US20200001248A1 - Dual function composite oxygen transport membrane - Google Patents
Dual function composite oxygen transport membrane Download PDFInfo
- Publication number
- US20200001248A1 US20200001248A1 US16/558,917 US201916558917A US2020001248A1 US 20200001248 A1 US20200001248 A1 US 20200001248A1 US 201916558917 A US201916558917 A US 201916558917A US 2020001248 A1 US2020001248 A1 US 2020001248A1
- Authority
- US
- United States
- Prior art keywords
- layer
- oxygen transport
- catalyst
- catalyst layer
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000001301 oxygen Substances 0.000 title claims abstract description 169
- 229910052760 oxygen Inorganic materials 0.000 title claims abstract description 169
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title claims abstract description 157
- 239000012528 membrane Substances 0.000 title claims abstract description 118
- 239000002131 composite material Substances 0.000 title claims abstract description 72
- 230000009977 dual effect Effects 0.000 title claims abstract description 59
- 239000003054 catalyst Substances 0.000 claims abstract description 174
- 239000000758 substrate Substances 0.000 claims abstract description 77
- 238000000034 method Methods 0.000 claims description 33
- 238000000576 coating method Methods 0.000 claims description 30
- 239000011248 coating agent Substances 0.000 claims description 29
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 238000005245 sintering Methods 0.000 claims description 11
- 239000004020 conductor Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 abstract description 33
- 238000002407 reforming Methods 0.000 abstract description 20
- 239000010410 layer Substances 0.000 description 340
- 230000032258 transport Effects 0.000 description 107
- 230000006870 function Effects 0.000 description 60
- 239000002002 slurry Substances 0.000 description 52
- 239000000203 mixture Substances 0.000 description 42
- 239000007789 gas Substances 0.000 description 27
- 239000011148 porous material Substances 0.000 description 26
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 24
- 239000002245 particle Substances 0.000 description 24
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- 230000015572 biosynthetic process Effects 0.000 description 20
- 229910052751 metal Inorganic materials 0.000 description 20
- 239000002184 metal Substances 0.000 description 20
- 229910001233 yttria-stabilized zirconia Inorganic materials 0.000 description 20
- 239000011230 binding agent Substances 0.000 description 16
- 239000000446 fuel Substances 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 16
- -1 oxygen ions Chemical class 0.000 description 16
- 239000000919 ceramic Substances 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 13
- 238000007254 oxidation reaction Methods 0.000 description 13
- 229910052727 yttrium Inorganic materials 0.000 description 13
- 229910052684 Cerium Inorganic materials 0.000 description 12
- 238000002485 combustion reaction Methods 0.000 description 12
- 230000004907 flux Effects 0.000 description 12
- 229930195733 hydrocarbon Natural products 0.000 description 12
- 150000002430 hydrocarbons Chemical class 0.000 description 12
- 230000003647 oxidation Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 239000004215 Carbon black (E152) Substances 0.000 description 10
- 238000006057 reforming reaction Methods 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000010948 rhodium Substances 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 238000011068 loading method Methods 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 229910002651 NO3 Inorganic materials 0.000 description 6
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 239000006229 carbon black Substances 0.000 description 6
- 239000002270 dispersing agent Substances 0.000 description 6
- 239000004615 ingredient Substances 0.000 description 6
- 238000003801 milling Methods 0.000 description 6
- 239000012466 permeate Substances 0.000 description 6
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 6
- 239000004926 polymethyl methacrylate Substances 0.000 description 6
- 229910052706 scandium Inorganic materials 0.000 description 6
- 238000007605 air drying Methods 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 238000011049 filling Methods 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 5
- 229910052707 ruthenium Inorganic materials 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229910002645 Ni-Rh Inorganic materials 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 229910052593 corundum Inorganic materials 0.000 description 4
- 230000032798 delamination Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229910052703 rhodium Inorganic materials 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 229910001845 yogo sapphire Inorganic materials 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- LRHSENVDAQAWKP-UHFFFAOYSA-N [C].CC1=CC=CC=C1 Chemical compound [C].CC1=CC=CC=C1 LRHSENVDAQAWKP-UHFFFAOYSA-N 0.000 description 3
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000010344 co-firing Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000011532 electronic conductor Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000010416 ion conductor Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- ZMWJMNRNTMMKBX-UHFFFAOYSA-N nickel rhodium Chemical compound [Ni].[Ni].[Ni].[Rh] ZMWJMNRNTMMKBX-UHFFFAOYSA-N 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910052596 spinel Inorganic materials 0.000 description 3
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229920002274 Nalgene Polymers 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910002114 biscuit porcelain Inorganic materials 0.000 description 2
- 238000001833 catalytic reforming Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 239000011533 mixed conductor Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- AOPCKOPZYFFEDA-UHFFFAOYSA-N nickel(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O AOPCKOPZYFFEDA-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000012465 retentate Substances 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910026161 MgAl2O4 Inorganic materials 0.000 description 1
- 229910003303 NiAl2O4 Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000011021 bench scale process Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000006255 coating slurry Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910002078 fully stabilized zirconia Inorganic materials 0.000 description 1
- 229910021526 gadolinium-doped ceria Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(II) nitrate Inorganic materials [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052566 spinel group Inorganic materials 0.000 description 1
- 238000009718 spray deposition Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical group [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/022—Metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/022—Metals
- B01D71/0223—Group 8, 9 or 10 metals
- B01D71/02231—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0048—Inorganic membrane manufacture by sol-gel transition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/04—Tubular membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/108—Inorganic support material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1216—Three or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
- B01D71/0271—Perovskites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
- B01J23/462—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/892—Nickel and noble metals
-
- B01J35/065—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/58—Fabrics or filaments
- B01J35/59—Membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/26—Further operations combined with membrane separation processes
- B01D2311/2696—Catalytic reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/10—Catalysts being present on the surface of the membrane or in the pores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/20—Specific permeability or cut-off range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a dual function composite oxygen transport membrane and a method of manufacturing the article itself. More specifically, the invention relates to a dual function composite membrane having a ceramic substrate with a mixed conducting dense layer on one side of the substrate for oxygen transport and a catalyst layer on the opposing side of the substrate for catalyzing endothermic reforming reactions.
- the membrane is produced by depositing the mixed conducting dense layer and the catalyst layer on the opposing sides of the substrate in separate steps.
- the catalyst layer is formed using catalyst material selected to promote endothermic reactions.
- Composite oxygen transport membranes have been proposed for a variety of uses that involve the production of essentially pure oxygen by separation of oxygen from an oxygen containing feed through oxygen transport through such membrane.
- such membranes can be used in combustion devices to support oxy-fuel combustion or in reactors for partial oxidation reactions involving the production of a synthesis gas or generation of heat to support endothermic chemical reactions.
- the composite oxygen transport membranes contain a dense layer of a mixed conducting material that allows transport of both oxygen ions and electrons at elevated temperatures.
- the dense layer is formed on a ceramic substrate that functions as a porous support.
- the dense layer can be composed of a mixed conductor or two phases of materials, an ionic phase to conduct the oxygen ions and an electronic phase to conduct the electrons.
- Typical mixed conductors are formed from doped perovskite structured materials.
- the ionic conductor can be yttrium or scandium stabilized zirconia
- the electronic conductor can be a perovskite structured material that will transport electrons or can be a metal or metal alloy or a mixture of the perovskite type material and metal or metal alloy.
- Some known membranes also have additional layers such as a porous surface exchange layer located on the feed side of the dense layer to enhance reduction of the oxygen into oxygen ions, and an intermediate porous layer on the opposing side of the dense layer.
- a porous surface exchange layer located on the feed side of the dense layer to enhance reduction of the oxygen into oxygen ions
- an intermediate porous layer on the opposing side of the dense layer.
- Such a composite membrane is illustrated in U.S. Pat. No. 7,556,676 that utilizes two phase materials for the dense layer, the porous surface exchange layer and the intermediate porous layer. These layers are supported on a porous support that can be formed of zirconia.
- such membranes are made as thin as practical and are supported on a porous support. Since the resistance to oxygen transport is dependent on the thickness of the membrane, the dense layer is made as thin as possible and therefore must be supported. Another limiting factor to the performance of an oxygen transport membrane concerns the supporting layers on either side of the dense layer; these supporting layers may or may not be active for oxygen ion or electron conducting. These layers themselves can consist of a network of interconnected pores that can limit diffusion of the oxygen, or fuel or other substance through the membrane to facilitate oxygen transport and enhance oxygen flux across the membrane. Therefore, such support layers are typically fabricated with a graded porosity in which the pore size decreases in a direction taken towards the dense layer or are made highly porous throughout.
- the high porosity tends to weaken such a structure.
- the resulting composite oxygen transport membrane can be fabricated as a planar element or as a tubular element in which the dense layer is situated either on the inside surface or the outside surface of the planar element or tube.
- the composite oxygen transport membranes function by transporting oxygen ions through a material that is capable of conducting oxygen ions and electrons at elevated temperatures.
- An oxygen containing stream flows on one side, retentate side of the membrane, at least a portion of which contacts the membrane surface.
- Oxygen in the contacting oxygen containing stream ionizes on the membrane surface and the resultant oxygen ions are driven through the mixed conducting material and emerge on the opposite side thereof to recombine into elemental oxygen.
- electrons are liberated and are transported back through the membrane to the retentate side to begin the ionization cycle.
- the permeated oxygen reacts with a fuel flowing on the permeate side of the membrane.
- the combustion reactions produce products such as synthesis gases by means of partial oxidation of the fuel. It is to be noted that the combustion reactions by combusting at least some of the permeated oxygen produce a difference in oxygen partial pressure across the membrane that can serve as a driving potential for oxygen transport across the membrane. The combustion reactions also produce heat that is used to raise the temperature of the membrane to an operational temperature at which the oxygen transport can occur. Heat in excess of that required to maintain the membrane at a desired operational temperature can be utilized to supply heat to an industrial process that requires heating. In syngas production applications the fuel stream introduced on the permeate side typically contains combustible species such as hydrogen, carbon monoxide, methane. In some instances other hydrocarbons may also be present in the fuel stream. Unreacted combustible gas leaves with the effluent on the permeate side.
- combustible species such as hydrogen, carbon monoxide, methane. In some instances other hydrocarbons may also be present in the fuel stream. Unreacted combustible gas leaves with the effl
- oxidation catalysts have been proposed to enhance syngas production.
- the oxidation catalysts can be incorporated within mixed conducting layer through which oxygen transport occurs or the oxidation catalysts can be disposed within the membrane as a contiguous layer to the mixed conducting layer.
- U.S. Pat. No. 5,569,633 discloses surface catalyzed multi-layer ceramic membranes having a dense mixed conducting multicomponent metallic oxide layer with a first surface contiguous to a porous support surface and a second surface coated with catalyst material to enhance oxygen flux by catalyzing reactions with oxygen separated from an oxygen containing feed gas. Unexpected benefit of higher oxygen flux was observed upon coating the membrane surface in contact with the oxygen containing feed gas with catalytic material.
- reforming catalysts have also been proposed to enhance syngas production by converting the unreacted hydrocarbon present on the permeate side.
- the reforming catalyst can be positioned proximate to the membrane permeate side as distinct catalyst elements separate from the membrane. Examples of such distinct catalyst elements include structured catalyst inserts in the form of pellets, foils, mesh structures, monoliths and the like.
- Such solutions add pressure drop and complexity.
- the need continues to exist to advantageously deploy reforming catalyst to get higher synthesis gas yield, convert more of the methane in feed stream to synthesis gas by reforming reactions, and manage heat released from combustion reactions within the membrane to support endothermic reforming reactions.
- the reforming catalyst should not adversely affect oxygen flux, neither introduce contaminants into the mixed conducting oxygen transport layers nor cause structural and/or functional degradation.
- the present invention provides a dual function composite oxygen transport membrane and a method of manufacturing the article itself. More specifically, the invention relates to a dual function composite membrane that separates oxygen as well as catalyzes reforming reactions, wherein said dual function composite membrane comprises a ceramic substrate with a mixed conducting dense layer on one side of the substrate for oxygen transport, and a catalyst layer on the opposing side of the substrate for catalyzing endothermic reforming reactions.
- the membrane is produced by depositing the mixed conducting dense layer and the catalyst layer on the opposing sides of the substrate in separate steps.
- the catalyst layer is formed using catalyst material selected to promote endothermic reforming reactions thereby to convert hydrocarbon in the permeate side reaction mixture into syngas.
- the present invention provides a dual function composite oxygen transport membrane that at an elevated temperature separates oxygen from an oxygen containing gas stream contacting a first side of the membrane and converts a hydrocarbon gas contacting a second side of the membrane into syngas by catalyzing reforming reactions.
- the dual function composite oxygen transport membrane comprises a porous substrate having a first side and an opposing second side; a layered structure comprising at least a dense layer to transport oxygen ions and electrons; a layered structure comprising at least a catalyst layer also referred to as a reforming catalyst layer or a catalyst containing layer to catalyze reforming reactions.
- the dense layer containing layered structure is provided on the first side of the porous substrate forming the first side of the membrane.
- the catalyst containing layered structure is provided on the opposing second side of the porous substrate forming the second side of the membrane.
- the porous substrate is an integral part of the membrane, provides mechanical support for the layered structures on the first side and the opposing second side of the substrate, and separates the dense layer and the catalyst containing layer.
- the present invention provides a dual function composite oxygen transport membrane comprising a porous substrate having a first side and an opposing second side with a defined thickness between the first side and the opposing second side; a dense layer having electronic and ionic conducting phases for oxygen transport across the dense layer; a catalyst layer to catalyze conversion of a hydrocarbon gas upon contacting the catalyst layer into syngas; wherein the dense layer is located on the first side of the porous substrate and the catalyst layer is located on the opposing second side of the porous substrate, spaced apart from the dense layer, i.e, the dense layer and the catalyst layer are separated at least by the porous substrate.
- the present invention provides a method of forming a dual function composite oxygen transport membrane.
- the method includes: forming a porous substrate having a first side and an opposing second side with a defined thickness between the first side and the opposing second side; forming a plurality of mixed conducting layers (each having a defined thickness and a defined composition) on the first side of the porous substrate to provide oxygen by oxygen transport for oxy-fuel combustion; forming a catalyst layer on the opposing second side of the porous substrate wherein the catalyst layer catalyzes reforming of a hydrocarbon gas to form syngas upon contacting the catalyst layer.
- the dual function composite oxygen transport membrane comprises a layered structure of mixed conducting oxygen transport layers formed on a first side of a porous support and a reforming catalyst layer also referred to as a catalyst layer formed on an opposing second side of the porous support.
- the layered structure of mixed conducting oxygen transport layers contain at least a mixed conducting layer referred to as a dense layer having an electronic phase and an ionic phase, wherein the electronic phase comprising (La 1-x M x ) w Cr 1-y-z Fe y M′ z O 3- ⁇ , where M: Ba, Sr, Ca; M′: Co, Ni, Ru, x is from about 0.1 to about 0.5, w is from about 0.90 to about 1.0, y is from 0.00 to 1, z is from about 0.00 to about 0.2, and ⁇ renders the compound charge neutral; and wherein the ionic phase comprises Zr 1-x′ Sc x′ A y′ O 2- ⁇ , where x′ is from about 0.1 to about 0.22, y′ is from about 0.01 to about 0.04, and A is Y or Ce or mixtures of Y and Ce.
- the electronic phase comprising (La 1-x M x ) w Cr 1-y-z Fe y M′ z O 3- ⁇ , where M: Ba
- the porous substrate can be formed of Zr 1-x′′ B x′′ O 2- ⁇ , where x′′ is from about 0.05 to about 0.13, B is Y or Sc or Al or Ce or mixtures of Y, Sc, Al, and Ce.
- the catalyst layer can be formed of composites of reforming catalyst active metals, catalyst promoters and catalyst support materials.
- the catalyst metal can be one or more of nickel, cobalt, rhenium, iridium, rhodium, ruthenium, palladium, platinum or their combinations.
- the catalyst support materials are high surface area ceramic composites such as Al 2 O 3 , ZnO 2 , CeO 2 , TiO 2 , or mixture of these materials.
- the catalyst promoters include CaO, La 2 O 3 , MgO, BaO, SrO, Y 2 O 3 , K 2 O or mixtures of these materials.
- Catalyst metal could also be doped in a high temperature stable structure such as perovskite, pyrochlore, hexaaluminate, spinels, zeolite, or mixture of these materials.
- the dual function composite oxygen transport membrane further comprises an intermediate porous layer between the dense layer and the first side of the porous substrate wherein the intermediate porous layer is comprised of an electronic phase and the ionic phase.
- the dual function composite oxygen transport membrane further comprises a surface exchange layer overlying the dense layer so that the dense layer is located between the surface exchange layer and the intermediate porous layer and wherein the surface exchange layer comprises an electronic conductor and an ionic conductor;
- the electronic conductor of the surface exchange layer further comprises (La 1-x M x ) w Cr 1-y-z Fe y M′ z O 3- ⁇ , where M: Ba, Sr, Ca; M′: Co, Ni, Ru, x is from about 0.1 to about 0.5, w is from about 0.90 to about 1.0, y is from 0.00 to 1, z is from about 0.00 to about 0.2, and ⁇ renders the compound charge neutral; and wherein the ionic phase comprises Zr 1-x′ Sc x′ A y′ O 2- ⁇ , where x′ is from about 0.1 to about 0.22, y′ is from about 0.01 to about 0.04, and A is Y or Ce or mixtures of Y and Ce.
- the dual function composite oxygen transport membrane in some embodiments can be configured wherein: the electronic phase of the dense layer comprises (La 0.8 Sr 0.2 ) 0.95 Cr 0.5 Fe 0.5 O 3- ⁇ or (La 0.8 Sr 0.2 ) 0.95 Cr 0.7 Fe 0.3 O 3- ⁇ or (La 0.8 Sr 0.2 ) 0.98 Cr 0.5 Fe 0.5 O 3- ⁇ or (La 0.8 Sr 0.2 ) 0.98 Cr 0.7 Fe 0.3 O 3- ⁇ and the ionic phase of the dense layer comprises Zr 0.802 Sc 0.180 Y 0.018 O 2- ⁇ ; the electronic phase of the intermediate porous layer comprises (La 0.8 Sr 0.2 ) 0.95 Cr 0.5 Fe 0.5 O 3- ⁇ or (La 0.8 Sr 0.2 ) 0.98 Cr 0.5 Fe 0.5 O 3- ⁇ or (La 0.8 Sr 0.2 ) 0.95 Cr 0.7 Fe 0.3 O 3-6 or (La 0.8 Sr 0.2 ) 0.98 Cr 0.7 Fe 0.3 O 3- ⁇ and the ionic phase of the intermediate porous layer comprises Zr
- the dual function composite oxygen transport membrane can be configured wherein the ionic phase of the dense layer constitute from about 35 percent to about 65 percent by volume of the dense layer; the ionic phase of the intermediate porous layer constitute from about 35 percent to about 65 percent by volume of the intermediate porous layer; the ionic conductor of the surface exchange layer constitute from about 35 percent to about 65 percent by volume of the surface exchange layer.
- the dual function composite oxygen transport membrane can be configured, wherein: the porous substrate has a thickness from about 0.7 mm to about 2.5 mm, an average pore size from about 0.5 microns to about 5 microns, and a porosity from about 20 percent to about 50 percent; the intermediate porous layer has a thickness from about 10 microns to about 100 microns, an average pore size from about 0.1 microns to about 1 micron, and a porosity from about 25 percent to about 50 percent; and the surface exchange layer has a thickness from about 10 microns to about 25 microns, an average pore size from about 0.1 microns to about 1 micron, and a porosity from about 25 percent to about 50 percent; and the catalyst layer has a thickness from about 2 microns to 250 microns, an average pore size from about 0.5 microns to about 10 micron, and a porosity from about 50 percent to about 80 percent; preferably the catalyst layer has a porosity greater than the porosity of the porous substrate.
- the dual function composite oxygen transport membrane can be formed following a sequenced stepwise protocol that comprises forming a layered structure of mixed conducting oxygen transport materials on a first side of a porous substrate, and forming a catalyst layer on an opposing second side of the porous substrate in separate steps. Furthermore, the formation of a layered structure of mixed conducting oxygen transport materials comprises contacting the first side of the porous substrate with one or more slurries containing some common and some different ingredients to build the layered structure with layers differing in composition, properties and/or surface characteristics.
- the layered structure formed is an overlay structure wherein an intermediate porous layer is first formed on the first side of the porous substrate, next a dense layer is formed over the intermediate porous layer, and then a surface exchange layer is optionally formed over the dense layer.
- the catalyst layer is formed on the opposing second side of the porous support using a wash-coating technique.
- FIG. 1 is a cross-sectional schematic view of a dual function composite oxygen transport membrane
- FIG. 2 is a process flow diagram for the production of the dual function composite oxygen transport membrane of the present invention
- FIG. 3 is an alternate process flow diagram for the production of the dual function composite oxygen transport membrane of the present invention.
- FIG. 4 is an alternate process flow diagram for the production of the dual function composite oxygen transport membrane of the present invention.
- FIG. 5 thru FIG. 8 show SEM micrographs of cross-sections of internal surfaces of catalyst layers formed according to present invention.
- Dual function composite oxygen transport membrane 1 has a porous substrate 10 that has a first side 18 and an opposing second side 22 .
- the porous substrate serves as a building block of the dual function composite oxygen transport membrane that supports layers of different functional materials located on either side of the substrate.
- such dual function composite oxygen transport membrane 1 could be configured as a dual function composite oxygen transport membrane element in the form of a tube or a flat plate.
- Such composite oxygen transport membrane tube or plate would be one of a series of such elements situated within a device to carry out chemical conversions such as converting a hydrocarbon gas into syngas by endothermic reforming reactions.
- the dual function composite oxygen transport membrane can be configured as a tube made up of a porous substrate (also referred to as porous support) 10 with a plurality of oxygen transport mixed conducting layers on the first side (outside surface also referred to as exterior surface of the tube) 18 , and a reforming catalyst layer on the opposing second side (inside surface also referred to as interior surface of the tube) 22 .
- the porous substrate 10 could be formed from partially stabilized zirconia oxide e.g. 3, 4 or 5 mole % yttria stabilized zirconia or fully stabilized zirconia.
- the porous substrate can be formed from a mixture of MgO and MgAl 2 O 4 .
- the porous substrate could be a porous metal, although not part of the present invention.
- porous substrate 10 also referred to as porous support or porous support layer should provide as open an area as possible while still being able to be structurally sound in its supporting function.
- Porous support structures for application in composite oxygen transport membranes are best characterized in terms of their porosity, strength and effective oxygen diffusivity.
- the porous support forms the mechanical support for the “active” membranes layers, so should have sufficient strength at high temperatures.
- a typical support structure in this application would have total porosity in the range of about 20 to about 50%.
- An important property of the porous substrate is the ability to allow gaseous species such as H 2 , CO, CH 4 , H 2 O and CO 2 to readily move through the porous support structure to and from the membrane ‘active’ layers.
- the ability of the substrate to allow gaseous transport can be characterized by effective oxygen diffusivity, D eff O2-N2 . For this application it has been determined that a D eff O2-N2 more than 0.005 cm 2 /s measured at room temperature is preferred.
- the porous substrate should also possess a thermal expansion coefficient not more than 10% different from that of the membrane ‘active’ layers between room temperature and membrane operation temperature.
- the oxygen transport mixed conducting layers comprise a first mixed conducting layer 12 also referred to as first layer or intermediate porous layer or innermost mixed conducting layer, a second mixed conducting layer 14 also referred to as second layer or dense layer or impervious dense layer, and a third mixed conducting layer 16 also referred to as third layer or surface exchange layer or outermost mixed conducting layer. These layers are formed on the first side 18 of the porous substrate 10 . A catalyst layer is formed on the opposing second side 22 of the porous substrate.
- the dual function composite oxygen transport membrane is specifically designed to function in an environment in which air or oxygen containing stream is introduced and contacted with the outermost mixed conducting layer on the first side 18 , and a fuel or other combustible substance is introduced and contacted with the catalyst layer on the opposing second side 22 of the porous substrate 10 .
- the fuel is subjected to combustion supported by permeated oxygen to provide the partial pressure difference necessary to drive oxygen transport and also to heat the membrane to an operational temperature at which oxygen transport will occur.
- the first layer 12 which, as will be discussed, serves as a porous fuel oxidation layer at which fuel combusts with permeated oxygen.
- This porous oxidation layer may optionally include a combustion catalyst to promote combustion reactions.
- the term “fuel” when used in connection with this layer, both herein and in the claims, is not intended to be limiting, but rather, to indicate and include any substance that can be oxidized through permeation of oxygen through the membrane.
- the second layer 14 is a gas tight active dense layer that is impervious to gas and allows only ion transport, in this case principally oxygen ions, and is commonly referred to as dense layer or dense separation layer.
- the third layer 16 serves to initially reduce the oxygen in oxygen containing gas such as air contacting the third layer into oxygen ions and thus serves as a porous surface activation layer.
- Each of the first layer 12 , the second layer 14 and the third layer 16 after heating and sintering will preferably each have a thickness of about 10 ⁇ m to about 100 ⁇ m.
- a stabilized zirconia namely, Zr 1-x-y A x B y O 2- ⁇ is a common material in all three “active” membrane layers, namely, the first layer 12 , the second layer 14 and the third layer 16 .
- a and B are typically Sc, Y, Ce, Al or Ca.
- such stabilized zirconia has a composition given by formula: Zr 0.802 Sc 0.180 Y 0.018 O 2- ⁇ , often noted as 10Sc1YSZ in literature associated with this class of membrane.
- the first layer 12 intermediate porous layer is configured to have a high surface area where fuel can react with oxygen or oxygen ions that recombine and become available.
- the second layer 14 the dense layer, functions to separate oxygen from an oxygen containing feed in contact with the third layer, porous surface exchange layer 16 and contains an electronic and ionic conducting phases.
- the ionic phase is Zr 1-x′-y′ Sc x′ A y′ , O 2- ⁇ , where x′ is from about 0.1 to about 0.22, y′ is from about 0.01 to about 0.04 and A is Y or Ce or a mixture of Y and Ce.
- the porous support layer 10 is formed of Zr 1-x′ A x′ O 2- ⁇ , where x′′ is from about 0.05 to about 0.13, A is Y or Sc or Al or Ce or mixtures thereof.
- the third layer 16 a surface exchange layer is formed from a mixture of particles of (Ln 1-x A x ) w Cr 1-y B y O 3- ⁇ and 10Sc1YSZ and optionally pore formers.
- Ln is La, Y, Pr, Ce or Sm
- A is Ca
- B can be Mn, Fe, Co Al, Ti or combinations thereof;
- w is 0.9 to 1.1
- x is 0.1 to 0.4
- y is 0.1 to 0.6.
- the (Ln 1-x A x ) w Cr 1-y B y O 3- ⁇ and 10Sc1YSZ of this layer after sintering should be present within a first volume ratio of between 2 to 3 and 4 to 1 on a volume percentage basis.
- a reforming catalyst layer 30 is located on the second side 22 of the porous substrate 10 , separated (spaced apart) from the first layer 12 located on the first side 18 of the porous substrate 10 .
- the formation of this catalyst layer on the second side 22 of the substrate is carried out as a separate step after formation of at least the dense layer 14 on the first side of the substrate.
- Highly porous reforming catalyst layer accelerates the endothermic hydrocarbon reforming to produce syngas.
- the separation between the oxygen transport layer and the reforming catalyst layer protects the metal catalysts from exposure to both oxidative and reducing environments and avoids catalyst redox cycles and internal stress buildup.
- a coating slurry can include one or more of the following: catalyst in the form of metal or metal oxide or metal precursors such as metal nitrate, ceramic support oxides as catalyst carriers, high temperature stabilizers and promoters, organic binders such as polyvinyl butyral (PVB), and optionally one or more pore formers (e.g., carbon black, walnut shell, and Poly-methyl methacrylate with either aqueous or alcohol or toluene solvents.
- metal or metal oxide or metal precursors such as metal nitrate
- ceramic support oxides as catalyst carriers
- high temperature stabilizers and promoters organic binders
- organic binders such as polyvinyl butyral (PVB)
- PVB polyvinyl butyral
- pore formers e.g., carbon black, walnut shell, and Poly-methyl methacrylate with either aqueous or alcohol or toluene solvents.
- catalyst metal and ceramic carrier powders or commercially available supported catalyst powders can be milled down to desired particle size to prepare the slurry for coating on the substrate layer.
- catalyst metal and ceramic carrier powders or commercially available supported catalyst powders can be milled down to desired particle size to prepare the slurry for coating on the substrate layer.
- porous ceramic composites such as Al 2 O 3 , YSZ, CeO 2 on the substrate layer of the dual function composite oxygen transport membrane and then impregnate the coated porous ceramic composite with catalyst metal precursors.
- the preferred reforming catalysts include nickel, cobalt, rhenium, iridium, rhodium, ruthenium, palladium, platinum, or their combinations.
- the catalyst carrier candidates could be high surface area ceramic materials such as Al 2 O 3 , ZnO 2 , CeO 2 , TiO 2 , pervoskite, pyrochlore, hexaaluminate supports, or mixtures of these materials.
- the high temperature promoters may include CaO, La 2 O 3 , MgO, BaO, SrO, Y 2 O 3 , K 2 O, spinel structured materials, or mixtures of these materials.
- Organic binders not only determine the coating layer adhesion, but also affect the micro-tunnels in the catalyst layer. So it is preferred to be pre-mixed with alcohol solvent (e.g., 12 wt. % PVB in IPA) to enhance its homogenous mix before adding into other ingredients.
- the pore former particle size and loading are preferably in the ranges of 0.5 to 8 ⁇ m and 15 wt % to 35 wt %, respectively. These pore formers are determined to develop a highly porous network of catalyst coating layer on the porous substrate and prevent blockage of gas flow paths in both catalyst layer and porous substrate. They facilitate desired porosity (preferably 55% to 70% porosity).
- the particle size of ceramic oxides is preferred to be close to or greater than the diameter of the support layer microchannel to minimize particle impregnation into the support layer and blockage of gas flow through the channel.
- Thickness of porous catalyst coating can be controlled by slurry viscosity and coating times and is preferred to be greater than about 5 microns, more preferably in the range of about 40 microns to about 150 microns to provide a mechanically stable catalyst layer having sufficient surface area to obtain desired methane conversion.
- Catalyst layers that are thicker, for example greater than 200 microns, may be structurally less stable, developing cracks and/or delaminate. It is preferred to have thermal shrinkage rate of the catalyst layer to be the same or as close as possible to that of the porous substrate to prevent layer delamination and/or cracking; this can be achieved for example by proper choice of composition and/or thickness of catalyst layer.
- the catalyst coating process can be implemented at different steps in the manufacturing of the dual function composite oxygen transport membrane. As shown in FIG. 2 , first all three oxygen transport mixed conducting layers, namely intermediate porous layer, dense layer, and surface exchange layer are formed and then catalyst layer is coated. FIG. 3 show another approach in which only intermediate porous layer and dense layer are first formed, then catalyst layer coated on the inside of the tube followed by surface exchange layer formation over the dense layer to complete the oxygen transport membrane architecture on the outside of the tube.
- the catalyst coating step should be introduced after at least dense layer was formed to avoid adverse effects of exposure for long periods of time to high temperatures required to sinter the dense layer; formation of inactive spinel structure of transitional metals such as NiAl 2 O 4 in the catalyst layer could be accelerated; the catalyst layer could lose porosity, pore structures as well as surface area, and result in significant catalyst activity reduction.
- the thicknesses of intermediate mixed conducting porous (anode) layer, dense layer, and surface exchange porous (cathode) layer of a dual function composite oxygen transport membrane can be about 10 ⁇ m to 100 ⁇ m each, while the catalyst layer with porosity of 70% and pore size of 6 ⁇ m can have a thickness of about 20 ⁇ m to 200 ⁇ m.
- Highly porous catalyst surface geometry offers reduced diffusional resistance and provides significantly more catalytic surface area.
- FIG. 4 Yet another approach, shown in FIG. 4 is to first form a reactor element comprising at least a first porous support tube (or some other geometry) with mixed conducting oxygen transport layers on the outside surface and a second porous tube (or some other geometry) also with mixed conducting oxygen transport layers on the outside, that are coupled together to provide a continuous flow path to a fluid introduced at one end of the first tube to exit at the other end of the second tube.
- the catalyst layer is then deposited on the inside surface of the porous support tubes that already have undergone formation of the three oxygen transport mixed conducting layers in a layered structure, namely intermediate porous layer, dense layer, and surface exchange layer on the outside surface of the substrate tube.
- Such reactor elements are discussed in pending U.S. Patent Publication 2015/0098872, which is incorporated herein by reference.
- the dual function composite oxygen transport membrane is operated at relatively high temperature (above 950° C.) and can advantageously produce high quality of syngas while sustaining high oxygen flux performance. Furthermore, the catalytic reforming of hydrocarbon fuels by the dual function composite oxygen transport membrane enhances syngas yield, considerably lowers methane slip and could facilitate elimination of downstream methane removal depending on syngas end use process.
- the endothermic reforming of methane catalyzed by the dual function composite oxygen transport membrane catalyst layer produces hydrogen and carbon monoxide.
- Some of the hydrogen and/or carbon monoxide produced can diffuse into the porous substrate that is an integral part of the dual function composite oxygen transport membrane, and react with oxygen permeating the dense layer within the dual function composite oxygen transport membrane.
- the exothermic oxidation reactions consume permeated oxygen, facilitating a difference in partial pressure of oxygen across the membrane.
- the dual function composite oxygen transport membrane can advantageously manage the heat released from oxy-combustion of fuel species with permeated oxygen that occurs in and near the intermediate porous layer. These exothermic reactions generate a considerable amount of heat, some of which supports endothermic reactions such as hydrocarbon reforming catalyzed by the catalyst layer located on the porous substrate.
- the porous substrate separating the intermediate porous layer and the catalyst layer may have a thickness several orders in magnitude to that of any of these layers.
- a temperature gradient exists with heat flowing from the oxy-combustion reaction region to the endothermic reforming region. This helps prevent dual function composite oxygen transport membrane oxygen flux reduction due to over cooling from catalytic reforming.
- the porous substrate 10 is first formed in a manner known in the art. For example, using an extrusion process the porous substrate could be formed into a tube in a green state and then subjected to a bisque firing at 1050° C. for 4 hours to achieve reasonable strength for further handling. After firing, the resulting porous substrate tube can be checked for porosity and permeability. Then oxygen transport mixed conducting layers, namely intermediate porous layer 12 , dense layer 14 and surface exchange layer 16 can be formed on the porous substrate, for example as discussed in U.S. Pat. No. 8,795,417.
- Table 1 lists the ingredients used to form the oxygen transport mixed conducting layers on a tubular porous substrate in the examples described below.
- the ionic conductive and electronic conductive materials used to form intermediate porous layer and dense layer in the examples are same, however this need not be the case.
- Zr 0.802 Sc 0.180 Y 0.018 O 2- ⁇ (d50 ⁇ 0.6 ⁇ m; from Daiichi Kigenso Kagaku Kogyo Co., Ltd.) was used as ionic conductive material and (La 0.8 Sr 0.2 ) 0.98 Cr 0.5 Fe 0.5 O 3- ⁇ perovskite powder (d50 in the range of about 0.30 ⁇ m to about 0.35 ⁇ m; Praxair Specialty Ceramics) was used as electronic conductive material.
- a 120 g batch of slurry was prepared using 51 g of (La 0.8 Sr 0.2 ) 0.98 Cr 0.5 Fe 0.5 O 3- ⁇ mixed with 69 g of Zr 0.802 Sc 0.180 Y 0.018 O 2- ⁇ , 60 g Ferro B73210 binder, 255 g Toluene and 1200 g of 1.5 mm diameter YSZ milling media in a 32 oz NALGENE bottle. The mixture was milled for about 2.25 hours or until the particle size of the mixture was in the range 0.3-0.35 ⁇ m.
- slurry was prepared by adding 18 g of carbon black (pore former) to the dense layer recipe.
- the tubular porous substrate structure was first coated with the intermediate porous layer by contacting the outside surface of the tubular porous substrate structure with the intermediate layer slurry, at least twice to ensure final thickness was in the range of about 10 to about 30
- the dried intermediate layer was then coated by contacting with a dense layer slurry, at least two times to ensure final thickness was in the range of about 10 ⁇ m to about 30
- Resulting coated tubular structure was then dried at room temperature for about 1 to 2 hours before sintering at an elevated temperature above 1350° C. ⁇ 1400° C. for 6 hours in a nitrogen environment.
- the sintered dense layer was then subjected to a surface exchange layer coating step by contacting the sintered dense layer with a surface exchange layer slurry. This was followed by a drying step (at room temperature for 1 to 2 hours), and a high temperature sintering step (air fired at 1250° C. for half an hour) to complete the surface exchange layer formation.
- Catalyst layer 30 can be formed preferably by a wash-coating technique.
- the catalyst layer formation step can be introduced into the manufacturing process after surface exchange layer formation.
- the catalyst formation step comprises a catalyst layer coating step, followed by optional air drying and organics burn-off.
- the catalyst layer coating step comprises contacting the inside surface of the tubular porous substrate structure with a catalyst layer slurry also referred to as catalyst coating layer slurry.
- the air drying and organics burn-off can be carried out as separate steps or combined into a single step.
- FIG. 3 shows an alternate process flow for producing a dual function composite oxygen transport membrane wherein the catalyst layer coating step is carried out prior to the surface exchange layer high temperature sintering step, and preferably prior to the surface exchange layer coating step.
- the catalyst layer organics burn-off step and the surface exchange layer high temperature sintering step can be merged into a single step or can be carried out simultaneously while providing atmospheres and operating conditions (temperatures, pressures, and flows) to the catalyst layer that are appropriate for organics burn-off, and to the surface exchange layer that are appropriate for high temperature sintering.
- atmospheres and operating conditions temperatures, pressures, and flows
- FIG. 4 shows yet another process flow wherein a plurality of oxygen transport membrane elements having mixed conducting oxygen transport layers on the outside surface are treated to form a catalyst layer on the inside surface of each element, thereby transforming them into dual function composite oxygen transport membrane reactor elements.
- Table 2 lists the ingredients used to form catalyst layer in the dual function composite oxygen transport membrane examples described below.
- the above prepared sol-gel slurry can be used to form a catalyst layer containing Ni and Rh as active metals.
- the sol-gel slurry can be prepared without the addition of Rh(NO 3 ) 3 to form a catalyst layer containing Ni as the active metal.
- the Ni and Rh containing, as well as, Ni only catalyst layer can be formed on the inside of a tubular composite oxygen transport membrane.
- the sol-gel slurry prepared as described above and having a viscosity preferably in the range of about 25 centipoise to about 50 centipoise was used to wash-coat a catalyst layer on the inside surface of a yttria-stabilized zirconia (YSZ) porous substrate tube already coated with oxygen transport mixed conducting layers on the outside surface.
- YSZ yttria-stabilized zirconia
- the tube, 7 mm ID and 24 inches long had been made from a YSZ paste by a conventional extrusion process followed by bisque firing at elevated temperature. Tubes made this way can have a wall thickness in the range of about 0.7 mm to about 2.5 mm, sufficient to operate at elevated temperatures and pressures.
- the particular tube used in this example had a wall thickness of 1 mm.
- the porosity of tube is preferred to be within the range of 25 to 45% for this application.
- the particular tube used in this example had a porosity of 34%.
- Oxygen transport mixed conducting layers namely: surface exchange layer, dense layer, and intermediate porous layer formed on the outside surface of the porous support (YSZ) tube contained mixed ionic and electronic conductive (MIEC) dual-phase materials. After forming the intermediate layer and dense layer on the YSZ support tube, the tube was dried at room temperature and then sintered at an elevated temperature of about 1350° C. to about 1400° C. to have a thickness in the range of about 10 microns to about 30 microns.
- MIEC electronic conductive
- the tube was sintered at an elevated temperature of about 1250° C. to complete the formation of surface exchange layer.
- the composite oxygen transport membrane tubes prepared in this manner are preferred to have a thickness in the range of about 10 microns to about 30 microns.
- the particular tube used in this example had an intermediate layer about 15 microns thick, a dense layer about 15 microns thick, and a surface exchange layer about 10 microns thick.
- the tube Prior to wash-coating, the tube was inspected and appropriate measures taken to remove any dust on the inside surface of the tube, for example by blowing air through the tube. The tube vertically positioned and with one end plugged was gradually filled with sol-gel slurry until the inside of the tube was completely filled.
- Catalyst loading in the resulting dual function composite oxygen transport membrane was 0.48 g, as calculated by weighing the tube before wash-coating and after cool down.
- the SEM microstructure of a cross-section of this catalyst layer shown in FIG. 5 suggests catalyst layer thickness to be about 75 ⁇ m.
- the final particle size of the slurry was in the range of about 0.5 to about 0.8
- 10 g of pore former poly(methyl methacrylate) PMMA with average particle size of 6 ⁇ m 30 g of nickel nitrate hexahydrate Ni(NO 3 ) 2 .6H 2 O and 0.5 g of Rh(NO 3 ) 3 (both from Sigma-Aldrich) were added into the mixture and mixed for additional one hour.
- 12% by weight of plastic binder polyvinyl butyral powder was first dissolved in ethanol solvent to enhance its homogenous mixing and then 150 mL of resulting binder solution was slowly added into the slurry mixture. The resulting mixture was further milled for 1.5 hours to form sol-gel slurry.
- the resulting sol-gel slurry was then used to wash coat a 7 mm ID, 24 inches long YSZ porous tube already coated with two of the three oxygen transport mixed conducting layers, namely intermediate porous layer and dense layer only.
- the wash coating steps were similar to that described in Examples 1 and 2 above, namely: inspecting and removing any dust, plugging one end, filling with sol-gel slurry, adding slurry as needed to keep the tube completely filled, waiting for about one minute, then draining liquid from the tube.
- the tube was then air dried at room temperature for about 5 minutes with air flowing at a low flow rate of 40 SCFH.
- the surface exchange layer slurry prepared in a manner described above was used to coat the outside of (over) the dense layer.
- the tube was first dried at room temperature for about one hour to about two hours, then heated at a ramp rate of 2° C./min to 1250° C. in an air fired furnace and held there for half an hour, and allowed to cool down.
- the catalyst loading was 0.52 g.
- the SEM microstructure of a cross-section of this catalyst layer suggested catalyst layer thickness to be about 80 ⁇ m.
- dispersant (KD-1) dissolved in 15 g of toluene was added to the slurry mixture and milled for additional 1 hour.
- the tube used in this example (7 mm ID and 24 inches long YSZ porous tube) had only intermediate porous layer and dense layer formed on it.
- the catalyst layer formation steps of inspecting, plugging one end, filling, adding slurry to keep the tube completely filled during the entire duration of about one minute, and draining liquid were similar.
- the tube was then air dried at room temperature for about 5 minutes with air flowing at a low flow rate of 40 SCFH.
- the surface exchange layer slurry prepared in a manner described above was used to coat over the dense layer.
- the tube was first dried at room temperature for about one hour to about two hours, then heated at a ramp rate of 2° C./min to 1250° C. in an air fired furnace and held there for half an hour, and allowed to cool down.
- the catalyst loading was 0.62 g.
- the SEM microstructure of a cross-section of this catalyst layer shown in FIG. 7 suggests catalyst layer thickness to be about 55 ⁇ m.
- dispersant (KD-1) dissolved in 15 g of toluene was added to the slurry mixture and milled for additional 1 hour.
- the tube used in this example (7 mm ID and 24 inches long YSZ porous tube) had only intermediate porous layer and dense layer formed on it.
- the tube was subjected to catalyst layer formation steps of inspecting, plugging one end, filling, and adding slurry to keep the tube completely filled during the entire duration of about one minute.
- the liquid was then drained and the tube was air dried for five minutes and then filled again with sol-gel slurry.
- the tube was kept completely filled by adding slurry as needed. After waiting for about a minute, the liquid was drained.
- the tube was then air dried at room temperature for about 5 minutes with air flowing at a low flow rate of 40 SCFH.
- the surface exchange layer slurry prepared in a manner described above was used to coat the outside of the dense layer.
- the tube was first dried at room temperature for about one hour to about two hours, then heated at a ramp rate of 2° C./min to 1250° C. in an air fired furnace and held there for half an hour, and allowed to cool down.
- the catalyst loading was 0.84 g.
- the SEM microstructure of a cross-section of the catalyst layer shown in FIG. 8 indicates cracking and delamination of catalyst layer, and suggests catalyst layer thickness to be about 225 ⁇ m where it remained intact. Therefore, it is preferable to control the catalyst thickness within the range of 40 to 150 ⁇ m.
- the dual function composite oxygen transport membrane tubes made in the examples described above with functional layered structures on the outside surface and the inside surface were tested separately using a standard bench-scale reactor setup.
- the tube was vertically positioned inside a metal shell embedded in an electrically heated chamber.
- the dual function composite oxygen transport membrane tube was connected to a source of feed gas and an effluent processing system for safely disposing off syngas product.
- the tube was heated to an operational temperature of about 950° C.
- the feed gas was prepared using CH 4 , CO, H 2 , and CO 2 from gas cylinders and steam from a steam source.
- the results described below were obtained using a feed gas containing 12 mole % CH 4 , 11 mole % CO, 52 mole % H 2 , 4 mole % CO 2 and 21 mole % H 2 O.
- the feed gas was preheated to about 350° C. prior to feeding to the tube.
- the flow rate of the feed gas was controlled at achieve a desired space velocity of about 31,000 per hour.
- Heated air at about 200° C. with a flow rate of 30 SLPM was introduced into the metal shell to flow on the outside of the dual function composite oxygen transport membrane tube in a direction countercurrent to that of feed gas flowing through the tube.
- the pressure inside the metal shell, that is on the outside of the dual function membrane tube was maintained around 5 psig, and the pressure inside the dual function membrane tube was maintained at a desired value in the range of about 5 psig to about 200 psig.
- the effluent containing reaction products and unreacted feed species was cooled, water condensed out.
- the resulting gas stream was sampled and analyzed using a gas chromatograph (GC).
- GC gas chromatograph
- Table 3 summarizes the results after 100 hours of operation indicating the dual function membranes to have considerably improved methane conversion relative to a membrane that has only oxygen transport functionality.
- the oxygen transport functionality as indicated by the oxygen flux after 100 hours of stable operation of dual function composite oxygen transport membrane tubes prepared in Examples 1, 3 thru 5 is similar to that of a reference tube that had mixed conducting oxygen transport layers on the outside surface without a catalyst layer on the inside surface.
- the wash-coating procedure, standardized wash-coating procedure used for forming catalyst layer in these examples involved filling the tube with a slurry containing catalyst layer ingredients, holding the slurry in the completely filled tube for one minute, then draining the slurry followed by air drying and organics burn-off in air.
- the tubular dual function composite oxygen transport membrane made in Example 2 has similar oxygen flux performance even though a slightly different procedure was followed; the slurry in the completely filled tube was held for considerably less time than one minute, resulting in a thin catalyst layer.
- Example 6 however the tube was again refilled with the slurry, the catalyst layer formed was thicker, and the oxygen flux is considerably lower than those of tubes prepared following standardized wash-coating procedure.
- the thicker catalyst layer could pose higher diffusional resistance to transport of fuel species through the catalyst layer into the porous substrate towards the intermediate porous layer for reaction with permeated oxygen within the membrane, affecting the driving potential for oxygen transport.
- the results in Table 3 also indicate that the composite oxygen transport membranes with catalyst layer, that is dual function composite oxygen transport membranes achieved considerably higher methane conversion.
- the catalyst layer thickness appears to be an important factor.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Catalysts (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Laminated Bodies (AREA)
Abstract
A dual function composite oxygen transport membrane having a layered structure of mixed conducting oxygen transport materials on a first side of a porous substrate and a reforming catalyst layer on an opposing second side of the porous substrate. The layered structure of the mixed conducting oxygen transport materials contains an intermediate porous layer of mixed conducting oxygen transport materials formed on the porous substrate with a dense impervious layer of mixed conducting oxygen transport materials over the intermediate porous layer, and an optional surface exchange layer of mixed conducting oxygen transport materials over the dense impervious layer. The layered structure and the reforming catalyst layer are formed in separate steps.
Description
- The invention disclosed and claimed herein was made with United States Government support under Cooperative Agreement number DE-FC26-07NT43088 awarded by the U.S. Department of Energy. The United States Government has certain rights in this invention.
- The present invention relates to a dual function composite oxygen transport membrane and a method of manufacturing the article itself. More specifically, the invention relates to a dual function composite membrane having a ceramic substrate with a mixed conducting dense layer on one side of the substrate for oxygen transport and a catalyst layer on the opposing side of the substrate for catalyzing endothermic reforming reactions. The membrane is produced by depositing the mixed conducting dense layer and the catalyst layer on the opposing sides of the substrate in separate steps. The catalyst layer is formed using catalyst material selected to promote endothermic reactions.
- Composite oxygen transport membranes have been proposed for a variety of uses that involve the production of essentially pure oxygen by separation of oxygen from an oxygen containing feed through oxygen transport through such membrane. For example, such membranes can be used in combustion devices to support oxy-fuel combustion or in reactors for partial oxidation reactions involving the production of a synthesis gas or generation of heat to support endothermic chemical reactions.
- In such applications, the composite oxygen transport membranes contain a dense layer of a mixed conducting material that allows transport of both oxygen ions and electrons at elevated temperatures. The dense layer is formed on a ceramic substrate that functions as a porous support. The dense layer can be composed of a mixed conductor or two phases of materials, an ionic phase to conduct the oxygen ions and an electronic phase to conduct the electrons. Typical mixed conductors are formed from doped perovskite structured materials. In case of a mixture of materials, the ionic conductor can be yttrium or scandium stabilized zirconia, and the electronic conductor can be a perovskite structured material that will transport electrons or can be a metal or metal alloy or a mixture of the perovskite type material and metal or metal alloy. Some known membranes also have additional layers such as a porous surface exchange layer located on the feed side of the dense layer to enhance reduction of the oxygen into oxygen ions, and an intermediate porous layer on the opposing side of the dense layer. Such a composite membrane is illustrated in U.S. Pat. No. 7,556,676 that utilizes two phase materials for the dense layer, the porous surface exchange layer and the intermediate porous layer. These layers are supported on a porous support that can be formed of zirconia.
- In order to minimize the resistance of the membrane to the ionic transport, such membranes are made as thin as practical and are supported on a porous support. Since the resistance to oxygen transport is dependent on the thickness of the membrane, the dense layer is made as thin as possible and therefore must be supported. Another limiting factor to the performance of an oxygen transport membrane concerns the supporting layers on either side of the dense layer; these supporting layers may or may not be active for oxygen ion or electron conducting. These layers themselves can consist of a network of interconnected pores that can limit diffusion of the oxygen, or fuel or other substance through the membrane to facilitate oxygen transport and enhance oxygen flux across the membrane. Therefore, such support layers are typically fabricated with a graded porosity in which the pore size decreases in a direction taken towards the dense layer or are made highly porous throughout. The high porosity, however, tends to weaken such a structure. The resulting composite oxygen transport membrane can be fabricated as a planar element or as a tubular element in which the dense layer is situated either on the inside surface or the outside surface of the planar element or tube.
- The composite oxygen transport membranes function by transporting oxygen ions through a material that is capable of conducting oxygen ions and electrons at elevated temperatures. An oxygen containing stream flows on one side, retentate side of the membrane, at least a portion of which contacts the membrane surface. Oxygen in the contacting oxygen containing stream ionizes on the membrane surface and the resultant oxygen ions are driven through the mixed conducting material and emerge on the opposite side thereof to recombine into elemental oxygen. In the recombination, electrons are liberated and are transported back through the membrane to the retentate side to begin the ionization cycle. The permeated oxygen reacts with a fuel flowing on the permeate side of the membrane. The combustion reactions produce products such as synthesis gases by means of partial oxidation of the fuel. It is to be noted that the combustion reactions by combusting at least some of the permeated oxygen produce a difference in oxygen partial pressure across the membrane that can serve as a driving potential for oxygen transport across the membrane. The combustion reactions also produce heat that is used to raise the temperature of the membrane to an operational temperature at which the oxygen transport can occur. Heat in excess of that required to maintain the membrane at a desired operational temperature can be utilized to supply heat to an industrial process that requires heating. In syngas production applications the fuel stream introduced on the permeate side typically contains combustible species such as hydrogen, carbon monoxide, methane. In some instances other hydrocarbons may also be present in the fuel stream. Unreacted combustible gas leaves with the effluent on the permeate side.
- Use of oxidation catalysts have been proposed to enhance syngas production. The oxidation catalysts can be incorporated within mixed conducting layer through which oxygen transport occurs or the oxidation catalysts can be disposed within the membrane as a contiguous layer to the mixed conducting layer. For example, U.S. Pat. No. 5,569,633 discloses surface catalyzed multi-layer ceramic membranes having a dense mixed conducting multicomponent metallic oxide layer with a first surface contiguous to a porous support surface and a second surface coated with catalyst material to enhance oxygen flux by catalyzing reactions with oxygen separated from an oxygen containing feed gas. Unexpected benefit of higher oxygen flux was observed upon coating the membrane surface in contact with the oxygen containing feed gas with catalytic material. However, such solutions utilizing oxidation catalysts initially accelerate the oxygen flux but the performance deteriorates due to the intense redox cycles experienced by the oxidation catalyst material, resulting in membrane cracks and functional layer delamination. U.S. Pat. No. 8,323,463 discussed impregnating the intermediate porous layer including a layer of porous support contiguous to the intermediate porous layer with catalysts such as gadolinium doped ceria to promote oxidation of a combustible substance, and thus increase oxygen flux. U.S. Pat. No. 4,791,079 advocated the integration of impervious mixed conducting ceramic layer with a porous catalyst for hydrocarbon oxidation or dehydrogenation. Lithium or sodium promoted manganese complexes were suggested as preferred catalysts. U.S. Patent Publication No. 2006/0127656 applied a porous catalytic layer adjacent to the mixed conducting dense layer for catalytic partial oxidation of hydrocarbons.
- Use of reforming catalysts has also been proposed to enhance syngas production by converting the unreacted hydrocarbon present on the permeate side. The reforming catalyst can be positioned proximate to the membrane permeate side as distinct catalyst elements separate from the membrane. Examples of such distinct catalyst elements include structured catalyst inserts in the form of pellets, foils, mesh structures, monoliths and the like. However, such solutions add pressure drop and complexity. The need continues to exist to advantageously deploy reforming catalyst to get higher synthesis gas yield, convert more of the methane in feed stream to synthesis gas by reforming reactions, and manage heat released from combustion reactions within the membrane to support endothermic reforming reactions. The reforming catalyst should not adversely affect oxygen flux, neither introduce contaminants into the mixed conducting oxygen transport layers nor cause structural and/or functional degradation.
- As will be discussed the present invention provides a dual function composite oxygen transport membrane and a method of manufacturing the article itself. More specifically, the invention relates to a dual function composite membrane that separates oxygen as well as catalyzes reforming reactions, wherein said dual function composite membrane comprises a ceramic substrate with a mixed conducting dense layer on one side of the substrate for oxygen transport, and a catalyst layer on the opposing side of the substrate for catalyzing endothermic reforming reactions. The membrane is produced by depositing the mixed conducting dense layer and the catalyst layer on the opposing sides of the substrate in separate steps. The catalyst layer is formed using catalyst material selected to promote endothermic reforming reactions thereby to convert hydrocarbon in the permeate side reaction mixture into syngas.
- In one aspect, the present invention provides a dual function composite oxygen transport membrane that at an elevated temperature separates oxygen from an oxygen containing gas stream contacting a first side of the membrane and converts a hydrocarbon gas contacting a second side of the membrane into syngas by catalyzing reforming reactions.
- In accordance with this aspect of the present invention, the dual function composite oxygen transport membrane comprises a porous substrate having a first side and an opposing second side; a layered structure comprising at least a dense layer to transport oxygen ions and electrons; a layered structure comprising at least a catalyst layer also referred to as a reforming catalyst layer or a catalyst containing layer to catalyze reforming reactions. The dense layer containing layered structure is provided on the first side of the porous substrate forming the first side of the membrane. The catalyst containing layered structure is provided on the opposing second side of the porous substrate forming the second side of the membrane. The porous substrate is an integral part of the membrane, provides mechanical support for the layered structures on the first side and the opposing second side of the substrate, and separates the dense layer and the catalyst containing layer.
- In another aspect, the present invention provides a dual function composite oxygen transport membrane comprising a porous substrate having a first side and an opposing second side with a defined thickness between the first side and the opposing second side; a dense layer having electronic and ionic conducting phases for oxygen transport across the dense layer; a catalyst layer to catalyze conversion of a hydrocarbon gas upon contacting the catalyst layer into syngas; wherein the dense layer is located on the first side of the porous substrate and the catalyst layer is located on the opposing second side of the porous substrate, spaced apart from the dense layer, i.e, the dense layer and the catalyst layer are separated at least by the porous substrate.
- In yet another aspect the present invention provides a method of forming a dual function composite oxygen transport membrane. The method includes: forming a porous substrate having a first side and an opposing second side with a defined thickness between the first side and the opposing second side; forming a plurality of mixed conducting layers (each having a defined thickness and a defined composition) on the first side of the porous substrate to provide oxygen by oxygen transport for oxy-fuel combustion; forming a catalyst layer on the opposing second side of the porous substrate wherein the catalyst layer catalyzes reforming of a hydrocarbon gas to form syngas upon contacting the catalyst layer.
- In one embodiment of the present invention the dual function composite oxygen transport membrane comprises a layered structure of mixed conducting oxygen transport layers formed on a first side of a porous support and a reforming catalyst layer also referred to as a catalyst layer formed on an opposing second side of the porous support. The layered structure of mixed conducting oxygen transport layers contain at least a mixed conducting layer referred to as a dense layer having an electronic phase and an ionic phase, wherein the electronic phase comprising (La1-xMx)wCr1-y-zFeyM′zO3-δ, where M: Ba, Sr, Ca; M′: Co, Ni, Ru, x is from about 0.1 to about 0.5, w is from about 0.90 to about 1.0, y is from 0.00 to 1, z is from about 0.00 to about 0.2, and δ renders the compound charge neutral; and wherein the ionic phase comprises Zr1-x′Scx′Ay′O2-δ, where x′ is from about 0.1 to about 0.22, y′ is from about 0.01 to about 0.04, and A is Y or Ce or mixtures of Y and Ce. The porous substrate can be formed of Zr1-x″Bx″O2-δ, where x″ is from about 0.05 to about 0.13, B is Y or Sc or Al or Ce or mixtures of Y, Sc, Al, and Ce. The catalyst layer can be formed of composites of reforming catalyst active metals, catalyst promoters and catalyst support materials. The catalyst metal can be one or more of nickel, cobalt, rhenium, iridium, rhodium, ruthenium, palladium, platinum or their combinations. The catalyst support materials are high surface area ceramic composites such as Al2O3, ZnO2, CeO2, TiO2, or mixture of these materials. The catalyst promoters include CaO, La2O3, MgO, BaO, SrO, Y2O3, K2O or mixtures of these materials. Catalyst metal could also be doped in a high temperature stable structure such as perovskite, pyrochlore, hexaaluminate, spinels, zeolite, or mixture of these materials.
- In another embodiment of the present invention the dual function composite oxygen transport membrane further comprises an intermediate porous layer between the dense layer and the first side of the porous substrate wherein the intermediate porous layer is comprised of an electronic phase and the ionic phase.
- In yet another embodiment of the present invention the dual function composite oxygen transport membrane further comprises a surface exchange layer overlying the dense layer so that the dense layer is located between the surface exchange layer and the intermediate porous layer and wherein the surface exchange layer comprises an electronic conductor and an ionic conductor; the electronic conductor of the surface exchange layer further comprises (La1-xMx)wCr1-y-zFeyM′zO3-δ, where M: Ba, Sr, Ca; M′: Co, Ni, Ru, x is from about 0.1 to about 0.5, w is from about 0.90 to about 1.0, y is from 0.00 to 1, z is from about 0.00 to about 0.2, and δ renders the compound charge neutral; and wherein the ionic phase comprises Zr1-x′Scx′Ay′O2-δ, where x′ is from about 0.1 to about 0.22, y′ is from about 0.01 to about 0.04, and A is Y or Ce or mixtures of Y and Ce.
- The dual function composite oxygen transport membrane in some embodiments can be configured wherein: the electronic phase of the dense layer comprises (La0.8Sr0.2)0.95Cr0.5Fe0.5O3-δ or (La0.8Sr0.2)0.95Cr0.7Fe0.3O3-δ or (La0.8Sr0.2)0.98Cr0.5Fe0.5O3-δ or (La0.8Sr0.2)0.98Cr0.7Fe0.3O3-δ and the ionic phase of the dense layer comprises Zr0.802Sc0.180Y0.018O2-δ; the electronic phase of the intermediate porous layer comprises (La0.8Sr0.2)0.95Cr0.5Fe0.5O3-δ or (La0.8Sr0.2)0.98Cr0.5Fe0.5O3-δ or (La0.8Sr0.2)0.95Cr0.7Fe0.3O3-6 or (La0.8Sr0.2)0.98Cr0.7Fe0.3O3-δ and the ionic phase of the intermediate porous layer comprises Zr0.802Sc0.180Y0.018O2-δ; the electronic phase of the surface exchange layer comprises (La0.8Sr0.2)0.95Cr0.3Fe0.7O3-δ or (La0.8Sr0.2)0.98Cr0.3Fe0.7O3-δ or (La0.8Sr0.2)0.95Cr0.5Fe0.5O3-δ or (La0.8Sr0.2)0.98Cr0.5Fe0.5O3-δ; and the ionic phase of the surface exchange layer comprises Zr0.802Sc0.180Y0.018O2-δ; the porous substrate further comprises Zr0.923Y0.077O2-δ.
- The dual function composite oxygen transport membrane can be configured wherein the ionic phase of the dense layer constitute from about 35 percent to about 65 percent by volume of the dense layer; the ionic phase of the intermediate porous layer constitute from about 35 percent to about 65 percent by volume of the intermediate porous layer; the ionic conductor of the surface exchange layer constitute from about 35 percent to about 65 percent by volume of the surface exchange layer.
- The dual function composite oxygen transport membrane can be configured, wherein: the porous substrate has a thickness from about 0.7 mm to about 2.5 mm, an average pore size from about 0.5 microns to about 5 microns, and a porosity from about 20 percent to about 50 percent; the intermediate porous layer has a thickness from about 10 microns to about 100 microns, an average pore size from about 0.1 microns to about 1 micron, and a porosity from about 25 percent to about 50 percent; and the surface exchange layer has a thickness from about 10 microns to about 25 microns, an average pore size from about 0.1 microns to about 1 micron, and a porosity from about 25 percent to about 50 percent; and the catalyst layer has a thickness from about 2 microns to 250 microns, an average pore size from about 0.5 microns to about 10 micron, and a porosity from about 50 percent to about 80 percent; preferably the catalyst layer has a porosity greater than the porosity of the porous substrate.
- In certain embodiments of the invention the dual function composite oxygen transport membrane can be formed following a sequenced stepwise protocol that comprises forming a layered structure of mixed conducting oxygen transport materials on a first side of a porous substrate, and forming a catalyst layer on an opposing second side of the porous substrate in separate steps. Furthermore, the formation of a layered structure of mixed conducting oxygen transport materials comprises contacting the first side of the porous substrate with one or more slurries containing some common and some different ingredients to build the layered structure with layers differing in composition, properties and/or surface characteristics. The layered structure formed is an overlay structure wherein an intermediate porous layer is first formed on the first side of the porous substrate, next a dense layer is formed over the intermediate porous layer, and then a surface exchange layer is optionally formed over the dense layer. The catalyst layer is formed on the opposing second side of the porous support using a wash-coating technique.
- While the specification concludes with claims distinctly pointing out the subject matter that applicants regard as their invention, it is believed that the invention would be better understood when taken in connection with the accompanying figures wherein like numbers denote same features throughout and wherein:
-
FIG. 1 is a cross-sectional schematic view of a dual function composite oxygen transport membrane; -
FIG. 2 is a process flow diagram for the production of the dual function composite oxygen transport membrane of the present invention; -
FIG. 3 is an alternate process flow diagram for the production of the dual function composite oxygen transport membrane of the present invention; -
FIG. 4 is an alternate process flow diagram for the production of the dual function composite oxygen transport membrane of the present invention; -
FIG. 5 thruFIG. 8 show SEM micrographs of cross-sections of internal surfaces of catalyst layers formed according to present invention. - Dual Function Composite Oxygen Transport Membrane
- With reference to
FIG. 1 , a sectional, schematic view of a dual function compositeoxygen transport membrane 1 of the present invention is illustrated. Dual function compositeoxygen transport membrane 1 has aporous substrate 10 that has afirst side 18 and an opposingsecond side 22. The porous substrate serves as a building block of the dual function composite oxygen transport membrane that supports layers of different functional materials located on either side of the substrate. As could be appreciated by those skilled in the art, such dual function compositeoxygen transport membrane 1 could be configured as a dual function composite oxygen transport membrane element in the form of a tube or a flat plate. Such composite oxygen transport membrane tube or plate would be one of a series of such elements situated within a device to carry out chemical conversions such as converting a hydrocarbon gas into syngas by endothermic reforming reactions. In an application such as desiring syngas as the product, the dual function composite oxygen transport membrane can be configured as a tube made up of a porous substrate (also referred to as porous support) 10 with a plurality of oxygen transport mixed conducting layers on the first side (outside surface also referred to as exterior surface of the tube) 18, and a reforming catalyst layer on the opposing second side (inside surface also referred to as interior surface of the tube) 22. - Porous Support
- The
porous substrate 10 could be formed from partially stabilized zirconia oxide e.g. 3, 4 or 5 mole % yttria stabilized zirconia or fully stabilized zirconia. Alternatively the porous substrate can be formed from a mixture of MgO and MgAl2O4. Alternatively the porous substrate could be a porous metal, although not part of the present invention. As would be appreciated by those skilled in the art,porous substrate 10 also referred to as porous support or porous support layer should provide as open an area as possible while still being able to be structurally sound in its supporting function. Porous support structures for application in composite oxygen transport membranes are best characterized in terms of their porosity, strength and effective oxygen diffusivity. The porous support forms the mechanical support for the “active” membranes layers, so should have sufficient strength at high temperatures. A typical support structure in this application would have total porosity in the range of about 20 to about 50%. An important property of the porous substrate is the ability to allow gaseous species such as H2, CO, CH4, H2O and CO2 to readily move through the porous support structure to and from the membrane ‘active’ layers. The ability of the substrate to allow gaseous transport can be characterized by effective oxygen diffusivity, Deff O2-N2. For this application it has been determined that a Deff O2-N2 more than 0.005 cm2/s measured at room temperature is preferred. The porous substrate should also possess a thermal expansion coefficient not more than 10% different from that of the membrane ‘active’ layers between room temperature and membrane operation temperature. - Oxygen Transport Mixed Conducting Layers
- The oxygen transport mixed conducting layers comprise a first
mixed conducting layer 12 also referred to as first layer or intermediate porous layer or innermost mixed conducting layer, a secondmixed conducting layer 14 also referred to as second layer or dense layer or impervious dense layer, and a thirdmixed conducting layer 16 also referred to as third layer or surface exchange layer or outermost mixed conducting layer. These layers are formed on thefirst side 18 of theporous substrate 10. A catalyst layer is formed on the opposingsecond side 22 of the porous substrate. The dual function composite oxygen transport membrane is specifically designed to function in an environment in which air or oxygen containing stream is introduced and contacted with the outermost mixed conducting layer on thefirst side 18, and a fuel or other combustible substance is introduced and contacted with the catalyst layer on the opposingsecond side 22 of theporous substrate 10. The fuel is subjected to combustion supported by permeated oxygen to provide the partial pressure difference necessary to drive oxygen transport and also to heat the membrane to an operational temperature at which oxygen transport will occur. As such, thefirst layer 12, which, as will be discussed, serves as a porous fuel oxidation layer at which fuel combusts with permeated oxygen. This porous oxidation layer may optionally include a combustion catalyst to promote combustion reactions. In this regard, the term “fuel” when used in connection with this layer, both herein and in the claims, is not intended to be limiting, but rather, to indicate and include any substance that can be oxidized through permeation of oxygen through the membrane. Thesecond layer 14 is a gas tight active dense layer that is impervious to gas and allows only ion transport, in this case principally oxygen ions, and is commonly referred to as dense layer or dense separation layer. Thethird layer 16 serves to initially reduce the oxygen in oxygen containing gas such as air contacting the third layer into oxygen ions and thus serves as a porous surface activation layer. Each of thefirst layer 12, thesecond layer 14 and thethird layer 16 after heating and sintering will preferably each have a thickness of about 10 μm to about 100 μm. - Turning attention to the composition of the oxygen transport mixed conducting layers, a stabilized zirconia, namely, Zr1-x-yAxByO2-δ is a common material in all three “active” membrane layers, namely, the
first layer 12, thesecond layer 14 and thethird layer 16. As mentioned above in all of these layers oxygen transport occurs and as such, are “active”. In order to generate industrially relevant levels of oxygen ion conductivity, A and B are typically Sc, Y, Ce, Al or Ca. Preferably, such stabilized zirconia has a composition given by formula: Zr0.802Sc0.180Y0.018O2-δ, often noted as 10Sc1YSZ in literature associated with this class of membrane. However it should be noted that many different combinations of Sc, Y, Ce, Al, Ca or other elements can be substituted to achieve the same end. Thefirst layer 12, intermediate porous layer is configured to have a high surface area where fuel can react with oxygen or oxygen ions that recombine and become available. Thesecond layer 14, the dense layer, functions to separate oxygen from an oxygen containing feed in contact with the third layer, poroussurface exchange layer 16 and contains an electronic and ionic conducting phases. As discussed above, the electronic phase of (La1-xSrx)wCr1-y-zFeyM′zO3-δ, where M′ is a metal: Co, Ni, Ru, x is from about 0.1 to about 0.5, w is from about 0.90 to about 1.0, y is from 0.00 to 1, z is from about 0.00 to about 0.2, and δ renders the compound charge neutral. The ionic phase is Zr1-x′-y′Scx′Ay′, O2-δ, where x′ is from about 0.1 to about 0.22, y′ is from about 0.01 to about 0.04 and A is Y or Ce or a mixture of Y and Ce. Theporous support layer 10 is formed of Zr1-x′Ax′O2-δ, where x″ is from about 0.05 to about 0.13, A is Y or Sc or Al or Ce or mixtures thereof. Thethird layer 16, a surface exchange layer is formed from a mixture of particles of (Ln1-xAx)wCr1-yByO3-δ and 10Sc1YSZ and optionally pore formers. In this layer, Ln is La, Y, Pr, Ce or Sm, A is Ca, Sr, Ba, B can be Mn, Fe, Co Al, Ti or combinations thereof; w is 0.9 to 1.1, x is 0.1 to 0.4 and y is 0.1 to 0.6. The (Ln1-xAx)wCr1-yByO3-δ and 10Sc1YSZ of this layer after sintering should be present within a first volume ratio of between 2 to 3 and 4 to 1 on a volume percentage basis. - Reforming Catalyst Layer
- A reforming
catalyst layer 30 is located on thesecond side 22 of theporous substrate 10, separated (spaced apart) from thefirst layer 12 located on thefirst side 18 of theporous substrate 10. The formation of this catalyst layer on thesecond side 22 of the substrate is carried out as a separate step after formation of at least thedense layer 14 on the first side of the substrate. Highly porous reforming catalyst layer accelerates the endothermic hydrocarbon reforming to produce syngas. The separation between the oxygen transport layer and the reforming catalyst layer protects the metal catalysts from exposure to both oxidative and reducing environments and avoids catalyst redox cycles and internal stress buildup. - Common catalyst coating techniques such as wash-coating, dip-coating, spray deposition, and tape-casting of suspension or sol-gel catalyst slurry can be applied to form the
catalyst layer 30. The ingredients of a coating slurry can include one or more of the following: catalyst in the form of metal or metal oxide or metal precursors such as metal nitrate, ceramic support oxides as catalyst carriers, high temperature stabilizers and promoters, organic binders such as polyvinyl butyral (PVB), and optionally one or more pore formers (e.g., carbon black, walnut shell, and Poly-methyl methacrylate with either aqueous or alcohol or toluene solvents. Alternately mixtures of catalyst metal and ceramic carrier powders or commercially available supported catalyst powders can be milled down to desired particle size to prepare the slurry for coating on the substrate layer. Yet another alternate is to pre-coat the porous ceramic composites such as Al2O3, YSZ, CeO2 on the substrate layer of the dual function composite oxygen transport membrane and then impregnate the coated porous ceramic composite with catalyst metal precursors. - The preferred reforming catalysts include nickel, cobalt, rhenium, iridium, rhodium, ruthenium, palladium, platinum, or their combinations. The catalyst carrier candidates could be high surface area ceramic materials such as Al2O3, ZnO2, CeO2, TiO2, pervoskite, pyrochlore, hexaaluminate supports, or mixtures of these materials. The high temperature promoters may include CaO, La2O3, MgO, BaO, SrO, Y2O3, K2O, spinel structured materials, or mixtures of these materials. Organic binders not only determine the coating layer adhesion, but also affect the micro-tunnels in the catalyst layer. So it is preferred to be pre-mixed with alcohol solvent (e.g., 12 wt. % PVB in IPA) to enhance its homogenous mix before adding into other ingredients.
- If included, the pore former particle size and loading are preferably in the ranges of 0.5 to 8 μm and 15 wt % to 35 wt %, respectively. These pore formers are determined to develop a highly porous network of catalyst coating layer on the porous substrate and prevent blockage of gas flow paths in both catalyst layer and porous substrate. They facilitate desired porosity (preferably 55% to 70% porosity). The particle size of ceramic oxides is preferred to be close to or greater than the diameter of the support layer microchannel to minimize particle impregnation into the support layer and blockage of gas flow through the channel. Thickness of porous catalyst coating can be controlled by slurry viscosity and coating times and is preferred to be greater than about 5 microns, more preferably in the range of about 40 microns to about 150 microns to provide a mechanically stable catalyst layer having sufficient surface area to obtain desired methane conversion. Catalyst layers that are thicker, for example greater than 200 microns, may be structurally less stable, developing cracks and/or delaminate. It is preferred to have thermal shrinkage rate of the catalyst layer to be the same or as close as possible to that of the porous substrate to prevent layer delamination and/or cracking; this can be achieved for example by proper choice of composition and/or thickness of catalyst layer.
- The catalyst coating process can be implemented at different steps in the manufacturing of the dual function composite oxygen transport membrane. As shown in
FIG. 2 , first all three oxygen transport mixed conducting layers, namely intermediate porous layer, dense layer, and surface exchange layer are formed and then catalyst layer is coated.FIG. 3 show another approach in which only intermediate porous layer and dense layer are first formed, then catalyst layer coated on the inside of the tube followed by surface exchange layer formation over the dense layer to complete the oxygen transport membrane architecture on the outside of the tube. Preferably the catalyst coating step should be introduced after at least dense layer was formed to avoid adverse effects of exposure for long periods of time to high temperatures required to sinter the dense layer; formation of inactive spinel structure of transitional metals such as NiAl2O4 in the catalyst layer could be accelerated; the catalyst layer could lose porosity, pore structures as well as surface area, and result in significant catalyst activity reduction. - It is preferred to integrate catalyst coating right before or after the surface exchange (cathode) layer coating, because these two coating layers are on the opposite side of the membrane and could be sintered by co-firing at the same time. The thicknesses of intermediate mixed conducting porous (anode) layer, dense layer, and surface exchange porous (cathode) layer of a dual function composite oxygen transport membrane can be about 10 μm to 100 μm each, while the catalyst layer with porosity of 70% and pore size of 6 μm can have a thickness of about 20 μm to 200 μm. Highly porous catalyst surface geometry offers reduced diffusional resistance and provides significantly more catalytic surface area.
- Yet another approach, shown in
FIG. 4 is to first form a reactor element comprising at least a first porous support tube (or some other geometry) with mixed conducting oxygen transport layers on the outside surface and a second porous tube (or some other geometry) also with mixed conducting oxygen transport layers on the outside, that are coupled together to provide a continuous flow path to a fluid introduced at one end of the first tube to exit at the other end of the second tube. The catalyst layer is then deposited on the inside surface of the porous support tubes that already have undergone formation of the three oxygen transport mixed conducting layers in a layered structure, namely intermediate porous layer, dense layer, and surface exchange layer on the outside surface of the substrate tube. Such reactor elements are discussed in pending U.S. Patent Publication 2015/0098872, which is incorporated herein by reference. - Catalyst Layer Benefits
- The dual function composite oxygen transport membrane is operated at relatively high temperature (above 950° C.) and can advantageously produce high quality of syngas while sustaining high oxygen flux performance. Furthermore, the catalytic reforming of hydrocarbon fuels by the dual function composite oxygen transport membrane enhances syngas yield, considerably lowers methane slip and could facilitate elimination of downstream methane removal depending on syngas end use process.
- The endothermic reforming of methane catalyzed by the dual function composite oxygen transport membrane catalyst layer produces hydrogen and carbon monoxide. Some of the hydrogen and/or carbon monoxide produced can diffuse into the porous substrate that is an integral part of the dual function composite oxygen transport membrane, and react with oxygen permeating the dense layer within the dual function composite oxygen transport membrane. The exothermic oxidation reactions consume permeated oxygen, facilitating a difference in partial pressure of oxygen across the membrane.
- The dual function composite oxygen transport membrane can advantageously manage the heat released from oxy-combustion of fuel species with permeated oxygen that occurs in and near the intermediate porous layer. These exothermic reactions generate a considerable amount of heat, some of which supports endothermic reactions such as hydrocarbon reforming catalyzed by the catalyst layer located on the porous substrate. The porous substrate separating the intermediate porous layer and the catalyst layer may have a thickness several orders in magnitude to that of any of these layers. A temperature gradient exists with heat flowing from the oxy-combustion reaction region to the endothermic reforming region. This helps prevent dual function composite oxygen transport membrane oxygen flux reduction due to over cooling from catalytic reforming.
- Fabrication Method
- With reference to
FIG. 2 , the process flow for producing a dual function composite oxygen transport membrane in accordance with one aspect of the present invention is provided. - The
porous substrate 10 is first formed in a manner known in the art. For example, using an extrusion process the porous substrate could be formed into a tube in a green state and then subjected to a bisque firing at 1050° C. for 4 hours to achieve reasonable strength for further handling. After firing, the resulting porous substrate tube can be checked for porosity and permeability. Then oxygen transport mixed conducting layers, namely intermediateporous layer 12,dense layer 14 andsurface exchange layer 16 can be formed on the porous substrate, for example as discussed in U.S. Pat. No. 8,795,417. - Table 1 lists the ingredients used to form the oxygen transport mixed conducting layers on a tubular porous substrate in the examples described below. The ionic conductive and electronic conductive materials used to form intermediate porous layer and dense layer in the examples are same, however this need not be the case. Zr0.802Sc0.180Y0.018O2-δ(d50<0.6 μm; from Daiichi Kigenso Kagaku Kogyo Co., Ltd.) was used as ionic conductive material and (La0.8Sr0.2)0.98Cr0.5Fe0.5O3-δ perovskite powder (d50 in the range of about 0.30 μm to about 0.35 μm; Praxair Specialty Ceramics) was used as electronic conductive material.
-
TABLE 1 Oxygen transport mixed conducting Ionic conductive Electronic conductive Pore layer composite composite Binder Solvent former Intermediate Zr0.802Sc0.18Y0.018O2−δ (La0.8Sr0.2)0.98Cr0.5Fe0.5O3−δ Ferro Toluene Carbon porous B73210 black layer Dense Zr0.802Sc0.18Y0.018O2−δ (La0.8Sr0.2)0.98Cr0.5Fe0.5O3−δ Ferro Toluene N/A layer B73210 Surface Zr0.802Sc0.18Y0.018O2−δ (La0.8Sr0.2)0.98Cr0.3Fe0.7O3−δ Ferro Toluene Carbon exchange B73210 black layer - For the dense layer, a 120 g batch of slurry was prepared using 51 g of (La0.8Sr0.2)0.98Cr0.5Fe0.5O3-δ mixed with 69 g of Zr0.802Sc0.180Y0.018O2-δ, 60 g Ferro B73210 binder, 255 g Toluene and 1200 g of 1.5 mm diameter YSZ milling media in a 32 oz NALGENE bottle. The mixture was milled for about 2.25 hours or until the particle size of the mixture was in the range 0.3-0.35 μm. For the intermediate layer, slurry was prepared by adding 18 g of carbon black (pore former) to the dense layer recipe.
- For the
surface exchange layer 16, 51 g of electronic conductive material (La0.8Sr0.2)0.98Cr0.3Fe0.7O3-δ perovskite powder (from Praxair Specialty Ceramics) was mixed with 69 g of ionic conductive material Zr0.802Sc0.180Y0.018O2-δ, 60 g Ferro B73210 binder, 255 g Toluene, 18 g carbon black and 1200 g of 1.5 mm diameter YSZ milling media in a 32 oz NALGENE bottle. The mixture was milled for about 2.25 hours or until the particle size of the mixture was in the range 0.3-0.35 μm. - The tubular porous substrate structure was first coated with the intermediate porous layer by contacting the outside surface of the tubular porous substrate structure with the intermediate layer slurry, at least twice to ensure final thickness was in the range of about 10 to about 30 The dried intermediate layer was then coated by contacting with a dense layer slurry, at least two times to ensure final thickness was in the range of about 10 μm to about 30 Resulting coated tubular structure was then dried at room temperature for about 1 to 2 hours before sintering at an elevated temperature above 1350° C.−1400° C. for 6 hours in a nitrogen environment. The sintered dense layer was then subjected to a surface exchange layer coating step by contacting the sintered dense layer with a surface exchange layer slurry. This was followed by a drying step (at room temperature for 1 to 2 hours), and a high temperature sintering step (air fired at 1250° C. for half an hour) to complete the surface exchange layer formation.
-
Catalyst layer 30 can be formed preferably by a wash-coating technique. As shown inFIG. 2 , the catalyst layer formation step can be introduced into the manufacturing process after surface exchange layer formation. The catalyst formation step comprises a catalyst layer coating step, followed by optional air drying and organics burn-off. The catalyst layer coating step comprises contacting the inside surface of the tubular porous substrate structure with a catalyst layer slurry also referred to as catalyst coating layer slurry. The air drying and organics burn-off can be carried out as separate steps or combined into a single step.FIG. 3 shows an alternate process flow for producing a dual function composite oxygen transport membrane wherein the catalyst layer coating step is carried out prior to the surface exchange layer high temperature sintering step, and preferably prior to the surface exchange layer coating step. The catalyst layer organics burn-off step and the surface exchange layer high temperature sintering step can be merged into a single step or can be carried out simultaneously while providing atmospheres and operating conditions (temperatures, pressures, and flows) to the catalyst layer that are appropriate for organics burn-off, and to the surface exchange layer that are appropriate for high temperature sintering. This way process efficiency gains, as well as capital and operating cost savings can be achieved.FIG. 4 shows yet another process flow wherein a plurality of oxygen transport membrane elements having mixed conducting oxygen transport layers on the outside surface are treated to form a catalyst layer on the inside surface of each element, thereby transforming them into dual function composite oxygen transport membrane reactor elements. - Table 2 lists the ingredients used to form catalyst layer in the dual function composite oxygen transport membrane examples described below.
-
TABLE 2 Active Metal Ceramic Pore Dispersant metal precursor Promoter carrier Binder Solvent former agent Ni—Rh Ni(NO3)2•6H2O, TZ-4YS Alpha- 12 wt. % Ethanol PMMA KD-2 Rh(NO3)3 Al2O3 PVB in ethanol Ru (La0.8Sr0.2)0.98Cr0.8Fe0.15Ru0.05O3-δ N/A N/A Ferro Toluene Carbon KD-1 B73210 black - 25 g of Alpha-phase aluminum oxide (1 μm average particle size, 8 to 10 m2/g surface area, from Alfa Aesar) and 8.5 g of TZ-4YS with 4 mole % yttria stabilized zirconia powder (0.5 μm average particle size, from Tosoh Corporation) were dispersed in 200 mL of ethanol and 7 mL of KD-2 dispersant agent (Hypermer™). Adding 500 g of 1.5 mm diameter YSZ milling media into the container, the mixture was milled on the roller mill (170 to 175 rpm) for 2 hours. The final particle size of the slurry was in the range of about 0.5 to about 0.8 μm. Along with 10 g of pore former poly(methyl methacrylate) PMMA with average particle size of 6 μm, 30 g of nickel nitrate hexahydrate Ni(NO3)2.6H2O and 0.5 g of Rh(NO3)3 (both from Sigma-Aldrich) were added into the mixture and mixed for additional one hour. 12% by weight of plastic binder polyvinyl butyral powder was first dissolved in ethanol solvent to enhance its homogenous mixing and then 150 mL of resulting binder solution was slowly added into the slurry mixture. The resulting mixture was further milled for 1.5 hours to form sol-gel slurry.
- The above prepared sol-gel slurry can be used to form a catalyst layer containing Ni and Rh as active metals. Alternately the sol-gel slurry can be prepared without the addition of Rh(NO3)3 to form a catalyst layer containing Ni as the active metal. The Ni and Rh containing, as well as, Ni only catalyst layer can be formed on the inside of a tubular composite oxygen transport membrane.
- The sol-gel slurry prepared as described above and having a viscosity preferably in the range of about 25 centipoise to about 50 centipoise was used to wash-coat a catalyst layer on the inside surface of a yttria-stabilized zirconia (YSZ) porous substrate tube already coated with oxygen transport mixed conducting layers on the outside surface. The tube, 7 mm ID and 24 inches long had been made from a YSZ paste by a conventional extrusion process followed by bisque firing at elevated temperature. Tubes made this way can have a wall thickness in the range of about 0.7 mm to about 2.5 mm, sufficient to operate at elevated temperatures and pressures. The particular tube used in this example had a wall thickness of 1 mm. The porosity of tube is preferred to be within the range of 25 to 45% for this application. The particular tube used in this example had a porosity of 34%. Oxygen transport mixed conducting layers, namely: surface exchange layer, dense layer, and intermediate porous layer formed on the outside surface of the porous support (YSZ) tube contained mixed ionic and electronic conductive (MIEC) dual-phase materials. After forming the intermediate layer and dense layer on the YSZ support tube, the tube was dried at room temperature and then sintered at an elevated temperature of about 1350° C. to about 1400° C. to have a thickness in the range of about 10 microns to about 30 microns. Then after treating the tube with surface exchange layer slurry, the tube was sintered at an elevated temperature of about 1250° C. to complete the formation of surface exchange layer. The composite oxygen transport membrane tubes prepared in this manner are preferred to have a thickness in the range of about 10 microns to about 30 microns. The particular tube used in this example had an intermediate layer about 15 microns thick, a dense layer about 15 microns thick, and a surface exchange layer about 10 microns thick. Prior to wash-coating, the tube was inspected and appropriate measures taken to remove any dust on the inside surface of the tube, for example by blowing air through the tube. The tube vertically positioned and with one end plugged was gradually filled with sol-gel slurry until the inside of the tube was completely filled. The liquid level slightly dropped due to potential migration of liquid into the porous substrate by capillary action; as needed slurry was added to keep the tube completely filled. After waiting for about a minute the slurry was slowly drained out of the tube, and the tube dried at room temperature by flowing air for about 30 minutes at a low flow rate, in the range of about 10 scfh to about 40 scfh. An inert dry gas can be used instead of air for drying. The organic binder and pore former in the catalyst layer were burned off by vertically fixing the catalyst coated tube in a furnace and heating at a ramp rate of 2° C./min to 600° C. and holding at that temperature for one hour. After the burn-off procedure the tube was cooled to ambient temperature. Catalyst loading in the resulting dual function composite oxygen transport membrane was 0.48 g, as calculated by weighing the tube before wash-coating and after cool down. The SEM microstructure of a cross-section of this catalyst layer shown in
FIG. 5 suggests catalyst layer thickness to be about 75 μm. - Another porous tube with oxygen transport mixed conducting layers formed on the outside was inspected, cleaned off any dust and filled with catalyst layer sol-gel slurry prepared as described above in Example 1. In this instance the sol-gel inside the tube was held for about 5 seconds rather than for about one minute prior to initiating the draining process. The tube was then subjected to the same steps and conditions of: air drying, organic binder and pore former burn off and cool down as described above. Catalyst loading in the resulting dual function composite oxygen transport membrane was 0.11 g, as calculated by weighing the tube before wash-coating and after cool down. The SEM microstructure of a cross-section of this catalyst layer shown in
FIG. 6 suggests catalyst layer thickness to be about 15 μm. The sol-gel slurry holding time in the tube prior to draining appears to be an important factor in determining the catalyst layer thickness. - 25.5 g of (La0.8Sr0.2)0.98Cr0.8Fe0.15Ru0.05O3-δ (particles ranging from 0.2 microns to 0.4 microns, obtained from Praxair Specialty Ceramics) was dispersed in 25 g of toluene solvent (purity>99.5%) along with 5 g of plastic Ferrobinder. Adding 200 g of 1.5 mm YSZ media into the slurry container, the mixture was milled on the roller mill (170 to 175 rpm) for 2 hours. The final particle size of the slurry was about 0.35 microns. Then 4.5 g of pore former such as carbon black (particle size ranging from 0.5 microns to 1.0 micron) was added and milling of the mixture continued for 1 hour. Finally 0.3 g of dispersant (KD-1) dissolved in 15 g of solvent was added to the slurry mixture and milling continued for additional 1 hour. The resulting sol-gel slurry was then used to wash coat a 7 mm ID, 24 inches long YSZ porous tube already coated with oxygen transport mixed conducting layers following similar steps of inspecting, plugging one end, filling, adding slurry to keep the tube completely filled, waiting for about one minute, then draining liquid from the tube, air drying, burning off of organic binder and pore former material, and cool down. In this instance the catalyst loading was 0.6 g. The SEM microstructure of a cross-section of this catalyst layer suggested catalyst layer thickness to be about 62 μm.
- 25 g of Alpha-phase aluminum oxide (1 μm average particle size, 8 to 10 m2/g surface area, from Alfa Aesar) and 8.5 g of TZ-4YS with 4 mole % yttria stabilized zirconia powder (0.5 μm average particle size, from Tosoh Corporation) were dispersed in 200 mL of ethanol and 7 mL of KD-2 dispersant agent (Hypermer™). Adding 500 g of 1.5 mm diameter YSZ milling media into the container, the mixture was milled on the roller mill (170 to 175 rpm) for 2 hours. The final particle size of the slurry was in the range of about 0.5 to about 0.8 Along with 10 g of pore former poly(methyl methacrylate) PMMA with average particle size of 6 μm, 30 g of nickel nitrate hexahydrate Ni(NO3)2.6H2O and 0.5 g of Rh(NO3)3 (both from Sigma-Aldrich) were added into the mixture and mixed for additional one hour. 12% by weight of plastic binder polyvinyl butyral powder was first dissolved in ethanol solvent to enhance its homogenous mixing and then 150 mL of resulting binder solution was slowly added into the slurry mixture. The resulting mixture was further milled for 1.5 hours to form sol-gel slurry. The resulting sol-gel slurry was then used to wash coat a 7 mm ID, 24 inches long YSZ porous tube already coated with two of the three oxygen transport mixed conducting layers, namely intermediate porous layer and dense layer only. The wash coating steps were similar to that described in Examples 1 and 2 above, namely: inspecting and removing any dust, plugging one end, filling with sol-gel slurry, adding slurry as needed to keep the tube completely filled, waiting for about one minute, then draining liquid from the tube. The tube was then air dried at room temperature for about 5 minutes with air flowing at a low flow rate of 40 SCFH. Next the surface exchange layer slurry prepared in a manner described above was used to coat the outside of (over) the dense layer. To complete the formation of the surface exchange layer as well as to burn off organic binders and pore former materials in the catalyst layer and the surface exchange layer the tube was first dried at room temperature for about one hour to about two hours, then heated at a ramp rate of 2° C./min to 1250° C. in an air fired furnace and held there for half an hour, and allowed to cool down. In this instance the catalyst loading was 0.52 g. The SEM microstructure of a cross-section of this catalyst layer suggested catalyst layer thickness to be about 80 μm.
- 25.5 g of (La0.8Sr0.2)0.98Cr0.8Fe0.15Ru0.05O3-δ (particle size range from 0.2 microns to 0.4 microns) was dispersed in 25 g of toluene solvent (purity>99.5%) along with 5 g of plastic Ferrobinder. Adding 200 g of 1.5 mm YSZ media into the slurry container, the mixture was milled on the roller mill (170 to 175 rpm) for 2 hours. The final particle size of the slurry was about 0.35 microns. Then 4.5 g of pore former such as carbon black (particle size ranged from 0.5 microns to 1.0 micron) was added and mixture further milled for 1 hour. Finally 0.3 g of dispersant (KD-1) dissolved in 15 g of toluene was added to the slurry mixture and milled for additional 1 hour. Similar to Example 4, the tube used in this example (7 mm ID and 24 inches long YSZ porous tube) had only intermediate porous layer and dense layer formed on it. The catalyst layer formation steps of inspecting, plugging one end, filling, adding slurry to keep the tube completely filled during the entire duration of about one minute, and draining liquid were similar. The tube was then air dried at room temperature for about 5 minutes with air flowing at a low flow rate of 40 SCFH. Next the surface exchange layer slurry prepared in a manner described above was used to coat over the dense layer. To complete the formation of the surface exchange layer as well as to burn off organic binders and pore former materials in the catalyst layer and the surface exchange layer, the tube was first dried at room temperature for about one hour to about two hours, then heated at a ramp rate of 2° C./min to 1250° C. in an air fired furnace and held there for half an hour, and allowed to cool down. In this instance the catalyst loading was 0.62 g. The SEM microstructure of a cross-section of this catalyst layer shown in
FIG. 7 suggests catalyst layer thickness to be about 55 μm. - 25.5 g of (La0.8Sr0.2)0.98Cr0.8Fe0.15Ru0.05O3-δ (particle size range from 0.2 microns to 0.4 microns) was dispersed in 25 g of toluene solvent (purity>99.5%) along with 5 g of plastic Ferrobinder. Adding 200 g of 1.5 mm YSZ media into the slurry container, the mixture was milled on the roller mill (170 to 175 rpm) for 2 hours. The final particle size of the slurry was about 0.35 microns. Then 4.5 g of pore former such as carbon black (particle size ranged from 0.5 microns to 1.0 micron) was added and mixture further milled for 1 hour. Finally 0.3 g of dispersant (KD-1) dissolved in 15 g of toluene was added to the slurry mixture and milled for additional 1 hour. Similar to Example 5, the tube used in this example (7 mm ID and 24 inches long YSZ porous tube) had only intermediate porous layer and dense layer formed on it. The tube was subjected to catalyst layer formation steps of inspecting, plugging one end, filling, and adding slurry to keep the tube completely filled during the entire duration of about one minute. The liquid was then drained and the tube was air dried for five minutes and then filled again with sol-gel slurry. The tube was kept completely filled by adding slurry as needed. After waiting for about a minute, the liquid was drained. In a manner similar to that described above for Example 5, the tube was then air dried at room temperature for about 5 minutes with air flowing at a low flow rate of 40 SCFH. Next the surface exchange layer slurry prepared in a manner described above was used to coat the outside of the dense layer. To complete the formation of the surface exchange layer as well as to burn off organic binders and pore former materials in the catalyst layer and the surface exchange layer, the tube was first dried at room temperature for about one hour to about two hours, then heated at a ramp rate of 2° C./min to 1250° C. in an air fired furnace and held there for half an hour, and allowed to cool down. In this instance the catalyst loading was 0.84 g. The SEM microstructure of a cross-section of the catalyst layer shown in
FIG. 8 indicates cracking and delamination of catalyst layer, and suggests catalyst layer thickness to be about 225 μm where it remained intact. Therefore, it is preferable to control the catalyst thickness within the range of 40 to 150 μm. - Dual Function Composite Oxygen Transport Membrane Performance
- The dual function composite oxygen transport membrane tubes made in the examples described above with functional layered structures on the outside surface and the inside surface were tested separately using a standard bench-scale reactor setup. The tube was vertically positioned inside a metal shell embedded in an electrically heated chamber. The dual function composite oxygen transport membrane tube was connected to a source of feed gas and an effluent processing system for safely disposing off syngas product. The tube was heated to an operational temperature of about 950° C. The feed gas was prepared using CH4, CO, H2, and CO2 from gas cylinders and steam from a steam source. The results described below were obtained using a feed gas containing 12 mole % CH4, 11 mole % CO, 52 mole % H2, 4 mole % CO2 and 21 mole % H2O. The feed gas was preheated to about 350° C. prior to feeding to the tube. The flow rate of the feed gas was controlled at achieve a desired space velocity of about 31,000 per hour. Heated air at about 200° C. with a flow rate of 30 SLPM was introduced into the metal shell to flow on the outside of the dual function composite oxygen transport membrane tube in a direction countercurrent to that of feed gas flowing through the tube. The pressure inside the metal shell, that is on the outside of the dual function membrane tube was maintained around 5 psig, and the pressure inside the dual function membrane tube was maintained at a desired value in the range of about 5 psig to about 200 psig. The effluent containing reaction products and unreacted feed species was cooled, water condensed out. The resulting gas stream was sampled and analyzed using a gas chromatograph (GC). The hot air stream leaving the chamber was also cooled and then analyzed for oxygen content using a real-time resolved oxygen analyzer. Table 3 summarizes the results after 100 hours of operation indicating the dual function membranes to have considerably improved methane conversion relative to a membrane that has only oxygen transport functionality. The oxygen transport functionality as indicated by the oxygen flux after 100 hours of stable operation of dual function composite oxygen transport membrane tubes prepared in Examples 1, 3 thru 5 is similar to that of a reference tube that had mixed conducting oxygen transport layers on the outside surface without a catalyst layer on the inside surface. The wash-coating procedure, standardized wash-coating procedure used for forming catalyst layer in these examples involved filling the tube with a slurry containing catalyst layer ingredients, holding the slurry in the completely filled tube for one minute, then draining the slurry followed by air drying and organics burn-off in air. The tubular dual function composite oxygen transport membrane made in Example 2 has similar oxygen flux performance even though a slightly different procedure was followed; the slurry in the completely filled tube was held for considerably less time than one minute, resulting in a thin catalyst layer. In Example 6, however the tube was again refilled with the slurry, the catalyst layer formed was thicker, and the oxygen flux is considerably lower than those of tubes prepared following standardized wash-coating procedure. The thicker catalyst layer could pose higher diffusional resistance to transport of fuel species through the catalyst layer into the porous substrate towards the intermediate porous layer for reaction with permeated oxygen within the membrane, affecting the driving potential for oxygen transport. The results in Table 3 also indicate that the composite oxygen transport membranes with catalyst layer, that is dual function composite oxygen transport membranes achieved considerably higher methane conversion. The catalyst layer thickness appears to be an important factor. The Example 2 membrane that had a thinner catalyst layer, about 15 microns appears to achieve relatively lower methane conversion compared to those having catalyst layer thicknesses in the range of about 50 microns to about 80 microns. The Example 6 membrane that had a thicker catalyst layer of about 225 microns with cracks and delamination in some cross sections, also had relatively lower methane conversion.
-
TABLE 3 Catalyst layer thickness, Normalized O2 CH4 Example Catalyst type Fabrication Method microns Flux* conversion, % Reference N/A FIG. 2 without N/A 1.00 4.3% catalyst layer steps 1 Ni—Rh FIG. 2 75 0.98 98.6% 2 Ni—Rh FIG. 2 15 1.00 95.4% 3 Ru-Pervoskite FIG. 2 62 0.99 98.8% 4 Ni—Rh FIG. 3 80 0.99 98.2% 5 Ru-Pervoskite FIG. 3 55 1.01 98.9% 6 Ru-Pervoskite FIG. 3 225 0.83 93.8% *Normalized with respect to reference membrane (without catalyst layer) - Although the present invention has been described with reference to preferred embodiments, as will occur to those skilled in the art, changes and additions to such embodiment can be made without departing from the spirit and scope of the present invention as set forth in the appended claims. The dual function composite oxygen transport membrane, even though described in the context of syngas production are not limited to such uses.
Claims (8)
1-10. (canceled)
11. A method of forming a dual function composite oxygen transport membrane, said method comprising: providing a porous substrate having a first side and an opposing second side; forming a layered structure of mixed conducting materials in a sintered state on the first side of the porous substrate; coating a catalyst layer on the opposing second side of the porous substrate for catalyzing endothermic reactions.
12. The method of claim 11 wherein the layered structure of mixed conducting materials comprises an intermediate porous layer, a dense layer, and an optional surface exchange layer, and the forming of the dense layer and the forming of the catalyst layer is carried out in separate steps.
13. A method of forming a dual function composite oxygen transport membrane, said method comprising: providing a porous substrate having a first side and an opposing second side; forming an intermediate porous layer on the first side of the porous substrate; forming a dense layer over the intermediate porous layer; forming a surface exchange layer over the dense layer; and forming a catalyst layer on the opposing second side of the porous substrate.
14. The method of claim 13 wherein the forming of the catalyst layer is carried out after the forming of the surface exchange layer.
15. The method of claim 13 wherein a catalyst layer coating step in the forming of the catalyst layer is carried out prior to a high temperature sintering step in the forming of the surface exchange layer.
16. The method of claim 13 wherein a catalyst layer coating step in the forming of the catalyst layer is carried out prior to a coating step in the forming of the surface exchange layer.
17. The method of claim 13 wherein a catalyst layer coating step in the forming of the catalyst layer is a wash-coating technique.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/558,917 US20200001248A1 (en) | 2015-06-29 | 2019-09-03 | Dual function composite oxygen transport membrane |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/753,815 US10441922B2 (en) | 2015-06-29 | 2015-06-29 | Dual function composite oxygen transport membrane |
US16/558,917 US20200001248A1 (en) | 2015-06-29 | 2019-09-03 | Dual function composite oxygen transport membrane |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/753,815 Division US10441922B2 (en) | 2015-06-29 | 2015-06-29 | Dual function composite oxygen transport membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
US20200001248A1 true US20200001248A1 (en) | 2020-01-02 |
Family
ID=56684709
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/753,815 Active 2037-07-27 US10441922B2 (en) | 2015-06-29 | 2015-06-29 | Dual function composite oxygen transport membrane |
US16/558,917 Abandoned US20200001248A1 (en) | 2015-06-29 | 2019-09-03 | Dual function composite oxygen transport membrane |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/753,815 Active 2037-07-27 US10441922B2 (en) | 2015-06-29 | 2015-06-29 | Dual function composite oxygen transport membrane |
Country Status (7)
Country | Link |
---|---|
US (2) | US10441922B2 (en) |
EP (1) | EP3313557B1 (en) |
JP (1) | JP2018522717A (en) |
CA (1) | CA2990603A1 (en) |
DK (1) | DK3313557T3 (en) |
ES (1) | ES2809823T3 (en) |
WO (1) | WO2017003705A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10118823B2 (en) * | 2015-12-15 | 2018-11-06 | Praxair Technology, Inc. | Method of thermally-stabilizing an oxygen transport membrane-based reforming system |
JP6917155B2 (en) * | 2017-02-14 | 2021-08-11 | 住友化学株式会社 | Packaging method for accelerated transport membrane |
JP6844440B2 (en) * | 2017-06-16 | 2021-03-17 | 日本製鉄株式会社 | Hydrogen production method |
CN107442182A (en) * | 2017-08-16 | 2017-12-08 | 天津市职业大学 | A kind of photoelectrocatalysis gray haze removes coating and preparation method thereof |
US11298663B2 (en) * | 2018-08-28 | 2022-04-12 | Molecule Works Inc. | Thin metal/ceramic hybrid membrane sheet and filter |
CN110635143B (en) * | 2019-10-23 | 2022-06-10 | 西北大学 | High-activity catalyst for electrocatalytic reaction and preparation method thereof |
CN113332863B (en) * | 2021-07-09 | 2022-11-08 | 辽宁石油化工大学 | Preparation method of biphase oxygen permeable membrane with high surface catalytic activity |
Family Cites Families (291)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9516755D0 (en) | 1995-08-16 | 1995-10-18 | Normalair Garrett Ltd | Oxygen generating device |
US2593507A (en) | 1949-03-01 | 1952-04-22 | Thompson Prod Inc | Methods of molding nonmetallic powders |
GB688657A (en) | 1949-10-11 | 1953-03-11 | Ljungstroems Aengturbin Ab | Improvements in sealing means for rotary regenerative air preheaters |
GB689522A (en) | 1950-02-18 | 1953-04-01 | Ljungstroms Angturbin Ab | Improvements in rotary regenerative air preheaters or like apparatus |
CH297551A (en) | 1950-11-16 | 1954-03-31 | Maschf Augsburg Nuernberg Ag | Gas turbine plant. |
GB697377A (en) | 1952-01-23 | 1953-09-23 | Parsons C A & Co Ltd | Improvements in and relating to the sealing of rotating drums |
US2692760A (en) | 1953-04-30 | 1954-10-26 | Air Preheater | Yieldingly mounted circumferential seal |
DE1256919B (en) | 1961-02-22 | 1967-12-21 | Voith Gmbh J M | Method and device for determining the oxygen consumption during oxidation processes, in particular for determining the biological oxygen demand |
US3317298A (en) | 1963-04-11 | 1967-05-02 | Philips Corp | Process for joining surfaces of refractory material with a mno-sio2-al2o3 system |
NL6709949A (en) | 1966-07-22 | 1968-01-23 | ||
US3468647A (en) | 1967-10-04 | 1969-09-23 | Hughes Aircraft Co | Ceramic-metal seal |
GB1348375A (en) | 1970-05-28 | 1974-03-13 | Ramsay F R F | Rotary regenerative heat exchanger |
GB1312700A (en) | 1970-10-13 | 1973-04-04 | English Electric Co Ltd | Glass-ceramics metal seal |
US3770621A (en) | 1971-12-22 | 1973-11-06 | Union Carbide Corp | Hydrocarbon separation using a selective adsorption process with purge gas conservation |
US3861723A (en) | 1973-08-28 | 1975-01-21 | Us Air Force | V-band coupling |
US3868817A (en) | 1973-12-27 | 1975-03-04 | Texaco Inc | Gas turbine process utilizing purified fuel gas |
US3976451A (en) | 1974-06-04 | 1976-08-24 | General Electric Company | Vacuum extract system for a membrane oxygen enricher |
US3930814A (en) | 1974-11-27 | 1976-01-06 | General Electric Company | Process for producing oxygen-enriched gas |
JPS5339600B2 (en) | 1975-02-19 | 1978-10-21 | ||
US4128776A (en) | 1976-11-29 | 1978-12-05 | The United States Of America As Represented By The United States Department Of Energy | Magnetohydrodynamic electrode |
US4153426A (en) | 1977-07-18 | 1979-05-08 | Arthur G. Mckee & Company | Synthetic gas production |
US4162993A (en) | 1978-04-06 | 1979-07-31 | Oxy-Catalyst, Inc. | Metal catalyst support |
US4175153A (en) | 1978-05-16 | 1979-11-20 | Monsanto Company | Inorganic anisotropic hollow fibers |
US4183539A (en) | 1978-11-13 | 1980-01-15 | General Motors Corporation | Seal heat shield |
US4206803A (en) | 1978-12-26 | 1980-06-10 | The Air Preheater Company, Inc. | Rotor turndown sensor and control |
US4261167A (en) | 1979-04-27 | 1981-04-14 | Texaco Inc. | Process for the generation of power from solid carbonaceous fuels |
US4292209A (en) | 1979-05-02 | 1981-09-29 | The United States Of America As Represented By The United States Department Of Energy | Ceramic component for MHD electrode |
JPS56136605A (en) | 1980-03-26 | 1981-10-26 | Matsushita Electric Ind Co Ltd | Selective gas permeable membrane cell |
US4357025A (en) | 1980-06-09 | 1982-11-02 | General Motors Corporation | Regenerator seal design |
US4402871A (en) | 1981-01-09 | 1983-09-06 | Retallick William B | Metal catalyst support having honeycomb structure and method of making same |
US4373575A (en) | 1981-03-23 | 1983-02-15 | General Motors Corporation | Inboard seal mounting |
US4350617A (en) | 1981-04-20 | 1982-09-21 | Retallick William B | Cylindrical metal honeycomb catalyst supports, and method for forming them |
US4365021A (en) | 1981-07-22 | 1982-12-21 | Owens-Illinois, Inc. | Low temperature sealant glass |
US4720969A (en) | 1981-10-15 | 1988-01-26 | The United States Of America As Represented By The United States Department Of Energy | Regenerator cross arm seal assembly |
US4650814A (en) | 1984-03-07 | 1987-03-17 | Keller Arnold P | Process for producing methanol from a feed gas |
DE3423962A1 (en) | 1984-06-29 | 1986-01-02 | Balcke-Dürr AG, 4030 Ratingen | REGENERATIVE HEAT EXCHANGER |
US4609383A (en) | 1984-09-24 | 1986-09-02 | Aquanautics Corporation | Apparatus and method for extracting oxygen from fluids |
US4631238A (en) | 1985-01-18 | 1986-12-23 | Westinghouse Electric Corp. | Cobalt doped lanthanum chromite material suitable for high temperature use |
AU597664B2 (en) | 1986-05-28 | 1990-06-07 | Cookson Group Plc | An improved ceramic material |
US4791079A (en) | 1986-06-09 | 1988-12-13 | Arco Chemical Company | Ceramic membrane for hydrocarbon conversion |
US5021137A (en) | 1986-07-25 | 1991-06-04 | Ceramatec, Inc. | Ceramic solid electrolyte based electrochemical oxygen concentrator cell |
US4749632A (en) | 1986-10-23 | 1988-06-07 | The United States Of America As Represented By The United States Department Of Energy | Sintering aid for lanthanum chromite refractories |
US4734273A (en) | 1986-12-29 | 1988-03-29 | Shell Oil Company | Process for the selective removal of trace amounts of oxygen from gases |
US5306411A (en) | 1989-05-25 | 1994-04-26 | The Standard Oil Company | Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions |
US4783085A (en) | 1987-03-27 | 1988-11-08 | United Technologies Corporation | Segmented rigid sliding seal |
AU2329888A (en) | 1987-09-01 | 1989-03-31 | Alan Krasberg | Apparatus for and method of providing improved gas separation |
US4862949A (en) | 1987-09-08 | 1989-09-05 | General Motors Corporation | Regenerator seal assembly |
US5143751A (en) | 1990-03-19 | 1992-09-01 | Westinghouse Electric Corp. | Method of making highly sinterable lanthanum chromite powder |
DE4011506A1 (en) | 1990-04-10 | 1991-10-17 | Abb Patent Gmbh | FUEL CELL ARRANGEMENT AND METHOD FOR THE PRODUCTION THEREOF |
US5185301A (en) | 1990-04-20 | 1993-02-09 | Allied-Signal Inc. | Sinter reactive lanthanum chromite and process for making it |
US5286686A (en) | 1990-04-20 | 1994-02-15 | Allied-Signal Inc. | Air-sinterable lanthanum chromite and process for its preparation |
US5035726A (en) | 1990-05-24 | 1991-07-30 | Air Products And Chemicals, Inc. | Process for removing oxygen from crude argon |
US5205990A (en) | 1990-08-02 | 1993-04-27 | Lawless William N | Oxygen generator having honeycomb structure |
US5259444A (en) | 1990-11-05 | 1993-11-09 | Masachusetts Institute Of Technology | Heat exchanger containing a component capable of discontinuous movement |
US5169506A (en) | 1990-12-31 | 1992-12-08 | Invacare Corporation | Oxygen concentration system utilizing pressurized air |
US5169811A (en) | 1991-01-22 | 1992-12-08 | Allied-Signal Inc. | Beneficiated lanthanum chromite for low temperature firing |
US5298469A (en) | 1991-01-22 | 1994-03-29 | Alliedsignal Inc. | Fluxed lanthanum chromite for low temperature air firing |
US5432705A (en) | 1991-05-31 | 1995-07-11 | Itronix Corporation | Administrative computer and testing apparatus |
US5454923A (en) | 1991-06-04 | 1995-10-03 | Ceramatec, Inc. | Inert gas purifying system |
DE4119040C2 (en) | 1991-06-10 | 1997-01-02 | Pall Corp | Method and device for testing the operating state of filter elements |
US5302258A (en) | 1992-02-28 | 1994-04-12 | Triox Technologies, Inc. | Method and apparatus for separating oxygen from a gaseous mixture |
US5750279A (en) | 1992-02-28 | 1998-05-12 | Air Products And Chemicals, Inc. | Series planar design for solid electrolyte oxygen pump |
US5478444A (en) | 1992-05-11 | 1995-12-26 | Gas Research Institute | Composite mixed ionic-electronic conductors for oxygen separation and electrocatalysis |
US5472720A (en) | 1992-06-17 | 1995-12-05 | Mitec Scientific Corporation | Treatment of materials with infrared radiation |
US5240480A (en) | 1992-09-15 | 1993-08-31 | Air Products And Chemicals, Inc. | Composite mixed conductor membranes for producing oxygen |
US5804155A (en) | 1992-11-19 | 1998-09-08 | Engelhard Corporation | Basic zeolites as hydrocarbon traps for diesel oxidation catalysts |
US5649517A (en) | 1993-02-18 | 1997-07-22 | The University Of Chicago | Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications |
US5599509A (en) | 1993-03-17 | 1997-02-04 | Nippondenso Co., Ltd. | Honeycomb body and catalyst converter having catalyst carrier configured of this honeycomb |
US5356730A (en) | 1993-03-26 | 1994-10-18 | Alliedsignal Inc. | Monolithic fuel cell having improved interconnect layer |
US5342705A (en) | 1993-06-04 | 1994-08-30 | Allied-Signal, Inc. | Monolithic fuel cell having a multilayer interconnect |
US6355093B1 (en) | 1993-12-08 | 2002-03-12 | Eltron Research, Inc | Two component-three dimensional catalysis |
US6033632A (en) | 1993-12-08 | 2000-03-07 | Eltron Research, Inc. | Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them |
US5569633A (en) | 1994-01-12 | 1996-10-29 | Air Products And Chemicals, Inc. | Ion transport membranes with catalyzed dense layer |
US5534471A (en) | 1994-01-12 | 1996-07-09 | Air Products And Chemicals, Inc. | Ion transport membranes with catalyzed mixed conducting porous layer |
DE69601041T2 (en) | 1995-02-09 | 1999-06-24 | Normalair-Garrett (Holdings) Ltd., Yeovil, Somerset | Device for the production of oxygen |
US5547494A (en) | 1995-03-22 | 1996-08-20 | Praxair Technology, Inc. | Staged electrolyte membrane |
JP3469351B2 (en) | 1995-04-17 | 2003-11-25 | 三菱電機株式会社 | Ringing prevention circuit, device under test board, pin electronics card and semiconductor device |
GB9520554D0 (en) | 1995-10-07 | 1995-12-13 | Normalair Garrett Ltd | Oxygen generating device |
US5837125A (en) | 1995-12-05 | 1998-11-17 | Praxair Technology, Inc. | Reactive purge for solid electrolyte membrane gas separation |
JP3388306B2 (en) | 1996-02-01 | 2003-03-17 | 株式会社ニッカトー | Electric furnace |
ATE200884T1 (en) | 1997-01-22 | 2001-05-15 | Haldor Topsoe As | GENERATION OF A SYNTHESIS GAS BY STEAM REFORMING USING A CATALYZED HARDWARE |
GB9706299D0 (en) | 1997-03-26 | 1997-05-14 | Ionotec Ltd | Solid electrolyte adaptor |
US5975130A (en) | 1997-04-07 | 1999-11-02 | Valve Concepts, Inc. | Check valve with a low inertia moving part for low or high pressure differentials |
US5980840A (en) | 1997-04-25 | 1999-11-09 | Bp Amoco Corporation | Autothermic reactor and process using oxygen ion--conducting dense ceramic membrane |
US5820655A (en) | 1997-04-29 | 1998-10-13 | Praxair Technology, Inc. | Solid Electrolyte ionic conductor reactor design |
US5820654A (en) | 1997-04-29 | 1998-10-13 | Praxair Technology, Inc. | Integrated solid electrolyte ionic conductor separator-cooler |
US6077323A (en) | 1997-06-06 | 2000-06-20 | Air Products And Chemicals, Inc. | Synthesis gas production by ion transport membranes |
US5900555A (en) | 1997-06-12 | 1999-05-04 | General Electric Co. | Method and apparatus for determining turbine stress |
US5944874A (en) | 1997-06-23 | 1999-08-31 | Praxair Technology, Inc. | Solid electrolyte ionic conductor systems for the production of high purity nitrogen |
GB9714744D0 (en) | 1997-07-15 | 1997-09-17 | Ici Plc | Methanol |
FR2766476B1 (en) | 1997-07-22 | 1999-09-03 | Ceca Sa | IMPROVED ZEOLITIC ADSORBENT FOR THE SEPARATION OF AIR GASES AND PROCESS FOR OBTAINING SAME |
US6200541B1 (en) | 1997-10-28 | 2001-03-13 | Bp Amoco Corporation | Composite materials for membrane reactors |
US5964922A (en) | 1997-11-18 | 1999-10-12 | Praxair Technology, Inc. | Solid electrolyte ionic conductor with adjustable steam-to-oxygen production |
DE19755815C2 (en) | 1997-12-16 | 1999-12-09 | Dbb Fuel Cell Engines Gmbh | Process for steam reforming a hydrocarbon or hydrocarbon derivative, reformer that can be operated with it, and fuel cell operating method |
US6048472A (en) | 1997-12-23 | 2000-04-11 | Air Products And Chemicals, Inc. | Production of synthesis gas by mixed conducting membranes |
US6153163A (en) | 1998-06-03 | 2000-11-28 | Praxair Technology, Inc. | Ceramic membrane reformer |
US6010614A (en) | 1998-06-03 | 2000-01-04 | Praxair Technology, Inc. | Temperature control in a ceramic membrane reactor |
US6296686B1 (en) | 1998-06-03 | 2001-10-02 | Praxair Technology, Inc. | Ceramic membrane for endothermic reactions |
US6139810A (en) | 1998-06-03 | 2000-10-31 | Praxair Technology, Inc. | Tube and shell reactor with oxygen selective ion transport ceramic reaction tubes |
US5927103A (en) | 1998-06-17 | 1999-07-27 | Praxair Technology, Inc. | Carbon dioxide production system with integral vent gas condenser |
US6113673A (en) | 1998-09-16 | 2000-09-05 | Materials And Electrochemical Research (Mer) Corporation | Gas storage using fullerene based adsorbents |
US6051125A (en) | 1998-09-21 | 2000-04-18 | The Regents Of The University Of California | Natural gas-assisted steam electrolyzer |
US6114400A (en) | 1998-09-21 | 2000-09-05 | Air Products And Chemicals, Inc. | Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products |
US6035662A (en) | 1998-10-13 | 2000-03-14 | Praxair Technology, Inc. | Method and apparatus for enhancing carbon dioxide recovery |
US6589680B1 (en) | 1999-03-03 | 2003-07-08 | The Trustees Of The University Of Pennsylvania | Method for solid oxide fuel cell anode preparation |
US6290757B1 (en) | 1999-03-26 | 2001-09-18 | Ceramphysics, Inc. | Nitrogen purification device |
US6402156B1 (en) | 1999-04-16 | 2002-06-11 | Eltron Research, Inc. | Glass-ceramic seals for ceramic membrane chemical reactor application |
US6471921B1 (en) | 1999-05-19 | 2002-10-29 | Eltron Research, Inc. | Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing |
US6352624B1 (en) | 1999-06-01 | 2002-03-05 | Northrop Grumman Corporation | Electrochemical oxygen generating system |
US6368383B1 (en) * | 1999-06-08 | 2002-04-09 | Praxair Technology, Inc. | Method of separating oxygen with the use of composite ceramic membranes |
US6521202B1 (en) | 1999-06-28 | 2003-02-18 | University Of Chicago | Oxygen ion conducting materials |
FR2796861B1 (en) | 1999-07-26 | 2001-11-09 | Air Liquide | NOVEL OXIDIZED CONDUCTIVE CERAMIC MEMBRANE, USE OF SAID MEMBRANE FOR SEPARATING OXYGEN FROM AIR OR A GASEOUS MIXTURE CONTAINING IT |
US6430966B1 (en) | 1999-07-30 | 2002-08-13 | Battelle Memorial Institute | Glass-ceramic material and method of making |
AU6498000A (en) | 1999-07-30 | 2001-02-19 | Battelle Memorial Institute | Glass-ceramic joining material and method of joining |
US7163713B2 (en) | 1999-07-31 | 2007-01-16 | The Regents Of The University Of California | Method for making dense crack free thin films |
US6682842B1 (en) | 1999-07-31 | 2004-01-27 | The Regents Of The University Of California | Composite electrode/electrolyte structure |
US6605316B1 (en) | 1999-07-31 | 2003-08-12 | The Regents Of The University Of California | Structures and fabrication techniques for solid state electrochemical devices |
US7553573B2 (en) | 1999-07-31 | 2009-06-30 | The Regents Of The University Of California | Solid state electrochemical composite |
US6541159B1 (en) | 1999-08-12 | 2003-04-01 | Reveo, Inc. | Oxygen separation through hydroxide-conductive membrane |
US6592731B1 (en) | 1999-09-23 | 2003-07-15 | Ceramphysics, Inc. | Amperometric oxygen sensor |
NO313493B1 (en) | 1999-09-28 | 2002-10-14 | Norsk Hydro As | Solid multicomponent membrane comprising a mixed metal oxide for use in a heat or synthesis gas reactor |
US6537514B1 (en) | 1999-10-26 | 2003-03-25 | Praxair Technology, Inc. | Method and apparatus for producing carbon dioxide |
US6293084B1 (en) | 2000-05-04 | 2001-09-25 | Praxair Technology, Inc. | Oxygen separator designed to be integrated with a gas turbine and method of separating oxygen |
US6382958B1 (en) | 2000-07-12 | 2002-05-07 | Praxair Technology, Inc. | Air separation method and system for producing oxygen to support combustion in a heat consuming device |
US6638575B1 (en) | 2000-07-24 | 2003-10-28 | Praxair Technology, Inc. | Plasma sprayed oxygen transport membrane coatings |
US6333015B1 (en) | 2000-08-08 | 2001-12-25 | Arlin C. Lewis | Synthesis gas production and power generation with zero emissions |
US6492290B1 (en) | 2000-08-22 | 2002-12-10 | Air Products And Chemicals, Inc. | Mixed conducting membranes for syngas production |
AU2001284479B2 (en) | 2000-09-08 | 2005-05-12 | Nippon Steel Corporation | Ceramic/metal composite article, composite structure for transporting oxide ion, and composite article having sealing property |
JP4293581B2 (en) | 2000-09-21 | 2009-07-08 | 日本特殊陶業株式会社 | Oxygen concentrator, control device, and recording medium |
US6539719B2 (en) | 2000-11-02 | 2003-04-01 | Praxair Technology, Inc. | Integration of ceramic oxygen transport membrane combustor with boiler furnace |
US6368491B1 (en) | 2000-11-08 | 2002-04-09 | Northrop Grumman Corporation | Method of controlling a modular ceramic oxygen generating system |
US6468328B2 (en) | 2000-12-18 | 2002-10-22 | Air Products And Chemicals, Inc. | Oxygen production by adsorption |
US6562104B2 (en) | 2000-12-19 | 2003-05-13 | Praxair Technology, Inc. | Method and system for combusting a fuel |
US6394043B1 (en) | 2000-12-19 | 2002-05-28 | Praxair Technology, Inc. | Oxygen separation and combustion apparatus and method |
US20030068260A1 (en) | 2001-03-05 | 2003-04-10 | Wellington Scott Lee | Integrated flameless distributed combustion/membrane steam reforming reactor and zero emissions hybrid power system |
AUPR391401A0 (en) | 2001-03-22 | 2001-04-12 | Ceramic Fuel Cells Limited | Liquid phase reactor |
US6913736B2 (en) | 2001-03-30 | 2005-07-05 | Siemens Westinghouse Power Corporation | Metal gas separation membrane module design |
US6695983B2 (en) | 2001-04-24 | 2004-02-24 | Praxair Technology, Inc. | Syngas production method utilizing an oxygen transport membrane |
US20030039601A1 (en) | 2001-08-10 | 2003-02-27 | Halvorson Thomas Gilbert | Oxygen ion transport membrane apparatus and process for use in syngas production |
US6783750B2 (en) | 2001-08-22 | 2004-08-31 | Praxair Technology, Inc. | Hydrogen production method |
US20030054154A1 (en) | 2001-09-14 | 2003-03-20 | Hancun Chen | Method of making a porous green form and oxygen transport membrane |
US6681589B2 (en) | 2002-02-01 | 2004-01-27 | Honeywell International Inc. | Space suit backpack using solid adsorbents for cryogenic oxygen storage, freezeout of carbon dioxide and moisture, and ice heat sink |
US7125528B2 (en) | 2002-05-24 | 2006-10-24 | Bp Corporation North America Inc. | Membrane systems containing an oxygen transport membrane and catalyst |
EP1530814A4 (en) | 2002-06-06 | 2009-05-27 | Univ Pennsylvania | Ceramic anodes and method of producing the same |
US20030230196A1 (en) | 2002-06-18 | 2003-12-18 | Tai-Jin Kim | Oxygen supply device |
DE10330859A1 (en) | 2002-07-30 | 2004-02-12 | Alstom (Switzerland) Ltd. | Operating emission-free gas turbine power plant involves feeding some compressed circulated gas directly to combustion chamber, cooling/humidifying some gas before feeding to combustion chamber |
US20040065541A1 (en) | 2002-08-27 | 2004-04-08 | Litton Systems, Inc. | Stepped voltage controller for ceramic oxygen generating systems |
US6783646B2 (en) | 2002-08-28 | 2004-08-31 | Carleton Life Support Systems, Inc. | Modular ceramic oxygen system |
US20070029342A1 (en) | 2002-10-04 | 2007-02-08 | Alexander Cross | Laboratory workstation for providing samples |
WO2004033061A2 (en) | 2002-10-04 | 2004-04-22 | The Regents Of The University Of California | Fluorine separation and generation device |
JP5160731B2 (en) | 2002-12-24 | 2013-03-13 | ヴァーサ パワー システムズ リミテッド | High temperature gas seal |
EP1578700A2 (en) | 2003-01-03 | 2005-09-28 | Battelle Memorial Institute | Glass-ceramic material and method of making |
US6916362B2 (en) | 2003-05-06 | 2005-07-12 | Praxair Technology, Inc. | Ion transport membrane isolation device |
DE102004001419A1 (en) | 2003-05-30 | 2004-12-16 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Metal sheet, e.g. for supporting catalytic converter for treating vehicle exhaust, has slits near center which enclose microstructured area extending below its surface, where slits have recesses at their corners |
US7229537B2 (en) | 2003-07-10 | 2007-06-12 | Praxair Technology, Inc. | Composite oxygen ion transport element |
US7658788B2 (en) | 2003-08-06 | 2010-02-09 | Air Products And Chemicals, Inc. | Ion transport membrane module and vessel system with directed internal gas flow |
US20070082254A1 (en) | 2003-08-06 | 2007-04-12 | Kenichi Hiwatashi | Solid oxide fuel cell |
US7179323B2 (en) | 2003-08-06 | 2007-02-20 | Air Products And Chemicals, Inc. | Ion transport membrane module and vessel system |
US7160357B2 (en) | 2003-08-14 | 2007-01-09 | Praxair Technology, Inc. | Oxygen transport membrane reactor and method |
KR101118944B1 (en) | 2003-08-26 | 2012-04-13 | 데이진 화-마 가부시키가이샤 | Oxygen-concentrating device |
US7374601B2 (en) | 2003-09-22 | 2008-05-20 | Parker-Hannifin Corporation | Air separation system and method with modulated warning flow |
US6957153B2 (en) | 2003-12-23 | 2005-10-18 | Praxair Technology, Inc. | Method of controlling production of a gaseous product |
RS20060418A (en) | 2004-01-22 | 2008-09-29 | Acetex (Cyprus) Limited, | Integrated process for acetic acid and methanol |
WO2005078160A1 (en) | 2004-02-18 | 2005-08-25 | Ebara Corporation | Process for producing hydrogen and apparatus therefor |
US20060054301A1 (en) | 2004-02-19 | 2006-03-16 | Mcray Richard F | Variable area mass or area and mass species transfer device and method |
US20050248098A1 (en) | 2004-04-27 | 2005-11-10 | Sisk David E | Gasket for a coupler upon a rail car, tank trailer, or related means |
GB0411735D0 (en) | 2004-05-26 | 2004-06-30 | Johnson Matthey Plc | Fuel cell system |
US7320778B2 (en) | 2004-07-21 | 2008-01-22 | Catacel Corp. | High-performance catalyst support |
US7261751B2 (en) | 2004-08-06 | 2007-08-28 | Conocophillips Company | Synthesis gas process comprising partial oxidation using controlled and optimized temperature profile |
DE102004038435A1 (en) | 2004-08-07 | 2006-02-23 | Mayer, Günter, Dipl.-Ing. | Power generation method for gas-steam power plant, involves generating steam in steam generator from waste heat obtained from gas turbine and from thermal energy of molten carbonate fuel cell, which supplies exhaust gas to turbine |
WO2006016627A1 (en) | 2004-08-10 | 2006-02-16 | Central Research Institute Of Electric Power Industry | Film-formed article and method for producing same |
US7521387B2 (en) | 2004-09-21 | 2009-04-21 | General Electric Company | Alkali-free composite sealant materials for solid oxide fuel cells |
US7694674B2 (en) | 2004-09-21 | 2010-04-13 | Carleton Life Support Systems, Inc. | Oxygen generator with storage and conservation modes |
WO2007011401A2 (en) | 2004-11-23 | 2007-01-25 | Trustees Of Boston University | Composite mixed oxide ionic and electronic conductors for hydrogen separation |
US7449262B2 (en) | 2004-12-09 | 2008-11-11 | Praxair Technology, Inc. | Current collector to conduct an electrical current to or from an electrode layer |
FR2879185B1 (en) | 2004-12-10 | 2007-03-09 | Air Liquide | CATALYTIC REACTOR MEMBRANE |
FR2879594B1 (en) | 2004-12-17 | 2007-02-02 | Air Liquide | CERAMIC-METAL JUNCTION ASSEMBLY OR METAL ALLOY |
WO2006069753A1 (en) | 2004-12-28 | 2006-07-06 | Technical University Of Denmark | Method of producing metal to glass, metal to metal or metal to ceramic connections |
US7771519B2 (en) | 2005-01-03 | 2010-08-10 | Air Products And Chemicals, Inc. | Liners for ion transport membrane systems |
US7396442B2 (en) | 2005-02-08 | 2008-07-08 | Carleton Life Support Systems, Inc. | Electrochemical oxygen generator module assembly |
DE102005006571A1 (en) | 2005-02-11 | 2006-08-17 | Uhde Gmbh | Process for oxygen enrichment in gases, suitable plants and their use |
NO20051895D0 (en) | 2005-04-19 | 2005-04-19 | Statoil Asa | Process for the production of electrical energy and CO2 from a hydrocarbon feedstock |
US20080006532A1 (en) | 2005-04-19 | 2008-01-10 | Rangachary Mukundan | Ammonia and nitrogen oxide sensors |
US20060236719A1 (en) | 2005-04-22 | 2006-10-26 | Lane Jonathan A | Gas stream purification method utilizing electrically driven oxygen ion transport |
EP1717420B1 (en) | 2005-04-29 | 2014-10-22 | Siemens Aktiengesellschaft | Power plant with air separation installation |
GB0510823D0 (en) | 2005-05-27 | 2005-07-06 | Johnson Matthey Plc | Methanol synthesis |
US7485767B2 (en) | 2005-06-29 | 2009-02-03 | Exxonmobil Chemical Patents Inc. | Production of synthesis gas blends for conversion to methanol or Fischer-Tropsch liquids |
US20070013144A1 (en) | 2005-07-13 | 2007-01-18 | Seungdoo Park | Reactor sealing methods |
US7427368B2 (en) | 2005-08-16 | 2008-09-23 | Praxair Technology, Inc. | Synthesis gas and carbon dioxide generation method |
US7534519B2 (en) | 2005-09-16 | 2009-05-19 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Symmetrical, bi-electrode supported solid oxide fuel cell |
US7858214B2 (en) | 2005-09-21 | 2010-12-28 | Delphi Technologies, Inc. | Method and apparatus for light internal reforming in a solid oxide fuel cell system |
EP1954379A2 (en) | 2005-09-29 | 2008-08-13 | Trustees Of Boston University | Mixed ionic and electronic conducting membrane |
JP4255941B2 (en) | 2005-10-19 | 2009-04-22 | 独立行政法人科学技術振興機構 | Hydrocarbon reforming method and hydrocarbon reforming apparatus using oxygen permeable membrane |
WO2007056185A2 (en) | 2005-11-04 | 2007-05-18 | Ceramatec, Inc. | Process of making ceramic, mineral and metal beads from powder |
US7510594B2 (en) | 2005-11-13 | 2009-03-31 | Membrane Technology And Research, Inc. | Gas separation membrane module assembly |
ATE414039T1 (en) | 2005-11-24 | 2008-11-15 | Air Liquide | METHOD FOR PRODUCING OXYGEN FROM AIR, IN PARTICULAR USING AN ELECTROCHEMICAL CELL WITH A CERAMIC MEMBRANE AND WITH A CONTROL DEVICE FOR THE CONTINUOUS PRODUCTION OF OXYGEN |
US20070122667A1 (en) | 2005-11-28 | 2007-05-31 | Kelley Richard H | Fuel cell system with integrated fuel processor |
DE102005060171A1 (en) | 2005-12-14 | 2007-06-21 | Uhde Gmbh | Oxidation reactor and oxidation process |
US7309847B2 (en) | 2006-01-12 | 2007-12-18 | Carleton Life Support Systems, Inc. | Ceramic oxygen generating oven |
US7947116B2 (en) | 2006-02-06 | 2011-05-24 | Eltron Research & Development, Inc. | Hydrogen separation process |
US20070212271A1 (en) | 2006-02-17 | 2007-09-13 | Kennedy Paul E | Process air desulfurization for syngas production |
US20070245897A1 (en) | 2006-04-20 | 2007-10-25 | Innovene Usa | Electron, hydrogen and oxygen conveying membranes |
US7686856B2 (en) | 2006-06-19 | 2010-03-30 | Praxair Technology, Inc. | Method and apparatus for producing synthesis gas |
US20070292342A1 (en) | 2006-06-19 | 2007-12-20 | John William Hemmings | Synthesis gas production method and reactor |
US7854793B2 (en) | 2006-06-30 | 2010-12-21 | David Lester Rarig | Pressure swing adsorption system with indexed rotatable multi-port valves |
EP2069556A4 (en) | 2006-07-22 | 2009-12-09 | Ceramatec Inc | Efficient reversible electrodes for solid oxide electrolyzer cells |
US7951283B2 (en) | 2006-07-31 | 2011-05-31 | Battelle Energy Alliance, Llc | High temperature electrolysis for syngas production |
US8070922B2 (en) | 2006-08-07 | 2011-12-06 | Oxus America, Inc. | Monolithic supported oxygen generator |
DE102006038439A1 (en) | 2006-08-16 | 2008-02-21 | Dürr GmbH & Co. KG Luft- und Prozessortechnik | Plant for generating a useful gas enriched in a given component |
US7556676B2 (en) | 2006-08-22 | 2009-07-07 | Praxair Technology, Inc. | Composite oxygen ion transport membrane |
US20080169449A1 (en) | 2006-09-08 | 2008-07-17 | Eltron Research Inc. | Catalytic membrane reactor and method for production of synthesis gas |
US7906079B2 (en) | 2006-12-14 | 2011-03-15 | Catacel Corp. | Stackable structural reactor |
US7856829B2 (en) | 2006-12-15 | 2010-12-28 | Praxair Technology, Inc. | Electrical power generation method |
JP5015638B2 (en) | 2007-03-15 | 2012-08-29 | 日本碍子株式会社 | Permselective membrane reactor and hydrogen production method |
GR1006128B (en) | 2007-05-25 | 2008-11-03 | . | Higly thermally integrated reformer for hydrogen production. |
US8262755B2 (en) | 2007-06-05 | 2012-09-11 | Air Products And Chemicals, Inc. | Staged membrane oxidation reactor system |
JP2010531169A (en) | 2007-06-21 | 2010-09-24 | アボット ダイアベティス ケア インコーポレイテッド | Health monitoring device |
US8435683B2 (en) | 2007-07-19 | 2013-05-07 | Cp Sofc Ip, Llc | Internal reforming solid oxide fuel cells |
KR20100065296A (en) | 2007-07-25 | 2010-06-16 | 더 리전트 오브 더 유니버시티 오브 캘리포니아 | High temperature electrochemical device with interlocking structure |
EP2030674A1 (en) | 2007-08-31 | 2009-03-04 | The Technical University of Denmark | Membrane with a stable nenosized microstructure and method for producing same |
US20090084035A1 (en) | 2007-09-28 | 2009-04-02 | General Electric Company | Polygeneration systems |
US8951314B2 (en) | 2007-10-26 | 2015-02-10 | General Electric Company | Fuel feed system for a gasifier |
US7954458B2 (en) | 2007-11-14 | 2011-06-07 | Alstom Technology Ltd | Boiler having an integrated oxygen producing device |
US20100276119A1 (en) | 2007-12-21 | 2010-11-04 | Doty Scientific, Inc. | Compact, high-effectiveness, gas-to-gas compound recuperator with liquid intermediary |
US20100074828A1 (en) | 2008-01-28 | 2010-03-25 | Fluegen, Inc. | Method and Apparatus for the Removal of Carbon Dioxide from a Gas Stream |
KR101579308B1 (en) | 2008-02-25 | 2015-12-21 | 가부시키가이샤 노리타케 캄파니 리미티드 | Ceramic product and ceramic member bonding method |
JP5244423B2 (en) | 2008-02-29 | 2013-07-24 | 株式会社東芝 | Solid oxide electrochemical cell and method for producing the same |
US8658328B2 (en) | 2008-03-26 | 2014-02-25 | Japan Fine Ceramics Center | Stack structure for laminated solid oxide fuel cell, laminated solid oxide fuel cell and manufacturing method |
DE102008016158A1 (en) | 2008-03-28 | 2009-10-01 | Forschungszentrum Jülich GmbH | Oxygen permeable membrane and process for its preparation |
US7833314B2 (en) | 2008-04-30 | 2010-11-16 | Praxair Technology, Inc. | Purification method and junction for related apparatus |
US8268041B2 (en) | 2008-06-30 | 2012-09-18 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Hollow organic/inorganic composite fibers, sintered fibers, methods of making such fibers, gas separation modules incorporating such fibers, and methods of using such modules |
EP2147896A1 (en) | 2008-07-22 | 2010-01-27 | Uhde GmbH | Low energy process for the production of ammonia or methanol |
US7871579B2 (en) | 2008-08-13 | 2011-01-18 | Air Products And Chemicals, Inc. | Tubular reactor with expandable insert |
CN102438941A (en) | 2008-10-13 | 2012-05-02 | 俄亥俄州立大学研究基金会 | Calcium looping process for high purity hydrogen production intergrated with capture of carbon dioxide, sulfur and halides |
CN102210195B (en) | 2008-11-07 | 2014-02-12 | 皇家飞利浦电子股份有限公司 | Providing power to gas discharge lamp |
US20100116133A1 (en) | 2008-11-10 | 2010-05-13 | Reed David M | Oxygen separation assembly and method |
US8465630B2 (en) | 2008-11-10 | 2013-06-18 | Praxair Technology, Inc. | Oxygen separation assembly and method |
US8273152B2 (en) | 2008-11-14 | 2012-09-25 | Praxair Technology, Inc. | Separation method and apparatus |
JP5483539B2 (en) | 2009-02-04 | 2014-05-07 | 日本碍子株式会社 | Joining method |
US9758881B2 (en) | 2009-02-12 | 2017-09-12 | The George Washington University | Process for electrosynthesis of energetic molecules |
US8357427B2 (en) | 2009-02-12 | 2013-01-22 | International Engine Intellectual Property Company, Llc | Preparation method for a partially coated monolith |
JP2012523963A (en) | 2009-04-20 | 2012-10-11 | エーイー ポリシリコン コーポレーション | Reactor with metal surface coated with silicide |
AP3278A (en) | 2009-05-22 | 2015-05-31 | Sasol Tech Pty Ltd | Process for co-producing synthesis gas and power |
US8201852B2 (en) | 2009-06-26 | 2012-06-19 | Ultraflo Corporation | Pipe coupler and gasket with positive retention and sealing capability |
CA2675913A1 (en) | 2009-08-20 | 2011-02-20 | Thinking Technology Inc. | Interactive talking toy with moveable and detachable body parts |
US20110067405A1 (en) | 2009-09-18 | 2011-03-24 | Concepts Eti, Inc. | Integrated Ion Transport Membrane and Combustion Turbine System |
US8246719B2 (en) | 2009-09-25 | 2012-08-21 | Air Products And Chemicals, Inc. | Use of impure inert gases in the controlled heating and cooling of mixed conducting metal oxide materials |
US8434483B2 (en) | 2009-12-03 | 2013-05-07 | Covidien Lp | Ventilator respiratory gas accumulator with sampling chamber |
US8124037B2 (en) | 2009-12-11 | 2012-02-28 | Delphi Technologies, Inc. | Perovskite materials for solid oxide fuel cell cathodes |
US20110142722A1 (en) | 2009-12-14 | 2011-06-16 | John William Hemmings | Method and apparatus for producing synthesis gas |
US8240370B2 (en) | 2009-12-18 | 2012-08-14 | Air Products And Chemicals, Inc. | Integrated hydrogen production and hydrocarbon extraction |
GB201000156D0 (en) | 2010-01-07 | 2010-02-24 | Gas2 Ltd | Isothermal reactor for partial oxidisation of methane |
US8323463B2 (en) | 2010-01-22 | 2012-12-04 | Praxair Technology, Inc. | Catalyst containing oxygen transport membrane |
FR2958283B1 (en) | 2010-04-01 | 2014-07-04 | Commissariat Energie Atomique | VITROCERAMIC GLASS COMPOSITIONS FOR JOINTS OF APPLIANCES OPERATING AT HIGH TEMPERATURES AND METHOD OF ASSEMBLY USING SAME. |
US8287762B2 (en) | 2010-04-02 | 2012-10-16 | Air Products And Chemicals, Inc. | Operation of staged membrane oxidation reactor systems |
US8591718B2 (en) | 2010-04-19 | 2013-11-26 | Praxair Technology, Inc. | Electrochemical carbon monoxide production |
US8323378B2 (en) | 2010-04-28 | 2012-12-04 | Praxair Technology, Inc. | Oxygen supply method and apparatus |
US8455382B2 (en) | 2010-05-25 | 2013-06-04 | Air Products And Chemicals, Inc. | Fabrication of catalyzed ion transport membrane systems |
FR2962050B1 (en) | 2010-07-01 | 2015-01-30 | Air Liquide | METHOD FOR OPERATING A MIXED IONIC CONDUCTIVE CERAMIC MEMBRANE |
US8834604B2 (en) | 2010-09-16 | 2014-09-16 | Volt Research, Llc | High temperature gas processing system and method for making the same |
US9561476B2 (en) | 2010-12-15 | 2017-02-07 | Praxair Technology, Inc. | Catalyst containing oxygen transport membrane |
US20130072374A1 (en) | 2010-12-15 | 2013-03-21 | Jonathan A. Lane | Catalyst containing oxygen transport membrane |
US20140206779A1 (en) | 2011-02-28 | 2014-07-24 | Klaus S. Lackner | Methods and Systems for Converting Gaseous Hydrocarbons to Synthesis Gas |
US8435332B2 (en) | 2011-04-08 | 2013-05-07 | Praxair Technology, Inc. | Oxygen separation module and apparatus |
US8557218B2 (en) | 2011-05-12 | 2013-10-15 | Exxonmobil Research And Engineering Company | Hydrogen production with carbon capture |
US8623241B2 (en) | 2011-07-08 | 2014-01-07 | Praxair Technology, Inc. | Oxygen transport membrane system and method for transferring heat to catalytic/process reactors |
US8349214B1 (en) | 2011-07-08 | 2013-01-08 | Praxair Technology, Inc. | Synthesis gas method and apparatus |
US9132389B2 (en) | 2011-08-08 | 2015-09-15 | Colorado State University Research Foundation | Magnetically responsive membranes |
EP2771274B1 (en) | 2011-10-26 | 2018-01-31 | Stamicarbon B.V. acting under the name of MT Innovation Center | Method for producing synthesis gas for methanol production |
US9486735B2 (en) | 2011-12-15 | 2016-11-08 | Praxair Technology, Inc. | Composite oxygen transport membrane |
EP2791082B1 (en) | 2011-12-15 | 2021-01-20 | Praxair Technology, Inc. | Method of producing composite oxygen transport membrane |
US9096763B2 (en) | 2011-12-19 | 2015-08-04 | Praxair S.T. Technology, Inc. | Aqueous slurry for the production of thermal and environmental barrier coatings and processes for making and applying the same |
US9254651B2 (en) | 2012-03-27 | 2016-02-09 | Seiko Epson Corporation | Liquid ejecting head, liquid ejecting apparatus, piezoelectric element, and methods of manufacturing liquid ejecting head, liquid ejecting apparatus, and piezoelectric element |
US20140060643A1 (en) | 2012-09-05 | 2014-03-06 | Lane W. Martin | Light Absorbing Oxide Materials for Photovoltaic and Photocatalytic Applications and Devices |
WO2014049119A1 (en) | 2012-09-28 | 2014-04-03 | Danmarks Tekniske Universitet | Method of producing a joined product |
CA2889041A1 (en) | 2012-11-08 | 2014-05-15 | Saint-Gobain Centre De Recherches Et D'etudes Europeen | Porous support layer |
WO2014074559A1 (en) | 2012-11-09 | 2014-05-15 | Praxair Technology, Inc. | Catalyst containing oxygen transport membrane |
EP2873451A4 (en) | 2012-11-19 | 2016-05-04 | Korea Energy Research Inst | Electrode-support type of gas-separation membrane module, tubular structure of same, production method for tubular structure, and hydrocarbon reforming method using same |
US9453644B2 (en) | 2012-12-28 | 2016-09-27 | Praxair Technology, Inc. | Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream |
WO2014107707A2 (en) | 2013-01-07 | 2014-07-10 | Praxair Technology, Inc. | High emissivity and high temperature diffusion barrier coatings for an oxygen transport membrane assembly |
US20140295313A1 (en) | 2013-03-29 | 2014-10-02 | Saint-Gobain Ceramics & Plastics, Inc. | Sanbornite-based glass-ceramic seal for high-temperature applications |
US9296671B2 (en) * | 2013-04-26 | 2016-03-29 | Praxair Technology, Inc. | Method and system for producing methanol using an integrated oxygen transport membrane based reforming system |
US9023245B2 (en) | 2013-04-26 | 2015-05-05 | Praxair Technology, Inc. | Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming |
US9115045B2 (en) | 2013-04-26 | 2015-08-25 | Praxair Technology, Inc. | Method and system for producing methanol using an oxygen transport membrane based reforming system |
US9365422B2 (en) | 2013-04-26 | 2016-06-14 | Praxair Technology, Inc. | Method and system for producing a synthesis gas in an oxygen transport membrane based reforming system with recycling of the produced synthesis gas |
US9212113B2 (en) | 2013-04-26 | 2015-12-15 | Praxair Technology, Inc. | Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming and auxiliary heat source |
WO2015040869A1 (en) | 2013-09-18 | 2015-03-26 | 株式会社村田製作所 | Laminated ceramic capacitor and method for manufacturing same |
WO2015054228A2 (en) * | 2013-10-07 | 2015-04-16 | Praxair Technology, Inc. | Ceramic oxygen transport membrane array reactor and reforming method |
US9562472B2 (en) | 2014-02-12 | 2017-02-07 | Praxair Technology, Inc. | Oxygen transport membrane reactor based method and system for generating electric power |
RU2676062C2 (en) | 2014-03-05 | 2018-12-25 | Праксайр Текнолоджи, Инк. | Method and system for producing liquid hydrocarbon product from fischer-tropsch process using synthesis gas produced from oxygen transport membrane based reforming reactor |
JP6137147B2 (en) | 2014-11-28 | 2017-05-31 | 株式会社村田製作所 | Multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor |
-
2015
- 2015-06-29 US US14/753,815 patent/US10441922B2/en active Active
-
2016
- 2016-06-16 DK DK16751371.2T patent/DK3313557T3/en active
- 2016-06-16 ES ES16751371T patent/ES2809823T3/en active Active
- 2016-06-16 JP JP2017566356A patent/JP2018522717A/en active Pending
- 2016-06-16 WO PCT/US2016/037775 patent/WO2017003705A1/en active Application Filing
- 2016-06-16 CA CA2990603A patent/CA2990603A1/en not_active Abandoned
- 2016-06-16 EP EP16751371.2A patent/EP3313557B1/en active Active
-
2019
- 2019-09-03 US US16/558,917 patent/US20200001248A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
DK3313557T3 (en) | 2020-08-10 |
WO2017003705A1 (en) | 2017-01-05 |
CA2990603A1 (en) | 2017-01-05 |
EP3313557A1 (en) | 2018-05-02 |
ES2809823T3 (en) | 2021-03-05 |
US10441922B2 (en) | 2019-10-15 |
EP3313557B1 (en) | 2020-05-20 |
JP2018522717A (en) | 2018-08-16 |
US20160375411A1 (en) | 2016-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200001248A1 (en) | Dual function composite oxygen transport membrane | |
EP2791082B1 (en) | Method of producing composite oxygen transport membrane | |
US9486735B2 (en) | Composite oxygen transport membrane | |
US20060127656A1 (en) | Catalytic membrane reactor | |
Kiebach et al. | A review on dual-phase oxygen transport membranes: from fundamentals to commercial deployment | |
JP5107868B2 (en) | Controlling dynamic degradation in mixed conducting ion transport membranes | |
CN101795756B (en) | Cheap thin film oxygen membranes | |
WO2014074559A1 (en) | Catalyst containing oxygen transport membrane | |
Julbe et al. | Limitations and potentials of oxygen transport dense and porous ceramic membranes for oxidation reactions | |
CN114349508A (en) | Preparation method and application of multilayer ceramic film with oxide thin layer | |
US20110189066A1 (en) | Robust mixed conducting membrane structure | |
JP2016504175A (en) | Porous support layer | |
JP4293775B2 (en) | Catalyzed ceramic composite, production method thereof, and ceramic membrane reactor | |
US11052353B2 (en) | Catalyst-containing oxygen transport membrane | |
JP2005281077A (en) | Ceramic composition, composite material, and chemical reaction apparatus | |
US11677088B2 (en) | Process for the manufacture of a solid oxide membrane electrode assembly | |
WO2017048461A1 (en) | Composite oxygen transport membrane | |
Liu | Oxygen transport membranes fabricated with a modified phase-inversion casting method | |
JP2021010909A (en) | Oxygen permeation membrane, method for manufacturing same, and reformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PRAXAIR TECHNOLOGY, INC., CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, JIEFENG;PLONCZAK, PAWEL;KELLY, SEAN M.;AND OTHERS;SIGNING DATES FROM 20150701 TO 20150708;REEL/FRAME:050250/0224 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |