US20190386908A1 - Physiological test credit method - Google Patents

Physiological test credit method Download PDF

Info

Publication number
US20190386908A1
US20190386908A1 US16/383,380 US201916383380A US2019386908A1 US 20190386908 A1 US20190386908 A1 US 20190386908A1 US 201916383380 A US201916383380 A US 201916383380A US 2019386908 A1 US2019386908 A1 US 2019386908A1
Authority
US
United States
Prior art keywords
server
physiological
monitor
test
credits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/383,380
Inventor
Marcelo M. Lamego
Jeroen Poeze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Willow Laboratories Inc
Original Assignee
Cercacor Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cercacor Laboratories Inc filed Critical Cercacor Laboratories Inc
Priority to US16/383,380 priority Critical patent/US20190386908A1/en
Publication of US20190386908A1 publication Critical patent/US20190386908A1/en
Priority to US17/125,713 priority patent/US11367529B2/en
Priority to US17/741,315 priority patent/US20220375597A1/en
Assigned to WILLOW LABORATORIES, INC. reassignment WILLOW LABORATORIES, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: CERCACOR LABORATORIES, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q20/00Payment architectures, schemes or protocols
    • G06Q20/08Payment architectures
    • G06Q20/14Payment architectures specially adapted for billing systems
    • G06Q20/145Payments according to the detected use or quantity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/22Social work or social welfare, e.g. community support activities or counselling services
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3271Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using challenge-response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0266Operational features for monitoring or limiting apparatus function
    • A61B2560/028Arrangements to prevent overuse, e.g. by counting the number of uses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases

Definitions

  • Pulse oximetry is a widely accepted noninvasive procedure for measuring the oxygen saturation level of arterial blood, an indicator of a person's oxygen supply.
  • a typical pulse oximetry system utilizes a sensor applied to a patient tissue site. The sensor has emitters that transmit optical radiation having red and infrared (IR) wavelengths into the tissue site.
  • IR infrared
  • a detector responds to the intensity of the optical radiation after attenuation by pulsatile arterial blood flowing within the tissue site. Based on this response, a processor determines measurements for oxygen saturation and pulse rate.
  • a pulse oximeter may display a plethysmograph waveform, which is a visualization of blood volume change within the illuminated tissue caused by the pulsatile arterial blood flow over time.
  • Pulse oximeters capable of reading through motion induced noise are available from Masimo Corporation (“Masimo”) Irvine, Calif. Moreover, portable and other pulse oximeters capable of reading through motion induced noise are disclosed in at least U.S. Pat. Nos. 6,770,028, 6,658,276, 6,157,850, 6,002,952 5,769,785, and 5,758,644, which are all assigned to Masimo and are all incorporated in their entireties by reference herein. Corresponding low noise sensors are also available from Masimo and are disclosed in at least U.S. Pat. Nos.
  • Noninvasive blood parameter monitors capable of measuring blood parameters in addition to SpO 2 , such as HbCO, HbMet and total hemoglobin (Hbt) and corresponding multiple wavelength optical sensors are also available from Masimo.
  • Noninvasive blood parameter monitors and corresponding multiple wavelength optical sensors are described in at least U.S. patent application Ser. No. 11/367,013, filed Mar. 1, 2006 and entitled Multiple Wavelength Sensor Emitters and U.S. patent application Ser. No. 11/366,208, filed Mar. 1, 2006 and entitled Noninvasive Multi-Parameter Patient Monitor, both assigned to Cercacor Laboratories, Inc. (“Cercacor”) Irvine, Calif. and both incorporated in their entireties by reference herein.
  • physiological monitoring systems that include low noise optical sensors and pulse oximetry monitors, such as any of LNOP® adhesive or reusable sensors, SofTouchTM sensors, Hi-Fi TraumaTM or BlueTM sensors; and any of Radical®, SatShareTM, Rad-9TM, Rad-5TM, Rad-5vTM or PPO+TM Masimo SET® pulse oximeters, are all available from Masimo.
  • Physiological monitoring systems including multiple wavelength sensors and corresponding noninvasive blood parameter monitors, such as RainbowTM adhesive and reusable sensors and RAD-57TM and Radical-7TM monitors for measuring SpO 2 , pulse rate, perfusion index, signal quality, HbCO and HbMet among other parameters are also available from Masimo.
  • a physiological monitoring system has a sensor that transmits optical radiation at a multiplicity of wavelengths and a monitor that determines the relative concentrations of blood constituents such as HbO 2 , Hb, carboxyhemoglobin (HbCO), methemoglobin (MetHb), fractional oxygen saturation, total hemoglobin (Hbt) and blood glucose to name a few.
  • the monitor advantageously utilizes test credits each of which represent a quantum of currency.
  • a test credit enables the monitor to make a physiological measurement.
  • different monitor buttons are pressed to measure different variables. For example, one button initiates a SpO 2 measurement and another button initiates a SpCO measurement. After the measurement, the number of available test credits are decremented.
  • the sensor has a memory that stores the test credits, which is decremented after each test.
  • the monitor reads the sensor memory so as to determine the remaining test credits.
  • Physiological monitoring systems include a Masimo Pronto-7® and corresponding rainbow 4DTM DC sensor.
  • the Pronto-7 is a palm-sized device designed for quick-and-easy noninvasive total hemoglobin (SpHb®) spot-check testing, along with SpO 2 , pulse rate, and perfusion index.
  • SpHb® quick-and-easy noninvasive total hemoglobin
  • a spot check monitor and corresponding credit system is described in U.S. patent application Ser. No. 12/882,111 titled Spot Check Monitor Credit System, filed Sep. 14, 2010 and U.S. patent application Ser. No. 13/110,833 titled Spot Check Monitor Credit System, filed May 18, 2011, both assigned to Cercacor and both incorporated in their entireties by reference herein.
  • An aspect of a physiological test credit method programmatically initiates wireless communications between a physiological monitor and a remote server in response to available test credits falling below a predetermined threshold so as to download additional test credits from the server to the monitor and therefore enable the monitor to perform additional physiological parameter spot-checks on a per test credit basis.
  • the physiological test credit system establishes a threshold for test credits stored in an optical sensor attached to a corresponding physiological monitor.
  • a server is securely connected to the monitor when remaining test credits fall below the threshold, and test credits are downloaded from the server to the monitor accordingly.
  • a quantum of test credits is defined and an amount of test credits equal to the quantum is downloaded each time the remaining test credits fall below the threshold.
  • a download frequency is defined according to the number of times remaining test credits fall below the threshold in a given period of time.
  • the threshold is adjusted according to the download frequency. Alternatively, or in addition to adjusting the threshold, the quantum is adjusted according to the download frequency.
  • challenges are exchanged between the server and the monitor so as to verify both the server and the monitor.
  • the challenges may include sending a server challenge code to the monitor and breaking the server challenge code with the monitor and sending a monitor challenge code to the server and breaking the monitor challenge code with the server.
  • the monitor may be validated utilizing sales data.
  • the server may send a request for device serial numbers to the monitor, and the serial numbers are matched to sales data.
  • monitor validation may include sending a server request for a zip code to the monitor and matching the zip code to the monitor account.
  • a physiological test credit method is determining a test credit quantity associated with a physiological sensor, comparing the test credit quantity to a threshold and wirelessly connecting a physiological monitor to a server if the test credit quantity is below the threshold. Server commands are processed so as to download additional test credits to the monitor. Additional test credits are transferred to the physiological sensor, and the physiological monitor is disconnected from the server.
  • the frequency of test credit downloads are tracked and, at least periodically, the amount of additional test credits downloaded are adjusted according to the frequency.
  • the threshold may be adjusted, at least periodically, according to the frequency.
  • the monitor may be challenged to break a server code before any test credits are downloaded to the monitor.
  • the server may be challenged to break a monitor code before any test credits are downloaded to the monitor.
  • a further aspect of a physiological test credit method comprises establishing a wireless connection between a monitor and a server; downloading a file of test credits from the server to the monitor; transferring the test credits to a sensor in communications with the monitor; performing a physiological test on a person using the sensor; displaying a result of the physiological test on the monitor; deducting a test credit from the sensor in response to the test; and downloading an additional file of test credits from the server to the monitor in response to the number of test credits remaining in the sensor falling below a threshold.
  • a quantity of test credits contained in the additional file are defined and adjusted according to the time between the downloading of the file and the downloading of the additional file.
  • the threshold is adjusted according to the time between the downloading of the file and the downloading of the additional file.
  • a two-way challenge is performed between the monitor and the server before downloading a file of test credits.
  • the two-way challenge comprises sending a server challenge code to the monitor; breaking the server challenge code at the monitor; sending a monitor challenge code to the server; and breaking the monitor challenge code at the server.
  • the sensor and the monitor serial numbers are sent to the server, and the serial numbers are matched with sales data available to the server. Monitor configuration parameters are saved on the server.
  • a physiological test credit system establishes wireless communications between a physiological monitor and a remote server.
  • the server downloads test credits from the server to a sensor attached to the monitor. Each test credit allows the monitor to perform a spot-check of a physiological parameter.
  • the monitor initiates a test credit download when the number of available test credits for a sensor falls below a test credit threshold.
  • the monitor establishes a wireless connection with a server.
  • the monitor and server perform a two-way challenge so that each can verify a connection to an approved device.
  • the server also authenticates the monitor's account on the server. If the challenges and authentication are successful, the server downloads a credit file of test credits to the monitor and its attached sensor. The monitor and server then disconnect.
  • An additional aspect of a physiological test credit method establishes wireless communications between a physiological monitor and a remote server so as to download test credits to the monitor and its attached optical sensor. This enables the monitor to perform physiological parameter spot-checks on a per test credit basis.
  • the physiological test credit method establishes a minimum threshold for test credits stored in an optical sensor attached to a corresponding physiological monitor and connects a server to the monitor when remaining test credits fall below the minimum threshold.
  • the server-monitor connection first requires the monitor and server to exchange mutual code-breaking challenges for server-monitor verification.
  • the server is then allowed to authenticate the monitor user account and funds.
  • the server further validates the monitor via sales data. Monitor settings are saved to the server, and server commands are sent to the monitor.
  • a server command is sent to the monitor to download configuration parameters including the test credit minimum threshold.
  • the first time a monitor is connected to a server a one-time monitor setup is performed. In exchanging challenges a server challenge code is sent to the monitor. The monitor must break the server challenge code. Then the monitor sends a challenge code to the server, which the server must break.
  • Monitor validation involves a server request for device serial numbers from the monitor, which are matched with sales data. The server also requests a monitor zip code, which is matched with the monitor account.
  • user settings are saved in the monitor and downloaded to the server.
  • the server sends monitor commands that comprise OP commands to perform a monitor functions, GUI commands to display results and hybrid command to initiate a user response.
  • a further aspect of a physiological test credit method comprises establishing a wireless connection between a monitor and a server, performing a two-way challenge between the monitor and the server, authenticating the monitor and validating the monitor.
  • the method may further comprise transferring a credit file of test credits from the server to the monitor, performing a physiological test, deducting a test credit corresponding to the test from the monitor account, and disconnecting the monitor and the server.
  • the server also performs a one-time monitor setup.
  • the two-way challenge includes sending a first challenge code from the server to the monitor, breaking the first challenge code at the monitor, sending a second challenge code from the monitor to the server and breaking the second challenge code at the server.
  • a monitor validation comprises sending sensor and monitor serial numbers to the server, matching the serial numbers with sales data available to the server, sending a zip code to the server and matching the zip code with account information available to the server.
  • Authenticating may comprise verifying the monitor's user account and funds.
  • Setting-up the monitor may comprise sending commands and queries to the monitor so as to receive configuration parameters.
  • test credits are available to the monitor and checks if a Wi-Fi connection is available. If test credits are less than a test credit threshold, the monitor connects to a test credit server, processes server commands so as to download test credits and disconnects from the server.
  • the monitor is challenged to break a server code, the server is challenged to break a monitor code. The server validates monitor serial codes, and saves monitor configuration parameters.
  • FIG. 1 is a flowchart of a monitor-side physiological test credit method
  • FIGS. 2-3 are flowcharts of a server-side physiological test credit method
  • FIG. 4 is a flowchart of a two-way challenge for both the server and the monitor to verify their connections
  • FIG. 5 is a flowchart of server and monitor account validation
  • FIG. 6 is a flowchart of a server one-time monitor setup
  • FIG. 7 is a flowchart of server command and monitor acknowledgement communications.
  • FIGS. 8A-C are flowcharts of server communications of and monitor responses to operational, GUI and hybrid commands.
  • FIGS. 1-3 illustrate test credit downloads to a monitoring device using a broadband connection, such as Wi-Fi.
  • the monitor always initiates the connection.
  • the monitor initiates the connection after a test is performed and the available test credits fall below a predefined update threshold.
  • For manual downloads a user initiates the connection using a monitor menu flow. Accordingly, when a monitor initiates a connection, the initial connection request will have a parameter that describes whether or not a user manually initiated the connection.
  • the monitor initiates a connection to a test credit server after a test is performed and the test credits drop below a user-predefined update threshold.
  • a user-predefined quantum of test credits (an integer between 1 and N inclusive) is downloaded each time the update threshold is crossed.
  • the test credit update threshold and the test credit download quantum are user-defined.
  • the monitor automatically adjusts the test credit download quantum and/or the test credit update threshold according to the frequency of test credit usage so as to advantageously reduce the frequency of server connections during periods of heavy monitor usage and to advantageously spread-out test credit expenditures during periods of light monitor usage.
  • the relationship between test credit download quantum, test credit update threshold and test credit usage is user defined.
  • a server may query/inform a user about this scenario via GUI commands to the monitor.
  • a monitor initiates a manual download via a local GUI. Then the server takes over the process as with an auto download mode.
  • FIG. 1 illustrates a test credit download process from a monitor perspective 100 .
  • a monitor test credit download can be initiated automatically 110 .
  • the number of available tests credits on a connected sensor is determined and compared with a specified update threshold 130 . If the available test credits have not fallen below that threshold 132 , the update process exits 190 . If the number of test credits are below that threshold 134 , the update process continues.
  • a monitor test credit download can be initiated manually when a user selects a manual test credit update menu option 120 .
  • Wi-Fi availability is determined 140 . If there is no Wi-Fi 142 , the process displays an error message 145 and exits 190 . If Wi-Fi is available 144 , a connection 150 to a server is attempted 152 , as described below. Once a server connection is established 154 , the monitor processes commands from the server 160 , disconnects 170 and exits 190 .
  • FIGS. 2-3 illustrate a test credit download process from a server perspective.
  • the server immediately after a Wi-Fi connection is established between monitor and server, the server initiates a two-way challenge with secret hashing 210 . Both the server and the monitor use a two-way challenge to verify their connection with a real monitor or server, respectively, as described in detail with respect to FIG. 4 , below. If the challenge 210 is successful 222 , the server determines if the update is manual or automatic 230 . If automatic 232 , the server verifies that the user has turned on the auto download feature 240 , prompting the user 250 , 260 if necessary. If the auto download remains off, the server disconnects 372 ( FIG. 3 ).
  • a secure authentication 270 is performed, which verifies the user's account and funds. If authentication fails 282 , an error 185 ( FIG. 1 ) is returned to the monitor, an error message is displayed 180 ( FIG. 1 ) and the monitor disconnects 170 ( FIG. 1 ). If authentication succeeds 284 , validation is performed 301 ( FIG. 3 ).
  • this step insures that customers, monitors and sensors are paired to the appropriate manufacturer or distributor. This can be a one-time validation or a validation for every credit download.
  • the server when the server recognizes that a monitor is connecting for the first time 310 , the server performs a one-time setup 312 , as described with respect to FIG. 6 , below. If there is any problems with the setup 314 , the server sends an error 185 ( FIG. 1 ) to the monitor, drops the connection 370 and exits 380 . If the setup 312 is currently successful 316 or was previously performed 310 , the server determines if the requested number of test credits are available 320 . If so, the credit file is created and sent to the monitor 330 . If not, an error is returned to the monitor 185 ( FIG. 1 ), and the server disconnects 370 and exits 380 .
  • the monitor receives a credit file from the server 330 .
  • the monitor sends an ACK and the server receives the ACK 340 .
  • the server deducts the credit from user account; the server increments the index count; and/or the monitor updates credits into the sensor 350 .
  • the server drops the connection 370 upon successful completion of the process 360 or if it recognizes any error 185 ( FIG. 1 ).
  • the monitor drops the connection 170 ( FIG. 1 ) if the server does not meet the monitor's challenge or the monitor recognizes an error 185 due to any reason.
  • FIG. 4 illustrates the two-way challenge 400 for both the server 401 and the monitor 403 to verify their connections.
  • both the monitor and the server challenge each other with a code to break, which only a real server and a real monitor know how to do.
  • the server 410 first challenges the monitor 450 to break a code. If the server sees that the device cannot break the code 420 , the server drops the connection. Otherwise, the server 430 asks the monitor 470 to send the server a code to break. If the monitor sees that the server cannot break the code 480 , the monitor drops the connection.
  • FIG. 5 illustrates monitor and user account validation 500 .
  • Validation is performed for direct from manufacturer sales or for sales through distributors.
  • Monitor and a sensor serial numbers can be compared with sales order records or with tracing data from distributors.
  • a zip code can be used in a manner similar to a credit card, i.e. to prevent a user from accessing a wrong account due to incorrect recording of serial numbers.
  • An address can be used the same as a zip code, but is more secure. However, an address is prone to user error and free text input is difficult to validate.
  • a web registration can be used for distribution sales or direct acute care sales.
  • the server 501 requests monitor and sensor data 510 .
  • the monitor 503 receives the request 530 and complies 570 .
  • the server 501 receives the requested data 520 , which is compared with server records 530 - 550 for a match.
  • the server sends an error message 185 ( FIG. 1 ) for a monitor to display 180 ( FIG. 1 ), such as Contact Tech Support, if validation data does not match with sales records.
  • FIG. 6 illustrates a server 610 performing a monitor setup 600 .
  • the server 601 sends saved settings 610 to the monitor 630 .
  • the user can always change settings online 640 .
  • the monitor 650 sends these to the server to save 620 .
  • Any configuration parameters that the monitor needs to remember, such as the low credit threshold, are saved on the server side 601 .
  • the server 601 initially sends a set of commands/queries to the monitor to get configuration parameters (not shown). These parameters include: turn on/off auto-download; define threshold that initiates automatic download; and define number of credits to automatically download.
  • the server may also perform an extra one-time validation, using, e.g., a zip code or the last 4 digits of an account number. If any errors occur on the monitor side, a local message is displayed and the connection is dropped. If any errors occur on server side, the server may choose to display an error message on the server side (via GUI commands) and drop the connection.
  • FIG. 7 illustrates server command and monitor acknowledgement communications 700 .
  • the server assumes the master role and the monitor assumes a slave role.
  • the server 701 sends commands/queries 710 , which the monitor 703 interprets 30 .
  • the monitor 703 performs the commands 740 and acknowledges/answers the queries 750 . Any errors are displayed 760 on the monitor 703 .
  • the sensor 701 saves the monitor responses 720 .
  • the server sends commands in a form of HTML-like NMEA data.
  • FIGS. 8A-C illustrate server commands and monitor responses to those commands.
  • the server 801 may send three types of commands including an operational command 810 , a GUI command 840 and a hybrid command 870 .
  • an operational command 810 may be “get zip code,” or “accept credit file and send back ACK.”
  • GUI commands 840 may be, for example, display message “online credit update in progress.”
  • a hybrid command 870 may be to display a GUI as well as expect a response from the monitor user. An example would be a command to display the message “want to turn on auto update?” and wait for a “yes” or “no” response.
  • the monitor 803 response to an op command 830 is to perform a function 832 and return a result and/or ACK 834 .
  • the monitor 803 response to a GUI command 860 is to display a result and ACK 862 .
  • the monitor 803 response to a hybrid command 890 is to receive and return a user response 892 , 894 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Accounting & Taxation (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Finance (AREA)
  • Primary Health Care (AREA)
  • Signal Processing (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Computer Security & Cryptography (AREA)
  • Development Economics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Tourism & Hospitality (AREA)
  • Child & Adolescent Psychology (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

A physiological test credit method determines if test credits are available to the monitor and checks if a Wi-Fi connection is available. If test credits are less than a test credit threshold, the monitor connects to a test credit server, processes server commands so as to download test credits and disconnects from the server. In various embodiments, the monitor is challenged to break a server code, the server is challenged to break a monitor code. The server validates monitor serial codes, and saves monitor configuration parameters.

Description

    PRIORITY CLAIM AND REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of U.S. patent application Ser. No. 15/713,275, filed Sep. 22, 2017, titled Physiological Test Credit Method, which is a continuation of U.S. patent application Ser. No. 14/071,447, filed Nov. 4, 2013, now U.S. Pat. No. 9,787,568, titled Physiological Test Credit Method, claims priority benefit under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 61/722,245, filed Nov. 5, 2012, titled Physiological Test Credit System, hereby incorporated in its entirety by reference herein.
  • BACKGROUND OF THE INVENTION
  • Pulse oximetry is a widely accepted noninvasive procedure for measuring the oxygen saturation level of arterial blood, an indicator of a person's oxygen supply. A typical pulse oximetry system utilizes a sensor applied to a patient tissue site. The sensor has emitters that transmit optical radiation having red and infrared (IR) wavelengths into the tissue site. A detector responds to the intensity of the optical radiation after attenuation by pulsatile arterial blood flowing within the tissue site. Based on this response, a processor determines measurements for oxygen saturation and pulse rate. In addition, a pulse oximeter may display a plethysmograph waveform, which is a visualization of blood volume change within the illuminated tissue caused by the pulsatile arterial blood flow over time.
  • Pulse oximeters capable of reading through motion induced noise are available from Masimo Corporation (“Masimo”) Irvine, Calif. Moreover, portable and other pulse oximeters capable of reading through motion induced noise are disclosed in at least U.S. Pat. Nos. 6,770,028, 6,658,276, 6,157,850, 6,002,952 5,769,785, and 5,758,644, which are all assigned to Masimo and are all incorporated in their entireties by reference herein. Corresponding low noise sensors are also available from Masimo and are disclosed in at least U.S. Pat. Nos. 6,985,764, 6,813,511, 6,792,300, 6,256,523, 6,088,607, 5,782,757 and 5,638,818, which are all assigned to Masimo and are all incorporated in their entireties by reference herein. Such reading through motion pulse oximeters and low noise sensors have gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care and neonatal units, general wards, home care, physical training, and virtually all types of monitoring scenarios.
  • Noninvasive blood parameter monitors capable of measuring blood parameters in addition to SpO2, such as HbCO, HbMet and total hemoglobin (Hbt) and corresponding multiple wavelength optical sensors are also available from Masimo. Noninvasive blood parameter monitors and corresponding multiple wavelength optical sensors are described in at least U.S. patent application Ser. No. 11/367,013, filed Mar. 1, 2006 and entitled Multiple Wavelength Sensor Emitters and U.S. patent application Ser. No. 11/366,208, filed Mar. 1, 2006 and entitled Noninvasive Multi-Parameter Patient Monitor, both assigned to Cercacor Laboratories, Inc. (“Cercacor”) Irvine, Calif. and both incorporated in their entireties by reference herein.
  • Further, physiological monitoring systems that include low noise optical sensors and pulse oximetry monitors, such as any of LNOP® adhesive or reusable sensors, SofTouch™ sensors, Hi-Fi Trauma™ or Blue™ sensors; and any of Radical®, SatShare™, Rad-9™, Rad-5™, Rad-5v™ or PPO+™ Masimo SET® pulse oximeters, are all available from Masimo. Physiological monitoring systems including multiple wavelength sensors and corresponding noninvasive blood parameter monitors, such as Rainbow™ adhesive and reusable sensors and RAD-57™ and Radical-7™ monitors for measuring SpO2, pulse rate, perfusion index, signal quality, HbCO and HbMet among other parameters are also available from Masimo.
  • SUMMARY OF THE INVENTION
  • A physiological monitoring system has a sensor that transmits optical radiation at a multiplicity of wavelengths and a monitor that determines the relative concentrations of blood constituents such as HbO2, Hb, carboxyhemoglobin (HbCO), methemoglobin (MetHb), fractional oxygen saturation, total hemoglobin (Hbt) and blood glucose to name a few. The monitor advantageously utilizes test credits each of which represent a quantum of currency. A test credit enables the monitor to make a physiological measurement. In various embodiments different monitor buttons are pressed to measure different variables. For example, one button initiates a SpO2 measurement and another button initiates a SpCO measurement. After the measurement, the number of available test credits are decremented. The sensor has a memory that stores the test credits, which is decremented after each test. The monitor reads the sensor memory so as to determine the remaining test credits. Physiological monitoring systems include a Masimo Pronto-7® and corresponding rainbow 4D™ DC sensor. The Pronto-7 is a palm-sized device designed for quick-and-easy noninvasive total hemoglobin (SpHb®) spot-check testing, along with SpO2, pulse rate, and perfusion index. A spot check monitor and corresponding credit system is described in U.S. patent application Ser. No. 12/882,111 titled Spot Check Monitor Credit System, filed Sep. 14, 2010 and U.S. patent application Ser. No. 13/110,833 titled Spot Check Monitor Credit System, filed May 18, 2011, both assigned to Cercacor and both incorporated in their entireties by reference herein.
  • An aspect of a physiological test credit method programmatically initiates wireless communications between a physiological monitor and a remote server in response to available test credits falling below a predetermined threshold so as to download additional test credits from the server to the monitor and therefore enable the monitor to perform additional physiological parameter spot-checks on a per test credit basis. The physiological test credit system establishes a threshold for test credits stored in an optical sensor attached to a corresponding physiological monitor. A server is securely connected to the monitor when remaining test credits fall below the threshold, and test credits are downloaded from the server to the monitor accordingly. In various embodiments, a quantum of test credits is defined and an amount of test credits equal to the quantum is downloaded each time the remaining test credits fall below the threshold. A download frequency is defined according to the number of times remaining test credits fall below the threshold in a given period of time. The threshold is adjusted according to the download frequency. Alternatively, or in addition to adjusting the threshold, the quantum is adjusted according to the download frequency.
  • In various other embodiments, challenges are exchanged between the server and the monitor so as to verify both the server and the monitor. The challenges may include sending a server challenge code to the monitor and breaking the server challenge code with the monitor and sending a monitor challenge code to the server and breaking the monitor challenge code with the server. The monitor may be validated utilizing sales data. Also, the server may send a request for device serial numbers to the monitor, and the serial numbers are matched to sales data. Further, monitor validation may include sending a server request for a zip code to the monitor and matching the zip code to the monitor account.
  • Another aspect a physiological test credit method is determining a test credit quantity associated with a physiological sensor, comparing the test credit quantity to a threshold and wirelessly connecting a physiological monitor to a server if the test credit quantity is below the threshold. Server commands are processed so as to download additional test credits to the monitor. Additional test credits are transferred to the physiological sensor, and the physiological monitor is disconnected from the server.
  • In various embodiments, the frequency of test credit downloads are tracked and, at least periodically, the amount of additional test credits downloaded are adjusted according to the frequency. The threshold may be adjusted, at least periodically, according to the frequency. The monitor may be challenged to break a server code before any test credits are downloaded to the monitor. The server may be challenged to break a monitor code before any test credits are downloaded to the monitor.
  • A further aspect of a physiological test credit method comprises establishing a wireless connection between a monitor and a server; downloading a file of test credits from the server to the monitor; transferring the test credits to a sensor in communications with the monitor; performing a physiological test on a person using the sensor; displaying a result of the physiological test on the monitor; deducting a test credit from the sensor in response to the test; and downloading an additional file of test credits from the server to the monitor in response to the number of test credits remaining in the sensor falling below a threshold.
  • In various embodiments, a quantity of test credits contained in the additional file are defined and adjusted according to the time between the downloading of the file and the downloading of the additional file. The threshold is adjusted according to the time between the downloading of the file and the downloading of the additional file. A two-way challenge is performed between the monitor and the server before downloading a file of test credits. The two-way challenge comprises sending a server challenge code to the monitor; breaking the server challenge code at the monitor; sending a monitor challenge code to the server; and breaking the monitor challenge code at the server. The sensor and the monitor serial numbers are sent to the server, and the serial numbers are matched with sales data available to the server. Monitor configuration parameters are saved on the server.
  • Yet another aspect of a physiological test credit system establishes wireless communications between a physiological monitor and a remote server. The server downloads test credits from the server to a sensor attached to the monitor. Each test credit allows the monitor to perform a spot-check of a physiological parameter. The monitor initiates a test credit download when the number of available test credits for a sensor falls below a test credit threshold. The monitor establishes a wireless connection with a server. The monitor and server perform a two-way challenge so that each can verify a connection to an approved device. The server also authenticates the monitor's account on the server. If the challenges and authentication are successful, the server downloads a credit file of test credits to the monitor and its attached sensor. The monitor and server then disconnect.
  • An additional aspect of a physiological test credit method establishes wireless communications between a physiological monitor and a remote server so as to download test credits to the monitor and its attached optical sensor. This enables the monitor to perform physiological parameter spot-checks on a per test credit basis. The physiological test credit method establishes a minimum threshold for test credits stored in an optical sensor attached to a corresponding physiological monitor and connects a server to the monitor when remaining test credits fall below the minimum threshold. The server-monitor connection first requires the monitor and server to exchange mutual code-breaking challenges for server-monitor verification. The server is then allowed to authenticate the monitor user account and funds. The server further validates the monitor via sales data. Monitor settings are saved to the server, and server commands are sent to the monitor.
  • In various embodiments, a server command is sent to the monitor to download configuration parameters including the test credit minimum threshold. The first time a monitor is connected to a server, a one-time monitor setup is performed. In exchanging challenges a server challenge code is sent to the monitor. The monitor must break the server challenge code. Then the monitor sends a challenge code to the server, which the server must break. Monitor validation involves a server request for device serial numbers from the monitor, which are matched with sales data. The server also requests a monitor zip code, which is matched with the monitor account. In various other embodiments, user settings are saved in the monitor and downloaded to the server. The server sends monitor commands that comprise OP commands to perform a monitor functions, GUI commands to display results and hybrid command to initiate a user response.
  • A further aspect of a physiological test credit method comprises establishing a wireless connection between a monitor and a server, performing a two-way challenge between the monitor and the server, authenticating the monitor and validating the monitor. The method may further comprise transferring a credit file of test credits from the server to the monitor, performing a physiological test, deducting a test credit corresponding to the test from the monitor account, and disconnecting the monitor and the server. The server also performs a one-time monitor setup.
  • In various embodiments, the two-way challenge includes sending a first challenge code from the server to the monitor, breaking the first challenge code at the monitor, sending a second challenge code from the monitor to the server and breaking the second challenge code at the server. A monitor validation comprises sending sensor and monitor serial numbers to the server, matching the serial numbers with sales data available to the server, sending a zip code to the server and matching the zip code with account information available to the server. Authenticating may comprise verifying the monitor's user account and funds. Setting-up the monitor may comprise sending commands and queries to the monitor so as to receive configuration parameters.
  • Another aspect of a physiological test credit method determines if test credits are available to the monitor and checks if a Wi-Fi connection is available. If test credits are less than a test credit threshold, the monitor connects to a test credit server, processes server commands so as to download test credits and disconnects from the server. In various embodiments, the monitor is challenged to break a server code, the server is challenged to break a monitor code. The server validates monitor serial codes, and saves monitor configuration parameters.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flowchart of a monitor-side physiological test credit method;
  • FIGS. 2-3 are flowcharts of a server-side physiological test credit method;
  • FIG. 4 is a flowchart of a two-way challenge for both the server and the monitor to verify their connections;
  • FIG. 5 is a flowchart of server and monitor account validation;
  • FIG. 6 is a flowchart of a server one-time monitor setup;
  • FIG. 7 is a flowchart of server command and monitor acknowledgement communications; and
  • FIGS. 8A-C are flowcharts of server communications of and monitor responses to operational, GUI and hybrid commands.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIGS. 1-3 illustrate test credit downloads to a monitoring device using a broadband connection, such as Wi-Fi. In an embodiment, the monitor always initiates the connection. There are two ways a user can download test credits. “Automatic download” or “Manual download.” For automatic downloads, the monitor initiates the connection after a test is performed and the available test credits fall below a predefined update threshold. For manual downloads, a user initiates the connection using a monitor menu flow. Accordingly, when a monitor initiates a connection, the initial connection request will have a parameter that describes whether or not a user manually initiated the connection.
  • For an automatic download, the monitor initiates a connection to a test credit server after a test is performed and the test credits drop below a user-predefined update threshold. In an embodiment, a user-predefined quantum of test credits (an integer between 1 and N inclusive) is downloaded each time the update threshold is crossed. In an embodiment, the test credit update threshold and the test credit download quantum are user-defined. In an embodiment, the monitor automatically adjusts the test credit download quantum and/or the test credit update threshold according to the frequency of test credit usage so as to advantageously reduce the frequency of server connections during periods of heavy monitor usage and to advantageously spread-out test credit expenditures during periods of light monitor usage. In an embodiment, the relationship between test credit download quantum, test credit update threshold and test credit usage is user defined.
  • The process of updating the test credits is done in the background. However, a user will not be able to perform a test during this period. If insufficient test credits are available for auto-download, a server may query/inform a user about this scenario via GUI commands to the monitor. A monitor initiates a manual download via a local GUI. Then the server takes over the process as with an auto download mode.
  • FIG. 1 illustrates a test credit download process from a monitor perspective 100. A monitor test credit download can be initiated automatically 110. After a test is complete, the number of available tests credits on a connected sensor is determined and compared with a specified update threshold 130. If the available test credits have not fallen below that threshold 132, the update process exits 190. If the number of test credits are below that threshold 134, the update process continues.
  • Also shown in FIG. 1, alternatively, a monitor test credit download can be initiated manually when a user selects a manual test credit update menu option 120. For either auto update 110 or manual update 120, Wi-Fi availability is determined 140. If there is no Wi-Fi 142, the process displays an error message 145 and exits 190. If Wi-Fi is available 144, a connection 150 to a server is attempted 152, as described below. Once a server connection is established 154, the monitor processes commands from the server 160, disconnects 170 and exits 190.
  • FIGS. 2-3 illustrate a test credit download process from a server perspective. As shown in FIG. 2, immediately after a Wi-Fi connection is established between monitor and server, the server initiates a two-way challenge with secret hashing 210. Both the server and the monitor use a two-way challenge to verify their connection with a real monitor or server, respectively, as described in detail with respect to FIG. 4, below. If the challenge 210 is successful 222, the server determines if the update is manual or automatic 230. If automatic 232, the server verifies that the user has turned on the auto download feature 240, prompting the user 250, 260 if necessary. If the auto download remains off, the server disconnects 372 (FIG. 3). With either the manual or automatic update, a secure authentication 270 is performed, which verifies the user's account and funds. If authentication fails 282, an error 185 (FIG. 1) is returned to the monitor, an error message is displayed 180 (FIG. 1) and the monitor disconnects 170 (FIG. 1). If authentication succeeds 284, validation is performed 301 (FIG. 3).
  • As shown in FIG. 2, once the user's account is authenticated, the customer and/or monitor and sensor are validated 290. In part, this step insures that customers, monitors and sensors are paired to the appropriate manufacturer or distributor. This can be a one-time validation or a validation for every credit download.
  • As shown in FIG. 3, when the server recognizes that a monitor is connecting for the first time 310, the server performs a one-time setup 312, as described with respect to FIG. 6, below. If there is any problems with the setup 314, the server sends an error 185 (FIG. 1) to the monitor, drops the connection 370 and exits 380. If the setup 312 is currently successful 316 or was previously performed 310, the server determines if the requested number of test credits are available 320. If so, the credit file is created and sent to the monitor 330. If not, an error is returned to the monitor 185 (FIG. 1), and the server disconnects 370 and exits 380.
  • Further shown in FIG. 3, after the monitor receives a credit file from the server 330. The monitor sends an ACK and the server receives the ACK 340. Using hand-shaking, either zero or all three of the following operations take place: the server deducts the credit from user account; the server increments the index count; and/or the monitor updates credits into the sensor 350.
  • Additionally shown in FIG. 3, the server drops the connection 370 upon successful completion of the process 360 or if it recognizes any error 185 (FIG. 1). The monitor drops the connection 170 (FIG. 1) if the server does not meet the monitor's challenge or the monitor recognizes an error 185 due to any reason.
  • FIG. 4 illustrates the two-way challenge 400 for both the server 401 and the monitor 403 to verify their connections. In order to do that, both the monitor and the server challenge each other with a code to break, which only a real server and a real monitor know how to do. In particular, the server 410 first challenges the monitor 450 to break a code. If the server sees that the device cannot break the code 420, the server drops the connection. Otherwise, the server 430 asks the monitor 470 to send the server a code to break. If the monitor sees that the server cannot break the code 480, the monitor drops the connection.
  • FIG. 5 illustrates monitor and user account validation 500. Validation is performed for direct from manufacturer sales or for sales through distributors. Several validation methods can be used. Monitor and a sensor serial numbers can be compared with sales order records or with tracing data from distributors. A zip code can be used in a manner similar to a credit card, i.e. to prevent a user from accessing a wrong account due to incorrect recording of serial numbers. An address can be used the same as a zip code, but is more secure. However, an address is prone to user error and free text input is difficult to validate. A web registration can be used for distribution sales or direct acute care sales.
  • As shown in FIG. 5, the server 501 requests monitor and sensor data 510. The monitor 503 receives the request 530 and complies 570. The server 501 receives the requested data 520, which is compared with server records 530-550 for a match. The server sends an error message 185 (FIG. 1) for a monitor to display 180 (FIG. 1), such as Contact Tech Support, if validation data does not match with sales records.
  • FIG. 6 illustrates a server 610 performing a monitor setup 600. The server 601 sends saved settings 610 to the monitor 630. The user can always change settings online 640. The monitor 650 sends these to the server to save 620. Any configuration parameters that the monitor needs to remember, such as the low credit threshold, are saved on the server side 601. The server 601 initially sends a set of commands/queries to the monitor to get configuration parameters (not shown). These parameters include: turn on/off auto-download; define threshold that initiates automatic download; and define number of credits to automatically download. The server may also perform an extra one-time validation, using, e.g., a zip code or the last 4 digits of an account number. If any errors occur on the monitor side, a local message is displayed and the connection is dropped. If any errors occur on server side, the server may choose to display an error message on the server side (via GUI commands) and drop the connection.
  • FIG. 7 illustrates server command and monitor acknowledgement communications 700. Once a connection is established, the server assumes the master role and the monitor assumes a slave role. The server 701 sends commands/queries 710, which the monitor 703 interprets 30. The monitor 703 performs the commands 740 and acknowledges/answers the queries 750. Any errors are displayed 760 on the monitor 703. The sensor 701 saves the monitor responses 720. In an embodiment, the server sends commands in a form of HTML-like NMEA data.
  • FIGS. 8A-C illustrate server commands and monitor responses to those commands. The server 801 may send three types of commands including an operational command 810, a GUI command 840 and a hybrid command 870. For example, an operational command 810 may be “get zip code,” or “accept credit file and send back ACK.” GUI commands 840 may be, for example, display message “online credit update in progress.” A hybrid command 870 may be to display a GUI as well as expect a response from the monitor user. An example would be a command to display the message “want to turn on auto update?” and wait for a “yes” or “no” response.
  • As shown in FIGS. 8A-C, the monitor 803 response to an op command 830 is to perform a function 832 and return a result and/or ACK 834. The monitor 803 response to a GUI command 860 is to display a result and ACK 862. The monitor 803 response to a hybrid command 890 is to receive and return a user response 892, 894.
  • A physiological test credit method has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in art will appreciate many variations and modifications.

Claims (21)

1. (canceled)
2. A physiological monitoring system configured to perform parameter spot-checks on a per test credit basis, the physiological monitoring system comprising:
a sensor configured to be placed at a measurement location of a user;
a physiological monitor configured to be coupled to the sensor and comprising one or more signal processors;
a memory configured to store one or more test credits;
wherein, when enabled by one of the one or more test credits stored in the memory, the one or more signal processors of the physiological monitor are configured to receive and process signals that are outputted by the sensor to make a physiological measurement of the user, a number of the test credits stored in the memory decremented after each physiological measurement, and
wherein the physiological monitor is configured to initiate communication with a server in response to the number of the test credits stored in the memory falling below a predetermined threshold, wherein:
the physiological monitor transfers additional test credits received from the server to the memory, and
the server updates a user account to reflect that the additional test credits have been downloaded by the physiological monitor from the server.
3. The physiological monitoring system of claim 2, wherein the physiological monitor is configured to initiate communication with the server by:
securely connecting to the server,
receiving the additional test credits from the server, and
sending an acknowledgement for receipt of the additional test credits to the server.
4. The physiological monitoring system of claim 3, wherein the physiological monitor performs a hand-shake with the server upon the server receiving the acknowledgement.
5. The physiological monitoring system of claim 3, wherein the physiological monitor securely connecting to the server comprises the physiological monitor exchanging challenges with the server.
6. The physiological monitoring system of claim 3, wherein the physiological monitor securely connecting to the server comprises the physiological monitor sending to the server monitor and/or sensor data to be matched to sales and/or distributors data for validation of the physiological monitor and the user account.
7. The physiological monitoring system of claim 2, wherein the additional test credits comprises a user-predefined download quantum of the test credits.
8. The physiological monitoring system of claim 7, wherein the physiological monitor is configured to automatically adjust the user-predefined download quantum and/or the predetermined threshold according to a frequency of test credit usage or a frequency of test credit downloads.
9. The physiological monitoring system of claim 2, wherein the server updating the user account comprises the server deducting the additional test credits from the user account and incrementing a test credit downloading index count.
10. The physiological monitoring system of claim 2, wherein the physiological monitor is configured to determine the number of the test credits stored in the memory after each physiological measurement.
11. The physiological monitoring system of claim 2, wherein the sensor comprises an optical sensor configured to transmit optical radiation at a plurality of wavelengths.
12. A physiological test credit system configured to enable a physiological monitor to perform parameter spot-checks, the system comprising:
a physiological monitor configured to be coupled to a physiological sensor, the physiological monitor comprising one or more signal processors,
wherein, when enabled by a test credit stored in a memory of the system, the physiological monitor is configured to receive and process signals outputted by the physiological sensor to make a physiological measurement of a user, the physiological monitor decrementing a number of test credits stored in the memory after each physiological measurement,
wherein the physiological monitor is configured to initiate communication with a server in response to the number of test credits stored in the memory falling below a predetermined threshold, and
wherein, upon the physiological monitor having been securely connected to the server, the physiological monitor is configured to update the number of the test credits stored in the memory and the server is configured to update a user account to reflect that additional test credits have been downloaded by the physiological monitor from the server.
13. The physiological test credit system of claim 12, wherein the physiological monitor is configured to securely connect to the server by:
processing server commands instructing the physiological monitor to download the additional test credits from the server,
downloading the additional test credits from the server, and
sending an acknowledgement for receipt of the additional test credits to the server.
14. The physiological test credit system of claim 13, wherein the physiological monitor is configured to perform a hand-shake with the server upon the server receiving the acknowledgement.
15. The physiological test credit system of claim 12, wherein the physiological monitor securely connecting to the server comprises the physiological monitor exchanging challenges with the server.
16. The physiological test credit system of claim 15, wherein the physiological monitor exchanges challenges with the server by:
receiving a server challenge code sent from the server;
breaking the server challenge code; and
sending a monitor challenge code to the server for the server to break the monitor challenge code.
17. The physiological test credit system of claim 12, wherein the physiological monitor securely connecting to the server comprises the physiological monitor sending to the server monitor and/or sensor data to be matched to sales and/or distributors data for validation of the physiological monitor and the user account.
18. The physiological test credit system of claim 12, wherein the server updating the user account comprises the server deducting the additional test credits from the user account and incrementing a test credit downloading index count.
19. The physiological test credit system of claim 12, wherein the additional test credits comprises a user-predefined download quantum of test credits.
20. The physiological test credit system of claim 19, wherein the physiological monitor is configured to automatically adjust the user-predefined download quantum and/or the predetermined threshold according to a frequency of test credit usage or to a frequency of test credit downloads.
21. The physiological test credit system of claim 12, wherein the physiological monitor is configured to determine the number of the test credits stored in the memory after each physiological measurement.
US16/383,380 2012-11-05 2019-04-12 Physiological test credit method Abandoned US20190386908A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/383,380 US20190386908A1 (en) 2012-11-05 2019-04-12 Physiological test credit method
US17/125,713 US11367529B2 (en) 2012-11-05 2020-12-17 Physiological test credit method
US17/741,315 US20220375597A1 (en) 2012-11-05 2022-05-10 Physiological test credit method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261722245P 2012-11-05 2012-11-05
US14/071,447 US9787568B2 (en) 2012-11-05 2013-11-04 Physiological test credit method
US15/713,275 US10305775B2 (en) 2012-11-05 2017-09-22 Physiological test credit method
US16/383,380 US20190386908A1 (en) 2012-11-05 2019-04-12 Physiological test credit method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/713,275 Continuation US10305775B2 (en) 2012-11-05 2017-09-22 Physiological test credit method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/125,713 Continuation US11367529B2 (en) 2012-11-05 2020-12-17 Physiological test credit method

Publications (1)

Publication Number Publication Date
US20190386908A1 true US20190386908A1 (en) 2019-12-19

Family

ID=49551523

Family Applications (5)

Application Number Title Priority Date Filing Date
US14/071,447 Active 2034-04-18 US9787568B2 (en) 2012-11-05 2013-11-04 Physiological test credit method
US15/713,275 Active US10305775B2 (en) 2012-11-05 2017-09-22 Physiological test credit method
US16/383,380 Abandoned US20190386908A1 (en) 2012-11-05 2019-04-12 Physiological test credit method
US17/125,713 Active US11367529B2 (en) 2012-11-05 2020-12-17 Physiological test credit method
US17/741,315 Pending US20220375597A1 (en) 2012-11-05 2022-05-10 Physiological test credit method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/071,447 Active 2034-04-18 US9787568B2 (en) 2012-11-05 2013-11-04 Physiological test credit method
US15/713,275 Active US10305775B2 (en) 2012-11-05 2017-09-22 Physiological test credit method

Family Applications After (2)

Application Number Title Priority Date Filing Date
US17/125,713 Active US11367529B2 (en) 2012-11-05 2020-12-17 Physiological test credit method
US17/741,315 Pending US20220375597A1 (en) 2012-11-05 2022-05-10 Physiological test credit method

Country Status (2)

Country Link
US (5) US9787568B2 (en)
EP (1) EP2727522A3 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10667762B2 (en) 2017-02-24 2020-06-02 Masimo Corporation Modular multi-parameter patient monitoring device
US10702195B1 (en) 2008-07-03 2020-07-07 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10779098B2 (en) 2018-07-10 2020-09-15 Masimo Corporation Patient monitor alarm speaker analyzer
US10827961B1 (en) 2012-08-29 2020-11-10 Masimo Corporation Physiological measurement calibration
US10863938B2 (en) 2006-10-12 2020-12-15 Masimo Corporation System and method for monitoring the life of a physiological sensor
US10869602B2 (en) 2002-03-25 2020-12-22 Masimo Corporation Physiological measurement communications adapter
US11076777B2 (en) 2016-10-13 2021-08-03 Masimo Corporation Systems and methods for monitoring orientation to reduce pressure ulcer formation
US11083397B2 (en) 2012-02-09 2021-08-10 Masimo Corporation Wireless patient monitoring device
US11089963B2 (en) 2015-08-31 2021-08-17 Masimo Corporation Systems and methods for patient fall detection
US11114188B2 (en) 2009-10-06 2021-09-07 Cercacor Laboratories, Inc. System for monitoring a physiological parameter of a user
US11133105B2 (en) 2009-03-04 2021-09-28 Masimo Corporation Medical monitoring system
US11145408B2 (en) 2009-03-04 2021-10-12 Masimo Corporation Medical communication protocol translator
USRE49007E1 (en) 2010-03-01 2022-04-05 Masimo Corporation Adaptive alarm system
US11298021B2 (en) 2017-10-19 2022-04-12 Masimo Corporation Medical monitoring system
US11367529B2 (en) 2012-11-05 2022-06-21 Cercacor Laboratories, Inc. Physiological test credit method
US11504062B2 (en) 2013-03-14 2022-11-22 Masimo Corporation Patient monitor placement indicator
US11559275B2 (en) 2008-12-30 2023-01-24 Masimo Corporation Acoustic sensor assembly
US11638532B2 (en) 2008-07-03 2023-05-02 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11679579B2 (en) 2015-12-17 2023-06-20 Masimo Corporation Varnish-coated release liner
US11751780B2 (en) 2013-10-07 2023-09-12 Masimo Corporation Regional oximetry sensor
US11992342B2 (en) 2013-01-02 2024-05-28 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US12036014B2 (en) 2015-01-23 2024-07-16 Masimo Corporation Nasal/oral cannula system and manufacturing
US12114974B2 (en) 2020-01-13 2024-10-15 Masimo Corporation Wearable device with physiological parameters monitoring

Families Citing this family (218)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6229856B1 (en) 1997-04-14 2001-05-08 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
JP2002516689A (en) 1998-06-03 2002-06-11 マシモ・コーポレイション Stereo pulse oximeter
US6463311B1 (en) 1998-12-30 2002-10-08 Masimo Corporation Plethysmograph pulse recognition processor
US6684090B2 (en) 1999-01-07 2004-01-27 Masimo Corporation Pulse oximetry data confidence indicator
US6377829B1 (en) 1999-12-09 2002-04-23 Masimo Corporation Resposable pulse oximetry sensor
DK1309270T3 (en) 2000-08-18 2009-08-03 Masimo Corp Pulse oximeter with two modes
US6850787B2 (en) 2001-06-29 2005-02-01 Masimo Laboratories, Inc. Signal component processor
US6697658B2 (en) 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US7355512B1 (en) 2002-01-24 2008-04-08 Masimo Corporation Parallel alarm processor
US6970792B1 (en) 2002-12-04 2005-11-29 Masimo Laboratories, Inc. Systems and methods for determining blood oxygen saturation values using complex number encoding
US6920345B2 (en) 2003-01-24 2005-07-19 Masimo Corporation Optical sensor including disposable and reusable elements
US7003338B2 (en) 2003-07-08 2006-02-21 Masimo Corporation Method and apparatus for reducing coupling between signals
US7500950B2 (en) 2003-07-25 2009-03-10 Masimo Corporation Multipurpose sensor port
US7483729B2 (en) 2003-11-05 2009-01-27 Masimo Corporation Pulse oximeter access apparatus and method
US7438683B2 (en) 2004-03-04 2008-10-21 Masimo Corporation Application identification sensor
EP1722676B1 (en) 2004-03-08 2012-12-19 Masimo Corporation Physiological parameter system
US7822452B2 (en) 2004-08-11 2010-10-26 Glt Acquisition Corp. Method for data reduction and calibration of an OCT-based blood glucose monitor
EP2286721B1 (en) 2005-03-01 2018-10-24 Masimo Laboratories, Inc. Physiological Parameter Confidence Measure
US12014328B2 (en) 2005-07-13 2024-06-18 Vccb Holdings, Inc. Medicine bottle cap with electronic embedded curved display
US7962188B2 (en) 2005-10-14 2011-06-14 Masimo Corporation Robust alarm system
US8182443B1 (en) 2006-01-17 2012-05-22 Masimo Corporation Drug administration controller
US8219172B2 (en) 2006-03-17 2012-07-10 Glt Acquisition Corp. System and method for creating a stable optical interface
US7941199B2 (en) 2006-05-15 2011-05-10 Masimo Laboratories, Inc. Sepsis monitor
US10188348B2 (en) 2006-06-05 2019-01-29 Masimo Corporation Parameter upgrade system
US8457707B2 (en) 2006-09-20 2013-06-04 Masimo Corporation Congenital heart disease monitor
US8840549B2 (en) 2006-09-22 2014-09-23 Masimo Corporation Modular patient monitor
US9161696B2 (en) 2006-09-22 2015-10-20 Masimo Corporation Modular patient monitor
US8265723B1 (en) 2006-10-12 2012-09-11 Cercacor Laboratories, Inc. Oximeter probe off indicator defining probe off space
EP2073692B1 (en) 2006-10-12 2017-07-26 Masimo Corporation Perfusion index smoothing
US9192329B2 (en) 2006-10-12 2015-11-24 Masimo Corporation Variable mode pulse indicator
US8255026B1 (en) 2006-10-12 2012-08-28 Masimo Corporation, Inc. Patient monitor capable of monitoring the quality of attached probes and accessories
US9861305B1 (en) 2006-10-12 2018-01-09 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
US8600467B2 (en) 2006-11-29 2013-12-03 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
JP5441707B2 (en) 2006-12-09 2014-03-12 マシモ コーポレイション Plethysmograph variation processor
US8852094B2 (en) 2006-12-22 2014-10-07 Masimo Corporation Physiological parameter system
US8652060B2 (en) 2007-01-20 2014-02-18 Masimo Corporation Perfusion trend indicator
US8374665B2 (en) 2007-04-21 2013-02-12 Cercacor Laboratories, Inc. Tissue profile wellness monitor
US8310336B2 (en) 2008-10-10 2012-11-13 Masimo Corporation Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
US8571617B2 (en) 2008-03-04 2013-10-29 Glt Acquisition Corp. Flowometry in optical coherence tomography for analyte level estimation
JP5575752B2 (en) 2008-05-02 2014-08-20 マシモ コーポレイション Monitor configuration system
US9107625B2 (en) 2008-05-05 2015-08-18 Masimo Corporation Pulse oximetry system with electrical decoupling circuitry
US8203438B2 (en) 2008-07-29 2012-06-19 Masimo Corporation Alarm suspend system
SE532941C2 (en) 2008-09-15 2010-05-18 Phasein Ab Gas sampling line for breathing gases
US8346330B2 (en) 2008-10-13 2013-01-01 Masimo Corporation Reflection-detector sensor position indicator
US8588880B2 (en) 2009-02-16 2013-11-19 Masimo Corporation Ear sensor
US9323894B2 (en) 2011-08-19 2016-04-26 Masimo Corporation Health care sanitation monitoring system
US10007758B2 (en) 2009-03-04 2018-06-26 Masimo Corporation Medical monitoring system
US8388353B2 (en) 2009-03-11 2013-03-05 Cercacor Laboratories, Inc. Magnetic connector
US8989831B2 (en) 2009-05-19 2015-03-24 Masimo Corporation Disposable components for reusable physiological sensor
US8571619B2 (en) 2009-05-20 2013-10-29 Masimo Corporation Hemoglobin display and patient treatment
US20110208015A1 (en) 2009-07-20 2011-08-25 Masimo Corporation Wireless patient monitoring system
US8473020B2 (en) 2009-07-29 2013-06-25 Cercacor Laboratories, Inc. Non-invasive physiological sensor cover
US8688183B2 (en) 2009-09-03 2014-04-01 Ceracor Laboratories, Inc. Emitter driver for noninvasive patient monitor
US9579039B2 (en) 2011-01-10 2017-02-28 Masimo Corporation Non-invasive intravascular volume index monitor
WO2011035070A1 (en) 2009-09-17 2011-03-24 Masimo Laboratories, Inc. Improving analyte monitoring using one or more accelerometers
US20110137297A1 (en) 2009-09-17 2011-06-09 Kiani Massi Joe E Pharmacological management system
US8523781B2 (en) 2009-10-15 2013-09-03 Masimo Corporation Bidirectional physiological information display
US9066680B1 (en) 2009-10-15 2015-06-30 Masimo Corporation System for determining confidence in respiratory rate measurements
US10463340B2 (en) 2009-10-15 2019-11-05 Masimo Corporation Acoustic respiratory monitoring systems and methods
WO2011047216A2 (en) 2009-10-15 2011-04-21 Masimo Corporation Physiological acoustic monitoring system
WO2011047207A2 (en) 2009-10-15 2011-04-21 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
US9848800B1 (en) 2009-10-16 2017-12-26 Masimo Corporation Respiratory pause detector
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
DE112010004682T5 (en) 2009-12-04 2013-03-28 Masimo Corporation Calibration for multi-level physiological monitors
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
WO2011091059A1 (en) 2010-01-19 2011-07-28 Masimo Corporation Wellness analysis system
US8584345B2 (en) 2010-03-08 2013-11-19 Masimo Corporation Reprocessing of a physiological sensor
US9307928B1 (en) 2010-03-30 2016-04-12 Masimo Corporation Plethysmographic respiration processor
US9138180B1 (en) 2010-05-03 2015-09-22 Masimo Corporation Sensor adapter cable
US8666468B1 (en) 2010-05-06 2014-03-04 Masimo Corporation Patient monitor for determining microcirculation state
US9326712B1 (en) 2010-06-02 2016-05-03 Masimo Corporation Opticoustic sensor
US9408542B1 (en) 2010-07-22 2016-08-09 Masimo Corporation Non-invasive blood pressure measurement system
US9649054B2 (en) 2010-08-26 2017-05-16 Cercacor Laboratories, Inc. Blood pressure measurement method
US9775545B2 (en) 2010-09-28 2017-10-03 Masimo Corporation Magnetic electrical connector for patient monitors
US8821397B2 (en) 2010-09-28 2014-09-02 Masimo Corporation Depth of consciousness monitor including oximeter
US9211095B1 (en) 2010-10-13 2015-12-15 Masimo Corporation Physiological measurement logic engine
US20120226117A1 (en) 2010-12-01 2012-09-06 Lamego Marcelo M Handheld processing device including medical applications for minimally and non invasive glucose measurements
EP2673721A1 (en) 2011-02-13 2013-12-18 Masimo Corporation Medical characterization system
US9066666B2 (en) 2011-02-25 2015-06-30 Cercacor Laboratories, Inc. Patient monitor for monitoring microcirculation
US9622692B2 (en) 2011-05-16 2017-04-18 Masimo Corporation Personal health device
US9532722B2 (en) 2011-06-21 2017-01-03 Masimo Corporation Patient monitoring system
US9986919B2 (en) 2011-06-21 2018-06-05 Masimo Corporation Patient monitoring system
US9245668B1 (en) 2011-06-29 2016-01-26 Cercacor Laboratories, Inc. Low noise cable providing communication between electronic sensor components and patient monitor
US11439329B2 (en) 2011-07-13 2022-09-13 Masimo Corporation Multiple measurement mode in a physiological sensor
US9782077B2 (en) 2011-08-17 2017-10-10 Masimo Corporation Modulated physiological sensor
EP2766834B1 (en) 2011-10-13 2022-04-20 Masimo Corporation Medical monitoring hub
EP3603502B1 (en) 2011-10-13 2023-10-04 Masimo Corporation Physiological acoustic monitoring system
US9808188B1 (en) 2011-10-13 2017-11-07 Masimo Corporation Robust fractional saturation determination
US9943269B2 (en) 2011-10-13 2018-04-17 Masimo Corporation System for displaying medical monitoring data
US9778079B1 (en) 2011-10-27 2017-10-03 Masimo Corporation Physiological monitor gauge panel
US9445759B1 (en) 2011-12-22 2016-09-20 Cercacor Laboratories, Inc. Blood glucose calibration system
US12004881B2 (en) 2012-01-04 2024-06-11 Masimo Corporation Automated condition screening and detection
US11172890B2 (en) 2012-01-04 2021-11-16 Masimo Corporation Automated condition screening and detection
US9392945B2 (en) 2012-01-04 2016-07-19 Masimo Corporation Automated CCHD screening and detection
US9267572B2 (en) 2012-02-08 2016-02-23 Masimo Corporation Cable tether system
US9480435B2 (en) 2012-02-09 2016-11-01 Masimo Corporation Configurable patient monitoring system
US10307111B2 (en) 2012-02-09 2019-06-04 Masimo Corporation Patient position detection system
EP2845086B1 (en) 2012-03-25 2021-12-22 Masimo Corporation Physiological monitor touchscreen interface
US9131881B2 (en) 2012-04-17 2015-09-15 Masimo Corporation Hypersaturation index
WO2013184965A1 (en) 2012-06-07 2013-12-12 Masimo Corporation Depth of consciousness monitor
US9697928B2 (en) 2012-08-01 2017-07-04 Masimo Corporation Automated assembly sensor cable
US9749232B2 (en) 2012-09-20 2017-08-29 Masimo Corporation Intelligent medical network edge router
US9877650B2 (en) 2012-09-20 2018-01-30 Masimo Corporation Physiological monitor with mobile computing device connectivity
US9955937B2 (en) 2012-09-20 2018-05-01 Masimo Corporation Acoustic patient sensor coupler
US9717458B2 (en) 2012-10-20 2017-08-01 Masimo Corporation Magnetic-flap optical sensor
US9560996B2 (en) 2012-10-30 2017-02-07 Masimo Corporation Universal medical system
US9724025B1 (en) 2013-01-16 2017-08-08 Masimo Corporation Active-pulse blood analysis system
US9750442B2 (en) 2013-03-09 2017-09-05 Masimo Corporation Physiological status monitor
US10441181B1 (en) 2013-03-13 2019-10-15 Masimo Corporation Acoustic pulse and respiration monitoring system
WO2014164139A1 (en) 2013-03-13 2014-10-09 Masimo Corporation Systems and methods for monitoring a patient health network
US9891079B2 (en) 2013-07-17 2018-02-13 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
US10555678B2 (en) 2013-08-05 2020-02-11 Masimo Corporation Blood pressure monitor with valve-chamber assembly
WO2015038683A2 (en) 2013-09-12 2015-03-19 Cercacor Laboratories, Inc. Medical device management system
US11147518B1 (en) 2013-10-07 2021-10-19 Masimo Corporation Regional oximetry signal processor
US10832818B2 (en) 2013-10-11 2020-11-10 Masimo Corporation Alarm notification system
US10828007B1 (en) 2013-10-11 2020-11-10 Masimo Corporation Acoustic sensor with attachment portion
US9736227B2 (en) 2013-10-29 2017-08-15 Lantronix, Inc. Data capture on a serial device
US10279247B2 (en) 2013-12-13 2019-05-07 Masimo Corporation Avatar-incentive healthcare therapy
US11259745B2 (en) 2014-01-28 2022-03-01 Masimo Corporation Autonomous drug delivery system
US10086138B1 (en) 2014-01-28 2018-10-02 Masimo Corporation Autonomous drug delivery system
US10532174B2 (en) 2014-02-21 2020-01-14 Masimo Corporation Assistive capnography device
US9924897B1 (en) 2014-06-12 2018-03-27 Masimo Corporation Heated reprocessing of physiological sensors
US10123729B2 (en) 2014-06-13 2018-11-13 Nanthealth, Inc. Alarm fatigue management systems and methods
US10231670B2 (en) 2014-06-19 2019-03-19 Masimo Corporation Proximity sensor in pulse oximeter
US10111591B2 (en) 2014-08-26 2018-10-30 Nanthealth, Inc. Real-time monitoring systems and methods in a healthcare environment
US10231657B2 (en) 2014-09-04 2019-03-19 Masimo Corporation Total hemoglobin screening sensor
US10383520B2 (en) 2014-09-18 2019-08-20 Masimo Semiconductor, Inc. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
US10154815B2 (en) 2014-10-07 2018-12-18 Masimo Corporation Modular physiological sensors
KR102609605B1 (en) 2015-02-06 2023-12-05 마시모 코오퍼레이션 Fold flex circuit for optical probes
USD755392S1 (en) 2015-02-06 2016-05-03 Masimo Corporation Pulse oximetry sensor
US10568553B2 (en) 2015-02-06 2020-02-25 Masimo Corporation Soft boot pulse oximetry sensor
CN107431301B (en) 2015-02-06 2021-03-30 迈心诺公司 Connector assembly with retractable needle for use with medical sensors
US10524738B2 (en) 2015-05-04 2020-01-07 Cercacor Laboratories, Inc. Noninvasive sensor system with visual infographic display
WO2016191307A1 (en) 2015-05-22 2016-12-01 Cercacor Laboratories, Inc. Non-invasive optical physiological differential pathlength sensor
US10448871B2 (en) 2015-07-02 2019-10-22 Masimo Corporation Advanced pulse oximetry sensor
WO2017027621A1 (en) 2015-08-11 2017-02-16 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
US11504066B1 (en) 2015-09-04 2022-11-22 Cercacor Laboratories, Inc. Low-noise sensor system
US10993662B2 (en) 2016-03-04 2021-05-04 Masimo Corporation Nose sensor
US10537285B2 (en) 2016-03-04 2020-01-21 Masimo Corporation Nose sensor
US11191484B2 (en) 2016-04-29 2021-12-07 Masimo Corporation Optical sensor tape
WO2018009612A1 (en) 2016-07-06 2018-01-11 Patient Doctor Technologies, Inc. Secure and zero knowledge data sharing for cloud applications
US10617302B2 (en) 2016-07-07 2020-04-14 Masimo Corporation Wearable pulse oximeter and respiration monitor
US11504058B1 (en) 2016-12-02 2022-11-22 Masimo Corporation Multi-site noninvasive measurement of a physiological parameter
US10750984B2 (en) 2016-12-22 2020-08-25 Cercacor Laboratories, Inc. Methods and devices for detecting intensity of light with translucent detector
US10721785B2 (en) 2017-01-18 2020-07-21 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
US10388120B2 (en) 2017-02-24 2019-08-20 Masimo Corporation Localized projection of audible noises in medical settings
US11024064B2 (en) 2017-02-24 2021-06-01 Masimo Corporation Augmented reality system for displaying patient data
US11086609B2 (en) 2017-02-24 2021-08-10 Masimo Corporation Medical monitoring hub
EP3585254B1 (en) 2017-02-24 2024-03-20 Masimo Corporation Medical device cable and method of sharing data between connected medical devices
WO2018156648A1 (en) 2017-02-24 2018-08-30 Masimo Corporation Managing dynamic licenses for physiological parameters in a patient monitoring environment
WO2018165618A1 (en) 2017-03-10 2018-09-13 Masimo Corporation Pneumonia screener
WO2018194992A1 (en) 2017-04-18 2018-10-25 Masimo Corporation Nose sensor
US10918281B2 (en) 2017-04-26 2021-02-16 Masimo Corporation Medical monitoring device having multiple configurations
USD835285S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835282S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835284S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
EP3614909B1 (en) 2017-04-28 2024-04-03 Masimo Corporation Spot check measurement system
USD835283S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
CN110809804B (en) 2017-05-08 2023-10-27 梅西莫股份有限公司 System for pairing a medical system with a network controller using an adapter
WO2019014629A1 (en) 2017-07-13 2019-01-17 Cercacor Laboratories, Inc. Medical monitoring device for harmonizing physiological measurements
USD890708S1 (en) 2017-08-15 2020-07-21 Masimo Corporation Connector
USD906970S1 (en) 2017-08-15 2021-01-05 Masimo Corporation Connector
US10637181B2 (en) 2017-08-15 2020-04-28 Masimo Corporation Water resistant connector for noninvasive patient monitor
USD880477S1 (en) 2017-08-15 2020-04-07 Masimo Corporation Connector
USD925597S1 (en) 2017-10-31 2021-07-20 Masimo Corporation Display screen or portion thereof with graphical user interface
JP7282085B2 (en) 2017-10-31 2023-05-26 マシモ・コーポレイション System for displaying oxygen status indicators
US11766198B2 (en) 2018-02-02 2023-09-26 Cercacor Laboratories, Inc. Limb-worn patient monitoring device
EP3782165A1 (en) 2018-04-19 2021-02-24 Masimo Corporation Mobile patient alarm display
WO2019209915A1 (en) 2018-04-24 2019-10-31 Cercacor Laboratories, Inc. Easy insert finger sensor for transmission based spectroscopy sensor
JP7174778B2 (en) 2018-06-06 2022-11-17 マシモ・コーポレイション Opioid overdose monitoring
US12097043B2 (en) 2018-06-06 2024-09-24 Masimo Corporation Locating a locally stored medication
US11872156B2 (en) 2018-08-22 2024-01-16 Masimo Corporation Core body temperature measurement
USD998630S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
US11406286B2 (en) 2018-10-11 2022-08-09 Masimo Corporation Patient monitoring device with improved user interface
USD917550S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD916135S1 (en) 2018-10-11 2021-04-13 Masimo Corporation Display screen or portion thereof with a graphical user interface
CN112997366A (en) 2018-10-11 2021-06-18 迈心诺公司 Patient connector assembly with vertical detent
USD917564S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with graphical user interface
USD1041511S1 (en) 2018-10-11 2024-09-10 Masimo Corporation Display screen or portion thereof with a graphical user interface
USD999246S1 (en) 2018-10-11 2023-09-19 Masimo Corporation Display screen or portion thereof with a graphical user interface
US11389093B2 (en) 2018-10-11 2022-07-19 Masimo Corporation Low noise oximetry cable
USD998631S1 (en) 2018-10-11 2023-09-12 Masimo Corporation Display screen or portion thereof with a graphical user interface
WO2020077149A1 (en) 2018-10-12 2020-04-16 Masimo Corporation System for transmission of sensor data using dual communication protocol
USD897098S1 (en) 2018-10-12 2020-09-29 Masimo Corporation Card holder set
US11464410B2 (en) 2018-10-12 2022-10-11 Masimo Corporation Medical systems and methods
US12004869B2 (en) 2018-11-05 2024-06-11 Masimo Corporation System to monitor and manage patient hydration via plethysmograph variablity index in response to the passive leg raising
US11986289B2 (en) 2018-11-27 2024-05-21 Willow Laboratories, Inc. Assembly for medical monitoring device with multiple physiological sensors
US11684296B2 (en) 2018-12-21 2023-06-27 Cercacor Laboratories, Inc. Noninvasive physiological sensor
US12066426B1 (en) 2019-01-16 2024-08-20 Masimo Corporation Pulsed micro-chip laser for malaria detection
WO2020163640A1 (en) 2019-02-07 2020-08-13 Masimo Corporation Combining multiple qeeg features to estimate drug-independent sedation level using machine learning
BR112021020780A2 (en) 2019-04-17 2021-12-14 Masimo Corp Electrocardiogram (ECG) device, blood pressure monitoring device, blood pressure monitor, blood pressure cuff, mounting for enabling a caregiver to attach a physiological monitoring device to a user's arm, charging station for providing power to a physiological monitoring device, non-invasive blood pressure monitor and method for a non-invasive blood pressure monitor
USD917704S1 (en) 2019-08-16 2021-04-27 Masimo Corporation Patient monitor
USD985498S1 (en) 2019-08-16 2023-05-09 Masimo Corporation Connector
USD921202S1 (en) 2019-08-16 2021-06-01 Masimo Corporation Holder for a blood pressure device
USD919094S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Blood pressure device
USD919100S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Holder for a patient monitor
US11832940B2 (en) 2019-08-27 2023-12-05 Cercacor Laboratories, Inc. Non-invasive medical monitoring device for blood analyte measurements
CN114667574A (en) 2019-10-18 2022-06-24 梅西莫股份有限公司 Display layout and interactive objects for patient monitoring
USD927699S1 (en) 2019-10-18 2021-08-10 Masimo Corporation Electrode pad
KR20220115927A (en) 2019-10-25 2022-08-19 세르카코르 래버러토리즈, 인크. Indicator compounds, devices comprising indicator compounds, and methods of making and using the same
US11879960B2 (en) 2020-02-13 2024-01-23 Masimo Corporation System and method for monitoring clinical activities
WO2021163447A1 (en) 2020-02-13 2021-08-19 Masimo Corporation System and method for monitoring clinical activities
US12048534B2 (en) 2020-03-04 2024-07-30 Willow Laboratories, Inc. Systems and methods for securing a tissue site to a sensor
US11730379B2 (en) 2020-03-20 2023-08-22 Masimo Corporation Remote patient management and monitoring systems and methods
USD933232S1 (en) 2020-05-11 2021-10-12 Masimo Corporation Blood pressure monitor
USD979516S1 (en) 2020-05-11 2023-02-28 Masimo Corporation Connector
WO2021262877A1 (en) 2020-06-25 2021-12-30 Cercacor Laboratories, Inc. Combination spirometer-inhaler
USD980091S1 (en) 2020-07-27 2023-03-07 Masimo Corporation Wearable temperature measurement device
USD974193S1 (en) 2020-07-27 2023-01-03 Masimo Corporation Wearable temperature measurement device
US12082926B2 (en) 2020-08-04 2024-09-10 Masimo Corporation Optical sensor with multiple detectors or multiple emitters
WO2022040231A1 (en) 2020-08-19 2022-02-24 Masimo Corporation Strap for a wearable device
USD946597S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
USD946596S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
USD946598S1 (en) 2020-09-30 2022-03-22 Masimo Corporation Display screen or portion thereof with graphical user interface
USD997365S1 (en) 2021-06-24 2023-08-29 Masimo Corporation Physiological nose sensor
USD1036293S1 (en) 2021-08-17 2024-07-23 Masimo Corporation Straps for a wearable device
USD1000975S1 (en) 2021-09-22 2023-10-10 Masimo Corporation Wearable temperature measurement device
USD1042596S1 (en) 2022-12-12 2024-09-17 Masimo Corporation Monitoring camera

Citations (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900904A (en) * 1986-11-26 1990-02-13 Wright Technologies, L.P. Automated transaction system with insertable cards for downloading rate or program data
US6069955A (en) * 1998-04-14 2000-05-30 International Business Machines Corporation System for protection of goods against counterfeiting
US20020138336A1 (en) * 2001-02-06 2002-09-26 Bakes Frank Heinrich Method and system for optimizing product inventory levels
US20020178126A1 (en) * 2001-05-25 2002-11-28 Beck Timothy L. Remote medical device access
US20030055794A1 (en) * 2001-09-14 2003-03-20 Pitney Bowes Incorporated Method and system for optimizing refill amount for automatic refill of a shared virtual postage meter
US20030063913A1 (en) * 2001-09-28 2003-04-03 Canon Kabushiki Kaisha Diagnostic device, diagnostic system, diagnostic method, program and storage medium
US6704786B1 (en) * 1997-12-15 2004-03-09 Sun Microsystems, Inc. Network and end-host efficiency for web communication
US20040068436A1 (en) * 2002-10-08 2004-04-08 Boubek Brian J. System and method for influencing position of information tags allowing access to on-site information
US20040146328A1 (en) * 2002-12-27 2004-07-29 Fuji Photo Film Co., Ltd. Automatic processing method of photosensitive lithographic printing plate and automatic processing apparatus thereof
US20040236699A1 (en) * 2001-07-10 2004-11-25 American Express Travel Related Services Company, Inc. Method and system for hand geometry recognition biometrics on a fob
US20040245330A1 (en) * 2003-04-03 2004-12-09 Amy Swift Suspicious persons database
US20040267552A1 (en) * 2003-06-26 2004-12-30 Contentguard Holdings, Inc. System and method for controlling rights expressions by stakeholders of an item
US20050125317A1 (en) * 2003-08-29 2005-06-09 Starbucks Corporation Method and apparatus for automatically reloading a stored value card
US20050247778A1 (en) * 2004-05-04 2005-11-10 Cryovac, Inc. Point-of-sale system and method for processing product-specific information and item-specific information
US20060149594A1 (en) * 2004-12-30 2006-07-06 Healthcard Network Health care facility admission control system
US20060259328A1 (en) * 2003-10-21 2006-11-16 Oculir, Inc. Wireless Non-Invasive Analyte Measurement Device
US20060258917A1 (en) * 2004-04-14 2006-11-16 Oculir, Inc. Apparatus and Method of Use for Non-Invasive Analyte Measurement
US20070021843A1 (en) * 2005-06-14 2007-01-25 Brian Neill System and method for remote device registration
US20070022015A1 (en) * 2005-07-22 2007-01-25 Tarinelli Gillian J System and method for the on-line purchase of products through a guest registration
US20070133767A1 (en) * 2005-12-09 2007-06-14 American Telecom Services, Inc. Apparatus, system, method and computer program product for pre-paid long distance telecommunications
US20080089499A1 (en) * 2005-12-09 2008-04-17 American Telecom Services, Inc. Apparatus, System, Method and Computer Program Product for Pre-Paid Long Distance Telecommunications and Charitable Fee Sharing
US20080097908A1 (en) * 2006-10-24 2008-04-24 Kent Dicks Systems and methods for processing and transmittal of medical data through an intermediary device
US20080179401A1 (en) * 2007-01-26 2008-07-31 Hart Annmarie D Card reader for use with web based transactions
US20080251579A1 (en) * 2007-04-12 2008-10-16 Steven Larsen Secure identification of dependants
US7450927B1 (en) * 2002-01-23 2008-11-11 At&T Corp. Interactive communication service account management system
US20090047926A1 (en) * 2007-08-17 2009-02-19 Accenture S.P.A. Multiple channel automated refill system
US20090112769A1 (en) * 2007-10-24 2009-04-30 Kent Dicks Systems and methods for remote patient monitoring
US20100057556A1 (en) * 2005-04-12 2010-03-04 Armand Rousso Apparatuses, Methods And Systems To Identify, Generate, And Aggregate Qualified Sales and Marketing Leads For Distribution Via an Online Competitive Bidding System
US20100056875A1 (en) * 2008-08-28 2010-03-04 Imdsoft, Inc. Monitoring Patient Conditions
US20100094951A1 (en) * 2008-10-14 2010-04-15 Toyota Jidosha Kabushiki Kaisha Data communication system for vehicle, on-vehicle terminal device, and center
US20100204557A1 (en) * 2007-02-18 2010-08-12 Abbott Diabetes Care Inc. Multi-Function Analyte Test Device and Methods Therefor
US7797248B1 (en) * 2008-07-11 2010-09-14 Sprint Communications Company L.P. Automated confirmation of transit card fund replenishment
US20100268120A1 (en) * 2009-04-20 2010-10-21 Morten Eriksen Coil System and Method for Obtaining Volumetric Physiological Measurements
US20110073644A1 (en) * 2005-08-12 2011-03-31 Pharmasmart Llc Network for blood pressure data management and rechargeable smart card
US20110172498A1 (en) * 2009-09-14 2011-07-14 Olsen Gregory A Spot check monitor credit system
US20110179405A1 (en) * 2006-10-24 2011-07-21 Dicks Kent E Systems for remote provisioning of electronic devices
US20110208568A1 (en) * 2009-08-18 2011-08-25 Bancpass, Inc. Vehicle transaction system and method
US20110235792A1 (en) * 2010-03-26 2011-09-29 Verizon Patent And Licensing Inc. Prepaid automatic dialer
US20120109685A1 (en) * 2010-11-01 2012-05-03 Cerner Innovation, Inc. Linking health records
US20120143772A1 (en) * 2010-12-02 2012-06-07 Essam Ernest Abadir Secure Distributed Single Action Payment Authorization System
US20120143754A1 (en) * 2010-12-03 2012-06-07 Narendra Patel Enhanced credit card security apparatus and method
US20120156337A1 (en) * 2010-12-16 2012-06-21 Studor Charles F Apparatus and Method for Brewed and Espresso Drink Generation
US8234126B1 (en) * 2008-02-12 2012-07-31 Asante Solutions, Inc. Distribution of infusion pumps
US20130066644A1 (en) * 2007-10-22 2013-03-14 Kent Dicks Methods for personal emergency intervention
US20130097085A1 (en) * 2005-03-16 2013-04-18 Dt Labs, Llc Apparatus for customer authentication of an item
US20130117155A1 (en) * 2011-11-04 2013-05-09 Michael Laine Glasgo Transaction validation by location based services (LBS)
US20130159456A1 (en) * 2008-05-19 2013-06-20 Tandem Diabetes Care, Inc. Therapy management system
US20130160082A1 (en) * 2010-08-31 2013-06-20 Lantronix, Inc. Medical Device Connectivity to Hospital Information Systems Using Device Server
US20130212381A1 (en) * 2012-02-15 2013-08-15 Roche Diagnostics Operations, Inc. System and method for controlling authorized access to a structured testing procedure on a medical device
US20130246132A1 (en) * 2012-03-17 2013-09-19 David J. Buie Smart tranportation services & payment system and method
US20130312066A1 (en) * 2012-05-18 2013-11-21 Carefusion 303, Inc. Mobile device access for medical devices
US20140012981A1 (en) * 2011-12-28 2014-01-09 Avvasi Inc. Apparatus and methods for optimizing network data transmission
US20140037089A1 (en) * 2012-08-02 2014-02-06 Fujitsu Limited Encryption processing device and method
US20140038545A1 (en) * 2012-08-03 2014-02-06 Tracfone Wireless, Inc. Device initiated replenishment procedures for wireless devices
US20140106706A1 (en) * 2011-05-10 2014-04-17 Seng Chuan Tan Process to Reload Mobile Prepaid Airtime Using a Self-Service Terminal Across Multiple Telcos and Multiple Currencies
US20140129702A1 (en) * 2012-11-05 2014-05-08 Cercacor Laboratories, Inc. Physiological test credit method
US8725645B1 (en) * 2013-01-04 2014-05-13 Cetrus LLC Non-invasive metering system for software licenses
US20140181524A1 (en) * 2011-03-09 2014-06-26 Fujitsu Limited Authentication method, authentication system, and authentication chip using common key cryptography
US20140330993A1 (en) * 2011-09-27 2014-11-06 Rf Keeper Ltd Driverless data transfer device
US20150048159A1 (en) * 2013-08-13 2015-02-19 Neology, Inc. Systems and methods for managing an account
US20150073925A1 (en) * 2013-05-23 2015-03-12 Gavon Augustus Renfroe System and Method for Integrating Business Operations
US9069069B2 (en) * 2012-10-30 2015-06-30 The Standard Register Company Systems, methods, and apparatus for marking, verifying, and authenticating consumer products
US20150207626A1 (en) * 2012-07-09 2015-07-23 Debiotech S.A. Communication secured between a medical device and its remote control device
US20190034775A1 (en) * 2013-08-13 2019-01-31 Neology, Inc. Universal transponder

Family Cites Families (650)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000078209A2 (en) 1999-06-18 2000-12-28 Masimo Corporation Pulse oximeter probe-off detection system
NL193256C (en) 1981-11-10 1999-04-02 Cordis Europ Sensor system.
US4815469A (en) 1987-10-08 1989-03-28 Siemens-Pacesetter, Inc. Implantable blood oxygen sensor and method of use
US5069213A (en) 1988-04-29 1991-12-03 Thor Technology Corporation Oximeter sensor assembly with integral cable and encoder
US4964408A (en) 1988-04-29 1990-10-23 Thor Technology Corporation Oximeter sensor assembly with integral cable
US5041187A (en) 1988-04-29 1991-08-20 Thor Technology Corporation Oximeter sensor assembly with integral cable and method of forming the same
US4960128A (en) 1988-11-14 1990-10-02 Paramed Technology Incorporated Method and apparatus for continuously and non-invasively measuring the blood pressure of a patient
US5163438A (en) 1988-11-14 1992-11-17 Paramed Technology Incorporated Method and apparatus for continuously and noninvasively measuring the blood pressure of a patient
GB9011887D0 (en) 1990-05-26 1990-07-18 Le Fit Ltd Pulse responsive device
US5319355A (en) 1991-03-06 1994-06-07 Russek Linda G Alarm for patient monitor and life support equipment system
US5632272A (en) 1991-03-07 1997-05-27 Masimo Corporation Signal processing apparatus
AU658177B2 (en) 1991-03-07 1995-04-06 Masimo Corporation Signal processing apparatus and method
MX9702434A (en) 1991-03-07 1998-05-31 Masimo Corp Signal processing apparatus.
US5490505A (en) 1991-03-07 1996-02-13 Masimo Corporation Signal processing apparatus
US6580086B1 (en) 1999-08-26 2003-06-17 Masimo Corporation Shielded optical probe and method
US5995855A (en) 1998-02-11 1999-11-30 Masimo Corporation Pulse oximetry sensor adapter
US5645440A (en) 1995-10-16 1997-07-08 Masimo Corporation Patient cable connector
US6541756B2 (en) 1991-03-21 2003-04-01 Masimo Corporation Shielded optical probe having an electrical connector
US5638818A (en) 1991-03-21 1997-06-17 Masimo Corporation Low noise optical probe
US5377676A (en) 1991-04-03 1995-01-03 Cedars-Sinai Medical Center Method for determining the biodistribution of substances using fluorescence spectroscopy
AU667199B2 (en) 1991-11-08 1996-03-14 Physiometrix, Inc. EEG headpiece with disposable electrodes and apparatus and system and method for use therewith
US6850252B1 (en) * 1999-10-05 2005-02-01 Steven M. Hoffberg Intelligent electronic appliance system and method
US5289824A (en) 1991-12-26 1994-03-01 Instromedix, Inc. Wrist-worn ECG monitor
CA2140658C (en) 1992-12-07 2001-07-24 Jocelyn Durand Electronic stethoscope
US5341805A (en) 1993-04-06 1994-08-30 Cedars-Sinai Medical Center Glucose fluorescence monitor and method
US5494043A (en) 1993-05-04 1996-02-27 Vital Insite, Inc. Arterial sensor
USD353196S (en) 1993-05-28 1994-12-06 Gary Savage Stethoscope head
USD353195S (en) 1993-05-28 1994-12-06 Gary Savage Electronic stethoscope housing
US5337744A (en) 1993-07-14 1994-08-16 Masimo Corporation Low noise finger cot probe
US5452717A (en) 1993-07-14 1995-09-26 Masimo Corporation Finger-cot probe
US5456252A (en) 1993-09-30 1995-10-10 Cedars-Sinai Medical Center Induced fluorescence spectroscopy blood perfusion and pH monitor and method
US7376453B1 (en) 1993-10-06 2008-05-20 Masimo Corporation Signal processing apparatus
US5533511A (en) 1994-01-05 1996-07-09 Vital Insite, Incorporated Apparatus and method for noninvasive blood pressure measurement
USD359546S (en) 1994-01-27 1995-06-20 The Ratechnologies Inc. Housing for a dental unit disinfecting device
US5436499A (en) 1994-03-11 1995-07-25 Spire Corporation High performance GaAs devices and method
US5785659A (en) 1994-04-15 1998-07-28 Vital Insite, Inc. Automatically activated blood pressure measurement device
US5904654A (en) 1995-10-20 1999-05-18 Vital Insite, Inc. Exciter-detector unit for measuring physiological parameters
US5791347A (en) 1994-04-15 1998-08-11 Vital Insite, Inc. Motion insensitive pulse detector
US5590649A (en) 1994-04-15 1997-01-07 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine blood pressure
US5810734A (en) 1994-04-15 1998-09-22 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine a physiological parameter
US6371921B1 (en) 1994-04-15 2002-04-16 Masimo Corporation System and method of determining whether to recalibrate a blood pressure monitor
USD361840S (en) 1994-04-21 1995-08-29 Gary Savage Stethoscope head
USD362063S (en) 1994-04-21 1995-09-05 Gary Savage Stethoscope headset
USD363120S (en) 1994-04-21 1995-10-10 Gary Savage Stethoscope ear tip
US5561275A (en) 1994-04-28 1996-10-01 Delstar Services Informatiques (1993) Inc. Headset for electronic stethoscope
US6464689B1 (en) 1999-09-08 2002-10-15 Curon Medical, Inc. Graphical user interface for monitoring and controlling use of medical devices
EP1905352B1 (en) 1994-10-07 2014-07-16 Masimo Corporation Signal processing method
US8019400B2 (en) 1994-10-07 2011-09-13 Masimo Corporation Signal processing apparatus
US5562002A (en) 1995-02-03 1996-10-08 Sensidyne Inc. Positive displacement piston flow meter with damping assembly
JPH08315919A (en) 1995-03-14 1996-11-29 Otax Kk Connector device for time control
US6931268B1 (en) 1995-06-07 2005-08-16 Masimo Laboratories, Inc. Active pulse blood constituent monitoring
US6517283B2 (en) 2001-01-16 2003-02-11 Donald Edward Coffey Cascading chute drainage system
US5758644A (en) 1995-06-07 1998-06-02 Masimo Corporation Manual and automatic probe calibration
US5743262A (en) 1995-06-07 1998-04-28 Masimo Corporation Blood glucose monitoring system
US5760910A (en) 1995-06-07 1998-06-02 Masimo Corporation Optical filter for spectroscopic measurement and method of producing the optical filter
US5638816A (en) 1995-06-07 1997-06-17 Masimo Corporation Active pulse blood constituent monitoring
SG38866A1 (en) 1995-07-31 1997-04-17 Instrumentation Metrics Inc Liquid correlation spectrometry
US6010937A (en) 1995-09-05 2000-01-04 Spire Corporation Reduction of dislocations in a heteroepitaxial semiconductor structure
JP3541522B2 (en) * 1995-10-09 2004-07-14 松下電器産業株式会社 Communication protection system and equipment between devices
USD393830S (en) 1995-10-16 1998-04-28 Masimo Corporation Patient cable connector
US5671914A (en) 1995-11-06 1997-09-30 Spire Corporation Multi-band spectroscopic photodetector array
US5726440A (en) 1995-11-06 1998-03-10 Spire Corporation Wavelength selective photodetector
US6232609B1 (en) 1995-12-01 2001-05-15 Cedars-Sinai Medical Center Glucose monitoring apparatus and method using laser-induced emission spectroscopy
US5747806A (en) 1996-02-02 1998-05-05 Instrumentation Metrics, Inc Method and apparatus for multi-spectral analysis in noninvasive nir spectroscopy
US6040578A (en) 1996-02-02 2000-03-21 Instrumentation Metrics, Inc. Method and apparatus for multi-spectral analysis of organic blood analytes in noninvasive infrared spectroscopy
US5963915A (en) 1996-02-21 1999-10-05 Infoseek Corporation Secure, convenient and efficient system and method of performing trans-internet purchase transactions
US6253097B1 (en) 1996-03-06 2001-06-26 Datex-Ohmeda, Inc. Noninvasive medical monitoring instrument using surface emitting laser devices
US5890929A (en) 1996-06-19 1999-04-06 Masimo Corporation Shielded medical connector
US6027452A (en) 1996-06-26 2000-02-22 Vital Insite, Inc. Rapid non-invasive blood pressure measuring device
US5830137A (en) 1996-11-18 1998-11-03 University Of South Florida Green light pulse oximeter
US6066204A (en) 1997-01-08 2000-05-23 Bandwidth Semiconductor, Llc High pressure MOCVD reactor system
US5919134A (en) 1997-04-14 1999-07-06 Masimo Corp. Method and apparatus for demodulating signals in a pulse oximetry system
US6002952A (en) 1997-04-14 1999-12-14 Masimo Corporation Signal processing apparatus and method
US6229856B1 (en) 1997-04-14 2001-05-08 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
JPH10314149A (en) 1997-05-20 1998-12-02 Casio Comput Co Ltd Probe exchangeable electric measurement device, probe management method and pulse oximeter
US6124597A (en) 1997-07-07 2000-09-26 Cedars-Sinai Medical Center Method and devices for laser induced fluorescence attenuation spectroscopy
SE9702679D0 (en) 1997-07-11 1997-07-11 Siemens Elema Ab Device for calculating the number of uses of a sensor
US6415167B1 (en) 2000-05-02 2002-07-02 Instrumentation Metrics, Inc. Fiber optic probe placement guide
US6115673A (en) 1997-08-14 2000-09-05 Instrumentation Metrics, Inc. Method and apparatus for generating basis sets for use in spectroscopic analysis
US20020013538A1 (en) 1997-09-30 2002-01-31 David Teller Method and apparatus for health signs monitoring
US6255708B1 (en) 1997-10-10 2001-07-03 Rengarajan Sudharsanan Semiconductor P-I-N detector
US5987343A (en) 1997-11-07 1999-11-16 Datascope Investment Corp. Method for storing pulse oximetry sensor characteristics
US6219669B1 (en) 1997-11-13 2001-04-17 Hyperspace Communications, Inc. File transfer system using dynamically assigned ports
JPH11156657A (en) 1997-11-25 1999-06-15 Canon Inc Automatic tool selection device and automatic tool selection method
US6184521B1 (en) 1998-01-06 2001-02-06 Masimo Corporation Photodiode detector with integrated noise shielding
US6241683B1 (en) 1998-02-20 2001-06-05 INSTITUT DE RECHERCHES CLINIQUES DE MONTRéAL (IRCM) Phonospirometry for non-invasive monitoring of respiration
US6525386B1 (en) 1998-03-10 2003-02-25 Masimo Corporation Non-protruding optoelectronic lens
US5997343A (en) 1998-03-19 1999-12-07 Masimo Corporation Patient cable sensor switch
US6165005A (en) 1998-03-19 2000-12-26 Masimo Corporation Patient cable sensor switch
US6505059B1 (en) 1998-04-06 2003-01-07 The General Hospital Corporation Non-invasive tissue glucose level monitoring
US7899518B2 (en) 1998-04-06 2011-03-01 Masimo Laboratories, Inc. Non-invasive tissue glucose level monitoring
US6721582B2 (en) 1999-04-06 2004-04-13 Argose, Inc. Non-invasive tissue glucose level monitoring
US6728560B2 (en) 1998-04-06 2004-04-27 The General Hospital Corporation Non-invasive tissue glucose level monitoring
US7445146B2 (en) 1998-04-17 2008-11-04 Diebold, Incorporated Card activated cash dispensing automated banking machine system and method
US6108789A (en) * 1998-05-05 2000-08-22 Liberate Technologies Mechanism for users with internet service provider smart cards to roam among geographically disparate authorized network computer client devices without mediation of a central authority
US6385651B2 (en) * 1998-05-05 2002-05-07 Liberate Technologies Internet service provider preliminary user registration mechanism provided by centralized authority
US6112305A (en) * 1998-05-05 2000-08-29 Liberate Technologies Mechanism for dynamically binding a network computer client device to an approved internet service provider
US6141752A (en) * 1998-05-05 2000-10-31 Liberate Technologies Mechanism for facilitating secure storage and retrieval of information on a smart card by an internet service provider using various network computer client devices
EP1082056B1 (en) 1998-06-03 2007-11-14 Scott Laboratories, Inc. Apparatus for providing a conscious patient relief from pain and anxiety associated with medical or surgical procedures
JP2002516689A (en) 1998-06-03 2002-06-11 マシモ・コーポレイション Stereo pulse oximeter
US6128521A (en) 1998-07-10 2000-10-03 Physiometrix, Inc. Self adjusting headgear appliance using reservoir electrodes
US6285896B1 (en) 1998-07-13 2001-09-04 Masimo Corporation Fetal pulse oximetry sensor
US6129675A (en) 1998-09-11 2000-10-10 Jay; Gregory D. Device and method for measuring pulsus paradoxus
US6419636B1 (en) 1998-10-02 2002-07-16 David Ernest Young System for thermometry-based breast assessment including cancer risk
US7245953B1 (en) 1999-04-12 2007-07-17 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatii
US6684091B2 (en) 1998-10-15 2004-01-27 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage method
US6321100B1 (en) 1999-07-13 2001-11-20 Sensidyne, Inc. Reusable pulse oximeter probe with disposable liner
US6144868A (en) 1998-10-15 2000-11-07 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
USRE41912E1 (en) 1998-10-15 2010-11-02 Masimo Corporation Reusable pulse oximeter probe and disposable bandage apparatus
US6721585B1 (en) 1998-10-15 2004-04-13 Sensidyne, Inc. Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
US6343224B1 (en) 1998-10-15 2002-01-29 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6519487B1 (en) 1998-10-15 2003-02-11 Sensidyne, Inc. Reusable pulse oximeter probe and disposable bandage apparatus
US6587945B1 (en) 1998-12-28 2003-07-01 Koninklijke Philips Electronics N.V. Transmitting reviews with digital signatures
US6463311B1 (en) 1998-12-30 2002-10-08 Masimo Corporation Plethysmograph pulse recognition processor
US6684090B2 (en) 1999-01-07 2004-01-27 Masimo Corporation Pulse oximetry data confidence indicator
US6606511B1 (en) 1999-01-07 2003-08-12 Masimo Corporation Pulse oximetry pulse indicator
US6280381B1 (en) 1999-07-22 2001-08-28 Instrumentation Metrics, Inc. Intelligent system for noninvasive blood analyte prediction
US6770028B1 (en) 1999-01-25 2004-08-03 Masimo Corporation Dual-mode pulse oximeter
US6658276B2 (en) 1999-01-25 2003-12-02 Masimo Corporation Pulse oximeter user interface
CA2358454C (en) 1999-01-25 2010-03-23 Masimo Corporation Universal/upgrading pulse oximeter
US20020140675A1 (en) 1999-01-25 2002-10-03 Ali Ammar Al System and method for altering a display mode based on a gravity-responsive sensor
FR2789536B1 (en) * 1999-02-08 2001-03-09 Bull Sa DEVICE AND METHOD FOR AUTHENTICATING A REMOTE USER
ATE422838T1 (en) 1999-03-08 2009-03-15 Nellcor Puritan Bennett Llc METHOD AND CIRCUIT FOR STORING AND PROVIDING HISTORICAL PHYSIOLOGICAL DATA
US8103325B2 (en) 1999-03-08 2012-01-24 Tyco Healthcare Group Lp Method and circuit for storing and providing historical physiological data
US6360114B1 (en) 1999-03-25 2002-03-19 Masimo Corporation Pulse oximeter probe-off detector
US6775782B1 (en) 1999-03-31 2004-08-10 International Business Machines Corporation System and method for suspending and resuming digital certificates in a certificate-based user authentication application system
US6308089B1 (en) 1999-04-14 2001-10-23 O.B. Scientific, Inc. Limited use medical probe
US6298255B1 (en) 1999-06-09 2001-10-02 Aspect Medical Systems, Inc. Smart electrophysiological sensor system with automatic authentication and validation and an interface for a smart electrophysiological sensor system
US6631353B1 (en) 1999-06-10 2003-10-07 Hologic, Inc. Sonometry and densitometry medical diagnostic devices enabled for per-use patient examinations charged via internet connections to financial cards
US20030018243A1 (en) 1999-07-07 2003-01-23 Gerhardt Thomas J. Selectively plated sensor
US6301493B1 (en) 1999-07-10 2001-10-09 Physiometrix, Inc. Reservoir electrodes for electroencephalograph headgear appliance
USRE41333E1 (en) 1999-07-22 2010-05-11 Sensys Medical, Inc. Multi-tier method of developing localized calibration models for non-invasive blood analyte prediction
US7096282B1 (en) 1999-07-30 2006-08-22 Smiths Medical Pm, Inc. Memory option card having predetermined number of activation/deactivation codes for selectively activating and deactivating option functions for a medical device
US6515273B2 (en) 1999-08-26 2003-02-04 Masimo Corporation System for indicating the expiration of the useful operating life of a pulse oximetry sensor
US20020152180A1 (en) 1999-09-10 2002-10-17 Paul Turgeon System and method for performing secure remote real-time financial transactions over a public communications infrastructure with strong authentication
US6411373B1 (en) 1999-10-08 2002-06-25 Instrumentation Metrics, Inc. Fiber optic illumination and detection patterns, shapes, and locations for use in spectroscopic analysis
US6943348B1 (en) 1999-10-19 2005-09-13 Masimo Corporation System for detecting injection holding material
DE60028230T2 (en) 1999-10-27 2007-03-29 Hospira Sedation, Inc., North Billerica MODULE FOR OBTAINING PATIENTS ELECTROENECEPHALOGRAPHIC SIGNALS
US6317627B1 (en) 1999-11-02 2001-11-13 Physiometrix, Inc. Anesthesia monitoring system based on electroencephalographic signals
WO2001033201A1 (en) 1999-11-03 2001-05-10 Argose, Inc. Asynchronous fluorescence scan
US6433696B1 (en) 1999-11-05 2002-08-13 Alto U.S., Inc. Carbon monoxide emitting apparatus, carbon monoxide monitor shutoff, and circuit therefor
US6542764B1 (en) 1999-12-01 2003-04-01 Masimo Corporation Pulse oximeter monitor for expressing the urgency of the patient's condition
US6671531B2 (en) 1999-12-09 2003-12-30 Masimo Corporation Sensor wrap including foldable applicator
US6377829B1 (en) 1999-12-09 2002-04-23 Masimo Corporation Resposable pulse oximetry sensor
US6950687B2 (en) 1999-12-09 2005-09-27 Masimo Corporation Isolation and communication element for a resposable pulse oximetry sensor
US6152754A (en) 1999-12-21 2000-11-28 Masimo Corporation Circuit board based cable connector
US6587196B1 (en) 2000-01-26 2003-07-01 Sensys Medical, Inc. Oscillating mechanism driven monochromator
EP1257195A2 (en) 2000-02-18 2002-11-20 Argose, Inc. Multivariate analysis of green to ultraviolet spectra of cell and tissue samples
AU2001237067A1 (en) 2000-02-18 2001-08-27 Argose, Inc. Reduction of inter-subject variation via transfer standardization
JP2003522578A (en) 2000-02-18 2003-07-29 アーゴス インク Generation of spatially averaged excitation-emission maps in heterogeneous tissue
US6587199B1 (en) 2000-02-25 2003-07-01 Sensys Medical, Inc. Embedded data acquisition and control system for non-invasive glucose prediction instrument
US7606608B2 (en) 2000-05-02 2009-10-20 Sensys Medical, Inc. Optical sampling interface system for in-vivo measurement of tissue
US7519406B2 (en) 2004-04-28 2009-04-14 Sensys Medical, Inc. Noninvasive analyzer sample probe interface method and apparatus
US6534012B1 (en) 2000-08-02 2003-03-18 Sensys Medical, Inc. Apparatus and method for reproducibly modifying localized absorption and scattering coefficients at a tissue measurement site during optical sampling
WO2001088510A2 (en) 2000-05-18 2001-11-22 Argose, Inc. Pre-and post-processing of spectral data for calibration using multivariate analysis techniques
ATE502567T1 (en) 2000-05-19 2011-04-15 Welch Allyn Protocol Inc DEVICE FOR MONITORING PATIENTS
US6487429B2 (en) 2000-05-30 2002-11-26 Sensys Medical, Inc. Use of targeted glycemic profiles in the calibration of a noninvasive blood glucose monitor
US7395158B2 (en) 2000-05-30 2008-07-01 Sensys Medical, Inc. Method of screening for disorders of glucose metabolism
US6430525B1 (en) 2000-06-05 2002-08-06 Masimo Corporation Variable mode averager
WO2001095800A2 (en) 2000-06-15 2001-12-20 Instrumentation Metrics, Inc. Classification and screening of test subjects according to optical thickness of skin
US6470199B1 (en) 2000-06-21 2002-10-22 Masimo Corporation Elastic sock for positioning an optical probe
US6697656B1 (en) 2000-06-27 2004-02-24 Masimo Corporation Pulse oximetry sensor compatible with multiple pulse oximetry systems
AU7182701A (en) * 2000-07-06 2002-01-21 David Paul Felsher Information record infrastructure, system and method
US8380630B2 (en) * 2000-07-06 2013-02-19 David Paul Felsher Information record infrastructure, system and method
US20020120467A1 (en) 2000-07-14 2002-08-29 Asbjorn Buanes Data processing system and method for managing the use of a medical device
US6640116B2 (en) 2000-08-18 2003-10-28 Masimo Corporation Optical spectroscopy pathlength measurement system
DK1309270T3 (en) 2000-08-18 2009-08-03 Masimo Corp Pulse oximeter with two modes
US6836765B1 (en) 2000-08-30 2004-12-28 Lester Sussman System and method for secure and address verifiable electronic commerce transactions
US6553241B2 (en) 2000-08-31 2003-04-22 Mallinckrodt Inc. Oximeter sensor with digital memory encoding sensor expiration data
US6606510B2 (en) 2000-08-31 2003-08-12 Mallinckrodt Inc. Oximeter sensor with digital memory encoding patient data
US6368283B1 (en) 2000-09-08 2002-04-09 Institut De Recherches Cliniques De Montreal Method and apparatus for estimating systolic and mean pulmonary artery pressures of a patient
US6499843B1 (en) 2000-09-13 2002-12-31 Bausch & Lomb Incorporated Customized vision correction method and business
US6640117B2 (en) 2000-09-26 2003-10-28 Sensys Medical, Inc. Method and apparatus for minimizing spectral effects attributable to tissue state variations during NIR-based non-invasive blood analyte determination
US6816241B2 (en) 2000-09-26 2004-11-09 Sensys Medical, Inc. LED light source-based instrument for non-invasive blood analyte determination
GB2368755A (en) 2000-11-01 2002-05-08 Content Technologies Ltd Distributing public keys using 2D barcodes
AU2002230429A1 (en) 2000-11-13 2002-05-21 Argose, Inc. Reduction of spectral site to site variation
US7711612B1 (en) * 2000-11-14 2010-05-04 International Business Machines Corporation Replenishment management system and method
US6760607B2 (en) 2000-12-29 2004-07-06 Masimo Corporation Ribbon cable substrate pulse oximetry sensor
US20070198432A1 (en) 2001-01-19 2007-08-23 Pitroda Satyan G Transactional services
AU2002249985B2 (en) 2001-01-26 2005-11-17 Sensys Medical, Inc. Noninvasive measurement of glucose through the optical properties of tissue
AU2002251877A1 (en) 2001-02-06 2002-08-19 Argose, Inc. Layered calibration standard for tissue sampling
US20040162035A1 (en) 2001-03-08 2004-08-19 Hannes Petersen On line health monitoring
JP2002268764A (en) 2001-03-14 2002-09-20 Dainippon Printing Co Ltd Software license management system with ic card
US20020147693A1 (en) 2001-04-05 2002-10-10 International Business Machines Corporation Method and system for dynamic accounting of service and equipment usage
JP2004532526A (en) 2001-05-03 2004-10-21 マシモ・コーポレイション Flex circuit shield optical sensor and method of manufacturing the flex circuit shield optical sensor
JP2002351564A (en) 2001-05-22 2002-12-06 Ntt Communications Kk Device, method and program for application providing service
US8458335B2 (en) * 2001-06-18 2013-06-04 Digi International Inc. Method and apparatus for relationship management
US20020198740A1 (en) 2001-06-21 2002-12-26 Roman Linda L. Intelligent data retrieval system and method
US6850787B2 (en) 2001-06-29 2005-02-01 Masimo Laboratories, Inc. Signal component processor
US6697658B2 (en) 2001-07-02 2004-02-24 Masimo Corporation Low power pulse oximeter
US20030013975A1 (en) 2001-07-12 2003-01-16 Kiani Massi E. Method of selling a continuous mode blood pressure monitor
US6595316B2 (en) 2001-07-18 2003-07-22 Andromed, Inc. Tension-adjustable mechanism for stethoscope earpieces
US7349856B2 (en) 2001-07-30 2008-03-25 Siemens Aktiengesellschaft Method for selectively enabling or blocking the use of medical equipment
US6876931B2 (en) 2001-08-03 2005-04-05 Sensys Medical Inc. Automatic process for sample selection during multivariate calibration
US6788965B2 (en) 2001-08-03 2004-09-07 Sensys Medical, Inc. Intelligent system for detecting errors and determining failure modes in noninvasive measurement of blood and tissue analytes
US20030028495A1 (en) 2001-08-06 2003-02-06 Pallante Joseph T. Trusted third party services system and method
US6635559B2 (en) 2001-09-06 2003-10-21 Spire Corporation Formation of insulating aluminum oxide in semiconductor substrates
AU2002332915A1 (en) 2001-09-07 2003-03-24 Argose, Inc. Portable non-invasive glucose monitor
US7248910B2 (en) 2001-10-22 2007-07-24 Cardiodigital Limited Physiological parameter monitoring system and sensor assembly for same
US7203835B2 (en) * 2001-11-13 2007-04-10 Microsoft Corporation Architecture for manufacturing authenticatable gaming systems
US20030093301A1 (en) 2001-11-13 2003-05-15 Hypertension Diagnostics, Inc. Centralized clinical data management system process for analysis and billing
US20030093680A1 (en) * 2001-11-13 2003-05-15 International Business Machines Corporation Methods, apparatus and computer programs performing a mutual challenge-response authentication protocol using operating system capabilities
US7020635B2 (en) 2001-11-21 2006-03-28 Line 6, Inc System and method of secure electronic commerce transactions including tracking and recording the distribution and usage of assets
US20030212312A1 (en) 2002-01-07 2003-11-13 Coffin James P. Low noise patient cable
US7320070B2 (en) * 2002-01-08 2008-01-15 Verizon Services Corp. Methods and apparatus for protecting against IP address assignments based on a false MAC address
US6934570B2 (en) 2002-01-08 2005-08-23 Masimo Corporation Physiological sensor combination
US6822564B2 (en) 2002-01-24 2004-11-23 Masimo Corporation Parallel measurement alarm processor
US7355512B1 (en) 2002-01-24 2008-04-08 Masimo Corporation Parallel alarm processor
WO2003065557A2 (en) 2002-01-25 2003-08-07 Masimo Corporation Power supply rail controller
US20030156288A1 (en) 2002-02-20 2003-08-21 Barnum P. T. Sensor band for aligning an emitter and a detector
WO2003071939A1 (en) 2002-02-22 2003-09-04 Masimo Corporation Active pulse spectraphotometry
US7509494B2 (en) 2002-03-01 2009-03-24 Masimo Corporation Interface cable
EP1499231A4 (en) 2002-03-08 2007-09-26 Sensys Medical Inc Compact apparatus for noninvasive measurement of glucose through near-infrared spectroscopy
US8504128B2 (en) 2002-03-08 2013-08-06 Glt Acquisition Corp. Method and apparatus for coupling a channeled sample probe to tissue
US7697966B2 (en) 2002-03-08 2010-04-13 Sensys Medical, Inc. Noninvasive targeting system method and apparatus
US6998247B2 (en) 2002-03-08 2006-02-14 Sensys Medical, Inc. Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers
US8718738B2 (en) 2002-03-08 2014-05-06 Glt Acquisition Corp. Method and apparatus for coupling a sample probe with a sample site
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
JP2003296114A (en) 2002-03-29 2003-10-17 Ntt Docomo Inc Information distributing method, information retrieving method, server device, client device, program and recording medium
US6661161B1 (en) 2002-06-27 2003-12-09 Andromed Inc. Piezoelectric biological sound monitor with printed circuit board
US6997879B1 (en) 2002-07-09 2006-02-14 Pacesetter, Inc. Methods and devices for reduction of motion-induced noise in optical vascular plethysmography
US7096054B2 (en) 2002-08-01 2006-08-22 Masimo Corporation Low noise optical housing
JP2004164597A (en) 2002-08-08 2004-06-10 Fujitsu Ltd Method for purchasing goods and services
US20040030583A1 (en) 2002-08-08 2004-02-12 Fleming Matthew G. Clinician-laboratory electronic communication system
US7341559B2 (en) 2002-09-14 2008-03-11 Masimo Corporation Pulse oximetry ear sensor
US7142901B2 (en) 2002-09-25 2006-11-28 Masimo Corporation Parameter compensated physiological monitor
US7274955B2 (en) 2002-09-25 2007-09-25 Masimo Corporation Parameter compensated pulse oximeter
US7096052B2 (en) 2002-10-04 2006-08-22 Masimo Corporation Optical probe including predetermined emission wavelength based on patient type
US7964390B2 (en) 2002-10-11 2011-06-21 Case Western Reserve University Sensor system
US20090024528A1 (en) 2002-11-07 2009-01-22 Ramon Otero Method and system for charitable fund raising in conjunction with game-of-chance participation by donors
US20040106163A1 (en) 2002-11-12 2004-06-03 Workman Jerome James Non-invasive measurement of analytes
WO2004044557A2 (en) 2002-11-12 2004-05-27 Argose, Inc. Non-invasive measurement of analytes
WO2004047631A2 (en) 2002-11-22 2004-06-10 Masimo Laboratories, Inc. Blood parameter measurement system
US6956649B2 (en) 2002-11-26 2005-10-18 Sensys Medical, Inc. Spectroscopic system and method using a ceramic optical reference
US6970792B1 (en) 2002-12-04 2005-11-29 Masimo Laboratories, Inc. Systems and methods for determining blood oxygen saturation values using complex number encoding
US7919713B2 (en) 2007-04-16 2011-04-05 Masimo Corporation Low noise oximetry cable including conductive cords
US7225006B2 (en) 2003-01-23 2007-05-29 Masimo Corporation Attachment and optical probe
US6920345B2 (en) 2003-01-24 2005-07-19 Masimo Corporation Optical sensor including disposable and reusable elements
US7640140B2 (en) 2003-03-07 2009-12-29 Sensys Medical, Inc. Method of processing noninvasive spectra
US7620674B2 (en) 2003-03-07 2009-11-17 Sensys Medical, Inc. Method and apparatus for enhanced estimation of an analyte property through multiple region transformation
SE525095C2 (en) 2003-04-25 2004-11-30 Phasein Ab Window for IR gas analyzer and method for making such window
SG137652A1 (en) 2003-05-06 2007-12-28 Amplus Comm Pte Ltd Apparatus and method of acquiring and storing data of close contacts
US20050055276A1 (en) 2003-06-26 2005-03-10 Kiani Massi E. Sensor incentive method
US7003338B2 (en) 2003-07-08 2006-02-21 Masimo Corporation Method and apparatus for reducing coupling between signals
US7356365B2 (en) 2003-07-09 2008-04-08 Glucolight Corporation Method and apparatus for tissue oximetry
US7500950B2 (en) 2003-07-25 2009-03-10 Masimo Corporation Multipurpose sensor port
US7254431B2 (en) 2003-08-28 2007-08-07 Masimo Corporation Physiological parameter tracking system
US8015399B2 (en) * 2003-09-30 2011-09-06 Ricoh Company, Ltd. Communication apparatus, communication system, certificate transmission method and program
US7254434B2 (en) 2003-10-14 2007-08-07 Masimo Corporation Variable pressure reusable sensor
US7483729B2 (en) 2003-11-05 2009-01-27 Masimo Corporation Pulse oximeter access apparatus and method
US7373193B2 (en) 2003-11-07 2008-05-13 Masimo Corporation Pulse oximetry data capture system
US20050124866A1 (en) 2003-11-12 2005-06-09 Joseph Elaz Healthcare processing device and display system
JP2005149181A (en) 2003-11-17 2005-06-09 Konica Minolta Medical & Graphic Inc Medical image information management system
EP1709778A1 (en) 2003-12-05 2006-10-11 Cardinal Health 303, Inc. Discovery and connection management with mobile systems manager
US20050131810A1 (en) 2003-12-11 2005-06-16 Sandy Garrett Methods and systems for payment of equipment usage
WO2005065241A2 (en) 2003-12-24 2005-07-21 Argose, Inc. Smmr (small molecule metabolite reporters) for use as in vivo glucose biosensors
US7280858B2 (en) 2004-01-05 2007-10-09 Masimo Corporation Pulse oximetry sensor
US7818259B2 (en) 2004-01-23 2010-10-19 Siemens Aktiengesellschaft Prepaid licensing system and method
US7510849B2 (en) 2004-01-29 2009-03-31 Glucolight Corporation OCT based method for diagnosis and therapy
US7371981B2 (en) 2004-02-20 2008-05-13 Masimo Corporation Connector switch
US20050187787A1 (en) 2004-02-23 2005-08-25 Rademr, Inc. Method for payer access to medical image data
US7438683B2 (en) 2004-03-04 2008-10-21 Masimo Corporation Application identification sensor
EP1722676B1 (en) 2004-03-08 2012-12-19 Masimo Corporation Physiological parameter system
US20050234317A1 (en) 2004-03-19 2005-10-20 Kiani Massi E Low power and personal pulse oximetry systems
US7292883B2 (en) 2004-03-31 2007-11-06 Masimo Corporation Physiological assessment system
US20050228242A1 (en) 2004-04-08 2005-10-13 Tatsurou Kawamura Health management system
CA2464029A1 (en) 2004-04-08 2005-10-08 Valery Telfort Non-invasive ventilation monitor
CA2464634A1 (en) 2004-04-16 2005-10-16 Andromed Inc. Pap estimator
US8868147B2 (en) 2004-04-28 2014-10-21 Glt Acquisition Corp. Method and apparatus for controlling positioning of a noninvasive analyzer sample probe
US7454623B2 (en) * 2004-06-16 2008-11-18 Blame Canada Holdings Inc Distributed hierarchical identity management system authentication mechanisms
US7343186B2 (en) 2004-07-07 2008-03-11 Masimo Laboratories, Inc. Multi-wavelength physiological monitor
US9341565B2 (en) 2004-07-07 2016-05-17 Masimo Corporation Multiple-wavelength physiological monitor
US7937128B2 (en) 2004-07-09 2011-05-03 Masimo Corporation Cyanotic infant sensor
US8036727B2 (en) 2004-08-11 2011-10-11 Glt Acquisition Corp. Methods for noninvasively measuring analyte levels in a subject
US7254429B2 (en) 2004-08-11 2007-08-07 Glucolight Corporation Method and apparatus for monitoring glucose levels in a biological tissue
US7822452B2 (en) 2004-08-11 2010-10-26 Glt Acquisition Corp. Method for data reduction and calibration of an OCT-based blood glucose monitor
US7571265B2 (en) * 2004-08-16 2009-08-04 Microsoft Corporation Deterring theft and unauthorized use of electronic devices through the use of counters and private code
US7976472B2 (en) 2004-09-07 2011-07-12 Masimo Corporation Noninvasive hypovolemia monitor
WO2006039350A1 (en) 2004-09-29 2006-04-13 Masimo Corporation Multiple key position plug
KR101228496B1 (en) 2004-10-06 2013-01-31 리서치 파운데이션 어브 서니 High flux and low fouling filtration media
US7646300B2 (en) * 2004-10-27 2010-01-12 Intelleflex Corporation Master tags
US7520430B1 (en) 2004-11-04 2009-04-21 Acumera, Inc. Multiservice merchant gateway
EP1815370A2 (en) 2004-11-12 2007-08-08 Koninklijke Philips Electronics N.V. Message integrity for secure communication of wireless medical devices
USD529616S1 (en) 2004-11-19 2006-10-03 Sensys Medical, Inc. Noninvasive glucose analyzer
USD526719S1 (en) 2004-11-19 2006-08-15 Sensys Medical, Inc. Noninvasive glucose analyzer
US7514725B2 (en) 2004-11-30 2009-04-07 Spire Corporation Nanophotovoltaic devices
JP2008526443A (en) 2005-01-13 2008-07-24 ウェルチ・アリン・インコーポレーテッド Vital signs monitor
US7392074B2 (en) 2005-01-21 2008-06-24 Nonin Medical, Inc. Sensor system with memory and method of using same
USD554263S1 (en) 2005-02-18 2007-10-30 Masimo Corporation Portable patient monitor
USD566282S1 (en) 2005-02-18 2008-04-08 Masimo Corporation Stand for a portable patient monitor
US20060189871A1 (en) 2005-02-18 2006-08-24 Ammar Al-Ali Portable patient monitor
EP2286721B1 (en) 2005-03-01 2018-10-24 Masimo Laboratories, Inc. Physiological Parameter Confidence Measure
US7937129B2 (en) 2005-03-21 2011-05-03 Masimo Corporation Variable aperture sensor
US7593230B2 (en) 2005-05-05 2009-09-22 Sensys Medical, Inc. Apparatus for absorbing and dissipating excess heat generated by a system
US7698105B2 (en) 2005-05-23 2010-04-13 Sensys Medical, Inc. Method and apparatus for improving performance of noninvasive analyte property estimation
US12014328B2 (en) 2005-07-13 2024-06-18 Vccb Holdings, Inc. Medicine bottle cap with electronic embedded curved display
US20070073116A1 (en) 2005-08-17 2007-03-29 Kiani Massi E Patient identification using physiological sensor
US20070043677A1 (en) * 2005-08-17 2007-02-22 Idt Corporation Point of sale product authorization
US20080015423A1 (en) 2005-08-31 2008-01-17 Lam Phillip L Computer docking station for multiple health-related measurements
US7570941B2 (en) * 2005-09-02 2009-08-04 Aricent Inc. Method enabling detection of stolen mobile communication devices and systems thereof
US20080046286A1 (en) 2005-09-16 2008-02-21 Halsted Mark J Computer implemented healthcare monitoring, notifying and/or scheduling system
US7660616B1 (en) 2005-09-20 2010-02-09 Pacesetter, Inc. Implantable multi-wavelength oximeter sensor
GB2431249A (en) * 2005-10-11 2007-04-18 Hewlett Packard Development Co Removable data storage item and key distribution
US7962188B2 (en) 2005-10-14 2011-06-14 Masimo Corporation Robust alarm system
US7530942B1 (en) 2005-10-18 2009-05-12 Masimo Corporation Remote sensing infant warmer
US8233955B2 (en) 2005-11-29 2012-07-31 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
US20070180140A1 (en) 2005-12-03 2007-08-02 Welch James P Physiological alarm notification system
US7990382B2 (en) 2006-01-03 2011-08-02 Masimo Corporation Virtual display
US8182443B1 (en) 2006-01-17 2012-05-22 Masimo Corporation Drug administration controller
US20070197881A1 (en) 2006-02-22 2007-08-23 Wolf James L Wireless Health Monitor Device and System with Cognition
WO2007103835A2 (en) 2006-03-03 2007-09-13 Physiowave Inc. Physiologic monitoring systems and methods
US20070226013A1 (en) 2006-03-07 2007-09-27 Cardiac Pacemakers, Inc. Method and apparatus for automated generation and transmission of data in a standardized machine-readable format
US20070244377A1 (en) 2006-03-14 2007-10-18 Cozad Jenny L Pulse oximeter sleeve
US8219172B2 (en) 2006-03-17 2012-07-10 Glt Acquisition Corp. System and method for creating a stable optical interface
JPWO2007108513A1 (en) 2006-03-22 2009-08-06 パナソニック株式会社 Biosensor and component concentration measuring device
US7941199B2 (en) 2006-05-15 2011-05-10 Masimo Laboratories, Inc. Sepsis monitor
US8998809B2 (en) 2006-05-15 2015-04-07 Cercacor Laboratories, Inc. Systems and methods for calibrating minimally invasive and non-invasive physiological sensor devices
US9176141B2 (en) 2006-05-15 2015-11-03 Cercacor Laboratories, Inc. Physiological monitor calibration system
WO2007140478A2 (en) 2006-05-31 2007-12-06 Masimo Corporation Respiratory monitoring
US10188348B2 (en) 2006-06-05 2019-01-29 Masimo Corporation Parameter upgrade system
JP5457174B2 (en) 2006-06-05 2014-04-02 セルカコア・ラボラトリーズ・インコーポレーテッド Parameter update system
TW200744529A (en) 2006-06-09 2007-12-16 Avita Corp Medical measuring device with long distant transmission function
US8380271B2 (en) 2006-06-15 2013-02-19 Covidien Lp System and method for generating customizable audible beep tones and alarms
US8793164B2 (en) 2006-06-23 2014-07-29 Mark Sendo System and method enabling children to shop on-line
USD592507S1 (en) 2006-07-06 2009-05-19 Vitality, Inc. Top for medicine container
US20080064965A1 (en) 2006-09-08 2008-03-13 Jay Gregory D Devices and methods for measuring pulsus paradoxus
KR20090078778A (en) * 2006-09-12 2009-07-20 인터멕 아이피 코포레이션 Systems and methods for rfid surveillance
USD609193S1 (en) 2007-10-12 2010-02-02 Masimo Corporation Connector assembly
USD587657S1 (en) 2007-10-12 2009-03-03 Masimo Corporation Connector assembly
USD614305S1 (en) 2008-02-29 2010-04-20 Masimo Corporation Connector assembly
US8315683B2 (en) 2006-09-20 2012-11-20 Masimo Corporation Duo connector patient cable
US8457707B2 (en) 2006-09-20 2013-06-04 Masimo Corporation Congenital heart disease monitor
US8840549B2 (en) 2006-09-22 2014-09-23 Masimo Corporation Modular patient monitor
US20080103375A1 (en) 2006-09-22 2008-05-01 Kiani Massi E Patient monitor user interface
US9161696B2 (en) 2006-09-22 2015-10-20 Masimo Corporation Modular patient monitor
US20080081608A1 (en) * 2006-09-29 2008-04-03 Sony Ericsson Mobile Communications Ab Near Field Communication Enabled Diagnostic Device
US7880626B2 (en) 2006-10-12 2011-02-01 Masimo Corporation System and method for monitoring the life of a physiological sensor
US8255026B1 (en) 2006-10-12 2012-08-28 Masimo Corporation, Inc. Patient monitor capable of monitoring the quality of attached probes and accessories
US9192329B2 (en) 2006-10-12 2015-11-24 Masimo Corporation Variable mode pulse indicator
EP2073692B1 (en) 2006-10-12 2017-07-26 Masimo Corporation Perfusion index smoothing
US8265723B1 (en) 2006-10-12 2012-09-11 Cercacor Laboratories, Inc. Oximeter probe off indicator defining probe off space
US20080094228A1 (en) 2006-10-12 2008-04-24 Welch James P Patient monitor using radio frequency identification tags
US9861305B1 (en) 2006-10-12 2018-01-09 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
US20100250400A1 (en) * 2006-11-10 2010-09-30 Media Patents, S.L. Apparatus and methods for the sale of software products
US20080114695A1 (en) * 2006-11-10 2008-05-15 Semantic Components S.L. Process for implementing a method for the on-line sale of software product use licenses through a data network, and software component which allows carrying out said process
US8600467B2 (en) 2006-11-29 2013-12-03 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
JP5441707B2 (en) 2006-12-09 2014-03-12 マシモ コーポレイション Plethysmograph variation processor
US7791155B2 (en) 2006-12-22 2010-09-07 Masimo Laboratories, Inc. Detector shield
US8852094B2 (en) 2006-12-22 2014-10-07 Masimo Corporation Physiological parameter system
US8652060B2 (en) 2007-01-20 2014-02-18 Masimo Corporation Perfusion trend indicator
US20090093687A1 (en) 2007-03-08 2009-04-09 Telfort Valery G Systems and methods for determining a physiological condition using an acoustic monitor
US20080221418A1 (en) 2007-03-09 2008-09-11 Masimo Corporation Noninvasive multi-parameter patient monitor
EP2139383B1 (en) 2007-03-27 2013-02-13 Masimo Laboratories, Inc. Multiple wavelength optical sensor
US20080242945A1 (en) 2007-03-30 2008-10-02 Stanley Security Solutions, Inc. Facility management system
WO2008122308A1 (en) * 2007-04-04 2008-10-16 Media Patents S.L. Process for the on-line distribution, through a data network, of digital files protected by intellectual property rights and computer readable medium containing a program for carrying out said process
US8374665B2 (en) 2007-04-21 2013-02-12 Cercacor Laboratories, Inc. Tissue profile wellness monitor
US20080300572A1 (en) 2007-06-01 2008-12-04 Medtronic Minimed, Inc. Wireless monitor for a personal medical device system
US20080319510A1 (en) 2007-06-19 2008-12-25 Simpson Fred A Medical Device Access Control Apparatus and Method
US8764671B2 (en) 2007-06-28 2014-07-01 Masimo Corporation Disposable active pulse sensor
US20090076844A1 (en) 2007-07-16 2009-03-19 Natural Light De Mexico System and method for remote delivery of a therapeutic treatment
US20090036759A1 (en) 2007-08-01 2009-02-05 Ault Timothy E Collapsible noninvasive analyzer method and apparatus
US8048040B2 (en) 2007-09-13 2011-11-01 Masimo Corporation Fluid titration system
WO2009042758A2 (en) 2007-09-25 2009-04-02 Swipepay Mobile, Inc. System and method for financial transaction interoperability across multiple mobile networks
US8274360B2 (en) 2007-10-12 2012-09-25 Masimo Corporation Systems and methods for storing, analyzing, and retrieving medical data
WO2009049101A1 (en) 2007-10-12 2009-04-16 Masimo Corporation Connector assembly
US8310336B2 (en) 2008-10-10 2012-11-13 Masimo Corporation Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
US8355766B2 (en) 2007-10-12 2013-01-15 Masimo Corporation Ceramic emitter substrate
US20090095926A1 (en) 2007-10-12 2009-04-16 Macneish Iii William Jack Physiological parameter detector
US20090247984A1 (en) 2007-10-24 2009-10-01 Masimo Laboratories, Inc. Use of microneedles for small molecule metabolite reporter delivery
US20090119062A1 (en) 2007-11-01 2009-05-07 Timetracking Buddy Llc Time Tracking Methods and Systems
US20090150170A1 (en) * 2007-12-11 2009-06-11 Nintendo Of America Method and apparatus for fraud reduction and product recovery
US8571617B2 (en) 2008-03-04 2013-10-29 Glt Acquisition Corp. Flowometry in optical coherence tomography for analyte level estimation
US8229532B2 (en) 2008-05-02 2012-07-24 The Regents Of The University Of California External ear-placed non-invasive physiological sensor
JP5575752B2 (en) 2008-05-02 2014-08-20 マシモ コーポレイション Monitor configuration system
US9107625B2 (en) 2008-05-05 2015-08-18 Masimo Corporation Pulse oximetry system with electrical decoupling circuitry
JP2009288853A (en) * 2008-05-27 2009-12-10 Sanyo Electric Co Ltd Electronic apparatus having antitheft function and method of preventing theft of electronic apparatus
US8402111B2 (en) * 2009-01-28 2013-03-19 Headwater Partners I, Llc Device assisted services install
US20090307140A1 (en) 2008-06-06 2009-12-10 Upendra Mardikar Mobile device over-the-air (ota) registration and point-of-sale (pos) payment
US8437825B2 (en) 2008-07-03 2013-05-07 Cercacor Laboratories, Inc. Contoured protrusion for improving spectroscopic measurement of blood constituents
USD621516S1 (en) 2008-08-25 2010-08-10 Masimo Laboratories, Inc. Patient monitoring sensor
USD606659S1 (en) 2008-08-25 2009-12-22 Masimo Laboratories, Inc. Patient monitor
US8203438B2 (en) 2008-07-29 2012-06-19 Masimo Corporation Alarm suspend system
US8515509B2 (en) 2008-08-04 2013-08-20 Cercacor Laboratories, Inc. Multi-stream emitter for noninvasive measurement of blood constituents
SE532941C2 (en) 2008-09-15 2010-05-18 Phasein Ab Gas sampling line for breathing gases
US8911377B2 (en) 2008-09-15 2014-12-16 Masimo Corporation Patient monitor including multi-parameter graphical display
US20100099964A1 (en) 2008-09-15 2010-04-22 Masimo Corporation Hemoglobin monitor
US8401602B2 (en) 2008-10-13 2013-03-19 Masimo Corporation Secondary-emitter sensor position indicator
US8346330B2 (en) 2008-10-13 2013-01-01 Masimo Corporation Reflection-detector sensor position indicator
US9665907B2 (en) * 2008-12-09 2017-05-30 International Business Machines Corporation Automated transactional carbon offsetting
US8116453B2 (en) 2008-12-29 2012-02-14 Bank Of America Corporation Gaming console-specific user authentication
US8771204B2 (en) 2008-12-30 2014-07-08 Masimo Corporation Acoustic sensor assembly
US8588880B2 (en) 2009-02-16 2013-11-19 Masimo Corporation Ear sensor
US10032002B2 (en) 2009-03-04 2018-07-24 Masimo Corporation Medical monitoring system
US9218454B2 (en) 2009-03-04 2015-12-22 Masimo Corporation Medical monitoring system
US9323894B2 (en) 2011-08-19 2016-04-26 Masimo Corporation Health care sanitation monitoring system
US10007758B2 (en) 2009-03-04 2018-06-26 Masimo Corporation Medical monitoring system
US8388353B2 (en) 2009-03-11 2013-03-05 Cercacor Laboratories, Inc. Magnetic connector
US20160005016A1 (en) 2009-03-12 2016-01-07 Cetrus LLC Metering System For Software Licenses
US20100234718A1 (en) 2009-03-12 2010-09-16 Anand Sampath Open architecture medical communication system
US8897847B2 (en) 2009-03-23 2014-11-25 Masimo Corporation Digit gauge for noninvasive optical sensor
WO2010118124A2 (en) 2009-04-07 2010-10-14 Reveal Sciences, Llc Device, method, and apparatus for biological testing with a mobile device
US8989831B2 (en) 2009-05-19 2015-03-24 Masimo Corporation Disposable components for reusable physiological sensor
US8571619B2 (en) 2009-05-20 2013-10-29 Masimo Corporation Hemoglobin display and patient treatment
US8418524B2 (en) 2009-06-12 2013-04-16 Masimo Corporation Non-invasive sensor calibration device
US8670811B2 (en) 2009-06-30 2014-03-11 Masimo Corporation Pulse oximetry system for adjusting medical ventilation
US8645002B2 (en) * 2009-07-06 2014-02-04 Netgear, Inc. System and method for facilitating and monitoring provisioning of wireless devices
US8294747B1 (en) * 2009-07-14 2012-10-23 Juniper Networks, Inc. Automated initiation of a computer-based video conference using a mobile phone telephony session
US20110040197A1 (en) 2009-07-20 2011-02-17 Masimo Corporation Wireless patient monitoring system
US20110208015A1 (en) 2009-07-20 2011-08-25 Masimo Corporation Wireless patient monitoring system
US8471713B2 (en) 2009-07-24 2013-06-25 Cercacor Laboratories, Inc. Interference detector for patient monitor
US8473020B2 (en) 2009-07-29 2013-06-25 Cercacor Laboratories, Inc. Non-invasive physiological sensor cover
US20110028809A1 (en) 2009-07-29 2011-02-03 Masimo Corporation Patient monitor ambient display device
US20110028806A1 (en) 2009-07-29 2011-02-03 Sean Merritt Reflectance calibration of fluorescence-based glucose measurements
US20110087081A1 (en) 2009-08-03 2011-04-14 Kiani Massi Joe E Personalized physiological monitor
US20110119182A1 (en) 2009-08-31 2011-05-19 Sam Smolkin Value Transfer System for Online Commerce Using Smart Card and Biometric Reader
US8688183B2 (en) 2009-09-03 2014-04-01 Ceracor Laboratories, Inc. Emitter driver for noninvasive patient monitor
WO2011032177A2 (en) * 2009-09-14 2011-03-17 Masimo Laboratories, Inc. Spot check monitor credit system
US9579039B2 (en) 2011-01-10 2017-02-28 Masimo Corporation Non-invasive intravascular volume index monitor
US20110137297A1 (en) 2009-09-17 2011-06-09 Kiani Massi Joe E Pharmacological management system
WO2011035070A1 (en) 2009-09-17 2011-03-24 Masimo Laboratories, Inc. Improving analyte monitoring using one or more accelerometers
US8571618B1 (en) 2009-09-28 2013-10-29 Cercacor Laboratories, Inc. Adaptive calibration system for spectrophotometric measurements
US20110077484A1 (en) 2009-09-30 2011-03-31 Nellcor Puritan Bennett Ireland Systems And Methods For Identifying Non-Corrupted Signal Segments For Use In Determining Physiological Parameters
US20110082711A1 (en) 2009-10-06 2011-04-07 Masimo Laboratories, Inc. Personal digital assistant or organizer for monitoring glucose levels
US9066680B1 (en) 2009-10-15 2015-06-30 Masimo Corporation System for determining confidence in respiratory rate measurements
US10463340B2 (en) 2009-10-15 2019-11-05 Masimo Corporation Acoustic respiratory monitoring systems and methods
US9106038B2 (en) 2009-10-15 2015-08-11 Masimo Corporation Pulse oximetry system with low noise cable hub
US8523781B2 (en) 2009-10-15 2013-09-03 Masimo Corporation Bidirectional physiological information display
WO2011047207A2 (en) 2009-10-15 2011-04-21 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
WO2011047216A2 (en) 2009-10-15 2011-04-21 Masimo Corporation Physiological acoustic monitoring system
US9848800B1 (en) 2009-10-16 2017-12-26 Masimo Corporation Respiratory pause detector
US20110118561A1 (en) 2009-11-13 2011-05-19 Masimo Corporation Remote control for a medical monitoring device
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
DE112010004682T5 (en) 2009-12-04 2013-03-28 Masimo Corporation Calibration for multi-level physiological monitors
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
USD659836S1 (en) 2009-12-29 2012-05-15 Cardionet, Inc. Portable heart monitor
WO2011091059A1 (en) 2010-01-19 2011-07-28 Masimo Corporation Wellness analysis system
JP2013521054A (en) 2010-03-01 2013-06-10 マシモ コーポレイション Adaptive alarm system
US8584345B2 (en) 2010-03-08 2013-11-19 Masimo Corporation Reprocessing of a physiological sensor
US9727850B2 (en) 2010-03-29 2017-08-08 Forward Pay Systems, Inc. Secure electronic cash-less payment systems and methods
US9307928B1 (en) 2010-03-30 2016-04-12 Masimo Corporation Plethysmographic respiration processor
US9138180B1 (en) 2010-05-03 2015-09-22 Masimo Corporation Sensor adapter cable
US8712494B1 (en) 2010-05-03 2014-04-29 Masimo Corporation Reflective non-invasive sensor
US8666468B1 (en) 2010-05-06 2014-03-04 Masimo Corporation Patient monitor for determining microcirculation state
US8852994B2 (en) 2010-05-24 2014-10-07 Masimo Semiconductor, Inc. Method of fabricating bifacial tandem solar cells
US9326712B1 (en) 2010-06-02 2016-05-03 Masimo Corporation Opticoustic sensor
US8740792B1 (en) 2010-07-12 2014-06-03 Masimo Corporation Patient monitor capable of accounting for environmental conditions
US9408542B1 (en) 2010-07-22 2016-08-09 Masimo Corporation Non-invasive blood pressure measurement system
US9649054B2 (en) 2010-08-26 2017-05-16 Cercacor Laboratories, Inc. Blood pressure measurement method
WO2012031125A2 (en) 2010-09-01 2012-03-08 The General Hospital Corporation Reversal of general anesthesia by administration of methylphenidate, amphetamine, modafinil, amantadine, and/or caffeine
US8455290B2 (en) 2010-09-04 2013-06-04 Masimo Semiconductor, Inc. Method of fabricating epitaxial structures
US8821397B2 (en) 2010-09-28 2014-09-02 Masimo Corporation Depth of consciousness monitor including oximeter
US9775545B2 (en) 2010-09-28 2017-10-03 Masimo Corporation Magnetic electrical connector for patient monitors
US20120165629A1 (en) 2010-09-30 2012-06-28 Sean Merritt Systems and methods of monitoring a patient through frequency-domain photo migration spectroscopy
US9211095B1 (en) 2010-10-13 2015-12-15 Masimo Corporation Physiological measurement logic engine
USD663421S1 (en) 2010-10-15 2012-07-10 Roche Diagnostics Operations, Inc. Hand-held blood glucose meter
US9815681B2 (en) * 2010-10-18 2017-11-14 Zonar Systems, Inc. Apparatus for use in an automated fuel authorization program requiring data to be dynamically retrieved from a vehicle data bus during fuel authorization
US8723677B1 (en) 2010-10-20 2014-05-13 Masimo Corporation Patient safety system with automatically adjusting bed
US20120123231A1 (en) 2010-11-11 2012-05-17 O'reilly Michael Monitoring cardiac output and vessel fluid volume
US20120226117A1 (en) 2010-12-01 2012-09-06 Lamego Marcelo M Handheld processing device including medical applications for minimally and non invasive glucose measurements
US20120209084A1 (en) 2011-01-21 2012-08-16 Masimo Corporation Respiratory event alert system
EP2673721A1 (en) 2011-02-13 2013-12-18 Masimo Corporation Medical characterization system
US9066666B2 (en) 2011-02-25 2015-06-30 Cercacor Laboratories, Inc. Patient monitor for monitoring microcirculation
US8776132B2 (en) 2011-03-17 2014-07-08 Ebay Inc. Single digital wallet across multiple payment platforms
US8830449B1 (en) 2011-04-18 2014-09-09 Cercacor Laboratories, Inc. Blood analysis system
US20120283524A1 (en) 2011-04-18 2012-11-08 Cercacor Laboratories, Inc. Pediatric monitor sensor steady game
US9095316B2 (en) 2011-04-20 2015-08-04 Masimo Corporation System for generating alarms based on alarm patterns
US20140187973A1 (en) 2011-05-06 2014-07-03 Emery N. Brown System and method for tracking brain states during administration of anesthesia
US9622692B2 (en) 2011-05-16 2017-04-18 Masimo Corporation Personal health device
US9538385B2 (en) * 2011-06-07 2017-01-03 Nokia Technologies Oy Method and apparatus for the detection of unlicensed user equipment
US9532722B2 (en) 2011-06-21 2017-01-03 Masimo Corporation Patient monitoring system
US9986919B2 (en) 2011-06-21 2018-06-05 Masimo Corporation Patient monitoring system
US9245668B1 (en) 2011-06-29 2016-01-26 Cercacor Laboratories, Inc. Low noise cable providing communication between electronic sensor components and patient monitor
US11439329B2 (en) 2011-07-13 2022-09-13 Masimo Corporation Multiple measurement mode in a physiological sensor
US20130023775A1 (en) 2011-07-20 2013-01-24 Cercacor Laboratories, Inc. Magnetic Reusable Sensor
US9192351B1 (en) 2011-07-22 2015-11-24 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US8755872B1 (en) 2011-07-28 2014-06-17 Masimo Corporation Patient monitoring system for indicating an abnormal condition
US20130035167A1 (en) * 2011-08-02 2013-02-07 Velti Mobile Platforms Limited Systems, Methods, and Devices for Message Based Gameplay
WO2013019991A1 (en) 2011-08-04 2013-02-07 Masimo Corporation Occlusive non-inflatable blood pressure device
US20130096405A1 (en) 2011-08-12 2013-04-18 Masimo Corporation Fingertip pulse oximeter
US9782077B2 (en) 2011-08-17 2017-10-10 Masimo Corporation Modulated physiological sensor
EP3603502B1 (en) 2011-10-13 2023-10-04 Masimo Corporation Physiological acoustic monitoring system
US9808188B1 (en) 2011-10-13 2017-11-07 Masimo Corporation Robust fractional saturation determination
EP2766834B1 (en) 2011-10-13 2022-04-20 Masimo Corporation Medical monitoring hub
US9943269B2 (en) 2011-10-13 2018-04-17 Masimo Corporation System for displaying medical monitoring data
KR101907009B1 (en) * 2011-10-21 2018-10-12 삼성전자주식회사 Apparatas and method for installation in a digital product
US9778079B1 (en) 2011-10-27 2017-10-03 Masimo Corporation Physiological monitor gauge panel
EP2791878A4 (en) * 2011-12-16 2015-07-29 Smartrac Ip Bv Service access using identifiers
US9445759B1 (en) 2011-12-22 2016-09-20 Cercacor Laboratories, Inc. Blood glucose calibration system
US9392945B2 (en) 2012-01-04 2016-07-19 Masimo Corporation Automated CCHD screening and detection
US9267572B2 (en) 2012-02-08 2016-02-23 Masimo Corporation Cable tether system
US10307111B2 (en) 2012-02-09 2019-06-04 Masimo Corporation Patient position detection system
US9480435B2 (en) 2012-02-09 2016-11-01 Masimo Corporation Configurable patient monitoring system
US10149616B2 (en) 2012-02-09 2018-12-11 Masimo Corporation Wireless patient monitoring device
WO2013128470A1 (en) * 2012-02-27 2013-09-06 Deshpande Nachiket Girish Authentication and secured information exchange system, and method therefor
EP2845086B1 (en) 2012-03-25 2021-12-22 Masimo Corporation Physiological monitor touchscreen interface
US9131881B2 (en) 2012-04-17 2015-09-15 Masimo Corporation Hypersaturation index
US20130296672A1 (en) 2012-05-02 2013-11-07 Masimo Corporation Noninvasive physiological sensor cover
WO2013184965A1 (en) 2012-06-07 2013-12-12 Masimo Corporation Depth of consciousness monitor
US20130345921A1 (en) 2012-06-22 2013-12-26 Masimo Corporation Physiological monitoring of moving vehicle operators
US9697928B2 (en) 2012-08-01 2017-07-04 Masimo Corporation Automated assembly sensor cable
US10827961B1 (en) 2012-08-29 2020-11-10 Masimo Corporation Physiological measurement calibration
US9100189B2 (en) * 2012-08-31 2015-08-04 Freescale Semiconductor, Inc. Secure provisioning in an untrusted environment
USD692145S1 (en) 2012-09-20 2013-10-22 Masimo Corporation Medical proximity detection token
US9749232B2 (en) 2012-09-20 2017-08-29 Masimo Corporation Intelligent medical network edge router
US9955937B2 (en) 2012-09-20 2018-05-01 Masimo Corporation Acoustic patient sensor coupler
US9877650B2 (en) 2012-09-20 2018-01-30 Masimo Corporation Physiological monitor with mobile computing device connectivity
US8635373B1 (en) * 2012-09-22 2014-01-21 Nest Labs, Inc. Subscription-Notification mechanisms for synchronization of distributed states
US8539567B1 (en) * 2012-09-22 2013-09-17 Nest Labs, Inc. Multi-tiered authentication methods for facilitating communications amongst smart home devices and cloud-based servers
US20140180160A1 (en) 2012-10-12 2014-06-26 Emery N. Brown System and method for monitoring and controlling a state of a patient during and after administration of anesthetic compound
US9717458B2 (en) 2012-10-20 2017-08-01 Masimo Corporation Magnetic-flap optical sensor
US9560996B2 (en) 2012-10-30 2017-02-07 Masimo Corporation Universal medical system
US8914853B2 (en) * 2012-12-07 2014-12-16 Verizon Patent And Licensing Inc. Blocking network access for unauthorized mobile devices
US20140166076A1 (en) 2012-12-17 2014-06-19 Masimo Semiconductor, Inc Pool solar power generator
TW201443802A (en) * 2012-12-21 2014-11-16 Sicpa Holding Sa Method and system for marking an item, an item so marked and a method and system for authenticating a marked item
US20140175165A1 (en) * 2012-12-21 2014-06-26 Honeywell Scanning And Mobility Bar code scanner with integrated surface authentication
US9750461B1 (en) 2013-01-02 2017-09-05 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US9178859B1 (en) * 2013-01-11 2015-11-03 Cisco Technology, Inc. Network equipment authentication
US9724025B1 (en) 2013-01-16 2017-08-08 Masimo Corporation Active-pulse blood analysis system
US20140229331A1 (en) * 2013-02-11 2014-08-14 FORA.tv, Inc. Embedded purchasing system and method
US9750442B2 (en) 2013-03-09 2017-09-05 Masimo Corporation Physiological status monitor
US20150005600A1 (en) 2013-03-13 2015-01-01 Cercacor Laboratories, Inc. Finger-placement sensor tape
US10441181B1 (en) 2013-03-13 2019-10-15 Masimo Corporation Acoustic pulse and respiration monitoring system
WO2014164139A1 (en) 2013-03-13 2014-10-09 Masimo Corporation Systems and methods for monitoring a patient health network
US9986952B2 (en) 2013-03-14 2018-06-05 Masimo Corporation Heart sound simulator
US9474474B2 (en) 2013-03-14 2016-10-25 Masimo Corporation Patient monitor as a minimally invasive glucometer
US20140275871A1 (en) 2013-03-14 2014-09-18 Cercacor Laboratories, Inc. Wireless optical communication between noninvasive physiological sensors and patient monitors
WO2014159132A1 (en) 2013-03-14 2014-10-02 Cercacor Laboratories, Inc. Systems and methods for testing patient monitors
US9936917B2 (en) 2013-03-14 2018-04-10 Masimo Laboratories, Inc. Patient monitor placement indicator
US9215075B1 (en) 2013-03-15 2015-12-15 Poltorak Technologies Llc System and method for secure relayed communications from an implantable medical device
US10456038B2 (en) 2013-03-15 2019-10-29 Cercacor Laboratories, Inc. Cloud-based physiological monitoring system
WO2014176356A1 (en) 2013-04-23 2014-10-30 The General Hospital Corporation System and method for monitoring anesthesia and sedation using measures of brain coherence and synchrony
US20140316218A1 (en) 2013-04-23 2014-10-23 Patrick L. Purdon Systems and methods for monitoring brain metabolism and activity using electroencephalogram and optical imaging
US20140323898A1 (en) 2013-04-24 2014-10-30 Patrick L. Purdon System and Method for Monitoring Level of Dexmedatomidine-Induced Sedation
WO2014176436A1 (en) 2013-04-24 2014-10-30 The General Hospital Corporation System and method for estimating high time-frequency resolution eeg spectrograms to monitor patient state
USD729939S1 (en) 2013-05-20 2015-05-19 Samsung Electronics Co., Ltd. Blood glucose meter
USD741497S1 (en) 2013-05-28 2015-10-20 Everheart Systems Inc. Wireless patient monitor
US20140358777A1 (en) 2013-05-31 2014-12-04 How Kiap Gueh Method for secure atm transactions using a portable device
US10383574B2 (en) 2013-06-28 2019-08-20 The General Hospital Corporation Systems and methods to infer brain state during burst suppression
US9891079B2 (en) 2013-07-17 2018-02-13 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
US10555678B2 (en) 2013-08-05 2020-02-11 Masimo Corporation Blood pressure monitor with valve-chamber assembly
USD744989S1 (en) 2013-08-27 2015-12-08 Samsung Electronics Co., Ltd. Electronic device
WO2015038683A2 (en) 2013-09-12 2015-03-19 Cercacor Laboratories, Inc. Medical device management system
EP3043696B1 (en) 2013-09-13 2022-11-02 The General Hospital Corporation Systems and methods for improved brain monitoring during general anesthesia and sedation
US10010276B2 (en) 2013-10-07 2018-07-03 Masimo Corporation Regional oximetry user interface
US11147518B1 (en) 2013-10-07 2021-10-19 Masimo Corporation Regional oximetry signal processor
US10828007B1 (en) 2013-10-11 2020-11-10 Masimo Corporation Acoustic sensor with attachment portion
US10832818B2 (en) 2013-10-11 2020-11-10 Masimo Corporation Alarm notification system
US10279247B2 (en) 2013-12-13 2019-05-07 Masimo Corporation Avatar-incentive healthcare therapy
US10086138B1 (en) 2014-01-28 2018-10-02 Masimo Corporation Autonomous drug delivery system
US10532174B2 (en) 2014-02-21 2020-01-14 Masimo Corporation Assistive capnography device
USD745167S1 (en) 2014-05-26 2015-12-08 Shenzhen Mindray Bio-Medical Electronic Co., Ltd. Telemetry monitor
US9924897B1 (en) 2014-06-12 2018-03-27 Masimo Corporation Heated reprocessing of physiological sensors
US10123729B2 (en) 2014-06-13 2018-11-13 Nanthealth, Inc. Alarm fatigue management systems and methods
US10231670B2 (en) 2014-06-19 2019-03-19 Masimo Corporation Proximity sensor in pulse oximeter
US10111591B2 (en) 2014-08-26 2018-10-30 Nanthealth, Inc. Real-time monitoring systems and methods in a healthcare environment
US10231657B2 (en) 2014-09-04 2019-03-19 Masimo Corporation Total hemoglobin screening sensor
US10383520B2 (en) 2014-09-18 2019-08-20 Masimo Semiconductor, Inc. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
US10154815B2 (en) 2014-10-07 2018-12-18 Masimo Corporation Modular physiological sensors
WO2016118922A1 (en) 2015-01-23 2016-07-28 Masimo Sweden Ab Nasal/oral cannula system and manufacturing
CN107431301B (en) 2015-02-06 2021-03-30 迈心诺公司 Connector assembly with retractable needle for use with medical sensors
USD755392S1 (en) 2015-02-06 2016-05-03 Masimo Corporation Pulse oximetry sensor
KR102609605B1 (en) 2015-02-06 2023-12-05 마시모 코오퍼레이션 Fold flex circuit for optical probes
US10568553B2 (en) 2015-02-06 2020-02-25 Masimo Corporation Soft boot pulse oximetry sensor
US10524738B2 (en) 2015-05-04 2020-01-07 Cercacor Laboratories, Inc. Noninvasive sensor system with visual infographic display
WO2016191307A1 (en) 2015-05-22 2016-12-01 Cercacor Laboratories, Inc. Non-invasive optical physiological differential pathlength sensor
US10448871B2 (en) 2015-07-02 2019-10-22 Masimo Corporation Advanced pulse oximetry sensor
US20170024748A1 (en) 2015-07-22 2017-01-26 Patient Doctor Technologies, Inc. Guided discussion platform for multiple parties
WO2017027621A1 (en) 2015-08-11 2017-02-16 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
KR102612874B1 (en) 2015-08-31 2023-12-12 마시모 코오퍼레이션 Wireless patient monitoring systems and methods
US11679579B2 (en) 2015-12-17 2023-06-20 Masimo Corporation Varnish-coated release liner
US10471159B1 (en) 2016-02-12 2019-11-12 Masimo Corporation Diagnosis, removal, or mechanical damaging of tumor using plasmonic nanobubbles
US10537285B2 (en) 2016-03-04 2020-01-21 Masimo Corporation Nose sensor
US20170251974A1 (en) 2016-03-04 2017-09-07 Masimo Corporation Nose sensor
USD794803S1 (en) 2016-04-22 2017-08-15 Dexcom, Inc. Medical device receiver and display in combination
US11191484B2 (en) 2016-04-29 2021-12-07 Masimo Corporation Optical sensor tape
WO2018009612A1 (en) 2016-07-06 2018-01-11 Patient Doctor Technologies, Inc. Secure and zero knowledge data sharing for cloud applications
US10617302B2 (en) 2016-07-07 2020-04-14 Masimo Corporation Wearable pulse oximeter and respiration monitor
US11076777B2 (en) 2016-10-13 2021-08-03 Masimo Corporation Systems and methods for monitoring orientation to reduce pressure ulcer formation
US10750984B2 (en) 2016-12-22 2020-08-25 Cercacor Laboratories, Inc. Methods and devices for detecting intensity of light with translucent detector
US10721785B2 (en) 2017-01-18 2020-07-21 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
US10327713B2 (en) 2017-02-24 2019-06-25 Masimo Corporation Modular multi-parameter patient monitoring device
US11024064B2 (en) 2017-02-24 2021-06-01 Masimo Corporation Augmented reality system for displaying patient data
WO2018156648A1 (en) 2017-02-24 2018-08-30 Masimo Corporation Managing dynamic licenses for physiological parameters in a patient monitoring environment
EP3585254B1 (en) 2017-02-24 2024-03-20 Masimo Corporation Medical device cable and method of sharing data between connected medical devices
US10388120B2 (en) 2017-02-24 2019-08-20 Masimo Corporation Localized projection of audible noises in medical settings
WO2018165618A1 (en) 2017-03-10 2018-09-13 Masimo Corporation Pneumonia screener
WO2018194992A1 (en) 2017-04-18 2018-10-25 Masimo Corporation Nose sensor
USD822215S1 (en) 2017-04-26 2018-07-03 Masimo Corporation Medical monitoring device
US10918281B2 (en) 2017-04-26 2021-02-16 Masimo Corporation Medical monitoring device having multiple configurations
EP3614909B1 (en) 2017-04-28 2024-04-03 Masimo Corporation Spot check measurement system
USD822216S1 (en) 2017-04-28 2018-07-03 Masimo Corporation Medical monitoring device
USD835285S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835282S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835284S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
USD835283S1 (en) 2017-04-28 2018-12-04 Masimo Corporation Medical monitoring device
CN110809804B (en) 2017-05-08 2023-10-27 梅西莫股份有限公司 System for pairing a medical system with a network controller using an adapter
USD833624S1 (en) 2017-05-09 2018-11-13 Masimo Corporation Medical device
WO2019014629A1 (en) 2017-07-13 2019-01-17 Cercacor Laboratories, Inc. Medical monitoring device for harmonizing physiological measurements
USD906970S1 (en) 2017-08-15 2021-01-05 Masimo Corporation Connector
USD890708S1 (en) 2017-08-15 2020-07-21 Masimo Corporation Connector
US10637181B2 (en) 2017-08-15 2020-04-28 Masimo Corporation Water resistant connector for noninvasive patient monitor
USD864120S1 (en) 2017-08-15 2019-10-22 Masimo Corporation Connector
USD880477S1 (en) 2017-08-15 2020-04-07 Masimo Corporation Connector
WO2019079643A1 (en) 2017-10-19 2019-04-25 Masimo Corporation Display arrangement for medical monitoring system
JP7282085B2 (en) 2017-10-31 2023-05-26 マシモ・コーポレイション System for displaying oxygen status indicators
USD925597S1 (en) 2017-10-31 2021-07-20 Masimo Corporation Display screen or portion thereof with graphical user interface
US11766198B2 (en) 2018-02-02 2023-09-26 Cercacor Laboratories, Inc. Limb-worn patient monitoring device
EP3782165A1 (en) 2018-04-19 2021-02-24 Masimo Corporation Mobile patient alarm display
WO2019209915A1 (en) 2018-04-24 2019-10-31 Cercacor Laboratories, Inc. Easy insert finger sensor for transmission based spectroscopy sensor
US20210161465A1 (en) 2018-06-06 2021-06-03 Masimo Corporation Kit for opioid overdose monitoring
JP7174778B2 (en) 2018-06-06 2022-11-17 マシモ・コーポレイション Opioid overdose monitoring
US10779098B2 (en) 2018-07-10 2020-09-15 Masimo Corporation Patient monitor alarm speaker analyzer
US11872156B2 (en) 2018-08-22 2024-01-16 Masimo Corporation Core body temperature measurement
USD887548S1 (en) 2018-09-10 2020-06-16 Masimo Corporation Flow alarm device housing
USD887549S1 (en) 2018-09-10 2020-06-16 Masino Corporation Cap for a flow alarm device
US20200111552A1 (en) 2018-10-08 2020-04-09 Masimo Corporation Patient database analytics
USD916135S1 (en) 2018-10-11 2021-04-13 Masimo Corporation Display screen or portion thereof with a graphical user interface
US11389093B2 (en) 2018-10-11 2022-07-19 Masimo Corporation Low noise oximetry cable
USD917550S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with a graphical user interface
US11406286B2 (en) 2018-10-11 2022-08-09 Masimo Corporation Patient monitoring device with improved user interface
CN112997366A (en) 2018-10-11 2021-06-18 迈心诺公司 Patient connector assembly with vertical detent
USD917564S1 (en) 2018-10-11 2021-04-27 Masimo Corporation Display screen or portion thereof with graphical user interface
WO2020077149A1 (en) 2018-10-12 2020-04-16 Masimo Corporation System for transmission of sensor data using dual communication protocol
US11464410B2 (en) 2018-10-12 2022-10-11 Masimo Corporation Medical systems and methods
USD897098S1 (en) 2018-10-12 2020-09-29 Masimo Corporation Card holder set
US20200113520A1 (en) 2018-10-16 2020-04-16 Masimo Corporation Stretch band with indicators or limiters
US12004869B2 (en) 2018-11-05 2024-06-11 Masimo Corporation System to monitor and manage patient hydration via plethysmograph variablity index in response to the passive leg raising
US11986289B2 (en) 2018-11-27 2024-05-21 Willow Laboratories, Inc. Assembly for medical monitoring device with multiple physiological sensors
US20200253474A1 (en) 2018-12-18 2020-08-13 Masimo Corporation Modular wireless physiological parameter system
US11684296B2 (en) 2018-12-21 2023-06-27 Cercacor Laboratories, Inc. Noninvasive physiological sensor
WO2020163640A1 (en) 2019-02-07 2020-08-13 Masimo Corporation Combining multiple qeeg features to estimate drug-independent sedation level using machine learning
US20200275841A1 (en) 2019-02-26 2020-09-03 Masimo Corporation Non-contact core body temperature measurement systems and methods
US20200288983A1 (en) 2019-02-26 2020-09-17 Masimo Corporation Respiratory core body temperature measurement systems and methods
BR112021020780A2 (en) 2019-04-17 2021-12-14 Masimo Corp Electrocardiogram (ECG) device, blood pressure monitoring device, blood pressure monitor, blood pressure cuff, mounting for enabling a caregiver to attach a physiological monitoring device to a user's arm, charging station for providing power to a physiological monitoring device, non-invasive blood pressure monitor and method for a non-invasive blood pressure monitor
USD919100S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Holder for a patient monitor
USD917704S1 (en) 2019-08-16 2021-04-27 Masimo Corporation Patient monitor
USD921202S1 (en) 2019-08-16 2021-06-01 Masimo Corporation Holder for a blood pressure device
USD919094S1 (en) 2019-08-16 2021-05-11 Masimo Corporation Blood pressure device
US11832940B2 (en) 2019-08-27 2023-12-05 Cercacor Laboratories, Inc. Non-invasive medical monitoring device for blood analyte measurements
US20210104173A1 (en) 2019-10-03 2021-04-08 Cercacor Laboratories, Inc. Personalized health coaching system
CN114667574A (en) 2019-10-18 2022-06-24 梅西莫股份有限公司 Display layout and interactive objects for patient monitoring
USD927699S1 (en) 2019-10-18 2021-08-10 Masimo Corporation Electrode pad
KR20220115927A (en) 2019-10-25 2022-08-19 세르카코르 래버러토리즈, 인크. Indicator compounds, devices comprising indicator compounds, and methods of making and using the same
CN115066203A (en) 2020-01-13 2022-09-16 梅西莫股份有限公司 Wearable device with physiological parameter monitoring
WO2021155048A2 (en) 2020-01-30 2021-08-05 Cercacor Laboratories, Inc. Redundant staggered glucose sensor disease management system
US11879960B2 (en) 2020-02-13 2024-01-23 Masimo Corporation System and method for monitoring clinical activities
WO2021163447A1 (en) 2020-02-13 2021-08-19 Masimo Corporation System and method for monitoring clinical activities
US12048534B2 (en) 2020-03-04 2024-07-30 Willow Laboratories, Inc. Systems and methods for securing a tissue site to a sensor
US11730379B2 (en) 2020-03-20 2023-08-22 Masimo Corporation Remote patient management and monitoring systems and methods
US20210330228A1 (en) 2020-04-22 2021-10-28 Cercacor Laboratories, Inc. Self-contained minimal action invasive blood constituent system

Patent Citations (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900904A (en) * 1986-11-26 1990-02-13 Wright Technologies, L.P. Automated transaction system with insertable cards for downloading rate or program data
US6704786B1 (en) * 1997-12-15 2004-03-09 Sun Microsystems, Inc. Network and end-host efficiency for web communication
US6069955A (en) * 1998-04-14 2000-05-30 International Business Machines Corporation System for protection of goods against counterfeiting
US20020138336A1 (en) * 2001-02-06 2002-09-26 Bakes Frank Heinrich Method and system for optimizing product inventory levels
US20020178126A1 (en) * 2001-05-25 2002-11-28 Beck Timothy L. Remote medical device access
US20040236699A1 (en) * 2001-07-10 2004-11-25 American Express Travel Related Services Company, Inc. Method and system for hand geometry recognition biometrics on a fob
US20030055794A1 (en) * 2001-09-14 2003-03-20 Pitney Bowes Incorporated Method and system for optimizing refill amount for automatic refill of a shared virtual postage meter
US20030063913A1 (en) * 2001-09-28 2003-04-03 Canon Kabushiki Kaisha Diagnostic device, diagnostic system, diagnostic method, program and storage medium
US7450927B1 (en) * 2002-01-23 2008-11-11 At&T Corp. Interactive communication service account management system
US20040068436A1 (en) * 2002-10-08 2004-04-08 Boubek Brian J. System and method for influencing position of information tags allowing access to on-site information
US20040146328A1 (en) * 2002-12-27 2004-07-29 Fuji Photo Film Co., Ltd. Automatic processing method of photosensitive lithographic printing plate and automatic processing apparatus thereof
US20040245330A1 (en) * 2003-04-03 2004-12-09 Amy Swift Suspicious persons database
US20040267552A1 (en) * 2003-06-26 2004-12-30 Contentguard Holdings, Inc. System and method for controlling rights expressions by stakeholders of an item
US20050125317A1 (en) * 2003-08-29 2005-06-09 Starbucks Corporation Method and apparatus for automatically reloading a stored value card
US20060259328A1 (en) * 2003-10-21 2006-11-16 Oculir, Inc. Wireless Non-Invasive Analyte Measurement Device
US20060258917A1 (en) * 2004-04-14 2006-11-16 Oculir, Inc. Apparatus and Method of Use for Non-Invasive Analyte Measurement
US20050247778A1 (en) * 2004-05-04 2005-11-10 Cryovac, Inc. Point-of-sale system and method for processing product-specific information and item-specific information
US20060149594A1 (en) * 2004-12-30 2006-07-06 Healthcard Network Health care facility admission control system
US20130097085A1 (en) * 2005-03-16 2013-04-18 Dt Labs, Llc Apparatus for customer authentication of an item
US20100057556A1 (en) * 2005-04-12 2010-03-04 Armand Rousso Apparatuses, Methods And Systems To Identify, Generate, And Aggregate Qualified Sales and Marketing Leads For Distribution Via an Online Competitive Bidding System
US20070021843A1 (en) * 2005-06-14 2007-01-25 Brian Neill System and method for remote device registration
US20070022015A1 (en) * 2005-07-22 2007-01-25 Tarinelli Gillian J System and method for the on-line purchase of products through a guest registration
US20110073644A1 (en) * 2005-08-12 2011-03-31 Pharmasmart Llc Network for blood pressure data management and rechargeable smart card
US20070133767A1 (en) * 2005-12-09 2007-06-14 American Telecom Services, Inc. Apparatus, system, method and computer program product for pre-paid long distance telecommunications
US20080089499A1 (en) * 2005-12-09 2008-04-17 American Telecom Services, Inc. Apparatus, System, Method and Computer Program Product for Pre-Paid Long Distance Telecommunications and Charitable Fee Sharing
US20080097908A1 (en) * 2006-10-24 2008-04-24 Kent Dicks Systems and methods for processing and transmittal of medical data through an intermediary device
US20110179405A1 (en) * 2006-10-24 2011-07-21 Dicks Kent E Systems for remote provisioning of electronic devices
US20080179401A1 (en) * 2007-01-26 2008-07-31 Hart Annmarie D Card reader for use with web based transactions
US20100204557A1 (en) * 2007-02-18 2010-08-12 Abbott Diabetes Care Inc. Multi-Function Analyte Test Device and Methods Therefor
US20080251579A1 (en) * 2007-04-12 2008-10-16 Steven Larsen Secure identification of dependants
US20090047926A1 (en) * 2007-08-17 2009-02-19 Accenture S.P.A. Multiple channel automated refill system
US20130066644A1 (en) * 2007-10-22 2013-03-14 Kent Dicks Methods for personal emergency intervention
US20090112769A1 (en) * 2007-10-24 2009-04-30 Kent Dicks Systems and methods for remote patient monitoring
US8234126B1 (en) * 2008-02-12 2012-07-31 Asante Solutions, Inc. Distribution of infusion pumps
US20130159456A1 (en) * 2008-05-19 2013-06-20 Tandem Diabetes Care, Inc. Therapy management system
US7797248B1 (en) * 2008-07-11 2010-09-14 Sprint Communications Company L.P. Automated confirmation of transit card fund replenishment
US20100056875A1 (en) * 2008-08-28 2010-03-04 Imdsoft, Inc. Monitoring Patient Conditions
US20100094951A1 (en) * 2008-10-14 2010-04-15 Toyota Jidosha Kabushiki Kaisha Data communication system for vehicle, on-vehicle terminal device, and center
US20100268120A1 (en) * 2009-04-20 2010-10-21 Morten Eriksen Coil System and Method for Obtaining Volumetric Physiological Measurements
US20110208568A1 (en) * 2009-08-18 2011-08-25 Bancpass, Inc. Vehicle transaction system and method
US20110172498A1 (en) * 2009-09-14 2011-07-14 Olsen Gregory A Spot check monitor credit system
US20110235792A1 (en) * 2010-03-26 2011-09-29 Verizon Patent And Licensing Inc. Prepaid automatic dialer
US20130160082A1 (en) * 2010-08-31 2013-06-20 Lantronix, Inc. Medical Device Connectivity to Hospital Information Systems Using Device Server
US20120109685A1 (en) * 2010-11-01 2012-05-03 Cerner Innovation, Inc. Linking health records
US20120143772A1 (en) * 2010-12-02 2012-06-07 Essam Ernest Abadir Secure Distributed Single Action Payment Authorization System
US20120143754A1 (en) * 2010-12-03 2012-06-07 Narendra Patel Enhanced credit card security apparatus and method
US20120156337A1 (en) * 2010-12-16 2012-06-21 Studor Charles F Apparatus and Method for Brewed and Espresso Drink Generation
US20140181524A1 (en) * 2011-03-09 2014-06-26 Fujitsu Limited Authentication method, authentication system, and authentication chip using common key cryptography
US20140106706A1 (en) * 2011-05-10 2014-04-17 Seng Chuan Tan Process to Reload Mobile Prepaid Airtime Using a Self-Service Terminal Across Multiple Telcos and Multiple Currencies
US20140330993A1 (en) * 2011-09-27 2014-11-06 Rf Keeper Ltd Driverless data transfer device
US20130117155A1 (en) * 2011-11-04 2013-05-09 Michael Laine Glasgo Transaction validation by location based services (LBS)
US20140012981A1 (en) * 2011-12-28 2014-01-09 Avvasi Inc. Apparatus and methods for optimizing network data transmission
US20130212381A1 (en) * 2012-02-15 2013-08-15 Roche Diagnostics Operations, Inc. System and method for controlling authorized access to a structured testing procedure on a medical device
US20130246132A1 (en) * 2012-03-17 2013-09-19 David J. Buie Smart tranportation services & payment system and method
US20130312066A1 (en) * 2012-05-18 2013-11-21 Carefusion 303, Inc. Mobile device access for medical devices
US20150207626A1 (en) * 2012-07-09 2015-07-23 Debiotech S.A. Communication secured between a medical device and its remote control device
US20140037089A1 (en) * 2012-08-02 2014-02-06 Fujitsu Limited Encryption processing device and method
US20140038545A1 (en) * 2012-08-03 2014-02-06 Tracfone Wireless, Inc. Device initiated replenishment procedures for wireless devices
US9069069B2 (en) * 2012-10-30 2015-06-30 The Standard Register Company Systems, methods, and apparatus for marking, verifying, and authenticating consumer products
US20140129702A1 (en) * 2012-11-05 2014-05-08 Cercacor Laboratories, Inc. Physiological test credit method
US8725645B1 (en) * 2013-01-04 2014-05-13 Cetrus LLC Non-invasive metering system for software licenses
US20150073925A1 (en) * 2013-05-23 2015-03-12 Gavon Augustus Renfroe System and Method for Integrating Business Operations
US20150048159A1 (en) * 2013-08-13 2015-02-19 Neology, Inc. Systems and methods for managing an account
US20190034775A1 (en) * 2013-08-13 2019-01-31 Neology, Inc. Universal transponder
US10621571B2 (en) * 2013-08-13 2020-04-14 Neology, Inc. Systems and methods for managing an account

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10869602B2 (en) 2002-03-25 2020-12-22 Masimo Corporation Physiological measurement communications adapter
US10863938B2 (en) 2006-10-12 2020-12-15 Masimo Corporation System and method for monitoring the life of a physiological sensor
US11857319B2 (en) 2006-10-12 2024-01-02 Masimo Corporation System and method for monitoring the life of a physiological sensor
US11317837B2 (en) 2006-10-12 2022-05-03 Masimo Corporation System and method for monitoring the life of a physiological sensor
US10912501B2 (en) 2008-07-03 2021-02-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11751773B2 (en) 2008-07-03 2023-09-12 Masimo Corporation Emitter arrangement for physiological measurements
US11484230B2 (en) 2008-07-03 2022-11-01 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11426103B2 (en) 2008-07-03 2022-08-30 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10743803B2 (en) 2008-07-03 2020-08-18 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10709366B1 (en) 2008-07-03 2020-07-14 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10912500B2 (en) 2008-07-03 2021-02-09 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10912502B2 (en) 2008-07-03 2021-02-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US12036009B1 (en) 2008-07-03 2024-07-16 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US10945648B2 (en) 2008-07-03 2021-03-16 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US12023139B1 (en) 2008-07-03 2024-07-02 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US10702195B1 (en) 2008-07-03 2020-07-07 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US10758166B2 (en) 2008-07-03 2020-09-01 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US11638532B2 (en) 2008-07-03 2023-05-02 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11647914B2 (en) 2008-07-03 2023-05-16 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11642037B2 (en) 2008-07-03 2023-05-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US10702194B1 (en) 2008-07-03 2020-07-07 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
US11484229B2 (en) 2008-07-03 2022-11-01 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11642036B2 (en) 2008-07-03 2023-05-09 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
US11559275B2 (en) 2008-12-30 2023-01-24 Masimo Corporation Acoustic sensor assembly
US11133105B2 (en) 2009-03-04 2021-09-28 Masimo Corporation Medical monitoring system
US11145408B2 (en) 2009-03-04 2021-10-12 Masimo Corporation Medical communication protocol translator
US11114188B2 (en) 2009-10-06 2021-09-07 Cercacor Laboratories, Inc. System for monitoring a physiological parameter of a user
USRE49007E1 (en) 2010-03-01 2022-04-05 Masimo Corporation Adaptive alarm system
US11083397B2 (en) 2012-02-09 2021-08-10 Masimo Corporation Wireless patient monitoring device
US12042285B1 (en) 2012-08-29 2024-07-23 Masimo Corporation Physiological measurement calibration
US10827961B1 (en) 2012-08-29 2020-11-10 Masimo Corporation Physiological measurement calibration
US11367529B2 (en) 2012-11-05 2022-06-21 Cercacor Laboratories, Inc. Physiological test credit method
US11992342B2 (en) 2013-01-02 2024-05-28 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
US11504062B2 (en) 2013-03-14 2022-11-22 Masimo Corporation Patient monitor placement indicator
US12042300B2 (en) 2013-03-14 2024-07-23 Masimo Corporation Patient monitor placement indicator
US11751780B2 (en) 2013-10-07 2023-09-12 Masimo Corporation Regional oximetry sensor
US12036014B2 (en) 2015-01-23 2024-07-16 Masimo Corporation Nasal/oral cannula system and manufacturing
US11089963B2 (en) 2015-08-31 2021-08-17 Masimo Corporation Systems and methods for patient fall detection
US11679579B2 (en) 2015-12-17 2023-06-20 Masimo Corporation Varnish-coated release liner
US11076777B2 (en) 2016-10-13 2021-08-03 Masimo Corporation Systems and methods for monitoring orientation to reduce pressure ulcer formation
US10667762B2 (en) 2017-02-24 2020-06-02 Masimo Corporation Modular multi-parameter patient monitoring device
US11096631B2 (en) 2017-02-24 2021-08-24 Masimo Corporation Modular multi-parameter patient monitoring device
US11596365B2 (en) 2017-02-24 2023-03-07 Masimo Corporation Modular multi-parameter patient monitoring device
US11969269B2 (en) 2017-02-24 2024-04-30 Masimo Corporation Modular multi-parameter patient monitoring device
US11298021B2 (en) 2017-10-19 2022-04-12 Masimo Corporation Medical monitoring system
US11082786B2 (en) 2018-07-10 2021-08-03 Masimo Corporation Patient monitor alarm speaker analyzer
US11812229B2 (en) 2018-07-10 2023-11-07 Masimo Corporation Patient monitor alarm speaker analyzer
US10779098B2 (en) 2018-07-10 2020-09-15 Masimo Corporation Patient monitor alarm speaker analyzer
US12114974B2 (en) 2020-01-13 2024-10-15 Masimo Corporation Wearable device with physiological parameters monitoring

Also Published As

Publication number Publication date
US20140129702A1 (en) 2014-05-08
EP2727522A2 (en) 2014-05-07
US9787568B2 (en) 2017-10-10
US20180069776A1 (en) 2018-03-08
US10305775B2 (en) 2019-05-28
US11367529B2 (en) 2022-06-21
US20210217520A1 (en) 2021-07-15
US20220375597A1 (en) 2022-11-24
EP2727522A3 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
US11367529B2 (en) Physiological test credit method
US12109048B2 (en) Parameter upgrade system
US8634889B2 (en) Configurable physiological measurement system
AU2007256736B2 (en) Parameter upgrade system
CN1701335B (en) Telemedicine system
US9740820B2 (en) Control apparatus and authentication method
US20110172498A1 (en) Spot check monitor credit system
US20120109676A1 (en) Multiuser health monitoring using biometric identification
WO2012127884A1 (en) Control device and authentication method
EP2478487A2 (en) Spot check monitor credit system
Donati et al. Improving care model for congenital heart diseases in paediatric patients using home telemonitoring of vital signs via biomedical sensors
CN109065141A (en) A kind of Medical Devices configuration management device, system and its configuration information synchronous method
US20240007294A1 (en) Embedded servicing and authentication for medical device
WO2020150921A1 (en) Monitoring method and system capable of integrating physiological parameters, and computer storage medium
JP2017142742A (en) Medical information management system and medical instrument

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: WILLOW LABORATORIES, INC., CALIFORNIA

Free format text: CHANGE OF NAME;ASSIGNOR:CERCACOR LABORATORIES, INC.;REEL/FRAME:066867/0264

Effective date: 20240117