US20200148455A1 - Flexible Container with Three-Dimensional Random Loop Material - Google Patents

Flexible Container with Three-Dimensional Random Loop Material Download PDF

Info

Publication number
US20200148455A1
US20200148455A1 US16/618,272 US201816618272A US2020148455A1 US 20200148455 A1 US20200148455 A1 US 20200148455A1 US 201816618272 A US201816618272 A US 201816618272A US 2020148455 A1 US2020148455 A1 US 2020148455A1
Authority
US
United States
Prior art keywords
ethylene
multilayer film
flexible container
closed chamber
3drlm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/618,272
Other languages
English (en)
Inventor
Jesus Nieto
Eduardo Alvarez
Luis Alberto Santini
Viraj K. Shah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Global Technologies LLC
Original Assignee
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Global Technologies LLC filed Critical Dow Global Technologies LLC
Publication of US20200148455A1 publication Critical patent/US20200148455A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/0055Containers or packages provided with a flexible bag or a deformable membrane or diaphragm for expelling the contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/008Standing pouches, i.e. "Standbeutel"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/54Cards, coupons, or other inserts or accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D75/00Packages comprising articles or materials partially or wholly enclosed in strips, sheets, blanks, tubes, or webs of flexible sheet material, e.g. in folded wrappers
    • B65D75/52Details
    • B65D75/58Opening or contents-removing devices added or incorporated during package manufacture
    • B65D75/5861Spouts
    • B65D75/5872Non-integral spouts
    • B65D75/5883Non-integral spouts connected to the package at the sealed junction of two package walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • B65D85/72Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for for edible or potable liquids, semiliquids, or plastic or pasty materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D2231/00Means for facilitating the complete expelling of the contents
    • B65D2231/001Means for facilitating the complete expelling of the contents the container being a bag

Definitions

  • Liquids such as consumer liquids (beverages, cleaning solutions, health care liquids, etc.) are frequently packaged in flexible containers made from flexible polymeric films. Common structures for these flexible containers include pillow pouches and stand-up pouches.
  • Pouch collapse traps the remaining liquid in folds and crevices of the deformed SUP, impeding—and oftentimes preventing—removal of the entire volume of the stored liquid. Pouch collapse also robs the SUP of its ability to stand upright, making the SUP unstable and difficult to handle by the consumer.
  • the flexible container comprises a first multilayer film and a second multilayer film.
  • Each multilayer film comprises a seal layer.
  • the multilayer films are arranged such that seal layers oppose each other and the second multilayer film is superimposed on the first multilayer film.
  • the films are sealed along a common peripheral edge to form a closed chamber.
  • a free moving sheet of three-dimensional random loop material (3DRLM) is located the closed chamber.
  • the flexible container comprises a first multilayer film and a second multilayer film.
  • Each multilayer film comprises a seal layer.
  • the multilayer films are arranged such that seal layers oppose each other and the second multilayer film is superimposed on the first multilayer film.
  • the films are sealed along a common peripheral edge to form a closed chamber.
  • the closed chamber has opposing inner surfaces.
  • An oversized sheet of three-dimensional random loop material (3DRLM) is located in the closed chamber.
  • the oversized sheet of 3DRLM has a first end and an opposing second end. The first end and the second end of the oversized sheet of 3DRLM compressively engage opposing surfaces of the closed chamber.
  • FIG. 1 is a break-away perspective view a flexible container in accordance with an embodiment of the present disclosure.
  • FIG. 1A is an enlarged perspective view of Area 1A of FIG. 1 .
  • FIG. 2 is a perspective view of a consumer squeezing the flexible container of FIG. 1 to discharge liquid therefrom.
  • FIG. 3 is a front perspective view of a flexible container and a sheet of three dimensional random loop material in accordance with another embodiment of the present disclosure.
  • FIG. 4 is a break-away front elevational view of the flexible container of FIG. 3 with the sheet of three dimensional random loop material installed therein.
  • FIG. 5 is a perspective view of a consumer squeezing the flexible container of FIG. 4 to discharge liquid therefrom.
  • the numerical ranges disclosed herein include all values from, and including, the lower value and the upper value.
  • explicit values e.g., 1, or 2, or 3 to 5, or 6, or 7
  • any subrange between any two explicit values is included (e.g., 1 to 2; 2 to 6; 5 to 7; 3 to 7; 5 to 6; etc.).
  • Apparent density A sample material is cut into a square piece of 38 cm ⁇ 38 cm (15 in ⁇ 15 in) in size. The volume of this piece is calculated from the thickness measured at four points. The division of the weight by the volume gives the apparent density (an average of four measurements is taken) with values reported in grams per cubic centimeter, g/cc.
  • Bending Stiffness The bending stiffness is measured in accordance with DIN 53121 standard, with compression molded plaques of 550 ⁇ m thickness, using a Frank-PTI Bending Tester. The samples are prepared by compression molding of resin granules per ISO 293 standard. Conditions for compression molding are chosen per ISO 1872-2007 standard. The average cooling rate of the melt is 15° C./min. Bending stiffness is measured in 2-point bending configuration at room temperature with a span of 20 mm, a sample width of 15 mm, and a bending angle of 40°. Bending is applied at 6°/second (s) and the force readings are obtained from 6 to 600 s, after the bending is complete. Each material is evaluated four times with results reported in Newton millimeters (“Nmm”).
  • Nmm Newton millimeters
  • Blend is a composition of two or more polymers. Such a blend may or may not be miscible. Such a blend may or may not be phase separated. Such a blend may or may not contain one or more domain configurations, as determined from transmission electron spectroscopy, light scattering, x-ray scattering, and any other method known in the art. Blends are not laminates, but one or more layers of a laminate can comprise a blend.
  • the samples are prepared by adding approximately 2.7 g of a 50/50 mixture of tetrachloroethane-d2/orthodichlorobenzene that is 0.025M in chromium acetylacetonate (relaxation agent) to 0.21 g sample in a 10 mm NMR tube.
  • the samples are dissolved and homogenized by heating the tube and its contents to 150° C.
  • the data is collected using a Bruker 400 MHz spectrometer equipped with a Bruker Dual DUL high-temperature CryoProbe.
  • the data is acquired using 320 transients per data file, a 7.3 sec pulse repetition delay (6 sec delay+1.3 sec acq. time), 90 degree flip angles, and inverse gated decoupling with a sample temperature of 125° C. All measurements are made on non-spinning samples in locked mode. Samples are homogenized immediately prior to insertion into the heated (130° C.) NMR Sample changer, and are allowed to thermally equilibrate in the probe for 15 minutes prior to data acquisition.
  • composition and like terms is a mixture of two or more materials. Included in compositions are pre-reaction, reaction and post-reaction mixtures, the latter of which will include reaction products and by-products as well as unreacted components of the reaction mixture and decomposition products, if any, formed from the one or more components of the pre-reaction or reaction mixture.
  • compositions claimed through use of the term “comprising” may include any additional additive, adjuvant, or compound, whether polymeric or otherwise, unless stated to the contrary.
  • the term, “consisting essentially of” excludes from the scope of any succeeding recitation any other component, step or procedure, excepting those that are not essential to operability.
  • the term “consisting of” excludes any component, step or procedure not specifically delineated or listed.
  • CEF column is packed by the Dow Chemical Company with glass beads at 125 ⁇ m +6% (MO-SCI Specialty Products) with 1 ⁇ 8 inch stainless tubing. Glass beads are acid washed by MO-SCI Specialty with the request from The Dow Chemical Company. Column volume is 2.06 ml. Column temperature calibration is performed by using a mixture of NIST Standard Reference Material Linear polyethylene 1475a (1.0 mg/ml) and Eicosane (2 mg/ml) in ODCB.
  • NIST linear polyethylene 1475a has a peak temperature at 101.0° C.
  • Eicosane has a peak temperature of 30.0° C.
  • the CEF column resolution is calculated with a mixture of NIST linear polyethylene 1475a (1.0 mg/ml) and hexacontane (Fluka, purum, >97.0 , 1 mg/ml).
  • a baseline separation of hexacontane and NIST polyethylene 1475a is achieved.
  • the area of hexacontane (from 35.0 to 67.0° C.) to the area of NIST 1475a from 67.0 to 110.0° C. is 50 to 50, the amount of soluble fraction below 35.0° C. is ⁇ 1.8 wt %.
  • the CEF column resolution is defined in the following equation:
  • Density is measured in accordance with ASTM D 792 with values reported in grams per cubic centimeter, g/cc.
  • Differential Scanning calorimetry is used to measure the melting and crystallization behavior of a polymer over a wide range of temperatures.
  • DSC Differential Scanning calorimetry
  • the TA Instruments Q1000 DSC equipped with an RCS (refrigerated cooling system) and an autosampler is used to perform this analysis.
  • RCS refrigerated cooling system
  • an autosampler is used to perform this analysis.
  • a nitrogen purge gas flow of 50 ml/min is used.
  • Each sample is melt pressed into a thin film at about 175° C.; the melted sample is then air-cooled to room temperature (approx. 25° C.).
  • the film sample is formed by pressing a “0.1 to 0.2 gram” sample at 175° C.
  • a 3-10 mg, 6 mm diameter specimen is extracted from the cooled polymer, weighed, placed in a light aluminum pan (ca 50 mg), and crimped shut. Analysis is then performed to determine its thermal properties. The thermal behavior of the sample is determined by ramping the sample temperature up and down to create a heat flow versus temperature profile. First, the sample is rapidly heated to 180° C., and held isothermal for five minutes, in order to remove its thermal history. Next, the sample is cooled to ⁇ 40° C., at a 10° C./minute cooling rate, and held isothermal at ⁇ 40° C. for five minutes. The sample is then heated to 150° C.
  • the cooling and second heating curves are recorded.
  • the cool curve is analyzed by setting baseline endpoints from the beginning of crystallization to ⁇ 20° C.
  • the heat curve is analyzed by setting baseline endpoints from ⁇ 20° C. to the end of melt.
  • the heat of fusion (Hf) and the peak melting temperature are reported from the second heat curve. Peak crystallization temperature and onset crystallization temperature are determined from the cooling curve.
  • Resin pellets are compression molded following ASTM D4703, Annex Al, Method C to a thickness of approximately 5-10 mil.
  • Microtensile test specimens of geometry as detailed in ASTM D1708 are punched out from the molded sheet. The test specimens are conditioned for 40 hours prior to testing in accordance with Procedure A of Practice D618.
  • the samples are tested in a screw-driven or hydraulically-driven tensile tester using flat, rubber faced grips.
  • the grip separation is set at 22 mm, equal to the gauge length of the microtensile specimens.
  • the sample is extended to a strain of 100% at a rate of 100%/min and held for 30 s.
  • the crosshead is then returned to the original grip separation at the same rate and held for 60 s.
  • the sample is then strained to 100% at the same 100%/min strain rate.
  • Elastic recovery may be calculated as follows:
  • ethylene-based polymer is a polymer that contains more than 50 weight percent polymerized ethylene monomer (based on the total weight of polymerizable monomers) and, optionally, may contain at least one comonomer.
  • Ethylene-based polymer includes ethylene homopolymer, and ethylene copolymer (meaning units derived from ethylene and one or more comonomers).
  • the terms “ethylene-based polymer” and “polyethylene” may be used interchangeably.
  • Nonlimiting examples of ethylene-based polymer (polyethylene) include low density polyethylene (LDPE) and linear polyethylene.
  • linear polyethylene examples include linear low density polyethylene (LLDPE), ultra low density polyethylene (ULDPE), very low density polyethylene (VLDPE), multi-component ethylene-based copolymer (EPE), ethylene/a-olefin multi-block copolymers (also known as olefin block copolymer (OBC)), single-site catalyzed linear low density polyethylene (m-LLDPE), substantially linear, or linear, plastomers/elastomers, and high density polyethylene (HDPE).
  • LLDPE linear low density polyethylene
  • ULDPE ultra low density polyethylene
  • VLDPE very low density polyethylene
  • EPE multi-component ethylene-based copolymer
  • EPE ethylene/a-olefin multi-block copolymers
  • m-LLDPE single-site catalyzed linear low density polyethylene
  • HDPE high density polyethylene
  • polyethylene may be produced in gas-phase, fluidized bed reactors, liquid phase slurry process reactors, or liquid phase solution process reactors, using a heterogeneous catalyst system, such as Ziegler-Natta catalyst, a homogeneous catalyst system, comprising Group 4 transition metals and ligand structures such as metallocene, non-metallocene metal-centered, heteroaryl, heterovalent aryloxyether, phosphinimine, and others.
  • a heterogeneous catalyst system such as Ziegler-Natta catalyst
  • a homogeneous catalyst system comprising Group 4 transition metals and ligand structures such as metallocene, non-metallocene metal-centered, heteroaryl, heterovalent aryloxyether, phosphinimine, and others.
  • a heterogeneous catalyst system such as Ziegler-Natta catalyst
  • a homogeneous catalyst system comprising Group 4 transition metals and ligand structures such as metallocene, non-metallocene metal-centered,
  • High density polyethylene is an ethylene homopolymer or an ethylene/ ⁇ -olefin copolymer with at least one C 4 -C 10 ⁇ -olefin comonomer, or C 4- C 8 ⁇ -olefin comonomer and a density from greater than 0.94 g/cc, or 0.945 g/cc, or 0.95 g/cc, or 0.955 g/cc to 0.96 g/cc, or 0.97 g/cc, or 0.98 g/cc.
  • the HDPE can be a monomodal copolymer or a multimodal copolymer.
  • a “monomodal ethylene copolymer” is an ethylene/C 4 -C 10 ⁇ -olefin copolymer that has one distinct peak in a gel permeation chromatography (GPC) showing the molecular weight distribution.
  • a “multimodal ethylene copolymer” is an ethylene/C 4 -C 10 ⁇ -olefin copolymer that has at least two distinct peaks in a GPC showing the molecular weight distribution. Multimodal includes copolymer having two peaks (bimodal) as well as copolymer having more than two peaks.
  • HDPE high Density Polyethylene
  • HDPE Low Density Polyethylene
  • ELITETM Enhanced Polyethylene Resins available from The Dow Chemical Company
  • CONTINUUMTM Bimodal Polyethylene Resins available from The Dow Chemical Company
  • LUPOLENTM available from LyondellBasell
  • HDPE products from Borealis, lneos, and ExxonMobil.
  • An “interpolymer” is a polymer prepared by the polymerization of at least two different monomers. This generic term includes copolymers, usually employed to refer to polymers prepared from two different monomers, and polymers prepared from more than two different monomers, e.g., terpolymers, tetrapolymers, etc.
  • Low density polyethylene (or “LDPE”) consists of ethylene homopolymer, or ethylene/ ⁇ -olefin copolymer comprising at least one C 3 -C 10 ⁇ -olefin, preferably C 3 -C 4 that has a density from 0.915 g/cc to 0.940 g/cc and contains long chain branching with broad MWD.
  • LDPE is typically produced by way of high pressure free radical polymerization (tubular reactor or autoclave with free radical initiator).
  • Nonlimiting examples of LDPE include MarFlexTM (Chevron Phillips), LUPOLENTM (LyondellBasell), as well as LDPE products from Borealis, Ineos, ExxonMobil, and others.
  • Linear low density polyethylene is a linear ethylene/a-olefin copolymer containing heterogeneous short-chain branching distribution comprising units derived from ethylene and units derived from at least one C 3 -C 10 ⁇ -olefin comonomer or at least one C 4 -C 8 ⁇ -olefin comonomer, or at least one C 6 -C 8 a-olefin comonomer.
  • LLDPE is characterized by little, if any, long chain branching, in contrast to conventional LDPE.
  • LLDPE has a density from 0.910 g/cc, or 0.915 g/cc, or 0.920 g/cc, or 0.925 g/cc to 0.930 g/cc, or 0.935 g/cc, or 0.940 g/cc.
  • LLDPE include TUFLINTM linear low density polyethylene resins (available from The Dow Chemical Company), DOWLEXTM polyethylene resins (available from the Dow Chemical Company), and MARLEXTM polyethylene (available from Chevron Phillips).
  • ULDPE Ultra low density polyethylene
  • VLDPE very low density polyethylene
  • ULDPE and VLDPE each is a linear ethylene/a-olefin copolymer containing heterogeneous short-chain branching distribution comprising units derived from ethylene and units derived from at least one C 3 -C 10 ⁇ -olefin comonomer, or at least one C 4 -C 8 ⁇ -olefin comonomer, or at least one C 6 -C 8 ⁇ -olefin comonomer.
  • ULDPE and VLDPE each has a density from 0.885 g/cc, or 0.90 g/cc to 0.915 g/cc.
  • Nonlimiting examples of ULDPE and VLDPE include ATTANETM ultra low density polyethylene resins (available form The Dow Chemical Company) and FLEXOMERTM very low density polyethylene resins (available from The Dow Chemical Company).
  • Multi-component ethylene-based copolymer comprises units derived from ethylene and units derived from at least one C 3 -C 10 ⁇ -olefin comonomer, or at least one C 4 -C 8 ⁇ -olefin comonomer, or at least one C 6 -C 8 ⁇ -olefin comonomer, such as described in patent references U.S. Pat. Nos. 6,111,023; 5,677,383; and 6,984,695.
  • EPE resins have a density from 0.905 g/cc, or 0.908 g/cc, or 0.912 g/cc, or 0.920 g/cc to 0.926 g/cc, or 0.929 g/cc, or 0.940 g/cc, or 0.962 g/cc.
  • EPE resins include ELITETM enhanced polyethylene (available from The Dow Chemical Company), ELITE ATTM advanced technology resins (available from The Dow Chemical Company), SURPASSTM Polyethylene (PE) Resins (available from Nova Chemicals), and SMARTTM (available from SK Chemicals Co.).
  • Single-site catalyzed linear low density polyethylenes are linear ethylene/a-olefin copolymers containing homogeneous short-chain branching distribution comprising units derived from ethylene and units derived from at least one C 3 -C 10 ⁇ -olefin comonomer, or at least one C 4 -C 8 ⁇ -olefin comonomer, or at least one C 6 -C 8 ⁇ -olefin comonomer.
  • m-LLDPE has density from 0.913 g/cc, or 0.918 g/cc, or 0.920 g/cc to 0.925 g/cc, or 0.940 g/cc.
  • Nonlimiting examples of m-LLDPE include EXCEEDTM metallocene PE (available from ExxonMobil Chemical), LUFLEXENTM m-LLDPE (available from LyondellBasell), and ELTEXTM PF m-LLDPE (available from Ineos Olefins & Polymers).
  • “Ethylene plastomers/elastomers” are substantially linear, or linear, ethylene/ ⁇ -olefin copolymers containing homogeneous short-chain branching distribution comprising units derived from ethylene and units derived from at least one C 3 -C 10 ⁇ -olefin comonomer, or at least one C 4 -C 8 ⁇ -olefin comonomer, or at least one C 6 -C 8 ⁇ -olefin comonomer.
  • Ethylene plastomers/elastomers have a density from 0.870 g/cc, or 0.880 g/cc, or 0.890 g/cc to 0.900 g/cc, or 0.902 g/cc, or 0.904 g/cc, or 0.909 g/cc, or 0.910 g/cc, or 0.917 g/cc.
  • Nonlimiting examples of ethylene plastomers/elastomers include AFFINITYTM plastomers and elastomers (available from The Dow Chemical Company), EXACTTM Plastomers (available from ExxonMobil Chemical), TafmerTM (available from Mitsui), NexleneTM (available from SK Chemicals Co.), and LuceneTM (available LG Chem Ltd.).
  • Melt flow rate is measured in accordance with ASTM D 1238, Condition 280° C./2.16 kg (g/10 minutes).
  • MI Melt index
  • Melting Point or “Tm” as used herein (also referred to as a melting peak in reference to the shape of the plotted DSC curve) is typically measured by the DSC (Differential Scanning calorimetry) technique for measuring the melting points or peaks of polyolefins as described in U.S. Pat. No. 5,783,638. It should be noted that many blends comprising two or more polyolefins will have more than one melting point or peak, many individual polyolefins will comprise only one melting point or peak.
  • Mw/Mn Molecular weight distribution
  • GPC Gel Permeation Chromatography
  • Mw weight-average
  • Mn number-average molecular weight of the polymer
  • the gel permeation chromatographic system consists of either a Polymer Laboratories Model PL-210 or a Polymer Laboratories Model PL-220 instrument. The column and carousel compartments are operated at 140° C. Three Polymer Laboratories 10-micron Mixed-B columns are used. The solvent is 1,2,4 trichlorobenzene.
  • the samples are prepared at a concentration of 0.1 grams of polymer in 50 milliliters of solvent containing 200 ppm of butylated hydroxytoluene (BHT). Samples are prepared by agitating lightly for 2 hours at 160° C. The injection volume used is 100 microliters and the flow rate is 1.0 ml/minute.
  • BHT butylated hydroxytoluene
  • Calibration of the GPC column set is performed with 21 narrow molecular weight distribution polystyrene standards with molecular weights ranging from 580 to 8,400,000, arranged in 6 “cocktail” mixtures with at least a decade of separation between individual molecular weights.
  • the standards are purchased from Polymer Laboratories (Shropshire, UK).
  • the polystyrene standards are prepared at 0.025 grams in 50 milliliters of solvent for molecular weights equal to or greater than 1,000,000, and 0.05 grams in 50 milliliters of solvent for molecular weights less than 1,000,000.
  • the polystyrene standards are dissolved at 80° C. with gentle agitation for 30 minutes.
  • the narrow standards mixtures are run first and in order of decreasing highest molecular weight component to minimize degradation.
  • the polystyrene standard peak molecular weights are converted to polyethylene molecular weights using the following equation (as described in Williams and Ward, J. Polym. Sci., Polym. Let., 6,
  • M polypropylene 0.645( M polystytrene ).
  • Polypropylene equivalent molecular weight calculations are performed using Viscotek TriSEC software Version 3.0.
  • olefin-based polymer is a polymer that contains more than 50 weight percent polymerized olefin monomer (based on total amount of polymerizable monomers), and optionally, may contain at least one comonomer.
  • Nonlimiting examples of olefin-based polymer include ethylene-based polymer and propylene-based polymer.
  • a “polymer” is a compound prepared by polymerizing monomers, whether of the same or a different type, that in polymerized form provide the multiple and/or repeating “units” or “mer units” that make up a polymer.
  • the generic term polymer thus embraces the term homopolymer, usually employed to refer to polymers prepared from only one type of monomer, and the term copolymer, usually employed to refer to polymers prepared from at least two types of monomers. It also embraces all forms of copolymer, e.g., random, block, etc.
  • ethylene/ ⁇ -olefin polymer and “propylene/ ⁇ -olefin polymer” are indicative of copolymer as described above prepared from polymerizing ethylene or propylene respectively and one or more additional, polymerizable ⁇ -olefin monomer.
  • a polymer is often referred to as being “made of” one or more specified monomers, “based on” a specified monomer or monomer type, “containing” a specified monomer content, or the like, in this context the term “monomer” is understood to be referring to the polymerized remnant of the specified monomer and not to the unpolymerized species.
  • polymers herein are referred to has being based on “units” that are the polymerized form of a corresponding monomer.
  • a “propylene-based polymer” is a polymer that contains more than 50 weight percent polymerized propylene monomer (based on the total amount of polymerizable monomers) and, optionally, may contain at least one comonomer.
  • Zero-shear viscosities are obtained via creep tests that were conducted on an AR-G2 stress controlled rheometer (TA Instruments: New Castle, Del.) using 25-mm-diameter parallel plates at 190° C.
  • the rheometer oven is set to test temperature for at least 30 minutes prior to zeroing fixtures.
  • a compression molded sample disk is inserted between the plates and allowed to come to equilibrium for 5 minutes.
  • the upper plate is then lowered down to 50 ⁇ m above the desired testing gap (1.5 mm). Any superfluous material is trimmed off and the upper plate is lowered to the desired gap. Measurements are done under nitrogen purging at a flow rate of 5 L/min. Default creep time is set for 2 hours.
  • a constant low shear stress of 20 Pa is applied for all of the samples to ensure that the steady state shear rate is low enough to be in the Newtonian region.
  • the resulting steady state shear rates are in the range of 10 ⁇ 3 to 10 ⁇ 4 s ⁇ 1 for the samples in this study.
  • Steady state is determined by taking a linear regression for all the data in the last 10% time window of the plot of log (J(t)) vs. log(t), where J(t) is creep compliance and t is creep time. If the slope of the linear regression is greater than 0.97, steady state is considered to be reached, then the creep test is stopped. In all cases in this study the slope meets the criterion within 2 hours.
  • the steady state shear rate is determined from the slope of the linear regression of all of the data points in the last 10% time widow of the plot of ⁇ vs. t, where ⁇ is strain.
  • the zero-shear viscosity is determined from the ratio of the applied stress to the steady state shear rate.
  • a small amplitude oscillatory shear test is conducted before and after the creep test on the same speciment from 0.1 to 100 rad/s.
  • the complex viscosity values of the two tests are compared. If the difference of the viscosity values at 0.1 rad/s is greater than 5%, the sample is considered to have degraded during the creep test, and the result is discarded.
  • Zero-shear viscosity ratio is defined as the ratio of the zero-shear viscotity (ZSV) of the branched polyethylene material to the ZSV of the linear polyethylene material at the equivalent weight average moleculasr weight (Mw-gpc) according to the following
  • the ZSV value is obtained from creep test at 190° C. via the method described above.
  • the Mw-gpc value is determined by the HT-GPC method.
  • the correlation between ZSV of linear polyethylene and its Mw-gpc was established based on a series of linear polyethylene reference materials.
  • a description for the ZSV-Mw relationship can be found in the ANTEC proceeding: Karjala, Maria P.; Sammler, Robert L.; Mangnus Marc A.; Hazlitt, Lonnie G.; Johnson, Mark S.; Hagen, Charles M., Jr.; Huang, Joe W. L.; Reichek, Kenneth N. Detection of low levels of long- chain branching in polyolefins. Annual Technical Conference—Society of Plastics Engineers (2008), 66 th 887-891.
  • the present disclosure provides a flexible container.
  • the flexible container includes a first multilayer film and a second multilayer film.
  • Each multilayer film includes a seal layer.
  • the multilayer films are arranged such that the seal layers oppose each other and the second multilayer film is superimposed on the first multilayer film.
  • the multilayer films are sealed along a common peripheral edge to form a closed chamber.
  • the flexible container includes a free moving sheet of three-dimensional random loop material (3DRLM) in the closed chamber.
  • 3DRLM three-dimensional random loop material
  • the present flexible container includes a first multilayer film and a second multilayer film.
  • a flexible container 10 includes a first multilayer film 12 (a front film) and a second multilayer film 14 (a rear film) as shown in FIG. 1 .
  • first multilayer film and the term “front film” are used interchangeably.
  • second multilayer film and the term “rear film” are used interchangeably.
  • Each multilayer film is flexible and has at least two, or at least three layers.
  • the multilayer film is resilient, flexible, deformable, and pliable.
  • the structure and composition for each multilayer film may be the same or different.
  • each of two opposing multilayer films can be made from a separate web, each web having a unique structure and/or unique composition, finish, or print.
  • each multilayer film can be the same structure and the same composition.
  • each multilayer film 12 , 14 is a flexible multilayer film having the same structure and the same composition.
  • Each flexible multilayer film 12 , 14 may be (i) a coextruded multilayer structure or (ii) a laminate, or (iii) a combination of (i) and (ii).
  • each flexible multilayer film 12 , 14 has at least three layers: a seal layer, an outer layer, and a core layer (which may be a tie layer) therebetween.
  • the core layer is a tie layer
  • the tie layer adjoins the seal layer to the outer layer.
  • the flexible multilayer film may include one or more optional inner layers disposed between the seal layer and the outer layer.
  • the flexible multilayer film is a coextruded film having at least two, or three, or four, or five, or six, or seven to eight, or nine, or 10, or 11, or more layers.
  • Some methods, for example, used to construct films are by cast co-extrusion or blown co-extrusion methods, adhesive lamination, extrusion lamination, thermal lamination, and coatings such as vapor deposition. Combinations of these methods are also possible.
  • Film layers can comprise, in addition to the polymeric materials, additives such as stabilizers, slip additives, antiblocking additives, process aids, clarifiers, nucleators, pigments or colorants, fillers and reinforcing agents, and the like as commonly used in the packaging industry. It is particularly useful to choose additives and polymeric materials that have suitable organoleptic and or optical properties.
  • Nonlimiting examples of suitable polymeric materials for the seal layer include olefin-based polymer (including any ethylene/C 3 -C 10 ⁇ -olefin copolymers linear or branched), propylene-based polymer (including plastomer and elastomer, random propylene copolymer, propylene homopolymer, and propylene impact copolymer), ethylene-based polymer (including plastomer and elastomer, high density polyethylene (“HDPE”), low density polyethylene (“LDPE”), linear low density polyethylene (“LLDPE”), medium density polyethylene (“MDPE”), ethylene-acrylic acid or ethylene-methacrylic acid and their ionomers with zinc, sodium, lithium, potassium, magnesium salts, ethylene vinyl acetate copolymers and blends thereof.
  • olefin-based polymer including any ethylene/C 3 -C 10 ⁇ -olefin copolymers linear or branched
  • propylene-based polymer including
  • Nonlimiting examples of suitable polymeric material for the outer layer include those used to make biaxially or monoaxially oriented films for lamination as well as coextruded films.
  • suitable polymeric material examples are biaxially oriented polyethylene terephthalate (OPET), monoaxially oriented nylon (MON), biaxially oriented nylon (BON), and biaxially oriented polypropylene (BOPP).
  • polypropylenes such as propylene homopolymer, random propylene copolymer, propylene impact copolymer, thermoplastic polypropylene (TPO) and the like, propylene-based plastomers (e.g., VERSIFYTM or VISTAMAXTM)), polyamides (such as Nylon 6, Nylon 6,6, Nylon 6,66, Nylon 6,12, Nylon 12 etc.), polyethylene norbornene, cyclic olefin copolymers, polyacrylonitrile, polyesters, copolyesters (such as PETG), cellulose esters, polyethylene and copolymers of ethylene (e.g., LLDPE based on ethylene octene copolymer such as DOWLEXTM, blends thereof, and multilayer combinations thereof.
  • polypropylenes such as propylene homopolymer, random propylene copolymer, propylene impact copolymer, thermoplastic polypropylene (TPO) and the like
  • Nonlimiting examples of suitable polymeric materials for the tie layer include functionalized ethylene-based polymers such as ethylene-vinyl acetate (“EVA”), polymers with maleic anhydride-grafted to polyolefins such as any polyethylene, ethylene-copolymers, or polypropylene, and ethylene acrylate copolymers such an ethylene methyl acrylate (“EMA”), glycidyl containing ethylene copolymers, propylene and ethylene based olefin block copolymers (OBC) such as INTUNETM (PP-OBC) and INFUSETM (PE-OBC) both available from The Dow Chemical Company, and blends thereof.
  • EVA ethylene-vinyl acetate
  • EMA ethylene methyl acrylate
  • OBC ethylene methyl acrylate
  • INTUNETM PP-OBC
  • PE-OBC INFUSETM
  • the flexible multilayer film may include additional layers which may contribute to the structural integrity or provide specific properties.
  • the additional layers may be added by direct means or by using appropriate tie layers to the adjacent polymer layers.
  • Polymers which may provide additional mechanical performance such as stiffness or opacity, as well polymers which may offer gas barrier properties or chemical resistance can be added to the structure.
  • Nonlimiting examples of suitable material for the optional barrier layer include copolymers of vinylidene chloride and methyl acrylate, methyl methacrylate or vinyl chloride (e.g., SARANTM resins available from The Dow Chemical Company); vinylethylene vinyl alcohol (EVOH), metal foil (such as aluminum foil).
  • SARANTM resins available from The Dow Chemical Company
  • EVOH vinylethylene vinyl alcohol
  • metal foil such as aluminum foil
  • modified polymeric films such as vapor deposited aluminum or silicon oxide on such films as BON, OPET, or OPP, can be used to obtain barrier properties when used in laminate multilayer film.
  • the flexible multilayer film includes a seal layer selected from LLDPE (sold under the trade name DOWLEXTM (The Dow Chemical Company)), single-site LLDPE (substantially linear, or linear, olefin polymers, including polymers sold under the trade name AFFINITYTM or ELITETM (The Dow Chemical Company) for example, ethylene vinyl acetate (EVA), ethylene ethyl acrylate (EEA), propylene-based plastomers or elastomers such as VERSIFYTM (The Dow Chemical Company), grafted olefin-based polymer (MAH-grafted), and blends thereof.
  • LLDPE sold under the trade name DOWLEXTM (The Dow Chemical Company)
  • single-site LLDPE substantially linear, or linear, olefin polymers, including polymers sold under the trade name AFFINITYTM or ELITETM (The Dow Chemical Company) for example, ethylene vinyl acetate (EVA), ethylene ethyl acrylate (EEA),
  • An optional tie layer is selected from either ethylene-based olefin block copolymer PE-OBC (sold as INFUSETM) or propylene-based olefin block copolymer PP-OBC (sold as INTUNENTM).
  • the outer layer includes greater than 50 wt % of resin(s) having a melting point, Tm, that is from 25° C. to 30° C., or 40° C.
  • the outer layer polymer is selected from resins such as AFFINITYTM, LLDPE (DOWLEXTM), VERSIFYTM or VISTAMAX, ELITETM, MDPE, HDPE or a propylene-based polymer such as propylene homopolymer, propylene impact copolymer or TPO.
  • resins such as AFFINITYTM, LLDPE (DOWLEXTM), VERSIFYTM or VISTAMAX, ELITETM, MDPE, HDPE or a propylene-based polymer such as propylene homopolymer, propylene impact copolymer or TPO.
  • the flexible multilayer film is co-extruded.
  • flexible multilayer film includes a seal layer selected from LLDPE (sold under the trade name DOWLEXTM (The Dow Chemical Company)), single-site LLDPE (substantially linear, or linear, olefin polymers, including polymers sold under the trade name AFFINITYTM or ELITETM (The Dow Chemical Company) for example, propylene-based plastomers or elastomers such as VERSIFYTM (The Dow Chemical Company), grafted olefin-based polymer (MAH-grafted), and blends thereof.
  • the flexible multilayer film also includes an outer layer that is a polyamide.
  • the flexible multilayer film is a coextruded and/or laminated film
  • the seal layer is composed of an ethylene-based polymer, such as a linear or a substantially linear polymer, or a single-site catalyzed linear or substantially linear polymer of ethylene and an alpha-olefin monomer such as 1-butene, 1-hexene or 1-octene, having a Tm from 55° C. to 115° C. and a density from 0.865 to 0.925 g/cm 3 , or from 0.875 to 0.910 g/cm 3 , or from 0.888 to 0.900 g/cm 3
  • the outer layer is composed of a material selected from LLDPE, OPET, OPP (oriented polypropylene), BOPP, polyamide, and combinations thereof.
  • the flexible multilayer film is a coextruded and/or laminated film having at least five layers, the coextruded film having a seal layer composed of an ethylene-based polymer, such as a linear or substantially linear polymer, or a single-site catalyzed linear or substantially linear polymer of ethylene and an alpha-olefin comonomer such as 1-butene, 1-hexene or 1-octene, the ethylene-based polymer having a Tm from 55° C. to 115° C.
  • an ethylene-based polymer such as a linear or substantially linear polymer, or a single-site catalyzed linear or substantially linear polymer of ethylene and an alpha-olefin comonomer such as 1-butene, 1-hexene or 1-octene
  • a density from 0.865 to 0.925 g/cm 3 , or from 0.875 to 0.910 g/cm 3 , or from 0.888 to 0.900 g/cm 3 and an outermost layer composed of a material selected from LLDPE, OPET, OPP (oriented polypropylene), BOPP, polyamide, and combinations thereof.
  • the flexible multilayer film is a coextruded and/or laminated film having at least seven layers.
  • the seal layer is composed of an ethylene-based polymer, such as a linear or substantially linear polymer, or a single-site catalyzed linear or substantially linear polymer of ethylene and an alpha-olefin comonomer such as 1-butene, 1-hexene or 1-octene, the ethylene-based polymer having a Tm from 55° C. to 115° C. and density from 0.865 to 0.925 g/cm 3 , or from 0.875 to 0.910 g/cm 3 , or from 0.888 to 0.900 g/cm 3 .
  • the outer layer is composed of a material selected from LLDPE, OPET, OPP (oriented polypropylene), BOPP, polyamide, and combinations thereof.
  • the flexible multilayer film is a coextruded (or laminated) five layer film, or a coextruded (or laminated) seven layer film having at least two layers containing an ethylene-based polymer.
  • the ethylene-based polymer may be the same or different in each layer.
  • the flexible multilayer film is a coextruded and/or laminated five layer, or a coextruded (or laminated) seven layer film having at least one layer containing a material selected from LLDPE, OPET, OPP (oriented polypropylene), BOPP, and polyamide.
  • the flexible multilayer film is a coextruded and/or laminated five layer, or a coextruded (or laminated) seven layer film having at least one layer containing OPET or OPP.
  • the flexible multilayer film is a coextruded (or laminated) five layer, or a coextruded (or laminated) seven layer film having at least one layer containing polyamide.
  • the flexible multilayer film is a seven-layer coextruded (or laminated) film with a seal layer composed of an ethylene-based polymer, or a linear or substantially linear polymer, or a single-site catalyzed linear or substantially linear polymer of ethylene and an alpha-olefin monomer such as 1-butene, 1-hexene or 1-octene, having a Tm from 90° C. to 106° C.
  • the outer layer is a polyamide having a Tm from 170° C. to 270° C.
  • the film has an inner layer (first inner layer) composed of a second ethylene-based polymer, different than the ethylene-based polymer in the seal layer.
  • the film has an inner layer (second inner layer) composed of a polyamide the same or different to the polyamide in the outer layer.
  • the seven layer film has a thickness from 100 micrometers to 250 micrometers.
  • the rear film 14 opposes the front film 12 , such that the rear film 14 is superimposed on the front film 12 .
  • the front film 12 and the rear film 14 are sealed around a common peripheral edge 16 to form a closed chamber 18 .
  • the present flexible container 10 can be a box pouch, pillow pouch, spout k-sealed pouch, spout side gusseted pouch, or a stand-up pouch.
  • the flexible container may or may not have a fitment (i.e., a spout). If a fitment is present, the location of the fitment installed into the container can be anywhere a seal exists between two films, i.e., on top, side or even on bottom in the seal of bottom gusset to front panel, for example. In other words, the fitment can be located, or otherwise formed, on the flexible container anywhere where two films meet and are heat sealed together.
  • suitable locations for the fitment to be sealed include top, bottom, side, corner, gusset areas of the flexible container.
  • the present flexible container can be formed with or without handles.
  • the flexible container 10 includes a fitment 20 .
  • the fitment 20 is sandwiched between the front film and the rear film, with a base of the fitment sealed along a portion of the common peripheral edge 16 .
  • the fitment may or may not include a closure.
  • the fitment 20 dispenses the contents held within the closed chamber 18 .
  • present flexible container is a stand-up pouch 10 a, or “SUP,” as shown in FIGS. 1-2 .
  • the SUP 10 a includes a gusset 22 .
  • the gusset 22 is attached to, or otherwise extends from, a lower portion of the front film 12 and/or a lower portion of the rear film 14 .
  • the gusset 22 includes a gusset film 24 and a gusset rim 26 .
  • the gusset 22 may be formed by way of heat seal, weld (ultrasonic or high frequency or radio frequency), adhesive bond, and combinations thereof.
  • the gusset 22 , the films 12 , 14 , and the fitment define a closed and hermetically sealed chamber for holding a flowable substance, such as liquid, for example.
  • the gusset 22 is made of a flexible polymeric material.
  • the gusset 22 is made from a multilayer film with the same structure and composition as the front film 12 and the rear film 14 .
  • the gusset 22 provides (1) the structural integrity to support the SUP and its contents without leakage, and (2) the stability for the SUP to stand upright (i.e., base on a support surface, such as a horizontal surface, or a substantially horizontal surface), without tipping over.
  • the pouch is a self-standing upright pouch, or a “stand-up pouch”.
  • the gusset 22 is an extension of one or both multilayer films 12 , 14 .
  • a folding procedure forms the gusset 22 from one, or both, of the multilayer films 12 , 14 .
  • the gusset rim 26 defines a footprint for the SUP.
  • the footprint can have a variety of shapes.
  • suitable shapes for the footprint include circle, square, rectangle, triangle, oval, ellipsoid, eye-shape, and teardrop.
  • the shape of the footprint is ellipsoid.
  • the flexible container includes a closure.
  • FIGS. 1-2 show fitment 20 with threads to accommodate a screw-on type closure (for use with a mated screw-on cap), it is understood that the fitment 20 may embody other closure systems.
  • suitable fitments and closures include, screw cap, flip-top cap, snap cap, liquid or beverage dispensing fitments (stop-cock or thumb plunger), Colder fitment connector, tamper evident pour spout, vertical twist cap, horizontal twist cap, aseptic cap, vitop press, press tap, push on tap, lever cap, conro fitment connector, and other types of removable (and optionally reclosable) closures.
  • the closure and/or fitment may or may not include a gasket.
  • the SUP 10 a has a volume from 0.25 liters (L), or 0.5 L, or 0.75 L, or 1.0 L, or 1.5 L, or 2.5 L, or 3 L, or 3.5 L, or 4.0 L, or 4.5 L, or 5.0 L to 6.0 L, or 7.0 L, or 8.0 L, or 9.0 L, or 10.0 L, or 20 L, or 30 L.
  • the present flexible container is made from 90 wt % to 100 wt % ethylene-based polymer—the films 12 , 14 and gusset 22 being composed of flexible multiple layer film with layer materials selected from ethylene-based polymer such as LLDPE, LDPE, HDPE, and combinations thereof, and the fitment 10 composed of HDPE or ethylene/a-olefin multi-block copolymer. Weight percent is based on total weight of the flexible container (without content).
  • the flexible container made from 90 wt % to 100 wt % ethylene-based polymer is advantageous as it is readily recyclable.
  • the present flexible container includes a sheet of 3-dimensional random loop material located in the closed chamber.
  • a “3-dimensional random loop material” (or “3DRLM”) is a mass or a structure of a multitude of loops formed by allowing continuous fibers, to wind, permitting respective loops to come in contact with one another in a molten state and to be heat-bonded, or otherwise melt-bonded, at most of the contact points.
  • FIGS. 1-1A show 3DRLM 30 having loops 32 of continuous fibers 34 , the continuous fibers 34 coming in contact with one another at contact points 36 .
  • the 3DRLM 30 absorbs the stress with the entire net structure composed of three-dimensional random loops melt-integrated, by deforming itself; and once the stress is lifted, elastic resilience of the polymer manifests itself to allow recovery to the original shape of the structure.
  • a net structure composed of continuous fibers made from a known non-elastic polymer is used as a cushioning material, plastic deformation is developed and the recovery cannot be achieved, thus resulting in poor heat-resisting durability.
  • the fibers are not melt-bonded at contact points, the shape cannot be retained and the structure does not integrally change its shape, with the result that a fatigue phenomenon occurs due to the concentration of stress, thus unbeneficially degrading durability and deformation resistance.
  • melt-bonding is the state where all contact points are melt-bonded.
  • a nonlimiting method for producing 3DRLM 30 includes the steps of (a) heating a molten olefin-based polymer, at a temperature 10° C.-140° C. higher than the melting point of the polymer in a typical melt-extruder; (b) discharging the molten interpolymer to the downward direction from a nozzle with plural orifices to form loops by allowing the fibers to fall naturally (due to gravity).
  • the polymer may be used in combination with a thermoplastic elastomer, thermoplastic non-elastic polymer or a combination thereof.
  • the distance between the nozzle surface and take-off conveyors installed on a cooling unit for solidifying the fibers, melt viscosity of the polymer, diameter of orifice and the amount to be discharged are the elements which decide loop diameter and fineness of the fibers. Loops are formed by holding and allowing the delivered molten fibers to reside between a pair of take-off conveyors (belts, or rollers) set on a cooling unit (the distance therebetween being adjustable), bringing the loops thus formed into contact with one another by adjusting the distance between the orifices to this end such that the loops in contact are heat-bonded, other otherwise melt-bonded, as they form a three-dimensional random loop structure.
  • the continuous fibers, wherein contact points have been heat-bonded as the loops form a three-dimensional random loop structure are continuously taken into a cooling unit for solidification to give a net structure. Thereafter, the structure is cut into a desired length and shape.
  • the method is characterized in that the olefin-based polymer is melted and heated at a temperature 10° C.-140° C. higher than the melting point of the interpolymer and delivered to the downward direction in a molten state from a nozzle having plural orifices.
  • the polymer is discharged at a temperature less than 10° C. higher than the melting point, the fiber delivered becomes cool and less fluidic to result in insufficient heat-bonding of the contact points of fibers.
  • the loop diameter and fineness of the fibers constituting the cushioning net structure depend on the distance between the nozzle surface and the take-off conveyor installed on a cooling unit for solidifying the interpolymer, melt viscosity of the interpolymer, diameter of orifice and the amount of the interpolymer to be delivered therefrom. For example, a decreased amount of the interpolymer to be delivered and a lower melt viscosity upon delivery result in smaller fineness of the fibers and smaller average loop diameter of the random loop. On the contrary, a shortened distance between the nozzle surface and the take-off conveyor installed on the cooling unit for solidifying the interpolymer results in a slightly greater fineness of the fiber and a greater average loop diameter of the random loop.
  • the distance to the aforementioned conveyor By adjusting the distance to the aforementioned conveyor, the thickness of the structure can be controlled while the heat-bonded net structure is in a molten state and a structure having a desirable thickness and flat surface formed by the conveyors can be obtained. Too great a conveyor speed results in failure to heat-bond the contact points, since cooling proceeds before the heat-bonding. On the other hand, too slow a speed can cause higher density resulting from excessively long dwelling of the molten material. In some embodiments the distance to the conveyor and the conveyor speed should be selected such that the desired apparent density of 0.005-0.1 g/cc or 0.01-0.05 g/cc can be achieved.
  • the 3DRLM 30 has, one, some, or all of the properties (i)-(iii) below:
  • a fiber diameter from 0.1 mm, or 0.5 mm, or 0.7 mm, or 1.0 mm or 1.5 mm to 2.0 mm to 2.5 mm, or 3.0 mm;
  • a thickness (machine direction) from 1.0 cm, 2.0 cm, or 3.0, cm, or 4.0 cm, or 5.0 cm, or 10 cm, or 20 cm, to 50 cm, or 75 cm, or 100 cm, or more. It is understood that the thickness of the 3DRLM 30 will vary based on the type of product to be packaged.
  • the 3DRLM 30 is formed into a three dimensional geometric shape to form a sheet (i.e., a prism).
  • the 3DRLM 30 is formed into a regular geometric shape.
  • suitable regular geometric shapes include prism, pyramid, cone, cylinder, and disk.
  • the 3DRLM 30 is an elastic material which can be compressed and stretched and return to its original geometric shape.
  • An “elastic material,” as used herein, is a rubber-like material that can be compressed and/or stretched and which expands/retracts very rapidly to approximately its original shape/length when the force exerting the compression and/or the stretching is released.
  • the three dimensional random loop material 30 has a “neutral state” when no compressive force and no stretch force is imparted upon the 3DRLM 30 .
  • the three dimensional random loop material 30 has “a compressed state” when a compressive force is imparted upon the 3DRLM 30 .
  • the three dimensional random loop material 30 has “a stretched state” when a stretching force is imparted upon the 3DRLM 30 .
  • the three dimensional random loop material 30 is composed of one or more olefin-based polymers.
  • the olefin-based polymer can be one or more ethylene-based polymers, one or more propylene-based polymers, and blends thereof.
  • the ethylene-based polymer is an ethylene/ ⁇ -olefin polymer.
  • Ethylene/ ⁇ -olefin polymer may be a random ethylene/ ⁇ -olefin polymer or an ethylene/ ⁇ -olefin multi-block polymer.
  • the ⁇ -olefin is a C 3 -C 20 ⁇ -olefin, or a C 4 -C 12 ⁇ -olefin, or a C 4 -C 8 a-olefin.
  • Nonlimiting examples of suitable ⁇ -olefin comonomer include propylene, butene, methyl-1-pentene, hexene, octene, decene, dodecene, tetradecene, hexadecene, octadecene, cyclohexyl-1-propene (allyl cyclohexane), vinyl cyclohexane, and combinations thereof.
  • the ethylene-based polymer is a homogeneously branched random ethylene/ ⁇ -olefin copolymer.
  • Random copolymer is a copolymer wherein the at least two different monomers are arranged in a non-uniform order.
  • random copolymer specifically excludes block copolymers.
  • homogeneous ethylene polymer as used to describe ethylene polymers is used in the conventional sense in accordance with the original disclosure by Elston in U.S. Pat. No. 3,645,992, the disclosure of which is incorporated herein by reference, to refer to an ethylene polymer in which the comonomer is randomly distributed within a given polymer molecule and wherein substantially all of the polymer molecules have substantially the same ethylene to comonomer molar ratio.
  • substantially linear ethylene polymers and homogeneously branched linear ethylene are homogeneous ethylene polymers.
  • the homogeneously branched random ethylene/ ⁇ -olefin copolymer may be a random homogeneously branched linear ethylene/ ⁇ -olefin copolymer or a random homogeneously branched substantially linear ethylene/ ⁇ -olefin copolymer.
  • substantially linear ethylene/a-olefin copolymer means that the polymer backbone is substituted with from 0.01 long chain branches/1000 carbons to 3 long chain branches/1000 carbons, or from 0.01 long chain branches/1000 carbons to 1 long chain branches/1000 carbons, or from 0.05 long chain branches/1000 carbons to 1 long chain branches/1000 carbons.
  • linear ethylene/ ⁇ -olefin copolymer means that the polymer backbone has no long chain branching.
  • the homogeneously branched random ethylene/a-olefin copolymers may have the same ethylene/a-olefin comonomer ratio within all copolymer molecules.
  • the homogeneity of the copolymers may be described by the SCBDI (Short Chain Branch Distribution Index) or CDBI (Composition Distribution Branch Index) and is defined as the weight percent of the polymer molecules having a comonomer content within 50 percent of the median total molar comonomer content.
  • the CDBI of a polymer is readily calculated from data obtained from techniques known in the art, such as, for example, temperature rising elution fractionation (abbreviated herein as “TREF”) as described in U.S. Pat. No.
  • SCBDI or CDBI for the homogeneously branched random ethylene/ ⁇ -olefin copolymers is preferably greater than about 30 percent, or greater than about 50 percent.
  • the homogeneously branched random ethylene/ ⁇ -olefin copolymer may include at least one ethylene comonomer and at least one C 3 -C 20 ⁇ -olefin, or at least one C 4 -C 12 ⁇ -olefin comonomer.
  • the C 3 -C 20 ⁇ -olefins may include but are not limited to propylene, isobutylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, and 1-decene, or, in some embodiments, 1-butene, 1-hexene, 4-methyl-1-pentene and 1-octene.
  • the homogeneously branched random ethylene/ ⁇ -olefin copolymer may have one, some, or all of the following properties (i)-(iii) below:
  • the ethylene-based polymer is a heterogeneously branched random ethylene/ ⁇ -olefin copolymer.
  • heterogeneously branched random ethylene/ ⁇ -olefin copolymers differ from the homogeneously branched random ethylene/ ⁇ -olefin copolymers primarily in their branching distribution.
  • heterogeneously branched random ethylene/ ⁇ -olefin copolymers have a distribution of branching, including a highly branched portion (similar to a very low density polyethylene), a medium branched portion (similar to a medium branched polyethylene) and an essentially linear portion (similar to linear homopolymer polyethylene).
  • the heterogeneously branched random ethylene/ ⁇ -olefin copolymer may include at least one ethylene comonomer and at least one C 3 -C 20 ⁇ -olefin comonomer, or at least one C 4 -C 12 ⁇ -olefin comonomer.
  • the C 3 -C 20 ⁇ -olefins may include but are not limited to, propylene, isobutylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, and 1-decene, or, in some embodiments, 1-butene, 1-hexene, 4-methyl-1-pentene and 1-octene.
  • the heterogeneously branched ethylene/ ⁇ -olefin copolymer may comprise greater than about 50% by wt ethylene comonomer, or greater than about 60% by wt., or greater than about 70% by wt.
  • the heterogeneously branched ethylene/ ⁇ -olefin copolymer may comprise less than about 50% by wt ⁇ -olefin monomer, or less than about 40% by wt., or less than about 30% by wt.
  • the heterogeneously branched random ethylene/ ⁇ -olefin copolymer may have one, some, or all of the following properties (i)-(iii) below:
  • the 3DRLM 30 is composed of a blend of a homogeneously branched random ethylene/ ⁇ -olefin copolymer and a heterogeneously branched ethylene/ ⁇ -olefin copolymer, the blend having one, some, or all of the properties (i)-(v) below:
  • melt index (1 2 ) from 3.0 g/10 min, or 4.0 g/10 min, or 5.0 g/10 min, or 10 g/10 min to 15 g/10 min, or 20 g/10 min, or 25 g/10 min;
  • the ethylene/a-olefin copolymer blend may have a weight fraction in a temperature zone from 90° C. to 115° C. or 5% to 15% by wt., or 6% to 12%, or 8% to 12%, or greater than 8%, or greater than 9%.
  • the present ethylene/a-olefin copolymer blend may have at least two, or three melting peaks when measured using Differential Scanning calorimetry (DSC) below a temperature of 130° C.
  • the ethylene/ ⁇ -olefin copolymer blend may include a highest temperature melting peak of at least 115° C., or at least 120° C., or from about 120° C. to about 125° C., or from about from 122 to about 124° C.
  • the heterogeneously branched ethylene/ ⁇ -olefin copolymer is characterized by two melting peaks, and the homogeneously branched ethylene/ ⁇ -olefin copolymer is characterized by one melting peak, thus making up the three melting peaks.
  • the ethylene/ ⁇ -olefin copolymer blend may comprise from 10 to 90% by weight, or 30 to 70% by weight, or 40 to 60% by weight of the homogeneously branched ethylene/ ⁇ -olefin copolymer.
  • the ethylene/ ⁇ -olefin copolymer blend may comprise from 10 to 90% by weight, 30 to 70% by weight, or 40 to 60% by weight of the heterogeneously branched ethylene/ ⁇ -olefin copolymer.
  • the ethylene/ ⁇ -olefin copolymer blend may comprise from 50% to 60% by weight of the homogeneously branched ethylene/ ⁇ -olefin copolymer, and 40% to 50% of the heterogeneously branched ethylene/ ⁇ -olefin copolymer.
  • the strength of the ethylene/ ⁇ -olefin copolymer blend may be characterized by one or more of the following metrics.
  • One such metric is elastic recovery.
  • the ethylene/ ⁇ -olefin copolymer blend has an elastic recovery, Re, in percent at 100 percent strain at 1 cycle of between 50-80%. Additional details regarding elastic recovery are provided in U.S. Pat. No. 7,803,728, which is incorporated by reference herein in its entirety.
  • the ethylene/ ⁇ -olefin copolymer blend may also be characterized by its storage modulus.
  • the ethylene/ ⁇ -olefin copolymer blend may have a ratio of storage modulus at 25° C., G′ (25° C.) to storage modulus at 100° C., G′ (100° C.) of about 20 to about 60, or from about 20 to about 50, or about 30 to about 50, or about 30 to about 40.
  • the ethylene/ ⁇ -olefin copolymer blend may also be characterized by a bending stiffness of at least about 1.15 Nmm at 6 s, or at least about 1.20 Nmm at 6 s, or at least about 1.25 Nmm at 6 s, or at least about 1.35 Nmm at 6 s. Without being bound by theory, it is believed that these stiffness values demonstrate how the ethylene/ ⁇ -olefin copolymer blend will provide cushioning support when incorporated into 3DRLM fibers bonded to form a cushioning net structure.
  • the ethylene-based polymer is an ethylene/ ⁇ -olefin interpolymer composition having one, some, or all of the following properties (i)-(v) below:
  • ZSVR zero shear viscosity ratio
  • melt index (1 2 ) from 1 g/10 min to 25 g/10 min
  • the ethylene-based polymer contains a functionalized commoner such as an ester.
  • the functionalized comonomer can be an acetate comonomer or an acrylate comonomer.
  • suitable ethylene-based polymer with functionalized comonomer include ethylene vinyl acetate (EVA), ethylene methyl acrylate EMA, ethylene ethyl acrylate (EEA), and any combination thereof.
  • the olefin-based polymer is a propylene-based polymer.
  • the propylene-based polymer can be a propylene homopolymer or a propylene/a-olefin polymer.
  • the ⁇ -olefin is a C 2 ⁇ -olefin (ethylene) or a C 4 -C 12 ⁇ -olefin , or a C 4 -C 8 a-olefin.
  • Nonlimiting examples of suitable ⁇ -olefin comonomer include ethylene, butene, methyl-1-pentene, hexene, octene, decene, dodecene, tetradecene, hexadecene, octadecene, cyclohexyl-1-propene (allyl cyclohexane), vinyl cyclohexane, and combinations thereof.
  • the propylene interpolymer includes from 82 wt % to 99 wt % units derived from propylene and from 18 wt % to 1 wt % units derived from ethylene, having one, some, or all of the properties (i)-(vi) below:
  • melt flow rate from 1 g/10 min, or 2 g/10 min to 50 g/10 min, or 100 g/10 min;
  • the olefin-based polymer used in the manufacture of the 3DRLM 30 contains one or more optional additives.
  • suitable additives include stabilizer, antimicrobial agent, antifungal agent, antioxidant, processing aid, ultraviolet (UV) stabilizer, slip additive, antiblocking agent, color pigment or dyes, antistatic agent, filler, flame retardant, and any combination thereof.
  • the SUP 10 a includes a free moving sheet 28 made of 3DRLM 30 .
  • a “free moving sheet of 3DRLM,” as used herein, is a sheet of 3DRLM 30 located in the closed chamber 18 , the sheet of 3DLRM detached from the surfaces of the closed chamber so that the sheet of 3DRLM moves freely within the volume of the closed chamber.
  • the free moving sheet 28 of 3DRLM is sized and shaped to have a volume that is less than the volume of the closed chamber, and the free moving sheet of 3DRLM is not connected to any surface which defines the closed chamber, thereby enabling the sheet to move about the closed chamber.
  • the free moving sheet 28 of 3DRLM 30 is loose within the closed chamber 18 , enabling the free moving sheet 28 to move freely within the confines of the closed chamber 18 .
  • the SUP 10 a holds a liquid 38 in the closed chamber.
  • the free moving sheet 28 of 3DRLM 30 moves freely within the liquid 38 .
  • the squeezing force compresses the free moving sheet 28 to dispense the liquid 38 (such as a beverage, for example) from the fitment 20 .
  • the free moving sheet 28 is shown in dashed lines within the SUP 10 a.
  • the squeezing force moves the 3DRLM 30 to a compressed state.
  • the 3DRLM 30 returns to the neutral state.
  • the flexible container includes a first multilayer film and a second multilayer film.
  • Each multilayer film includes a seal layer.
  • the multilayer films are arranged such that the seal layers oppose each other and the second multilayer film is superimposed on the first multilayer film.
  • the multilayer films are sealed along a common peripheral edge to form a closed chamber.
  • the closed chamber has opposing inner surfaces.
  • An oversized sheet of three-dimensional random loop material (3DRLM) (or “oversized sheet”) is located in the closed chamber.
  • 3DRLM three-dimensional random loop material
  • the oversized sheet (in the neutral state) and the closed chamber are compared in the same axis dimension (e.g., comparing the height of the oversized sheet to the height of the closed chamber)
  • the oversized sheet (in the neutral state) has an extent that is greater than the extent of the closed chamber in the same axis dimension (e.g., the oversized sheet has a height that is greater than the height of the closed chamber).
  • the oversized sheet has a first end and an opposing second end. The first end and the second end of the sheet compressively engage opposing inner surfaces of the closed chamber.
  • a flexible container 110 is provided.
  • Flexible container 110 includes a front film 112 and a rear film 114 .
  • Front/rear films 112 , 114 can be any multilayer film as previously disclosed for respective front film and rear film.
  • Rear film 114 opposes the front film 112 , such that the rear film 114 is superimposed on the front film 112 .
  • the front film 112 and the rear film 114 are sealed around a common peripheral edge 116 to form a closed chamber 118 .
  • the present flexible container 110 can be a box pouch, pillow pouch, spout k-sealed pouch, spout side gusseted pouch, or a stand-up pouch as previously disclosed above.
  • the flexible container may or may not have a fitment (i.e., a spout).
  • the flexible container 110 can be formed with or without handles.
  • the flexible container 110 includes a fitment 120 .
  • the fitment 120 is sandwiched between the front film and the rear film, with a base of the fitment sealed along a portion of the common peripheral edge 116 .
  • the fitment may or may not include a closure.
  • the fitment 120 dispenses the contents held within the closed chamber 118 as previously disclosed herein.
  • present flexible container is a stand-up pouch 110 a, or “SUP,” as shown in FIGS. 3-5 .
  • the SUP 110 a includes a gusset 122 .
  • the gusset 122 is attached to, or otherwise extends from, a lower portion of the front film 112 and/or a lower portion of the rear film 114 as previously disclosed above.
  • the gusset 122 includes a gusset film 124 and a gusset rim 126 as previously disclosed herein.
  • the gusset 122 , the films 112 , 114 , and the fitment 120 define a closed and hermetically sealed chamber 118 for holding a flowable substance, such as liquid, for example.
  • the SUP 110 a includes a sheet 128 of 3DRLM 130 .
  • the sheet 128 is sized and shaped to compressively engage opposing inner surfaces of the closed chamber 118 .
  • the term “compressively engage” as used herein, is the sheet of 3DRLM has at least one of (i) a length, (ii) a width, and/or (iii) a height that is greater than a respective length, width, or height of closed chamber 118 .
  • FIG. 3 shows the closed chamber 118 having opposing surfaces 119 a and 119 b.
  • the distance between surface 119 a and 119 b is the width, X, of the closed chamber 118 .
  • the width X for closed chamber 118 is best seen in FIG. 4 .
  • FIG. 3 shows oversized sheet 128 prior to installation into the SUP 110 a.
  • Oversized sheet 128 has a first end 129 a and an opposing second end 129 b.
  • the distance between first end 129 a and second end 129 b when the 3DRLM 130 is in a neutral state is the width, Y, of the oversized sheet 128 .
  • the width Y of oversized sheet 128 (in the neutral state) is greater than the width, X, of the closed chamber 118 .
  • the sheet 128 when in the same axis (in this instance the width axis), the sheet 128 has a length (length Y) that is greater than the length of closed chamber along the same axis for the closed chamber (length X). In this sense, the sheet 128 is an “oversized sheet” with respect to the same axis dimension of the closed chamber 118 .
  • the oversized sheet 128 is placed into a compressed state in order to fit into the closed chamber 118 .
  • the oversized sheet 128 is compressed so that the width Y (neutral state) is reduced to the length of closed chamber width X (distance between first and second sides 119 a and 119 b ).
  • oversized sheet 128 of 3DRLM 30 is in a constant compressed state.
  • the first end 129 a and the second end 129 b impart a constant outward force upon respective sides 119 a, 119 b of the closed chamber 118 .
  • the first end and the second end 129 a, 129 b impinge upon, and compressively engage, opposing sides 119 a, 119 b of the closed chamber 118 .
  • the compressive engagement onto respective sides 119 a, 119 b holds the oversized sheet 128 in a stationary position within the closed chamber 118 . In this way, the compressive engagement of oversized sheet 128 maintains, or otherwise holds, the full shape of the SUP 110 a, regardless of the amount of liquid (full, partially full, partially empty, or empty) present in the closed chamber 118 .
  • the oversized sheet 128 can be configured to compressively engage opposing sides of the closed chamber 118 in one, some, or all of the following axes: width axis, length axis, and/or height axis. Oversized sheet 128 maintains the size, shape, volume, and stand-up feature of the SUP 110 a, regardless of the amount of liquid present in the closed chamber 118 .
  • the oversized sheet 128 is removable from the closed chamber 118 .
  • the oversized sheet 128 is thereby reusable and/or recyclable.
  • a squeezing force is imparted upon the front and rear multilayer films 112 , 114 (such as a squeezing force from the hand of a consumer 140 )
  • the squeezing force compresses the oversized sheet 128 to dispense a liquid 138 (such as a cleaning solution, for example) from the fitment 120 and onto an object 142 , or a surface thereof.
  • a liquid 138 such as a cleaning solution, for example
  • the present flexible container(s) 10 , 10 a, 110 , 110 a is/are suitable for storage of flowable substances including, but not limited to, liquid comestibles (such as beverages), oil, paint, grease, chemicals, suspensions of solids in liquid, and solid particulate matter (powders, grains, granular solids).
  • suitable liquids include liquid personal care products such as shampoo, conditioner, liquid soap, lotion, gel, cream, balm, and sunscreen.
  • Other suitable liquids include household care/cleaning products and automotive care products.
  • Other liquids include liquid food such as condiments (ketchup, mustard, mayonnaise) and baby food.
  • the present flexible container(s) 10 , 10 a, 110 , 110 a is/are suitable for storage of flowable substances with higher viscosity and requiring application of a squeezing force to the container in order to discharge.
  • squeezable and flowable substances include grease, butter, margarine, soap, shampoo, animal feed, sauces, and baby food.
  • the present container(s) 10 , 10 a, 110 , 110 a provide many performance improvements versus the current package designs, such as improved pouch stand-up stability, film downgauging, higher package dimensions enabled by the higher stability from the sheet of 3DRLM, static mixing, improved SUP handling and consumer perception, and higher mechanical resistance (e.g. drop test). Also, bursting issues can be minimized when SUPs 10 , 10 a, 110 , 110 a with sheet of 3DRLM thereon, are submitted to pressure while packed together in big bags or boxes. As a further advantage, flexible containers 10 , 10 a, 110 , and 110 a reduce the use of secondary package by means of a high performance (e.g. via shock absorbing) primary package, offering cost savings and carbon footprint reduction.
  • a high performance e.g. via shock absorbing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Bag Frames (AREA)
  • Wrappers (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
US16/618,272 2017-05-31 2018-05-28 Flexible Container with Three-Dimensional Random Loop Material Abandoned US20200148455A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17382316.2A EP3409614A1 (en) 2017-05-31 2017-05-31 Flexible container with three-dimensional random loop material
EP17382316.2 2017-05-31
PCT/US2018/034579 WO2018222518A1 (en) 2017-05-31 2018-05-25 Flexible container with three-dimensional random loop material

Publications (1)

Publication Number Publication Date
US20200148455A1 true US20200148455A1 (en) 2020-05-14

Family

ID=59091447

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/618,272 Abandoned US20200148455A1 (en) 2017-05-31 2018-05-28 Flexible Container with Three-Dimensional Random Loop Material

Country Status (9)

Country Link
US (1) US20200148455A1 (ja)
EP (2) EP3409614A1 (ja)
JP (1) JP2020521678A (ja)
CN (1) CN110621590A (ja)
AR (1) AR111954A1 (ja)
BR (1) BR112019024453A2 (ja)
MX (1) MX2019013973A (ja)
TW (1) TW201902792A (ja)
WO (1) WO2018222518A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381846A (en) * 1980-12-10 1983-05-03 Sani-Fresh International, Inc. Refill with flexible mesh screen for liquid dispenser
WO1986000868A1 (en) * 1984-07-30 1986-02-13 Scholle Corporation Flexible container with improved fluid flow guide
US5139168A (en) * 1990-02-28 1992-08-18 L'oreal Assembly for dispensing a product in which the product to be dispensed is contained in a flexible pouch
US5941421A (en) * 1983-10-17 1999-08-24 The Coca-Cola Company Conduit member for collapsible container
US6073804A (en) * 1997-11-13 2000-06-13 L'oreal Device for packaging and dispensing a fluid
US20070278114A1 (en) * 2006-06-01 2007-12-06 Kane James P Multiple compartment pouch or container with frangible seal
US20120318698A1 (en) * 2011-06-14 2012-12-20 Cryovac, Inc. Sterilizable Film for Aseptic Packaging
US20180186543A1 (en) * 2016-12-29 2018-07-05 Dow Global Technologies Llc Packaging Article with Three-Dimensional Loop Material
US20180186546A1 (en) * 2016-12-29 2018-07-05 Dow Global Technologies Llc Packaging with Three-Dimensional Loop Material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA849081A (en) 1967-03-02 1970-08-11 Du Pont Of Canada Limited PRODUCTION OF ETHYLENE/.alpha.-OLEFIN COPOLYMERS OF IMPROVED PHYSICAL PROPERTIES
AU569942B2 (en) * 1984-03-22 1988-02-25 Scholle Corporation Vaccum bag fluid flow guide
US4798081A (en) 1985-11-27 1989-01-17 The Dow Chemical Company High temperature continuous viscometry coupled with analytic temperature rising elution fractionation for evaluating crystalline and semi-crystalline polymers
DE69111125T2 (de) * 1990-04-11 1995-10-26 Dainippon Printing Co Ltd Flüssigkeitsbehälter und Auslauföffnung desselben.
US5089321A (en) 1991-01-10 1992-02-18 The Dow Chemical Company Multilayer polyolefinic film structures having improved heat seal characteristics
US5847053A (en) 1991-10-15 1998-12-08 The Dow Chemical Company Ethylene polymer film made from ethylene polymer blends
US5677383A (en) 1991-10-15 1997-10-14 The Dow Chemical Company Fabricated articles made from ethylene polymer blends
US5783638A (en) 1991-10-15 1998-07-21 The Dow Chemical Company Elastic substantially linear ethylene polymers
CA2411183C (en) 2002-11-05 2011-06-14 Nova Chemicals Corporation Heterogeneous/homogeneous copolymer
US7803728B2 (en) 2004-03-17 2010-09-28 Dow Global Technologies Inc. Fibers made from copolymers of ethylene/α-olefins
US20060053749A1 (en) * 2004-09-14 2006-03-16 Scanlan Gregory P Airway insert for vacuum sealing plastic bag
JP5891653B2 (ja) * 2011-08-25 2016-03-23 凸版印刷株式会社 バッグインボックス

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381846A (en) * 1980-12-10 1983-05-03 Sani-Fresh International, Inc. Refill with flexible mesh screen for liquid dispenser
US5941421A (en) * 1983-10-17 1999-08-24 The Coca-Cola Company Conduit member for collapsible container
WO1986000868A1 (en) * 1984-07-30 1986-02-13 Scholle Corporation Flexible container with improved fluid flow guide
US5139168A (en) * 1990-02-28 1992-08-18 L'oreal Assembly for dispensing a product in which the product to be dispensed is contained in a flexible pouch
US6073804A (en) * 1997-11-13 2000-06-13 L'oreal Device for packaging and dispensing a fluid
US20070278114A1 (en) * 2006-06-01 2007-12-06 Kane James P Multiple compartment pouch or container with frangible seal
US20120318698A1 (en) * 2011-06-14 2012-12-20 Cryovac, Inc. Sterilizable Film for Aseptic Packaging
US20180186543A1 (en) * 2016-12-29 2018-07-05 Dow Global Technologies Llc Packaging Article with Three-Dimensional Loop Material
US20180186546A1 (en) * 2016-12-29 2018-07-05 Dow Global Technologies Llc Packaging with Three-Dimensional Loop Material

Also Published As

Publication number Publication date
MX2019013973A (es) 2020-01-23
CN110621590A (zh) 2019-12-27
TW201902792A (zh) 2019-01-16
WO2018222518A1 (en) 2018-12-06
JP2020521678A (ja) 2020-07-27
EP3630644A1 (en) 2020-04-08
AR111954A1 (es) 2019-09-04
EP3409614A1 (en) 2018-12-05
BR112019024453A2 (pt) 2020-06-16

Similar Documents

Publication Publication Date Title
EP3356247B1 (en) Fitment with valve and ethylene/ -olefin multi-block copolymer
US10486880B2 (en) Fitment with ethylene/α-olefin multi-block copolymer
US10427852B2 (en) Flexible fitment for flexible container
EP3140218B1 (en) Flexible container
JP2018536591A5 (ja)
EP3519313B1 (en) Flexible container with pop-up spout
CN110536841B (zh) 柔性容器
CA2749761A1 (en) Multilayer film and bag formed of the film
CA3000222A1 (en) Flexible container with extendable spout
EP3515835B1 (en) Flexible fitment for flexible container
KR20200002912A (ko) 가요성 용기
US20170121082A1 (en) Stand-Up Container
US20180086526A1 (en) Flexible Container with Tube Member
US20240100812A1 (en) Flexible Pouch with Post-Consumer Resin
US20200115135A1 (en) Packaging with Three-Dimensional Loop Material
US20200148455A1 (en) Flexible Container with Three-Dimensional Random Loop Material
US10167116B1 (en) Flexible bag with microcapillary strip

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE