20200618-C00642
    Figure US20200187500A1-20200618-C00643
    CHF2 CH3 H RT 0.958, M+ + H = 415.1
    I-6 H H CH3
    Figure US20200187500A1-20200618-C00644
    Figure US20200187500A1-20200618-C00645
    CHF2 CH3 H RT 0.901, M+ + H = 383.1
    I-7 H H CH3
    Figure US20200187500A1-20200618-C00646
    Figure US20200187500A1-20200618-C00647
    CHF2 CH3 CO—CH3 RT 1.292, M+ + H = 439.1
    I-8 H H CH3
    Figure US20200187500A1-20200618-C00648
    Figure US20200187500A1-20200618-C00649
    CHF2 OCH3 H RT 1.002, M+ + H = 448.9
    I-9 H H CH3
    Figure US20200187500A1-20200618-C00650
    Figure US20200187500A1-20200618-C00651
    CHF2 CH3 H RT 1.020, M+ + H = 433.0
    I-10 H H CH3
    Figure US20200187500A1-20200618-C00652
    Figure US20200187500A1-20200618-C00653
    CHF2 OCH3 H RT 0.937, M+ + H = 413.0
    I-11 H H CH3
    Figure US20200187500A1-20200618-C00654
    Figure US20200187500A1-20200618-C00655
    CHF2 OCH3 H RT 1.012, M+ + H = 447.0
    I-12 H H CH3
    Figure US20200187500A1-20200618-C00656
    Figure US20200187500A1-20200618-C00657
    CHF2 CH3 H Isomerengemisch RT 0.942, M+ + H = 447.0; RT 0.960, M+ + H = 447.0;
    I-13 H H CH3
    Figure US20200187500A1-20200618-C00658
    Figure US20200187500A1-20200618-C00659
    CHF2 OCH3 H RT 0.997, M+ + H = 449.0
    I-14 H H CH3
    Figure US20200187500A1-20200618-C00660
    Figure US20200187500A1-20200618-C00661
    CHF2 OCH3 H RT 0.954, M+ + H = 431.1
    I-15 H H CH3 CF3
    Figure US20200187500A1-20200618-C00662
    CHF2 CH3 H RT 1.250, M+ + H = 357.1
    I-16 H H CH3
    Figure US20200187500A1-20200618-C00663
    Figure US20200187500A1-20200618-C00664
    CH3OCO CH3 H RT 0.919, M+ + H = 405.0
    I-17 H H CH3
    Figure US20200187500A1-20200618-C00665
    Figure US20200187500A1-20200618-C00666
    CHF2 CH3 H RT 0.932, M+ + H = 365.0
  • II. Biological Trials Microtest
  • The active compounds were formulated separately as a stock solution having a concentration of 10000 ppm in dimethyl sulfoxide.
  • Example 1—Activity Against the Grey Mold Botrytis cinerea in the Microtiterplate Test
  • The stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations. A spore suspension of Botrci cinerea in a DOB medium solution was then added. The plates were placed in a water vapor-saturated chamber at a temperature of 18° C. Using an absorption photometer, the MTPs were measured at 405 nm 9 days after the inoculation.
  • In this test, the samples which had been treated with 31 ppm of the active substance from examples I-3, I-9, I-11 and I-12 respectively, showed up to at most 4% growth of the pathogen.
  • Example 2—Activity Against Rice Blast Pyricularia oryzae in the Microtiterplate Test
  • The stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations. A spore suspension of Pyricularia oryzae in a DOB medium solution was then added. The plates were placed in a water vapor-saturated chamber at a temperature of 18° C. Using an absorption photometer, the MTPs were measured at 405 nm 9 days after the inoculation.
  • In this test, the samples which had been treated with 31 ppm of the active substance from I-3, I-4, I-5, I-8, I-9, and I-12 respectively, showed up to at most 6% growth of the pathogen.
  • The measured parameters were compared to the growth of the active compound-free control variant (100%) and the fungus-free and active compound-free blank value to determine the relative growth in % of the pathogens in the respective active compounds.
  • Green House
  • The Spray Solutions were Prepared in Several Steps:
  • The stock solution were prepared: a mixture of acetone and/or dimethylsulfoxide and the wetting agent/emulsifier Wettol, which is based on ethoxylated alkylphenoles, in a relation (volume) solvent-emulsifier of 99 to 1 was added to 25 mg of the compound to give a total of 5 ml.
  • Water was then added to total volume of 100 ml.
  • This stock solution was diluted with the described solvent-emulsifier-water mixture to the given concentration.
  • Example 1—Preventative Fungicidal Control of Botrytis cinerea on Leaves of Green Pepper
  • Young seedlings of green pepper were grown in pots to the 4 to 5 leaf stage. These plants were sprayed to run-off with an aqueous suspension, containing the concentration of active ingredient or their mixture mentioned in the table below. The next day the plants were inoculated with an aqueous biomalt solution containing the spore suspension of Botrytis cinerea. Then the plants were immediately transferred to a humid chamber. After 5 days at 22 to 24° C. and a relative humidity close to 100% the extent of fungal attack on the leaves was visually assessed as % diseased leaf area.
  • In this test, the samples which had been treated with 250 ppm of the active substance from examples from I-1, I-2, I-3, I-4, I-5, I-6, I-7, I-8 and I-9 respectively, showed up to at most 4% growth of the pathogen whereas the untreated plants were 80% infected.
  • Example 2—Long Lasting Control of Botrytis cinerea on Leaves of Green Pepper
  • Young seedlings of green pepper were grown in pots to the 4 to 5 leaf stage. These plants were sprayed to run-off with an aqueous suspension, containing the concentration of active ingredient or their mixture mentioned in the table below. The plants were then cultivated in the greenhouse for 7 days and then inoculated with an aqueous biomalt solution containing the spore suspension of Botrytis cinerea. Then the plants were immediately transferred to a humid chamber. After 5 days at 22 to 24° C. and a relative humidity close to 100% the extent of fungal attack on the leaves was visually assessed as % diseased leaf area.
  • In this test, the samples which had been treated with 250 ppm of the active substance from examples I-1, I-2, I-3, I-4, I-5, I-6, I-7, I-8 and I-9 respectively, showed up to at most 7% growth of the pathogen whereas the untreated plants were 90% infected.

Claims (26)

1-16: (canceled)
17: A compound of formula I, or an N-oxide or an agriculturally acceptable salt thereof,
Figure US20200187500A1-20200618-C00667
wherein
R1 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein
Rx is C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl or aryl that is substituted by 1, 2, 3, 4 or 5 substituents Rx1 independently selected from C1-C4-alkyl, halogen, OH, CN, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the aliphatic moieties of R1 are unsubstituted or substituted with identical or different groups R1a which independently of one another are selected from:
R1a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl group is unsubstituted or carries 1, 2, 3, 4 or 5 substituents R11a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the cycloalkyl, heteroaryl and aryl moieties of R1 are not further substituted or carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups R1b which independently of one another are selected from:
R1b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
R2 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein
Rx is C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl or aryl that is substituted by 1, 2, 3, 4 or 5 substituents Rx1 independently selected from C1-C4-alkyl, halogen, OH, CN, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the aliphatic moieties of R2 are unsubstituted or substituted with identical or different groups R2a which independently of one another are selected from:
R2a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl group is unsubstituted or carries 1, 2, 3, 4 or 5 substituents R11a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the cycloalkyl, heteroaryl and aryl moieties of R1 are not further substituted or carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups R2b which independently of one another are selected from:
R2b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
R3 is in each case independently selected from CH3, CH2F, CHF2 and CF3;
R4 is independently selected from halogen, OH, CN, NO2, SH, C1-C6-alkylthio, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S), and wherein the heterocycle and the heteroaryl contain independently one, two, three or four heteroatoms selected from N, O and S; and wherein R′ and R″ are independently selected from H, C1-C4-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- and heterocycle, five- or six-membered heteroaryl or aryl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S, and wherein R′ and R″ are independently unsubstituted or substituted by R′″ which is independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and phenyl; or
wherein the aliphatic moieties of R4 are independently not further substituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R4a, respectively, which independently of one another are selected from:
R4a halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkoxy, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, S(O)n-aryl, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, aryl, phenoxy, a five-, six- or ten-membered heteroaryl; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S); wherein the heterocycle and the heteroaryl contain independently 1, 2, 3 or 4 heteroatoms selected from N, O and S; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S); wherein the carbocyclic, heterocyclic, aryl and phenyl groups are independently unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkylthio, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, and S(O)n—C1-C6-alkyl; and
wherein Rx, R′, R″ and R″ are as defined above wherein the carbocyclic, heterocyclic, heteroaryl and aryl moieties of R4 are independently not further substituted or carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups R4b, respectively, which independently of one another are selected from:
R4b halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or substituted with substituents selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
and wherein Rx is as defined above; or
n is 0, 1, 2 or
R3, R4 together with the carbon atom to which they are bound form a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle; wherein the heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, O and S, wherein N may carry one substituent RN selected from C1-C4-alkyl, C1-C4-halogenalkyl and SO2Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted by 1, 2 or 3 substituents selected from CN, C1-C4-alkyl, halogen, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy; and wherein S may be in the form of its oxide SO or SO2, and wherein the carbocycle or heterocycle is unsubstituted or carries one, two, three or four substituents R34 independently selected from halogen, OH, CN, NO2, SH, NH2, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or substituted with substituents R34a selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S);
R5, R6 is hydrogen,
R7, R8 together with the carbon atoms to which they are bound form a ring A, wherein the ring A is phenyl or five- or six-membered heteroaryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S, and wherein the ring A is substituent by (R78)o, wherein
o is 0, 1, 2 or 3; and
R78 are independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, CH(═O), C(═O)C1-C6-alkyl, C(═O)NH(C1-C6-alkyl), CR′═NOR″, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, S(O)n-C1-C6-alkyl, three-, four-, five- or six-membered saturated or partially unsaturated heterocycle, five- or six-membered heteroaryl and phenyl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein n, R′ and R″ is as defined above;
and
wherein the aliphatic moieties of R78 are not further substituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R78a which independently of one another are selected from:
R78a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halogencycloalkyl, C3-C6-halogencycloalkenyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, five- or six-membered heteroaryl, phenyl and phenoxy, wherein the heteroaryl, phenyl and phenoxy group is unsubstituted or unsubstituted or substituted with R78aa selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the alicyclic, phenyl, heterocyclic and heteroaryl moieties of R78 are unsubstituted or substituted with identical or different groups R78b which independently of one another are selected from:
R78b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, and C1-C6-alkylthio;
R9 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C2-C4-alkenyl), N(C2-C4-alkenyl)2, NH(C2-C4-alkynyl), N(C2-C4-alkynyl)2, NH(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, N(C1-C4-alkyl)(C2-C4-alkenyl), N(C1-C4-alkyl)(C2-C4-alkynyl), N(C1-C4-alkyl)(C3-C6-cycloalkyl), N(C2-C4-alkenyl)(C2-C4-alkynyl), N(C2-C4-alkenyl)(C3-C6-cycloalkyl), N(C2-C4-alkynyl)(C3-C6-cycloalkyl), NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, S(O)n—C1-C6-alkyl, S(O)n-aryl, C1-C6-cycloalkylthio, S(O)n—C2-C6-alkenyl, S(O)n—C2-C6-alkynyl, CH(═O), C(═O)C1-C6-alkyl, C(═O)C2-C6-alkenyl, C(═O)C2-C6-alkynyl, C(═O)C3-C6-cycloalkyl, C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, C(═O)N(C2-C6-alkenyl)2, C(═O)N(C2-C6-alkynyl)2, C(═O)N(C3-C7-cycloalkyl)2, CH(═S), C(═S)C1-C6-alkyl, C(═S)C2-C6-alkenyl, C(═S)C2-C6-alkynyl, C(═S)C3-C6-cycloalkyl, C(═S)O(C2-C6-alkenyl), C(═S)O(C2-C6-alkynyl), C(═S)O(C3-C7-cycloalkyl), C(═S)NH(C1-C6-alkyl), C(═S)NH(C2-C6-alkenyl), C(═S)NH(C2-C6-alkynyl), C(═S)NH(C3-C7-cycloalkyl), C(═S)N(C1-C6-alkyl)2, C(═S)N(C2-C6-alkenyl)2, C(═S)N(C2-C6-alkynyl)2, C(═S)N(C3-C7-cycloalkyl)2, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, ORY, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein
Rx is as defined above;
RY is C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, phenyl and phenyl-C1-C6-alkyl; wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the acyclic moieties of R9 are unsubstituted or substituted by groups R9a which independently of one another are selected from:
R9a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio and phenoxy, wherein the phenyl group is unsubstituted or substituted by substituents R91a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the carbocyclic, heteroaryl and aryl moieties of R9 are unsubstituted or substituted by groups R9b which independently of one another are selected from:
R9b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
and wherein n is defined as above
R10 is in each case independently selected from the substituents as defined for R9, wherein the possible substituents for R10 are R10a and R10b, respectively, which correspond to R9a and R9b, respectively;
R9, R10 together with the carbon atoms to which they are bound form a five-, six-, or seven-membered carbo-, heterocyclic or heteroaromatic ring; wherein the heterocyclic or heteroaromatic ring contains 1, 2, 3 or 4 heteroatoms selected from N, O and S, wherein N may carry one substituent RN selected from C1-C4-alkyl, C1-C4-halogenalkyl and SO2Ph, wherein Ph is unsubstituted or substituted by substituents selected from C1-C4-alkyl, halogen, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, and CN; and wherein S may be in the form of its oxide SO or SO2; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S); and wherein the carbo-, heterocyclic or heteroaromatic ring is substituent by (R11)m, wherein m is 0, 1, 2, 3 or 4;
R11 is in each case independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- and heterocycle, five- or six-membered heteroaryl and aryl; wherein the heterocycle and heteroaryl contains 1, 2 or 3 heteroatoms selected from N, O and S; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S); and wherein
Rx is as defined above;
wherein the acyclic moieties of R11 are unsubstituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R11a which independently of one another are selected from:
R11a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio and phenoxy, wherein the phenyl group is unsubstituted or unsubstituted or substituted with R111a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, CN, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-alkylthio;
wherein the carbocyclic, heterocyclic, heteroaryl and aryl moieties of R11 are unsubstituted or substituted with identical or different groups R11b which independently of one another are selected from:
R11b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, and C1-C6-alkylthio;
R12 is in each case independently selected from hydrogen, OH, CH(═O), C(═O)C1-C6-alkyl, C(═O)C2-C6-alkenyl, C(═O)C2-C6-alkynyl, C(═O)C3-C6-cycloalkyl, C(═O)O(C1-C6-alkyl), C(═O)O(C2-C6-alkenyl), C(═O)O(C2-C6-alkynyl), C(═O)O(C3-C6-cycloalkyl), C(═O)NH(C1-C6-alkyl), C(═O)NH(C2-C6-alkenyl), C(═O)NH(C2-C6-alkynyl), C(═O)NH(C3-C6-cycloalkyl), C(═O)N(C1-C6-alkyl)2, C(═O)N(C2-C6-alkenyl)2, C(═O)N(C2-C6-alkynyl)2, C(═O)N(C3-C6-cycloalkyl)2, CH(═S), C(═S)C1-C6-alkyl, C(═S)C2-C6-alkenyl, C(═S)C2-C6-alkynyl, C(═S)C3-C6-cycloalkyl, C(═S)O(C1-C6-alkyl), C(═S)O(C2-C6-alkenyl), C(═S)O(C2-C6-alkynyl), C(═S)O(C3-C6-cycloalkyl), C(═S)NH(C1-C6-alkyl), C(═S)NH(C2-C6-alkenyl), C(═S)NH(C2-C6-alkynyl), C(═S)NH(C3-C6-cycloalkyl), C(═S)N(C1-C6-alkyl)2, C(═S)N(C2-C6-alkenyl)2, C(═S)N(C2-C6-alkynyl)2, C(═S)N(C3-C6-cycloalkyl)2, C1-C6-alkyl, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, ORY, C1-C6-alkylthio, C1-C6-halogenalkylthio, C2-C6-alkenyl, C2-C6-halogenalkenyl C2-C6-alkynyl, C2-C6-halogenalkynyl, S(O)n—C1-C6-alkyl, S(O)n—C1-C6-halogenalkyl, S(O)n—C1-C6-alkoxy, S(O)n—C2-C6-alkenyl, S(O)n—C2-C6-alkynyl, S(O)naryl, SO2—NH(C1-C6-alkyl), SO2—NH(C1-C6-halogenalkyl), SO2—NH-aryl, tri-(C1-C6 alkyl)silyl and di-(C1-C6 alkoxy)phosphoryl), five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein the aryl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
RY is defined as above;
wherein the acyclic moieties of R12 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R12a which independently of one another are selected from:
R12a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halogencycloalkyl, C3-C6-halogencycloalkenyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, five- or six-membered heteroaryl, phenyl and phenoxy, wherein the heteroaryl, phenyl and phenoxy group is unsubstituted or carries one, two, three, four or five substituents R78a′ selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the alicyclic, phenyl, heterocyclic and heteroaryl moieties of R12 are not further substituted or carry one, two, three, four, five or up to the maximum number of identical or different groups R12b which independently of one another are selected from:
R12b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
and wherein n is defined as above;
with the proviso that if
R7, R8 together with the carbon atoms to which they are bound form a ring A, wherein the ring A is phenyl
R1 is hydrogen; and
R4 cannot be an unsubstituted C1-C6-alkyl.
18: The compound of claim 17, wherein
R1 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein
Rx is C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl or aryl that is substituted by 1, 2, 3, 4 or 5 substituents Rx1 independently selected from C1-C4-alkyl, halogen, OH, CN, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the aliphatic moieties of R1 are unsubstituted or substituted with identical or different groups R1a which independently of one another are selected from:
R1a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl group is unsubstituted or carries 1, 2, 3, 4 or 5 substituents R11a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the cycloalkyl, heteroaryl and aryl moieties of R1 are not further substituted or carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups R1b which independently of one another are selected from:
R1b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
R2 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein
Rx is C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl or aryl that is substituted by 1, 2, 3, 4 or 5 substituents Rx1 independently selected from C1-C4-alkyl, halogen, OH, CN, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the aliphatic moieties of R2 are unsubstituted or substituted with identical or different groups R2a which independently of one another are selected from:
R2a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl group is unsubstituted or carries 1, 2, 3, 4 or 5 substituents R11a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the cycloalkyl, heteroaryl and aryl moieties of R1 are not further substituted or carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups R2b which independently of one another are selected from:
R2b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
R3 is in each case independently selected from CH3, CH2F, CHF2 and CF3;
R4 is independently selected from halogen, OH, CN, NO2, SH, C1-C6-alkylthio, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, substituted C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S), and wherein the heterocycle and the heteroaryl contain independently one, two, three or four heteroatoms selected from N, O and S; and wherein R′ and R″ are independently selected from H, C1-C4-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- and heterocycle, five- or six-membered heteroaryl or aryl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S, and wherein R′ and R″ are independently unsubstituted or substituted by R′″ which is independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and phenyl; or
wherein the aliphatic moieties of R4 are independently not further substituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R4a, respectively, which independently of one another are selected from:
R4a halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkoxy, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, S(O)n-aryl, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, aryl, phenoxy, a five-, six- or ten-membered heteroaryl; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S; wherein the heterocycle and the heteroaryl contain independently 1, 2, 3 or 4 heteroatoms selected from N, O and S; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S); wherein the carbocyclic, heterocyclic, aryl and phenyl groups are independently unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkylthio, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, and S(O)n—C1-C6-alkyl; and wherein Rx, R′, R″ and R″ are as defined above
wherein the carbocyclic, heterocyclic, heteroaryl and aryl moieties of R4 are independently not further substituted or carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups R4b, respectively, which independently of one another are selected from:
R4b halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or substituted with substituents selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
and wherein Rx is as defined above; or
n is 0, 1, 2 or
R3, R4 together with the carbon atom to which they are bound form a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle; wherein the heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, O and S, wherein N may carry one substituent RN selected from C1-C4-alkyl, C1-C4-halogenalkyl and SO2Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted by 1, 2 or 3 substituents selected from CN, C1-C4-alkyl, halogen, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy; and wherein S may be in the form of its oxide SO or SO2, and wherein the carbocycle or heterocycle is unsubstituted or carries one, two, three or four substituents R34 independently selected from halogen, OH, CN, NO2, SH, NH2, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or substituted with substituents R34a selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S);
R5, R6 is hydrogen,
R7, R8 together with the carbon atoms to which they are bound form a ring A, wherein the ring A is phenyl or five- or six-membered heteroaryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S, and wherein the ring A is substituent by (R78)o, wherein
o is 0, 1, 2 or 3; and
R78 are independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, CH(═O), C(═O)C1-C6-alkyl, C(═O)NH(C1-C6-alkyl), CR′═NOR″, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, S(O)n-C1-C6-alkyl, three-, four-, five- or six-membered saturated or partially unsaturated heterocycle, five- or six-membered heteroaryl and phenyl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein n, R′ and R″ is as defined above;
and
wherein the aliphatic moieties of R78 are not further substituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R78a which independently of one another are selected from:
R78a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halogencycloalkyl, C3-C6-halogencycloalkenyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, five- or six-membered heteroaryl, phenyl and phenoxy, wherein the heteroaryl, phenyl and phenoxy group is unsubstituted or unsubstituted or substituted with R78aa selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the alicyclic, phenyl, heterocyclic and heteroaryl moieties of R78 are unsubstituted or substituted with identical or different groups R78b which independently of one another are selected from:
R78b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, and C1-C6-alkylthio;
R9 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C2-C4-alkenyl), N(C2-C4-alkenyl)2, NH(C2-C4-alkynyl), N(C2-C4-alkynyl)2, NH(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, N(C1-C4-alkyl)(C2-C4-alkenyl), N(C1-C4-alkyl)(C2-C4-alkynyl), N(C1-C4-alkyl)(C3-C6-cycloalkyl), N(C2-C4-alkenyl)(C2-C4-alkynyl), N(C2-C4-alkenyl)(C3-C6-cycloalkyl), N(C2-C4-alkynyl)(C3-C6-cycloalkyl), NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, S(O)n—C1-C6-alkyl, S(O)n-aryl, C1-C6-cycloalkylthio, S(O)n—C2-C6-alkenyl, S(O)n—C2-C6-alkynyl, CH(═O), C(═O)C1-C6-alkyl, C(═O)C2-C6-alkenyl, C(═O)C2-C6-alkynyl, C(═O)C3-C6-cycloalkyl, C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, C(═O)N(C2-C6-alkenyl)2, C(═O)N(C2-C6-alkynyl)2, C(═O)N(C3-C7-cycloalkyl)2, CH(═S), C(═S)C1-C6-alkyl, C(═S)C2-C6-alkenyl, C(═S)C2-C6-alkynyl, C(═S)C3-C6-cycloalkyl, C(═S)O(C2-C6-alkenyl), C(═S)O(C2-C6-alkynyl), C(═S)O(C3-C7-cycloalkyl), C(═S)NH(C1-C6-alkyl), C(═S)NH(C2-C6-alkenyl), C(═S)NH(C2-C6-alkynyl), C(═S)NH(C3-C7-cycloalkyl), C(═S)N(C1-C6-alkyl)2, C(═S)N(C2-C6-alkenyl)2, C(═S)N(C2-C6-alkynyl)2, C(═S)N(C3-C7-cycloalkyl)2, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, ORY, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein
Rx is as defined above;
RY is C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, phenyl and phenyl-C1-C6-alkyl; wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the acyclic moieties of R9 are unsubstituted or substituted by groups R9a which independently of one another are selected from:
R9a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio and phenoxy, wherein the phenyl group is unsubstituted or substituted by substituents R91a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the carbocyclic, heteroaryl and aryl moieties of R9 are unsubstituted or substituted by groups R9b which independently of one another are selected from:
R9b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
and wherein n is defined as above
R10 is in each case independently selected from the substituents as defined for R9, wherein the possible substituents for R10 are R10a and R10b, respectively, which correspond to R9a and R9b, respectively;
R9, R10 together with the carbon atoms to which they are bound form a five-, six-, or seven-membered carbo-, heterocyclic or heteroaromatic ring; wherein the heterocyclic or heteroaromatic ring contains 1, 2, 3 or 4 heteroatoms selected from N, O and S, wherein N may carry one substituent RN selected from C1-C4-alkyl, C1-C4-halogenalkyl and SO2Ph, wherein Ph is unsubstituted or substituted by substituents selected from C1-C4-alkyl, halogen, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, and CN; and wherein S may be in the form of its oxide SO or SO2; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S); and wherein the carbo-, heterocyclic or heteroaromatic ring is substituent by (R11)m, wherein m is 0, 1, 2, 3 or 4;
R11 is in each case independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- and heterocycle, five- or six-membered heteroaryl and aryl; wherein the heterocycle and heteroaryl contains 1, 2 or 3 heteroatoms selected from N, O and S; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S); and wherein
Rx is as defined above;
wherein the acyclic moieties of R11 are unsubstituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R11a which independently of one another are selected from:
R11a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio and phenoxy, wherein the phenyl group is unsubstituted or unsubstituted or substituted with R111a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, CN, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-alkylthio;
wherein the carbocyclic, heterocyclic, heteroaryl and aryl moieties of R11 are unsubstituted or substituted with identical or different groups R11b which independently of one another are selected from:
R11b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, and C1-C6-alkylthio;
R12 is in each case independently selected from hydrogen, OH, CH(═O), C(═O)C1-C6-alkyl, C(═O)C2-C6-alkenyl, C(═O)C2-C6-alkynyl, C(═O)C3-C6-cycloalkyl, C(═O)O(C1-C6-alkyl), C(═O)O(C2-C6-alkenyl), C(═O)O(C2-C6-alkynyl), C(═O)O(C3-C6-cycloalkyl), C(═O)NH(C1-C6-alkyl), C(═O)NH(C2-C6-alkenyl), C(═O)NH(C2-C6-alkynyl), C(═O)NH(C3-C6-cycloalkyl), C(═O)N(C1-C6-alkyl)2, C(═O)N(C2-C6-alkenyl)2, C(═O)N(C2-C6-alkynyl)2, C(═O)N(C3-C6-cycloalkyl)2, CH(═S), C(═S)C1-C6-alkyl, C(═S)C2-C6-alkenyl, C(═S)C2-C6-alkynyl, C(═S)C3-C6-cycloalkyl, C(═S)O(C1-C6-alkyl), C(═S)O(C2-C6-alkenyl), C(═S)O(C2-C6-alkynyl), C(═S)O(C3-C6-cycloalkyl), C(═S)NH(C1-C6-alkyl), C(═S)NH(C2-C6-alkenyl), C(═S)NH(C2-C6-alkynyl), C(═S)NH(C3-C6-cycloalkyl), C(═S)N(C1-C6-alkyl)2, C(═S)N(C2-C6-alkenyl)2, C(═S)N(C2-C6-alkynyl)2, C(═S)N(C3-C6-cycloalkyl)2, C1-C6-alkyl, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, ORY, C1-C6-alkylthio, C1-C6-halogenalkylthio, C2-C6-alkenyl, C2-C6-halogenalkenyl C2-C6-alkynyl, C2-C6-halogenalkynyl, S(O)n—C1-C6-alkyl, S(O)n—C1-C6-halogenalkyl, S(O)n—C1-C6-alkoxy, S(O)n—C2-C6-alkenyl, S(O)n—C2-C6-alkynyl, S(O)naryl, SO2—NH(C1-C6-alkyl), SO2—NH(C1-C6-halogenalkyl), SO2—NH-aryl, tri-(C1-C6 alkyl)silyl and di-(C1-C6 alkoxy)phosphoryl), five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein the aryl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
RY is defined as above;
wherein the acyclic moieties of R12 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R12a which independently of one another are selected from:
R12a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halogencycloalkyl, C3-C6-halogencycloalkenyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, five- or six-membered heteroaryl, phenyl and phenoxy, wherein the heteroaryl, phenyl and phenoxy group is unsubstituted or carries one, two, three, four or five substituents R78a′ selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the alicyclic, phenyl, heterocyclic and heteroaryl moieties of R12 are not further substituted or carry one, two, three, four, five or up to the maximum number of identical or different groups R12b which independently of one another are selected from:
R12b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
and wherein n is defined as above;
and the N-oxides and the agriculturally acceptable salts thereof.
19: The compound of claim 17, wherein
R1 is H;
R2 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein
Rx is C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl or aryl that is substituted by 1, 2, 3, 4 or 5 substituents Rx1 independently selected from C1-C4-alkyl, halogen, OH, CN, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the aliphatic moieties of R2 are unsubstituted or substituted with identical or different groups R2a which independently of one another are selected from:
R2a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl group is unsubstituted or carries 1, 2, 3, 4 or 5 substituents R11a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the cycloalkyl, heteroaryl and aryl moieties of R1 are not further substituted or carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups R2b which independently of one another are selected from:
R2b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
R3 is in each case independently selected from CH3, CH2F, CHF2 and CF3;
R4 is independently selected from halogen, OH, CN, NO2, SH, C1-C6-alkylthio, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, substituted C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S), and wherein the heterocycle and the heteroaryl contain independently one, two, three or four heteroatoms selected from N, O and S; and wherein R′ and R″ are independently selected from H, C1-C4-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- and heterocycle, five- or six-membered heteroaryl or aryl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S, and wherein R′ and R″ are independently unsubstituted or substituted by R′″ which is independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and phenyl; or
wherein the aliphatic moieties of R4 are independently not further substituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R4a, respectively, which independently of one another are selected from:
R4a halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkoxy, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, S(O)n-aryl, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, aryl, phenoxy, a five-, six- or ten-membered heteroaryl; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S); wherein the heterocycle and the heteroaryl contain independently 1, 2, 3 or 4 heteroatoms selected from N, O and S; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S); wherein the carbocyclic, heterocyclic, aryl and phenyl groups are independently unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkylthio, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, and S(O)n—C1-C6-alkyl; and
wherein Rx, R′, R″ and R″ are as defined above wherein the carbocyclic, heterocyclic, heteroaryl and aryl moieties of R4 are independently not further substituted or carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups R4b, respectively, which independently of one another are selected from:
R4b halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or substituted with substituents selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
and wherein Rx is as defined above; or
n is 0, 1, 2 or
R3, R4 together with the carbon atom to which they are bound form a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle; wherein the heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, O and S, wherein N may carry one substituent RN selected from C1-C4-alkyl, C1-C4-halogenalkyl and SO2Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted by 1, 2 or 3 substituents selected from CN, C1-C4-alkyl, halogen, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy; and wherein S may be in the form of its oxide SO or SO2, and wherein the carbocycle or heterocycle is unsubstituted or carries one, two, three or four substituents R34 independently selected from halogen, OH, CN, NO2, SH, NH2, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or substituted with substituents R34a selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S);
R5, R6 is hydrogen,
R7, R8 together with the carbon atoms to which they are bound form a ring A, wherein the ring A is phenyl or five- or six-membered heteroaryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S, and wherein the ring A is substituent by (R78)o, wherein
o is 0, 1, 2 or 3; and
R78 are independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, CH(═O), C(═O)C1-C6-alkyl, C(═O)NH(C1-C6-alkyl), CR′═NOR″, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, S(O)n-C1-C6-alkyl, three-, four-, five- or six-membered saturated or partially unsaturated heterocycle, five- or six-membered heteroaryl and phenyl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein n, R′ and R″ is as defined above;
and
wherein the aliphatic moieties of R78 are not further substituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R78a which independently of one another are selected from:
R78a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halogencycloalkyl, C3-C6-halogencycloalkenyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, five- or six-membered heteroaryl, phenyl and phenoxy, wherein the heteroaryl, phenyl and phenoxy group is unsubstituted or unsubstituted or substituted with R78aa selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the alicyclic, phenyl, heterocyclic and heteroaryl moieties of R78 are unsubstituted or substituted with identical or different groups R78b which independently of one another are selected from:
R78b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, and C1-C6-alkylthio;
R9 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C2-C4-alkenyl), N(C2-C4-alkenyl)2, NH(C2-C4-alkynyl), N(C2-C4-alkynyl)2, NH(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, N(C1-C4-alkyl)(C2-C4-alkenyl), N(C1-C4-alkyl)(C2-C4-alkynyl), N(C1-C4-alkyl)(C3-C6-cycloalkyl), N(C2-C4-alkenyl)(C2-C4-alkynyl), N(C2-C4-alkenyl)(C3-C6-cycloalkyl), N(C2-C4-alkynyl)(C3-C6-cycloalkyl), NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, S(O)n—C1-C6-alkyl, S(O)n-aryl, C1-C6-cycloalkylthio, S(O)n—C2-C6-alkenyl, S(O)n—C2-C6-alkynyl, CH(═O), C(═O)C1-C6-alkyl, C(═O)C2-C6-alkenyl, C(═O)C2-C6-alkynyl, C(═O)C3-C6-cycloalkyl, C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, C(═O)N(C2-C6-alkenyl)2, C(═O)N(C2-C6-alkynyl)2, C(═O)N(C3-C7-cycloalkyl)2, CH(═S), C(═S)C1-C6-alkyl, C(═S)C2-C6-alkenyl, C(═S)C2-C6-alkynyl, C(═S)C3-C6-cycloalkyl, C(═S)O(C2-C6-alkenyl), C(═S)O(C2-C6-alkynyl), C(═S)O(C3-C7-cycloalkyl), C(═S)NH(C1-C6-alkyl), C(═S)NH(C2-C6-alkenyl), C(═S)NH(C2-C6-alkynyl), C(═S)NH(C3-C7-cycloalkyl), C(═S)N(C1-C6-alkyl)2, C(═S)N(C2-C6-alkenyl)2, C(═S)N(C2-C6-alkynyl)2, C(═S)N(C3-C7-cycloalkyl)2, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, ORY, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein
Rx is as defined above;
RY is C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, phenyl and phenyl-C1-C6-alkyl; wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the acyclic moieties of R9 are unsubstituted or substituted by groups R9a which independently of one another are selected from:
R9a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio and phenoxy, wherein the phenyl group is unsubstituted or substituted by substituents R91a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the carbocyclic, heteroaryl and aryl moieties of R9 are unsubstituted or substituted by groups R9b which independently of one another are selected from:
R9b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
and wherein n is defined as above
R10 is in each case independently selected from the substituents as defined for R9, wherein the possible substituents for R10 are R10a and R10b, respectively, which correspond to R9a and R9b, respectively;
R9, R10 together with the carbon atoms to which they are bound form a five-, six-, or seven-membered carbo-, heterocyclic or heteroaromatic ring; wherein the heterocyclic or heteroaromatic ring contains 1, 2, 3 or 4 heteroatoms selected from N, O and S, wherein N may carry one substituent RN selected from C1-C4-alkyl, C1-C4-halogenalkyl and SO2Ph, wherein Ph is unsubstituted or substituted by substituents selected from C1-C4-alkyl, halogen, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, and CN; and wherein S may be in the form of its oxide SO or SO2; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S); and wherein the carbo-, heterocyclic or heteroaromatic ring is substituent by (R11)m, wherein m is 0, 1, 2, 3 or 4;
R11 is in each case independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- and heterocycle, five- or six-membered heteroaryl and aryl; wherein the heterocycle and heteroaryl contains 1, 2 or 3 heteroatoms selected from N, O and S; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S); and wherein
Rx is as defined above;
wherein the acyclic moieties of R11 are unsubstituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R11a which independently of one another are selected from:
R11a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio and phenoxy, wherein the phenyl group is unsubstituted or unsubstituted or substituted with R111a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, CN, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-alkylthio;
wherein the carbocyclic, heterocyclic, heteroaryl and aryl moieties of R11 are unsubstituted or substituted with identical or different groups R11b which independently of one another are selected from:
R11b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, and C1-C6-alkylthio;
R12 is in each case independently selected from hydrogen, OH, CH(═O), C(═O)C1-C6-alkyl, C(═O)C2-C6-alkenyl, C(═O)C2-C6-alkynyl, C(═O)C3-C6-cycloalkyl, C(═O)O(C1-C6-alkyl), C(═O)O(C2-C6-alkenyl), C(═O)O(C2-C6-alkynyl), C(═O)O(C3-C6-cycloalkyl), C(═O)NH(C1-C6-alkyl), C(═O)NH(C2-C6-alkenyl), C(═O)NH(C2-C6-alkynyl), C(═O)NH(C3-C6-cycloalkyl), C(═O)N(C1-C6-alkyl)2, C(═O)N(C2-C6-alkenyl)2, C(═O)N(C2-C6-alkynyl)2, C(═O)N(C3-C6-cycloalkyl)2, CH(═S), C(═S)C1-C6-alkyl, C(═S)C2-C6-alkenyl, C(═S)C2-C6-alkynyl, C(═S)C3-C6-cycloalkyl, C(═S)O(C1-C6-alkyl), C(═S)O(C2-C6-alkenyl), C(═S)O(C2-C6-alkynyl), C(═S)O(C3-C6-cycloalkyl), C(═S)NH(C1-C6-alkyl), C(═S)NH(C2-C6-alkenyl), C(═S)NH(C2-C6-alkynyl), C(═S)NH(C3-C6-cycloalkyl), C(═S)N(C1-C6-alkyl)2, C(═S)N(C2-C6-alkenyl)2, C(═S)N(C2-C6-alkynyl)2, C(═S)N(C3-C6-cycloalkyl)2, C1-C6-alkyl, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, ORY, C1-C6-alkylthio, C1-C6-halogenalkylthio, C2-C6-alkenyl, C2-C6-halogenalkenyl C2-C6-alkynyl, C2-C6-halogenalkynyl, S(O)n—C1-C6-alkyl, S(O)n—C1-C6-halogenalkyl, S(O)n—C1-C6-alkoxy, S(O)n—C2-C6-alkenyl, S(O)n—C2-C6-alkynyl, S(O)naryl, SO2—NH(C1-C6-alkyl), SO2—NH(C1-C6-halogenalkyl), SO2—NH-aryl, tri-(C1-C6 alkyl)silyl and di-(C1-C6 alkoxy)phosphoryl), five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein the aryl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
RY is defined as above;
wherein the acyclic moieties of R12 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R12a which independently of one another are selected from:
R12a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halogencycloalkyl, C3-C6-halogencycloalkenyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, five- or six-membered heteroaryl, phenyl and phenoxy, wherein the heteroaryl, phenyl and phenoxy group is unsubstituted or carries one, two, three, four or five substituents R78a′ selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the alicyclic, phenyl, heterocyclic and heteroaryl moieties of R12 are not further substituted or carry one, two, three, four, five or up to the maximum number of identical or different groups R12b which independently of one another are selected from:
R12b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
and wherein n is defined as above;
and the N-oxides and the agriculturally acceptable salts thereof.
20: The compound of claim 17, wherein R2 is H, F, Cl, Br, CN, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, wherein the acyclic moieties of R2 are unsubstituted or substituted by halogen.
21: The compound of claim 17, wherein R4 is independently selected from CN, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C3-C6-cycloalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C3-C6-cycloalkynyl, C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), CR′═NOR″, C3-C6-halogencycloalkyl, a saturated three-, four-, five-, six-, membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; and C1-C6-alkyl substituted by CN, C1-C6-alkoxy, C1-C4-halogenalkoxy, C1-C6-alkylthio, S(O)n—C1-C6-alkyl, NH—SO2-Rx, NH(C1-C6-alkyl), N(C1-C6-alkyl)2, C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), a saturated three-, four-, five-, six-, membered carbocycle, heterocycle, aryl or heteroaryl.
22: The compound of claim 17, wherein R4 is independently selected from CN, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, a saturated three-, four-, five-, six-, membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; and C1-C6-alkyl substituted by a saturated three-, four-, five-, six-, membered carbocycle, heterocycle, aryl or heteroaryl.
23: The compound of claim 17, wherein R7 and R8 together with the carbon atoms to which they are bound form a phenyl, wherein the phenyl carries zero, one, two, three or four substituents (R78)o.
24: The compound of claim 17, wherein R7 and R8 together with the carbon atoms to which they are bound form a five-membered heteroaryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S, and wherein the heteroaryl carries zero, one, two, three or four substituents (R78)o.
25: The compound of claim 17, wherein R78 is in each case hydrogen, halogen, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy, C1-C6-halogenalkoxy or CN.
26: The compound of claim 17, wherein R9 and R10 independently are selected from CN, halogen, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkynyl, ORY, C3-C6-cycloalkyl.
RY is C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl or C2-C6-alkynyl.
27: The compound of claim 17, wherein R12 is hydrogen, C(═O)C1-C6-alkyl, C(═O)OC1-C6-alkyl, C(═O)NHC1-C6-alkyl, S(O)2—C1-C6-alkyl, S(O)2-aryl, SO2—NH(C1-C6-alkyl), ORY, or C1-C4-alkyl.
RY is C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl or C2-C6-alkynyl.
28: A composition comprising one compound of formula I, as defined in claim 17, an N-oxide or an agriculturally acceptable salt thereof.
29: A method for combating phytopathogenic fungi, comprising treating the fungi or the materials, plants, the soil or seeds to be protected against fungal attack with an effective amount of at least one compound of formula I, as defined in claim 17.
30: Seed coated with at least one compound of the formula I, as defined in claim 17, or an agriculturally acceptable salt thereof in an amount of from 0.1 to 10 kg per 100 kg of seed.
31: An intermediate of formula XV
Figure US20200187500A1-20200618-C00668
wherein R1 is hydrogen, R2 is hydrogen, R9 is CH2F or CHF2, R10 is C1-C6-alkyl, F, Cl, Br or C1-C6-alkoxy, R31 is H or CH3, R41 is H or CH3 or R31 and R41 together form a tetramethyl-1,3,2-dioxaborolan-ring.
32: The method of claim 29, wherein
R1 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein
Rx is C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl or aryl that is substituted by 1, 2, 3, 4 or 5 substituents Rx1 independently selected from C1-C4-alkyl, halogen, OH, CN, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the aliphatic moieties of R1 are unsubstituted or substituted with identical or different groups R1a which independently of one another are selected from:
R1a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl group is unsubstituted or carries 1, 2, 3, 4 or 5 substituents R11a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the cycloalkyl, heteroaryl and aryl moieties of R1 are not further substituted or carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups R1b which independently of one another are selected from:
R1b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
R2 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein
Rx is C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl or aryl that is substituted by 1, 2, 3, 4 or 5 substituents Rx1 independently selected from C1-C4-alkyl, halogen, OH, CN, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the aliphatic moieties of R2 are unsubstituted or substituted with identical or different groups R2a which independently of one another are selected from:
R2a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl group is unsubstituted or carries 1, 2, 3, 4 or 5 substituents R11a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the cycloalkyl, heteroaryl and aryl moieties of R1 are not further substituted or carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups R2b which independently of one another are selected from:
R2b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
R3 is in each case independently selected from CH3, CH2F, CHF2 and CF3;
R4 is independently selected from halogen, OH, CN, NO2, SH, C1-C6-alkylthio, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, substituted C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S), and wherein the heterocycle and the heteroaryl contain independently one, two, three or four heteroatoms selected from N, O and S; and wherein R′ and R″ are independently selected from H, C1-C4-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- and heterocycle, five- or six-membered heteroaryl or aryl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S, and wherein R′ and R″ are independently unsubstituted or substituted by R′″ which is independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and phenyl; or
wherein the aliphatic moieties of R4 are independently not further substituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R4a, respectively, which independently of one another are selected from:
R4a halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkoxy, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, S(O)n-aryl, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, aryl, phenoxy, a five-, six- or ten-membered heteroaryl; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S; wherein the heterocycle and the heteroaryl contain independently 1, 2, 3 or 4 heteroatoms selected from N, O and S; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S); wherein the carbocyclic, heterocyclic, aryl and phenyl groups are independently unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkylthio, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, and S(O)n—C1-C6-alkyl; and wherein Rx, R′, R″ and R″ are as defined above
wherein the carbocyclic, heterocyclic, heteroaryl and aryl moieties of R4 are independently not further substituted or carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups R4b, respectively, which independently of one another are selected from:
R4b halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or substituted with substituents selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
and wherein Rx is as defined above; or
n is 0, 1, 2 or
R3, R4 together with the carbon atom to which they are bound form a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle; wherein the heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, O and S, wherein N may carry one substituent RN selected from C1-C4-alkyl, C1-C4-halogenalkyl and SO2Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted by 1, 2 or 3 substituents selected from CN, C1-C4-alkyl, halogen, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy; and wherein S may be in the form of its oxide SO or SO2, and wherein the carbocycle or heterocycle is unsubstituted or carries one, two, three or four substituents R34 independently selected from halogen, OH, CN, NO2, SH, NH2, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or substituted with substituents R34a selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S);
R5, R6 is hydrogen,
R7, R8 together with the carbon atoms to which they are bound form a ring A, wherein the ring A is phenyl or five- or six-membered heteroaryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S, and wherein the ring A is substituent by (R78)o, wherein
o is 0, 1, 2 or 3; and
R78 are independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, CH(═O), C(═O)C1-C6-alkyl, C(═O)NH(C1-C6-alkyl), CR′═NOR″, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, S(O)n-C1-C6-alkyl, three-, four-, five- or six-membered saturated or partially unsaturated heterocycle, five- or six-membered heteroaryl and phenyl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein n, R′ and R″ is as defined above;
and
wherein the aliphatic moieties of R78 are not further substituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R78a which independently of one another are selected from:
R78a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halogencycloalkyl, C3-C6-halogencycloalkenyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, five- or six-membered heteroaryl, phenyl and phenoxy, wherein the heteroaryl, phenyl and phenoxy group is unsubstituted or unsubstituted or substituted with R78aa selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the alicyclic, phenyl, heterocyclic and heteroaryl moieties of R78 are unsubstituted or substituted with identical or different groups R78b which independently of one another are selected from:
R78b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, and C1-C6-alkylthio;
R9 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C2-C4-alkenyl), N(C2-C4-alkenyl)2, NH(C2-C4-alkynyl), N(C2-C4-alkynyl)2, NH(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, N(C1-C4-alkyl)(C2-C4-alkenyl), N(C1-C4-alkyl)(C2-C4-alkynyl), N(C1-C4-alkyl)(C3-C6-cycloalkyl), N(C2-C4-alkenyl)(C2-C4-alkynyl), N(C2-C4-alkenyl)(C3-C6-cycloalkyl), N(C2-C4-alkynyl)(C3-C6-cycloalkyl), NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, S(O)n—C1-C6-alkyl, S(O)n-aryl, C1-C6-cycloalkylthio, S(O)n—C2-C6-alkenyl, S(O)n—C2-C6-alkynyl, CH(═O), C(═O)C1-C6-alkyl, C(═O)C2-C6-alkenyl, C(═O)C2-C6-alkynyl, C(═O)C3-C6-cycloalkyl, C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, C(═O)N(C2-C6-alkenyl)2, C(═O)N(C2-C6-alkynyl)2, C(═O)N(C3-C7-cycloalkyl)2, CH(═S), C(═S)C1-C6-alkyl, C(═S)C2-C6-alkenyl, C(═S)C2-C6-alkynyl, C(═S)C3-C6-cycloalkyl, C(═S)O(C2-C6-alkenyl), C(═S)O(C2-C6-alkynyl), C(═S)O(C3-C7-cycloalkyl), C(═S)NH(C1-C6-alkyl), C(═S)NH(C2-C6-alkenyl), C(═S)NH(C2-C6-alkynyl), C(═S)NH(C3-C7-cycloalkyl), C(═S)N(C1-C6-alkyl)2, C(═S)N(C2-C6-alkenyl)2, C(═S)N(C2-C6-alkynyl)2, C(═S)N(C3-C7-cycloalkyl)2, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, ORY, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein
Rx is as defined above;
RY is C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, phenyl and phenyl-C1-C6-alkyl; wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the acyclic moieties of R9 are unsubstituted or substituted by groups R9a which independently of one another are selected from:
R9a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio and phenoxy, wherein the phenyl group is unsubstituted or substituted by substituents R91a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the carbocyclic, heteroaryl and aryl moieties of R9 are unsubstituted or substituted by groups R9b which independently of one another are selected from:
R9b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
and wherein n is defined as above
R10 is in each case independently selected from the substituents as defined for R9, wherein the possible substituents for R10 are R10a and R10b, respectively, which correspond to R9a and R9b, respectively;
R9, R10 together with the carbon atoms to which they are bound form a five-, six-, or seven-membered carbo-, heterocyclic or heteroaromatic ring; wherein the heterocyclic or heteroaromatic ring contains 1, 2, 3 or 4 heteroatoms selected from N, O and S, wherein N may carry one substituent RN selected from C1-C4-alkyl, C1-C4-halogenalkyl and SO2Ph, wherein Ph is unsubstituted or substituted by substituents selected from C1-C4-alkyl, halogen, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, and CN; and wherein S may be in the form of its oxide SO or SO2; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S); and wherein the carbo-, heterocyclic or heteroaromatic ring is substituent by (R11)m, wherein m is 0, 1, 2, 3 or 4;
R11 is in each case independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- and heterocycle, five- or six-membered heteroaryl and aryl; wherein the heterocycle and heteroaryl contains 1, 2 or 3 heteroatoms selected from N, O and S; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S); and wherein
Rx is as defined above;
wherein the acyclic moieties of R11 are unsubstituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R11a which independently of one another are selected from:
R11a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio and phenoxy, wherein the phenyl group is unsubstituted or unsubstituted or substituted with R111a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, CN, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-alkylthio;
wherein the carbocyclic, heterocyclic, heteroaryl and aryl moieties of R11 are unsubstituted or substituted with identical or different groups R11b which independently of one another are selected from:
R11b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, and C1-C6-alkylthio;
R12 is in each case independently selected from hydrogen, OH, CH(═O), C(═O)C1-C6-alkyl, C(═O)C2-C6-alkenyl, C(═O)C2-C6-alkynyl, C(═O)C3-C6-cycloalkyl, C(═O)O(C1-C6-alkyl), C(═O)O(C2-C6-alkenyl), C(═O)O(C2-C6-alkynyl), C(═O)O(C3-C6-cycloalkyl), C(═O)NH(C1-C6-alkyl), C(═O)NH(C2-C6-alkenyl), C(═O)NH(C2-C6-alkynyl), C(═O)NH(C3-C6-cycloalkyl), C(═O)N(C1-C6-alkyl)2, C(═O)N(C2-C6-alkenyl)2, C(═O)N(C2-C6-alkynyl)2, C(═O)N(C3-C6-cycloalkyl)2, CH(═S), C(═S)C1-C6-alkyl, C(═S)C2-C6-alkenyl, C(═S)C2-C6-alkynyl, C(═S)C3-C6-cycloalkyl, C(═S)O(C1-C6-alkyl), C(═S)O(C2-C6-alkenyl), C(═S)O(C2-C6-alkynyl), C(═S)O(C3-C6-cycloalkyl), C(═S)NH(C1-C6-alkyl), C(═S)NH(C2-C6-alkenyl), C(═S)NH(C2-C6-alkynyl), C(═S)NH(C3-C6-cycloalkyl), C(═S)N(C1-C6-alkyl)2, C(═S)N(C2-C6-alkenyl)2, C(═S)N(C2-C6-alkynyl)2, C(═S)N(C3-C6-cycloalkyl)2, C1-C6-alkyl, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, ORY, C1-C6-alkylthio, C1-C6-halogenalkylthio, C2-C6-alkenyl, C2-C6-halogenalkenyl C2-C6-alkynyl, C2-C6-halogenalkynyl, S(O)n—C1-C6-alkyl, S(O)n—C1-C6-halogenalkyl, S(O)n—C1-C6-alkoxy, S(O)n—C2-C6-alkenyl, S(O)n—C2-C6-alkynyl, S(O)naryl, SO2—NH(C1-C6-alkyl), SO2—NH(C1-C6-halogenalkyl), SO2—NH-aryl, tri-(C1-C6 alkyl)silyl and di-(C1-C6 alkoxy)phosphoryl), five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein the aryl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
RY is defined as above;
wherein the acyclic moieties of R12 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R12a which independently of one another are selected from:
R12a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halogencycloalkyl, C3-C6-halogencycloalkenyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, five- or six-membered heteroaryl, phenyl and phenoxy, wherein the heteroaryl, phenyl and phenoxy group is unsubstituted or carries one, two, three, four or five substituents R78a′ selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the alicyclic, phenyl, heterocyclic and heteroaryl moieties of R12 are not further substituted or carry one, two, three, four, five or up to the maximum number of identical or different groups R12b which independently of one another are selected from:
R12b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
and wherein n is defined as above;
and the N-oxides and the agriculturally acceptable salts thereof.
33: The method of claim 29, wherein
R1 is H;
R2 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; and wherein
Rx is C1-C4-alkyl, C1-C4-halogenalkyl, unsubstituted aryl or aryl that is substituted by 1, 2, 3, 4 or 5 substituents Rx1 independently selected from C1-C4-alkyl, halogen, OH, CN, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the aliphatic moieties of R2 are unsubstituted or substituted with identical or different groups R2a which independently of one another are selected from:
R2a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, aryl and phenoxy, wherein the aryl group is unsubstituted or carries 1, 2, 3, 4 or 5 substituents R11a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the cycloalkyl, heteroaryl and aryl moieties of R1 are not further substituted or carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups R2b which independently of one another are selected from:
R2b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
R3 is in each case independently selected from CH3, CH2F, CHF2 and CF3;
R4 is independently selected from halogen, OH, CN, NO2, SH, C1-C6-alkylthio, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, substituted C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S), and wherein the heterocycle and the heteroaryl contain independently one, two, three or four heteroatoms selected from N, O and S; and wherein R′ and R″ are independently selected from H, C1-C4-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- and heterocycle, five- or six-membered heteroaryl or aryl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S, and wherein R′ and R″ are independently unsubstituted or substituted by R′″ which is independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl and phenyl; or
wherein the aliphatic moieties of R4 are independently not further substituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R4a, respectively, which independently of one another are selected from:
R4a halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkoxy, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, S(O)n-aryl, CH(═O), C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, CR′═NOR″, a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle, aryl, phenoxy, a five-, six- or ten-membered heteroaryl; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S); wherein the heterocycle and the heteroaryl contain independently 1, 2, 3 or 4 heteroatoms selected from N, O and S; wherein in each case one or two CH2 groups of the carbo- and heterocycle may be replaced by a group independently selected from C(═O) and C(═S); wherein the carbocyclic, heterocyclic, aryl and phenyl groups are independently unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkylthio, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, and S(O)n—C1-C6-alkyl; and wherein Rx, R′, R″ and R″ are as defined above
wherein the carbocyclic, heterocyclic, heteroaryl and aryl moieties of R4 are independently not further substituted or carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups R4b, respectively, which independently of one another are selected from:
R4b halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, S(O)n—C1-C6-alkyl, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or substituted with substituents selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
and wherein Rx is as defined above; or
n is 0, 1, 2 or
R3, R4 together with the carbon atom to which they are bound form a saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbocycle or heterocycle; wherein the heterocycle contains 1, 2, 3 or 4 heteroatoms selected from N, O and S, wherein N may carry one substituent RN selected from C1-C4-alkyl, C1-C4-halogenalkyl and SO2Ph, wherein Ph is unsubstituted phenyl or phenyl that is substituted by 1, 2 or 3 substituents selected from CN, C1-C4-alkyl, halogen, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy; and wherein S may be in the form of its oxide SO or SO2, and wherein the carbocycle or heterocycle is unsubstituted or carries one, two, three or four substituents R34 independently selected from halogen, OH, CN, NO2, SH, NH2, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C1-C6-alkylthio, C1-C6-halogenalkylthio, C1-C4-alkoxy-C1-C4-alkyl, phenyl and phenoxy, wherein the phenyl groups are unsubstituted or substituted with substituents R34a selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S);
R5, R6 is hydrogen,
R7, R8 together with the carbon atoms to which they are bound form a ring A, wherein the ring A is phenyl or five- or six-membered heteroaryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S, and wherein the ring A is substituent by (R78)o, wherein
o is 0, 1, 2 or 3; and
R78 are independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, CH(═O), C(═O)C1-C6-alkyl, C(═O)NH(C1-C6-alkyl), CR′═NOR″, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C1-C6-halogenalkoxy, C2-C6-alkenyloxy, C2-C6-alkynyloxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, S(O)n-C1-C6-alkyl, three-, four-, five- or six-membered saturated or partially unsaturated heterocycle, five- or six-membered heteroaryl and phenyl; wherein the heterocycle or heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein n, R′ and R″ is as defined above;
and
wherein the aliphatic moieties of R78 are not further substituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R78a which independently of one another are selected from:
R78a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halogencycloalkyl, C3-C6-halogencycloalkenyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, five- or six-membered heteroaryl, phenyl and phenoxy, wherein the heteroaryl, phenyl and phenoxy group is unsubstituted or unsubstituted or substituted with R78aa selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the alicyclic, phenyl, heterocyclic and heteroaryl moieties of R78 are unsubstituted or substituted with identical or different groups R78b which independently of one another are selected from:
R78b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, and C1-C6-alkylthio;
R9 is in each case independently selected from hydrogen, halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH(C2-C4-alkenyl), N(C2-C4-alkenyl)2, NH(C2-C4-alkynyl), N(C2-C4-alkynyl)2, NH(C3-C6-cycloalkyl), N(C3-C6-cycloalkyl)2, N(C1-C4-alkyl)(C2-C4-alkenyl), N(C1-C4-alkyl)(C2-C4-alkynyl), N(C1-C4-alkyl)(C3-C6-cycloalkyl), N(C2-C4-alkenyl)(C2-C4-alkynyl), N(C2-C4-alkenyl)(C3-C6-cycloalkyl), N(C2-C4-alkynyl)(C3-C6-cycloalkyl), NH(C(═O)C1-C4-alkyl), N(C(═O)C1-C4-alkyl)2, NH—SO2—Rx, S(O)n—C1-C6-alkyl, S(O)n-aryl, C1-C6-cycloalkylthio, S(O)n—C2-C6-alkenyl, S(O)n—C2-C6-alkynyl, CH(═O), C(═O)C1-C6-alkyl, C(═O)C2-C6-alkenyl, C(═O)C2-C6-alkynyl, C(═O)C3-C6-cycloalkyl, C(═O)NH(C1-C6-alkyl), C(═O)N(C1-C6-alkyl)2, C(═O)N(C2-C6-alkenyl)2, C(═O)N(C2-C6-alkynyl)2, C(═O)N(C3-C7-cycloalkyl)2, CH(═S), C(═S)C1-C6-alkyl, C(═S)C2-C6-alkenyl, C(═S)C2-C6-alkynyl, C(═S)C3-C6-cycloalkyl, C(═S)O(C2-C6-alkenyl), C(═S)O(C2-C6-alkynyl), C(═S)O(C3-C7-cycloalkyl), C(═S)NH(C1-C6-alkyl), C(═S)NH(C2-C6-alkenyl), C(═S)NH(C2-C6-alkynyl), C(═S)NH(C3-C7-cycloalkyl), C(═S)N(C1-C6-alkyl)2, C(═S)N(C2-C6-alkenyl)2, C(═S)N(C2-C6-alkynyl)2, C(═S)N(C3-C7-cycloalkyl)2, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-alkynyl, ORY, C3-C6-cycloalkyl, five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein
Rx is as defined above;
RY is C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, phenyl and phenyl-C1-C6-alkyl; wherein the phenyl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the acyclic moieties of R9 are unsubstituted or substituted by groups R9a which independently of one another are selected from:
R9a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio and phenoxy, wherein the phenyl group is unsubstituted or substituted by substituents R91a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the carbocyclic, heteroaryl and aryl moieties of R9 are unsubstituted or substituted by groups R9b which independently of one another are selected from:
R9b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
and wherein n is defined as above
R10 is in each case independently selected from the substituents as defined for R9, wherein the possible substituents for R10 are R10a and R10b, respectively, which correspond to R9a and R9b, respectively;
R9, R10 together with the carbon atoms to which they are bound form a five-, six-, or seven-membered carbo-, heterocyclic or heteroaromatic ring; wherein the heterocyclic or heteroaromatic ring contains 1, 2, 3 or 4 heteroatoms selected from N, O and S, wherein N may carry one substituent RN selected from C1-C4-alkyl, C1-C4-halogenalkyl and SO2Ph, wherein Ph is unsubstituted or substituted by substituents selected from C1-C4-alkyl, halogen, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, and CN; and wherein S may be in the form of its oxide SO or SO2; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S); and wherein the carbo-, heterocyclic or heteroaromatic ring is substituent by (R11)m, wherein m is 0, 1, 2, 3 or 4;
R11 is in each case independently selected from halogen, OH, CN, NO2, SH, NH2, NH(C1-C4-alkyl), N(C1-C4-alkyl)2, NH—SO2—Rx, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, saturated or partially unsaturated three-, four-, five-, six-, seven-, eight-, nine-, or ten-membered carbo- and heterocycle, five- or six-membered heteroaryl and aryl; wherein the heterocycle and heteroaryl contains 1, 2 or 3 heteroatoms selected from N, O and S; and wherein in each case one or two CH2 groups of the carbo- or heterocycle may be replaced by a group independently selected from C(═O) and C(═S); and wherein
Rx is as defined above;
wherein the acyclic moieties of R11 are unsubstituted or carry 1, 2, 3 or up to the maximum possible number of identical or different groups R11a which independently of one another are selected from:
R11a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, C1-C6-alkylthio and phenoxy, wherein the phenyl group is unsubstituted or unsubstituted or substituted with R111a selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, CN, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-alkylthio;
wherein the carbocyclic, heterocyclic, heteroaryl and aryl moieties of R11 are unsubstituted or substituted with identical or different groups R11b which independently of one another are selected from:
R11b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy, and C1-C6-alkylthio;
R12 is in each case independently selected from hydrogen, OH, CH(═O), C(═O)C1-C6-alkyl, C(═O)C2-C6-alkenyl, C(═O)C2-C6-alkynyl, C(═O)C3-C6-cycloalkyl, C(═O)O(C1-C6-alkyl), C(═O)O(C2-C6-alkenyl), C(═O)O(C2-C6-alkynyl), C(═O)O(C3-C6-cycloalkyl), C(═O)NH(C1-C6-alkyl), C(═O)NH(C2-C6-alkenyl), C(═O)NH(C2-C6-alkynyl), C(═O)NH(C3-C6-cycloalkyl), C(═O)N(C1-C6-alkyl)2, C(═O)N(C2-C6-alkenyl)2, C(═O)N(C2-C6-alkynyl)2, C(═O)N(C3-C6-cycloalkyl)2, CH(═S), C(═S)C1-C6-alkyl, C(═S)C2-C6-alkenyl, C(═S)C2-C6-alkynyl, C(═S)C3-C6-cycloalkyl, C(═S)O(C1-C6-alkyl), C(═S)O(C2-C6-alkenyl), C(═S)O(C2-C6-alkynyl), C(═S)O(C3-C6-cycloalkyl), C(═S)NH(C1-C6-alkyl), C(═S)NH(C2-C6-alkenyl), C(═S)NH(C2-C6-alkynyl), C(═S)NH(C3-C6-cycloalkyl), C(═S)N(C1-C6-alkyl)2, C(═S)N(C2-C6-alkenyl)2, C(═S)N(C2-C6-alkynyl)2, C(═S)N(C3-C6-cycloalkyl)2, C1-C6-alkyl, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-alkoxy, C1-C4-halogenalkoxy, ORY, C1-C6-alkylthio, C1-C6-halogenalkylthio, C2-C6-alkenyl, C2-C6-halogenalkenyl C2-C6-alkynyl, C2-C6-halogenalkynyl, S(O)n—C1-C6-alkyl, S(O)n—C1-C6-halogenalkyl, S(O)n—C1-C6-alkoxy, S(O)n—C2-C6-alkenyl, S(O)n—C2-C6-alkynyl, S(O)naryl, SO2—NH(C1-C6-alkyl), SO2—NH(C1-C6-halogenalkyl), SO2—NH-aryl, tri-(C1-C6 alkyl)silyl and di-(C1-C6 alkoxy)phosphoryl), five- or six-membered heteroaryl and aryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S; wherein the aryl groups are unsubstituted or carry one, two, three, four or five substituents selected from the group consisting of CN, halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
RY is defined as above;
wherein the acyclic moieties of R12 are not further substituted or carry one, two, three or up to the maximum possible number of identical or different groups R12a which independently of one another are selected from:
R12a halogen, OH, CN, C1-C6-alkoxy, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halogencycloalkyl, C3-C6-halogencycloalkenyl, C1-C4-halogenalkoxy, C1-C6-alkylthio, five- or six-membered heteroaryl, phenyl and phenoxy, wherein the heteroaryl, phenyl and phenoxy group is unsubstituted or carries one, two, three, four or five substituents R78a′ selected from the group consisting of halogen, OH, C1-C4-alkyl, C1-C4-halogenalkyl, C1-C4-alkoxy and C1-C4-halogenalkoxy;
wherein the alicyclic, phenyl, heterocyclic and heteroaryl moieties of R12 are not further substituted or carry one, two, three, four, five or up to the maximum number of identical or different groups R12b which independently of one another are selected from:
R12b halogen, OH, CN, C1-C4-alkyl, C1-C4-alkoxy, C1-C4-halogenalkyl, C3-C6-cycloalkyl, C3-C6-halogencycloalkyl, C1-C4-halogenalkoxy and C1-C6-alkylthio;
and wherein n is defined as above;
and the N-oxides and the agriculturally acceptable salts thereof.
34: The method of claim 29, wherein R2 is H, F, Cl, Br, CN, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C1-C6-alkoxy, C3-C6-cycloalkyl, wherein the acyclic moieties of R2 are unsubstituted or substituted by halogen.
35: The method of claim 29, wherein R4 is independently selected from CN, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C3-C6-cycloalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, C3-C6-cycloalkynyl, C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), CR′═NOR″, C3-C6-halogencycloalkyl, a saturated three-, four-, five-, six-, membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; and C1-C6-alkyl substituted by CN, C1-C6-alkoxy, C1-C4-halogenalkoxy, C1-C6-alkylthio, S(O)n—C1-C6-alkyl, NH—SO2—Rx, NH(C1-C6-alkyl), N(C1-C6-alkyl)2, C(═O)C1-C6-alkyl, C(═O)O(C1-C6-alkyl), a saturated three-, four-, five-, six-, membered carbocycle, heterocycle, aryl or heteroaryl.
36: The method of claim 29, wherein R4 is independently selected from CN, C1-C6-halogenalkyl, C2-C6-alkenyl, C2-C6-halogenalkenyl, C2-C6-alkynyl, C2-C6-halogenalkynyl, C1-C6-alkoxy, a saturated three-, four-, five-, six-, membered carbocycle or heterocycle, a five- or six-membered heteroaryl or aryl; and C1-C6-alkyl substituted by a saturated three-, four-, five-, six-, membered carbocycle, heterocycle, aryl or heteroaryl.
37: The method of claim 29, wherein R7 and R8 together with the carbon atoms to which they are bound form a phenyl, wherein the phenyl carries zero, one, two, three or four substituents (R78)o.
38: The method of claim 29, wherein R7 and R8 together with the carbon atoms to which they are bound form a five-membered heteroaryl; wherein the heteroaryl contains one, two or three heteroatoms selected from N, O and S, and wherein the heteroaryl carries zero, one, two, three or four substituents (R78)o.
39: The method of claim 29, wherein R78 is in each case hydrogen, halogen, C1-C6-alkyl, C1-C6-halogenalkyl, C1-C6-alkoxy, C1-C6-halogenalkoxy or CN.
40: The method of claim 29, wherein R9 and R10 independently are selected from CN, halogen, C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkynyl, ORY, C3-C6-cycloalkyl.
RY is C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl or C2-C6-alkynyl.
41: The method of claim 29, wherein R12 is hydrogen, C(═O)C1-C6-alkyl, C(═O)OC1-C6-alkyl, C(═O)NHC1-C6-alkyl, S(O)2—C1-C6-alkyl, S(O)2-aryl, SO2—NH(C1-C6-alkyl), ORY, or C1-C4-alkyl.
RY is C1-C6-alkyl, C1-C6-halogenalkyl, C2-C6-alkenyl or C2-C6-alkynyl.
US16/500,541 2017-04-06 2018-03-26 Pyridine compounds Abandoned US20200187500A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17165179.7 2017-04-06
EP17165179 2017-04-06
PCT/EP2018/057594 WO2018184882A1 (en) 2017-04-06 2018-03-26 Pyridine compounds

Publications (1)

Publication Number Publication Date
US20200187500A1 true US20200187500A1 (en) 2020-06-18

Family

ID=58501267

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/500,541 Abandoned US20200187500A1 (en) 2017-04-06 2018-03-26 Pyridine compounds

Country Status (5)

Country Link
US (1) US20200187500A1 (en)
EP (1) EP3606914A1 (en)
CN (1) CN110475772A (en)
BR (1) BR112019020879A2 (en)
WO (1) WO2018184882A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019115343A1 (en) 2017-12-15 2019-06-20 Basf Se Fungicidal mixture comprising substituted pyridines

Family Cites Families (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3325503A (en) 1965-02-18 1967-06-13 Diamond Alkali Co Polychloro derivatives of mono- and dicyano pyridines and a method for their preparation
US3296272A (en) 1965-04-01 1967-01-03 Dow Chemical Co Sulfinyl- and sulfonylpyridines
DE1695886A1 (en) * 1966-06-16 1971-05-06 Thomae Gmbh Dr K 1- (2-Pyridyl) -1,2,3,4-tetrahydroisoquinolines and processes for their preparation
DE1620549A1 (en) * 1966-06-16 1970-08-20 Thomae Gmbh Dr K Process for the preparation of new pyridyl-tetrahydroisoquinolines
AU567433B2 (en) 1982-05-18 1987-11-19 University Of Florida Specific drug delivery
DE3338292A1 (en) 1983-10-21 1985-05-02 Basf Ag, 6700 Ludwigshafen 7-AMINO-AZOLO (1,5-A) -PYRIMIDINE AND FUNGICIDES CONTAINING THEM
CA1249832A (en) 1984-02-03 1989-02-07 Shionogi & Co., Ltd. Azolyl cycloalkanol derivatives and agricultural fungicides
DE3545319A1 (en) 1985-12-20 1987-06-25 Basf Ag ACRYLIC ACID ESTERS AND FUNGICIDES THAT CONTAIN THESE COMPOUNDS
CN1015981B (en) 1986-05-02 1992-03-25 施托福化学公司 Fungicidal pyridyl imidates
DE3782883T2 (en) 1986-08-12 1993-06-09 Mitsubishi Chem Ind PYRIDINE CARBOXAMIDE DERIVATIVES AND THEIR USE AS A FUNGICIDAL AGENT.
EP0284236B1 (en) 1987-03-17 1991-08-21 Her Majesty in Right of Canada as represented by the Minister of Agriculture Canada Methods and compositions for increasing the amounts of phosphorous and/or micronutrients available for plant uptake from soils
DE3731239A1 (en) 1987-09-17 1989-03-30 Basf Ag METHOD FOR CONTROLLING MUSHROOMS
ATE241699T1 (en) 1989-03-24 2003-06-15 Syngenta Participations Ag DISEASE RESISTANT TRANSGENIC PLANT
ES2153817T3 (en) 1989-08-03 2001-03-16 Australian Technological Innov MICONEMATICIDE.
AU628229B2 (en) 1989-11-10 1992-09-10 Agro-Kanesho Co. Ltd. Hexahydrotriazine compounds and insecticides
SK281286B6 (en) 1989-11-17 2001-02-12 Novo Nordisk A/S Mutant of bacillus thuringiensis deposited as subs. tenebrionis dsm 5480, preperation, pesticidal agents
JP2828186B2 (en) 1991-09-13 1998-11-25 宇部興産株式会社 Acrylate-based compounds, their preparation and fungicides
UA48104C2 (en) 1991-10-04 2002-08-15 Новартіс Аг Dna fragment including sequence that codes an insecticide protein with optimization for corn, dna fragment providing directed preferable for the stem core expression of the structural gene of the plant related to it, dna fragment providing specific for the pollen expression of related to it structural gene in the plant, recombinant dna molecule, method for obtaining a coding sequence of the insecticide protein optimized for corn, method of corn plants protection at least against one pest insect
DE69334354D1 (en) 1992-07-01 2011-05-26 Cornell Res Foundation Inc Elicitor of hypersensitivity reactions in plants
JP3046167B2 (en) 1992-12-25 2000-05-29 株式会社北海道グリーン興産 Plant disease control bacterium, control agent using the same, method for producing and use of control agent
US5484464A (en) 1993-12-29 1996-01-16 Philom Bios, Inc.. Methods and compositions for increasing the benefits of rhizobium inoculation to legume crop productivity
US5530195A (en) 1994-06-10 1996-06-25 Ciba-Geigy Corporation Bacillus thuringiensis gene encoding a toxin active against insects
DE19502065C2 (en) 1995-01-14 1996-05-02 Prophyta Biolog Pflanzenschutz Fungus isolate with fungicidal activity
US6406690B1 (en) 1995-04-17 2002-06-18 Minrav Industries Ltd. Bacillus firmus CNCM I-1582 or Bacillus cereus CNCM I-1562 for controlling nematodes
DE19650197A1 (en) 1996-12-04 1998-06-10 Bayer Ag 3-thiocarbamoylpyrazole derivatives
TW460476B (en) 1997-04-14 2001-10-21 American Cyanamid Co Fungicidal trifluoromethylalkylamino-triazolopyrimidines
CA2304270A1 (en) 1997-09-18 1999-03-25 Basf Aktiengesellschaft Benzamidoxim derivatives, intermediate products and methods for preparing and using them as fungicides
DE19750012A1 (en) 1997-11-12 1999-05-20 Bayer Ag Isothiazole carboxamides
EP1035772A4 (en) 1997-12-04 2001-03-28 Dow Agrosciences Llc Fungicidal compositions and methods, and compounds and methods for the preparation thereof
DE69927516T2 (en) 1998-11-17 2006-03-16 Kumiai Chemical Industry Co., Ltd. PYRIMIDINYLBENZIMIDAZOLE AND TRIAZINYLBENZIMIDAZOLE DERIVATIVES AND FUNGICIDES FOR AGRICULTURE / GARDENING
IT1303800B1 (en) 1998-11-30 2001-02-23 Isagro Ricerca Srl DIPEPTID COMPOUNDS HAVING HIGH FUNGICIDE AND AGRICULTURAL USE.
JP3417862B2 (en) 1999-02-02 2003-06-16 新東工業株式会社 Silica gel highly loaded with titanium oxide photocatalyst and method for producing the same
AU770077B2 (en) 1999-03-11 2004-02-12 Dow Agrosciences Llc Heterocyclic substituted isoxazolidines and their use as fungicides
US6586617B1 (en) 1999-04-28 2003-07-01 Sumitomo Chemical Takeda Agro Company, Limited Sulfonamide derivatives
UA73307C2 (en) 1999-08-05 2005-07-15 Куміаі Кемікал Індастрі Ко., Лтд. Carbamate derivative and fungicide of agricultural/horticultural destination
DE10021412A1 (en) 1999-12-13 2001-06-21 Bayer Ag Fungicidal active ingredient combinations
WO2001054501A2 (en) 2000-01-25 2001-08-02 Syngenta Participations Ag Herbicidal composition
US6376548B1 (en) 2000-01-28 2002-04-23 Rohm And Haas Company Enhanced propertied pesticides
IL141034A0 (en) 2000-02-04 2002-02-10 Sumitomo Chemical Co Uracil compounds and use thereof
CN1114590C (en) 2000-02-24 2003-07-16 沈阳化工研究院 Unsaturated oximino ether bactericide
WO2001072968A1 (en) 2000-03-31 2001-10-04 Hokkaido Green Kosan, Incorporated Chlamydospores and process for producing the same
AU2001276988B2 (en) 2000-07-21 2007-01-25 Dendreon Corporation Peptides as NS3-serine protease inhibitors of hepatitis C virus
WO2002015701A2 (en) 2000-08-25 2002-02-28 Syngenta Participations Ag Bacillus thuringiensis crystal protein hybrids
AU2002211233A1 (en) 2000-09-18 2002-03-26 E.I. Du Pont De Nemours And Company Pyridinyl amides and imides for use as fungicides
AU2002228640B2 (en) 2000-11-17 2005-11-10 Dow Agrosciences Llc Compounds having fungicidal activity and processes to make and use same
AU2002255715B2 (en) 2001-03-14 2008-05-01 State Of Israel- Ministry Of Agriculture Agricultural Research Organisation A novel antagonistic yeast useful in controlling spoilage of agricultural produce, methods of use thereof and compositions containing same
JP5034142B2 (en) 2001-04-20 2012-09-26 住友化学株式会社 Plant disease control composition
DE10136065A1 (en) 2001-07-25 2003-02-13 Bayer Cropscience Ag pyrazolylcarboxanilides
AR037228A1 (en) 2001-07-30 2004-11-03 Dow Agrosciences Llc ACID COMPOUNDS 6- (ARIL OR HETEROARIL) -4-AMYNOPYCOLINIC, HERBICIDE COMPOSITION THAT UNDERSTANDS AND METHOD TO CONTROL UNWANTED VEGETATION
FR2828196A1 (en) 2001-08-03 2003-02-07 Aventis Cropscience Sa New iodochromone derivatives, useful for the prevention or cure of plant fungal disorders, especially in cereals, vines, fruits, legumes or ornamental plants
CA2457575C (en) 2001-08-17 2010-12-21 Sankyo Agro Company, Limited 3-phenoxy-4-pyridazinol derivatives and herbicidal composition containing the same
KR100855652B1 (en) 2001-08-20 2008-09-03 닛뽕소다 가부시키가이샤 Tetrazoyl oxime derivative and agricultural chemical containing the same as active ingredient
US7230167B2 (en) 2001-08-31 2007-06-12 Syngenta Participations Ag Modified Cry3A toxins and nucleic acid sequences coding therefor
WO2003052073A2 (en) 2001-12-17 2003-06-26 Syngenta Participations Ag Novel corn event
WO2003053145A1 (en) 2001-12-21 2003-07-03 Nissan Chemical Industries, Ltd. Bactericidal composition
TWI327462B (en) 2002-01-18 2010-07-21 Sumitomo Chemical Co Condensed heterocyclic sulfonyl urea compound, a herbicide containing the same, and a method for weed control using the same
US20030166476A1 (en) 2002-01-31 2003-09-04 Winemiller Mark D. Lubricating oil compositions with improved friction properties
DE10204390A1 (en) 2002-02-04 2003-08-14 Bayer Cropscience Ag Disubstituted thiazolylcarboxanilides
CA2477931C (en) 2002-03-05 2011-02-01 Josef Ehrenfreund O-cyclopropyl-carboxanilides and their use as fungicides
KR20050032107A (en) 2002-08-02 2005-04-06 메사추세츠 인스티튜트 오브 테크놀로지 Copper-catalyzed formation of carbon-heteroatom and carbon-carbon bonds
GB0227966D0 (en) 2002-11-29 2003-01-08 Syngenta Participations Ag Organic Compounds
WO2004083193A1 (en) 2003-03-17 2004-09-30 Sumitomo Chemical Company, Limited Amide compound and bactericide composition containing the same
CN1201657C (en) 2003-03-25 2005-05-18 浙江省化工研究院 Methoxy methyl acrylate compounds as bactericidal agent
TWI355894B (en) 2003-12-19 2012-01-11 Du Pont Herbicidal pyrimidines
JP4939057B2 (en) * 2004-01-23 2012-05-23 三井化学アグロ株式会社 3- (Dihydro (tetrahydro) isoquinolin-1-yl) quinoline compounds
SI1725561T1 (en) 2004-03-10 2010-09-30 Basf Se 5,6-dialkyl-7-amino-triazolopyrimidines, method for their production, their use for controlling pathogenic fungi and agents containing said compounds
JP2007527886A (en) 2004-03-10 2007-10-04 ビーエーエスエフ アクチェンゲゼルシャフト 5,6-Dialkyl-7-aminotriazolopyrimidines, their preparation, and their use for controlling harmful fungi, and compositions containing these compounds
US20080020999A1 (en) 2004-06-03 2008-01-24 Klapproth Michael C Fungicidal Mixtures Of Amidinylphenyl Compounds
WO2005123690A1 (en) 2004-06-18 2005-12-29 Basf Aktiengesellschaft 1-methyl-3-difluoromethyl-pyrazol-4-carbonic acid-(ortho-phenyl)-anilides, and use thereof as a fungicide
CA2471555C (en) 2004-06-18 2011-05-17 Thomas D. Johnson Controlling plant pathogens with fungal/bacterial antagonist combinations comprising trichoderma virens and bacillus amyloliquefaciens
CN1968935A (en) 2004-06-18 2007-05-23 巴斯福股份公司 1-methyl-3-trifluoromethyl-pyrazole-4-carboxylic acid (ortho-phenyl)-anilides and to use thereof as fungicide
GB0418048D0 (en) 2004-08-12 2004-09-15 Syngenta Participations Ag Method for protecting useful plants or plant propagation material
US8020343B2 (en) 2004-12-23 2011-09-20 Becker Underwood Inc. Enhanced shelf life and on seed stabilization of liquid bacterium inoculants
DE102005007160A1 (en) 2005-02-16 2006-08-24 Basf Ag Pyrazolecarboxylic acid anilides, process for their preparation and compositions containing them for controlling harmful fungi
ES2308726T3 (en) 2005-02-16 2008-12-01 Basf Se 5-ALCOXIAQUIL-6-ALQUIL-7-AMINO-AZOLOPIRIMIDINAS, PROCEDURE FOR ITS OBTAINING AND ITS EMPLOYMENT FOR THE FIGHT AGAINST DAMAGING FUNGES AS WELL AS AGENTS CONTAINING THEM.
DE102005009458A1 (en) 2005-03-02 2006-09-07 Bayer Cropscience Ag pyrazolylcarboxanilides
SI1904475T1 (en) 2005-07-07 2011-12-30 Basf Se N-thio-anthranilamid compounds and their use as pesticides
TW200740788A (en) * 2005-07-22 2007-11-01 Sankyo Agro Co Ltd 3-(Isoquinol-1-yl) quinoline derivatives
CN1907024A (en) 2005-08-03 2007-02-07 浙江化工科技集团有限公司 Methoxyl group displacement methyl acrylate compound bactericidal agent
CA2626103C (en) 2006-01-13 2013-07-30 Dow Agrosciences Llc 6-(poly-substituted aryl)-4-aminopicolinates and their use as herbicides
EP1983832A2 (en) 2006-02-09 2008-10-29 Syngeta Participations AG A method of protecting a plant propagation material, a plant, and/or plant organs
US7714140B2 (en) 2006-05-08 2010-05-11 Kumiai Chemical Industry, Co. Ltd. 1,2 Benzoisothiazole derivative, and agricultural or horticultural plant disease- controlling agent
WO2008013622A2 (en) 2006-07-27 2008-01-31 E. I. Du Pont De Nemours And Company Fungicidal azocyclic amides
US7265247B1 (en) 2006-07-28 2007-09-04 Im&T Research, Inc. Substituted phenylsulfur trifluoride and other like fluorinating agents
PT2149560E (en) 2007-05-22 2015-07-13 Astellas Pharma Inc 1-substituted tetrahydroisoquinoline compound
EP2223919B1 (en) * 2007-12-26 2014-10-15 Nippon Soda Co., Ltd. Nitrogen-containing heterocyclic compounds and their use as agricultural and horticultural fungicides
DK2234489T3 (en) 2008-01-15 2017-07-10 Bayer Ip Gmbh PESTICID COMPOSITION CONTAINING A TETRAZOLYLOXIME DERIVATIVE AND A FUNGICIDE OR INSECTICID ACTIVE SUBSTANCE
DK2562162T3 (en) 2008-01-22 2015-11-23 Dow Agrosciences Llc N-cyano-4-amino-5-fluoro-pyrimidine derivatives as fungicides
EP2090576A1 (en) 2008-02-01 2009-08-19 Merz Pharma GmbH & Co.KGaA 6-halo-pyrazolo[1,5-a]pyridines, a process for their preparation and their use as metabotropic glutamate receptor (mGluR) modulators
AU2009234015A1 (en) 2008-04-07 2009-10-15 Bayer Intellectual Property Gmbh Stable aqueous spore-containing formulation
GB0823002D0 (en) 2008-12-17 2009-01-28 Syngenta Participations Ag Isoxazoles derivatives with plant growth regulating properties
US8551919B2 (en) 2009-04-13 2013-10-08 University Of Delaware Methods for promoting plant health
CN101906075B (en) 2009-06-05 2012-11-07 中国中化股份有限公司 E-type phenyl acrylic acid ester compound containing substituted anilino pyrimidine group and applications thereof
US8130543B2 (en) 2009-08-13 2012-03-06 Macronix International Co., Ltd. Method and apparatus for increasing memory programming efficiency through dynamic switching of sense amplifiers
EA019396B1 (en) 2009-09-01 2014-03-31 ДАУ АГРОСАЙЕНСИЗ ЭлЭлСи Synergistic fungicidal compositions containing a 5-fluoropyrimidine derivative for fungal control in cereals
EP2499147A4 (en) 2009-10-07 2013-03-06 Msn Lab Ltd Improved processes for preparing prasugrel and pharmaceutically acceptable salts theroeof
AU2009357098B2 (en) 2009-12-22 2014-06-05 Mitsui Chemicals Crop & Life Solutions, Inc. Plant disease control composition and method for controlling plant disease by applying the same
LT2522658T (en) 2010-01-04 2018-11-26 Nippon Soda Co., Ltd. Nitrogen-containing heterocyclic compound and agricultural/horticultural germicide
EP2542047B1 (en) 2010-03-01 2017-05-10 University of Delaware Compositions and methods for increasing biomass and tolerance to pathogens in plants
DK2563135T3 (en) 2010-04-28 2016-12-12 Sumitomo Chemical Co Plant disease control composition and use thereof
WO2012051036A1 (en) 2010-10-11 2012-04-19 Merck Sharp & Dohme Corp. Quinazolinone-type compounds as crth2 antagonists
JP5829216B2 (en) 2010-11-10 2015-12-09 クミアイ化学工業株式会社 Microbial pesticide composition
BR112013014458B1 (en) 2010-12-10 2023-09-26 Auburn University USE OF AN INOCULANT FOR THE PRODUCTION OF VOLATILE ORGANIC COMPOUNDS IN PLANTS, AND METHOD FOR MODIFYING THE BEHAVIOR OF INSECTS ON A PLANT
IT1403275B1 (en) 2010-12-20 2013-10-17 Isagro Ricerca Srl HIGH-ACTIVITY INDANYLANILIDES FUNGICIDE AND THEIR PHYTOSANITARY COMPOSITIONS
TWI583308B (en) 2011-05-31 2017-05-21 組合化學工業股份有限公司 Method for controlling rice disease
EP2532233A1 (en) 2011-06-07 2012-12-12 Bayer CropScience AG Active compound combinations
KR101641800B1 (en) 2011-07-13 2016-07-21 바스프 아그로 비.브이. Fungicidal substituted 2-[2-halogenalkyl-4-(phenoxy)-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds
AU2012285981A1 (en) 2011-07-15 2014-01-30 Basf Se Fungicidal alkyl-substituted 2-[2-chloro-4-(4-chloro-phenoxy)-phenyl]-1-[1,2,4]triazol-1-yl-ethanol compounds
MX2014001609A (en) 2011-08-12 2014-05-01 Basf Se N-thio-anthranilamide compounds and their use as pesticides.
EP2742036A1 (en) 2011-08-12 2014-06-18 Basf Se N-thio-anthranilamide compounds and their use as pesticides
CA2845732C (en) 2011-08-27 2019-07-16 Marrone Bio Innovations, Inc. Isolated bacterial strain of the genus burkholderia and pesticidal metabolites therefrom-formulations and uses
EP2762002B1 (en) 2011-09-26 2019-07-03 Nippon Soda Co., Ltd. Agricultural and horticultural fungicidal composition
RU2616608C2 (en) 2011-09-29 2017-04-18 Мицуи Кемикалз Агро, Инк. Method of producing derivatives of 4,4-difluoro-3,4-dihydroisoquinolin
WO2013092224A1 (en) 2011-12-21 2013-06-27 Basf Se Use of strobilurin type compounds for combating phytopathogenic fungi resistant to qo inhibitors
TWI568721B (en) 2012-02-01 2017-02-01 杜邦股份有限公司 Fungicidal pyrazole mixtures
US8937204B1 (en) 2012-02-09 2015-01-20 Ube Industries, Ltd. Processes for isolating fluorinated products
PE20190342A1 (en) 2012-02-27 2019-03-07 Bayer Ip Gmbh ACTIVE COMPOUND COMBINATIONS
JP6107377B2 (en) 2012-04-27 2017-04-05 住友化学株式会社 Tetrazolinone compounds and uses thereof
CN103387541B (en) 2012-05-10 2016-02-10 中国中化股份有限公司 A kind of preparation method of substituted pyrazolecarboxylic ether compound
EP2671883A1 (en) 2012-06-05 2013-12-11 Bioprojet New 6,11-dihydro-5H-benzo[d]imidazo[1,2-a]azepines derivatives as histamine H4 receptor ligands
BR112015003688B1 (en) 2012-08-22 2020-09-24 Basf Se MIXTURE, AGRICULTURAL COMPOSITION, SEED, USE OF THE MIXTURE AND METHOD FOR THE CONTROL OF PHYTOPATHOGEN HARMFUL FUNGI
WO2014060177A1 (en) 2012-10-16 2014-04-24 Syngenta Participations Ag Fungicidal compositions
WO2014124369A1 (en) 2013-02-11 2014-08-14 Bayer Cropscience Lp Compositions comprising a streptomyces-based biological control agent and a fungicide
US10729388B2 (en) 2013-10-28 2020-08-04 Dexcom, Inc. Devices used in connection with continuous analyte monitoring that provide the user with one or more notifications, and related methods
EP2865265A1 (en) 2014-02-13 2015-04-29 Bayer CropScience AG Active compound combinations comprising phenylamidine compounds and biological control agents
CN111892576A (en) 2015-03-27 2020-11-06 先正达参股股份有限公司 Microbicidal heterobicyclic derivatives
BR112018001400B1 (en) * 2015-07-24 2021-11-09 Basf Se COMPOUNDS, COMPOSITION, USE OF COMPOUND, METHOD FOR FIGHTING PHYTOPATHOGENIC FUNGI AND SEED
CN106496278A (en) * 2016-09-02 2017-03-15 瑞声光电科技(常州)有限公司 The electroluminescent device of complex of iridium and its preparation method and application complex of iridium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine English Translation of JP2011-148714 from JPO, 2011, no pagination. *

Also Published As

Publication number Publication date
CN110475772A (en) 2019-11-19
EP3606914A1 (en) 2020-02-12
WO2018184882A1 (en) 2018-10-11
BR112019020879A2 (en) 2020-04-28

Similar Documents

Publication Publication Date Title
US10499644B2 (en) Substituted oxadiazoles for combating phytopathogenic fungi
US10674727B2 (en) Substituted oxadiazoles for combating phytopathogenic fungi
US10986839B2 (en) Substituted oxadiazoles for combating phytopathogenic fungi
US11064697B2 (en) Pyridine compounds useful for combating phytopathogenic fungi
US11425910B2 (en) Substituted oxadiazoles for combating phytopathogenic fungi
WO2016156129A1 (en) Quinoline compounds
US20210084900A1 (en) Substituted 5-(haloalkyl)-5-hydroxy-isoxazoles for Combating Phytopathogenic Fungi
US20190359589A1 (en) Fungicidal pyridine compounds
WO2018073110A1 (en) Quinoline compounds as fungicides
WO2018054711A1 (en) Pyridine compounds for controlling phytopathogenic harmful fungi
WO2018149754A1 (en) Pyridine compounds
WO2018054723A1 (en) Pyridine compounds for controlling phytopathogenic harmful fungi
US11737463B2 (en) Pyridine and pyrazine compounds
US20200187500A1 (en) Pyridine compounds
WO2018054721A1 (en) Pyridine compounds for controlling phytopathogenic harmful fungi
WO2018065182A1 (en) Reduced quinoline compounds as antifuni agents
EA042940B1 (en) PYRIDINE AND PYRAZINE COMPOUNDS
EP2746256A1 (en) Fungicidal imidazolyl and triazolyl compounds

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: BASF SE, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ESCRIBANO CUESTA, ANA;MUELLER, BERND;CAMBEIS, ERICA;AND OTHERS;SIGNING DATES FROM 20180420 TO 20180430;REEL/FRAME:052406/0298

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION