US20200077950A1 - System and methods for performing percutaneous pedicle integrity assessments - Google Patents

System and methods for performing percutaneous pedicle integrity assessments Download PDF

Info

Publication number
US20200077950A1
US20200077950A1 US16/574,085 US201916574085A US2020077950A1 US 20200077950 A1 US20200077950 A1 US 20200077950A1 US 201916574085 A US201916574085 A US 201916574085A US 2020077950 A1 US2020077950 A1 US 2020077950A1
Authority
US
United States
Prior art keywords
stimulation
pedicle
wire
target site
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/574,085
Inventor
Patrick Miles
Scot Martinelli
Eric Finley
Jamil Elbanna
James Gharib
Allen Farquhar
Norbert Kaula
Jeffrey Blewett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuvasive Inc
Original Assignee
Nuvasive Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2002/035047 external-priority patent/WO2003037170A2/en
Application filed by Nuvasive Inc filed Critical Nuvasive Inc
Priority to US16/574,085 priority Critical patent/US20200077950A1/en
Assigned to NUVASIVE, INC. reassignment NUVASIVE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MILES, PATRICK, ELBANNA, JAMIL, GHARIB, JAMES, KAULA, NORBERT, FARQUHAR, ALLEN, FINLEY, ERIC, MARTINELLI, SCOT, JEFFREY BLEWETT, DECEASED. GORRETI MEDEIROS, EXECUTOR OF THE ESTATE OF JEFFREY BLEWETT
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NUVASIVE CLINICAL SERVICES MONITORING, INC., NUVASIVE CLINICAL SERVICES, INC., NUVASIVE SPECIALIZED ORTHOPEDICS, INC., NUVASIVE, INC.
Publication of US20200077950A1 publication Critical patent/US20200077950A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/4893Nerves
    • A61B5/0488
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1104Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb induced by stimuli or drugs
    • A61B5/1106Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb induced by stimuli or drugs to assess neuromuscular blockade, e.g. to estimate depth of anaesthesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • A61B5/395Details of stimulation, e.g. nerve stimulation to elicit EMG response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1613Component parts
    • A61B17/1626Control means; Display units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1655Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for tapping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1671Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1757Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/05Surgical care
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1104Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb induced by stimuli or drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6823Trunk, e.g., chest, back, abdomen, hip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36017External stimulators, e.g. with patch electrodes with leads or electrodes penetrating the skin

Definitions

  • the present invention relates to a system and methods generally aimed at surgery. More particularly, the present invention is directed at a system and related methods for performing percutaneous pedicle integrity assessments involving the use of neurophysiology.
  • a trend in spinal surgery is toward performing surgery in a minimally invasive or mini mal access fashion to avoid the trauma of so-called open or “direct access” procedures.
  • a specific area of interest is in the percutaneous placement of pedicle screws, which are typically employed to effect posterior fixation in spinal fusion procedures. While great strides are being made in this area, a risk exists (as it does in open procedures) that the pedicle may become breached, cracked, or otherwise compromised due to the formation and/or preparation of the pilot hole (designed to receive a pedicle screw) and/or due to the introduction of the pedicle screw into the pilot hole.
  • the pedicle or more specifically, the cortex of the medial wall, lateral wall, superior wall and/or inferior wall
  • the patient may experience pain or neurologic deficit due to unwanted contact between the pedicle screw and exiting nerve roots. This oftentimes necessitates revision surgery, which is disadvantageously painful for the patient and costly, both in terms of recovery time and hospitalization.
  • the term “pedicle integrity assessment” is defined as detecting or otherwise determining whether a part of a pedicle has been breached, cracked, or otherwise compromised due to the formation and/or preparation of the pilot hole (designed to receive a pedicle screw) and/or due to the introduction of the pedicle screw into the pilot hole.
  • “Formation” is defined as the act of creating an initial pilot hole in a pedicle, such as through the use of a drill or other hole-forming element.
  • Preparation is defined as the act of refining or otherwise acting upon the interior of the pilot hole to further prepare it to receive a pedicle screw, such as by introducing a tap or reamer element into the initial pilot hole.
  • “Introduction” is defined as the act of inserting or otherwise placing a pedicle screw into the initially formed and/or prepared pilot hole, such as by screwing the pedicle screw into the pilot hole via a screw driver or similar element.
  • a drawback with such prior art systems is that they do not lend themselves to assessing pedicle integrity in cases where pedicle screws are placed in a percutaneous fashion, such as may be accomplished by any number of commercially available percutaneous pedicle screw implantation systems. With the anticipated increase in the number of such percutaneous pedicle screw procedures, a significant number of patients will be at risk of having misplaced pedicle screws given the lack of a percutaneous manner of performing pedicle integrity assessments.
  • the present invention is directed at addressing this need and eliminating, or at least reducing, the effects of the shortcomings of the prior art as described above.
  • the present invention overcomes the drawbacks of the prior art by providing, according to a first broad aspect of the present invention, a system for performing percutaneous pedicle integrity assessments comprising the steps of: (a) percutaneously introducing an insulation member to a pedicle target site; (b) establishing electrical communication between a stimulation element and an interior of a pedicle screw pilot hole; (c) applying a stimulation signal to said stimulation element; and (d) monitoring to assess whether nerves adjacent said pedicle are innervating as a result of the step of applying said application of stimulation signal to said stimulation element.
  • the present invention overcomes the drawbacks of the prior art by providing, according to a second broad aspect of the present invention, a method for performing percutaneous pedicle integrity assessments comprising the steps of: (a) percutaneously introducing an insulated K-wire into contact with at least one of a pedicle screw and a pedicle screw pilot hole; (b) applying a stimulation signal to said K-wire; and (c) monitoring to assess whether nerves adjacent said pedicle are innervating as a result of the step of applying said stimulation signal to said K-wire.
  • the present invention overcomes the drawbacks of the prior art by providing, according to a third broad aspect of the present invention, a method for performing percutaneous pedicle integrity assessments comprising the steps of: (a) percutaneously introducing an insulated member to the approximate opening of a pedicle screw pilot hole; (b) introducing a pedicle screw pilot hole preparation tool through said insulated member to prepare said pedicle screw pilot hole; (c) applying a stimulation signal to said pedicle screw pilot hole preparation tool; and (d) monitoring to assess whether nerves adjacent said pedicle are innervating as a result of the step of applying said stimulation signal to said pedicle screw pilot hole preparation tool.
  • the present invention overcomes the drawbacks of the prior art by providing, according to a fourth broad aspect of the present invention, a method for performing percutaneous pedicle integrity assessments comprising the steps of: (a) percutaneously introducing an insulated K-wire into contact with a pedicle screw pilot hole; (b) applying a stimulation signal to said K-wire; (c) monitoring to assess whether nerves adjacent said pedicle are innervating as a result of the step of applying said stimulation signal to said K-wire; (d) percutaneously introducing an insulated member to the approximate opening of a pedicle screw pilot hole; (e) introducing a tap member, through said insulated member to prepare said pedicle screw pilot hole; (f) applying a stimulation signal to said tap member; and (g) monitoring to assess whether nerves adjacent said pedicle are innervating as a result of the step of applying said stimulation signal to said tap member.
  • the present invention overcomes the drawbacks of the prior art by providing, according to a fifth broad aspect of the present invention, a system for performing percutaneous pedicle integrity assessments including a body and a stimulation source.
  • the body having an aperture dimensioned to receive a stimulation element therethrough and an insulation region capable of being percutaneously introduced to a pedicle target site within a patient.
  • the stimulation source in electrical communication with said stimulation element for selectively applying a stimulation signal to said stimulation element to assess whether nerves adjacent said pedicle target site innervate as a result of applying said stimulation signal to said stimulation element.
  • patients may be released and subsequently experience pain and/or neurologic deficit due to unwanted contact between the exiting nerve root and misplaced pedicle screws, which oftentimes requires another costly and painful surgery.
  • FIG. 1 is a flow chart illustrating the fundamental steps of the percutaneous pedicle integrity assessment system according to the present invention
  • FIG. 2 is a perspective view of an exemplary surgical system 20 capable of assessing pedicle integrity according to the present invention
  • FIG. 3 is a block diagram of the surgical system 20 shown in FIG. 2 ;
  • FIG. 4 is a side view illustrating the use of first and second exemplary systems for assessing pedicle integrity according to the present invention
  • FIG. 5 is a side view illustrating the use of third and fourth exemplary systems for assessing pedicle integrity according to the present invention
  • FIG. 6 is a perspective view of the first exemplary system for assessing pedicle integrity according to the present invention, comprising a K-wire insulator electrically coupled to a handle assembly;
  • FIG. 7 is a perspective view of the third exemplary system for assessing pedicle integrity according to the present invention, comprising a universal insulating assembly including a handle assembly coupled to an insulating cannula according to the present invention;
  • FIG. 8 is a perspective view illustrating an exemplary electrical coupling mechanism capable of being disposed within the handle assembly shown in FIG. 7 ;
  • FIGS. 9-11 are perspective views illustrating insulating cannulas of varying sizes and dimensions for use with the handle assembly according to the present invention.
  • FIG. 12 is a graph illustrating a plot of a stimulation current pulse capable of producing a neuromuscular response (EMG) of the type shown in FIG. 13 ;
  • FIG. 13 is a graph illustrating a plot of the neuromuscular response (EMG) of a given myotome over time based on a current stimulation pulse (such as shown in FIG. 12 ) applied to a nerve bundle coupled to the given myotome;
  • EMG neuromuscular response
  • FIG. 14 is an illustrating (graphical and schematic) of a method of automatically determining the maximum frequency (F Max ) of the stimulation current pulses according to one embodiment of the present invention
  • FIG. 15 is a graph illustrating a plot of EMG response peak-to-peak voltage (Vpp) for each given stimulation current level (I Stim ) forming a stimulation current pulse according to the present invention (otherwise known as a “recruitment curve”);
  • FIG. 16 is a graph illustrating a traditional stimulation artifact rejection technique as may be employed in obtaining each peak-to-peak voltage (Vpp) EMG response according to the present invention
  • FIG. 17 is a graph illustrating the traditional stimulation artifact rejection technique of FIG. 16 , wherein a large artifact rejection causes the EMG response to become compromised;
  • FIG. 18 is a graph illustrating an improved stimulation artifact rejection technique according to the present invention.
  • FIG. 19 is a graph illustrating an improved noise artifact rejection technique according to the present invention.
  • FIG. 20 is a graph illustrating a plot of a neuromuscular response (EMG) over time (in response to a stimulus current pulse) showing the manner in which voltage extrema (V Max or Min ), (V Min or Max ) occur at times T 1 and T 2 , respectively;
  • EMG neuromuscular response
  • FIG. 21 is a graph illustrating a histogram as may be employed as part of a T 1 , T 2 artifact rejection technique according to an alternate embodiment of the present invention.
  • FIGS. 22A-22E are graphs illustrating a current threshold-hunting algorithm according to one embodiment of the present invention.
  • FIG. 23 is a series of graphs illustrating a multi-channel current threshold-hunting algorithm according to one embodiment of the present invention.
  • FIGS. 24-25 are exemplary screen displays illustrating one embodiment of the pedicle integrity assessment feature of the present invention.
  • FIGS. 26-28 are exemplary screen displays illustrating another embodiment of the pedicle integrity assessment feature of the present invention.
  • FIG. 1 illustrates the fundamental method steps according to the present invention, namely: (a) percutaneously introducing an insulation member to a pedicle target site; (b) establishing electrical communication between a stimulation element and an interior of a pedicle screw pilot hole; (c) applying a stimulation signal to the stimulation element; and (d) monitoring to assess whether nerves adjacent the pedicle are innervating as a result of the step of applying the stimulation signal to the stimulation element.
  • the step of percutaneously introducing an insulation member to a pedicle target site may be accomplished in any of a variety of suitable fashions, including but not limited to providing the insulation member as a tubular insulation member dimensioned to receive and pass through at least one of a K-wire and a pedicle screw pilot hole preparation tool, such as a tap member. It may also be accomplished by providing a K-wire having an insulated coating with an exposed, electrically conductive distal end, as well as a tap member having an insulated coating with an exposed, electrically conductive threaded region.
  • the pedicle target site may, by way of example only, comprise at least one of a fully inserted pedicle screw and the opening of at least one of an initially formed pedicle screw pilot hole and a prepared pedicle screw pilot hole, depending upon the insulation member employed.
  • the step of establishing electrical communication between a stimulation element and an interior of a pedicle screw pilot hole may be accomplished in any of a variety of suitable fashions, including but not limited to disposing a K-wire through a K-wire insulator such that a distal tip of the K-wire contacts a fully inserted pedicle screw, which itself is in electrical communication with the interior of the pedicle screw pilot hole. It may also be accomplished by disposing a K-wire through a K-wire insulator such that the distal tip of the K-wire contacts the interior of the pedicle screw pilot hole.
  • a stimulation element such as a K-wire and/or electrical coupling device
  • a tap member disposed through the insulation member.
  • a K-wire constitutes the stimulation element
  • the step of applying a stimulation signal to the stimulation element may be accomplished in any number of suitable fashions, including but not limited to applying voltage and/or current pulses of varying magnitude and/or frequency to the stimulation element.
  • the stimulation signal may be applied to the stimulation element after the initial pilot hole has been formed, after the pilot hole has been prepared (such as with a tap member) and/or after the pedicle screw has been fully inserted into the pilot hole.
  • the step of monitoring to assess whether nerves adjacent the pedicle are innervating as a result of the step of applying the stimulation signal to the stimulation element may be accomplished in any number of suitable fashions, including but not limited to visual inspection of the muscle groups associated with a particular nerves, as well as the use of evoked muscle action potential (EMAP) monitoring techniques (that is, measuring the EMG responses of muscle groups associated with a particular nerve).
  • EMG evoked muscle action potential
  • information relating to the step of assessing whether nerves adjacent the pedicle are innervating as a result of the step of applying the stimulation signal to the stimulation element may be communicated to the user.
  • This information may include, but is not necessarily limited to, visual representations of the actual stimulation threshold of an exiting nerve root alone or in combination with the stimulation threshold of a bare nerve root (with or without the difference therebetween), as well as color coded graphics to indicate general ranges of pedicle integrity (i.e.
  • any such misplaced pedicle screws when stimulated according to the present invention, will produce an EMG response at a myotome level associated with the nerve in close proximity to the pedicle screw that is breaching the pedicle wall. This will indicate to the surgeon that the pedicle screw needs to be repositioned.
  • FIGS. 2-3 illustrate, by way of example only, a surgical system 20 provided in accordance with a broad aspect of the present invention.
  • the surgical system 20 includes a control unit 22 , a patient module 24 , an EMG harness 26 and return electrode 28 coupled to the patient module 24 , and a host of pedicle screw test accessories 30 capable of being coupled to the patient module 24 via an accessory cable 32 in combination with a handle assembly 36 .
  • the pedicle screw test accessories 30 include (by way of example only) a K-wire insulator 34 , a universal insulating assembly 38 , and a clamping-style electrical coupler 35 .
  • a K-wire 37 and a tap member 39 are shown, by way of example, as exemplary stimulation elements according to the present invention.
  • the K-wire 37 may be electrically coupled to the control unit 22 and/or patient module 24 (so as to receive a stimulation signal) through the use of the K-wire insulator 34 , the universal insulating assembly 38 and/or the electrical coupler 35 (provided the K-wire 37 is insulated in some manner).
  • the tap member 39 may be electrically coupled to the control unit 22 and/or patient module 24 (so as to receive a stimulation signal) through the use of the universal insulating assembly 38 , the electrical coupler 35 (provided the tap member 39 is insulated in some manner) and/or by bringing a stimulation element into contact with the tap member 39 , such as by (for example) providing a longitudinal cannulation within the tap member 39 and disposing an electrically coupled K-wire 37 therein.
  • the control unit 22 includes a touch screen display 40 and a base 42 , which collectively contain the essential processing capabilities for controlling the surgical system 20 .
  • the patient module 24 is connected to the control unit 22 via a data cable 44 , which establishes the electrical connections and communications (digital and/or analog) between the control unit 22 and patient module 24 .
  • the main functions of the control unit 22 include receiving user commands via the touch screen display 40 , activating stimulation, processing signal data according to defined algorithms (described below), displaying received parameters and processed data, and monitoring system status and reporting fault conditions.
  • the touch screen display 40 is preferably equipped with a graphical user interface (GUI) capable of communicating information to the user and receiving instructions from the user.
  • GUI graphical user interface
  • the display 40 and/or base 42 may contain patient module interface circuitry that commands the stimulation sources, receives digitized signals and other information from the patient module 24 , processes the EMG responses to extract characteristic information for each muscle group, and displays the processed data to the operator via the display 40 .
  • the surgical system 20 is capable of performing pedicle integrity assessments after the formation of the pilot hole, after preparation of the pilot hole, and/or after pedicle screw placement.
  • Surgical system 20 accomplishes this by having the control unit 22 and patient module 24 cooperate to send stimulation signals to one or more stimulation electrodes or electrode regions on the various pedicle screw test accessories 30 .
  • the stimulation signals may cause nerves adjacent to or in the general proximity of the K-wire 37 and/or tap member 39 to innervate, which, in turn, can be monitored via the EMG harness 26 .
  • the pedicle integrity assessment feature of the present invention are based on assessing the evoked response of the various muscle myotomes monitored by the surgical system 20 via EMG harness 26 .
  • the accessory handle assembly 36 includes a cable 55 for establishing electrical communication with the patient module 24 (via the accessory cable 32 ).
  • each pedicle screw test accessory 30 (namely, K-wire insulator 34 , universal insulating assembly 38 , and electrical coupler 35 ) includes a proximal electrical connector 56 , a distal electrical connector (described below), and an electrical cable 57 extending therebetween.
  • the proximal electrical connector 56 is preferably threaded and designed to engage with the distal end 59 of the handle assembly 36 . In this fashion, the screw test accessories 30 may be quickly and easily coupled (electrically and mechanically) to the accessory handle assembly 36 .
  • the distal electrical connector of the K-wire insulator 34 and universal insulating assembly 38 may comprise any number of suitable mechanisms for establishing electrical communication with an instrument passing therethrough (such as a K-wire 37 passing through the K-wire insulator 34 and/or the universal insulating assembly 38 , and such as a tap member 39 extending through the universal insulating assembly 38 ).
  • the distal electrical connectors within the universal insulating assembly 38 will be capable of expanding, moving or otherwise accommodating instruments of varying diameters according to the present invention.
  • the distal electrical connector of the coupler 35 may include any number of suitable electrode or electrode regions (including protrusions) on or about the distal (or pinching) ends of the clamp arms 61 forming the coupler 35 .
  • Corresponding regions may be provided on the K-wire 37 , the tap member 39 , such as where such devices are to be directly coupled to the handle assembly 36 (i.e. where K-wire 37 and/or tap member 39 are disposed through insulating elements that do not include distal electrical connectors) according to the present invention.
  • the user may operate one or more buttons of the handle assembly 36 to selectively initiate a stimulation signal (preferably, a current signal) from the patient module 24 to the pedicle probe 56 .
  • a stimulation signal preferably, a current signal
  • the K-wire 37 and/or tap member 39 touching the interior wall of the fully formed pilot hole and/or the K-wire 37 touching the fully introduced pedicle screw
  • applying a stimulation signal in this fashion serves to test the integrity of the medial wall of the pedicle. That is, a breach or compromise in the integrity of the pedicle will allow the stimulation signal to pass through the pedicle and innervate an adjacent nerve root.
  • the surgical system 20 can assess whether a pedicle breach occurred during hole formation and/or screw introduction. If a breach or potential breach is detected, the user may simply withdraw the misplaced pedicle screw and redirect to ensure proper placement.
  • FIG. 4 illustrates two exemplary manners of performing pedicle integrity assessments according to the present invention, one employing the K-wire insulator 34 and one employing the electrical coupler 35 .
  • the K-wire insulator 34 according to the present invention includes an elongate insulating body 60 having a tapered distal end 63 , open distal and proximal ends, and a lumen or cannulation extending therebetween dimensioned to receive and pass the K-wire 37 .
  • a cap element 64 is provided for placement in the proximal end of the insulating body 60 .
  • the cap element 64 has a lumen therewithin dimensioned to pass the K-wire 37 and includes the distal electrical connector (not shown) coupled to the electrical cable 57 .
  • the K-wire insulator 34 may be advanced to the pedicle target site in a percutaneous fashion, by either establishing a virgin approach to the pedicle target site or by passing through a previously established percutaneous corridor (such as may be left or formed by commercially available percutaneous pedicle screw placement systems).
  • This process may be facilitated by first establishing a pilot hole through the use of a so-called Jam-Sheede needle (comprising an inner rigid needle element disposed within a rigid outer needle element), after which point the inner rigid needle element is removed such that the K-wire 37 may be introduced into the pilot hole.
  • the outer rigid needle element of the Jam-Sheede device may then be removed, leaving the K-wire 37 in place.
  • the K-wire insulator 34 may then be advanced over the K-wire 37 . Once the distal end 63 of the K-wire insulator 34 abuts the opening of the pedicle pilot hole, buttons 64 on the handle member 36 may be employed to apply the stimulation signal to the K-wire 37 .
  • the majority of the K-wire 37 is insulated from the surrounding tissue, while the distal end of the K-wire 37 may be brought into direct contact with the pilot hole to perform pedicle integrity assessments according to one embodiment of the present invention.
  • this same technique could be employed to bring the stimulation electrode or electrode region of the K-wire 37 into contact with a portion of a fully inserted pedicle screw (not shown).
  • FIG. 4 also illustrates that the electrical coupler 35 may be employed to perform pedicle integrity assessments, by way of example only, by establishing electrical communication between the fully inserted tap member 39 and the interior surface of the now-prepared pilot hole.
  • the electrical coupler 35 accomplishes this by engaging the electrode or electrode regions on the opposing clamping arms 61 against a portion of the proximal end of the tap member 39 .
  • the tap member 39 may be equipped with indentations or similar features for matingly engaging with corresponding features on the distal regions of the clamping arms 61 .
  • an insulated cannula 66 is provided for insulating all but the exposed distal and proximal ends of the tap member 39 .
  • the insulated cannula 66 is preferably equipped with a tapered distal end 67 .
  • the tap member 39 will be advanced through the insulated cannula 66 (such as by being passed over a K-wire 37 via an internal cannulation) and rotated to prepare threads along the interior of the pilot hole.
  • the handle member 36 may be used to apply the stimulation signal to the electrical coupler 35 which, in turn, transmits this stimulation signal to the interior of the prepared pilot hole to perform pedicle integrity assessments according to another embodiment of the present invention.
  • the tap member 39 may then be removed and a pedicle screw introduced into the prepared pilot hole.
  • a pedicle screw having the same approximate characteristics (i.e. pitch, thread height, diameter, length, etc . . . ) as the tapping (distal) portion of the tap member 39 , the need to perform further pedicle integrity assessments after full introduction of the pedicle screw may be obviated.
  • FIG. 5 illustrates two more exemplary manners of performing pedicle integrity assessments according to the present invention, one employing the universal insulating assembly 38 and one employing the electrical coupler 35 .
  • the universal insulating assembly 38 includes a handle assembly 68 and an insulated cannula 70 extending from the distal portion of the handle assembly 68 .
  • the handle assembly 68 includes a housing member 71 and an electrical connector port 72 for connection with the electrical cable 57 .
  • the housing member 71 contains a universal electrical coupling mechanism 73 comprising, by way of example, a plurality of contact elements 74 (in this case springs extending between posts 75 ).
  • a lumen 76 is provided (by way of example only) in the approximate center of (and extending between) upper and lower base members 77 .
  • the contact elements 74 are positioned in a transverse fashion such that they intersect generally in the same plane as the center of the lumen 76 . In this fashion, any metallic or conductive instrument passed through the lumen 76 will be brought into contact with the contact elements 74 , thereby providing the ability to apply an electrical signal to the instrument.
  • the contact elements 74 are capable of moving, expanding, or otherwise accommodating instruments having a variety of diameters.
  • the insulated cannula 70 may be provided having any number of different lengths and widths, depending upon the device to be passed through it.
  • a threaded base member 78 is preferably coupled to each insulated cannula 70 to facilitate coupling the particular insulated cannula 70 to a corresponding threaded portion on the distal region of the housing member 71 .
  • a surgeon may quickly and easily change between any of a variety of insulating cannulas 70 depending upon the application (i.e. depth to the pedicle target site) and the device to be passed therethrough (i.e. the tap member 39 as shown in FIG. 5 ).
  • the insulating cannula 70 serves to isolate a portion of the instrument as it is passed through the handle assembly 68 . In this fashion, the insulating cannula 70 may be advanced to a pedicle target site, such as to the opening of a pedicle pilot hole as shown in FIG. 5 . Although not shown, it is to be readily appreciated that the present invention also contemplates advancing the distal end of the insulating cannula 70 over or in general abutment with a proximal portion of a percutaneously placed pedicle screw) pedicle screw.
  • an instrument or device such as, by way of example, K-wire 37 or the tap member 39 , depending upon the situation
  • an instrument or device may be passed through the handle member 68 until the tip of the instrument reaches either the initially formed pilot hole, the fully prepared pilot hole, and/or the fully introduced pedicle screw.
  • the insulating cannulas 70 are of varying size depending upon the particular target site and surgical application, but may preferably be provided ranging from 0 inches to 24 inches in length and of any diameter suitable to pass the instrument of interest.
  • FIG. 5 also illustrates a variant of the embodiment shown in FIG. 4 , except that the insulated cannula 66 is specifically dimensioned to pass the K-wire 37 , as opposed to larger diameter instruments such as the tap member 39 as shown in FIG. 4 .
  • the electrical coupler 35 may be used to establish electrical communication between the K-wire 37 and the interior of a pilot hole. With the distal end of the K-wire 37 in such electrical communication with the interior of the pilot hole, the handle assembly 36 may be employed to apply the stimulation signal to perform a pedicle integrity assessment according to the present invention. Placement of the K-wire 37 within the pilot hole, and the advancement of the insulated cannula 66 , may be the same as described above with reference to the Jam-Sheede device described above.
  • system 20 described generally above is exemplary of a system including a stimulation source and monitoring capacity for use in performing pedicle integrity assessment according to the present invention. It will be appreciated by those skilled in the art, however, that any number of systems for providing a stimulation signal and for monitoring to assess pedicle breach may be employed without departing from the scope of the present invention. That said, the following discussion elaborates on the particular algorithms and principles behind the neurophysiology for performing pedicle integrity assessments according to the exemplary embodiment shown (system 20 of FIGS. 2-3 ) according to the present invention.
  • FIGS. 12 and 13 illustrate a fundamental aspect of the present invention: a stimulation signal ( FIG. 12 ) and a resulting evoked response ( FIG. 13 ).
  • the stimulation signal is preferably a stimulation current signal (I Stim ) having rectangular monophasic pulses with a frequency and amplitude adjusted by system software.
  • the stimulation current (I Stim ) may be coupled in any suitable fashion (i.e. AC or DC) and comprises rectangular monophasic pulses of 200 microsecond duration.
  • the amplitude of the current pulses may be fixed, but will preferably sweep from current amplitudes of any suitable range, such as from 2 to 100 mA.
  • the frequency of the current pulses is set at a suitable level such as, in a preferred embodiment, 4 Hz to 10 Hz.(and most preferably 4.5 Hz), so as to prevent stimulating the nerve before it has a chance to recover from depolarization.
  • FIG. 14 illustrates an alternate manner of setting the maximum stimulation frequency, to the extent it is desired to do so rather than simply selecting a fixed maximum stimulation frequency (such as 4.5 Hz) as described above.
  • the maximum frequency of the stimulation pulses is automatically adjusted.
  • the Safety Margin is 5 ms, although it is contemplated that this could be varied according to any number of suitable durations.
  • the stimulations Before the specified number of stimulations, the stimulations will be performed at intervals of 100-120 ms during the bracketing state, intervals of 200-240 ms during the bisection state, and intervals of 400-480 ms during the monitoring state. After the specified number of stimulations, the stimulations will be performed at the fastest interval practical (but no faster than Fmax) during the bracketing state, the fastest interval practical (but no faster than Fmax/2) during the bisection state, and the fastest interval practical (but no faster than Fmax/4) during the monitoring state.
  • the maximum frequency used until F max is calculated is preferably 10 Hz, although slower stimulation frequencies may be used during some acquisition algorithms. The value of F max used is periodically updated to ensure that it is still appropriate. For physiological reasons, the maximum frequency for stimulation will be set on a per-patient basis. Readings will be taken from all myotomes and the one with the slowest frequency (highest T 2 ) will be recorded.
  • each nerve has a characteristic threshold current level (I Thresh ) at which it will depolarize. Below this threshold, current stimulation will not evoke a significant EMG response (V pp ). Once the stimulation threshold (I Thresh ) is reached, the evoked response is reproducible and increases with increasing stimulation until saturation is reached.
  • This relationship between stimulation current and EMG response may be represented graphically via a so-called “recruitment curve,” such as shown in FIG. 15 , which includes an onset region, a linear region, and a saturation region.
  • the present invention defines a significant EMG response to have a Vpp of approximately 100 uV.
  • the lowest stimulation current that evokes this threshold voltage is called I Thresh .
  • I Thresh changes in the current threshold
  • I Thresh may be indicative of a change in the degree of electrical communication between a stimulation electrode and a nerve. This is helpful in assessing if a screw or similar instrument has inadvertently breached the cortex of a pedicle.
  • I Thresh an initial determination of (I Thresh ), such as by applying a stimulation current to the interior of a hole created to receive a pedicle screw, is greater than a later determination of (I Thresh ), such as by applying a stimulation current to the tip of the pedicle screw after insertion
  • the decrease in I Thresh may indicate electrical communication between the pedicle screw and the nerve. Based on the insulation properties of bone, such electrical communication would indicate a breach of the pedicle.
  • the present invention must first identify the peak-to-peak voltage (Vpp) of each EMG response corresponding a given stimulation current (I Stim ).
  • Vpp peak-to-peak voltage
  • I Stim stimulation current
  • the surgical system 20 of the present invention may employ any number of suitable artifact rejection techniques, including the traditional stimulation artifact rejection technique shown in FIG. 16 .
  • stimulation artifact rejection is undertaken by providing a simple artifact rejection window T 1 WIN at the beginning of the EMG waveform. During this T 1 window, the EMG waveform is ignored and Vpp is calculated based on the max and min values outside this window.
  • the artifact rejection window T 1 WIN may be set to about 7.3 msec. While generally suitable, there are situations where this stimulation artifact rejection technique of FIG. 16 is not optimum, such as in the presence of a large stimulation artifact (see FIG. 17 ). The presence of a large stimulation artifact causes the stimulation artifact to cross over the window T 1 WIN and blend in with the EMG. Making the stimulation artifact window larger is not effective, since there is no clear separation between EMG and stimulation artifact.
  • FIG. 18 illustrates a stimulation artifact rejection technique according to the present invention, which solves the above-identified problem with traditional stimulation artifact rejection.
  • a T 1 validation window (T 1 ⁇ V WIN ) is defined immediately following the T 1 window (T 1 WIN ). If the determined Vpp exceeds the threshold for recruiting, but T 1 falls within this T 1 validation window, then the stimulation artifact is considered to be substantial and the EMG is considered to have not recruited. An operator may be alerted, based on the substantial nature of the stimulation artifact. This method of stimulation artifact rejection is thus able to identify situations where the stimulation artifact is large enough to cause the Vpp to exceed the recruit threshold.
  • the T 1 validation window (T 1 ⁇ V WIN ) should be within the range of 0.1 ins to 1 ms wide (preferably about 0.5 ins).
  • the T 1 validation window (T 1 ⁇ V WIN ) should not be so large that the T 1 from an actual EMG waveform could fall within.
  • FIG. 19 illustrates a noise artifact rejection technique according to the present invention.
  • T 2 validation window T 2 ⁇ V WIN
  • T 1 validation window T 1 ⁇ V WIN
  • the noise artifact is considered to be substantial and the EMG is considered to have not recruited. An operator may be alerted, based on the substantial nature of the noise artifact.
  • FIG. 20 illustrates a still further manner of performing stimulation artifact rejection according to an alternate embodiment of the present invention.
  • This artifact rejection is premised on the characteristic delay from the stimulation current pulse to the EMG response.
  • T 1 the time from the current pulse to the first extremum (max or min) is T 1 and to the second extremum (max or min) is T 2 .
  • T 2 the values of T 1 , T 2 are each compiled into a histogram period (see FIG. 21 ). New values of T 1 , T 2 are acquired for each stimulation and the histograms are continuously updated.
  • the value of T 1 and T 2 used is the center value of the largest bin in the histogram.
  • the values of T 1 , T 2 are continuously updated as the histograms change.
  • Vpp is acquired using a window that contains the entire EMG response. After 20 samples, the use of T 1 , T 2 windows is phased in over a period of 200 samples. Vmax and Vmin are then acquired only during windows centered around T 1 , T 2 with widths of, by way of example only, 5 msec. This method of acquiring V pp automatically rejects the artifact if T 1 or T 2 fall outside of their respective windows.
  • this Vpp information is then analyzed relative to the stimulation current in order to determine a relationship between the nerve and the given stimulation element transmitting the stimulation current. More specifically, the present invention determines these relationships (between nerve and the stimulation element) by identifying the minimum stimulation current (I Thresh ) capable of resulting in a predetermined Vpp EMG response. According to the present invention, the determination of I Thresh may be accomplished via any of a variety of suitable algorithms or techniques.
  • FIGS. 22A-22E illustrate, by way of example only, a threshold-hunting algorithm for quickly finding the threshold current (I Thresh ) for each nerve being stimulated by a given stimulation current (I Stim ).
  • Threshold current (I Thresh ) is the minimum stimulation current (I Stim ) that results in a Vpp that is greater than a known threshold voltage (V Thresh ).
  • the value of is adjusted by a bracketing method as follows. The first bracket is 0.2 mA and 0.3 mA. If the Vpp corresponding to both of these stimulation currents is lower than VThresh, then the bracket size is doubled to 0.2 mA and 0.4 mA.
  • This doubling of the bracket size continues until the upper end of the bracket results in a Vpp that is above VThresh.
  • the size of the brackets is then reduced by a bisection method.
  • a current stimulation value at the midpoint of the bracket is used and if this results in a Vpp that is above VThresh, then the lower half becomes the new bracket.
  • the midpoint Vpp is below VThresh then the upper half becomes the new bracket.
  • This bisection method is used until the bracket size has been reduced to I Thresh mA.
  • I Thresh may be selected as a value falling within the bracket, but is preferably defined as the midpoint of the bracket.
  • the threshold-hunting algorithm of this embodiment will support three states: bracketing, bisection, and monitoring.
  • a stimulation current bracket is a range of stimulation currents that bracket the stimulation current threshold I Thresh .
  • the width of a bracket is the upper boundary value minus the lower boundary value. If the stimulation current threshold I Thresh of a channel exceeds the maximum stimulation current, that threshold is considered out-of-range.
  • threshold hunting will employ the method below to select stimulation currents and identify stimulation current brackets for each EMG channel in range.
  • the method for finding the minimum stimulation current uses the methods of bracketing and bisection.
  • the “root” is identified for a function that has the value ⁇ 1 for stimulation currents that do not evoke adequate response; the function has the value +1 for stimulation currents that evoke a response.
  • the root occurs when the function jumps from ⁇ 1 to +1 as stimulation current is increased: the function never has the value of precisely zero.
  • the root will not he known exactly, but only with a level of precision related to the minimum bracket width.
  • the root is found by identifying a range that must contain the root.
  • the upper bound of this range is the lowest stimulation current I Thresh where the function returns the value +1, i.e. the minimum stimulation current that evokes response.
  • the lower bound of this range is the highest stimulation current I Thresh where the function returns the value ⁇ 1, i.e. the maximum stimulation current that does not evoke a response.
  • the pedicle integrity assessment function may begin by adjusting the stimulation current until the root is bracketed ( FIG. 22B ).
  • the initial bracketing range may be provided in any number of suitable ranges. In one embodiment, the initial bracketing range is 0.2 to 0.3 mA. If the upper stimulation current does not evoke a response, the upper end of the range should be increased.
  • the range scale factor is 2.
  • the stimulation current should preferably not be increased by more than 10 mA in one iteration.
  • the stimulation current should preferably never exceed the programmed maximum stimulation current.
  • the algorithm will examine the response of each active channel to determine whether it falls within that bracket. Once the stimulation current threshold of each channel has been bracketed, the algorithm transitions to the bisection state.
  • threshold hunting will employ the method described below to select stimulation currents and narrow the bracket to a selected width (for example, 0.1 mA) for each EMG channel with an in-range threshold.
  • the range containing the root is refined until the root is known with a specified accuracy.
  • the bisection method is used to refine the range containing the root. In one embodiment, the root should be found to a precision of 0.1 mA.
  • the stimulation current at the midpoint of the bracket is used. If the stimulation evokes a response, the bracket shrinks to the lower half of the previous range.
  • the bracket shrinks to the upper half of the previous range.
  • the proximity algorithm is locked on the electrode position when the response threshold is bracketed by stimulation currents separated by the selected width (i.e. 0.1 mA). The process is repeated for each of the active channels until all thresholds are precisely known. At that time, the algorithm enters the monitoring state.
  • this information may be employed to determine any of a variety of relationships between the screw test accessory and the nerve. For example, as will be described in greater detail below, when determining the current threshold I Thresh of a nerve during pedicle integrity assessment, the relationship between the pedicle testing assembly 36 and the nerve is whether electrical communication is established therebetween. If electrical communication is established, this indicates that the medial wall of the pedicle has been cracked, stressed, or otherwise breached as a result of pilot hole formation, pilot hole preparation, and/or screw introduction. If not, this indicates that the integrity of the medial wall of the pedicle has remained intact. This characteristic is based on the insulating properties of bone.
  • the relationships determined above based on the current threshold determination may be communicated to the user in an easy to use format, including but not limited to, alpha-numeric and/or graphical information regarding pedicle integrity assessments, stimulation level, EMG responses, instrument in use, set-up, and related instructions for the user.
  • This advantageously provides the ability to present simplified yet meaningful data to the user, as opposed to the actual EMG waveforms that are displayed to the users in traditional EMG systems. Due to the complexity in interpreting EMG waveforms, such prior art systems typically require an additional person specifically trained in such matters which, in turn, can be disadvantageous in that it translates into extra expense (having yet another highly trained person in attendance) and oftentimes presents scheduling challenges because most hospitals do not retain such personnel.
  • EMG monitoring would preferably be accomplished by connecting the EMG harness 26 to the myotomes in the patient's legs corresponding to the exiting nerve roots associated with the particular spinal operation level. In a preferred embodiment, this is accomplished via 8 pairs of EMG electrodes 27 placed on the skin over the major muscle groups on the legs (four per side), an anode electrode 29 providing a return path for the stimulation current, and a common electrode 31 providing a ground reference to pre-amplifiers in the patient module 24 .
  • EMG responses measured via the EMG harness 26 provide a quantitative measure of the nerve depolarization caused by the electrical stimulus.
  • the placement of EMG electrodes 27 may be undertaken according to the manner shown in Table 1 below for spinal surgery:
  • the surgical system 20 performs pedicle integrity assessments via, by way of example only, the use of pedicle testing accessories 30 in combination with the handle assembly 36 . More specifically, upon pressing the button on the screw test handle 36 , the software will execute a testing algorithm to apply a stimulation current to the particular target (i.e. pilot hole, inserted pedicle screw, or bare nerve), setting in motion the pedicle integrity assessment function of the present invention.
  • the pedicle integrity assessment features of the present invention may include, by way of example only, an “Actual” mode ( FIGS. 24-25 ) for displaying the actual stimulation threshold 91 measured for a given myotome, as well as a “Relative” mode ( FIGS.
  • the surgical accessory label 84 displays the word “SCREW TEST” to denote use of the pedicle testing assembly 36 for performing pedicle integrity assessments.
  • the screw test algorithm preferably determines the depolarization (threshold) current for all responding EMG channels.
  • the EMG channel tabs 82 may be configured such that the EMG channel having the lowest stimulation threshold will be automatically enlarged and/or highlighted and/or colored (EMG channel tab R 3 as shown in FIG. 24 ) to clearly indicate this fact to the user, As shown in FIG.
  • this feature may be overridden by manually selecting another EMG channel tab (such as EMG channel tab R 1 in FIG. 25 ) by touching the particular EMG channel tab 82 on the touch screen display 40 .
  • a warning symbol 94 may be provided next to the EMG channel tab having the lowest stimulation threshold (once again, EMG channel tab R 3 in FIG. 24 ) to inform the user that the stimulation threshold 91 is not the lowest stimulation threshold.
  • any number of the above-identified indicia may be color-coded to indicate general safety ranges (i.e. “green” for a range of stimulation thresholds above a predetermined safe value, “red” for range of stimulation thresholds below a predetermined unsafe value, and “yellow” for the range of stimulation thresholds in between the predetermined safe and unsafe values—designating caution).
  • green denotes a stimulation threshold range of 9 milliamps (mA) or greater
  • “yellow” denotes a stimulation threshold range of 6-8 mA
  • “red” denotes a stimulation threshold range of 6 mA or below.
  • a surgeon may quickly and easily test to determine if the integrity of a pedicle has been breached or otherwise compromised, such as may result due to the formation of a pedicle screw hole and/or introduction of a pedicle screw. More specifically, if after stimulating the screw hole and/or pedicle screw itself the stimulation threshold is: (a) at or below 6 mA, the threshold display 40 will illuminate “red” and thus indicate to the surgeon that a breach is likely; (b) between 6 and 8 mA, the threshold display 40 will illuminate “yellow” and thus indicate to the surgeon that a breach is possible; and/or (c) at or above. 8 mA, the threshold display 40 will illuminate “green” and thus indicate to the surgeon that a breach is unlikely.
  • the surgeon may choose to withdraw the pedicle screw and redirect it along a different trajectory to ensure the pedicle screw no longer breaches (or comes close to breaching) the medial wall of the pedicle.
  • the present invention may be implemented using any combination of computer programming software, firmware or hardware.
  • the computer programming code (whether software or firmware) according to the invention will typically be stored in one or more machine readable storage mediums such as fixed (hard) drives, diskettes, optical disks, magnetic tape, semiconductor memories such as ROMs, PROMs, etc., thereby making an article of manufacture in accordance with the invention.
  • the article of manufacture containing the computer programming code is used by either executing the code directly from the storage device, by copying the code from the storage device into another storage device such as a hard disk, RAM, etc. or by transmitting the code on a network for remote execution.
  • a hard disk such as a hard disk, RAM, etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Neurology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Anesthesiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Surgical Instruments (AREA)

Abstract

The present invention involves systems and related methods for performing percutaneous pedicle integrity assessments involving the use of neurophysiology.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This is a continuation of U.S. patent application Ser. No. 12/427,612 filed on Apr. 21, 2009 (currently pending) by Miles et al., which is a continuation of U.S. patent application Ser. No. 10/836,105 filed on Apr. 30, 2004 by Miles et al., and issued on Feb. 16, 2010 as U.S. Pat. No. 7,664,544, which is a continuation of PCT Application No. PCT/US02/35047 filed on Oct. 30, 2002 and published on May 8, 2003 as PCT Pub. No. W003/037 170, which claims priority to U.S. Provisional Patent Application 60/336,501entitled “Spinal Surgery Systems and Methods” filed Oct. 30, 2001, the entire contents of which are hereby expressly incorporated by reference into this disclosure as if set forth fully herein.
  • BACKGROUND OF THE INVENTION I. Field of the Invention
  • The present invention relates to a system and methods generally aimed at surgery. More particularly, the present invention is directed at a system and related methods for performing percutaneous pedicle integrity assessments involving the use of neurophysiology.
  • II. Description of Related Art
  • A trend in spinal surgery is toward performing surgery in a minimally invasive or mini mal access fashion to avoid the trauma of so-called open or “direct access” procedures. A specific area of interest is in the percutaneous placement of pedicle screws, which are typically employed to effect posterior fixation in spinal fusion procedures. While great strides are being made in this area, a risk exists (as it does in open procedures) that the pedicle may become breached, cracked, or otherwise compromised due to the formation and/or preparation of the pilot hole (designed to receive a pedicle screw) and/or due to the introduction of the pedicle screw into the pilot hole. If the pedicle (or more specifically, the cortex of the medial wall, lateral wall, superior wall and/or inferior wall) is breached, cracked, or otherwise compromised, the patient may experience pain or neurologic deficit due to unwanted contact between the pedicle screw and exiting nerve roots. This oftentimes necessitates revision surgery, which is disadvantageously painful for the patient and costly, both in terms of recovery time and hospitalization.
  • Various attempts have been undertaken at performing pedicle integrity assessments. As used herein, the term “pedicle integrity assessment” is defined as detecting or otherwise determining whether a part of a pedicle has been breached, cracked, or otherwise compromised due to the formation and/or preparation of the pilot hole (designed to receive a pedicle screw) and/or due to the introduction of the pedicle screw into the pilot hole. “Formation” is defined as the act of creating an initial pilot hole in a pedicle, such as through the use of a drill or other hole-forming element. “Preparation” is defined as the act of refining or otherwise acting upon the interior of the pilot hole to further prepare it to receive a pedicle screw, such as by introducing a tap or reamer element into the initial pilot hole. “Introduction” is defined as the act of inserting or otherwise placing a pedicle screw into the initially formed and/or prepared pilot hole, such as by screwing the pedicle screw into the pilot hole via a screw driver or similar element.
  • Among the attempts, X-ray and other imaging systems have been employed, but these are typically quite expensive and are oftentimes limited in terms of resolution such that pedicle breaches may fail to be detected.
  • Still other attempts involve capitalizing on the insulating characteristics of bone (specifically, that of the medial wall of the pedicle) and the conductivity of the exiting nerve roots themselves. That is, if the medial wall of the pedicle is breached, a stimulation signal applied to the pedicle screw and/or the pilot hole (prior to screw introduction) will cause the various muscle groups coupled to the exiting nerve roots to contract. If the pedicle wall has not been breached, the insulating nature of the pedicle will prevent the stimulation signal from innervating the given nerve roots such that the associated muscle groups will not twitch. Traditional EMG monitoring systems may be employed to augment the ability to detect such innervation. A drawback with such prior art systems is that they do not lend themselves to assessing pedicle integrity in cases where pedicle screws are placed in a percutaneous fashion, such as may be accomplished by any number of commercially available percutaneous pedicle screw implantation systems. With the anticipated increase in the number of such percutaneous pedicle screw procedures, a significant number of patients will be at risk of having misplaced pedicle screws given the lack of a percutaneous manner of performing pedicle integrity assessments.
  • The present invention is directed at addressing this need and eliminating, or at least reducing, the effects of the shortcomings of the prior art as described above.
  • SUMMARY OF THE INVENTION
  • The present invention overcomes the drawbacks of the prior art by providing, according to a first broad aspect of the present invention, a system for performing percutaneous pedicle integrity assessments comprising the steps of: (a) percutaneously introducing an insulation member to a pedicle target site; (b) establishing electrical communication between a stimulation element and an interior of a pedicle screw pilot hole; (c) applying a stimulation signal to said stimulation element; and (d) monitoring to assess whether nerves adjacent said pedicle are innervating as a result of the step of applying said application of stimulation signal to said stimulation element.
  • The present invention overcomes the drawbacks of the prior art by providing, according to a second broad aspect of the present invention, a method for performing percutaneous pedicle integrity assessments comprising the steps of: (a) percutaneously introducing an insulated K-wire into contact with at least one of a pedicle screw and a pedicle screw pilot hole; (b) applying a stimulation signal to said K-wire; and (c) monitoring to assess whether nerves adjacent said pedicle are innervating as a result of the step of applying said stimulation signal to said K-wire.
  • The present invention overcomes the drawbacks of the prior art by providing, according to a third broad aspect of the present invention, a method for performing percutaneous pedicle integrity assessments comprising the steps of: (a) percutaneously introducing an insulated member to the approximate opening of a pedicle screw pilot hole; (b) introducing a pedicle screw pilot hole preparation tool through said insulated member to prepare said pedicle screw pilot hole; (c) applying a stimulation signal to said pedicle screw pilot hole preparation tool; and (d) monitoring to assess whether nerves adjacent said pedicle are innervating as a result of the step of applying said stimulation signal to said pedicle screw pilot hole preparation tool.
  • The present invention overcomes the drawbacks of the prior art by providing, according to a fourth broad aspect of the present invention, a method for performing percutaneous pedicle integrity assessments comprising the steps of: (a) percutaneously introducing an insulated K-wire into contact with a pedicle screw pilot hole; (b) applying a stimulation signal to said K-wire; (c) monitoring to assess whether nerves adjacent said pedicle are innervating as a result of the step of applying said stimulation signal to said K-wire; (d) percutaneously introducing an insulated member to the approximate opening of a pedicle screw pilot hole; (e) introducing a tap member, through said insulated member to prepare said pedicle screw pilot hole; (f) applying a stimulation signal to said tap member; and (g) monitoring to assess whether nerves adjacent said pedicle are innervating as a result of the step of applying said stimulation signal to said tap member.
  • The present invention overcomes the drawbacks of the prior art by providing, according to a fifth broad aspect of the present invention, a system for performing percutaneous pedicle integrity assessments including a body and a stimulation source. The body having an aperture dimensioned to receive a stimulation element therethrough and an insulation region capable of being percutaneously introduced to a pedicle target site within a patient. The stimulation source in electrical communication with said stimulation element for selectively applying a stimulation signal to said stimulation element to assess whether nerves adjacent said pedicle target site innervate as a result of applying said stimulation signal to said stimulation element.
  • But for the systems and methods of the present invention, patients may be released and subsequently experience pain and/or neurologic deficit due to unwanted contact between the exiting nerve root and misplaced pedicle screws, which oftentimes requires another costly and painful surgery.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flow chart illustrating the fundamental steps of the percutaneous pedicle integrity assessment system according to the present invention;
  • FIG. 2 is a perspective view of an exemplary surgical system 20 capable of assessing pedicle integrity according to the present invention;
  • FIG. 3 is a block diagram of the surgical system 20 shown in FIG. 2;
  • FIG. 4 is a side view illustrating the use of first and second exemplary systems for assessing pedicle integrity according to the present invention;
  • FIG. 5 is a side view illustrating the use of third and fourth exemplary systems for assessing pedicle integrity according to the present invention;
  • FIG. 6 is a perspective view of the first exemplary system for assessing pedicle integrity according to the present invention, comprising a K-wire insulator electrically coupled to a handle assembly;
  • FIG. 7 is a perspective view of the third exemplary system for assessing pedicle integrity according to the present invention, comprising a universal insulating assembly including a handle assembly coupled to an insulating cannula according to the present invention;
  • FIG. 8 is a perspective view illustrating an exemplary electrical coupling mechanism capable of being disposed within the handle assembly shown in FIG. 7;
  • FIGS. 9-11 are perspective views illustrating insulating cannulas of varying sizes and dimensions for use with the handle assembly according to the present invention;
  • FIG. 12 is a graph illustrating a plot of a stimulation current pulse capable of producing a neuromuscular response (EMG) of the type shown in FIG. 13;
  • FIG. 13 is a graph illustrating a plot of the neuromuscular response (EMG) of a given myotome over time based on a current stimulation pulse (such as shown in FIG. 12) applied to a nerve bundle coupled to the given myotome;
  • FIG. 14 is an illustrating (graphical and schematic) of a method of automatically determining the maximum frequency (FMax) of the stimulation current pulses according to one embodiment of the present invention;
  • FIG. 15 is a graph illustrating a plot of EMG response peak-to-peak voltage (Vpp) for each given stimulation current level (IStim) forming a stimulation current pulse according to the present invention (otherwise known as a “recruitment curve”);
  • FIG. 16 is a graph illustrating a traditional stimulation artifact rejection technique as may be employed in obtaining each peak-to-peak voltage (Vpp) EMG response according to the present invention;
  • FIG. 17 is a graph illustrating the traditional stimulation artifact rejection technique of FIG. 16, wherein a large artifact rejection causes the EMG response to become compromised;
  • FIG. 18 is a graph illustrating an improved stimulation artifact rejection technique according to the present invention;
  • FIG. 19 is a graph illustrating an improved noise artifact rejection technique according to the present invention;
  • FIG. 20 is a graph illustrating a plot of a neuromuscular response (EMG) over time (in response to a stimulus current pulse) showing the manner in which voltage extrema (VMax or Min), (VMin or Max) occur at times T1 and T2, respectively;
  • FIG. 21 is a graph illustrating a histogram as may be employed as part of a T1, T2 artifact rejection technique according to an alternate embodiment of the present invention;
  • FIGS. 22A-22E are graphs illustrating a current threshold-hunting algorithm according to one embodiment of the present invention;
  • FIG. 23 is a series of graphs illustrating a multi-channel current threshold-hunting algorithm according to one embodiment of the present invention;
  • FIGS. 24-25 are exemplary screen displays illustrating one embodiment of the pedicle integrity assessment feature of the present invention; and
  • FIGS. 26-28 are exemplary screen displays illustrating another embodiment of the pedicle integrity assessment feature of the present invention.
  • DESCRIPTION OF THE SPECIFIC EMBODIMENTS
  • Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. The systems disclosed herein boast a variety of inventive features and components that warrant patent protection, both individually and in combination.
  • The present invention is directed at performing percutaneous pedicle integrity assessments. FIG. 1 illustrates the fundamental method steps according to the present invention, namely: (a) percutaneously introducing an insulation member to a pedicle target site; (b) establishing electrical communication between a stimulation element and an interior of a pedicle screw pilot hole; (c) applying a stimulation signal to the stimulation element; and (d) monitoring to assess whether nerves adjacent the pedicle are innervating as a result of the step of applying the stimulation signal to the stimulation element.
  • The step of percutaneously introducing an insulation member to a pedicle target site may be accomplished in any of a variety of suitable fashions, including but not limited to providing the insulation member as a tubular insulation member dimensioned to receive and pass through at least one of a K-wire and a pedicle screw pilot hole preparation tool, such as a tap member. It may also be accomplished by providing a K-wire having an insulated coating with an exposed, electrically conductive distal end, as well as a tap member having an insulated coating with an exposed, electrically conductive threaded region. The pedicle target site may, by way of example only, comprise at least one of a fully inserted pedicle screw and the opening of at least one of an initially formed pedicle screw pilot hole and a prepared pedicle screw pilot hole, depending upon the insulation member employed.
  • The step of establishing electrical communication between a stimulation element and an interior of a pedicle screw pilot hole may be accomplished in any of a variety of suitable fashions, including but not limited to disposing a K-wire through a K-wire insulator such that a distal tip of the K-wire contacts a fully inserted pedicle screw, which itself is in electrical communication with the interior of the pedicle screw pilot hole. It may also be accomplished by disposing a K-wire through a K-wire insulator such that the distal tip of the K-wire contacts the interior of the pedicle screw pilot hole. In yet another exemplary embodiment, it may be accomplished by bringing a stimulation element (such as a K-wire and/or electrical coupling device) into contact with a tap member disposed through the insulation member. When a K-wire constitutes the stimulation element, it may be useful to provide the tap member with a longitudinal lumen for receiving and passing the K-wire therethrough to establish electrical communication therebetween.
  • The step of applying a stimulation signal to the stimulation element may be accomplished in any number of suitable fashions, including but not limited to applying voltage and/or current pulses of varying magnitude and/or frequency to the stimulation element. In a preferred embodiment, the stimulation signal may be applied to the stimulation element after the initial pilot hole has been formed, after the pilot hole has been prepared (such as with a tap member) and/or after the pedicle screw has been fully inserted into the pilot hole.
  • The step of monitoring to assess whether nerves adjacent the pedicle are innervating as a result of the step of applying the stimulation signal to the stimulation element may be accomplished in any number of suitable fashions, including but not limited to visual inspection of the muscle groups associated with a particular nerves, as well as the use of evoked muscle action potential (EMAP) monitoring techniques (that is, measuring the EMG responses of muscle groups associated with a particular nerve).
  • Although shown and described within the context of a particular exemplary system having a stimulation source and monitoring capacity, it will be appreciated by those skilled in the art that any number of systems for providing a stimulation signal and for monitoring to assess pedicle breach may be employed without departing from the scope of the present invention.
  • In a further aspect of the present invention, information relating to the step of assessing whether nerves adjacent the pedicle are innervating as a result of the step of applying the stimulation signal to the stimulation element may be communicated to the user. This information may include, but is not necessarily limited to, visual representations of the actual stimulation threshold of an exiting nerve root alone or in combination with the stimulation threshold of a bare nerve root (with or without the difference therebetween), as well as color coded graphics to indicate general ranges of pedicle integrity (i.e. “green” for a range of stimulation thresholds above a predetermined safe value—indicating “breach unlikely”, “red” for range of stimulation thresholds below a predetermined unsafe value—indicating “breach likely”, and “yellow” for the range of stimulation thresholds between the predetermined safe arid unsafe values—indicating “possible breach”), This is a significant feature, and advantage over the prior art, in that it provides a straightforward and easy to interpret representation as to whether a pedicle has been breached, cracked, or otherwise compromised due to the formation and/or preparation of the pilot hole and/or due to the introduction of the pedicle screw into the pilot hole.
  • Identifying such a potential breach is helpful in that it prevents or minimizes the chance that a misplaced pedicle screw (that is, one breaching a wall of the pedicle) will be missed until after the surgery. Instead, any such misplaced pedicle screws, when stimulated according to the present invention, will produce an EMG response at a myotome level associated with the nerve in close proximity to the pedicle screw that is breaching the pedicle wall. This will indicate to the surgeon that the pedicle screw needs to be repositioned.
  • FIGS. 2-3 illustrate, by way of example only, a surgical system 20 provided in accordance with a broad aspect of the present invention. The surgical system 20 includes a control unit 22, a patient module 24, an EMG harness 26 and return electrode 28 coupled to the patient module 24, and a host of pedicle screw test accessories 30 capable of being coupled to the patient module 24 via an accessory cable 32 in combination with a handle assembly 36. In the embodiment shown, the pedicle screw test accessories 30 include (by way of example only) a K-wire insulator 34, a universal insulating assembly 38, and a clamping-style electrical coupler 35. As will be described in greater detail below, a K-wire 37 and a tap member 39 are shown, by way of example, as exemplary stimulation elements according to the present invention. The K-wire 37 may be electrically coupled to the control unit 22 and/or patient module 24 (so as to receive a stimulation signal) through the use of the K-wire insulator 34, the universal insulating assembly 38 and/or the electrical coupler 35 (provided the K-wire 37 is insulated in some manner). The tap member 39 may be electrically coupled to the control unit 22 and/or patient module 24 (so as to receive a stimulation signal) through the use of the universal insulating assembly 38, the electrical coupler 35 (provided the tap member 39 is insulated in some manner) and/or by bringing a stimulation element into contact with the tap member 39, such as by (for example) providing a longitudinal cannulation within the tap member 39 and disposing an electrically coupled K-wire 37 therein.
  • The control unit 22 includes a touch screen display 40 and a base 42, which collectively contain the essential processing capabilities for controlling the surgical system 20. The patient module 24 is connected to the control unit 22 via a data cable 44, which establishes the electrical connections and communications (digital and/or analog) between the control unit 22 and patient module 24. The main functions of the control unit 22 include receiving user commands via the touch screen display 40, activating stimulation, processing signal data according to defined algorithms (described below), displaying received parameters and processed data, and monitoring system status and reporting fault conditions. The touch screen display 40 is preferably equipped with a graphical user interface (GUI) capable of communicating information to the user and receiving instructions from the user. The display 40 and/or base 42 may contain patient module interface circuitry that commands the stimulation sources, receives digitized signals and other information from the patient module 24, processes the EMG responses to extract characteristic information for each muscle group, and displays the processed data to the operator via the display 40.
  • As will be described in greater detail below, the surgical system 20 is capable of performing pedicle integrity assessments after the formation of the pilot hole, after preparation of the pilot hole, and/or after pedicle screw placement. Surgical system 20 accomplishes this by having the control unit 22 and patient module 24 cooperate to send stimulation signals to one or more stimulation electrodes or electrode regions on the various pedicle screw test accessories 30. Depending upon effect of pilot hole formation, pilot hole preparation and/or pedicle screw introduction (namely, on the bone forming the pedicle), the stimulation signals may cause nerves adjacent to or in the general proximity of the K-wire 37 and/or tap member 39 to innervate, which, in turn, can be monitored via the EMG harness 26. The pedicle integrity assessment feature of the present invention are based on assessing the evoked response of the various muscle myotomes monitored by the surgical system 20 via EMG harness 26.
  • The accessory handle assembly 36 includes a cable 55 for establishing electrical communication with the patient module 24 (via the accessory cable 32). In a preferred embodiment, each pedicle screw test accessory 30 (namely, K-wire insulator 34, universal insulating assembly 38, and electrical coupler 35) includes a proximal electrical connector 56, a distal electrical connector (described below), and an electrical cable 57 extending therebetween. The proximal electrical connector 56 is preferably threaded and designed to engage with the distal end 59 of the handle assembly 36. In this fashion, the screw test accessories 30 may be quickly and easily coupled (electrically and mechanically) to the accessory handle assembly 36. The distal electrical connector of the K-wire insulator 34 and universal insulating assembly 38 may comprise any number of suitable mechanisms for establishing electrical communication with an instrument passing therethrough (such as a K-wire 37 passing through the K-wire insulator 34 and/or the universal insulating assembly 38, and such as a tap member 39 extending through the universal insulating assembly 38). In a preferred embodiment, the distal electrical connectors within the universal insulating assembly 38 will be capable of expanding, moving or otherwise accommodating instruments of varying diameters according to the present invention. The distal electrical connector of the coupler 35 may include any number of suitable electrode or electrode regions (including protrusions) on or about the distal (or pinching) ends of the clamp arms 61 forming the coupler 35. Corresponding regions (such as electrodes or electrode regions—including indentations) may be provided on the K-wire 37, the tap member 39, such as where such devices are to be directly coupled to the handle assembly 36 (i.e. where K-wire 37 and/or tap member 39 are disposed through insulating elements that do not include distal electrical connectors) according to the present invention.
  • In all situations, the user may operate one or more buttons of the handle assembly 36 to selectively initiate a stimulation signal (preferably, a current signal) from the patient module 24 to the pedicle probe 56. With the K-wire 37 and/or tap member 39 touching the interior wall of the fully formed pilot hole and/or the K-wire 37 touching the fully introduced pedicle screw, applying a stimulation signal in this fashion serves to test the integrity of the medial wall of the pedicle. That is, a breach or compromise in the integrity of the pedicle will allow the stimulation signal to pass through the pedicle and innervate an adjacent nerve root. By monitoring the myotomes associated with the nerve roots (via the EMG harness 26 and recording electrode 27) and assessing the resulting EMG responses (via the control unit 22), the surgical system 20 can assess whether a pedicle breach occurred during hole formation and/or screw introduction. If a breach or potential breach is detected, the user may simply withdraw the misplaced pedicle screw and redirect to ensure proper placement.
  • FIG. 4 illustrates two exemplary manners of performing pedicle integrity assessments according to the present invention, one employing the K-wire insulator 34 and one employing the electrical coupler 35. With combined reference with FIG. 6, the K-wire insulator 34 according to the present invention includes an elongate insulating body 60 having a tapered distal end 63, open distal and proximal ends, and a lumen or cannulation extending therebetween dimensioned to receive and pass the K-wire 37. A cap element 64 is provided for placement in the proximal end of the insulating body 60. The cap element 64 has a lumen therewithin dimensioned to pass the K-wire 37 and includes the distal electrical connector (not shown) coupled to the electrical cable 57. As shown in FIG. 4, the K-wire insulator 34 may be advanced to the pedicle target site in a percutaneous fashion, by either establishing a virgin approach to the pedicle target site or by passing through a previously established percutaneous corridor (such as may be left or formed by commercially available percutaneous pedicle screw placement systems). This process may be facilitated by first establishing a pilot hole through the use of a so-called Jam-Sheede needle (comprising an inner rigid needle element disposed within a rigid outer needle element), after which point the inner rigid needle element is removed such that the K-wire 37 may be introduced into the pilot hole. The outer rigid needle element of the Jam-Sheede device may then be removed, leaving the K-wire 37 in place. The K-wire insulator 34 may then be advanced over the K-wire 37. Once the distal end 63 of the K-wire insulator 34 abuts the opening of the pedicle pilot hole, buttons 64 on the handle member 36 may be employed to apply the stimulation signal to the K-wire 37. In this fashion, the majority of the K-wire 37 is insulated from the surrounding tissue, while the distal end of the K-wire 37 may be brought into direct contact with the pilot hole to perform pedicle integrity assessments according to one embodiment of the present invention. As will be appreciated, this same technique could be employed to bring the stimulation electrode or electrode region of the K-wire 37 into contact with a portion of a fully inserted pedicle screw (not shown).
  • FIG. 4 also illustrates that the electrical coupler 35 may be employed to perform pedicle integrity assessments, by way of example only, by establishing electrical communication between the fully inserted tap member 39 and the interior surface of the now-prepared pilot hole. The electrical coupler 35 accomplishes this by engaging the electrode or electrode regions on the opposing clamping arms 61 against a portion of the proximal end of the tap member 39. To facilitate this, the tap member 39 may be equipped with indentations or similar features for matingly engaging with corresponding features on the distal regions of the clamping arms 61. In the embodiment shown, an insulated cannula 66 is provided for insulating all but the exposed distal and proximal ends of the tap member 39. As with the body 60 of the K-wire insulator 34, the insulated cannula 66 is preferably equipped with a tapered distal end 67. In use, the tap member 39 will be advanced through the insulated cannula 66 (such as by being passed over a K-wire 37 via an internal cannulation) and rotated to prepare threads along the interior of the pilot hole. After the pilot hole has been fully prepared in this fashion (that is, to the full or approximately full depth of the pilot hole), the handle member 36 may be used to apply the stimulation signal to the electrical coupler 35 which, in turn, transmits this stimulation signal to the interior of the prepared pilot hole to perform pedicle integrity assessments according to another embodiment of the present invention. If the pedicle has not been breached, the tap member 39 may then be removed and a pedicle screw introduced into the prepared pilot hole. By selecting a pedicle screw having the same approximate characteristics (i.e. pitch, thread height, diameter, length, etc . . . ) as the tapping (distal) portion of the tap member 39, the need to perform further pedicle integrity assessments after full introduction of the pedicle screw may be obviated.
  • FIG. 5 illustrates two more exemplary manners of performing pedicle integrity assessments according to the present invention, one employing the universal insulating assembly 38 and one employing the electrical coupler 35. With combined reference to FIGS. 7-11, the universal insulating assembly 38 includes a handle assembly 68 and an insulated cannula 70 extending from the distal portion of the handle assembly 68. As best seen in FIG. 7, the handle assembly 68 includes a housing member 71 and an electrical connector port 72 for connection with the electrical cable 57. With reference to FIG. 8, the housing member 71 contains a universal electrical coupling mechanism 73 comprising, by way of example, a plurality of contact elements 74 (in this case springs extending between posts 75). A lumen 76 is provided (by way of example only) in the approximate center of (and extending between) upper and lower base members 77. The contact elements 74 are positioned in a transverse fashion such that they intersect generally in the same plane as the center of the lumen 76. In this fashion, any metallic or conductive instrument passed through the lumen 76 will be brought into contact with the contact elements 74, thereby providing the ability to apply an electrical signal to the instrument. Moreover, the contact elements 74 are capable of moving, expanding, or otherwise accommodating instruments having a variety of diameters. As best shown in FIGS. 9-11, the insulated cannula 70 may be provided having any number of different lengths and widths, depending upon the device to be passed through it. A threaded base member 78 is preferably coupled to each insulated cannula 70 to facilitate coupling the particular insulated cannula 70 to a corresponding threaded portion on the distal region of the housing member 71. In this fashion, a surgeon may quickly and easily change between any of a variety of insulating cannulas 70 depending upon the application (i.e. depth to the pedicle target site) and the device to be passed therethrough (i.e. the tap member 39 as shown in FIG. 5).
  • The insulating cannula 70 serves to isolate a portion of the instrument as it is passed through the handle assembly 68. In this fashion, the insulating cannula 70 may be advanced to a pedicle target site, such as to the opening of a pedicle pilot hole as shown in FIG. 5. Although not shown, it is to be readily appreciated that the present invention also contemplates advancing the distal end of the insulating cannula 70 over or in general abutment with a proximal portion of a percutaneously placed pedicle screw) pedicle screw. In either instance, an instrument or device (such as, by way of example, K-wire 37 or the tap member 39, depending upon the situation) may be passed through the handle member 68 until the tip of the instrument reaches either the initially formed pilot hole, the fully prepared pilot hole, and/or the fully introduced pedicle screw. The insulating cannulas 70 are of varying size depending upon the particular target site and surgical application, but may preferably be provided ranging from 0 inches to 24 inches in length and of any diameter suitable to pass the instrument of interest.
  • FIG. 5 also illustrates a variant of the embodiment shown in FIG. 4, except that the insulated cannula 66 is specifically dimensioned to pass the K-wire 37, as opposed to larger diameter instruments such as the tap member 39 as shown in FIG. 4. In this instance, the electrical coupler 35 may be used to establish electrical communication between the K-wire 37 and the interior of a pilot hole. With the distal end of the K-wire 37 in such electrical communication with the interior of the pilot hole, the handle assembly 36 may be employed to apply the stimulation signal to perform a pedicle integrity assessment according to the present invention. Placement of the K-wire 37 within the pilot hole, and the advancement of the insulated cannula 66, may be the same as described above with reference to the Jam-Sheede device described above.
  • As noted above, the system 20 described generally above is exemplary of a system including a stimulation source and monitoring capacity for use in performing pedicle integrity assessment according to the present invention. It will be appreciated by those skilled in the art, however, that any number of systems for providing a stimulation signal and for monitoring to assess pedicle breach may be employed without departing from the scope of the present invention. That said, the following discussion elaborates on the particular algorithms and principles behind the neurophysiology for performing pedicle integrity assessments according to the exemplary embodiment shown (system 20 of FIGS. 2-3) according to the present invention.
  • FIGS. 12 and 13 illustrate a fundamental aspect of the present invention: a stimulation signal (FIG. 12) and a resulting evoked response (FIG. 13). By way of example only, the stimulation signal is preferably a stimulation current signal (IStim) having rectangular monophasic pulses with a frequency and amplitude adjusted by system software. In a still further preferred embodiment, the stimulation current (IStim) may be coupled in any suitable fashion (i.e. AC or DC) and comprises rectangular monophasic pulses of 200 microsecond duration. The amplitude of the current pulses may be fixed, but will preferably sweep from current amplitudes of any suitable range, such as from 2 to 100 mA. For each nerve and myotome there is a characteristic delay from the stimulation current pulse to the EMG response (typically between 5 to 20 ms). To account for this, the frequency of the current pulses is set at a suitable level such as, in a preferred embodiment, 4 Hz to 10 Hz.(and most preferably 4.5 Hz), so as to prevent stimulating the nerve before it has a chance to recover from depolarization. The EMG response shown in FIG. 13 can be characterized by a peak-to-peak voltage of Vpp=Vmax−Vmin.
  • FIG. 14 illustrates an alternate manner of setting the maximum stimulation frequency, to the extent it is desired to do so rather than simply selecting a fixed maximum stimulation frequency (such as 4.5 Hz) as described above. According to this embodiment, the maximum frequency of the stimulation pulses is automatically adjusted. After each stimulation, Fmax will be computed as: Fmax=1/(T2+TSafetyMargin) for the largest value of T2 from each of the active EMG channels. In one embodiment, the Safety Margin is 5 ms, although it is contemplated that this could be varied according to any number of suitable durations. Before the specified number of stimulations, the stimulations will be performed at intervals of 100-120 ms during the bracketing state, intervals of 200-240 ms during the bisection state, and intervals of 400-480 ms during the monitoring state. After the specified number of stimulations, the stimulations will be performed at the fastest interval practical (but no faster than Fmax) during the bracketing state, the fastest interval practical (but no faster than Fmax/2) during the bisection state, and the fastest interval practical (but no faster than Fmax/4) during the monitoring state. The maximum frequency used until Fmax is calculated is preferably 10 Hz, although slower stimulation frequencies may be used during some acquisition algorithms. The value of Fmax used is periodically updated to ensure that it is still appropriate. For physiological reasons, the maximum frequency for stimulation will be set on a per-patient basis. Readings will be taken from all myotomes and the one with the slowest frequency (highest T2) will be recorded.
  • A basic premise behind the neurophysiology employed in the present invention is that each nerve has a characteristic threshold current level (IThresh) at which it will depolarize. Below this threshold, current stimulation will not evoke a significant EMG response (Vpp). Once the stimulation threshold (IThresh) is reached, the evoked response is reproducible and increases with increasing stimulation until saturation is reached. This relationship between stimulation current and EMG response may be represented graphically via a so-called “recruitment curve,” such as shown in FIG. 15, which includes an onset region, a linear region, and a saturation region. By way of example only, the present invention defines a significant EMG response to have a Vpp of approximately 100 uV. In a preferred embodiment, the lowest stimulation current that evokes this threshold voltage (VThresh) is called IThresh. As will be described in greater detail below, changes in the current threshold (IThresh) may be indicative of a change in the degree of electrical communication between a stimulation electrode and a nerve. This is helpful in assessing if a screw or similar instrument has inadvertently breached the cortex of a pedicle. More specifically, where an initial determination of (IThresh), such as by applying a stimulation current to the interior of a hole created to receive a pedicle screw, is greater than a later determination of (IThresh), such as by applying a stimulation current to the tip of the pedicle screw after insertion, the decrease in IThresh, if large enough, may indicate electrical communication between the pedicle screw and the nerve. Based on the insulation properties of bone, such electrical communication would indicate a breach of the pedicle.
  • In order to obtain this useful information, the present invention must first identify the peak-to-peak voltage (Vpp) of each EMG response corresponding a given stimulation current (IStim). The existence stimulation and/or noise artifacts, however, can conspire to create an erroneous Vpp measurement of the electrically evoked EMG response. To overcome this challenge, the surgical system 20 of the present invention may employ any number of suitable artifact rejection techniques, including the traditional stimulation artifact rejection technique shown in FIG. 16. Under this technique, stimulation artifact rejection is undertaken by providing a simple artifact rejection window T1 WIN at the beginning of the EMG waveform. During this T1 window, the EMG waveform is ignored and Vpp is calculated based on the max and min values outside this window. (T1 is the time of the first extremum (min or max) and T2 is the time of the second extremum.) In one embodiment, the artifact rejection window T1 WIN may be set to about 7.3 msec. While generally suitable, there are situations where this stimulation artifact rejection technique of FIG. 16 is not optimum, such as in the presence of a large stimulation artifact (see FIG. 17). The presence of a large stimulation artifact causes the stimulation artifact to cross over the window T1 WIN and blend in with the EMG. Making the stimulation artifact window larger is not effective, since there is no clear separation between EMG and stimulation artifact.
  • FIG. 18 illustrates a stimulation artifact rejection technique according to the present invention, which solves the above-identified problem with traditional stimulation artifact rejection. Under this technique, a T1 validation window (T1−VWIN) is defined immediately following the T1 window (T1 WIN). If the determined Vpp exceeds the threshold for recruiting, but T1 falls within this T1 validation window, then the stimulation artifact is considered to be substantial and the EMG is considered to have not recruited. An operator may be alerted, based on the substantial nature of the stimulation artifact. This method of stimulation artifact rejection is thus able to identify situations where the stimulation artifact is large enough to cause the Vpp to exceed the recruit threshold. To account for noise, the T1 validation window (T1−VWIN) should be within the range of 0.1 ins to 1 ms wide (preferably about 0.5 ins). The T1 validation window (T1−VWIN) should not be so large that the T1 from an actual EMG waveform could fall within.
  • FIG. 19 illustrates a noise artifact rejection technique according to the present invention. When noise artifacts fall in the lime window where an EMG response is expected, their presence can be difficult to identify. Artifacts outside the expected response window, however, are relatively easy to identify. The present invention capitalizes on this and defines a T2 validation window (T2−VWIN) analogous to the T1 validation window (T1−VWIN) described above with reference to FIG. 18. As shown, T2 must occur prior to a defined limit, which, according to one embodiment of the present invention, may be set having a range of between 4.0 ms to 50 ins (preferably about 47 ms). If the Vpp of the EMG response exceeds the threshold for recruiting, but T2 falls beyond the T2 validation window (T2−VWIN), then the noise artifact is considered to be substantial and the EMG is considered to have not recruited. An operator may be alerted, based on the substantial nature of the noise artifact.
  • FIG. 20 illustrates a still further manner of performing stimulation artifact rejection according to an alternate embodiment of the present invention. This artifact rejection is premised on the characteristic delay from the stimulation current pulse to the EMG response. For each stimulation current pulse, the time from the current pulse to the first extremum (max or min) is T1 and to the second extremum (max or min) is T2. As will be described below, the values of T1, T2 are each compiled into a histogram period (see FIG. 21). New values of T1, T2 are acquired for each stimulation and the histograms are continuously updated. The value of T1 and T2 used is the center value of the largest bin in the histogram. The values of T1, T2 are continuously updated as the histograms change. Initially Vpp is acquired using a window that contains the entire EMG response. After 20 samples, the use of T1, T2 windows is phased in over a period of 200 samples. Vmax and Vmin are then acquired only during windows centered around T1, T2 with widths of, by way of example only, 5 msec. This method of acquiring Vpp automatically rejects the artifact if T1 or T2 fall outside of their respective windows.
  • Having measured each Vpp EMG response (as facilitated by the stimulation and/or noise artifact rejection techniques described above), this Vpp information is then analyzed relative to the stimulation current in order to determine a relationship between the nerve and the given stimulation element transmitting the stimulation current. More specifically, the present invention determines these relationships (between nerve and the stimulation element) by identifying the minimum stimulation current (IThresh) capable of resulting in a predetermined Vpp EMG response. According to the present invention, the determination of IThresh may be accomplished via any of a variety of suitable algorithms or techniques.
  • FIGS. 22A-22E illustrate, by way of example only, a threshold-hunting algorithm for quickly finding the threshold current (IThresh) for each nerve being stimulated by a given stimulation current (IStim). Threshold current (IThresh), once again, is the minimum stimulation current (IStim) that results in a Vpp that is greater than a known threshold voltage (VThresh). The value of is adjusted by a bracketing method as follows. The first bracket is 0.2 mA and 0.3 mA. If the Vpp corresponding to both of these stimulation currents is lower than VThresh, then the bracket size is doubled to 0.2 mA and 0.4 mA. This doubling of the bracket size continues until the upper end of the bracket results in a Vpp that is above VThresh. The size of the brackets is then reduced by a bisection method. A current stimulation value at the midpoint of the bracket is used and if this results in a Vpp that is above VThresh, then the lower half becomes the new bracket. Likewise, if the midpoint Vpp is below VThresh then the upper half becomes the new bracket. This bisection method is used until the bracket size has been reduced to IThresh mA. IThresh may be selected as a value falling within the bracket, but is preferably defined as the midpoint of the bracket.
  • The threshold-hunting algorithm of this embodiment will support three states: bracketing, bisection, and monitoring. A stimulation current bracket is a range of stimulation currents that bracket the stimulation current threshold IThresh. The width of a bracket is the upper boundary value minus the lower boundary value. If the stimulation current threshold IThresh of a channel exceeds the maximum stimulation current, that threshold is considered out-of-range. During the bracketing state, threshold hunting will employ the method below to select stimulation currents and identify stimulation current brackets for each EMG channel in range.
  • The method for finding the minimum stimulation current uses the methods of bracketing and bisection. The “root” is identified for a function that has the value −1 for stimulation currents that do not evoke adequate response; the function has the value +1 for stimulation currents that evoke a response. The root occurs when the function jumps from −1 to +1 as stimulation current is increased: the function never has the value of precisely zero. The root will not he known exactly, but only with a level of precision related to the minimum bracket width. The root is found by identifying a range that must contain the root. The upper bound of this range is the lowest stimulation current IThresh where the function returns the value +1, i.e. the minimum stimulation current that evokes response. The lower bound of this range is the highest stimulation current IThresh where the function returns the value −1, i.e. the maximum stimulation current that does not evoke a response.
  • The pedicle integrity assessment function may begin by adjusting the stimulation current until the root is bracketed (FIG. 22B). The initial bracketing range may be provided in any number of suitable ranges. In one embodiment, the initial bracketing range is 0.2 to 0.3 mA. If the upper stimulation current does not evoke a response, the upper end of the range should be increased. The range scale factor is 2. The stimulation current should preferably not be increased by more than 10 mA in one iteration. The stimulation current should preferably never exceed the programmed maximum stimulation current. For each stimulation, the algorithm will examine the response of each active channel to determine whether it falls within that bracket. Once the stimulation current threshold of each channel has been bracketed, the algorithm transitions to the bisection state.
  • During the bisection state (FIGS. 22C and 22D), threshold hunting will employ the method described below to select stimulation currents and narrow the bracket to a selected width (for example, 0.1 mA) for each EMG channel with an in-range threshold. After the minimum stimulation current has been bracketed (FIG. 22B), the range containing the root is refined until the root is known with a specified accuracy. The bisection method is used to refine the range containing the root. In one embodiment, the root should be found to a precision of 0.1 mA. During the bisection method, the stimulation current at the midpoint of the bracket is used. If the stimulation evokes a response, the bracket shrinks to the lower half of the previous range. If the stimulation fails to evoke a response, the bracket shrinks to the upper half of the previous range. The proximity algorithm is locked on the electrode position when the response threshold is bracketed by stimulation currents separated by the selected width (i.e. 0.1 mA). The process is repeated for each of the active channels until all thresholds are precisely known. At that time, the algorithm enters the monitoring state.
  • After identifying the threshold current IThresh, this information may be employed to determine any of a variety of relationships between the screw test accessory and the nerve. For example, as will be described in greater detail below, when determining the current threshold IThresh of a nerve during pedicle integrity assessment, the relationship between the pedicle testing assembly 36 and the nerve is whether electrical communication is established therebetween. If electrical communication is established, this indicates that the medial wall of the pedicle has been cracked, stressed, or otherwise breached as a result of pilot hole formation, pilot hole preparation, and/or screw introduction. If not, this indicates that the integrity of the medial wall of the pedicle has remained intact. This characteristic is based on the insulating properties of bone.
  • In a significant aspect of the present invention, the relationships determined above based on the current threshold determination may be communicated to the user in an easy to use format, including but not limited to, alpha-numeric and/or graphical information regarding pedicle integrity assessments, stimulation level, EMG responses, instrument in use, set-up, and related instructions for the user. This advantageously provides the ability to present simplified yet meaningful data to the user, as opposed to the actual EMG waveforms that are displayed to the users in traditional EMG systems. Due to the complexity in interpreting EMG waveforms, such prior art systems typically require an additional person specifically trained in such matters which, in turn, can be disadvantageous in that it translates into extra expense (having yet another highly trained person in attendance) and oftentimes presents scheduling challenges because most hospitals do not retain such personnel.
  • When employed in spinal procedures, for example, such EMG monitoring would preferably be accomplished by connecting the EMG harness 26 to the myotomes in the patient's legs corresponding to the exiting nerve roots associated with the particular spinal operation level. In a preferred embodiment, this is accomplished via 8 pairs of EMG electrodes 27 placed on the skin over the major muscle groups on the legs (four per side), an anode electrode 29 providing a return path for the stimulation current, and a common electrode 31 providing a ground reference to pre-amplifiers in the patient module 24. Although not shown, it will be appreciated that any of a variety of electrodes can be employed, including but not limited to needle electrodes. The EMG responses measured via the EMG harness 26 provide a quantitative measure of the nerve depolarization caused by the electrical stimulus. By way of example, the placement of EMG electrodes 27 may be undertaken according to the manner shown in Table 1 below for spinal surgery:
  • TABLE 1
    Color Channel ID Myotome Spinal Level
    Blue Right
    1 Right Vastus Medialis L2, L3, L4
    Violet Right
    2 Right TibialisAnterior L4, L5
    Grey Right
    3 Right Biceps Femoris L5, S1, S2
    White Right
    4 Right Gastroc. Medial S1, S2
    Red Left
    1 Left Vastus Medialis L2, L3, L4
    Orange Left
    2 Left Tibialis Anterior L4, L5
    Yellow Left
    3 Left Biceps Femoris L5, S1, S2
    Green Left
    4 Left Gastroc. Medial S1, S2
  • With reference again to FIGS. 2-3, the surgical system 20 performs pedicle integrity assessments via, by way of example only, the use of pedicle testing accessories 30 in combination with the handle assembly 36. More specifically, upon pressing the button on the screw test handle 36, the software will execute a testing algorithm to apply a stimulation current to the particular target (i.e. pilot hole, inserted pedicle screw, or bare nerve), setting in motion the pedicle integrity assessment function of the present invention. The pedicle integrity assessment features of the present invention may include, by way of example only, an “Actual” mode (FIGS. 24-25) for displaying the actual stimulation threshold 91 measured for a given myotome, as well as a “Relative” mode (FIGS. 26-28) for displaying the difference 92 between a baseline stimulation threshold assessment 93 of a bare nerve root and an actual stimulation threshold assessment 91 for a given myotome. In either case, the surgical accessory label 84 displays the word “SCREW TEST” to denote use of the pedicle testing assembly 36 for performing pedicle integrity assessments. The screw test algorithm according to the present invention preferably determines the depolarization (threshold) current for all responding EMG channels. In one embodiment, the EMG channel tabs 82 may be configured such that the EMG channel having the lowest stimulation threshold will be automatically enlarged and/or highlighted and/or colored (EMG channel tab R3 as shown in FIG. 24) to clearly indicate this fact to the user, As shown in FIG. 25, this feature may be overridden by manually selecting another EMG channel tab (such as EMG channel tab R1 in FIG. 25) by touching the particular EMG channel tab 82 on the touch screen display 40. In this instance, a warning symbol 94 may be provided next to the EMG channel tab having the lowest stimulation threshold (once again, EMG channel tab R3 in FIG. 24) to inform the user that the stimulation threshold 91 is not the lowest stimulation threshold.
  • Any number of the above-identified indicia (such as the baseline stimulation 93, actual stimulation 91, difference 92, and EMG channel tabs 82) may be color-coded to indicate general safety ranges (i.e. “green” for a range of stimulation thresholds above a predetermined safe value, “red” for range of stimulation thresholds below a predetermined unsafe value, and “yellow” for the range of stimulation thresholds in between the predetermined safe and unsafe values—designating caution). In one embodiment, “green” denotes a stimulation threshold range of 9 milliamps (mA) or greater, “yellow” denotes a stimulation threshold range of 6-8 mA, and “red” denotes a stimulation threshold range of 6 mA or below. By providing this information graphically, a surgeon may quickly and easily test to determine if the integrity of a pedicle has been breached or otherwise compromised, such as may result due to the formation of a pedicle screw hole and/or introduction of a pedicle screw. More specifically, if after stimulating the screw hole and/or pedicle screw itself the stimulation threshold is: (a) at or below 6 mA, the threshold display 40 will illuminate “red” and thus indicate to the surgeon that a breach is likely; (b) between 6 and 8 mA, the threshold display 40 will illuminate “yellow” and thus indicate to the surgeon that a breach is possible; and/or (c) at or above. 8 mA, the threshold display 40 will illuminate “green” and thus indicate to the surgeon that a breach is unlikely. If a breach is possible or likely (that is, “yellow” or “red”), the surgeon may choose to withdraw the pedicle screw and redirect it along a different trajectory to ensure the pedicle screw no longer breaches (or comes close to breaching) the medial wall of the pedicle.
  • While this invention has been described in terms of a best mode for achieving this invention's objectives, it will be appreciated by those skilled in the art that variations may be accomplished in view of these teachings without deviating from the spirit or scope of the present invention. For example, the present invention may be implemented using any combination of computer programming software, firmware or hardware. As a preparatory step to practicing the invention or constructing an apparatus according to the invention, the computer programming code (whether software or firmware) according to the invention will typically be stored in one or more machine readable storage mediums such as fixed (hard) drives, diskettes, optical disks, magnetic tape, semiconductor memories such as ROMs, PROMs, etc., thereby making an article of manufacture in accordance with the invention. The article of manufacture containing the computer programming code is used by either executing the code directly from the storage device, by copying the code from the storage device into another storage device such as a hard disk, RAM, etc. or by transmitting the code on a network for remote execution. As can be envisioned by one of skill in the art, many different combinations of the above may be used and accordingly the present invention is not limited by the scope of the appended claims.

Claims (20)

What is claimed is:
1. A system for performing percutaneous pedicle integrity assessments during spine surgery, comprising:
a stimulation element comprising a tubular insulation member with a longitudinal lumen therethrough, which is configured for percutaneous introduction to a pedicle target site within a patient and a K-wire which is disposed through the lumen of the tubular insulation member, wherein the K-wire comprises a stimulation region at a distal end which extends from a distal end of the tubular insulation member and which is configured for contacting at least one of a pilot hole formed in the pedicle target site and a screw implanted in the pedicle target site; and
a control unit in electrical communication with the K-wire, the control unit configured for selectively applying a stimulation signal to the K-wire, and monitoring to assess whether nerves adjacent the pedicle target site are innervating as a result of applying the stimulation signal to the K-wire.
2. The system of claim 1, further comprising an electromyography monitoring system, wherein the electromyography monitoring system is in electrical communication with the control unit, wherein monitoring to assess whether nerves adjacent the pedicle target site are innervating further comprises detecting a voltage response from muscles innervated by the nerves via the electromyography monitoring system.
3. The system of claim 2, wherein the electromyography monitoring system is in electrical communication with the K-wire and configured to direct the application of the stimulation signal.
4. The system of claim 3, wherein the control unit is further configured to determine a relationship between the stimulation signal and the voltage response to indicate a measurement of integrity at the pedicle target site.
5. The system of claim 4, wherein the relationship is a threshold stimulation current level required to evoke a predetermined voltage response value.
6. The system of claim 4, wherein the electromyography monitoring system is further configured to communicate the relationship to a user.
7. A system for performing percutaneous pedicle integrity assessments during spine surgery, comprising:
a stimulation element comprising a tubular insulation element which is configured for percutaneous introduction to a pedicle target site within a patient, wherein the tubular insulation element is configured to receive a tap member and a K-wire, wherein the tap member comprises a longitudinal lumen for receiving and passing the K-wire for contacting a pilot hole formed in the pedicle target site; and
a control unit in electrical communication with the K-wire, the control unit configured for selectively applying a stimulation signal to the K-wire, and monitoring to assess whether nerves adjacent the pedicle target site are innervating as a result of applying the stimulation signal to the K-wire.
8. The system of claim 7, further comprising an electromyography monitoring system, wherein the electromyography monitoring system is in electrical communication with the control unit, wherein monitoring to assess whether nerves adjacent the pedicle target site are innervating further comprises detecting a voltage response from muscles innervated by the nerves via the electromyography monitoring system.
9. The system of claim 8, wherein the electromyography monitoring system is in electrical communication with the K-wire and configured to direct the application of the stimulation signal.
10. The system of claim 9, wherein the control unit is further configured to determine a relationship between the stimulation signal and the voltage response to indicate a measurement of integrity at the pedicle target site.
11. The system of claim 10, wherein the relationship is a threshold stimulation current level required to evoke a predetermined voltage response value.
12. The system of claim 10, wherein the electromyography monitoring system is further configured to communicate the relationship to a user.
13. The system of claim 7, wherein the stimulation element is an electric coupling device, wherein the electric coupling device engages a proximal end of the tap member.
14. A system for performing percutaneous pedicle integrity assessments during spine surgery, comprising:
a stimulation element comprising a tubular insulation element which is configured for percutaneous introduction to a pedicle target site within a patient, wherein the tubular insulation element is configured to receive a tap member, wherein the tap member is configured for contacting the pedicle target site; and
a control unit in electrical communication with the tap member, the control unit configured for selectively applying a stimulation signal to the tap member, and monitoring to assess whether nerves adjacent the pedicle target site are innervating as a result of applying the stimulation signal to the tap member.
15. The system of claim 14, further comprising an electromyography monitoring system, wherein the electromyography monitoring system is in electrical communication with the control unit, wherein monitoring to assess whether nerves adjacent the pedicle target site are innervating further comprises detecting a voltage response from muscles innervated by the nerves via the electromyography monitoring system.
16. The system of claim 15, wherein the electromyography monitoring system is in electrical communication with the tap member and configured to direct the application of the stimulation signal.
17. The system of claim 16, wherein the control unit is further configured to determine a relationship between the stimulation signal and the voltage response to indicate a measurement of integrity at the pedicle target site.
18. The system of claim 17, wherein the relationship is a threshold stimulation current level required to evoke a predetermined voltage response value.
19. The system of claim 17, wherein the electromyography monitoring system is further configured to communicate the relationship to a user.
20. The system of claim 14, wherein the stimulation element is an electric coupling device, wherein the electric coupling device engages a proximal end of the tap member.
US16/574,085 2001-10-30 2019-09-18 System and methods for performing percutaneous pedicle integrity assessments Abandoned US20200077950A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/574,085 US20200077950A1 (en) 2001-10-30 2019-09-18 System and methods for performing percutaneous pedicle integrity assessments

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US33650101P 2001-10-30 2001-10-30
PCT/US2002/035047 WO2003037170A2 (en) 2001-10-30 2002-10-30 System and methods for performing percutaneous pedicle integrity assessments
US10/836,105 US7664544B2 (en) 2002-10-30 2004-04-30 System and methods for performing percutaneous pedicle integrity assessments
US12/427,612 US10470707B2 (en) 2001-10-30 2009-04-21 System and methods for performing percutaneous pedicle integrity assessments
US16/574,085 US20200077950A1 (en) 2001-10-30 2019-09-18 System and methods for performing percutaneous pedicle integrity assessments

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/427,612 Continuation US10470707B2 (en) 2001-10-30 2009-04-21 System and methods for performing percutaneous pedicle integrity assessments

Publications (1)

Publication Number Publication Date
US20200077950A1 true US20200077950A1 (en) 2020-03-12

Family

ID=33553121

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/836,105 Active 2025-05-17 US7664544B2 (en) 2001-10-30 2004-04-30 System and methods for performing percutaneous pedicle integrity assessments
US12/427,612 Expired - Fee Related US10470707B2 (en) 2001-10-30 2009-04-21 System and methods for performing percutaneous pedicle integrity assessments
US16/574,085 Abandoned US20200077950A1 (en) 2001-10-30 2019-09-18 System and methods for performing percutaneous pedicle integrity assessments

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/836,105 Active 2025-05-17 US7664544B2 (en) 2001-10-30 2004-04-30 System and methods for performing percutaneous pedicle integrity assessments
US12/427,612 Expired - Fee Related US10470707B2 (en) 2001-10-30 2009-04-21 System and methods for performing percutaneous pedicle integrity assessments

Country Status (1)

Country Link
US (3) US7664544B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11931052B2 (en) 2021-10-08 2024-03-19 Nuvasive, Inc. Assemblies, systems, and methods for a neuromonitoring drill bit

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524452A (en) * 1998-12-23 2003-08-19 ヌバシブ, インコーポレイテッド Nerve monitoring cannula system
EP1237472A4 (en) * 1999-11-24 2008-04-30 Nuvasive Inc Electromyography system
US6466817B1 (en) * 1999-11-24 2002-10-15 Nuvasive, Inc. Nerve proximity and status detection system and method
WO2001087154A1 (en) * 2000-05-18 2001-11-22 Nuvasive, Inc. Tissue discrimination and applications in medical procedures
WO2003005887A2 (en) * 2001-07-11 2003-01-23 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
EP1435828A4 (en) 2001-09-25 2009-11-11 Nuvasive Inc System and methods for performing surgical procedures and assessments
US7664544B2 (en) 2002-10-30 2010-02-16 Nuvasive, Inc. System and methods for performing percutaneous pedicle integrity assessments
US8147421B2 (en) * 2003-01-15 2012-04-03 Nuvasive, Inc. System and methods for determining nerve direction to a surgical instrument
US7582058B1 (en) 2002-06-26 2009-09-01 Nuvasive, Inc. Surgical access system and related methods
US8137284B2 (en) 2002-10-08 2012-03-20 Nuvasive, Inc. Surgical access system and related methods
US7691057B2 (en) 2003-01-16 2010-04-06 Nuvasive, Inc. Surgical access system and related methods
US7819801B2 (en) 2003-02-27 2010-10-26 Nuvasive, Inc. Surgical access system and related methods
US20040225228A1 (en) * 2003-05-08 2004-11-11 Ferree Bret A. Neurophysiological apparatus and procedures
WO2005013805A2 (en) * 2003-08-05 2005-02-17 Nuvasive, Inc. Systemand methods for performing dynamic pedicle integrity assessments
US7905840B2 (en) * 2003-10-17 2011-03-15 Nuvasive, Inc. Surgical access system and related methods
AU2004275877B2 (en) 2003-09-25 2008-09-04 Nuvasive, Inc. Surgical access system and related methods
US8313430B1 (en) 2006-01-11 2012-11-20 Nuvasive, Inc. Surgical access system and related methods
WO2006029373A1 (en) 2004-09-08 2006-03-16 Nuvasive, Inc. Systems and methods for performing spinal fixation
US8538539B2 (en) 2004-10-07 2013-09-17 Nu Vasive, Inc. System and methods for assessing the neuromuscular pathway prior to nerve testing
WO2006042241A2 (en) 2004-10-08 2006-04-20 Nuvasive, Inc. Surgical access system and related methods
US7785253B1 (en) 2005-01-31 2010-08-31 Nuvasive, Inc. Surgical access system and related methods
US7643884B2 (en) * 2005-01-31 2010-01-05 Warsaw Orthopedic, Inc. Electrically insulated surgical needle assembly
ATE527017T1 (en) 2005-02-02 2011-10-15 Nuvasive Inc SYSTEM FOR PERFORMING NEUROPHYSIOLOGICAL ASSESSMENTS DURING SURGERY
US8568331B2 (en) * 2005-02-02 2013-10-29 Nuvasive, Inc. System and methods for monitoring during anterior surgery
US8740783B2 (en) * 2005-07-20 2014-06-03 Nuvasive, Inc. System and methods for performing neurophysiologic assessments with pressure monitoring
US8328851B2 (en) 2005-07-28 2012-12-11 Nuvasive, Inc. Total disc replacement system and related methods
US8571666B2 (en) * 2005-08-02 2013-10-29 William F. Urmey Nerve stimulation system with programmed pulse charge attenuation
EP1933935A4 (en) * 2005-09-22 2012-02-22 Nuvasive Inc System and methods for performing pedicle integrity assessments of the thoracic spine
WO2007038290A2 (en) 2005-09-22 2007-04-05 Nuvasive, Inc. Multi-channel stimulation threshold detection algorithm for use in neurophysiology monitoring
US8568317B1 (en) 2005-09-27 2013-10-29 Nuvasive, Inc. System and methods for nerve monitoring
US8016846B2 (en) 2005-10-27 2011-09-13 Medtronic Xomed, Inc. Micro-resecting and evoked potential monitoring system and method
US7717932B2 (en) * 2005-10-27 2010-05-18 Medtronic Xomed, Inc. Instrument and system for surgical cutting and evoked potential monitoring
WO2007136784A2 (en) * 2006-05-17 2007-11-29 Nuvasive, Inc. Surgical trajectory monitoring system and related methods
US7987001B2 (en) * 2007-01-25 2011-07-26 Warsaw Orthopedic, Inc. Surgical navigational and neuromonitoring instrument
US8374673B2 (en) * 2007-01-25 2013-02-12 Warsaw Orthopedic, Inc. Integrated surgical navigational and neuromonitoring system having automated surgical assistance and control
US20080183188A1 (en) * 2007-01-25 2008-07-31 Warsaw Orthopedic, Inc. Integrated Surgical Navigational and Neuromonitoring System
US20080183074A1 (en) * 2007-01-25 2008-07-31 Warsaw Orthopedic, Inc. Method and apparatus for coordinated display of anatomical and neuromonitoring information
US20080183068A1 (en) * 2007-01-25 2008-07-31 Warsaw Orthopedic, Inc. Integrated Visualization of Surgical Navigational and Neural Monitoring Information
AU2008236665B2 (en) * 2007-04-03 2013-08-22 Nuvasive, Inc. Neurophysiologic monitoring system
US8326414B2 (en) * 2007-04-20 2012-12-04 Warsaw Orthopedic, Inc. Nerve stimulating drill bit
US8075601B2 (en) 2007-04-30 2011-12-13 Warsaw Orthopedic, Inc. Deformity correction using neural integrity monitoring
US20090105788A1 (en) * 2007-10-18 2009-04-23 Innovative Surgical Solutions, Llc Minimally invasive nerve monitoring device and method
US8343079B2 (en) 2007-10-18 2013-01-01 Innovative Surgical Solutions, Llc Neural monitoring sensor
US8343065B2 (en) * 2007-10-18 2013-01-01 Innovative Surgical Solutions, Llc Neural event detection
US9084550B1 (en) 2007-10-18 2015-07-21 Innovative Surgical Solutions, Llc Minimally invasive nerve monitoring device and method
US8942797B2 (en) * 2007-10-18 2015-01-27 Innovative Surgical Solutions, Llc Neural monitoring system
US8348983B2 (en) * 2007-11-13 2013-01-08 Warsaw Orthopedic, Inc. Surgical bone screw construction
CA2750917A1 (en) 2008-12-26 2010-07-01 Scott Spann Minimally-invasive retroperitoneal lateral approach for spinal surgery
US8287597B1 (en) 2009-04-16 2012-10-16 Nuvasive, Inc. Method and apparatus for performing spine surgery
US9351845B1 (en) 2009-04-16 2016-05-31 Nuvasive, Inc. Method and apparatus for performing spine surgery
US9681813B2 (en) 2009-07-29 2017-06-20 Dinnos Technology Neurophysiological stimulation system and methods with wireless communication
JP5844737B2 (en) 2009-11-10 2016-01-20 ニューヴェイジヴ,インコーポレイテッド Device for performing spine surgery
US20110230785A1 (en) * 2010-03-16 2011-09-22 ProNerve, LLC Somatosensory Evoked Potential (SSEP) Automated Alert System
US9392953B1 (en) * 2010-09-17 2016-07-19 Nuvasive, Inc. Neurophysiologic monitoring
US8790406B1 (en) 2011-04-01 2014-07-29 William D. Smith Systems and methods for performing spine surgery
US9179843B2 (en) 2011-04-21 2015-11-10 Hassan Ghaderi MOGHADDAM Method and system for optically evaluating proximity to the inferior alveolar nerve in situ
US8786233B2 (en) 2011-04-27 2014-07-22 Medtronic Xomed, Inc. Electric ratchet for a powered screwdriver
US9307972B2 (en) 2011-05-10 2016-04-12 Nuvasive, Inc. Method and apparatus for performing spinal fusion surgery
AU2012299061B2 (en) 2011-08-19 2017-02-23 Nuvasive, Inc. Surgical retractor system and methods of use
US9198765B1 (en) 2011-10-31 2015-12-01 Nuvasive, Inc. Expandable spinal fusion implants and related methods
WO2013067018A2 (en) * 2011-11-01 2013-05-10 Synthes Usa, Llc Intraoperative neurophysiological monitoring system
US9301711B2 (en) 2011-11-10 2016-04-05 Innovative Surgical Solutions, Llc System and method for assessing neural health
US8983593B2 (en) 2011-11-10 2015-03-17 Innovative Surgical Solutions, Llc Method of assessing neural function
US9655505B1 (en) 2012-02-06 2017-05-23 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring during spine surgery
US9066701B1 (en) 2012-02-06 2015-06-30 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring during spine surgery
US8936626B1 (en) 2012-02-17 2015-01-20 Nuvasive, Inc. Bi-cortical screw fixation
US8855822B2 (en) 2012-03-23 2014-10-07 Innovative Surgical Solutions, Llc Robotic surgical system with mechanomyography feedback
US9039630B2 (en) 2012-08-22 2015-05-26 Innovative Surgical Solutions, Llc Method of detecting a sacral nerve
US8892259B2 (en) 2012-09-26 2014-11-18 Innovative Surgical Solutions, LLC. Robotic surgical system with mechanomyography feedback
US11259737B2 (en) 2012-11-06 2022-03-01 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring during spine surgery
US11877860B2 (en) 2012-11-06 2024-01-23 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring during spine surgery
US9757067B1 (en) 2012-11-09 2017-09-12 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring during spine surgery
US9757072B1 (en) 2013-02-11 2017-09-12 Nuvasive, Inc. Waveform marker placement algorithm for use in neurophysiologic monitoring
US10098585B2 (en) 2013-03-15 2018-10-16 Cadwell Laboratories, Inc. Neuromonitoring systems and methods
US10478096B2 (en) 2013-08-13 2019-11-19 Innovative Surgical Solutions. Neural event detection
US10478097B2 (en) 2013-08-13 2019-11-19 Innovative Surgical Solutions Neural event detection
US10376209B2 (en) 2013-09-20 2019-08-13 Innovative Surgical Solutions, Llc Neural locating method
US10376208B2 (en) 2013-09-20 2019-08-13 Innovative Surgical Solutions, Llc Nerve mapping system
US9622684B2 (en) 2013-09-20 2017-04-18 Innovative Surgical Solutions, Llc Neural locating system
US10449002B2 (en) 2013-09-20 2019-10-22 Innovative Surgical Solutions, Llc Method of mapping a nerve
AU2015301400B2 (en) 2014-08-15 2020-05-28 Axonics Modulation Technologies, Inc. Systems and methods for neurostimulation electrode configurations based on neural localization
JP6602371B2 (en) 2014-08-15 2019-11-06 アクソニクス モジュレーション テクノロジーズ インコーポレイテッド EMG lead placement and stimulation adjustment in a neural stimulation system for the treatment of overactive bladder
CA2958210C (en) 2014-08-15 2023-09-26 Axonics Modulation Technologies, Inc. Integrated electromyographic clinician programmer for use with an implantable neurostimulator
US10420480B1 (en) 2014-09-16 2019-09-24 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring
US10321833B2 (en) 2016-10-05 2019-06-18 Innovative Surgical Solutions. Neural locating method
CA3041333C (en) 2016-11-03 2022-08-02 Edge Surgical, Inc. Surgical depth instrument having neuromonitoring capabilities
US11154336B2 (en) * 2016-12-06 2021-10-26 Marc J. LEVINE Retractor/compression/distraction system
US9935395B1 (en) 2017-01-23 2018-04-03 Cadwell Laboratories, Inc. Mass connection plate for electrical connectors
EP3576608A1 (en) * 2017-02-01 2019-12-11 Avent, Inc. Emg guidance for probe placement, nearby tissue preservation, and lesion confirmation
US10792080B2 (en) 2017-06-14 2020-10-06 Edge Surgical, Inc. Devices for minimally invasive procedures
US11992227B2 (en) 2018-03-05 2024-05-28 Edge Surgical, Inc. Handheld devices for use in medical procedures
AU2019231188B2 (en) 2018-03-05 2021-02-11 Edge Surgical, Inc. Handheld devices for use in medical procedures
US11253182B2 (en) 2018-05-04 2022-02-22 Cadwell Laboratories, Inc. Apparatus and method for polyphasic multi-output constant-current and constant-voltage neurophysiological stimulation
US11992339B2 (en) 2018-05-04 2024-05-28 Cadwell Laboratories, Inc. Systems and methods for dynamic neurophysiological stimulation
US10869616B2 (en) 2018-06-01 2020-12-22 DePuy Synthes Products, Inc. Neural event detection
US11443649B2 (en) 2018-06-29 2022-09-13 Cadwell Laboratories, Inc. Neurophysiological monitoring training simulator
US10603492B2 (en) * 2018-08-31 2020-03-31 Avation Medical, Inc. System, method, and apparatus for applying transcutaneous electrical stimulation
US10870002B2 (en) 2018-10-12 2020-12-22 DePuy Synthes Products, Inc. Neuromuscular sensing device with multi-sensor array
US11848090B2 (en) 2019-05-24 2023-12-19 Axonics, Inc. Trainer for a neurostimulator programmer and associated methods of use with a neurostimulation system
US11439829B2 (en) 2019-05-24 2022-09-13 Axonics, Inc. Clinician programmer methods and systems for maintaining target operating temperatures
US11399777B2 (en) 2019-09-27 2022-08-02 DePuy Synthes Products, Inc. Intraoperative neural monitoring system and method

Family Cites Families (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2736002A (en) 1956-02-21 oriel
US208227A (en) 1878-09-24 Improvement in vaginal speculums
US1548184A (en) 1923-04-11 1925-08-04 Will J Cameron Holder and control for pulp testers
US2704064A (en) 1952-09-10 1955-03-15 Meditron Company Neurosurgical stimulator
US2808826A (en) 1956-01-19 1957-10-08 Teca Corp Electro-diagnostic apparatus and a circuit therefor
US3364929A (en) 1964-12-21 1968-01-23 Burroughs Wellcome Co Method for administering muscle relaxant drug
US3682162A (en) 1968-12-13 1972-08-08 Wellcome Found Combined electrode and hypodermic syringe needle
US3651641A (en) * 1969-03-18 1972-03-28 Ginter Corp Engine system and thermogenerator therefor
US3664329A (en) 1970-03-09 1972-05-23 Concept Nerve locator/stimulator
US3785368A (en) 1971-08-23 1974-01-15 Carthy T Mc Abnormal nerve pressure locus detector and method
US3830226A (en) 1973-06-15 1974-08-20 Concept Variable output nerve locator
US3851641A (en) * 1973-11-29 1974-12-03 J Toole Method and apparatus for determining internal impedance of animal body part
SE7511909L (en) * 1974-10-29 1976-04-30 Pivert Patrick Le PROCEDURE FOR ESTIMATING THE STATE OF FREEZING IN A BIOLOGICAL BODY AND IMPEDANCES FOR PERFORMING THE PROCEDURE
US3957036A (en) 1975-02-03 1976-05-18 Baylor College Of Medicine Method and apparatus for recording activity in intact nerves
GB1534162A (en) 1976-07-21 1978-11-29 Lloyd J Cyosurgical probe
US4099519A (en) 1977-01-14 1978-07-11 Warren Fred E Diagnostic device
US4164214A (en) 1977-07-25 1979-08-14 The Regents Of The University Of California Method and apparatus for measuring the sensitivity of teeth
US4224949A (en) 1977-11-17 1980-09-30 Cornell Research Foundation, Inc. Method and electrical resistance probe for detection of estrus in bovine
US4235242A (en) 1979-04-02 1980-11-25 Med General, Inc. Electronic circuit permitting simultaneous use of stimulating and monitoring equipment
US4285347A (en) 1979-07-25 1981-08-25 Cordis Corporation Stabilized directional neural electrode lead
US4291705A (en) 1979-09-10 1981-09-29 The Regents Of The University Of California Neuromuscular block monitor
USRE34390E (en) 1980-12-31 1993-09-28 Nicolet Instrument Corporation Apparatus and method for topographic display of multichannel EEG data
US4461300A (en) 1982-01-18 1984-07-24 Sutter Biomedical, Inc. Bone and tissue healing device including a special electrode assembly and method
US4592369A (en) 1982-07-12 1986-06-03 National Research Development Corp. Method and apparatus for use in temporal analysis of waveforms
US4545374A (en) 1982-09-03 1985-10-08 Jacobson Robert E Method and instruments for performing a percutaneous lumbar diskectomy
US4519403A (en) 1983-04-29 1985-05-28 Medtronic, Inc. Balloon lead and inflator
US4561445A (en) 1983-05-25 1985-12-31 Joseph J. Berke Elongated needle electrode and method of making same
FI73878C (en) 1983-06-10 1987-12-10 Instrumentarium Oy FOERFARANDE FOER VIDAREUTVECKLING AV NERVMUSKELANSLUTNINGS MAETNING.
US4515168A (en) 1983-07-22 1985-05-07 Chester Martin H Clamp-on nerve stimulator and locator
US4573448A (en) 1983-10-05 1986-03-04 Pilling Co. Method for decompressing herniated intervertebral discs
US4562832A (en) 1984-01-21 1986-01-07 Wilder Joseph R Medical instrument and light pipe illumination assembly
US4633889A (en) 1984-12-12 1987-01-06 Andrew Talalla Stimulation of cauda-equina spinal nerves
US4658835A (en) 1985-07-25 1987-04-21 Cordis Corporation Neural stimulating lead with fixation canopy formation
WO1987001023A1 (en) 1985-08-16 1987-02-26 David Brown Electromyographic repetitive strain injury monitor
US4892105A (en) 1986-03-28 1990-01-09 The Cleveland Clinic Foundation Electrical stimulus probe
US4759377A (en) 1986-11-26 1988-07-26 Regents Of The University Of Minnesota Apparatus and method for mechanical stimulation of nerves
US4744371A (en) 1987-04-27 1988-05-17 Cordis Leads, Inc. Multi-conductor lead assembly for temporary use
US4926865A (en) 1987-10-01 1990-05-22 Oman Paul S Microcomputer-based nerve and muscle stimulator
DE8803153U1 (en) 1988-03-09 1988-06-23 B. Braun Melsungen Ag, 3508 Melsungen Catheter device for plexus anesthesia
US5484437A (en) 1988-06-13 1996-01-16 Michelson; Gary K. Apparatus and method of inserting spinal implants
US5772661A (en) 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
US5015247A (en) 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
US5127403A (en) 1988-07-05 1992-07-07 Cardiac Control Systems, Inc. Pacemaker catheter utilizing bipolar electrodes spaced in accordance to the length of a heart depolarization signal
US5058602A (en) 1988-09-30 1991-10-22 Brody Stanley R Paraspinal electromyography scanning
US4964411A (en) 1989-07-13 1990-10-23 Empi, Inc. Evoked EMG signal processing
US4962766A (en) 1989-07-19 1990-10-16 Herzon Garrett D Nerve locator and stimulator
US5454365A (en) 1990-11-05 1995-10-03 Bonutti; Peter M. Mechanically expandable arthroscopic retractors
US5081990A (en) 1990-05-11 1992-01-21 New York University Catheter for spinal epidural injection of drugs and measurement of evoked potentials
US5095905A (en) 1990-06-07 1992-03-17 Medtronic, Inc. Implantable neural electrode
US5092344A (en) 1990-11-19 1992-03-03 Lee Tzium Shou Remote indicator for stimulator
US5388587A (en) * 1990-12-04 1995-02-14 Dorsograf Ab Method and apparatus for measuring the transport time of nerve signals excited in different dermatoms of a patient
SE467561B (en) 1990-12-04 1992-08-10 Dorsograf Ab DEVICE FOR SEATING TRANSPORT TIME OF NERV SIGNALS
US5480440A (en) 1991-08-15 1996-01-02 Smith & Nephew Richards, Inc. Open surgical technique for vertebral fixation with subcutaneous fixators positioned between the skin and the lumbar fascia of a patient
US5161533A (en) 1991-09-19 1992-11-10 Xomed-Treace Inc. Break-apart needle electrode system for monitoring facial EMG
US5255691A (en) 1991-11-13 1993-10-26 Medtronic, Inc. Percutaneous epidural lead introducing system and method
US6500173B2 (en) * 1992-01-07 2002-12-31 Ronald A. Underwood Methods for electrosurgical spine surgery
US5284153A (en) 1992-04-14 1994-02-08 Brigham And Women's Hospital Method for locating a nerve and for protecting nerves from injury during surgery
US5474558A (en) 1992-04-30 1995-12-12 Neubardt; Seth L. Procedure and system for spinal pedicle screw insertion
US5196015A (en) 1992-04-30 1993-03-23 Neubardt Seth L Procedure for spinal pedicle screw insertion
US5312417A (en) 1992-07-29 1994-05-17 Wilk Peter J Laparoscopic cannula assembly and associated method
US5299563A (en) 1992-07-31 1994-04-05 Seton Joseph Z Method of using a surgical retractor
US5772597A (en) 1992-09-14 1998-06-30 Sextant Medical Corporation Surgical tool end effector
WO1994010924A1 (en) 1992-11-13 1994-05-26 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical probe
US5375067A (en) 1992-12-11 1994-12-20 Nicolet Instrument Corporation Method and apparatus for adjustment of acquisition parameters in a data acquisition system such as a digital oscilloscope
EP0607688A1 (en) 1992-12-21 1994-07-27 Seth Lowell Dr. Neubardt Procedure and system for spinal pedicle screw insertion
US5450845A (en) 1993-01-11 1995-09-19 Axelgaard; Jens Medical electrode system
US5814073A (en) 1996-12-13 1998-09-29 Bonutti; Peter M. Method and apparatus for positioning a suture anchor
US5327902A (en) 1993-05-14 1994-07-12 Lemmen Roger D Apparatus for use in nerve conduction studies
US5333618A (en) 1993-06-30 1994-08-02 Gregory Lekhtman Portable self-contained instrument for the measurement of nerve resistance of a patient
US5549656A (en) 1993-08-16 1996-08-27 Med Serve Group, Inc. Combination neuromuscular stimulator and electromyograph system
US5566678B1 (en) 1993-09-10 1999-11-30 Cadwell Ind Inc Digital eeg noise synthesizer
US5560372A (en) 1994-02-02 1996-10-01 Cory; Philip C. Non-invasive, peripheral nerve mapping device and method of use
CA2144211C (en) 1994-03-16 2005-05-24 David T. Green Surgical instruments useful for endoscopic spinal procedures
CA2551185C (en) 1994-03-28 2007-10-30 Sdgi Holdings, Inc. Apparatus and method for anterior spinal stabilization
US5482038A (en) 1994-06-28 1996-01-09 Cadwell Industries, Inc. Needle electrode assembly
US5593429A (en) 1994-06-28 1997-01-14 Cadwell Industries, Inc. Needle electrode with depth of penetration limiter
US5540235A (en) 1994-06-30 1996-07-30 Wilson; John R. Adaptor for neurophysiological monitoring with a personal computer
US6038469A (en) 1994-10-07 2000-03-14 Ortivus Ab Myocardial ischemia and infarction analysis and monitoring method and apparatus
US5579781A (en) 1994-10-13 1996-12-03 Cooke; Thomas H. Wireless transmitter for needle electrodes as used in electromyography
US5630813A (en) 1994-12-08 1997-05-20 Kieturakis; Maciej J. Electro-cauterizing dissector and method for facilitating breast implant procedure
DE4445593A1 (en) 1994-12-20 1996-06-27 Klaus Dieter Prof Dr Kramer Local complex permittivity determn. method for therapy control in diagnostic medicine
US5860973A (en) 1995-02-27 1999-01-19 Michelson; Gary Karlin Translateral spinal implant
US5630426A (en) * 1995-03-03 1997-05-20 Neovision Corporation Apparatus and method for characterization and treatment of tumors
US5947964A (en) * 1995-03-03 1999-09-07 Neothermia Corporation Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue
US5671752A (en) 1995-03-31 1997-09-30 Universite De Montreal/The Royal Insitution For The Advancement Of Learning (Mcgill University) Diaphragm electromyography analysis method and system
CA2229391C (en) 1995-04-10 2005-09-27 Admir Hadzic Peripheral nerve stimulation device for unassisted nerve blockade
US5711307A (en) 1995-04-13 1998-01-27 Liberty Mutual Insurance Company Method and apparatus for detecting myoelectric activity from the surface of the skin
US5775331A (en) 1995-06-07 1998-07-07 Uromed Corporation Apparatus and method for locating a nerve
US5797854A (en) 1995-08-01 1998-08-25 Hedgecock; James L. Method and apparatus for testing and measuring current perception threshold and motor nerve junction performance
US5806522A (en) * 1995-08-15 1998-09-15 Katims; Jefferson Jacob Digital automated current perception threshold (CPT) determination device and method
NL1001282C2 (en) 1995-09-26 1997-03-28 A J Van Liebergen Holding B V Stroke volume determination device for a human heart.
US5807272A (en) * 1995-10-31 1998-09-15 Worcester Polytechnic Institute Impedance spectroscopy system for ischemia monitoring and detection
US5707359A (en) 1995-11-14 1998-01-13 Bufalini; Bruno Expanding trocar assembly
US6425901B1 (en) 1995-12-07 2002-07-30 Loma Linda University Medical Center Vascular wound closure system
US5779642A (en) 1996-01-16 1998-07-14 Nightengale; Christopher Interrogation device and method
US5792044A (en) 1996-03-22 1998-08-11 Danek Medical, Inc. Devices and methods for percutaneous surgery
US5853373A (en) 1996-08-05 1998-12-29 Becton, Dickinson And Company Bi-level charge pulse apparatus to facilitate nerve location during peripheral nerve block procedures
US5759159A (en) 1996-09-25 1998-06-02 Ormco Corporation Method and apparatus for apical detection with complex impedance measurement
US5862314A (en) 1996-11-01 1999-01-19 Micron Electronics, Inc. System and method for remapping defective memory locations
US6135965A (en) 1996-12-02 2000-10-24 Board Of Regents, The University Of Texas System Spectroscopic detection of cervical pre-cancer using radial basis function networks
US6119068A (en) 1996-12-27 2000-09-12 Kannonji; Michihiro Rear-end collision alarming device and method linked to speed control device of a vehicle
US6026323A (en) * 1997-03-20 2000-02-15 Polartechnics Limited Tissue diagnostic system
US5928158A (en) 1997-03-25 1999-07-27 Aristides; Arellano Medical instrument with nerve sensor
US6050992A (en) 1997-05-19 2000-04-18 Radiotherapeutics Corporation Apparatus and method for treating tissue with multiple electrodes
US6132387A (en) 1997-07-01 2000-10-17 Neurometrix, Inc. Neuromuscular electrode
US5851191A (en) 1997-07-01 1998-12-22 Neurometrix, Inc. Apparatus and methods for assessment of neuromuscular function
US6146335A (en) 1997-07-01 2000-11-14 Neurometrix, Inc. Apparatus for methods for the assessment of neuromuscular function of the lower extremity
US6132386A (en) 1997-07-01 2000-10-17 Neurometrix, Inc. Methods for the assessment of neuromuscular function by F-wave latency
US5872314A (en) 1997-07-25 1999-02-16 Clinton; Robert P. Method and apparatus for measuring characteristics of meat
JPH1176430A (en) 1997-09-09 1999-03-23 Toyota Motor Corp Electric stimulus signal generating device
US5938688A (en) * 1997-10-22 1999-08-17 Cornell Research Foundation, Inc. Deep brain stimulation method
US6306100B1 (en) 1997-12-16 2001-10-23 Richard L. Prass Intraoperative neurophysiological monitoring system
US6181961B1 (en) * 1997-12-16 2001-01-30 Richard L. Prass Method and apparatus for an automatic setup of a multi-channel nerve integrity monitoring system
US6206826B1 (en) 1997-12-18 2001-03-27 Sdgi Holdings, Inc. Devices and methods for percutaneous surgery
US6493588B1 (en) * 1998-03-18 2002-12-10 Mmc/Gatx Partnership No. 1 Electro-nerve stimulator systems and methods
US5928139A (en) 1998-04-24 1999-07-27 Koros; Tibor B. Retractor with adjustable length blades and light pipe guides
US6337994B1 (en) 1998-04-30 2002-01-08 Johns Hopkins University Surgical needle probe for electrical impedance measurements
US6161047A (en) 1998-04-30 2000-12-12 Medtronic Inc. Apparatus and method for expanding a stimulation lead body in situ
US6004262A (en) 1998-05-04 1999-12-21 Ad-Tech Medical Instrument Corp. Visually-positioned electrical monitoring apparatus
US6139493A (en) 1998-07-08 2000-10-31 Koros; Tibor B. Retractor with adjustable length blades and light pipe guides
US6027456A (en) 1998-07-10 2000-02-22 Advanced Neuromodulation Systems, Inc. Apparatus and method for positioning spinal cord stimulation leads
US6104960A (en) 1998-07-13 2000-08-15 Medtronic, Inc. System and method for providing medical electrical stimulation to a portion of the nervous system
JP2000028717A (en) 1998-07-13 2000-01-28 Mitsubishi Electric Corp Device for detecting obstacle
US6366813B1 (en) 1998-08-05 2002-04-02 Dilorenzo Daniel J. Apparatus and method for closed-loop intracranical stimulation for optimal control of neurological disease
US6292701B1 (en) 1998-08-12 2001-09-18 Medtronic Xomed, Inc. Bipolar electrical stimulus probe with planar electrodes
US6104957A (en) 1998-08-21 2000-08-15 Alo; Kenneth M. Epidural nerve root stimulation with lead placement method
US6038477A (en) 1998-12-23 2000-03-14 Axon Engineering, Inc. Multiple channel nerve stimulator with channel isolation
WO2000019894A1 (en) 1998-10-08 2000-04-13 Polartechnics Limited Apparatus for recognizing tissue types
US6122547A (en) * 1998-10-20 2000-09-19 Benja-Athon; Anuthep Consolidated electrical-lead acupuncture needle
US6451015B1 (en) 1998-11-18 2002-09-17 Sherwood Services Ag Method and system for menu-driven two-dimensional display lesion generator
US6266558B1 (en) 1998-12-01 2001-07-24 Neurometrix, Inc. Apparatus and method for nerve conduction measurements with automatic setting of stimulus intensity
JP2003524452A (en) 1998-12-23 2003-08-19 ヌバシブ, インコーポレイテッド Nerve monitoring cannula system
US6564078B1 (en) 1998-12-23 2003-05-13 Nuvasive, Inc. Nerve surveillance cannula systems
US6074343A (en) 1999-04-16 2000-06-13 Nathanson; Michael Surgical tissue retractor
US6224549B1 (en) 1999-04-20 2001-05-01 Nicolet Biomedical, Inc. Medical signal monitoring and display
US6259945B1 (en) 1999-04-30 2001-07-10 Uromed Corporation Method and device for locating a nerve
US6901928B2 (en) 1999-05-04 2005-06-07 Paul G. Loubser Superglottic and peri-laryngeal apparatus for supraglottic airway insertion
DE19921279C1 (en) 1999-05-07 2000-11-30 Aesculap Ag & Co Kg Rotating surgical tool
EP1115338B1 (en) 1999-05-07 2006-08-16 Aesculap AG & Co. KG Rotating surgical instrument
US6478793B1 (en) * 1999-06-11 2002-11-12 Sherwood Services Ag Ablation treatment of bone metastases
FR2795624B1 (en) 1999-07-01 2001-09-28 Vanacker Gerard METHOD FOR DRILLING THE VERTEBRAL PEDICLE, PARTICULARLY FOR THE PLACEMENT OF A PEDICULAR SCREW, AN INSTRUMENT FOR THE IMPLEMENTATION OF SUCH A PROCESS
US6298265B1 (en) 1999-07-09 2001-10-02 Paul A. Burgio Electrode design and stimulator for antler-bearing animals
US6334068B1 (en) 1999-09-14 2001-12-25 Medtronic Xomed, Inc. Intraoperative neuroelectrophysiological monitor
US7047082B1 (en) 1999-09-16 2006-05-16 Micronet Medical, Inc. Neurostimulating lead
ES2306495T3 (en) 1999-10-29 2008-11-01 Compex Medical S.A NEUROMUSCULAR ELECTRICAL STIMULATOR WITH MEASUREMENT OF MUSCULAR RESPONSES TO ELECTRICAL STIMULATION PULSES.
EP1237472A4 (en) 1999-11-24 2008-04-30 Nuvasive Inc Electromyography system
US6466817B1 (en) 1999-11-24 2002-10-15 Nuvasive, Inc. Nerve proximity and status detection system and method
US6312392B1 (en) 2000-04-06 2001-11-06 Garrett D. Herzon Bipolar handheld nerve locator and evaluator
JP2001299718A (en) 2000-04-18 2001-10-30 Daiki Harayama Method and instrument for imaging localization of nerve
WO2001087154A1 (en) 2000-05-18 2001-11-22 Nuvasive, Inc. Tissue discrimination and applications in medical procedures
WO2001093748A2 (en) 2000-06-08 2001-12-13 Nuvasive, Inc. Relative nerve movement and status detection system and method
US6902569B2 (en) 2000-08-17 2005-06-07 Image-Guided Neurologics, Inc. Trajectory guide with instrument immobilizer
US6560490B2 (en) * 2000-09-26 2003-05-06 Case Western Reserve University Waveforms for selective stimulation of central nervous system neurons
US6487446B1 (en) * 2000-09-26 2002-11-26 Medtronic, Inc. Method and system for spinal cord stimulation prior to and during a medical procedure
US7089059B1 (en) 2000-11-03 2006-08-08 Pless Benjamin D Predicting susceptibility to neurological dysfunction based on measured neural electrophysiology
US6929606B2 (en) 2001-01-29 2005-08-16 Depuy Spine, Inc. Retractor and method for spinal pedicle screw placement
US6839594B2 (en) * 2001-04-26 2005-01-04 Biocontrol Medical Ltd Actuation and control of limbs through motor nerve stimulation
US20030105503A1 (en) 2001-06-08 2003-06-05 Nuvasive, Inc. Relative nerve movement and status detection system and method
WO2003005887A2 (en) 2001-07-11 2003-01-23 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US6855105B2 (en) 2001-07-11 2005-02-15 Jackson, Iii Avery M. Endoscopic pedicle probe
US6926728B2 (en) 2001-07-18 2005-08-09 St. Francis Medical Technologies, Inc. Curved dilator and method
EP1435828A4 (en) 2001-09-25 2009-11-11 Nuvasive Inc System and methods for performing surgical procedures and assessments
US6829508B2 (en) 2001-10-19 2004-12-07 Alfred E. Mann Foundation For Scientific Research Electrically sensing and stimulating system for placement of a nerve stimulator or sensor
IL161393A0 (en) 2001-10-24 2004-09-27 Cutting Edge Surgical Inc Intraosteal ultrasound during surgical implantation
AU2002353954B2 (en) 2001-10-30 2008-07-31 Nuvasive, Inc. System and methods for performing percutaneous pedicle integrity assessments
US6916330B2 (en) 2001-10-30 2005-07-12 Depuy Spine, Inc. Non cannulated dilators
US7664544B2 (en) 2002-10-30 2010-02-16 Nuvasive, Inc. System and methods for performing percutaneous pedicle integrity assessments
US8147421B2 (en) 2003-01-15 2012-04-03 Nuvasive, Inc. System and methods for determining nerve direction to a surgical instrument
US8137284B2 (en) 2002-10-08 2012-03-20 Nuvasive, Inc. Surgical access system and related methods
US20040225228A1 (en) 2003-05-08 2004-11-11 Ferree Bret A. Neurophysiological apparatus and procedures
US7711431B2 (en) * 2003-08-04 2010-05-04 Brainlab Ag Method and device for stimulating the brain
WO2005013805A2 (en) 2003-08-05 2005-02-17 Nuvasive, Inc. Systemand methods for performing dynamic pedicle integrity assessments
US7905840B2 (en) 2003-10-17 2011-03-15 Nuvasive, Inc. Surgical access system and related methods
AU2004275877B2 (en) 2003-09-25 2008-09-04 Nuvasive, Inc. Surgical access system and related methods
CN1960680B (en) 2004-02-20 2010-09-08 赫克托·O·帕切科 Method for determining size and placement of pedicle screw in spinal surgery
US7580753B2 (en) * 2004-09-08 2009-08-25 Spinal Modulation, Inc. Method and system for stimulating a dorsal root ganglion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11931052B2 (en) 2021-10-08 2024-03-19 Nuvasive, Inc. Assemblies, systems, and methods for a neuromonitoring drill bit

Also Published As

Publication number Publication date
US7664544B2 (en) 2010-02-16
US20090204176A1 (en) 2009-08-13
US10470707B2 (en) 2019-11-12
US20050004623A1 (en) 2005-01-06

Similar Documents

Publication Publication Date Title
US20200077950A1 (en) System and methods for performing percutaneous pedicle integrity assessments
AU2008240341B2 (en) System and methods for performing percutaneous pedicle integrity assessments
US8255044B2 (en) System and methods for performing dynamic pedicle integrity assessments
AU2002353954A1 (en) System and methods for performing percutaneous pedicle integrity assessments
US20200085590A1 (en) Systems and methods for performing surgical procedures and assessments

Legal Events

Date Code Title Description
AS Assignment

Owner name: NUVASIVE, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MILES, PATRICK;MARTINELLI, SCOT;FINLEY, ERIC;AND OTHERS;SIGNING DATES FROM 20040407 TO 20041215;REEL/FRAME:051718/0746

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NORTH CAROLINA

Free format text: SECURITY INTEREST;ASSIGNORS:NUVASIVE, INC.;NUVASIVE CLINICAL SERVICES MONITORING, INC.;NUVASIVE CLINICAL SERVICES, INC.;AND OTHERS;REEL/FRAME:052918/0595

Effective date: 20200224

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION