US20200017929A1 - Austenitic steel alloy - Google Patents

Austenitic steel alloy Download PDF

Info

Publication number
US20200017929A1
US20200017929A1 US16/107,810 US201816107810A US2020017929A1 US 20200017929 A1 US20200017929 A1 US 20200017929A1 US 201816107810 A US201816107810 A US 201816107810A US 2020017929 A1 US2020017929 A1 US 2020017929A1
Authority
US
United States
Prior art keywords
austenitic steel
amount
mpa
austenitic
steel alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/107,810
Inventor
Ming-Huang Chiang
Ting-Yi HUANG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Apogean Metal Co Ltd
Yong Ding Applied Material Co Ltd
Original Assignee
Apogean Metal Co Ltd
Yong Ding Applied Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Apogean Metal Co Ltd, Yong Ding Applied Material Co Ltd filed Critical Apogean Metal Co Ltd
Assigned to YONG DING APPLIED MATERIAL CO., LTD. reassignment YONG DING APPLIED MATERIAL CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHIANG, MING-HUANG, HUANG, Ting-yi
Assigned to APOGEAN METAL CO., LTD. reassignment APOGEAN METAL CO., LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: YONG DING APPLIED MATERIAL CO., LTD.
Publication of US20200017929A1 publication Critical patent/US20200017929A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working

Definitions

  • the disclosure relates to an austenitic steel alloy, and more particularly to an austenitic steel alloy for hot work tools.
  • the disclosure also relates to a method for making an austenitic steel using the alloy, and an austenitic steel made by the method.
  • Martensitic steel is a steel material commonly used for making hot work tools due to its superior mechanical properties such as hardness and toughness. However, since the martensitic steel has relatively low ductility, the hot work tools made therefrom are liable to cracking.
  • AISI H13 steel is an example of the martensitic steel commonly used for making the hot work tools, and includes carbon in an amount of from 0.32 wt % to 0.45 wt %, silicon in an amount of from 0.80 wt % to 1.20 wt %, manganese in an amount of from 0.20 wt % to 0.50 wt %, chromium in an amount of from 4.75 wt % to 5.50 wt %, molybdenum in an amount of from 1.10 wt % to 1.75 wt %, vanadium in an amount of from 0.80 wt % to 1.20 wt %, phosphorus in an amount of not more than 0.03 wt %, sulfur in an amount of not more than 0.03 wt %, and a balance of iron.
  • the AISI H13 steel has a room temperature hardness of from 55 to 58, an elongation at room temperature of from 3% to 5%, an impact toughness of from 5 Joules (J) to 10 J, and a high temperature Rockwell C hardness (HRc) of from 33 to 41. Since the AISI H13 steel having a relatively low elongation is liable to cracking during usage, the room temperature hardness thereof is usually reduced to a range of from 42 to 50 so as to increase the elongation to a range of from 5% to 8%.
  • QRO 90 steel is another example of the martensitic steel commonly used for making the hot work tools, and includes carbon in an amount of 0.38 wt %, silicon in an amount of 0.30 wt %, manganese in an amount of 0.75 wt %, chromium in an amount of 2.60 wt %, molybdenum in an amount of 2.25 wt %, vanadium in an amount of 0.9 wt %, and a balance of iron.
  • the QRO 90 steel has a room temperature hardness of 45, an elongation of about 11%, an impact toughness of 10 J, and a high temperature Rockwell C hardness (HRc) of from 26 to 41.
  • austenitic Fe—Mn—Al—C steel has been subjected to extensive researches over the last several decades because of its promising application that is potential associated with high mechanical strength and high ductility.
  • Conventional austenitic Fe—Mn—Al—C steel containing carbon in an amount of greater than about 1.2 wt % may be deteriorated in terms of ductility and may be even cracked. Therefore, the amount of carbon in the conventional austenitic Fe—Mn—Al—C steel is usually controlled within a range of from 0.54 wt % to 1.3 wt % and is added with molybdenum (Mo), niobium (Nb), and/or tungsten (W) to enhance the mechanical strength thereof.
  • Mo molybdenum
  • Nb niobium
  • W tungsten
  • ductility (i.e., elongation) of the conventional austenitic Fe—Mn—Al—C steel may be undesirably reduced due to precipitation of coarse carbides on the grain boundaries of the austenitic Fe—Mn—Al—C steel during an aging treatment. Accordingly, the hot work tools made therefrom are liable to cracking.
  • Applicant's U.S. Pat. No. 9,528,177 discloses a Fe—Mn—Al—C quarternary alloy which is essentially consisting of Fe, Mn, Al, and C in specific amounts. Specifically, the amount of carbon in the Fe—Mn—Al—C quarternary alloy is controlled within a range of from 1.4 wt % to 2.2 wt %.
  • the Fe—Mn—Al—C quarternary alloy possesses superior ductility and high mechanical strength due to formation of a high density of fine ⁇ ′ carbides within an austenite matrix by a spinodal decomposition phase transition mechanism during quenching from a solution heat treatment temperature.
  • a first object of the disclosure is to provide an austenitic steel alloy which possesses superior mechanical properties without compromising ductility at room temperature, and which also possesses superior mechanical properties at high temperature.
  • a second object of the disclosure is to provide a method for making an austenitic steel using the austenitic steel alloy.
  • a third object of the disclosure is to provide an austenitic steel made by the method.
  • an austenitic steel alloy which comprises manganese in an amount of from 25 wt % to 31 wt %, aluminum in an amount of from 7 wt % to 10 wt %, carbon in an amount of from 1.2 wt % to 1.6 wt %, molybdenum in an amount of more than 0 wt % and less than 6 wt %, and a balance of iron.
  • an austenitic steel made by the method of the second aspect of the disclosure.
  • the austenitic steel alloy according to the disclosure possesses superior mechanical properties both at room temperature and at high temperature (e.g., at about 500° C.) which are achieved by adding molybdenum in an amount of less than 6 wt % into the austenitic steel alloy including manganese, aluminum, carbon, and iron in specific amounts.
  • FIG. 1 is a flow diagram of an embodiment of a process for making an austenitic steel according to the disclosure
  • FIG. 2 is an optical microscope photograph of an austenitic steel of Example 1 after a hot-working treatment
  • FIG. 3 is an optical microscope photograph of an austenitic steel of Example 3 after a hot-working treatment
  • FIG. 4 is an optical microscope photograph of an austenitic steel of Example 8 after a hot-working treatment
  • FIG. 5 is an optical microscope photograph of an austenitic steel of Example 1 after an aging treatment
  • FIG. 6 is an optical microscope photograph of an austenitic steel of Example 3 after an aging treatment
  • FIG. 7 is an optical microscope photograph of an austenitic steel of Example 8 after an aging treatment
  • FIG. 8 is an optical microscope photograph of an austenitic steel of Comparative Example 1 after a hot-working treatment.
  • FIG. 9 is an optical microscope photograph of an austenitic steel of Comparative Example 2 after a hot-working treatment.
  • An austenitic steel alloy according to the disclosure comprises manganese (Mn) in an amount of from 25 wt % to 31 wt %, aluminum (Al) in an amount of from 7 wt % to 10 wt %, carbon (C) in an amount of from 1.2 wt % to 1.6 wt %, molybdenum (Mo) in an amount of more than 0 wt % and less than 6 wt %, and a balance of iron (Fe).
  • Mn manganese
  • Al aluminum
  • carbon C
  • Mo molybdenum
  • Fe iron
  • the austenitic steel alloy according to the disclosure possesses superior mechanical properties and high ductility, and can be used for making general steel plates such as automobile steel plates, mechanical parts such as gears, hard work tools, and the like.
  • Mn is a strong austenite-stabilizing element.
  • An austenite phase is of face-center-cubic (FCC) structure with more dislocation slip systems, and thus possesses better ductility than other crystal structures, such as body-center-cubic (BCC) and hexagonal close packed (HCP) structures. Therefore, in order to obtain a fully austenite structure at room temperature, Mn is in an amount of from 25 wt % to 31 wt % in the austenitic steel alloy according to the disclosure. In certain embodiments, Mn is in an amount of from 26 wt % to 30 wt %. In certain embodiments, Mn is in an amount of from 27 wt % to 29%.
  • Al not only is a strong ferrite-stabilizing element, but also is one of the primary elements for forming (Fe,Mn) 3 AlC x carbides (i.e., ⁇ ′ carbides).
  • Al is in an amount of from 7 wt % to 10 wt % in the austenitic steel alloy according to the disclosure. In certain embodiments, Al is in an amount of from 8 wt % to 10 wt %. In certain embodiments, Al is in an amount of from 8 wt % to 9 wt %.
  • C is in an amount of from 1.2 wt % to 1.6 wt % in the austenitic steel alloy according to the disclosure, which is relatively high as compared to the amount (i.e., up to 1.0 wt %) of C in the conventional austenitic Fe—Mn—Al—C steel, in which molybdenum (Mo), niobium (Nb), and/or tungsten (W) is added.
  • Mo molybdenum
  • Nb niobium
  • W tungsten
  • C is in an amount of from 1.4 wt % to 1.6 wt %.
  • Mo is a very strong carbide-forming element. Mo is in an amount of more than 0 wt % and less than 6 wt % in the austenitic steel alloy according to the disclosure.
  • Mo is in an amount of from 2 wt % to 6 wt %.
  • the austenitic steel alloy according to the disclosure further comprises chromium (Cr).
  • Cr is also a very strong carbide-forming element. Cr is in an amount of less than 6 wt % in the austenitic steel alloy according to the disclosure.
  • the austenitic steel alloy according to the disclosure further comprises cobalt (Co).
  • Co is also a very strong carbide-forming element. Co is in an amount of less than 5 wt % in the austenitic steel alloy according to the disclosure.
  • the amounts of low-melting elements (e.g., Mn and Al) in the austenitic steel alloy according to the disclosure may be slightly different from those of the low-melting elements in the austenitic steel made from the alloy due to the smelting that causes evaporation effect of the low-melting elements. However, the difference is within an acceptable tolerance. Therefore, the properties of the austenitic steel made from the alloy will not be affected.
  • an embodiment of a method for making an austenitic steel according to the disclosure comprises steps of:
  • a hot-working treatment such as hot-rolling, hot-forging, and the like at a temperature of from 1100° C. to 950° C. to obtain a hot-worked body having a predetermined shape
  • the hot-worked body has a thickness of less than 25% of that of the cast piece.
  • the temperature for the aging treatment in step e) is from 480° C. to 500° C., and the aging treatment is implemented for a period of from 5 hours to 12 hours.
  • the temperature for the aging treatment in step e) is larger than 500° C. and up to 600° C., and the aging treatment is implemented for a period of from 1 hour to 4 hours.
  • the method for making the austenitic steel according to the disclosure is different from the method for making the conventional austenitic Fe—Mn—Al—C steel having a relatively low carbon amount and containing strong carbide-forming elements. Specifically, in the method for making the conventional austenitic Fe—Mn—Al—C steel, a solution heat treatment is required after the hot-working treatment to dissolve the coarse carbides precipitated on the grain boundaries into a matrix phase so as to enhance the ductility of the conventional austenitic Fe—Mn—Al—C steel.
  • the temperature for implementing the hot-working treatment is controlled within a range of from 1100° C. to 950° C. such that the precipitation of the coarse carbides on the grain boundaries during the hot-working treatment can be avoided. Therefore, an austenitic steel having superior mechanical properties and high ductility can be made without the solution heat treatment, which is required in the method for making the conventional austenitic Fe—Mn—Al—C steel.
  • the aged body can be cooled down naturally to room temperature.
  • the solution heat treatment is not a requisite in the method for making the austenitic steel according to the disclosure, it may be optionally implemented, if desired.
  • the austenitic steel made by the method according to the disclosure has a fully austenitic phase, a yield strength at 25° C. of from 1200 MPa to 1400 MPa, a Rockwell C hardness (HRc) at 25° C. of from 45 to 55, an ultimate tensile strength at 25° C. of from 1200 MPa to 1500 MPa, and an elongation at 25° C. of from 20% to 40%.
  • the austenitic steel made by the method according to the disclosure has superior yield strength and ultimate tensile strength at high temperature up to 700° C. Therefore, the austenitic steel made by the method according to the disclosure can be used for making general steel plates such as automobile steel plates, mechanical parts such as gears, hard work tools, and the like.
  • the austenitic steel alloy according to the disclosure comprises carbon in an amount of from 1.42 wt % to 1.5 wt % and molybdenum in an amount of from 3.5 wt % to 5 wt %.
  • the austenitic steel made by the austenitic steel alloy according to the disclosure has an ultimate tensile strength at 25° C. of from 1353 MPa to 1386 MPa, a yield strength at 25° C. of from 1310 MPa and 1340 MPa, and a HRc at 25° C. of from 47 to 47.7.
  • the austenitic steel alloy according to the disclosure comprises carbon in an amount of from 1.42 wt % to 1.45 wt % and molybdenum in an amount of from 3.5 wt % to 4 wt %.
  • the austenitic steel made by the austenitic steel alloy according to the disclosure has an elongation at 25° C. of 25%.
  • the austenitic steel alloy according to the disclosure comprises manganese in an amount of from 27.7 wt % to 30 wt % and aluminum in an amount of from 8.2 wt % to 8.5 wt %.
  • the austenitic steel made by the austenitic steel alloy according to the disclosure has an ultimate tensile strength at 25° C. of from 1280 MPa to 1386 MPa, a yield strength at 25° C. of from 1250 MPa and 1350 MPa, a hardness (HRc) at 25° C. of from 46.7 to 47.7, and an elongation at 25° C. of from 20% to 32%.
  • the austenitic steel alloy according to the disclosure comprises manganese in an amount of from 27 wt % to 29 wt %, aluminum in an amount of from 8.0 wt % to 8.5 wt %, and molybdenum in an amount of from 3.0 wt % to 6 wt %.
  • the austenitic steel made by the austenitic steel alloy according to the disclosure has an elongation at 25° C. of more than 20%, an ultimate tensile strength at 25° C. of more than 1280 MPa, a yield strength at 25° C. of more than 1230 MPa, an ultimate tensile strength at 300° C. of more than 1000 MPa, and a yield strength at 300° C. of more than 1000 MPa.
  • the austenitic steel alloy according to the disclosure comprises molybdenum in an amount of 3.0 wt %, and further comprises chromium in an amount of 3 wt % or cobalt in an amount of 2 wt %.
  • the austenitic steel made by the austenitic steel alloy according to the disclosure has an ultimate tensile strength at 25° C. of from 1280 MPa to 1344 MPa, a yield strength at 25° C. of from 1230 MPa and 1300 MPa, a hardness (HRc) at 25° C. of from 45 to 46.8, and an elongation at 25° C. of from 24% to 37%.
  • the presently available steel for the hot work tools has a density of from 7.8 g/cm 3 to 7.9 g/cm 3 .
  • the austenitic steel made by the method according to the disclosure has a density of from 6.6 g/cm 3 to 6.8 g/cm 3 , which is 14% less than the density of the presently available steel. Therefore, in addition to superior mechanical properties and high ductility, the austenitic steel made by the method according to the disclosure has a lightweight advantage.
  • the conventional Fe—Mn—Al—C alloy having a relatively high amount of carbon of from 1.4 wt % to 2.2 wt % can possess a fully austenitic phase, form a high density of fine ⁇ ′ carbides (i.e., (Fe,Mn) 3 AlC x carbides) within an austenite matrix, and avoid the precipitation of coarse carbides on the grain boundaries so as to possess superior mechanical strength and high ductility by controlling the hot-working treatment, the solution heat treatment, and the water-quenching treatment.
  • fine ⁇ ′ carbides i.e., (Fe,Mn) 3 AlC x carbides
  • an austenitic steel according to the disclosure by adding specific amounts of the strong carbide-forming elements (i.e., Mo and optionally Cr and Co) in the austenitic steel alloy and by controlling the temperature for implementing the hot-working treatment within a specific range (i.e., from 1100° C. to 950° C.), the precipitation of coarse carbides on the grain boundaries during the hot-working treatment can be avoided. Therefore, an austenitic steel having superior mechanical properties and high ductility can be made without the solution heat treatment which is required in the method for making the conventional austenitic Fe—Mn—Al—C steel.
  • the strong carbide-forming elements i.e., Mo and optionally Cr and Co
  • a steel alloy containing 30 wt % of Mn, 85 wt % of Al, 1.45 wt % of C, 6 wt % of Mo, and a balance of Fe was smelted in a high-frequency smelting furnace under an atmosphere to obtain a molten steel alloy, followed by casting the molten steel alloy to obtain a cast piece having a thickness of 2 cm.
  • the cast piece was heated in a furnace at 1100° C., followed by hot-rolling at a temperature of from 1100° C. to 950° C. to obtain a test piece having a thickness of less than 25% of that of the cast piece.
  • test piece was subjected to an initial water-quenching treatment followed by cooling to room temperature to obtain a water-quenched body.
  • the water-quenched body was polished to remove an oxide layer, followed by an aging treatment at 500° C. to obtain an aged body.
  • the aged body was subjected to a further water-quenching treatment followed by cooling to room temperature.
  • Example 1 In each of Examples 2 to 11, the procedure of Example 1 was repeated using the steel alloy shown in Table 1.
  • test pieces were subjected a tensile test according to the specification of ASTM E8/E8M using an Instron tensile tester at a strain rate of 10 ⁇ 3 /sec at a desirable temperature (i.e., 25° C., 300° C., 500° C., or 700° C.). For each of the test pieces, a relationship between stress and strain was recorded to obtain a stress-strain curve at the desirable temperature as that shown below.
  • L2 and L3 are parallel to L1.
  • Yield strength is defined as the stress obtained at 0.2% offset strain in the stress-strain curve, as shown by point A in the stress-strain curve.
  • Ultimate tensile strength is defined as a maximum stress obtained before failure, as shown by point B in the stress-strain curve.
  • Elongation is defined as the strain shown by point C in the stress-strain curve.
  • the test pieces of Examples 1 to 11 have a yield strength at 25° C. of from 1230 MPa to 1350 MPa, an ultimate tensile strength at 25° C. of from 1280 MPa to 1386 MPa, an elongation at 25° of from 20% to 37%, and a Rockwell C hardness (HRc) of from 45.0 to 47.7. It is demonstrated that the test pieces of Examples 1 to 11 have superior mechanical strength and ductility as compared to the test pieces of Comparative Examples 1 and 2.
  • the austenitic steel alloy of Examples 1 to 11 has superior mechanical strength and ductility at room temperature (i.e., 25° C.) and sufficient mechanical strength at high temperature as well, by controlling the Mo amount in the steel alloy within a range of from 2 wt % to 6 wt % as compared to the steel alloy of Comparative Examples 1 to 3 and conventional AISI H13 and QRO 90 alloys. Therefore, when the austenitic steel alloy according to the disclosure is used to make hot work tools, the cracking problem encountered in the prior art can be avoided.
  • the mechanical strength of each of the test pieces of Examples 1 to 11 is not significantly affected by the aging time of from 5 hours to 12 hours. It is demonstrated that the precipitation of coarse carbides on the grain boundaries of the austenitic steel can be avoided by controlling the temperature during the hot-working treatment. Therefore, the time period for the aging treatment of the austenitic steel alloy according to the disclosure can be more flexible, and the problem of significant precipitation of coarse carbides due to the longer aging time can be alleviated or even avoided.
  • FIGS. 2 to 4 there is no precipitation of coarse carbides seen in each of the test pieces of Examples 1, 3, and 8 after the hot-working treatment at a temperature of from 1100° C. to 950° C.
  • FIGS. 5 to 7 there is also no precipitation of coarse carbides seen in each of the test pieces of Examples 1, 3, and 8 after the hot-working treatment at a temperature of from 1100° C. to 950° C., followed by the aging treatment.
  • FIGS. 8 and 9 there is significant precipitation of coarse carbides seen in each of the test pieces of Comparative Examples 1 and 2, in which the strong carbide-forming elements are added in an excess amount.
  • the test pieces of Examples 4, 7, and 9 has a yield strength at 300° C. of from 970 MPa to 1030 MPa, an ultimate tensile strength at 300° C. of from 1022 MPa to 1070 MPa, a yield strength at 500° C. of from 650 MPa to 700 MPa, an ultimate tensile strength at 500° C. of from 719 MPa to 786 MPa, a yield strength at 700° C. of from 410 MPa to 420 MPa, and an ultimate tensile strength at 700° C. of from 440 MPa to 449 MPa.
  • the test piece of Comparative Example 3 has good ductility at 25° C., the yield strengths and the ultimate tensile strengths at 25° C., 300° C., and 500° C. are relatively low as compared to the test pieces of Examples 4, 7, and 9. It is demonstrated that the austenitic steel made by the austenitic steel alloy according to the disclosure has superior mechanical strength both at room temperature (i.e., 25° C.) and at high temperature, and thus can be used for making a hot work tools.
  • the ductility of the austenitic steel made thereby can be improved by adding relatively low amount (s) of the strong carbide-forming element (s) such as molybdenum and/or tungsten.
  • the mechanical strength of the austenitic steel cannot be significantly enhanced.
  • the mechanical strength thereof can be improved by adding relatively high amount(s) of the strong carbide-forming element(s).
  • the ductility thereof cannot be maintained.
  • an austenitic steel possessing superior mechanical strength and high ductility both at room temperature and at high temperature can be made using the austenitic steel alloy via a method of this disclosure that includes a hot-working treatment at a temperature of from 1100° C. to 950° C.

Abstract

An austenitic steel alloy includes manganese in an amount of from 25 wt % to 31 wt %, aluminum in an amount of from 7 wt % to 10 wt %, carbon in an amount of from 1.2 wt % to 1.6 wt %, molybdenum in an amount of more than 0 wt % and less than 6 wt %, and a balance of iron.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims priority of Taiwanese Application No. 107123925, filed on Jul. 11, 2018.
  • FIELD
  • The disclosure relates to an austenitic steel alloy, and more particularly to an austenitic steel alloy for hot work tools. The disclosure also relates to a method for making an austenitic steel using the alloy, and an austenitic steel made by the method.
  • BACKGROUND
  • Martensitic steel is a steel material commonly used for making hot work tools due to its superior mechanical properties such as hardness and toughness. However, since the martensitic steel has relatively low ductility, the hot work tools made therefrom are liable to cracking.
  • AISI H13 steel is an example of the martensitic steel commonly used for making the hot work tools, and includes carbon in an amount of from 0.32 wt % to 0.45 wt %, silicon in an amount of from 0.80 wt % to 1.20 wt %, manganese in an amount of from 0.20 wt % to 0.50 wt %, chromium in an amount of from 4.75 wt % to 5.50 wt %, molybdenum in an amount of from 1.10 wt % to 1.75 wt %, vanadium in an amount of from 0.80 wt % to 1.20 wt %, phosphorus in an amount of not more than 0.03 wt %, sulfur in an amount of not more than 0.03 wt %, and a balance of iron. The AISI H13 steel has a room temperature hardness of from 55 to 58, an elongation at room temperature of from 3% to 5%, an impact toughness of from 5 Joules (J) to 10 J, and a high temperature Rockwell C hardness (HRc) of from 33 to 41. Since the AISI H13 steel having a relatively low elongation is liable to cracking during usage, the room temperature hardness thereof is usually reduced to a range of from 42 to 50 so as to increase the elongation to a range of from 5% to 8%.
  • QRO 90 steel is another example of the martensitic steel commonly used for making the hot work tools, and includes carbon in an amount of 0.38 wt %, silicon in an amount of 0.30 wt %, manganese in an amount of 0.75 wt %, chromium in an amount of 2.60 wt %, molybdenum in an amount of 2.25 wt %, vanadium in an amount of 0.9 wt %, and a balance of iron. The QRO 90 steel has a room temperature hardness of 45, an elongation of about 11%, an impact toughness of 10 J, and a high temperature Rockwell C hardness (HRc) of from 26 to 41.
  • Alternatively, austenitic Fe—Mn—Al—C steel has been subjected to extensive researches over the last several decades because of its promising application that is potential associated with high mechanical strength and high ductility.
  • Conventional austenitic Fe—Mn—Al—C steel containing carbon in an amount of greater than about 1.2 wt % may be deteriorated in terms of ductility and may be even cracked. Therefore, the amount of carbon in the conventional austenitic Fe—Mn—Al—C steel is usually controlled within a range of from 0.54 wt % to 1.3 wt % and is added with molybdenum (Mo), niobium (Nb), and/or tungsten (W) to enhance the mechanical strength thereof. However, ductility (i.e., elongation) of the conventional austenitic Fe—Mn—Al—C steel may be undesirably reduced due to precipitation of coarse carbides on the grain boundaries of the austenitic Fe—Mn—Al—C steel during an aging treatment. Accordingly, the hot work tools made therefrom are liable to cracking.
  • Applicant's U.S. Pat. No. 9,528,177 discloses a Fe—Mn—Al—C quarternary alloy which is essentially consisting of Fe, Mn, Al, and C in specific amounts. Specifically, the amount of carbon in the Fe—Mn—Al—C quarternary alloy is controlled within a range of from 1.4 wt % to 2.2 wt %. The Fe—Mn—Al—C quarternary alloy possesses superior ductility and high mechanical strength due to formation of a high density of fine κ′ carbides within an austenite matrix by a spinodal decomposition phase transition mechanism during quenching from a solution heat treatment temperature. It is not recommended to add strong carbide-forming elements such as Cr, Ti, and Mo to the Fe—Mn—Al—C quarternary alloy because addition of such elements appears to have no beneficial effect in the formation of the high density of fine κ′ carbides within the austenite matrix.
  • SUMMARY
  • A first object of the disclosure is to provide an austenitic steel alloy which possesses superior mechanical properties without compromising ductility at room temperature, and which also possesses superior mechanical properties at high temperature.
  • A second object of the disclosure is to provide a method for making an austenitic steel using the austenitic steel alloy.
  • A third object of the disclosure is to provide an austenitic steel made by the method.
  • According to a first aspect of the disclosure, there is provided an austenitic steel alloy which comprises manganese in an amount of from 25 wt % to 31 wt %, aluminum in an amount of from 7 wt % to 10 wt %, carbon in an amount of from 1.2 wt % to 1.6 wt %, molybdenum in an amount of more than 0 wt % and less than 6 wt %, and a balance of iron.
  • According to a second aspect of the disclosure, there is provided a method for making an austenitic steel using the austenitic steel alloy of the first aspect of the disclosure.
  • According to a third aspect of the disclosure, there is provided an austenitic steel made by the method of the second aspect of the disclosure.
  • The austenitic steel alloy according to the disclosure possesses superior mechanical properties both at room temperature and at high temperature (e.g., at about 500° C.) which are achieved by adding molybdenum in an amount of less than 6 wt % into the austenitic steel alloy including manganese, aluminum, carbon, and iron in specific amounts.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Other features and advantages of the disclosure will become apparent in the following detailed description of the embodiment (s) with reference to the accompanying drawings, of which:
  • FIG. 1 is a flow diagram of an embodiment of a process for making an austenitic steel according to the disclosure;
  • FIG. 2 is an optical microscope photograph of an austenitic steel of Example 1 after a hot-working treatment;
  • FIG. 3 is an optical microscope photograph of an austenitic steel of Example 3 after a hot-working treatment;
  • FIG. 4 is an optical microscope photograph of an austenitic steel of Example 8 after a hot-working treatment;
  • FIG. 5 is an optical microscope photograph of an austenitic steel of Example 1 after an aging treatment;
  • FIG. 6 is an optical microscope photograph of an austenitic steel of Example 3 after an aging treatment;
  • FIG. 7 is an optical microscope photograph of an austenitic steel of Example 8 after an aging treatment;
  • FIG. 8 is an optical microscope photograph of an austenitic steel of Comparative Example 1 after a hot-working treatment; and
  • FIG. 9 is an optical microscope photograph of an austenitic steel of Comparative Example 2 after a hot-working treatment.
  • DETAILED DESCRIPTION
  • An austenitic steel alloy according to the disclosure comprises manganese (Mn) in an amount of from 25 wt % to 31 wt %, aluminum (Al) in an amount of from 7 wt % to 10 wt %, carbon (C) in an amount of from 1.2 wt % to 1.6 wt %, molybdenum (Mo) in an amount of more than 0 wt % and less than 6 wt %, and a balance of iron (Fe). The austenitic steel alloy according to the disclosure possesses superior mechanical properties and high ductility, and can be used for making general steel plates such as automobile steel plates, mechanical parts such as gears, hard work tools, and the like.
  • Mn is a strong austenite-stabilizing element. An austenite phase is of face-center-cubic (FCC) structure with more dislocation slip systems, and thus possesses better ductility than other crystal structures, such as body-center-cubic (BCC) and hexagonal close packed (HCP) structures. Therefore, in order to obtain a fully austenite structure at room temperature, Mn is in an amount of from 25 wt % to 31 wt % in the austenitic steel alloy according to the disclosure. In certain embodiments, Mn is in an amount of from 26 wt % to 30 wt %. In certain embodiments, Mn is in an amount of from 27 wt % to 29%.
  • Al not only is a strong ferrite-stabilizing element, but also is one of the primary elements for forming (Fe,Mn)3AlCx carbides (i.e., κ′ carbides). Al is in an amount of from 7 wt % to 10 wt % in the austenitic steel alloy according to the disclosure. In certain embodiments, Al is in an amount of from 8 wt % to 10 wt %. In certain embodiments, Al is in an amount of from 8 wt % to 9 wt %.
  • C is in an amount of from 1.2 wt % to 1.6 wt % in the austenitic steel alloy according to the disclosure, which is relatively high as compared to the amount (i.e., up to 1.0 wt %) of C in the conventional austenitic Fe—Mn—Al—C steel, in which molybdenum (Mo), niobium (Nb), and/or tungsten (W) is added. In certain embodiments, C is in an amount of from 1.4 wt % to 1.6 wt %.
  • Mo is a very strong carbide-forming element. Mo is in an amount of more than 0 wt % and less than 6 wt % in the austenitic steel alloy according to the disclosure.
  • In certain embodiments, Mo is in an amount of from 2 wt % to 6 wt %.
  • In certain embodiments, the austenitic steel alloy according to the disclosure further comprises chromium (Cr). Cr is also a very strong carbide-forming element. Cr is in an amount of less than 6 wt % in the austenitic steel alloy according to the disclosure.
  • In certain embodiments, the austenitic steel alloy according to the disclosure further comprises cobalt (Co). Co is also a very strong carbide-forming element. Co is in an amount of less than 5 wt % in the austenitic steel alloy according to the disclosure.
  • It should be noted that the amounts of low-melting elements (e.g., Mn and Al) in the austenitic steel alloy according to the disclosure may be slightly different from those of the low-melting elements in the austenitic steel made from the alloy due to the smelting that causes evaporation effect of the low-melting elements. However, the difference is within an acceptable tolerance. Therefore, the properties of the austenitic steel made from the alloy will not be affected.
  • According to FIG. 1, an embodiment of a method for making an austenitic steel according to the disclosure comprises steps of:
  • a) smelting the austenitic steel alloy according to the disclosure in a high-frequency smelting furnace under an atmosphere to obtain a molten steel alloy;
  • b) casting the molten steel alloy to obtain a cast piece;
  • c) subjecting the cast piece to a hot-working treatment such as hot-rolling, hot-forging, and the like at a temperature of from 1100° C. to 950° C. to obtain a hot-worked body having a predetermined shape;
  • d) subjecting the hot-worked body to an initial water-quenching treatment followed by cooling to room temperature to obtain a water-quenched body;
  • e) subjecting the water-quenched body to an aging treatment at a temperature of from 480° C. to 600° C. to obtain an aged body; and
  • f) subjecting the aged body to a further water-quenching treatment followed by cooling to room temperature.
  • In certain embodiments, in step c), the hot-worked body has a thickness of less than 25% of that of the cast piece.
  • In certain embodiments, the temperature for the aging treatment in step e) is from 480° C. to 500° C., and the aging treatment is implemented for a period of from 5 hours to 12 hours.
  • In certain embodiments, the temperature for the aging treatment in step e) is larger than 500° C. and up to 600° C., and the aging treatment is implemented for a period of from 1 hour to 4 hours.
  • The method for making the austenitic steel according to the disclosure is different from the method for making the conventional austenitic Fe—Mn—Al—C steel having a relatively low carbon amount and containing strong carbide-forming elements. Specifically, in the method for making the conventional austenitic Fe—Mn—Al—C steel, a solution heat treatment is required after the hot-working treatment to dissolve the coarse carbides precipitated on the grain boundaries into a matrix phase so as to enhance the ductility of the conventional austenitic Fe—Mn—Al—C steel. In the method for making the austenitic steel according to the disclosure, although the austenitic steel alloy for making the austenitic steel has a relatively high carbon amount and contains strong carbide-forming elements, the temperature for implementing the hot-working treatment is controlled within a range of from 1100° C. to 950° C. such that the precipitation of the coarse carbides on the grain boundaries during the hot-working treatment can be avoided. Therefore, an austenitic steel having superior mechanical properties and high ductility can be made without the solution heat treatment, which is required in the method for making the conventional austenitic Fe—Mn—Al—C steel.
  • It should be noted that instead of implementing the further water-quenching treatment in step f), the aged body can be cooled down naturally to room temperature. In addition, although the solution heat treatment is not a requisite in the method for making the austenitic steel according to the disclosure, it may be optionally implemented, if desired.
  • The austenitic steel made by the method according to the disclosure has a fully austenitic phase, a yield strength at 25° C. of from 1200 MPa to 1400 MPa, a Rockwell C hardness (HRc) at 25° C. of from 45 to 55, an ultimate tensile strength at 25° C. of from 1200 MPa to 1500 MPa, and an elongation at 25° C. of from 20% to 40%. In addition, the austenitic steel made by the method according to the disclosure has superior yield strength and ultimate tensile strength at high temperature up to 700° C. Therefore, the austenitic steel made by the method according to the disclosure can be used for making general steel plates such as automobile steel plates, mechanical parts such as gears, hard work tools, and the like.
  • In certain embodiments, the austenitic steel alloy according to the disclosure comprises carbon in an amount of from 1.42 wt % to 1.5 wt % and molybdenum in an amount of from 3.5 wt % to 5 wt %. The austenitic steel made by the austenitic steel alloy according to the disclosure has an ultimate tensile strength at 25° C. of from 1353 MPa to 1386 MPa, a yield strength at 25° C. of from 1310 MPa and 1340 MPa, and a HRc at 25° C. of from 47 to 47.7.
  • In certain embodiments, the austenitic steel alloy according to the disclosure comprises carbon in an amount of from 1.42 wt % to 1.45 wt % and molybdenum in an amount of from 3.5 wt % to 4 wt %. The austenitic steel made by the austenitic steel alloy according to the disclosure has an elongation at 25° C. of 25%.
  • In certain embodiments, the austenitic steel alloy according to the disclosure comprises manganese in an amount of from 27.7 wt % to 30 wt % and aluminum in an amount of from 8.2 wt % to 8.5 wt %. The austenitic steel made by the austenitic steel alloy according to the disclosure has an ultimate tensile strength at 25° C. of from 1280 MPa to 1386 MPa, a yield strength at 25° C. of from 1250 MPa and 1350 MPa, a hardness (HRc) at 25° C. of from 46.7 to 47.7, and an elongation at 25° C. of from 20% to 32%.
  • In certain embodiments, the austenitic steel alloy according to the disclosure comprises manganese in an amount of from 27 wt % to 29 wt %, aluminum in an amount of from 8.0 wt % to 8.5 wt %, and molybdenum in an amount of from 3.0 wt % to 6 wt %. The austenitic steel made by the austenitic steel alloy according to the disclosure has an elongation at 25° C. of more than 20%, an ultimate tensile strength at 25° C. of more than 1280 MPa, a yield strength at 25° C. of more than 1230 MPa, an ultimate tensile strength at 300° C. of more than 1000 MPa, and a yield strength at 300° C. of more than 1000 MPa.
  • In certain embodiments, the austenitic steel alloy according to the disclosure comprises molybdenum in an amount of 3.0 wt %, and further comprises chromium in an amount of 3 wt % or cobalt in an amount of 2 wt %. The austenitic steel made by the austenitic steel alloy according to the disclosure has an ultimate tensile strength at 25° C. of from 1280 MPa to 1344 MPa, a yield strength at 25° C. of from 1230 MPa and 1300 MPa, a hardness (HRc) at 25° C. of from 45 to 46.8, and an elongation at 25° C. of from 24% to 37%.
  • Furthermore, the presently available steel for the hot work tools has a density of from 7.8 g/cm3 to 7.9 g/cm3. The austenitic steel made by the method according to the disclosure has a density of from 6.6 g/cm3 to 6.8 g/cm3, which is 14% less than the density of the presently available steel. Therefore, in addition to superior mechanical properties and high ductility, the austenitic steel made by the method according to the disclosure has a lightweight advantage.
  • The conventional Fe—Mn—Al—C alloy having a relatively high amount of carbon of from 1.4 wt % to 2.2 wt % can possess a fully austenitic phase, form a high density of fine κ′ carbides (i.e., (Fe,Mn)3AlCx carbides) within an austenite matrix, and avoid the precipitation of coarse carbides on the grain boundaries so as to possess superior mechanical strength and high ductility by controlling the hot-working treatment, the solution heat treatment, and the water-quenching treatment. However, in the method for making an austenitic steel according to the disclosure, by adding specific amounts of the strong carbide-forming elements (i.e., Mo and optionally Cr and Co) in the austenitic steel alloy and by controlling the temperature for implementing the hot-working treatment within a specific range (i.e., from 1100° C. to 950° C.), the precipitation of coarse carbides on the grain boundaries during the hot-working treatment can be avoided. Therefore, an austenitic steel having superior mechanical properties and high ductility can be made without the solution heat treatment which is required in the method for making the conventional austenitic Fe—Mn—Al—C steel.
  • Examples of the disclosure will be described hereinafter. It is to be understood that these examples are exemplary and explanatory and should not be construed as a limitation to the disclosure.
  • EXAMPLE 1
  • A steel alloy containing 30 wt % of Mn, 85 wt % of Al, 1.45 wt % of C, 6 wt % of Mo, and a balance of Fe was smelted in a high-frequency smelting furnace under an atmosphere to obtain a molten steel alloy, followed by casting the molten steel alloy to obtain a cast piece having a thickness of 2 cm.
  • The cast piece was heated in a furnace at 1100° C., followed by hot-rolling at a temperature of from 1100° C. to 950° C. to obtain a test piece having a thickness of less than 25% of that of the cast piece.
  • The test piece was subjected to an initial water-quenching treatment followed by cooling to room temperature to obtain a water-quenched body.
  • The water-quenched body was polished to remove an oxide layer, followed by an aging treatment at 500° C. to obtain an aged body.
  • The aged body was subjected to a further water-quenching treatment followed by cooling to room temperature.
  • Examples 2 to 11
  • In each of Examples 2 to 11, the procedure of Example 1 was repeated using the steel alloy shown in Table 1.
  • Comparative Examples 1 to 3
  • In each of Comparative Examples 1 to 3, the procedure of Example 1 was repeated using the steel alloy shown in Table 1.
  • TABLE 1
    Fe Mn Al C Mo Cr Co
    (wt (wt (wt (wt (wt (wt (wt
    Steel Alloy % ) %) %) %) %) %) %)
    Ex. 1 balance 30 8.5 1.45 6
    Ex. 2 balance 30 8.5 1.45 4
    Ex. 3 balance 30 8.5 1.50 3.5
    Ex. 4 balance 27 8.5 1.48 6
    Ex. 5 balance 27.5 8.3 1.43 5
    Ex. 6 balance 28 8.2 1.42 3.5
    Ex. 7 balance 28.5 8.4 1.46 2
    Ex. 8 balance 30 8.5 1.45 3 3
    Ex. 9 balance 28.5 8.0 1.52 3 3
    Ex. 10 balance 30 8.5 1.45 3 2
    Ex. 11 balance 27 8.2 1.42 3 2
    Comp. Ex. 1 balance 28.5 8.2 1.45 9
    Comp. Ex. 2 balance 28 8.3 1.53 9 5
    Comp. Ex. 3 balance 28.5 8.3 1.5
  • Each of the test pieces of Examples 1 to 11 and Comparative Examples 1 to 3 was subjected to yield strength (YS), ultimate tensile strength (UTS), elongation (El), and Rockwell C hardness (HRc) measurements at 25° C. according to the procedures described below. The results are shown in Table 2.
  • Each of the test pieces of Examples 4, 7, and 9 and Comparative Examples 1 to 3 was subjected to yield strength (YS) and ultimate tensile strength (UTS) measurements at 300° C., 500° C., and 700° C. according to the procedures described below. The results are shown in Table 3.
  • Measurements
  • Each of the test pieces was subjected a tensile test according to the specification of ASTM E8/E8M using an Instron tensile tester at a strain rate of 10−3/sec at a desirable temperature (i.e., 25° C., 300° C., 500° C., or 700° C.). For each of the test pieces, a relationship between stress and strain was recorded to obtain a stress-strain curve at the desirable temperature as that shown below.
  • L2 and L3 are parallel to L1.
  • 1. Yield Strength (YS)
  • Yield strength is defined as the stress obtained at 0.2% offset strain in the stress-strain curve, as shown by point A in the stress-strain curve.
  • 2. Ultimate Tensile Strength (UTS)
  • Ultimate tensile strength is defined as a maximum stress obtained before failure, as shown by point B in the stress-strain curve.
  • 3. Elongation (El)
  • Elongation is defined as the strain shown by point C in the stress-strain curve.
  • 4. Rockwell C Hardness (HRc)
  • Rockwell C hardness of each of the test pieces was measured using a Rockwell hardness machine at a load of 150 kgf. A diamond conical indenter was used for the measurement. The results are shown in Table 2.
  • TABLE 2
    Rockwell C Aging
    YS UTS El hardness time
    Steel Alloy (MPa) (MPa) (%) (HRc) (500° C./h)
    Ex. 1 1350 1375 20 47.4 12
    Ex. 2 1340 1366 25 47.0 12
    Ex. 3 1330 1386 22 47.7 6
    Ex. 4 1230 1308 21 46.3 12
    Ex. 5 1320 1365 20 47.4 12
    Ex. 6 1310 1353 24 47.0 6
    Ex. 7 1250 1314 20 46.5 12
    Ex. 8 1300 1322 26 45.0 12
    Ex. 9 1300 1344 24 46.8 12
    Ex. 10 1250 1280 32 46.7 5
    Ex. 11 1230 1280 37 46.7 5
    Comp. Ex. 1 1400 1464 7 50.2 6
    Comp. Ex. 2 1360 1410 5 49.0 5
    Comp. Ex. 3 1210 1262 38 45.6 2.5
  • TABLE 3
    Steel 300° C. 500° C. 700° C.
    Alloy YS UTS YS UTS YS UTS
    Ex. 4 1000 1033 690 758 410 440
    Ex. 7 970 1022 650 719 410 449
    Ex. 9 1030 1070 700 786 420 444
    Comp. 1020 1047 750 827 420 442
    Ex. 1
    Comp. 1010 1068 680 749 400 427
    Ex. 2
    Comp. 850 938 600 670 530 559
    Ex. 3
  • As shown in Table 2, the test pieces of Examples 1 to 11 have a yield strength at 25° C. of from 1230 MPa to 1350 MPa, an ultimate tensile strength at 25° C. of from 1280 MPa to 1386 MPa, an elongation at 25° of from 20% to 37%, and a Rockwell C hardness (HRc) of from 45.0 to 47.7. It is demonstrated that the test pieces of Examples 1 to 11 have superior mechanical strength and ductility as compared to the test pieces of Comparative Examples 1 and 2. Specifically, the austenitic steel alloy of Examples 1 to 11 has superior mechanical strength and ductility at room temperature (i.e., 25° C.) and sufficient mechanical strength at high temperature as well, by controlling the Mo amount in the steel alloy within a range of from 2 wt % to 6 wt % as compared to the steel alloy of Comparative Examples 1 to 3 and conventional AISI H13 and QRO 90 alloys. Therefore, when the austenitic steel alloy according to the disclosure is used to make hot work tools, the cracking problem encountered in the prior art can be avoided.
  • In addition, as shown in Table 2, the mechanical strength of each of the test pieces of Examples 1 to 11 is not significantly affected by the aging time of from 5 hours to 12 hours. It is demonstrated that the precipitation of coarse carbides on the grain boundaries of the austenitic steel can be avoided by controlling the temperature during the hot-working treatment. Therefore, the time period for the aging treatment of the austenitic steel alloy according to the disclosure can be more flexible, and the problem of significant precipitation of coarse carbides due to the longer aging time can be alleviated or even avoided.
  • Referring to FIGS. 2 to 4, there is no precipitation of coarse carbides seen in each of the test pieces of Examples 1, 3, and 8 after the hot-working treatment at a temperature of from 1100° C. to 950° C. Referring to FIGS. 5 to 7, there is also no precipitation of coarse carbides seen in each of the test pieces of Examples 1, 3, and 8 after the hot-working treatment at a temperature of from 1100° C. to 950° C., followed by the aging treatment. Referring to FIGS. 8 and 9, however, there is significant precipitation of coarse carbides seen in each of the test pieces of Comparative Examples 1 and 2, in which the strong carbide-forming elements are added in an excess amount.
  • Furthermore, as shown in Table 3, the test pieces of Examples 4, 7, and 9 has a yield strength at 300° C. of from 970 MPa to 1030 MPa, an ultimate tensile strength at 300° C. of from 1022 MPa to 1070 MPa, a yield strength at 500° C. of from 650 MPa to 700 MPa, an ultimate tensile strength at 500° C. of from 719 MPa to 786 MPa, a yield strength at 700° C. of from 410 MPa to 420 MPa, and an ultimate tensile strength at 700° C. of from 440 MPa to 449 MPa. Although the test piece of Comparative Example 3 has good ductility at 25° C., the yield strengths and the ultimate tensile strengths at 25° C., 300° C., and 500° C. are relatively low as compared to the test pieces of Examples 4, 7, and 9. It is demonstrated that the austenitic steel made by the austenitic steel alloy according to the disclosure has superior mechanical strength both at room temperature (i.e., 25° C.) and at high temperature, and thus can be used for making a hot work tools.
  • In view of the aforesaid, in a conventional austenitic Fe—Mn—Al—C steel containing carbon in an amount of not more than 1 wt %, the ductility of the austenitic steel made thereby can be improved by adding relatively low amount (s) of the strong carbide-forming element (s) such as molybdenum and/or tungsten. However, the mechanical strength of the austenitic steel cannot be significantly enhanced. On the other hand, in such austenitic Fe—Mn—Al—C steel, the mechanical strength thereof can be improved by adding relatively high amount(s) of the strong carbide-forming element(s). However, the ductility thereof cannot be maintained. In U.S. Pat. No. 9,528,177, it is not recommended to add the strong carbide-forming elements such as Cr, Ti, and Mo to the Fe—Mn—Al—C quarternary alloy because addition of the strong carbide-forming elements appears to have no beneficial effect for forming the high density of fine κ′ carbides within the austenite matrix. In the austenitic steel alloy according to the disclosure, molybdenum in a specific amount of less than 6 wt % and carbon in a relatively high amount of from 1.2 wt % to 1.6 wt % are included therein. Therefore, an austenitic steel possessing superior mechanical strength and high ductility both at room temperature and at high temperature can be made using the austenitic steel alloy via a method of this disclosure that includes a hot-working treatment at a temperature of from 1100° C. to 950° C.
  • In the description above, for the purposes of explanation, numerous specific details have been set forth in order to provide a thorough understanding of the embodiment(s). It will be apparent, however, to one skilled in the art, that one or more other embodiments may be practiced without some of these specific details. It should also be appreciated that reference throughout this specification to “one embodiment,” “an embodiment,” an embodiment with an indication of an ordinal number and so forth means that a particular feature, structure, or characteristic may be included in the practice of the disclosure. It should be further appreciated that in the description, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure and aiding in the understanding of various inventive aspects, and that one or more features or specific details from one embodiment may be practiced together with one or more features or specific details from another embodiment, where appropriate, in the practice of the disclosure.
  • While the disclosure has been described in connection with what is (are) considered the exemplary embodiment(s), it is understood that this disclosure is not limited to the disclosed embodiment(s) but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.

Claims (18)

What is claimed is:
1. An austenitic steel alloy comprising:
manganese in an amount of from 25 wt % to 31 wt %;
aluminum in an amount of from 7 wt % to 10 wt %;
carbon in an amount of from 1.2 wt % to 1.6 wt %;
molybdenum in an amount of more than 0 wt % and less than 6 wt %; and
a balance of iron.
2. The austenitic steel alloy according to claim 1, wherein said manganese is in an amount of from 26 wt % to 30 wt % and said aluminum is in an amount of from 8 wt % to 10 wt %.
3. The austenitic steel alloy according to claim 2, wherein said manganese is in an amount of from 27 wt % to 29 wt % and said molybdenum is in an amount of from 2 wt % to 6 wt %.
4. The austenitic steel alloy according to claim 3, wherein said aluminum is in an amount of from 8 wt % to 9 wt %.
5. The austenitic steel alloy according to claim 1, wherein said carbon is in an amount of from 1.4 wt % to 1.6 wt %.
6. The austenitic steel alloy according to claim 1, wherein said molybdenum is in an amount of from 2 wt % to 6 wt.
7. The austenitic steel alloy according to claim 1, further comprising chromium in an amount of less than 0 wt %.
8. The austenitic steel alloy according to claim 1, further comprising cobalt in an amount of less than 5 wt %.
9. A method for making an austenitic steel, comprising steps of:
a) smelting the austenitic steel alloy of claim 1 to obtain a molten steel alloy;
b) casting the molten steel alloy to obtain a cast piece;
c) subjecting the cast piece to a hot-working treatment at a temperature of from 1100° C. to 950° C. to obtain a hot-worked body;
d) subjecting the hot-worked body to an initial water-quenching treatment to obtain a water-quenched body; and
e) subjecting the water-quenched body to an aging treatment at a temperature of from 480° C. to 600° C. to obtain an aged body.
10. The method according to claim 9, wherein the temperature for the aging treatment is from 480° C. to 500° C., and the aging treatment is implemented for a period of from 5 hours to 12 hours.
11. The method according to claim 9, wherein the temperature for the aging treatment is larger than 500° C. and up to 600° C., and the aging treatment is implemented for a period of from 1 hour to 4 hours.
12. The method according to claim 9, further comprising a step of subjecting the aged body to a further water-quenching treatment.
13. The method according to claim 9, wherein in step c), the hot-worked body has a thickness of less than 25% of that of the cast piece.
14. An austenitic steel made by the method according to claim 9, wherein said austenitic steel has a fully austenitic phase, a yield strength at 25° C. of from 1200 MPa to 1400 MPa, a Rockwell C hardness at 25° C. of from 45 to 55, an ultimate tensile strength at 25° C. of from 1200 MPa to 1500 MPa, and an elongation at 25° C. of from 20% to 40%.
15. The austenitic steel according to claim 14, wherein said austenitic steel has an ultimate tensile strength at 300° C. of larger than 1000 MPa.
16. The austenitic steel according to claim 14, wherein said austenitic steel has a yield strength at 300° C. of larger than 970 MPa.
17. The austenitic steel according to claim 14, wherein said austenitic steel has a yield strength at 500° C. of larger than 650 MPa and an ultimate tensile strength at 500° C. of larger than 700 MPa.
18. The austenitic steel according to claim 14, wherein said austenitic steel has a yield strength at 700° C. of from 410 MPa to 420 MPa and an ultimate tensile strength at 700° C. of from 440 MPa to 449 MPa.
US16/107,810 2018-07-11 2018-08-21 Austenitic steel alloy Abandoned US20200017929A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW107123925A TWI715852B (en) 2018-07-11 2018-07-11 Austenitic alloy steel
TW107123925 2018-07-11

Publications (1)

Publication Number Publication Date
US20200017929A1 true US20200017929A1 (en) 2020-01-16

Family

ID=63578922

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/107,810 Abandoned US20200017929A1 (en) 2018-07-11 2018-08-21 Austenitic steel alloy

Country Status (9)

Country Link
US (1) US20200017929A1 (en)
EP (1) EP3594376B1 (en)
JP (1) JP6735798B2 (en)
KR (1) KR102211466B1 (en)
CN (1) CN110714167A (en)
AU (1) AU2018220088B1 (en)
CA (1) CA3014436C (en)
MX (1) MX2018016180A (en)
TW (1) TWI715852B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4865662A (en) * 1987-04-02 1989-09-12 Ipsco Inc. Aluminum-manganese-iron stainless steel alloy
JPH02228450A (en) * 1989-03-02 1990-09-11 Tokushu Denkyoku Kk Casting alloy
JPH05212526A (en) * 1991-12-27 1993-08-24 Todai Seimitsu Chuzo Kofun Yugenkoshi Method for precision casting of iron-manganese- aluminum alloy
JP2005084882A (en) * 2003-09-08 2005-03-31 Daikin Ind Ltd Facility equipment management apparatus, system and method
JP2009299083A (en) * 2008-06-10 2009-12-24 Neomax Material:Kk Resistance alloy
US20130240520A1 (en) * 2010-11-26 2013-09-19 Salzgitter Flachstahl Gmbh Energy-storing container made of lightweight steel
US20140007992A1 (en) * 2011-01-11 2014-01-09 Thyssenkrupp Steel Europe Ag Method for Producing a Hot-Rolled Flat Steel Product
CN106244927A (en) * 2016-09-30 2016-12-21 北京理工大学 A kind of low-density unimach and preparation method thereof
US20170107588A1 (en) * 2011-09-29 2017-04-20 Apogean Metal Incorporation COMPOSITION DESIGN AND PROCESSING METHODS OF HIGH STRENGTH, HIGH DUCTILITY, AND HIGH CORROSION RESISTANCE FeMnAlC ALLOYS
US20180100220A1 (en) * 2016-10-12 2018-04-12 Hyundai Motor Company High Manganese Steel

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB841366A (en) * 1957-07-02 1960-07-13 Langley Alloys Ltd Improvements in iron aluminium alloys
GB2220674A (en) * 1988-06-29 1990-01-17 Nat Science Council Alloys useful at elevated temperatures
US4875933A (en) * 1988-07-08 1989-10-24 Famcy Steel Corporation Melting method for producing low chromium corrosion resistant and high damping capacity Fe-Mn-Al-C based alloys
US4975335A (en) * 1988-07-08 1990-12-04 Fancy Steel Corporation Fe-Mn-Al-C based alloy articles and parts and their treatments
FR2634221A1 (en) * 1988-07-13 1990-01-19 Nat Science Council Cast articles made of alloys based on Fe-Mn-Al-Cr-Si-C
US4944814A (en) * 1989-03-02 1990-07-31 Ipsco Enterprises, Inc. Aluminum-manganese-iron steel alloy
BR8907902A (en) * 1989-08-31 1992-09-01 Ipsco Enterprises Inc SUBSTANTIALLY AUSTENITIC STEEL ALLOY AND SAME PRODUCTION PROCESS
US5167733A (en) * 1992-02-06 1992-12-01 Eastern Precision Casting Co., Ltd. Method for manufacturing iron-manganese-aluminum alloy castings
JP4235077B2 (en) * 2003-06-05 2009-03-04 新日本製鐵株式会社 High strength low specific gravity steel plate for automobile and its manufacturing method
US7931758B2 (en) * 2008-07-28 2011-04-26 Ati Properties, Inc. Thermal mechanical treatment of ferrous alloys, and related alloys and articles
JP5177310B2 (en) * 2011-02-15 2013-04-03 Jfeスチール株式会社 High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
WO2015099221A1 (en) * 2013-12-26 2015-07-02 주식회사 포스코 Steel sheet having high strength and low density and method of manufacturing same
US20170088910A1 (en) * 2015-09-29 2017-03-30 Exxonmobil Research And Engineering Company Corrosion and cracking resistant high manganese austenitic steels containing passivating elements
WO2017061487A1 (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Austenitic stainless steel sheet
US10227681B2 (en) * 2015-10-21 2019-03-12 Caterpillar Inc. High manganese steel with enhanced wear and impact characteristics
WO2017203312A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4865662A (en) * 1987-04-02 1989-09-12 Ipsco Inc. Aluminum-manganese-iron stainless steel alloy
JPH02228450A (en) * 1989-03-02 1990-09-11 Tokushu Denkyoku Kk Casting alloy
JPH05212526A (en) * 1991-12-27 1993-08-24 Todai Seimitsu Chuzo Kofun Yugenkoshi Method for precision casting of iron-manganese- aluminum alloy
JP2005084882A (en) * 2003-09-08 2005-03-31 Daikin Ind Ltd Facility equipment management apparatus, system and method
JP2009299083A (en) * 2008-06-10 2009-12-24 Neomax Material:Kk Resistance alloy
US20130240520A1 (en) * 2010-11-26 2013-09-19 Salzgitter Flachstahl Gmbh Energy-storing container made of lightweight steel
US20140007992A1 (en) * 2011-01-11 2014-01-09 Thyssenkrupp Steel Europe Ag Method for Producing a Hot-Rolled Flat Steel Product
US20170107588A1 (en) * 2011-09-29 2017-04-20 Apogean Metal Incorporation COMPOSITION DESIGN AND PROCESSING METHODS OF HIGH STRENGTH, HIGH DUCTILITY, AND HIGH CORROSION RESISTANCE FeMnAlC ALLOYS
CN106244927A (en) * 2016-09-30 2016-12-21 北京理工大学 A kind of low-density unimach and preparation method thereof
US20180100220A1 (en) * 2016-10-12 2018-04-12 Hyundai Motor Company High Manganese Steel

Also Published As

Publication number Publication date
CN110714167A (en) 2020-01-21
CA3014436C (en) 2024-01-09
KR20200068042A (en) 2020-06-15
TWI715852B (en) 2021-01-11
JP6735798B2 (en) 2020-08-05
KR102211466B1 (en) 2021-02-03
CA3014436A1 (en) 2020-01-11
AU2018220088B1 (en) 2020-01-02
TW202006153A (en) 2020-02-01
JP2020007632A (en) 2020-01-16
MX2018016180A (en) 2020-01-13
EP3594376A1 (en) 2020-01-15
EP3594376B1 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
KR102119959B1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
EP2250293B1 (en) Lower-cost, ultra-high-strength, high-toughness steel
US9023159B2 (en) Steel for heat treatment
RU2479662C2 (en) Super bainitic steel, and its manufacturing method
KR101657828B1 (en) Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same
CN111479945B (en) Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same
CN111356781B (en) High-strength hot-rolled steel sheet having excellent bendability and low-temperature toughness, and method for producing same
KR20140084772A (en) Non-quenched and tempered steel wire rod having excellent toughness and manufacturing method thereof
EP3859043A1 (en) Abrasion resistant steel having excellent hardness and impact toughness, and manufacturing method therefor
JP6754494B2 (en) High-strength high-manganese steel with excellent low-temperature toughness and its manufacturing method
JP2019077911A (en) Steel member and manufacturing method of steel member
EP3889302A1 (en) Chromium-molybdenum steel plate having excellent creep strength and method for manufacturing same
KR20210000844A (en) Pressure vessel steel sheet excellent in pwhthresistance and menufacturing mwthod thereof
US20200017929A1 (en) Austenitic steel alloy
KR101301617B1 (en) Material having high strength and toughness and method for forming tower flange using the same
CN111566249B (en) High-strength steel sheet and method for producing same
EP4265789A1 (en) Armored steel having high hardness and excellent low-temperature impact toughness, and method for manufacturing same
EP4265788A1 (en) High-hardness bullet-proof steel with excellent low-temperature impact toughness and method for manufacturing same
EP4265790A1 (en) Armored steel having high hardness and excellent low-temperature impact toughness and manufacturing method therefor
KR102031453B1 (en) Hot-rolled steel sheet and method for manufacturing the same
EP4265791A1 (en) Armored steel having high hardness and excellent low-temperature impact toughness, and method for manufacturing same
EP4265786A1 (en) High hardness armored steel having excellent low-temperature impact toughness, and manufacturing method therefor
EP4265785A1 (en) High-hardness bullet-proof steel with excellent low-temperature impact toughness and method for manufacturing same
EP4265793A1 (en) High-hardness armored steel having excellent low-temperature impact toughness, and manufacturing method therefor
KR20200075352A (en) Steel for pressure vessel and method for manufacturing the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: YONG DING APPLIED MATERIAL CO., LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHIANG, MING-HUANG;HUANG, TING-YI;REEL/FRAME:046656/0700

Effective date: 20180806

AS Assignment

Owner name: APOGEAN METAL CO., LTD., TAIWAN

Free format text: CHANGE OF NAME;ASSIGNOR:YONG DING APPLIED MATERIAL CO., LTD.;REEL/FRAME:047600/0465

Effective date: 20180703

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION