US20190365968A1 - System and method for interfacing with a reduced pressure dressing - Google Patents

System and method for interfacing with a reduced pressure dressing Download PDF

Info

Publication number
US20190365968A1
US20190365968A1 US16/540,235 US201916540235A US2019365968A1 US 20190365968 A1 US20190365968 A1 US 20190365968A1 US 201916540235 A US201916540235 A US 201916540235A US 2019365968 A1 US2019365968 A1 US 2019365968A1
Authority
US
United States
Prior art keywords
pressure
reduced
cavity
manifold
basin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/540,235
Inventor
Justin Alexander Long
Aidan Marcus Tout
Larry Tab Randolph
Christopher Brian Locke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KCI Licensing Inc
Original Assignee
KCI Licensing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44513139&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20190365968(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KCI Licensing Inc filed Critical KCI Licensing Inc
Priority to US16/540,235 priority Critical patent/US20190365968A1/en
Assigned to KCI LICENSING, INC. reassignment KCI LICENSING, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LOCKE, CHRISTOPHER BRIAN, RANDOLPH, LARRY TAB, TOUT, AIDAN MARCUS, LONG, JUSTIN ALEXANDER
Publication of US20190365968A1 publication Critical patent/US20190365968A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/91Suction aspects of the dressing
    • A61M1/912Connectors between dressing and drainage tube
    • A61M1/0088
    • A61M1/0094
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/91Suction aspects of the dressing
    • A61M1/915Constructional details of the pressure distribution manifold
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/90Negative pressure wound therapy devices, i.e. devices for applying suction to a wound to promote healing, e.g. including a vacuum dressing
    • A61M1/96Suction control thereof
    • A61M1/966Suction control thereof having a pressure sensor on or near the dressing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/07General characteristics of the apparatus having air pumping means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3344Measuring or controlling pressure at the body treatment site

Definitions

  • the present invention relates generally to medical treatment systems, and more particularly, to reduced-pressure treatment systems, apparatuses, and methods for applying reduced pressure to a tissue site.
  • reduced pressure is applied to tissue through a porous pad or other manifolding device.
  • the porous pad contains cells or pores that are capable of distributing reduced pressure to the tissue and channeling fluids that are drawn from the tissue.
  • the porous pad often is incorporated into a dressing having other components that facilitate treatment.
  • the reduced-pressure interface further includes a reduced-pressure port disposed within the reduced-pressure-application region, a pressure-detection port disposed within the pressure-detection region, and a base connected to the conduit housing, the base having a manifold-contacting surface.
  • the dividing wall includes a surface substantially coplanar with the manifold-contacting surface.
  • the reduced-pressure interface further includes a reduced-pressure port within the first cavity, a pressure-detection port within the second cavity, a flange connected to the conduit housing, the flange having a manifold-contacting surface, and at least one channel disposed in the manifold-contacting surface of the flange to transmit reduced pressure from the first cavity to the second cavity.
  • the reduced-pressure source further includes a pressure-detection lumen disposed within the pressure-detection region, at least one fluid trap within the pressure-detection region proximate the pressure-detection lumen, and a base connected to the conduit housing, the base having a manifold-contacting surface.
  • a method of providing reduced-pressure treatment to a tissue site of a patient includes positioning a reduced-pressure interface proximate a manifold pad positioned at the tissue site. A portion of the manifold pad is drawn into a first cavity of the reduced-pressure interface by delivering a reduced pressure to the first cavity, and a fluid flows between a cavity surface of the first cavity and the manifold pad.
  • a reduced-pressure treatment system for treating a tissue site on a patient includes a manifold pad for placing proximate the tissue site and a reduced-pressure interface fluidly coupled to the manifold pad.
  • the reduced-pressure interface includes a conduit housing having a cavity divided by a dividing wall into a reduced-pressure-application region and a pressure-detection region.
  • the reduced-pressure interface further includes a reduced-pressure port disposed within the reduced-pressure-application region, a pressure-detection port disposed within the pressure-detection region, a base connected to the conduit housing, the base having a manifold-contacting surface, and wherein the dividing wall includes a surface substantially coplanar with the manifold-contacting surface.
  • the reduced-pressure treatment system further includes a reduced-pressure source fluidly coupled to the reduced-pressure interface and operable to supply reduced pressure to the manifold pad.
  • a reduced-pressure treatment system for treating a tissue site on a patient includes a manifold pad for placing proximate the tissue site and a reduced-pressure interface fluidly coupled to the manifold pad.
  • the reduced-pressure interface includes a conduit housing having a first cavity and a second cavity, and a wall for separating the first cavity from the second cavity.
  • the reduced-pressure interface further includes a reduced-pressure port within the first cavity, a pressure-detection port within the second cavity, a flange connected to the conduit housing, the flange having a manifold-contacting surface, and at least one channel disposed in the manifold-contacting surface of the flange to transmit reduced pressure from the first cavity to the second cavity.
  • the reduced-pressure treatment system further includes a reduced-pressure source fluidly coupled to the reduced-pressure interface and operable to supply reduced pressure to the manifold pad.
  • a reduced-pressure treatment system for treating a tissue site on a patient includes a manifold pad for placing proximate the tissue site and a reduced-pressure interface fluidly coupled to the manifold pad.
  • the reduced-pressure interface includes a conduit housing having a cavity divided by a dividing wall into a reduced-pressure-application region and a pressure-detection region.
  • the reduced-pressure interface further includes a pressure-detection lumen disposed within the pressure-detection region, at least one fluid trap within the pressure-detection region proximate the pressure-detection lumen, and a base connected to the conduit housing having a manifold-contacting surface.
  • the reduced-pressure treatment system further includes a reduced-pressure source fluidly coupled to the reduced-pressure interface and operable to supply reduced pressure to the manifold pad.
  • FIG. 1 illustrates a schematic diagram, in perspective view with a portion in cross-section, of a reduced-pressure treatment system for applying reduced pressure to a tissue site, according to an illustrative embodiment
  • FIG. 2 illustrates a side view of a reduced-pressure interface of the reduced-pressure treatment system of FIG. 1 ;
  • FIG. 3 illustrates a front view of the reduced-pressure interface of FIG. 2 ;
  • FIG. 4 illustrates a bottom, perspective view of the reduced-pressure interface of FIG. 2 ;
  • FIG. 5 illustrates a bottom view of the reduced-pressure interface of FIG. 2 ;
  • FIG. 5A illustrates a detailed view of a portion or the reduced-pressure interface of FIG. 5 ;
  • FIG. 6 illustrates a cross-sectional, side view of the reduced-pressure interface of FIG. 5 taken at line 6 - 6 ;
  • FIG. 7 illustrates a cross-sectional, side view of the reduced-pressure interface of FIG. 5 taken at line 7 - 7 ;
  • FIG. 8 illustrates a bottom view of the reduced-pressure interface of FIG. 2 ;
  • FIG. 8A illustrates a detailed view of a portion of the reduced-pressure interface of FIG. 8 .
  • reduced pressure generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure associated with tissue at the tissue site. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure reduction applied to the tissue site may be significantly less than the pressure reduction normally associated with a complete vacuum. Reduced pressure may initially generate fluid flow in the area of the tissue site. As the hydrostatic pressure around the tissue site approaches the desired reduced pressure, the flow may subside, and the reduced pressure is then maintained. Unless otherwise indicated, values of pressure stated herein are gauge pressures. Similarly, references to increases in reduced pressure typically refer to a decrease in absolute pressure, while decreases in reduced pressure typically refer to an increase in absolute pressure.
  • tissue site may refer to a wound or defect located on or within any tissue, including but not limited to, bone tissue, adipose tissue, muscle tissue, neural tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, or ligaments.
  • tissue site may further refer to areas of any tissue that are not necessarily wounded or defective, but are instead areas in which it is desired to add or promote the growth of additional tissue.
  • reduced pressure tissue treatment may be used in certain tissue areas to grow additional tissue that may be harvested and transplanted to another tissue location.
  • the dressing 102 may include a manifold pad 106 place proximate the tissue site 101 , a reduced-pressure interface 108 fluidly coupled to the manifold pad 106 , and a sealing member 110 .
  • the sealing member 110 or drape, may be placed over the manifold pad 106 and a portion of a patient's epidermis 103 to create a fluid seal between the sealing member 110 and the epidermis 103 .
  • the sealing member 110 may include an adhesive 109 or bonding agent to secure the sealing member 110 to the epidermis 103 .
  • the adhesive 109 may be used to create a seal between the sealing member 110 and the epidermis 103 to prevent leakage of reduced pressure from the tissue site 101 .
  • a seal layer such as, for example, a hydrogel or other material may be disposed between the sealing member 110 and the epidermis 103 to augment or substitute for the sealing properties of the adhesive 109 .
  • a seal layer such as, for example, a hydrogel or other material may be disposed between the sealing member 110 and the epidermis 103 to augment or substitute for the sealing properties of the adhesive 109 .
  • fluid seal means a seal adequate to maintain reduced pressure at a desired site given the particular reduced-pressure source involved.
  • manifold generally refers to a substance or structure that is provided to assist in applying reduced pressure to, delivering fluids to, or removing fluids from the tissue site 101 .
  • the manifold pad 106 typically includes a plurality of flow channels or pathways that distribute fluids provided to and removed from the tissue site around the manifold pad 106 .
  • the flow channels or pathways are interconnected to improve distribution of fluids provided or removed from the tissue site 101 .
  • manifold pads 106 may include, for example, without limitation, devices that have structural elements arranged to form flow channels, such as, for example, cellular foam, open-cell foam, porous tissue collections, liquids, gels, and foams that include, or cure to include, flow channels.
  • the manifold pad 106 is a porous foam and includes a plurality of interconnected cells or pores that act as flow channels.
  • the porous foam may be a polyurethane, open-cell, reticulated foam such as GranuFoam® material manufactured by Kinetic Concepts, Incorporated of San Antonio, Tex. Other embodiments may include closed cells.
  • the reduced-pressure interface 108 may be positioned adjacent to or coupled to the sealing member 110 to provide fluid access to the manifold pad 106 .
  • the sealing member 110 is placed over the reduced-pressure interface 108 and a portion of the patient's epidermis 103 to create a fluid seal between the sealing member 110 and the epidermis 103 .
  • the sealing member 110 has an aperture (not shown) for providing fluid access between the reduced-pressure interface 108 and the manifold pad 106 .
  • the sealing member 110 is placed adjacent to the manifold pad 106 to create a fluid seal between the sealing member 110 and the epidermis 103 .
  • the reduced-pressure interface 108 is placed on top of and fluidly sealed to the sealing member 110 .
  • a reduced-pressure delivery conduit 112 fluidly couples the reduced-pressure treatment device 104 and the reduced-pressure interface 108 .
  • the reduced-pressure interface 108 allows the reduced pressure to be delivered to the tissue site 101 . While the amount and nature of reduced pressure applied to the tissue site 101 will typically vary according to the application, the reduced-pressure treatment device 104 will typically provide reduced pressure between ⁇ 5 mm Hg and ⁇ 500 mm Hg and more typically between ⁇ 100 mm Hg and ⁇ 300 mm Hg.
  • the reduced-pressure treatment device 104 may include a collection canister 114 in fluid communication with a reduced-pressure source 116 .
  • the reduced-pressure delivery conduit 112 may be a multi-lumen tube that provides a continuous conduit between the reduced-pressure interface 108 and an inlet 120 positioned on the collection canister 114 . Liquids or exudates communicated from the manifold pad 106 through the reduced-pressure delivery conduit 112 are removed from the reduced-pressure delivery conduit 112 and retained within the collection canister 114 .
  • the reduced-pressure source 116 is an electrically-driven vacuum pump.
  • the reduced-pressure source 116 may instead be a manually-actuated or manually-charged pump that does not require electrical power.
  • the reduced-pressure source 116 instead may be any other type of reduced pressure pump, or alternatively a wall suction port such as those available in hospitals and other medical facilities.
  • the reduced-pressure source 116 may be housed within or used in conjunction with the reduced-pressure treatment device 104 , which may also contain sensors, processing units, alarm indicators, memory, databases, software, display units, and user interfaces 111 that further facilitate the application of reduced pressure treatment to the tissue site 101 .
  • pressure-detection sensors may be disposed at or near the reduced-pressure source 116 .
  • the pressure-detection sensors may be fluidly connected to one or more lumens in the reduced-pressure delivery conduit 112 such that a pressure reading identical to or approximating the pressure at the tissue site may be ascertained.
  • the pressure-detection sensors may communicate with a processing unit that monitors and controls the reduced pressure that is delivered by the reduced-pressure source 116 .
  • the reduced-pressure interface 108 includes a conduit housing 126 and a base 128 .
  • the conduit housing 126 includes a cavity 130 that may be “dome” shaped.
  • the cavity 130 may be divided by a wall or dividing wall 132 into a first cavity 134 and a second cavity 136 .
  • the first cavity 134 is a reduced-pressure-application region 138 and the second cavity 136 is a pressure-detection region 140 .
  • the reduced-pressure-application region 138 includes a reduced-pressure port 142 connected to a reduced-pressure lumen 144 .
  • the reduced-pressure port 142 and the reduced-pressure lumen 144 are operable to deliver reduced pressure to, and remove fluids from, the manifold pad 106 (see FIG. 1 ).
  • the reduced-pressure-application region 138 may further include ridges 146 .
  • the ridges 146 may be combined with, or substituted for, channels. Since the manifold pad 106 may be drawn into the first cavity 134 when reduced pressure is applied, the ridges 146 (or channels) may help prevent the manifold pad 106 from creating a seal against a cavity surface 148 of the reduced-pressure-application region 138 .
  • the pressure-detection region 140 includes a first pressure-detection port 150 connected to a first pressure-detection lumen 152 and in one embodiment may further include a second pressure-detection port 154 connected to a second pressure-detection lumen 156 .
  • the pressure-detection ports 150 , 154 and the respective pressure-detection lumens 152 , 156 may permit fluid communication with the pressure-detection sensors located in the reduced-pressure treatment device 104 (see FIG. 1 ) such that the pressure or pressure fluctuations at the tissue site may be ascertained.
  • the first pressure-detection port 150 and the first pressure-detection lumen 152 are physically separate from the second pressure-detection port 154 and second pressure-detection lumen 156 to help reduce the possibility of both pressure-detection lumens 152 , 156 being blocked by exudates or other means of blockage.
  • the first pressure-detection port and lumen 150 and 152 may be physically separated from the second pressure-detection port and lumen 154 and 156 by a barrier 157 .
  • the barrier 157 includes a surface 172 that may be substantially coplanar with a surface 170 of the dividing wall 132 .
  • the barrier 157 may include a first portion 186 substantially perpendicular to a second portion 188 .
  • the first portion 186 is substantially perpendicular to and connected to the dividing wall 132 and separates the first pressure-detection port and lumen 150 and 152 from the second pressure-detection port and lumen 154 and 156 .
  • the first portion 186 may be attached to the reduced-pressure lumen 144 at a first position 179 and a second position 181 , wherein the first position 179 is opposed to the second position 181 , to maintain separation between the pressure-detection lumens 152 , 156 .
  • the second portion 188 of the barrier 157 may be substantially parallel to the dividing wall 132 .
  • the second portion 188 may function to shield the pressure-detection ports 150 , 154 from fluids entering the pressure-detection region 140 .
  • the pressure-detection region 140 may further include a first fluid trap 158 proximate the first pressure-detection port 150 for trapping or discouraging liquids from entering the first pressure-detection port 150 .
  • the first fluid trap 158 may include a first flow concentration region 160 for diverting fluids trapped in the first fluid trap 158 out of the pressure-detection region 140 .
  • the pressure-detection region 140 may include a second fluid trap 162 proximate the second pressure-detection port 154 for trapping liquids from entering the second pressure-detection port 154 .
  • the second fluid trap 162 may include a second flow concentration region 164 for diverting fluids trapped in the second fluid trap 162 out of the pressure-detection region 140 .
  • the first fluid trap 158 and the second fluid trap 162 may be partially recessed within the pressure-detection region 140 .
  • the first fluid trap 158 may form a first basin 189 at least partially surrounded by first basin walls 191
  • the second fluid trap 162 may form a second basin 190 at least partially surrounded by second basin walls 192 .
  • the first flow concentration region 160 may have a first apex 161 formed at the divergence of at least two of the first basin walls 191 to create an acute angle
  • the second flow concentration region 164 may have a second apex 165 formed at the divergence of at least two of the second basin walls 192 to create an acute angle.
  • the first apex 161 may be diametrically opposed to the second apex 165 .
  • the flow concentration regions 160 , 164 concentrate the flow of fluids into their respective apexes 161 , 165 .
  • the first apex 161 may help divert fluids from the pressure-detection region 140 into the base 128 along a flow path 182 .
  • the second apex 165 may help divert fluids from the pressure-detection region 140 into the base 128 along a flow path 184 .
  • the base 128 of the reduced-pressure interface 108 may be a flange 166 .
  • the base 128 is connected to the conduit housing 126 and has a manifold-contacting surface 168 .
  • the manifold-contacting surface 168 may be substantially coplanar with the surfaces 170 of dividing wall 132 and the surfaces 172 of barrier 157 .
  • the base 128 may include one or more channels 174 disposed in the manifold-contacting surface 168 for transmitting reduced pressure and fluids between the reduced-pressure-application region 138 and pressure-detection region 140 .
  • the base 128 may include at least one continuous, circumferential channel 175 . If more than one circumferential channels 175 are provided, the channels may be concentrically arranged.
  • the base 128 may further include at least one first radial channel 176 or at least one second radial channel 178 disposed in the manifold-contacting surface 168 .
  • the first radial channel 176 may be in fluid communication with the reduced-pressure-application region 138 and the second radial channel 178 may be in fluid communication with the pressure-detection region 140 .
  • the circumferential channel 175 provides fluid communication between the first radial channel 176 and the second radial channel 178 for communicating reduced-pressure and fluids between the reduced-pressure-application region 138 and the pressure-detection region 140 .
  • the channels 174 may transmit reduced pressure from the reduced-pressure-application region 138 to the pressure-detection region 140 . Likewise, the channels 174 may help divert fluids from the apexes 161 , 165 along respective flow paths 182 , 184 into the reduced-pressure-application region 138 .
  • a method for providing reduced pressure treatment to a tissue site 101 includes positioning the reduced-pressure interface 108 proximate the manifold pad 106 positioned at the tissue site 101 .
  • the method may also include drawing a portion of the manifold pad 106 into the first cavity 134 of the reduced-pressure interface 108 by delivering the reduced pressure to the first cavity 134 .
  • the portion of the manifold pad 106 drawn into the first cavity 134 may substantially or completely fill the first cavity 134 such that the portion of the manifold pad 106 is in physical contact with the cavity surface 148 or the reduced-pressure port 142 .
  • fluid may flow between the cavity surface 148 and the manifold pad 106 . Fluid may be directed between the ridges 146 positioned on the cavity surface 148 . Additionally, pressure within the second cavity 136 may be monitored.
  • drawing the portion of the manifold pad 106 into the first cavity 134 may allow the portion of the manifold pad 106 to decompress creating a pressure gradient within the manifold pad 106 .
  • the pressure gradient created within the manifold pad 106 may help encourage fluids towards the reduced-pressure port 142 .
  • the reduced-pressure interface 108 may be constructed from materials known in the art that provide the appropriate flexibility and comfort to the patient while maintaining sufficient rigidity or resilience to maintain fluid communication pathways, such as ports, lumens, and channels.

Abstract

Systems, devices, and methods for treating a tissue site on a patient with reduced pressure are presented. In one instance, a reduced-pressure interface includes a conduit housing having a cavity divided by a dividing wall into a reduced-pressure-application region and a pressure-detection region. The reduced-pressure interface further includes a reduced-pressure port disposed within the reduced-pressure-application region, a pressure-detection port disposed within the pressure-detection region, and a base connected to the conduit housing, the base having a manifold-contacting surface. The dividing wall includes a surface substantially coplanar with the manifold-contacting surface.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 14/185,326, filed Feb. 20, 2014, which is a continuation of U.S. patent application Ser. No. 13/183,929, filed Jul. 15, 2011, now U.S. Pat. No. 8,690,845, which claims the benefit of U.S. Provisional Application No. 61/365,252, filed Jul. 16, 2010, each of which is incorporated herein by reference.
  • BACKGROUND 1. Field of the Invention
  • The present invention relates generally to medical treatment systems, and more particularly, to reduced-pressure treatment systems, apparatuses, and methods for applying reduced pressure to a tissue site.
  • 2. Description of Related Art
  • Clinical studies and practice have shown that providing a reduced pressure in proximity to a tissue site augments and accelerates the growth of new tissue at the tissue site. The applications of this phenomenon are numerous, but application of reduced pressure has been particularly successful in treating wounds. This treatment (frequently referred to in the medical community as “negative pressure wound therapy,” “reduced pressure therapy,” or “vacuum therapy”) provides a number of benefits, including faster healing and increased formulation of granulation tissue. Typically, reduced pressure is applied to tissue through a porous pad or other manifolding device. The porous pad contains cells or pores that are capable of distributing reduced pressure to the tissue and channeling fluids that are drawn from the tissue. The porous pad often is incorporated into a dressing having other components that facilitate treatment.
  • SUMMARY
  • The problems presented by existing reduced-pressure systems are solved by the systems, apparatuses, and methods of the illustrative embodiments described herein. In one embodiment, a reduced-pressure interface for connecting a reduced-pressure source to a manifold pad to treat a tissue site on a patient with reduced pressure is provided and includes a conduit housing having a cavity divided by a dividing wall into a reduced-pressure-application region and a pressure-detection region. The reduced-pressure interface further includes a reduced-pressure port disposed within the reduced-pressure-application region, a pressure-detection port disposed within the pressure-detection region, and a base connected to the conduit housing, the base having a manifold-contacting surface. The dividing wall includes a surface substantially coplanar with the manifold-contacting surface.
  • In another illustrative embodiment, a reduced-pressure interface for connecting a reduced-pressure source to a manifold pad to treat a tissue site on a patient with reduced pressure includes a conduit housing having a first cavity and a second cavity, the first cavity separated from the second cavity by a wall. The reduced-pressure interface further includes a reduced-pressure port within the first cavity, a pressure-detection port within the second cavity, a flange connected to the conduit housing, the flange having a manifold-contacting surface, and at least one channel disposed in the manifold-contacting surface of the flange to transmit reduced pressure from the first cavity to the second cavity.
  • In another illustrative embodiment, a reduced-pressure interface for connecting a reduced-pressure source to a manifold pad to treat a tissue site on a patient with reduced pressure includes a conduit housing having a cavity divided by a dividing wall into a reduced-pressure-application region and a pressure-detection region. The reduced-pressure source further includes a pressure-detection lumen disposed within the pressure-detection region, at least one fluid trap within the pressure-detection region proximate the pressure-detection lumen, and a base connected to the conduit housing, the base having a manifold-contacting surface.
  • In another illustrative embodiment, a method of providing reduced-pressure treatment to a tissue site of a patient includes positioning a reduced-pressure interface proximate a manifold pad positioned at the tissue site. A portion of the manifold pad is drawn into a first cavity of the reduced-pressure interface by delivering a reduced pressure to the first cavity, and a fluid flows between a cavity surface of the first cavity and the manifold pad.
  • In another illustrative embodiment, a reduced-pressure treatment system for treating a tissue site on a patient includes a manifold pad for placing proximate the tissue site and a reduced-pressure interface fluidly coupled to the manifold pad. The reduced-pressure interface includes a conduit housing having a cavity divided by a dividing wall into a reduced-pressure-application region and a pressure-detection region. The reduced-pressure interface further includes a reduced-pressure port disposed within the reduced-pressure-application region, a pressure-detection port disposed within the pressure-detection region, a base connected to the conduit housing, the base having a manifold-contacting surface, and wherein the dividing wall includes a surface substantially coplanar with the manifold-contacting surface. The reduced-pressure treatment system further includes a reduced-pressure source fluidly coupled to the reduced-pressure interface and operable to supply reduced pressure to the manifold pad.
  • In another illustrative embodiment, a reduced-pressure treatment system for treating a tissue site on a patient includes a manifold pad for placing proximate the tissue site and a reduced-pressure interface fluidly coupled to the manifold pad. The reduced-pressure interface includes a conduit housing having a first cavity and a second cavity, and a wall for separating the first cavity from the second cavity. The reduced-pressure interface further includes a reduced-pressure port within the first cavity, a pressure-detection port within the second cavity, a flange connected to the conduit housing, the flange having a manifold-contacting surface, and at least one channel disposed in the manifold-contacting surface of the flange to transmit reduced pressure from the first cavity to the second cavity. The reduced-pressure treatment system further includes a reduced-pressure source fluidly coupled to the reduced-pressure interface and operable to supply reduced pressure to the manifold pad.
  • In another illustrative embodiment, a reduced-pressure treatment system for treating a tissue site on a patient includes a manifold pad for placing proximate the tissue site and a reduced-pressure interface fluidly coupled to the manifold pad. The reduced-pressure interface includes a conduit housing having a cavity divided by a dividing wall into a reduced-pressure-application region and a pressure-detection region. The reduced-pressure interface further includes a pressure-detection lumen disposed within the pressure-detection region, at least one fluid trap within the pressure-detection region proximate the pressure-detection lumen, and a base connected to the conduit housing having a manifold-contacting surface. The reduced-pressure treatment system further includes a reduced-pressure source fluidly coupled to the reduced-pressure interface and operable to supply reduced pressure to the manifold pad.
  • Other objects, features, and advantages of the illustrative embodiments will become apparent with reference to the drawings and detailed description that follow.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a schematic diagram, in perspective view with a portion in cross-section, of a reduced-pressure treatment system for applying reduced pressure to a tissue site, according to an illustrative embodiment;
  • FIG. 2 illustrates a side view of a reduced-pressure interface of the reduced-pressure treatment system of FIG. 1;
  • FIG. 3 illustrates a front view of the reduced-pressure interface of FIG. 2;
  • FIG. 4 illustrates a bottom, perspective view of the reduced-pressure interface of FIG. 2;
  • FIG. 5 illustrates a bottom view of the reduced-pressure interface of FIG. 2;
  • FIG. 5A illustrates a detailed view of a portion or the reduced-pressure interface of FIG. 5;
  • FIG. 6 illustrates a cross-sectional, side view of the reduced-pressure interface of FIG. 5 taken at line 6-6;
  • FIG. 7 illustrates a cross-sectional, side view of the reduced-pressure interface of FIG. 5 taken at line 7-7;
  • FIG. 8 illustrates a bottom view of the reduced-pressure interface of FIG. 2; and
  • FIG. 8A illustrates a detailed view of a portion of the reduced-pressure interface of FIG. 8.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • In the following detailed description of the illustrative embodiments, reference is made to the accompanying drawings that form a part hereof. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is understood that other embodiments may be utilized and that logical structural, mechanical, electrical, and chemical changes may be made without departing from the spirit or scope of the invention. To avoid detail not necessary to enable those skilled in the art to practice the embodiments described herein, the description may omit certain information known to those skilled in the art. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the illustrative embodiments are defined only by the appended claims. Unless otherwise indicated, as used herein, “or” does not require mutual exclusivity.
  • The term “reduced pressure” as used herein generally refers to a pressure less than the ambient pressure at a tissue site that is being subjected to treatment. In most cases, this reduced pressure will be less than the atmospheric pressure at which the patient is located. Alternatively, the reduced pressure may be less than a hydrostatic pressure associated with tissue at the tissue site. Although the terms “vacuum” and “negative pressure” may be used to describe the pressure applied to the tissue site, the actual pressure reduction applied to the tissue site may be significantly less than the pressure reduction normally associated with a complete vacuum. Reduced pressure may initially generate fluid flow in the area of the tissue site. As the hydrostatic pressure around the tissue site approaches the desired reduced pressure, the flow may subside, and the reduced pressure is then maintained. Unless otherwise indicated, values of pressure stated herein are gauge pressures. Similarly, references to increases in reduced pressure typically refer to a decrease in absolute pressure, while decreases in reduced pressure typically refer to an increase in absolute pressure.
  • Referring to FIG. 1, an illustrative embodiment of a reduced-pressure treatment system 100 for treating a tissue site 101 on a patient with reduced pressure includes a dressing 102 placed proximate to the tissue site 101, and a reduced-pressure treatment device 104 fluidly coupled to the dressing 102. As used herein, the term “tissue site” may refer to a wound or defect located on or within any tissue, including but not limited to, bone tissue, adipose tissue, muscle tissue, neural tissue, dermal tissue, vascular tissue, connective tissue, cartilage, tendons, or ligaments. The term “tissue site” may further refer to areas of any tissue that are not necessarily wounded or defective, but are instead areas in which it is desired to add or promote the growth of additional tissue. For example, reduced pressure tissue treatment may be used in certain tissue areas to grow additional tissue that may be harvested and transplanted to another tissue location.
  • The dressing 102 may include a manifold pad 106 place proximate the tissue site 101, a reduced-pressure interface 108 fluidly coupled to the manifold pad 106, and a sealing member 110. The sealing member 110, or drape, may be placed over the manifold pad 106 and a portion of a patient's epidermis 103 to create a fluid seal between the sealing member 110 and the epidermis 103. The sealing member 110 may include an adhesive 109 or bonding agent to secure the sealing member 110 to the epidermis 103. In one embodiment, the adhesive 109 may be used to create a seal between the sealing member 110 and the epidermis 103 to prevent leakage of reduced pressure from the tissue site 101. In another embodiment, a seal layer (not shown) such as, for example, a hydrogel or other material may be disposed between the sealing member 110 and the epidermis 103 to augment or substitute for the sealing properties of the adhesive 109. As used herein, “fluid seal” means a seal adequate to maintain reduced pressure at a desired site given the particular reduced-pressure source involved.
  • The term “manifold” as used herein generally refers to a substance or structure that is provided to assist in applying reduced pressure to, delivering fluids to, or removing fluids from the tissue site 101. The manifold pad 106 typically includes a plurality of flow channels or pathways that distribute fluids provided to and removed from the tissue site around the manifold pad 106. In one illustrative embodiment, the flow channels or pathways are interconnected to improve distribution of fluids provided or removed from the tissue site 101. Examples of manifold pads 106 may include, for example, without limitation, devices that have structural elements arranged to form flow channels, such as, for example, cellular foam, open-cell foam, porous tissue collections, liquids, gels, and foams that include, or cure to include, flow channels. In one embodiment, the manifold pad 106 is a porous foam and includes a plurality of interconnected cells or pores that act as flow channels. The porous foam may be a polyurethane, open-cell, reticulated foam such as GranuFoam® material manufactured by Kinetic Concepts, Incorporated of San Antonio, Tex. Other embodiments may include closed cells.
  • The reduced-pressure interface 108 may be positioned adjacent to or coupled to the sealing member 110 to provide fluid access to the manifold pad 106. In one embodiment, the sealing member 110 is placed over the reduced-pressure interface 108 and a portion of the patient's epidermis 103 to create a fluid seal between the sealing member 110 and the epidermis 103. The sealing member 110 has an aperture (not shown) for providing fluid access between the reduced-pressure interface 108 and the manifold pad 106. The sealing member 110 is placed adjacent to the manifold pad 106 to create a fluid seal between the sealing member 110 and the epidermis 103. The reduced-pressure interface 108 is placed on top of and fluidly sealed to the sealing member 110. A reduced-pressure delivery conduit 112 fluidly couples the reduced-pressure treatment device 104 and the reduced-pressure interface 108. The reduced-pressure interface 108 allows the reduced pressure to be delivered to the tissue site 101. While the amount and nature of reduced pressure applied to the tissue site 101 will typically vary according to the application, the reduced-pressure treatment device 104 will typically provide reduced pressure between −5 mm Hg and −500 mm Hg and more typically between −100 mm Hg and −300 mm Hg.
  • The reduced-pressure treatment device 104 may include a collection canister 114 in fluid communication with a reduced-pressure source 116. The reduced-pressure delivery conduit 112 may be a multi-lumen tube that provides a continuous conduit between the reduced-pressure interface 108 and an inlet 120 positioned on the collection canister 114. Liquids or exudates communicated from the manifold pad 106 through the reduced-pressure delivery conduit 112 are removed from the reduced-pressure delivery conduit 112 and retained within the collection canister 114.
  • In the embodiment illustrated in FIG. 1, the reduced-pressure source 116 is an electrically-driven vacuum pump. In another implementation, the reduced-pressure source 116 may instead be a manually-actuated or manually-charged pump that does not require electrical power. The reduced-pressure source 116 instead may be any other type of reduced pressure pump, or alternatively a wall suction port such as those available in hospitals and other medical facilities. The reduced-pressure source 116 may be housed within or used in conjunction with the reduced-pressure treatment device 104, which may also contain sensors, processing units, alarm indicators, memory, databases, software, display units, and user interfaces 111 that further facilitate the application of reduced pressure treatment to the tissue site 101. In one example, pressure-detection sensors (not shown) may be disposed at or near the reduced-pressure source 116. The pressure-detection sensors may be fluidly connected to one or more lumens in the reduced-pressure delivery conduit 112 such that a pressure reading identical to or approximating the pressure at the tissue site may be ascertained. The pressure-detection sensors may communicate with a processing unit that monitors and controls the reduced pressure that is delivered by the reduced-pressure source 116.
  • Referring now to FIGS. 2-8A, an illustrative embodiment of the reduced-pressure interface 108 is presented in more detail. The reduced-pressure interface 108 includes a conduit housing 126 and a base 128. The conduit housing 126 includes a cavity 130 that may be “dome” shaped. The cavity 130 may be divided by a wall or dividing wall 132 into a first cavity 134 and a second cavity 136. The first cavity 134 is a reduced-pressure-application region 138 and the second cavity 136 is a pressure-detection region 140.
  • The reduced-pressure-application region 138 includes a reduced-pressure port 142 connected to a reduced-pressure lumen 144. The reduced-pressure port 142 and the reduced-pressure lumen 144 are operable to deliver reduced pressure to, and remove fluids from, the manifold pad 106 (see FIG. 1). The reduced-pressure-application region 138 may further include ridges 146. In an alternative embodiment, (not shown) the ridges 146 may be combined with, or substituted for, channels. Since the manifold pad 106 may be drawn into the first cavity 134 when reduced pressure is applied, the ridges 146 (or channels) may help prevent the manifold pad 106 from creating a seal against a cavity surface 148 of the reduced-pressure-application region 138.
  • Referring primarily to FIG. 5A, but also with reference to FIGS. 2-8A, the pressure-detection region 140 includes a first pressure-detection port 150 connected to a first pressure-detection lumen 152 and in one embodiment may further include a second pressure-detection port 154 connected to a second pressure-detection lumen 156. The pressure- detection ports 150, 154 and the respective pressure- detection lumens 152, 156 may permit fluid communication with the pressure-detection sensors located in the reduced-pressure treatment device 104 (see FIG. 1) such that the pressure or pressure fluctuations at the tissue site may be ascertained. As previously noted, information regarding pressure data and fluctuations may be communicated via reduced-pressure delivery conduit 112 (see FIG. 1). In the embodiments in which two pressure detection ports 150, 154 are provided, the first pressure-detection port 150 and the first pressure-detection lumen 152 are physically separate from the second pressure-detection port 154 and second pressure-detection lumen 156 to help reduce the possibility of both pressure- detection lumens 152, 156 being blocked by exudates or other means of blockage.
  • Referring again to FIGS. 2-8A, the first pressure-detection port and lumen 150 and 152 may be physically separated from the second pressure-detection port and lumen 154 and 156 by a barrier 157. The barrier 157 includes a surface 172 that may be substantially coplanar with a surface 170 of the dividing wall 132. The barrier 157 may include a first portion 186 substantially perpendicular to a second portion 188. The first portion 186 is substantially perpendicular to and connected to the dividing wall 132 and separates the first pressure-detection port and lumen 150 and 152 from the second pressure-detection port and lumen 154 and 156. The first portion 186 may be attached to the reduced-pressure lumen 144 at a first position 179 and a second position 181, wherein the first position 179 is opposed to the second position 181, to maintain separation between the pressure- detection lumens 152, 156. The second portion 188 of the barrier 157 may be substantially parallel to the dividing wall 132. The second portion 188 may function to shield the pressure- detection ports 150, 154 from fluids entering the pressure-detection region 140.
  • Referring now primarily to FIG. 8A, the pressure-detection region 140 may further include a first fluid trap 158 proximate the first pressure-detection port 150 for trapping or discouraging liquids from entering the first pressure-detection port 150. The first fluid trap 158 may include a first flow concentration region 160 for diverting fluids trapped in the first fluid trap 158 out of the pressure-detection region 140. Likewise, the pressure-detection region 140 may include a second fluid trap 162 proximate the second pressure-detection port 154 for trapping liquids from entering the second pressure-detection port 154. The second fluid trap 162 may include a second flow concentration region 164 for diverting fluids trapped in the second fluid trap 162 out of the pressure-detection region 140. The first fluid trap 158 and the second fluid trap 162 may be partially recessed within the pressure-detection region 140. The first fluid trap 158 may form a first basin 189 at least partially surrounded by first basin walls 191, and the second fluid trap 162 may form a second basin 190 at least partially surrounded by second basin walls 192.
  • The first flow concentration region 160 may have a first apex 161 formed at the divergence of at least two of the first basin walls 191 to create an acute angle, and the second flow concentration region 164 may have a second apex 165 formed at the divergence of at least two of the second basin walls 192 to create an acute angle. The first apex 161 may be diametrically opposed to the second apex 165. The flow concentration regions 160, 164 concentrate the flow of fluids into their respective apexes 161, 165. The first apex 161 may help divert fluids from the pressure-detection region 140 into the base 128 along a flow path 182. Likewise, the second apex 165 may help divert fluids from the pressure-detection region 140 into the base 128 along a flow path 184.
  • Referring again to FIGS. 2-8A, the base 128 of the reduced-pressure interface 108 may be a flange 166. The base 128 is connected to the conduit housing 126 and has a manifold-contacting surface 168. The manifold-contacting surface 168 may be substantially coplanar with the surfaces 170 of dividing wall 132 and the surfaces 172 of barrier 157.
  • The base 128 may include one or more channels 174 disposed in the manifold-contacting surface 168 for transmitting reduced pressure and fluids between the reduced-pressure-application region 138 and pressure-detection region 140. For example, the base 128 may include at least one continuous, circumferential channel 175. If more than one circumferential channels 175 are provided, the channels may be concentrically arranged. The base 128 may further include at least one first radial channel 176 or at least one second radial channel 178 disposed in the manifold-contacting surface 168. The first radial channel 176 may be in fluid communication with the reduced-pressure-application region 138 and the second radial channel 178 may be in fluid communication with the pressure-detection region 140. The circumferential channel 175 provides fluid communication between the first radial channel 176 and the second radial channel 178 for communicating reduced-pressure and fluids between the reduced-pressure-application region 138 and the pressure-detection region 140.
  • In operation, the channels 174 may transmit reduced pressure from the reduced-pressure-application region 138 to the pressure-detection region 140. Likewise, the channels 174 may help divert fluids from the apexes 161, 165 along respective flow paths 182, 184 into the reduced-pressure-application region 138.
  • In one embodiment, a method for providing reduced pressure treatment to a tissue site 101 includes positioning the reduced-pressure interface 108 proximate the manifold pad 106 positioned at the tissue site 101. The method may also include drawing a portion of the manifold pad 106 into the first cavity 134 of the reduced-pressure interface 108 by delivering the reduced pressure to the first cavity 134. The portion of the manifold pad 106 drawn into the first cavity 134 may substantially or completely fill the first cavity 134 such that the portion of the manifold pad 106 is in physical contact with the cavity surface 148 or the reduced-pressure port 142. In this embodiment, fluid may flow between the cavity surface 148 and the manifold pad 106. Fluid may be directed between the ridges 146 positioned on the cavity surface 148. Additionally, pressure within the second cavity 136 may be monitored.
  • In operation, drawing the portion of the manifold pad 106 into the first cavity 134 may allow the portion of the manifold pad 106 to decompress creating a pressure gradient within the manifold pad 106. The pressure gradient created within the manifold pad 106 may help encourage fluids towards the reduced-pressure port 142.
  • The reduced-pressure interface 108 may be constructed from materials known in the art that provide the appropriate flexibility and comfort to the patient while maintaining sufficient rigidity or resilience to maintain fluid communication pathways, such as ports, lumens, and channels.
  • It should be apparent from the foregoing that an invention having significant advantages has been provided. While the invention is shown in only a few of its forms, it is not just limited but is susceptible to various changes and modifications without departing from the spirit thereof.

Claims (21)

We claim:
1. A reduced-pressure treatment interface, comprising:
a housing having a first cavity separated from a second cavity by a wall;
a reduced-pressure port in the wall facing the first cavity;
a pressure-detection port within the second cavity;
a flange connected to the housing; and
at least one channel fluidly coupling the first cavity to the second cavity.
2. The reduced-pressure treatment interface of claim 1, further comprising a fluid-trap within the second cavity.
3. The reduced-pressure treatment interface of claim 2, wherein the fluid-trap further comprises a flow-concentration region.
4. The reduced-pressure treatment interface of claim 3, wherein the flow-concentration region is fluidly coupled to the at least one channel.
5. The reduced-pressure treatment interface of claim 4, wherein the fluid-trap is partially recessed within the second cavity.
6. The reduced-pressure treatment interface of claim 5, wherein the fluid trap forms a basin.
7. The reduced-pressure treatment interface of claim 6, wherein the basin is at least partially surrounded by a first basin wall and a second basin wall.
8. The reduced-pressure treatment interface of claim 7, wherein the first basin wall and the second basin wall converge at an apex.
9. The reduced-pressure treatment interface of claim 8, wherein the first basin wall and the second basin wall form an acute angle at the apex.
10. The reduced-pressure treatment interface of claim 9, wherein the flow-concentration region is configured to concentrate a flow of fluids into the apex.
11. The reduced-pressure treatment interface of claim 1, wherein the at least one channel is disposed in a manifold contacting surface of the flange.
12. A system for treating a tissue site, comprising:
a manifold proximate the tissue site;
a sealing member placed over the manifold;
a reduced-pressure interface in fluid communication with the manifold, the reduced-pressure interface comprising:
a housing having a first cavity separated from a second cavity by a wall,
a reduced-pressure port located within a surface of the wall facing the first cavity,
a pressure-detection port within the second cavity,
a flange connected to the housing, the flange having a manifold-contacting surface, and
at least one channel disposed in the manifold-contacting surface of the flange fluidly coupling the first cavity to the second cavity; and
a reduced-pressure source fluidly coupled to the reduced-pressure port.
13. The system of claim 12, further comprising a fluid-trap within the second cavity.
14. The system of claim 13, wherein the fluid-trap further comprises a flow-concentration region.
15. The system of claim 14, wherein the flow-concentration region is fluidly coupled to the at least one channel.
16. The system of claim 15, wherein the fluid-trap is partially recessed within the second cavity.
17. The system of claim 16, wherein the fluid-trap forms a basin.
18. The system of claim 17, wherein the basin is at least partially surrounded by a first basin wall and a second basin wall.
19. The system of claim 18, wherein the first basin wall and the second basin wall converge at an apex.
20. The system of claim 19, wherein the first basin wall and the second basin wall form an acute angle at the basin.
21. The system of claim 20, wherein the flow-concentration region is configured to concentrate a flow of fluids into the apex.
US16/540,235 2010-07-16 2019-08-14 System and method for interfacing with a reduced pressure dressing Abandoned US20190365968A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/540,235 US20190365968A1 (en) 2010-07-16 2019-08-14 System and method for interfacing with a reduced pressure dressing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US36525210P 2010-07-16 2010-07-16
US13/183,929 US8690845B2 (en) 2010-07-16 2011-07-15 System and method for interfacing with a reduced pressure dressing
US14/185,326 US10420868B2 (en) 2010-07-16 2014-02-20 System and method for interfacing with a reduced pressure dressing
US16/540,235 US20190365968A1 (en) 2010-07-16 2019-08-14 System and method for interfacing with a reduced pressure dressing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/185,326 Continuation US10420868B2 (en) 2010-07-16 2014-02-20 System and method for interfacing with a reduced pressure dressing

Publications (1)

Publication Number Publication Date
US20190365968A1 true US20190365968A1 (en) 2019-12-05

Family

ID=44513139

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/183,929 Active 2031-11-14 US8690845B2 (en) 2010-07-16 2011-07-15 System and method for interfacing with a reduced pressure dressing
US14/185,326 Active 2033-12-25 US10420868B2 (en) 2010-07-16 2014-02-20 System and method for interfacing with a reduced pressure dressing
US16/540,235 Abandoned US20190365968A1 (en) 2010-07-16 2019-08-14 System and method for interfacing with a reduced pressure dressing

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/183,929 Active 2031-11-14 US8690845B2 (en) 2010-07-16 2011-07-15 System and method for interfacing with a reduced pressure dressing
US14/185,326 Active 2033-12-25 US10420868B2 (en) 2010-07-16 2014-02-20 System and method for interfacing with a reduced pressure dressing

Country Status (9)

Country Link
US (3) US8690845B2 (en)
EP (2) EP3120879B1 (en)
JP (1) JP5900930B2 (en)
CN (2) CN105688291B (en)
AU (1) AU2011278982B2 (en)
CA (1) CA2805131C (en)
TR (1) TR201901104T4 (en)
TW (1) TW201217016A (en)
WO (1) WO2012009662A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD921183S1 (en) * 2017-04-03 2021-06-01 Mölnlycke Health Care Ab Medical equipment
USD983351S1 (en) 2017-04-03 2023-04-11 Mölnlycke Health Care Ab Medical equipment

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651484B2 (en) 2006-02-06 2010-01-26 Kci Licensing, Inc. Systems and methods for improved connection to wound dressings in conjunction with reduced pressure wound treatment systems
US8061360B2 (en) 2006-09-19 2011-11-22 Kci Licensing, Inc. System and method for locating fluid leaks at a drape of a reduced pressure delivery system
US7876546B2 (en) * 2006-09-19 2011-01-25 Kci Licensing Inc. Component module for a reduced pressure treatment system
US8366690B2 (en) 2006-09-19 2013-02-05 Kci Licensing, Inc. System and method for determining a fill status of a canister of fluid in a reduced pressure treatment system
BRPI0714993A2 (en) 2006-09-19 2013-07-30 Kci Licensing Inc reduced pressure treatment system and one-place fabric treatment method
ES2731200T3 (en) 2009-12-22 2019-11-14 Smith & Nephew Inc Apparatus for negative pressure wound therapy
USRE48117E1 (en) 2010-05-07 2020-07-28 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
USD714433S1 (en) * 2010-12-22 2014-09-30 Smith & Nephew, Inc. Suction adapter
CA2821681C (en) 2010-12-22 2023-05-16 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
AU2013234034B2 (en) 2012-03-12 2017-03-30 Smith & Nephew Plc Reduced pressure apparatus and methods
US10265219B2 (en) * 2012-04-12 2019-04-23 Elwha Llc Wound dressing monitoring systems including appurtenances for wound dressings
US10226212B2 (en) 2012-04-12 2019-03-12 Elwha Llc Appurtenances to cavity wound dressings
US10158928B2 (en) 2012-04-12 2018-12-18 Elwha Llc Appurtenances for reporting information regarding wound dressings
US10130518B2 (en) 2012-04-12 2018-11-20 Elwha Llc Appurtenances including sensors for reporting information regarding wound dressings
DE102012214182A1 (en) 2012-08-09 2014-03-06 Paul Hartmann Ag Connection device for use in the negative pressure therapy of wounds
CN104853785B (en) * 2012-10-25 2017-03-22 凯希特许有限公司 Wound connection pad with pneumatic connection confirmation ability
US20140207027A1 (en) * 2013-01-24 2014-07-24 The Cleveland Clinic Foundation Wound cover apparatus and method
USD738487S1 (en) * 2013-01-28 2015-09-08 Molnlycke Health Care Ab Suction device for negative pressure therapy
US9662429B2 (en) * 2013-03-14 2017-05-30 Kci Licensing, Inc. Negative pressure therapy with dynamic profile capability
US8939951B1 (en) 2013-03-15 2015-01-27 James G. Getsay Fluid collection device
JP6294760B2 (en) * 2013-05-15 2018-03-14 グンゼ株式会社 Wound treatment instrument and connector
DE102014227042A1 (en) 2014-12-30 2016-06-30 Paul Hartmann Ag Connection device for use in the negative pressure therapy of wounds
DE102014227041A1 (en) 2014-12-30 2016-06-30 Paul Hartmann Ag Connection device for use in the negative pressure therapy of wounds
DK3288508T3 (en) 2015-04-27 2020-03-09 Smith & Nephew REDUCED PRESSURE DEVICES
BR112018001647A2 (en) 2015-07-29 2018-09-18 Innovative Therapies, Inc. wound therapy device pressure monitoring and control system
CN114053031A (en) 2016-03-07 2022-02-18 史密夫及内修公开有限公司 Wound therapy apparatus and method utilizing a negative pressure source integrated into a wound dressing
CN114469523A (en) 2016-04-26 2022-05-13 史密夫及内修公开有限公司 Wound dressing and method for use with an integrated negative pressure source having a fluid intrusion inhibiting feature
EP3452129B1 (en) 2016-05-03 2022-03-23 Smith & Nephew plc Negative pressure wound therapy device activation and control
CA3022587A1 (en) 2016-05-03 2017-11-09 Smith & Nephew Plc Systems and methods for driving negative pressure sources in negative pressure therapy systems
AU2017259906B2 (en) 2016-05-03 2022-06-02 Smith & Nephew Plc Optimizing power transfer to negative pressure sources in negative pressure therapy systems
AU2017315129B2 (en) 2016-08-25 2022-10-27 Smith & Nephew Plc Absorbent negative pressure wound therapy dressing
JP6361844B1 (en) * 2016-09-23 2018-07-25 株式会社村田製作所 Negative pressure closure therapy device
EP3519001A1 (en) 2016-09-30 2019-08-07 Smith & Nephew PLC Negative pressure wound treatment apparatuses and methods with integrated electronics
US10426874B2 (en) * 2016-12-02 2019-10-01 Apex Medical Corp. Wound management assembly and negative pressure wound therapy system
TWI629072B (en) * 2017-01-13 2018-07-11 廈門聖慈醫療器材有限公司 Suction disc
CN108294864A (en) * 2017-01-13 2018-07-20 厦门圣慈医疗器材有限公司 sucker
JP7361606B2 (en) 2017-03-08 2023-10-16 スミス アンド ネフュー ピーエルシー Control of negative pressure wound therapy devices in the presence of fault conditions
SG11201910129SA (en) 2017-05-09 2019-11-28 Smith & Nephew Redundant controls for negative pressure wound therapy systems
AU201716716S (en) 2017-05-11 2017-11-21 MAƒA¶LNLYCKE HEALTH CARE AB Wound dressings
GB201718070D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
CN111065424A (en) 2017-09-13 2020-04-24 史密夫及内修公开有限公司 Negative pressure wound therapy apparatus with integrated electronics and method
US20210205143A1 (en) * 2017-09-29 2021-07-08 Kci Licensing, Inc. Dressing Interface, Systems, And Methods
GB201718072D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
EP3703632B1 (en) 2017-11-01 2024-04-03 Smith & Nephew plc Negative pressure wound treatment apparatuses and methods with integrated electronics
GB201718054D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Sterilization of integrated negative pressure wound treatment apparatuses and sterilization methods
GB201811449D0 (en) 2018-07-12 2018-08-29 Smith & Nephew Apparatuses and methods for negative pressure wound therapy
USD898925S1 (en) 2018-09-13 2020-10-13 Smith & Nephew Plc Medical dressing
US11452810B2 (en) * 2018-11-14 2022-09-27 Kci Licensing, Inc. Apparatus, system, and method for mechanical indication of pressure
WO2024047420A1 (en) * 2022-08-30 2024-03-07 Solventum Intellectual Properties Company Encapsulated negative pressure and wound pressure sensing devices

Family Cites Families (154)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1355846A (en) 1920-02-06 1920-10-19 David A Rannells Medical appliance
US2547758A (en) 1949-01-05 1951-04-03 Wilmer B Keeling Instrument for treating the male urethra
US2632443A (en) 1949-04-18 1953-03-24 Eleanor P Lesher Surgical dressing
GB692578A (en) 1949-09-13 1953-06-10 Minnesota Mining & Mfg Improvements in or relating to drape sheets for surgical use
US2682873A (en) 1952-07-30 1954-07-06 Johnson & Johnson General purpose protective dressing
NL189176B (en) 1956-07-13 1900-01-01 Hisamitsu Pharmaceutical Co PLASTER BASED ON A SYNTHETIC RUBBER.
US2969057A (en) 1957-11-04 1961-01-24 Brady Co W H Nematodic swab
US3066672A (en) 1960-09-27 1962-12-04 Jr William H Crosby Method and apparatus for serial sampling of intestinal juice
US3367332A (en) 1965-08-27 1968-02-06 Gen Electric Product and process for establishing a sterile area of skin
US3520300A (en) 1967-03-15 1970-07-14 Amp Inc Surgical sponge and suction device
US3568675A (en) 1968-08-30 1971-03-09 Clyde B Harvey Fistula and penetrating wound dressing
US3682180A (en) 1970-06-08 1972-08-08 Coilform Co Inc Drain clip for surgical drain
BE789293Q (en) 1970-12-07 1973-01-15 Parke Davis & Co MEDICO-SURGICAL DRESSING FOR BURNS AND SIMILAR LESIONS
US3826254A (en) 1973-02-26 1974-07-30 Verco Ind Needle or catheter retaining appliance
DE2527706A1 (en) 1975-06-21 1976-12-30 Hanfried Dr Med Weigand DEVICE FOR THE INTRODUCTION OF CONTRAST AGENTS INTO AN ARTIFICIAL INTESTINAL OUTLET
DE2640413C3 (en) 1976-09-08 1980-03-27 Richard Wolf Gmbh, 7134 Knittlingen Catheter monitor
NL7710909A (en) 1976-10-08 1978-04-11 Smith & Nephew COMPOSITE STRAPS.
GB1562244A (en) 1976-11-11 1980-03-05 Lock P M Wound dressing materials
US4080970A (en) 1976-11-17 1978-03-28 Miller Thomas J Post-operative combination dressing and internal drain tube with external shield and tube connector
US4139004A (en) 1977-02-17 1979-02-13 Gonzalez Jr Harry Bandage apparatus for treating burns
US4184510A (en) 1977-03-15 1980-01-22 Fibra-Sonics, Inc. Valued device for controlling vacuum in surgery
US4165748A (en) 1977-11-07 1979-08-28 Johnson Melissa C Catheter tube holder
US4256109A (en) 1978-07-10 1981-03-17 Nichols Robert L Shut off valve for medical suction apparatus
SE414994B (en) 1978-11-28 1980-09-01 Landstingens Inkopscentral VENKATETERFORBAND
GB2047543B (en) 1978-12-06 1983-04-20 Svedman Paul Device for treating tissues for example skin
US4250882A (en) 1979-01-26 1981-02-17 Medical Dynamics, Inc. Wound drainage device
US4266545A (en) 1979-04-06 1981-05-12 Moss James P Portable suction device for collecting fluids from a closed wound
US4284079A (en) 1979-06-28 1981-08-18 Adair Edwin Lloyd Method for applying a male incontinence device
US4261363A (en) 1979-11-09 1981-04-14 C. R. Bard, Inc. Retention clips for body fluid drains
US4569348A (en) 1980-02-22 1986-02-11 Velcro Usa Inc. Catheter tube holder strap
ATE14835T1 (en) 1980-03-11 1985-08-15 Schmid Eduard SKIN GRAFT PRESSURE BANDAGE.
US4297995A (en) 1980-06-03 1981-11-03 Key Pharmaceuticals, Inc. Bandage containing attachment post
US4333468A (en) 1980-08-18 1982-06-08 Geist Robert W Mesentery tube holder apparatus
US4465485A (en) 1981-03-06 1984-08-14 Becton, Dickinson And Company Suction canister with unitary shut-off valve and filter features
US4392853A (en) 1981-03-16 1983-07-12 Rudolph Muto Sterile assembly for protecting and fastening an indwelling device
US4373519A (en) 1981-06-26 1983-02-15 Minnesota Mining And Manufacturing Company Composite wound dressing
US4392858A (en) 1981-07-16 1983-07-12 Sherwood Medical Company Wound drainage device
US4419097A (en) 1981-07-31 1983-12-06 Rexar Industries, Inc. Attachment for catheter tube
AU550575B2 (en) 1981-08-07 1986-03-27 Richard Christian Wright Wound drainage device
SE429197B (en) 1981-10-14 1983-08-22 Frese Nielsen SAR TREATMENT DEVICE
DE3146266A1 (en) 1981-11-21 1983-06-01 B. Braun Melsungen Ag, 3508 Melsungen COMBINED DEVICE FOR A MEDICAL SUCTION DRAINAGE
US4551139A (en) 1982-02-08 1985-11-05 Marion Laboratories, Inc. Method and apparatus for burn wound treatment
US4475909A (en) 1982-05-06 1984-10-09 Eisenberg Melvin I Male urinary device and method for applying the device
EP0100148B1 (en) 1982-07-06 1986-01-08 Dow Corning Limited Medical-surgical dressing and a process for the production thereof
NZ206837A (en) 1983-01-27 1986-08-08 Johnson & Johnson Prod Inc Thin film adhesive dressing:backing material in three sections
US4548202A (en) 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
US4540412A (en) 1983-07-14 1985-09-10 The Kendall Company Device for moist heat therapy
US4543100A (en) 1983-11-01 1985-09-24 Brodsky Stuart A Catheter and drain tube retainer
US4525374A (en) 1984-02-27 1985-06-25 Manresa, Inc. Treating hydrophobic filters to render them hydrophilic
GB2157958A (en) 1984-05-03 1985-11-06 Ernest Edward Austen Bedding Ball game net support
US4897081A (en) 1984-05-25 1990-01-30 Thermedics Inc. Percutaneous access device
US5215522A (en) 1984-07-23 1993-06-01 Ballard Medical Products Single use medical aspirating device and method
GB8419745D0 (en) 1984-08-02 1984-09-05 Smith & Nephew Ass Wound dressing
US4872450A (en) 1984-08-17 1989-10-10 Austad Eric D Wound dressing and method of forming same
US4655754A (en) 1984-11-09 1987-04-07 Stryker Corporation Vacuum wound drainage system and lipids baffle therefor
US4826494A (en) 1984-11-09 1989-05-02 Stryker Corporation Vacuum wound drainage system
US4605399A (en) 1984-12-04 1986-08-12 Complex, Inc. Transdermal infusion device
US5037397A (en) 1985-05-03 1991-08-06 Medical Distributors, Inc. Universal clamp
US4640688A (en) 1985-08-23 1987-02-03 Mentor Corporation Urine collection catheter
US4710165A (en) 1985-09-16 1987-12-01 Mcneil Charles B Wearable, variable rate suction/collection device
US4758220A (en) 1985-09-26 1988-07-19 Alcon Laboratories, Inc. Surgical cassette proximity sensing and latching apparatus
US4733659A (en) 1986-01-17 1988-03-29 Seton Company Foam bandage
WO1987004626A1 (en) 1986-01-31 1987-08-13 Osmond, Roger, L., W. Suction system for wound and gastro-intestinal drainage
US4838883A (en) 1986-03-07 1989-06-13 Nissho Corporation Urine-collecting device
JPS62281965A (en) 1986-05-29 1987-12-07 テルモ株式会社 Catheter and catheter fixing member
GB8621884D0 (en) 1986-09-11 1986-10-15 Bard Ltd Catheter applicator
GB2195255B (en) 1986-09-30 1991-05-01 Vacutec Uk Limited Apparatus for vacuum treatment of an epidermal surface
US4743232A (en) 1986-10-06 1988-05-10 The Clinipad Corporation Package assembly for plastic film bandage
DE3634569A1 (en) 1986-10-10 1988-04-21 Sachse Hans E CONDOM CATHETER, A URINE TUBE CATHETER FOR PREVENTING RISING INFECTIONS
JPS63135179A (en) 1986-11-26 1988-06-07 立花 俊郎 Subcataneous drug administration set
GB8628564D0 (en) 1986-11-28 1987-01-07 Smiths Industries Plc Anti-foaming agent suction apparatus
GB8706116D0 (en) 1987-03-14 1987-04-15 Smith & Nephew Ass Adhesive dressings
US4787888A (en) 1987-06-01 1988-11-29 University Of Connecticut Disposable piezoelectric polymer bandage for percutaneous delivery of drugs and method for such percutaneous delivery (a)
ATE59303T1 (en) 1987-06-22 1991-01-15 Takeda Chemical Industries Ltd SUCTION DEVICE FOR MEDICAL OPERATION.
US4863449A (en) 1987-07-06 1989-09-05 Hollister Incorporated Adhesive-lined elastic condom cathether
US5176663A (en) 1987-12-02 1993-01-05 Pal Svedman Dressing having pad with compressibility limiting elements
US4906240A (en) 1988-02-01 1990-03-06 Matrix Medica, Inc. Adhesive-faced porous absorbent sheet and method of making same
US4985019A (en) 1988-03-11 1991-01-15 Michelson Gary K X-ray marker
GB8812803D0 (en) 1988-05-28 1988-06-29 Smiths Industries Plc Medico-surgical containers
US4919654A (en) 1988-08-03 1990-04-24 Kalt Medical Corporation IV clamp with membrane
US5000741A (en) 1988-08-22 1991-03-19 Kalt Medical Corporation Transparent tracheostomy tube dressing
EP0379416B1 (en) 1989-01-16 1995-03-08 Roussel-Uclaf Azabicycloheptene derivatives and their salts, process for their preparation, their use as medicaments and compositions containing them
US5013300A (en) 1989-03-09 1991-05-07 Williams James D Apparatus for suction lipectomy surgery
GB8906100D0 (en) 1989-03-16 1989-04-26 Smith & Nephew Laminates
US5527293A (en) 1989-04-03 1996-06-18 Kinetic Concepts, Inc. Fastening system and method
US4969880A (en) 1989-04-03 1990-11-13 Zamierowski David S Wound dressing and treatment method
US5100396A (en) 1989-04-03 1992-03-31 Zamierowski David S Fluidic connection system and method
US5261893A (en) 1989-04-03 1993-11-16 Zamierowski David S Fastening system and method
US5358494A (en) 1989-07-11 1994-10-25 Svedman Paul Irrigation dressing
JP2719671B2 (en) 1989-07-11 1998-02-25 日本ゼオン株式会社 Wound dressing
US5232453A (en) 1989-07-14 1993-08-03 E. R. Squibb & Sons, Inc. Catheter holder
GB2235877A (en) 1989-09-18 1991-03-20 Antonio Talluri Closed wound suction apparatus
US5134994A (en) 1990-02-12 1992-08-04 Say Sam L Field aspirator in a soft pack with externally mounted container
US5092858A (en) 1990-03-20 1992-03-03 Becton, Dickinson And Company Liquid gelling agent distributor device
US5149331A (en) 1991-05-03 1992-09-22 Ariel Ferdman Method and device for wound closure
US5278100A (en) 1991-11-08 1994-01-11 Micron Technology, Inc. Chemical vapor deposition technique for depositing titanium silicide on semiconductor wafers
US5645081A (en) 1991-11-14 1997-07-08 Wake Forest University Method of treating tissue damage and apparatus for same
US5636643A (en) 1991-11-14 1997-06-10 Wake Forest University Wound treatment employing reduced pressure
US5279550A (en) 1991-12-19 1994-01-18 Gish Biomedical, Inc. Orthopedic autotransfusion system
US5167613A (en) 1992-03-23 1992-12-01 The Kendall Company Composite vented wound dressing
FR2690617B1 (en) 1992-04-29 1994-06-24 Cbh Textile TRANSPARENT ADHESIVE DRESSING.
US6660484B2 (en) 1992-11-13 2003-12-09 Regents Of The University Of California Colorimetric glycopolythiophene biosensors
DE4306478A1 (en) 1993-03-02 1994-09-08 Wolfgang Dr Wagner Drainage device, in particular pleural drainage device, and drainage method
US5342376A (en) 1993-05-03 1994-08-30 Dermagraphics, Inc. Inserting device for a barbed tissue connector
US6241747B1 (en) 1993-05-03 2001-06-05 Quill Medical, Inc. Barbed Bodily tissue connector
US5344415A (en) 1993-06-15 1994-09-06 Deroyal Industries, Inc. Sterile system for dressing vascular access site
US5437651A (en) 1993-09-01 1995-08-01 Research Medical, Inc. Medical suction apparatus
US5549584A (en) 1994-02-14 1996-08-27 The Kendall Company Apparatus for removing fluid from a wound
US6010633A (en) * 1997-03-06 2000-01-04 Hemasure Inc. Method of preventing air from becoming entrapped within a filtration device
US5556375A (en) 1994-06-16 1996-09-17 Hercules Incorporated Wound dressing having a fenestrated base layer
US5607388A (en) 1994-06-16 1997-03-04 Hercules Incorporated Multi-purpose wound dressing
US5664270A (en) 1994-07-19 1997-09-09 Kinetic Concepts, Inc. Patient interface system
ES2223977T3 (en) 1994-08-22 2005-03-01 Kci Licensing, Inc. CONTAINER.
DE29504378U1 (en) 1995-03-15 1995-09-14 Mtg Medizinisch Tech Geraeteba Electronically controlled low-vacuum pump for chest and wound drainage
JP2636799B2 (en) 1995-05-31 1997-07-30 日本電気株式会社 Leachate suction device
GB9523253D0 (en) 1995-11-14 1996-01-17 Mediscus Prod Ltd Portable wound treatment apparatus
US5735833A (en) 1996-12-11 1998-04-07 Bristol-Myers Squibb Co. Lavage tip
US5941859A (en) 1997-03-17 1999-08-24 Lerman; Benjamin S. Wound irrigation shield with fluid scavenging
US6135116A (en) 1997-07-28 2000-10-24 Kci Licensing, Inc. Therapeutic method for treating ulcers
US6080243A (en) 1998-06-18 2000-06-27 3M Innovative Properties Company Fluid guide device having an open structure surface for attachement to a fluid transport source
AU755496B2 (en) 1997-09-12 2002-12-12 Kci Licensing, Inc. Surgical drape and suction head for wound treatment
GB9719520D0 (en) 1997-09-12 1997-11-19 Kci Medical Ltd Surgical drape and suction heads for wound treatment
US6071267A (en) 1998-02-06 2000-06-06 Kinetic Concepts, Inc. Medical patient fluid management interface system and method
US6458109B1 (en) 1998-08-07 2002-10-01 Hill-Rom Services, Inc. Wound treatment apparatus
US6488643B1 (en) 1998-10-08 2002-12-03 Kci Licensing, Inc. Wound healing foot wrap
GB9822341D0 (en) 1998-10-13 1998-12-09 Kci Medical Ltd Negative pressure therapy using wall suction
FR2787336B1 (en) 1998-12-22 2001-06-08 Francis Navarro DEVICE FOR HOLDING AT LEAST ONE DRAIN OR THE LIKE
US6287316B1 (en) 1999-03-26 2001-09-11 Ethicon, Inc. Knitted surgical mesh
US7799004B2 (en) 2001-03-05 2010-09-21 Kci Licensing, Inc. Negative pressure wound treatment apparatus and infection identification system and method
US6856821B2 (en) 2000-05-26 2005-02-15 Kci Licensing, Inc. System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure
US6991643B2 (en) 2000-12-20 2006-01-31 Usgi Medical Inc. Multi-barbed device for retaining tissue in apposition and methods of use
US6179804B1 (en) 1999-08-18 2001-01-30 Oxypatch, Llc Treatment apparatus for wounds
GB9926538D0 (en) 1999-11-09 2000-01-12 Kci Medical Ltd Multi-lumen connector
TR200401397T4 (en) 2000-02-24 2004-07-21 Venetec International, Inc. Universal catheter insertion system.
US6855135B2 (en) * 2000-11-29 2005-02-15 Hill-Rom Services, Inc. Vacuum therapy and cleansing dressing for wounds
US6540705B2 (en) 2001-02-22 2003-04-01 Core Products International, Inc. Ankle brace providing upper and lower ankle adjustment
WO2003057070A2 (en) 2001-12-26 2003-07-17 Hill-Rom Services Inc. Vented vacuum bandage and method
US7344512B2 (en) 2002-03-15 2008-03-18 Sun Medical Technology Research Corporation Protector and blood pump system
US20030212357A1 (en) * 2002-05-10 2003-11-13 Pace Edgar Alan Method and apparatus for treating wounds with oxygen and reduced pressure
US7976519B2 (en) 2002-12-31 2011-07-12 Kci Licensing, Inc. Externally-applied patient interface system and method
RU2242956C1 (en) 2003-08-21 2004-12-27 Хурай Аслан Рамазанович Refraction eye surgery method and device for implanting intraocular refraction lens
US7854845B2 (en) * 2003-09-05 2010-12-21 Hemerus Medical Llc Biological fluid filtration apparatus
US8062272B2 (en) 2004-05-21 2011-11-22 Bluesky Medical Group Incorporated Flexible reduced pressure treatment appliance
US7396339B2 (en) 2004-04-30 2008-07-08 The First Years Inc. Pumping breast milk
US7837673B2 (en) * 2005-08-08 2010-11-23 Innovative Therapies, Inc. Wound irrigation device
US7648488B2 (en) 2005-11-21 2010-01-19 Pioneer Technology, Llc Wound care system
US8235939B2 (en) 2006-02-06 2012-08-07 Kci Licensing, Inc. System and method for purging a reduced pressure apparatus during the administration of reduced pressure treatment
US7651484B2 (en) 2006-02-06 2010-01-26 Kci Licensing, Inc. Systems and methods for improved connection to wound dressings in conjunction with reduced pressure wound treatment systems
GB0723852D0 (en) * 2007-12-06 2008-01-16 Smith & Nephew Wound fillers
US8545467B2 (en) * 2007-12-07 2013-10-01 Medela Holding Ag Wound cover connecting device
GB2461261A (en) * 2008-06-23 2009-12-30 Carmeli Adahan A device for vacuum treatment of damaged tissue
AU2009274127A1 (en) * 2008-07-21 2010-01-28 Arstasis, Inc. Devices, methods, and kits for forming tracts in tissue
US8529526B2 (en) * 2009-10-20 2013-09-10 Kci Licensing, Inc. Dressing reduced-pressure indicators, systems, and methods
US8430867B2 (en) * 2010-03-12 2013-04-30 Kci Licensing, Inc. Reduced-pressure dressing connection pads, systems, and methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD921183S1 (en) * 2017-04-03 2021-06-01 Mölnlycke Health Care Ab Medical equipment
USD983351S1 (en) 2017-04-03 2023-04-11 Mölnlycke Health Care Ab Medical equipment

Also Published As

Publication number Publication date
EP2593153A1 (en) 2013-05-22
CN105688291B (en) 2018-01-26
US20120016324A1 (en) 2012-01-19
US10420868B2 (en) 2019-09-24
CA2805131C (en) 2017-12-05
AU2011278982A1 (en) 2013-01-10
US8690845B2 (en) 2014-04-08
EP3120879A1 (en) 2017-01-25
CA2805131A1 (en) 2012-01-19
EP3120879B1 (en) 2018-12-26
WO2012009662A1 (en) 2012-01-19
TW201217016A (en) 2012-05-01
CN105688291A (en) 2016-06-22
AU2011278982B2 (en) 2016-05-05
EP2593153B1 (en) 2016-11-02
CN102971020A (en) 2013-03-13
TR201901104T4 (en) 2019-02-21
US20140180226A1 (en) 2014-06-26
JP2013534456A (en) 2013-09-05
JP5900930B2 (en) 2016-04-06
CN102971020B (en) 2016-02-10

Similar Documents

Publication Publication Date Title
US20190365968A1 (en) System and method for interfacing with a reduced pressure dressing
AU2017203558B2 (en) A multi-orientation canister for use with a reduced pressure treatment system
US9981075B2 (en) Reduced pressure tissue treatment systems and methods having a reduced pressure dressing and associated valve
US20210113745A1 (en) Multi-Orientation Canister For Use With A Reduced Pressure Treatment System
US11890404B2 (en) System and apparatus for treating a tissue site having an in-line canister

Legal Events

Date Code Title Description
AS Assignment

Owner name: KCI LICENSING, INC., TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LONG, JUSTIN ALEXANDER;TOUT, AIDAN MARCUS;RANDOLPH, LARRY TAB;AND OTHERS;SIGNING DATES FROM 20110713 TO 20110714;REEL/FRAME:050116/0240

STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION