US20200105485A1 - Magnetic keyswitch and related magnetic keyboard - Google Patents
Magnetic keyswitch and related magnetic keyboard Download PDFInfo
- Publication number
- US20200105485A1 US20200105485A1 US16/699,694 US201916699694A US2020105485A1 US 20200105485 A1 US20200105485 A1 US 20200105485A1 US 201916699694 A US201916699694 A US 201916699694A US 2020105485 A1 US2020105485 A1 US 2020105485A1
- Authority
- US
- United States
- Prior art keywords
- magnetic
- base
- support
- magnetic component
- keycap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H36/00—Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
- H01H36/0006—Permanent magnet actuating reed switches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/02—Input arrangements using manually operated switches, e.g. using keyboards or dials
- G06F3/0202—Constructional details or processes of manufacture of the input device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H13/00—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
- H01H13/70—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
- H01H13/84—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by ergonomic functions, e.g. for miniature keyboards; characterised by operational sensory functions, e.g. sound feedback
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H13/00—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
- H01H13/70—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2221/00—Actuators
- H01H2221/046—Actuators bistable
- H01H2221/048—Actuators bistable magnetic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2223/00—Casings
- H01H2223/01—Mounting on appliance
- H01H2223/016—Mounting on appliance magnetic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H3/00—Mechanisms for operating contacts
- H01H3/02—Operating parts, i.e. for operating driving mechanism by a mechanical force external to the switch
- H01H3/12—Push-buttons
- H01H3/122—Push-buttons with enlarged actuating area, e.g. of the elongated bar-type; Stabilising means therefor
- H01H3/125—Push-buttons with enlarged actuating area, e.g. of the elongated bar-type; Stabilising means therefor using a scissor mechanism as stabiliser
Definitions
- the present invention relates to a magnetic keyswitch and magnetic keyboard, and more particularly, to a magnetic keyswitch and magnetic keyboard with reused function and preferred structural stability and assembly strength.
- a conventional magnetic keyswitch includes a base, a keycap, a supporting device, a magnetic component and a thin film.
- the supporting device is disposed between the base and the keycap, so that the keycap can be moved relative to the base upwardly and downwardly.
- the magnetic component is disposed on the base and utilizes a magnet portion of the supporting device to provide a recovering force to the keycap.
- the thin film is made of isolation material, such as Mylar, and disposed on the base for protecting electronic components.
- An accommodating space inside the magnetic keyswitch for the magnetic component and the magnet portion is limited because the conventional keyswitch has a trend of thin-typed design, so that a magnetic attraction force generated by the magnetic component and the magnet portion is weak and cannot provide sufficient operational feel.
- the thin film is directly pasted on the base; the thin film has to be cut off for removal of elements disposed inside the keyswitch, and the damaged thin film cannot be reused.
- the conventional magnetic keyswitch spends extra cost of a new thin film in replacement.
- the present invention provides a magnetic keyswitch and magnetic keyboard with reused function and preferred structural stability and assembly strength for solving above drawbacks.
- a magnetic keyswitch includes a base, a keycap, a supporting device, a magnetic component and a metal thin sheet.
- the base has at least one engaging structure and a hole.
- the supporting device has a first support. An end of the first support is movably connected to the engaging structure, and the other end of the first support is movably connected to the keycap.
- the first support has a magnet portion.
- the magnetic component is disposed on the base and functioned with the magnet portion to provide a recovering force to the keycap.
- the metal thin sheet is disposed under the base and has a bendable cantilever portion used to cover the hole. The magnetic component is removed through the hole while the cantilever portion is bent by an external force.
- An opening structure is formed on position of the metal thin sheet corresponding to the magnetic component, an end of the cantilever portion is connected to an inner wall of the opening structure, and the other end of the cantilever portion is connected to the other inner wall of the opening structure via a bridging portion.
- a magnetic keyboard includes a base, a plurality of magnetic keyswitches and a metal thin sheet.
- the base has a plurality of engaging structures and a plurality of holes.
- Each magnetic keyswitch includes a keycap, a supporting device and a magnetic component.
- the supporting device has a first support. An end of the first support is movably connected to a corresponding engaging structure, and the other end of the first support is movably connected to the keycap.
- the first support has a magnet portion.
- the magnetic component is disposed on the base and functioned with the magnet portion to provide a recovering force to the keycap.
- An opening structure is formed on position of the metal thin sheet corresponding to the magnetic component, an end of the cantilever portion is connected to an inner wall of the opening structure, and the other end of the cantilever portion is connected to the other inner wall of the opening structure via a bridging portion.
- the metal thin sheet is disposed under the base and has a plurality of bendable cantilever portions used to cover the plurality of holes. The magnetic component is removed through a corresponding hole while one of the cantilever portions is bent by an external force.
- the present invention forms the hole on the base to accommodate the magnetic component, and the cantilever portion can hold the magnetic component while the metal thin sheet is disposed by the base, so as to prevent the magnetic component from being separated from the base. If quality of the magnetic component is degraded, the user can manually bend the cantilever portion to uncover the hole, so the magnetic component can be removed through the hole for replacement. After that, the cantilever portion can be recovered to the initial status to hold the magnetic component, which means the metal thin sheet can be reused in replacement of the magnetic component for economizing rework cost.
- the metal thin sheet can be optionally made of material with magnetic permeability, so the metal thin sheet can directly attract the magnetic component to effectively increase the magnetic attraction force of the magnetic component, and structural stability and assembly strength of the thin-typed magnetic keyboard can be conspicuously advanced.
- FIG. 1 is a diagram of a magnetic keyboard according to an embodiment of the present invention.
- FIG. 2 is an exploded diagram of a magnetic keyswitch according to the embodiment of the present invention.
- FIG. 3 is an assembly diagram of the magnetic keyswitch according to the embodiment of the present invention.
- FIG. 4 and FIG. 5 respectively are diagrams of the magnetic keyswitch in different operational modes according to the embodiment of the present invention.
- FIG. 6 is a diagram of the magnetic keyswitch according to another embodiment of the present invention.
- FIG. 1 is a diagram of a magnetic keyboard 10 according to an embodiment of the present invention.
- FIG. 2 is an exploded diagram of a magnetic keyswitch 12 according to the embodiment of the present invention.
- FIG. 3 is an assembly diagram of the magnetic keyswitch 12 according to the embodiment of the present invention.
- FIG. 4 and FIG. 5 respectively are diagrams of the magnetic keyswitch 12 in different operational modes according to the embodiment of the present invention.
- the magnetic keyboard 10 can have a plurality of keyswitches 12 according to design demand, and the plurality of keyswitches 12 is disposed on a base 14 .
- a metal thin sheet 16 is disposed under the base 14 .
- the metal thin sheet 16 can have large dimensional design which corresponds to dimensions of the base 14 , and the metal thin sheet 16 is directly disposed under the base 14 . Further, the metal thin sheet 16 may be small dimensional design corresponding to the magnetic keyswitch 12 , which means each magnetic keyswitch 12 has the related metal thin sheet 16 , or an assembly of several magnetic keyswitches 12 share the related metal thin sheet 16 with large sizes.
- the magnetic keyswitch 12 can mainly include a base 14 , a membrane 15 , a metal thin sheet 16 , a keycap 18 , a supporting device 20 and a magnetic component 22 .
- a first engaging structure 24 , a second engaging structure 26 and a hole 28 are formed on the base 14 .
- the supporting device 20 can include a first support 30 and a second support 32 . An end of the first support 30 is movably connected to the first engaging structure 24 , and the other end of the first support 30 is movably connected to the keycap 18 .
- a magnet portion 34 is disposed on a middle of the first support 30 .
- An end of the second support 32 is movably connected to the second engaging structure 26 , and the other end of the second support 32 is movably connected to the keycap 18 .
- the magnetic component 22 is connected to the base 14 through the hole 28 ; for example, two ends of the magnetic component 22 are engaged with inner walls of the hole 28 .
- the magnetic component 22 is used to attract the magnet portion 34 disposed on the first support 30 . Therefore, keycap 18 can be moved relative to the base 14 by the supporting device 20 , and provide a recovering force to the keycap 18 via magnetic effect between the magnetic component 22 and the magnet portion 34 .
- the metal thin sheet 16 is disposed under the base 14 , and has a bendable cantilever portion 36 .
- the cantilever portion 36 can align with or be partly overlapped with the hole 28 , and further can touch or abut against the magnetic component 22 .
- the metal thin sheet 16 can be made of several kinds of material.
- the metal thin sheet 16 can be made of SUS304 material, and the magnetic component 22 is held by material rigidity of the metal thin sheet 16 .
- the cantilever portion 36 is bent and the magnetic component 22 can be easily removed through the hole 28 , as shown in FIG. 4 .
- the cantilever portion 36 can be recovered to an initial status by an external force, as shown in FIG. 5 .
- the metal thin sheet 16 made of SUS304 material not only can provide rework function as mentioned above, but also can increase a magnetic attraction force of the magnetic component 22 applied to the magnet portion 34 for optimizing operational feel of the magnetic keyswitch 12 .
- an opening structure 38 can be formed on position of the metal thin sheet 16 corresponding to the magnetic component 22 .
- An end 361 of the cantilever portion 36 is connected to an inner wall of the opening structure 38 , and the other end 362 of the cantilever portion 36 is a free end. The free end does not contact the inner wall of the opening structure 38 .
- the user can pull the free end 362 of the cantilever portion 36 to easily bend the cantilever portion 36 , so the magnetic component 22 can be removed accordingly.
- the cantilever portion of the metal thin sheet 16 is not limited to the above-mentioned embodiment.
- FIG. 6 is a diagram of the magnetic keyswitch 12 ′ according to another embodiment of the present invention.
- the magnetic keyswitch 12 ′ includes the opening structure 38 formed on the position of the metal thin sheet 16 corresponding to the magnetic component 22 ; an end 361 ′ of the cantilever portion 36 ′ is connected to the inner wall of the opening structure 38 , and the other end 362 ′ of the cantilever portion 36 ′ is connected to the other inner wall of the opening structure 38 via a bridging portion 40 .
- Contact area between the bridging portion 40 and the end 362 ′ of the cantilever portion 36 ′ or between the bridging portion 40 and the inner wall of the opening structure 38 is smaller than a width of the cantilever portion 36 ′, so that connection about the contact area can be easily damaged by the external force to bend the cantilever portion 36 ′ for replacement of the magnetic component 22 .
- the present invention forms the hole on the base to accommodate the magnetic component, and the cantilever portion can hold the magnetic component while the metal thin sheet is disposed by the base, so as to prevent the magnetic component from being separated from the base. If quality of the magnetic component is degraded, the user can manually bend the cantilever portion to uncover the hole, so the magnetic component can be removed through the hole for replacement. After that, the cantilever portion can be recovered to the initial status to hold the magnetic component, which means the metal thin sheet can be reused in replacement of the magnetic component for economizing rework cost.
- the metal thin sheet can be optionally made of material with magnetic permeability, so the metal thin sheet can directly attract the magnetic component to effectively increase the magnetic attraction force of the magnetic component, and structural stability and assembly strength of the thin-typed magnetic keyboard can be conspicuously advanced.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Input From Keyboards Or The Like (AREA)
- Push-Button Switches (AREA)
Abstract
A magnetic keyboard has a plurality of magnetic keyswitches, and each magnetic keyswitch include a base, a keycap, a supporting device, a magnetic component and a metal thin sheet. The base has at least one engaging structure and a hole. The supporting device has a first support, an end of the first support is movably connected to the engaging structure, and the other end of the first support is movably connected to the keycap. The first support has a magnet portion. The magnetic component is disposed on the base and functioned with the magnet portion to provide a recovering force to the keycap. The metal thin sheet is disposed under the base and has a bendable cantilever portion covering the hole. While the cantilever portion is bent by an external force, the magnetic component can be removed through the hole.
Description
- This application is a divisional application of and claims the benefit of U.S. non-provisional application Ser. No. 15/904,444 filed 2018 Feb. 26.
- The present invention relates to a magnetic keyswitch and magnetic keyboard, and more particularly, to a magnetic keyswitch and magnetic keyboard with reused function and preferred structural stability and assembly strength.
- A conventional magnetic keyswitch includes a base, a keycap, a supporting device, a magnetic component and a thin film. The supporting device is disposed between the base and the keycap, so that the keycap can be moved relative to the base upwardly and downwardly. The magnetic component is disposed on the base and utilizes a magnet portion of the supporting device to provide a recovering force to the keycap. The thin film is made of isolation material, such as Mylar, and disposed on the base for protecting electronic components. An accommodating space inside the magnetic keyswitch for the magnetic component and the magnet portion is limited because the conventional keyswitch has a trend of thin-typed design, so that a magnetic attraction force generated by the magnetic component and the magnet portion is weak and cannot provide sufficient operational feel. In addition, the thin film is directly pasted on the base; the thin film has to be cut off for removal of elements disposed inside the keyswitch, and the damaged thin film cannot be reused. The conventional magnetic keyswitch spends extra cost of a new thin film in replacement.
- The present invention provides a magnetic keyswitch and magnetic keyboard with reused function and preferred structural stability and assembly strength for solving above drawbacks.
- According to the claimed invention, a magnetic keyswitch includes a base, a keycap, a supporting device, a magnetic component and a metal thin sheet. The base has at least one engaging structure and a hole. The supporting device has a first support. An end of the first support is movably connected to the engaging structure, and the other end of the first support is movably connected to the keycap. The first support has a magnet portion. The magnetic component is disposed on the base and functioned with the magnet portion to provide a recovering force to the keycap. The metal thin sheet is disposed under the base and has a bendable cantilever portion used to cover the hole. The magnetic component is removed through the hole while the cantilever portion is bent by an external force. An opening structure is formed on position of the metal thin sheet corresponding to the magnetic component, an end of the cantilever portion is connected to an inner wall of the opening structure, and the other end of the cantilever portion is connected to the other inner wall of the opening structure via a bridging portion.
- According to the claimed invention, a magnetic keyboard includes a base, a plurality of magnetic keyswitches and a metal thin sheet. The base has a plurality of engaging structures and a plurality of holes. Each magnetic keyswitch includes a keycap, a supporting device and a magnetic component. The supporting device has a first support. An end of the first support is movably connected to a corresponding engaging structure, and the other end of the first support is movably connected to the keycap. The first support has a magnet portion. The magnetic component is disposed on the base and functioned with the magnet portion to provide a recovering force to the keycap. An opening structure is formed on position of the metal thin sheet corresponding to the magnetic component, an end of the cantilever portion is connected to an inner wall of the opening structure, and the other end of the cantilever portion is connected to the other inner wall of the opening structure via a bridging portion. The metal thin sheet is disposed under the base and has a plurality of bendable cantilever portions used to cover the plurality of holes. The magnetic component is removed through a corresponding hole while one of the cantilever portions is bent by an external force.
- The present invention forms the hole on the base to accommodate the magnetic component, and the cantilever portion can hold the magnetic component while the metal thin sheet is disposed by the base, so as to prevent the magnetic component from being separated from the base. If quality of the magnetic component is degraded, the user can manually bend the cantilever portion to uncover the hole, so the magnetic component can be removed through the hole for replacement. After that, the cantilever portion can be recovered to the initial status to hold the magnetic component, which means the metal thin sheet can be reused in replacement of the magnetic component for economizing rework cost. Besides, the metal thin sheet can be optionally made of material with magnetic permeability, so the metal thin sheet can directly attract the magnetic component to effectively increase the magnetic attraction force of the magnetic component, and structural stability and assembly strength of the thin-typed magnetic keyboard can be conspicuously advanced.
- These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
-
FIG. 1 is a diagram of a magnetic keyboard according to an embodiment of the present invention. -
FIG. 2 is an exploded diagram of a magnetic keyswitch according to the embodiment of the present invention. -
FIG. 3 is an assembly diagram of the magnetic keyswitch according to the embodiment of the present invention. -
FIG. 4 andFIG. 5 respectively are diagrams of the magnetic keyswitch in different operational modes according to the embodiment of the present invention. -
FIG. 6 is a diagram of the magnetic keyswitch according to another embodiment of the present invention. - Please refer to
FIG. 1 toFIG. 5 .FIG. 1 is a diagram of amagnetic keyboard 10 according to an embodiment of the present invention.FIG. 2 is an exploded diagram of amagnetic keyswitch 12 according to the embodiment of the present invention.FIG. 3 is an assembly diagram of themagnetic keyswitch 12 according to the embodiment of the present invention.FIG. 4 andFIG. 5 respectively are diagrams of themagnetic keyswitch 12 in different operational modes according to the embodiment of the present invention. Themagnetic keyboard 10 can have a plurality ofkeyswitches 12 according to design demand, and the plurality ofkeyswitches 12 is disposed on abase 14. A metalthin sheet 16 is disposed under thebase 14. The metalthin sheet 16 can have large dimensional design which corresponds to dimensions of thebase 14, and the metalthin sheet 16 is directly disposed under thebase 14. Further, the metalthin sheet 16 may be small dimensional design corresponding to themagnetic keyswitch 12, which means eachmagnetic keyswitch 12 has the related metalthin sheet 16, or an assembly of severalmagnetic keyswitches 12 share the related metalthin sheet 16 with large sizes. - The
magnetic keyswitch 12 can mainly include abase 14, amembrane 15, a metalthin sheet 16, akeycap 18, a supportingdevice 20 and amagnetic component 22. A firstengaging structure 24, a secondengaging structure 26 and ahole 28 are formed on thebase 14. The supportingdevice 20 can include afirst support 30 and asecond support 32. An end of thefirst support 30 is movably connected to the firstengaging structure 24, and the other end of thefirst support 30 is movably connected to thekeycap 18. Amagnet portion 34 is disposed on a middle of thefirst support 30. An end of thesecond support 32 is movably connected to the secondengaging structure 26, and the other end of thesecond support 32 is movably connected to thekeycap 18. Themagnetic component 22 is connected to thebase 14 through thehole 28; for example, two ends of themagnetic component 22 are engaged with inner walls of thehole 28. Themagnetic component 22 is used to attract themagnet portion 34 disposed on thefirst support 30. Therefore,keycap 18 can be moved relative to thebase 14 by the supportingdevice 20, and provide a recovering force to thekeycap 18 via magnetic effect between themagnetic component 22 and themagnet portion 34. - The metal
thin sheet 16 is disposed under thebase 14, and has abendable cantilever portion 36. Thecantilever portion 36 can align with or be partly overlapped with thehole 28, and further can touch or abut against themagnetic component 22. The metalthin sheet 16 can be made of several kinds of material. For example, the metalthin sheet 16 can be made of SUS304 material, and themagnetic component 22 is held by material rigidity of the metalthin sheet 16. For replacement of themagnetic component 22, thecantilever portion 36 is bent and themagnetic component 22 can be easily removed through thehole 28, as shown inFIG. 4 . After themagnetic component 22 is put into thebase 14, thecantilever portion 36 can be recovered to an initial status by an external force, as shown inFIG. 5 . In addition, the metalthin sheet 16 made of SUS304 material not only can provide rework function as mentioned above, but also can increase a magnetic attraction force of themagnetic component 22 applied to themagnet portion 34 for optimizing operational feel of themagnetic keyswitch 12. - In the embodiment of the present invention, an opening
structure 38 can be formed on position of the metalthin sheet 16 corresponding to themagnetic component 22. Anend 361 of thecantilever portion 36 is connected to an inner wall of the openingstructure 38, and theother end 362 of thecantilever portion 36 is a free end. The free end does not contact the inner wall of the openingstructure 38. The user can pull thefree end 362 of thecantilever portion 36 to easily bend thecantilever portion 36, so themagnetic component 22 can be removed accordingly. The cantilever portion of the metalthin sheet 16 is not limited to the above-mentioned embodiment. - Please refer to
FIG. 6 .FIG. 6 is a diagram of themagnetic keyswitch 12′ according to another embodiment of the present invention. In the embodiment, elements having the same numerals as ones of the above-mentioned embodiment have the same structures and functions, and a detailed description is omitted herein for simplicity. Themagnetic keyswitch 12′ includes the openingstructure 38 formed on the position of the metalthin sheet 16 corresponding to themagnetic component 22; anend 361′ of thecantilever portion 36′ is connected to the inner wall of the openingstructure 38, and theother end 362′ of thecantilever portion 36′ is connected to the other inner wall of the openingstructure 38 via a bridgingportion 40. Contact area between the bridgingportion 40 and theend 362′ of thecantilever portion 36′ or between the bridgingportion 40 and the inner wall of the openingstructure 38 is smaller than a width of thecantilever portion 36′, so that connection about the contact area can be easily damaged by the external force to bend thecantilever portion 36′ for replacement of themagnetic component 22. - In conclusion, the present invention forms the hole on the base to accommodate the magnetic component, and the cantilever portion can hold the magnetic component while the metal thin sheet is disposed by the base, so as to prevent the magnetic component from being separated from the base. If quality of the magnetic component is degraded, the user can manually bend the cantilever portion to uncover the hole, so the magnetic component can be removed through the hole for replacement. After that, the cantilever portion can be recovered to the initial status to hold the magnetic component, which means the metal thin sheet can be reused in replacement of the magnetic component for economizing rework cost. Besides, the metal thin sheet can be optionally made of material with magnetic permeability, so the metal thin sheet can directly attract the magnetic component to effectively increase the magnetic attraction force of the magnetic component, and structural stability and assembly strength of the thin-typed magnetic keyboard can be conspicuously advanced.
- Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Claims (2)
1. A magnetic keyswitch, comprising:
a base having at least one engaging structure and a hole;
a keycap;
a supporting device having a first support, an end of the first support being movably connected to the engaging structure and the other end of the first support being movably connected to the keycap, the first support having a magnet portion;
a magnetic component disposed on the base and functioned with the magnet portion to provide a recovering force to the keycap; and
a metal thin sheet disposed under the base and having a bendable cantilever portion used to cover the hole, the magnetic component being removed through the hole while the cantilever portion is bent by an external force;
wherein an opening structure is formed on position of the metal thin sheet corresponding to the magnetic component, an end of the cantilever portion is connected to an inner wall of the opening structure, and the other end of the cantilever portion is connected to the other inner wall of the opening structure via a bridging portion.
2. A magnetic keyboard, comprising:
a base having a plurality of engaging structures and a plurality of holes;
a plurality of magnetic keyswitches, each magnetic key switch comprising:
a keycap;
a supporting device having a first support, an end of the first support being movably connected to a corresponding engaging structure and the other end of the first support being movably connected to the keycap, the first support having a magnet portion; and
a magnetic component disposed on the base and functioned with the magnet portion to provide a recovering force to the keycap, wherein an opening structure is formed on position of the metal thin sheet corresponding to the magnetic component, an end of the cantilever portion is connected to an inner wall of the opening structure, and the other end of the cantilever portion is connected to the other inner wall of the opening structure via a bridging portion; and
a metal thin sheet disposed under the base and having a plurality of bendable cantilever portions used to cover the plurality of holes, the magnetic component being removed through a corresponding hole while one of the cantilever portions is bent by an external force.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/699,694 US20200105485A1 (en) | 2017-07-28 | 2019-12-01 | Magnetic keyswitch and related magnetic keyboard |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106125459A TWI644336B (en) | 2017-07-28 | 2017-07-28 | Magnetic keyswitch and related magnetic keyboard |
TW106125459 | 2017-07-28 | ||
US15/904,444 US10535481B2 (en) | 2017-07-28 | 2018-02-26 | Magnetic keyswitch and related magnetic keyboard |
US16/699,694 US20200105485A1 (en) | 2017-07-28 | 2019-12-01 | Magnetic keyswitch and related magnetic keyboard |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/904,444 Division US10535481B2 (en) | 2017-07-28 | 2018-02-26 | Magnetic keyswitch and related magnetic keyboard |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200105485A1 true US20200105485A1 (en) | 2020-04-02 |
Family
ID=65038214
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/904,444 Active 2038-05-27 US10535481B2 (en) | 2017-07-28 | 2018-02-26 | Magnetic keyswitch and related magnetic keyboard |
US16/699,694 Abandoned US20200105485A1 (en) | 2017-07-28 | 2019-12-01 | Magnetic keyswitch and related magnetic keyboard |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/904,444 Active 2038-05-27 US10535481B2 (en) | 2017-07-28 | 2018-02-26 | Magnetic keyswitch and related magnetic keyboard |
Country Status (2)
Country | Link |
---|---|
US (2) | US10535481B2 (en) |
TW (1) | TWI644336B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10804049B1 (en) * | 2019-06-03 | 2020-10-13 | Darfon Electronics Corp. | Keyswitch structure |
US11107644B2 (en) | 2019-12-12 | 2021-08-31 | Darfon Electronics Corp. | Keyswitch device |
US11328879B2 (en) | 2019-06-03 | 2022-05-10 | Darfon Electronics Corp. | Keyswitch structure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI676195B (en) * | 2019-02-20 | 2019-11-01 | 達方電子股份有限公司 | Keyswitch structure |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8970331B2 (en) * | 2011-06-09 | 2015-03-03 | Darfon Electronics Corp. | Keyswitch assembly and keyboard |
TWI473134B (en) * | 2011-11-17 | 2015-02-11 | Darfon Electronics Corp | Keyswitch |
TWI476801B (en) * | 2013-02-21 | 2015-03-11 | Darfon Electronics Corp | Keyswitch and keyboard thereof |
TWI492256B (en) * | 2013-09-26 | 2015-07-11 | Darfon Electronics Corp | Keyswitch structure |
EP3095124A4 (en) * | 2014-01-13 | 2018-03-07 | Synerdyne Corporation | Keyswitch using magnetic force |
TWI523057B (en) * | 2014-08-21 | 2016-02-21 | 達方電子股份有限公司 | Keyswitch structure |
TWI550666B (en) * | 2015-05-14 | 2016-09-21 | 達方電子股份有限公司 | Keyswitch |
US9984840B2 (en) * | 2015-12-18 | 2018-05-29 | Darfon Electronics (Suzhou) Co., Ltd. | Keyswitch structure, switch structure and method of assembling a keyswitch structure |
TWI615873B (en) * | 2016-05-13 | 2018-02-21 | 致伸科技股份有限公司 | Magnetic type keyboard and magnetic type key |
TWI636474B (en) * | 2017-10-20 | 2018-09-21 | 達方電子股份有限公司 | Key structure |
-
2017
- 2017-07-28 TW TW106125459A patent/TWI644336B/en active
-
2018
- 2018-02-26 US US15/904,444 patent/US10535481B2/en active Active
-
2019
- 2019-12-01 US US16/699,694 patent/US20200105485A1/en not_active Abandoned
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10804049B1 (en) * | 2019-06-03 | 2020-10-13 | Darfon Electronics Corp. | Keyswitch structure |
US11328879B2 (en) | 2019-06-03 | 2022-05-10 | Darfon Electronics Corp. | Keyswitch structure |
US11107644B2 (en) | 2019-12-12 | 2021-08-31 | Darfon Electronics Corp. | Keyswitch device |
Also Published As
Publication number | Publication date |
---|---|
TWI644336B (en) | 2018-12-11 |
US20190035581A1 (en) | 2019-01-31 |
TW201911352A (en) | 2019-03-16 |
US10535481B2 (en) | 2020-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200105485A1 (en) | Magnetic keyswitch and related magnetic keyboard | |
TWI473134B (en) | Keyswitch | |
US9214295B2 (en) | Key structure | |
USRE47957E1 (en) | Keyswitch, keyboard and keyswitch manufacturing method thereof | |
JP2006210191A (en) | Electronic equipment having operation button | |
JP2006100084A (en) | Multi-direction operating device | |
US9620306B2 (en) | Magnetic keyboard | |
JP2012109204A (en) | Switch device | |
JP2016154066A (en) | Waterproof structure of electronic device | |
JP2007080643A (en) | Key sheet | |
JP2007311307A (en) | Operation key part | |
US20090303688A1 (en) | Key mechanism for portable electronic device | |
US8586884B2 (en) | Tamper-resistant keypad for mobile device | |
CN107516609B (en) | Magnetic suction type key and magnetic suction type keyboard thereof | |
US20190378667A1 (en) | Keyboard device | |
KR100708198B1 (en) | Tact switch assembly, mp3 player with the same, and method for assembling the tact switch assembly | |
JP2006270035A (en) | Mobile electronic apparatus | |
WO2015111624A1 (en) | Input device, and electronic device provided with same | |
JP7003392B2 (en) | Electronics | |
JP5291562B2 (en) | Electronics | |
JP2010277898A (en) | Multidirectional input device | |
US20180233304A1 (en) | Button unit and electronic device | |
US20050200607A1 (en) | Keyboard with a switch-membrane assembly circuit-node support located in a cavity | |
CN117441220A (en) | Press operating body and switch device | |
JP2007115499A (en) | Push-button device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |