US20190345407A1 - Method for improving engine fuel efficiency - Google Patents

Method for improving engine fuel efficiency Download PDF

Info

Publication number
US20190345407A1
US20190345407A1 US16/389,220 US201916389220A US2019345407A1 US 20190345407 A1 US20190345407 A1 US 20190345407A1 US 201916389220 A US201916389220 A US 201916389220A US 2019345407 A1 US2019345407 A1 US 2019345407A1
Authority
US
United States
Prior art keywords
oil
base stock
group
ester
lubricating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/389,220
Other languages
English (en)
Inventor
Douglas E. Deckman
Nicole Wallace
Mark P. Hagemeister
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
ExxonMobil Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ExxonMobil Research and Engineering Co filed Critical ExxonMobil Research and Engineering Co
Priority to US16/389,220 priority Critical patent/US20190345407A1/en
Publication of US20190345407A1 publication Critical patent/US20190345407A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/041Mixtures of base-materials and additives the additives being macromolecular compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/12Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing conjugated diene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/04Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing aromatic monomers, e.g. styrene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/06Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • C10M2205/173Fisher Tropsch reaction products used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/2805Esters used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/283Esters of polyhydroxy compounds
    • C10M2207/2835Esters of polyhydroxy compounds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/073Star shaped polymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/252Diesel engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • C10N2040/255Gasoline engines
    • C10N2230/02
    • C10N2240/102
    • C10N2240/104

Definitions

  • This disclosure relates to improving fuel efficiency while maintaining or improving deposit control, in an engine lubricated with a lubricating oil by including at least one ester based Group V base stock and at least one viscosity modifier in the lubricating oil.
  • the emission test cycle currently used to certify emission performance of new vehicles in Europe is the New European Drive Cycle (NEDC), which consists of measuring the CO 2 emissions or fuel consumption of a vehicle.
  • NEDC New European Drive Cycle
  • a vehicle is tested on a chassis dynamometer. The testing begins at 20-30° C. The vehicle must achieve a specific speed versus time profile, which simulates urban driving and extra-urban driving. The entire testing cycle lasts for 1180 seconds.
  • the NEDC drive cycle in the future will be replaced by the Worldwide Harmonized Light Vehicles Test Procedure (WLTP). Like the NEDC procedure, in the WLTP test, the vehicle begins at 20-30° C. The WLTP speed versus time profile is more dynamic then the NEDC cycle and the test last for 30 minutes. As both of these fuel economy/emission tests begin at 20-30° C., having a lubricant with a lower viscosity in this temperature range is desirable to reduce emissions and improve fuel economy.
  • WLTP Worldwide Harmonized Light Vehicles Test Procedure
  • Contemporary lubricants such as engine oils use mixtures of additives such as dispersants, detergents, inhibitors, viscosity index improvers and the like to provide engine cleanliness and durability under a wide range of performance conditions of temperature, pressure, and lubricant service life.
  • additives such as dispersants, detergents, inhibitors, viscosity index improvers and the like to provide engine cleanliness and durability under a wide range of performance conditions of temperature, pressure, and lubricant service life.
  • Lubricant-related performance characteristics such as high temperature deposit control and fuel economy are extremely advantageous attributes as measured by a variety of bench and engine tests. As indicated above, it is known that adding organic friction modifiers to a lubricant formulation imparts frictional benefits at low temperatures, consequently improving the lubricant fuel economy performance. At high temperatures, however, adding increased levels of organic friction modifier can invite high temperature performance issues. For example, engine deposits are undesirable consequences of high levels of friction modifier in an engine oil formulation at high temperature engine operation.
  • a major challenge in engine oil formulation is simultaneously achieving high temperature deposit control while also achieving improved fuel economy.
  • This disclosure relates in part to a method for improving fuel efficiency, while maintaining or improving deposit control, in an engine lubricated with a lubricating oil by including at least one ester based Group V base stock and at least one viscosity modifier in the lubricating oil.
  • the lubricating oils of this disclosure are useful in internal combustion engines including direct injection, gasoline and diesel engines.
  • This disclosure also relates in part to a method for improving fuel efficiency while maintaining or improving deposit control, in an engine lubricated with a lubricating oil by using as the lubricating oil a formulated oil.
  • the formulated oil has a composition comprising from 20 to 85 wt % of a first lubricating oil base stock selected from the group consisting of a Group I base stock, a Group II base stock, a Group III base stock, a Group IV base stock, and combinations thereof; from 5 to 55 wt % of a second lubricating oil base stock comprising at least one ester based Group V base stock; from 5 to 20 wt % of at least one viscosity modifier, and wherein the remainder of the lubricating engine oil includes one or more other lubricating oil additives.
  • the fuel efficiency properties are improved (kinematic viscosity at 25 deg. C. of less than or equal to 125 cSt) and deposit control is maintained or improved (TEOST 33C total deposits less than or equal to 60 mg) as compared to fuel efficiency properties and deposit control achieved using a lubricating engine oil not containing the at least one ester based Group V base stock and the at least one viscosity modifier.
  • This disclosure further relates in part to a lubricating engine oil having a composition
  • a lubricating engine oil having a composition
  • a first lubricating oil base stock selected from the group consisting of a Group I base stock, a Group II base stock, a Group III base stock, a Group IV base stock, and combinations thereof; from 5 to 55 wt % of a second lubricating oil base stock comprising at least one ester based Group V base stock; from 5 to 20 wt % of at least one viscosity modifier, and wherein the remainder of the lubricating engine oil includes one or more other lubricating oil additives.
  • the fuel efficiency properties are improved (kinematic viscosity at 25 deg. C.
  • TEOST 33C total deposits less than or equal to 60 mg as compared to fuel efficiency properties and deposit control achieved using a lubricating engine oil not containing the at least one ester based Group V base stock and the at least one viscosity modifier.
  • FIG. 1 shows the various base stocks and the properties of the base stocks used in accordance with the embodiments of this disclosure.
  • FIG. 2 shows inventive and comparative formulations of this disclosure (e.g., various ester based Group V base stocks and viscosity modifiers) in the lubricating oil and the resulting properties (kinematic viscosity, high temperature high shear viscosity, TEOST deposits, Viscosity Index, CCS viscosity and SAE oil viscosity grade) of the oils.
  • inventive and comparative formulations of this disclosure e.g., various ester based Group V base stocks and viscosity modifiers
  • resulting properties kinematic viscosity, high temperature high shear viscosity, TEOST deposits, Viscosity Index, CCS viscosity and SAE oil viscosity grade
  • FIG. 3 shows other inventive and comparative formulations of this disclosure (e.g., various ester based Group V base stocks and viscosity modifiers) in the lubricating oil and the resulting properties (kinematic viscosity, high temperature high shear viscosity, TEOST deposits, Viscosity Index, CCS viscosity and SAE oil viscosity grade) of the oils.
  • various ester based Group V base stocks and viscosity modifiers e.g., various ester based Group V base stocks and viscosity modifiers
  • the resulting properties kinematic viscosity, high temperature high shear viscosity, TEOST deposits, Viscosity Index, CCS viscosity and SAE oil viscosity grade
  • FIG. 4 shows still other inventive and comparative formulations of this disclosure (e.g., various ester based Group V base stocks and viscosity modifiers) in the lubricating oil and the resulting properties (kinematic viscosity, high temperature high shear viscosity, TEOST deposits, Viscosity Index, CCS viscosity and SAE oil viscosity grade) of the oils.
  • various ester based Group V base stocks and viscosity modifiers e.g., various ester based Group V base stocks and viscosity modifiers
  • the resulting properties kinematic viscosity, high temperature high shear viscosity, TEOST deposits, Viscosity Index, CCS viscosity and SAE oil viscosity grade
  • FIG. 5 shows still yet other inventive and comparative formulations of this disclosure (e.g., various ester based Group V base stocks and viscosity modifiers) in the lubricating oil and the resulting properties (kinematic viscosity, high temperature high shear viscosity, TEOST deposits, Viscosity Index, CCS viscosity and SAE oil viscosity grade) of the oils.
  • various ester based Group V base stocks and viscosity modifiers e.g., various ester based Group V base stocks and viscosity modifiers
  • the resulting properties kinematic viscosity, high temperature high shear viscosity, TEOST deposits, Viscosity Index, CCS viscosity and SAE oil viscosity grade
  • minor amount or “minor component” as it relates to components included within the lubricating oils of the specification and the claims means less than 50 wt. %, or less than or equal to 40 wt. %, or less than or equal to 30 wt. %, or greater than or equal to 20 wt. %, or less than or equal to 10 wt. %, or less than or equal to 5 wt. %, or less than or equal to 2 wt. %, or less than or equal to 1 wt. %, based on the total weight of the lubricating oil.
  • phrases “essentially free” as it relates to components included within the lubricating oils of the specification and the claims means that the particular component is at 0 weight % within the lubricating oil, or alternatively is at impurity type levels within the lubricating oil (less than 100 ppm, or less than 20 ppm, or less than 10 ppm, or less than 1 ppm).
  • other lubricating oil additives as used in the specification and the claims means other lubricating oil additives that are not specifically recited in the particular section of the specification or the claims.
  • lubricating oil additives may include, but are not limited to, an anti-wear additive, antioxidant, detergents, dispersant, pour point depressant, corrosion inhibitor, metal deactivator, seal compatibility additive, anti-foam agent, inhibitor, anti-rust additive, friction modifier and combinations thereof.
  • the lubricating oil preferably comprises a first lubricating oil base stock, a second lubricating oil base stock comprising at least one ester based Group V base stock and at least one viscosity modifier.
  • the lubricating oils of this disclosure are particularly advantageous as passenger vehicle engine oil (PVEO) products.
  • the lubricating oils of this disclosure provide a low kinematic viscosity at 25 deg. C. as a measure of fuel efficiency improvement and a low TEOST 33C deposits as measure of deposit control improvement.
  • the lubricating oils of this disclosure provide a novel combination of a kinematic viscosity at 25 deg. C. of less than or equal to 125 cSt and a TEOST 33C total deposits of less than or equal to 60 mg.
  • a lower HTHS viscosity engine oil also generally provides superior fuel economy to a higher HTHS viscosity product.
  • a lubricating engine oil that includes from 20 to 85 wt % of a first lubricating oil base stock selected from the group consisting of a Group I base stock, a Group II base stock, a Group III base stock, a Group IV base stock, and combinations thereof; from 5 to 55 wt % of a second lubricating oil base stock comprising at least one ester based Group V base stock; from 5 to 20 wt % of at least one viscosity modifier.
  • the remainder of the lubricating engine oil includes one or more other lubricating oil additives.
  • the inventive lubricating engine oil provides improved fuel efficiency properties (kinematic viscosity at 25 deg. C.
  • TEOST 33C total deposits less than or equal to 60 mg as compared to fuel efficiency properties and deposit control achieved using a lubricating engine oil not containing the at least one ester based Group V base stock and the at least one viscosity modifier.
  • the kinematic viscosity at 25 deg. C. and the TEOST 33C total deposits achieved using the inventive lubricating engine oil are significantly and surprisingly improved compared to lubricating engine oils not containing the at least one ester based Group V base stock and the at least one viscosity modifier.
  • the one or more other lubricating oil additives constitute the remainder of the formulated oil and are selected from one or more of the following: an anti-wear additive, antioxidant, detergents, dispersant, pour point depressant, corrosion inhibitor, metal deactivator, seal compatibility additive, anti-foam agent, inhibitor, anti-rust additive, friction modifier and combinations thereof. These one or more other lubricating oil additives are described in greater detail below.
  • a first lubricating oil base stock selected from the group consisting of a Group I base stock, a Group II base stock, a Group III base stock, a Group IV base stock, and combinations thereof from 5 to 55 wt % of a second lubricating oil base stock comprising at least one ester based Group V base stock; from 5 to 20
  • the remainder of the lubricating engine oil includes one or more other lubricating oil additives.
  • the inventive lubricating engine oil provides improved fuel efficiency properties (kinematic viscosity at 25 deg. C. of less than or equal to 125 cSt) and maintained or improved deposit control (TEOST 33C total deposits less than or equal to 60 mg) as compared to fuel efficiency properties and deposit control achieved using a lubricating engine oil not containing the at least one ester based Group V base stock and the at least one viscosity modifier.
  • the kinematic viscosity at 25 deg. C. and the TEOST 33C total deposits achieved using the inventive lubricating engine oil are significantly and surprisingly improved compared to lubricating engine oils not containing the at least one ester based Group V base stock and the at least one viscosity modifier.
  • the inventive lubricating engine oils described above have a kinematic viscosity, according to ASTM standards, of 8 cSt to 15 cSt (or mm 2 /s) at 100° C., preferably of 9 cSt to 14 cSt (or mm 2 /s) at 100° C., more preferably of 10 cSt to 13 cSt (or mm 2 /s) at 100° C., and even more preferably of 11 cSt to 12 cSt (or mm 2 /s) at 100° C.
  • the inventive lubricating engine oils described above have a low temperature kinematic viscosity (25 deg. C.), according to ASTM standards, of less than or equal to 125 cSt at 25° C., or less than or equal to 110 cSt at 25° C., or less than or equal to 100 cSt at 25° C., or less than or equal to 90 cSt at 25° C., or less than or equal to 80 cSt at 25° C., less than or equal to 75 cSt at 25° C.
  • the low temperature kinematic viscosity at 25 deg. C. correlates with improved fuel efficiency with lower values preferred.
  • the inventive lubricating engine oils described above have a high temperature high shear (HTHS) viscosity at 150° C. as measured by ASTM D4683 that ranges from 1.5 to 4.5 cP, or 1.75 to 4.25 cP, or 2.0 to 4.0 cP, or 2.25 to 3.75 cP, or 2.5 to 3.5 cP, or 2.75 to 3.25 cP.
  • HTHS high temperature high shear
  • inventive lubricating engine oil and the inventive method for improving fuel efficiency and deposit control provide improved deposit control as measured by the TEOST 33C test to yield total deposits less than or equal to 60 mg, or less than or equal to 50 mg, or less than or equal to 40 mg, or less than or equal to 30 mg, or less than or equal to 20 mg, or less than or equal to 10 mg.
  • inventive lubricating engine oils described above are particularly suitable as a lubricating engine oil for a passenger vehicle engine oil (PVEO).
  • PVEO passenger vehicle engine oil
  • inventive lubricating engine oils described above are also particularly suitable as a lubricating engine oil for an SAE viscosity grade motor oil selected from 0W-30, 5W-30, 0W-20, 5W-20, 0W-16, 5W-16, 0W-12, 5W-12, 0W-8, and 5W-8.
  • the lubricating engine oils of the instant disclosure include a combination of a first lubricating oil base stock and a second lubricating oil base stock.
  • the first lubricating oil base stock is selected from the group consisting of a Group I base stock, a Group II base stock, a Group III base stock, a Group IV base stock, and combinations thereof.
  • the second lubricating oil base stock includes at least one ester based Group V base stock.
  • Non-limiting exemplary ester based Group V base stocks of the instant disclosure include a monoester, a di-ester, a polyol ester, a complex ester or mixtures thereof derived from a renewable biological material and combinations thereof.
  • the renewable biological material may be derived from coconut oil, palm oil, rapeseed oil, soy oil, vegetable oil, or sunflower oil.
  • Advantageous ester based Group V base stocks of the instant disclosure include a C8/C10/C12/C14/C16/C18 Estolide ester, a C11/C13/C15/C17 Estolide ester, a C8/C10 trimethyloipropane (IMP) ester, a C6/C7/C8/C10 TMP ester, a C5/C6/C7/C8/C9/C10 TMP ester, a C8/C10/C12/C14/C16/C18/C20 TMP ester, a C7/C8/C10 TMP ester, a C7/C9/C11/C13/C15 TMP ester, a C6/C7/C9 TMP ester, a C6/C7/C9 TMP ester, a C6/C7/C9 TMP ester, a C4/C5/C6/C7/C8/C9 TMP ester,
  • the first lubricating oil base stock constitutes from 20 to 85 wt %, or 25 to 80 wt %, or 30 to 75 wt %, or 35 to 70 wt %, or 40 to 65 wt %, or 45 to 60 wt % of the total weight of the lubricating engine oil.
  • the second lubricating oil base stock constitutes from 5 to 55 wt %, or 10 to 50 wt %, or 15 to 45 wt %, or 20 to 40 wt %, or 25 to 35 wt % of the total weight of the lubricating engine oil.
  • the at least one ester based Group V base stock comprises from 25 to 55 wt % of the total weight of the lubricating engine oil.
  • the first lubricating oil base stock is a combination of a Group III gas to liquids (GTL) base stock and a Group IV polyalphaolefin (PAO) base stock.
  • GTL Group III gas to liquids
  • PAO polyalphaolefin
  • the GTL ranges from 20 to 75 wt % of the lubricating engine oil and the PAO ranges from 2 to 10 wt % of the lubricating engine oil.
  • particularly advantageous viscosity grades are those having a kinematic viscosity at 100 deg. C. of 4 cSt, or 6 cSt, or 8 cSt.
  • Non-limiting exemplary first and second lubricating oil base stocks and their properties of the instant disclosure are shown in FIG. 1 . Further details of the Group I, Group II, Group III, Group IV and ester based Group V base stocks of the instant disclosure are described below.
  • Lubricating base oils that are useful in the present disclosure are both natural oils, and synthetic oils, and unconventional oils (or mixtures thereof) can be used unrefined, refined, or rerefined (the latter is also known as reclaimed or reprocessed oil).
  • Unrefined oils are those obtained directly from a natural or synthetic source and used without added purification. These include shale oil obtained directly from retorting operations, petroleum oil obtained directly from primary distillation, and ester oil obtained directly from an esterification process.
  • Refined oils are similar to the oils discussed for unrefined oils except refined oils are subjected to one or more purification steps to improve at least one lubricating oil property.
  • One skilled in the art is familiar with many purification processes. These processes include solvent extraction, secondary distillation, acid extraction, base extraction, filtration, and percolation. Rerefined oils are obtained by processes analogous to refined oils but using an oil that has been previously used as a feed stock.
  • Groups I, II, III, IV and V are broad base oil stock categories developed and defined by the American Petroleum Institute (API Publication 1509; www.API.org) to create guidelines for lubricant base oils.
  • Group I base stocks have a viscosity index of between 80 to 120 and contain greater than 0.03% sulfur and/or less than 90% saturates.
  • Group II base stocks have a viscosity index of between 80 to 120, and contain less than or equal to 0.03% sulfur and greater than or equal to 90% saturates.
  • Group III stocks have a viscosity index greater than 120 and contain less than or equal to 0.03% sulfur and greater than 90% saturates.
  • Group IV includes polyalphaolefins (PAO).
  • Group V base stock includes base stocks not included in Groups I-IV. Table 1 below summarizes properties of each of these five groups.
  • Natural oils include animal oils, vegetable oils (castor oil and lard oil, for example), and mineral oils. Animal and vegetable oils possessing favorable thermal oxidative stability can be used. Of the natural oils, mineral oils are preferred. Mineral oils vary widely as to their crude source, for example, as to whether they are paraffinic, naphthenic, or mixed paraffinic-naphthenic. Oils derived from coal or shale are also useful. Natural oils vary also as to the method used for their production and purification, for example, their distillation range and whether they are straight run or cracked, hydrorefined, or solvent extracted.
  • Group II and/or Group III hydroprocessed or hydrocracked basestocks including synthetic oils such as polyalphaolefins, alkyl aromatics and synthetic esters are also well known basestock oils.
  • Synthetic oils include hydrocarbon oil.
  • Hydrocarbon oils include oils such as polymerized and interpolymerized olefins (polybutylenes, polypropylenes, propylene isobutylene copolymers, ethylene-olefin copolymers, and ethylene-alphaolefin copolymers, for example).
  • Polyalphaolefin (PAO) oil base stocks are commonly used synthetic hydrocarbon oil.
  • PAOs derived from C 6 , C 8 , C 10 , C 12 , C 14 olefins or mixtures thereof may be utilized. See U.S. Pat. Nos. 4,956,122; 4,827,064; and 4,827,073.
  • the number average molecular weights of the PAOs typically vary from 250 to 3,000, although PAO's may be made in viscosities up to 100 cSt (100° C.).
  • the PAOs are typically comprised of relatively low molecular weight hydrogenated polymers or oligomers of alphaolefins which include, but are not limited to, C 2 to C 32 alphaolefins with the C 8 to C 16 alphaolefins, such as 1-hexene, 1-octene, 1-decene, 1-dodecene and the like, being preferred.
  • the preferred polyalphaolefins are poly-1-hexene, poly-1-octene, poly-1-decene and poly-1-dodecene and mixtures thereof and mixed olefin-derived polyolefins.
  • the dimers of higher olefins in the range of C 14 to C 18 may be used to provide low viscosity base stocks of acceptably low volatility.
  • the PAOs may be predominantly trimers and tetramers of the starting olefins, with minor amounts of the higher oligomers, having a viscosity range of 1.5 to 12 cSt.
  • PAO fluids of particular use may include 3.0 cSt, 3.4 cSt, and/or 3.6 cSt and combinations thereof.
  • Bi-modal mixtures of PAO fluids having a viscosity range of 1.5 to 100 cSt may be used if desired.
  • the PAO fluids may be conveniently made by the polymerization of an alphaolefin in the presence of a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate.
  • a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boron trifluoride or complexes of boron trifluoride with water, alcohols such as ethanol, propanol or butanol, carboxylic acids or esters such as ethyl acetate or ethyl propionate.
  • a polymerization catalyst such as the Friedel-Crafts catalysts including, for example, aluminum trichloride, boro
  • wax isomerate base stocks and base oils comprising hydroisomerized waxy stocks (e.g. waxy stocks such as gas oils, slack waxes, fuels hydrocracker bottoms, etc.), hydroisomerized Fischer-Tropsch waxes, Gas-to-Liquids (GTL) base stocks and base oils, and other wax isomerate hydroisomerized base stocks and base oils, or mixtures thereof Fischer-Tropsch waxes, the high boiling point residues of Fischer-Tropsch synthesis, are highly paraffinic hydrocarbons with very low sulfur content.
  • hydroisomerized waxy stocks e.g. waxy stocks such as gas oils, slack waxes, fuels hydrocracker bottoms, etc.
  • hydroisomerized Fischer-Tropsch waxes e.g. waxy stocks such as gas oils, slack waxes, fuels hydrocracker bottoms, etc.
  • GTL Gas-to-Liquids
  • Fischer-Tropsch waxes the
  • the hydroprocessing used for the production of such base stocks may use an amorphous hydrocracking/hydroisomerization catalyst, such as one of the specialized lube hydrocracking (LHDC) catalysts or a crystalline hydrocracking/hydroisomerization catalyst, preferably a zeolitic catalyst.
  • an amorphous hydrocracking/hydroisomerization catalyst such as one of the specialized lube hydrocracking (LHDC) catalysts or a crystalline hydrocracking/hydroisomerization catalyst, preferably a zeolitic catalyst.
  • LHDC specialized lube hydrocracking
  • a zeolitic catalyst preferably ZSM-48 as described in U.S. Pat. No. 5,075,269, the disclosure of which is incorporated herein by reference in its entirety.
  • Processes for making hydrocracked/hydroisomerized distillates and hydrocracked/hydroisomerized waxes are described, for example, in U.S. Pat. Nos.
  • Gas-to-Liquids (GTL) base oils, Fischer-Tropsch wax derived base oils, and other wax-derived hydroisomerized (wax isomerate) base oils be advantageously used in the instant disclosure, and may have useful kinematic viscosities at 100° C. of 3 cSt to 50 cSt, preferably 3 cSt to 30 cSt, more preferably 3.5 cSt to 25 cSt, as exemplified by GTL 4 with kinematic viscosity of 4.0 cSt at 100° C. and a viscosity index of 141.
  • Gas-to-Liquids (GTL) base oils may have useful pour points of ⁇ 20° C. or lower, and under some conditions may have advantageous pour points of ⁇ 25° C. or lower, with useful pour points of ⁇ 30° C. to ⁇ 40° C. or lower.
  • Useful compositions of Gas-to-Liquids (GTL) base oils, Fischer-Tropsch wax derived base oils, and wax-derived hydroisomerized base oils are recited in U.S. Pat. Nos. 6,080,301; 6,090,989, and 6,165,949 for example, and are incorporated herein in their entirety by reference.
  • the hydrocarbyl aromatics can be used as base oil or base oil component and can be any hydrocarbyl molecule that contains at least 5% of its weight derived from an aromatic moiety such as a benzenoid moiety or naphthenoid moiety, or their derivatives.
  • These hydrocarbyl aromatics include alkyl benzenes, alkyl naphthalenes, alkyl diphenyl oxides, alkyl naphthols, alkyl diphenyl sulfides, alkylated bis-phenol A, alkylated thiodiphenol, and the like.
  • the aromatic can be mono-alkylated, dialkylated, polyalkylated, and the like.
  • the aromatic can be mono- or poly-functionalized.
  • the hydrocarbyl groups can also be comprised of mixtures of alkyl groups, alkenyl groups, alkynyl, cycloalkyl groups, cycloalkenyl groups and other related hydrocarbyl groups.
  • the hydrocarbyl groups can range from C 6 up to C 60 with a range of C 8 to C 20 often being preferred. A mixture of hydrocarbyl groups is often preferred, and up to three such substituents may be present.
  • the hydrocarbyl group can optionally contain sulfur, oxygen, and/or nitrogen containing substituents.
  • the aromatic group can also be derived from natural (petroleum) sources, provided at least 5% of the molecule is comprised of an above-type aromatic moiety. Viscosities at 100° C.
  • an alkyl naphthalene where the alkyl group is primarily comprised of 1-hexadecene is used.
  • Other alkylates of aromatics can be advantageously used.
  • Naphthalene or methyl naphthalene, for example, can be alkylated with olefins such as octene, decene, dodecene, tetradecene or higher, mixtures of similar olefins, and the like.
  • Useful concentrations of hydrocarbyl aromatic in a lubricant oil composition can be 2% to 25%, preferably 4% to 20%, and more preferably 4% to 15%, depending on the application.
  • Alkylated aromatics such as the hydrocarbyl aromatics of the present disclosure may be produced by well-known Friedel-Crafts alkylation of aromatic compounds. See Friedel-Crafts and Related Reactions, Olah, G. A. (ed.), Inter-science Publishers, New York, 1963.
  • an aromatic compound such as benzene or naphthalene
  • an olefin, alkyl halide or alcohol in the presence of a Friedel-Crafts catalyst. See Friedel-Crafts and Related Reactions, Vol. 2, part 1, chapters 14, 17, and 18, See Olah, G. A. (ed.), Inter-science Publishers, New York, 1964.
  • catalysts are known to one skilled in the art.
  • the choice of catalyst depends on the reactivity of the starting materials and product quality requirements.
  • strong acids such as AlCl 3 , BF 3 , or HF may be used.
  • milder catalysts such as FeCl 3 or SnCl 4 are preferred.
  • Newer alkylation technology uses zeolites or solid super acids.
  • Esters comprise a useful base stock. Additive solvency and seal compatibility characteristics may be secured by the use of esters such as the esters of dibasic acids with monoalkanols and the polyol esters of monocarboxylic acids.
  • Esters of the former type include, for example, the esters of dicarboxylic acids such as phthalic acid, succinic acid, alkyl succinic acid, alkenyl succinic acid, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acid, alkenyl malonic acid, etc., with a variety of alcohols such as butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, etc.
  • esters include dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, etc.
  • Particularly useful synthetic esters are those which are obtained by reacting one or more polyhydric alcohols, preferably the hindered polyols (such as the neopentyl polyols, e.g., neopentyl glycol, trimethylol ethane, 2-methyl-2-propyl-1,3-propanediol, trimethylol propane, pentaerythritol and dipentaerythritol) with alkanoic acids containing at least 4 carbon atoms, preferably C 5 to C 30 acids such as saturated straight chain fatty acids including caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, and behenic acid, or the corresponding branched chain fatty acids or unsaturated fatty acids such as oleic acid, or mixtures of any of these materials.
  • the hindered polyols such as the neopentyl polyols,
  • Suitable synthetic ester components include the esters of trimethylol propane (TMP), trimethylol butane, trimethylol ethane, pentaerythritol and/or dipentaerythritol with one or more monocarboxylic acids containing from 5 to 10 carbon atoms. These esters are widely available commercially, for example, the Mobil P-41 and P-51 esters of ExxonMobil Chemical Company.
  • esters derived from renewable material such as coconut, palm, rapeseed, soy, sunflower and the like. These esters may be monoesters, di-esters, polyol esters, complex esters, or mixtures thereof. These esters are widely available commercially, for example, the Mobil P-51 ester of ExxonMobil Chemical Company. Engine oil formulations containing renewable esters may also be included in this disclosure.
  • Other useful fluids of lubricating viscosity include non-conventional or unconventional base stocks that have been processed, preferably catalytically, or synthesized to provide high performance lubrication characteristics.
  • Non-conventional or unconventional base stocks/base oils include one or more of a mixture of base stock(s) derived from one or more Gas-to-Liquids (GTL) materials, as well as isomerate/isodewaxate base stock(s) derived from natural wax or waxy feeds, mineral and or non-mineral oil waxy feed stocks such as slack waxes, natural waxes, and waxy stocks such as gas oils, waxy fuels hydrocracker bottoms, waxy raffinate, hydrocrackate, thermal crackates, or other mineral, mineral oil, or even non-petroleum oil derived waxy materials such as waxy materials received from coal liquefaction or shale oil, and mixtures of such base stocks.
  • GTL Gas-to-Liquids
  • GTL materials are materials that are derived via one or more synthesis, combination, transformation, rearrangement, and/or degradation/deconstructive processes from gaseous carbon-containing compounds, hydrogen-containing compounds and/or elements as feed stocks such as hydrogen, carbon dioxide, carbon monoxide, water, methane, ethane, ethylene, acetylene, propane, propylene, propyne, butane, butylenes, and butynes.
  • GTL base stocks and/or base oils are GTL materials of lubricating viscosity that are generally derived from hydrocarbons; for example, waxy synthesized hydrocarbons, that are themselves derived from simpler gaseous carbon-containing compounds, hydrogen-containing compounds and/or elements as feed stocks.
  • GTL base stock(s) and/or base oil(s) include oils boiling in the lube oil boiling range (1) separated/fractionated from synthesized GTL materials such as, for example, by distillation and subsequently subjected to a final wax processing step which involves either or both of a catalytic dewaxing process, or a solvent dewaxing process, to produce lube oils of reduced/low pour point; (2) synthesized wax isomerates, comprising, for example, hydrodewaxed or hydroisomerized cat and/or solvent dewaxed synthesized wax or waxy hydrocarbons; (3) hydrodewaxed or hydroisomerized cat and/or solvent dewaxed Fischer-Tropsch (F-T) material (i.e., hydrocarbons, waxy hydrocarbons, waxes and possible analogous oxygenates); preferably hydrodewaxed or hydroisomerized/followed by cat and/or solvent dewaxing dewaxed F-T waxy hydrocarbons, or hydrodewaxed
  • GTL base stock(s) and/or base oil(s) derived from GTL materials are characterized typically as having kinematic viscosities at 100° C. of from 2 mm 2 /s to 50 mm 2 /s (ASTM D445). They are further characterized typically as having pour points of ⁇ 5° C. to ⁇ 40° C. or lower (ASTM D97). They are also characterized typically as having viscosity indices of 80 to 140 or greater (ASTM D2270).
  • GTL base stock(s) and/or base oil(s) are typically highly paraffinic (>90% saturates), and may contain mixtures of monocycloparaffins and multicycloparaffins in combination with non-cyclic isoparaffins.
  • the ratio of the naphthenic (i.e., cycloparaffin) content in such combinations varies with the catalyst and temperature used.
  • GTL base stock(s) and/or base oil(s) typically have very low sulfur and nitrogen content, generally containing less than 10 ppm, and more typically less than 5 ppm of each of these elements.
  • the sulfur and nitrogen content of GTL base stock(s) and/or base oil(s) obtained from F-T material, especially F-T wax, is essentially nil.
  • the absence of phosphorus and aromatics make this materially especially suitable for the formulation of low SAP products.
  • GTL base stock and/or base oil and/or wax isomerate base stock and/or base oil is to be understood as embracing individual fractions of such materials of wide viscosity range as recovered in the production process, mixtures of two or more of such fractions, as well as mixtures of one or two or more low viscosity fractions with one, two or more higher viscosity fractions to produce a blend wherein the blend exhibits a target kinematic viscosity.
  • the GTL material, from which the GTL base stock(s) and/or base oil(s) is/are derived is preferably an F-T material (i.e., hydrocarbons, waxy hydrocarbons, wax).
  • GTL base stock(s) and/or base oil(s) are typically highly paraffinic (>90% saturates), and may contain mixtures of monocycloparaffins and multicycloparaffins in combination with non-cyclic isoparaffins.
  • the ratio of the naphthenic (i.e., cycloparaffin) content in such combinations varies with the catalyst and temperature used.
  • GTL base stock(s) and/or base oil(s) and hydrodewaxed, or hydroisomerized/cat (and/or solvent) dewaxed base stock(s) and/or base oil(s) typically have very low sulfur and nitrogen content, generally containing less than 10 ppm, and more typically less than 5 ppm of each of these elements.
  • the sulfur and nitrogen content of GTL base stock(s) and/or base oil(s) obtained from F-T material, especially F-T wax, is essentially nil.
  • the absence of phosphorus and aromatics make this material especially suitable for the formulation of low sulfur, sulfated ash, and phosphorus (low SAP) products.
  • Base oils for use in the formulated lubricating oils useful in the present disclosure are any of the variety of oils corresponding to API Group I, Group II, Group III, Group IV, and Group V oils and mixtures thereof, preferably API Group II, Group III, Group IV, and Group V oils and mixtures thereof, more preferably the Group III to Group V base oils due to their exceptional volatility, stability, viscometric and cleanliness features.
  • Minor quantities of Group I stock such as the amount used to dilute additives for blending into formulated lube oil products, can be tolerated but should be kept to a minimum, i.e. amounts only associated with their use as diluent/carrier oil for additives used on an “as-received” basis.
  • Even in regard to the Group II stocks it is preferred that the Group II stock be in the higher quality range associated with that stock, i.e. a Group II stock having a viscosity index in the range 100 ⁇ VI ⁇ 120.
  • the inventive base oils or base stocks described above have a kinematic viscosity, according to ASTM standards, of 2.5 cSt to 12 cSt (or mm 2 /s) at 100° C., preferably of 2.5 cSt to 9 cSt (or mm 2 /s) at 100° C., more preferably of 4 cSt to 8 cSt (or mm 2 /s) at 100° C., and even more preferably of 4 cSt to 6 cSt (or mm 2 /s) at 100° C.
  • the lubricating engine oils of the instant disclosure include at least one viscosity modifier (also known as viscosity index improvers, VI improvers, and viscosity improvers) as part of the formulated oil.
  • the at least one viscosity modifier may be included in the formulated engine oil at from 5 to 22 wt %, or 7 to 20 wt %, or 9 to 18 wt %, or 11 to 16 wt %, or 13 to 14 wt % based on the total weight of the engine oil.
  • Viscosity modifiers provide lubricants with high and low temperature operability. These additives impart shear stability at elevated temperatures and acceptable viscosity at low temperatures.
  • Suitable viscosity modifiers include high molecular weight hydrocarbons, polyesters and viscosity index improver dispersants that function as both a viscosity index improver and a dispersant.
  • Typical molecular weights of these polymers are between 10,000 to 1,500,000, more typically 20,000 to 1,200,000, and even more typically between 50,000 and 1,000,000.
  • suitable viscosity modifiers are linear or star-shaped polymers and copolymers of methacrylate, butadiene, olefins, or alkylated styrenes.
  • Polyisobutylene is a commonly used viscosity modifier.
  • Another suitable viscosity modifier is polymethacrylate (copolymers of various chain length alkyl methacrylates, for example), some formulations of which also serve as pour point depressants.
  • Other suitable viscosity modifiers include copolymers of ethylene and propylene, hydrogenated block copolymers of styrene and isoprene, and polyacrylates (copolymers of various chain length acrylates, for example). Specific examples include styrene-isoprene or styrene-butadiene based polymers of 50,000 to 200,000 molecular weight.
  • Olefin copolymers are commercially available from Chevron Oronite Company LLC under the trade designation “PARATONE®” (such as “PARATONE® 8921” and “PARATONE® 8941”); from Afton Chemical Corporation under the trade designation “HiTEC®” (such as “HiTEC® 5850B”; and from The Lubrizol Corporation under the trade designation “Lubrizol® 7067C”.
  • PARATONE® such as “PARATONE® 8921” and “PARATONE® 8941”
  • HiTEC® such as “HiTEC® 5850B”
  • Lubrizol® 7067C trade designation “Lubrizol® 7067C”.
  • Polyisoprene polymers are commercially available from Infineum International Limited, e.g. under the trade designation “SV200”
  • diene-styrene copolymers are commercially available from Infineum International Limited, e.g. under the trade designation “SV 260”.
  • Particularly advantageous viscosity modifiers of the lubricating engine oils of the instant disclosure are linear or star-shaped polymers and copolymers of methacrylate, butadiene, olefins, alkylated styrenes or combinations thereof.
  • Other particularly advantageous viscosity modifiers of the lubricating engine oils of the instant disclosure are polyisobutylene, polymethacrylate, polyisoprene, copolymers of ethylene and propylene, hydrogenated block copolymers of styrene and isoprene, styrene-butadiene based polymers, star polyisoprene polymers, star polyisoprene-styrene copolymers and combinations thereof.
  • the at least one viscosity modifier is a styrene isoprene copolymer having a molecular weight of from 50,000 to 200,000.
  • Viscosity modifiers are typically added as concentrates to the lubricating oil, in large amounts of diluent oil.
  • the formulated lubricating oil useful in the present disclosure may additionally contain one or more of the other commonly used lubricating oil performance additives including but not limited to antiwear agents, dispersants, detergents, friction modifiers, organic metallic friction modifiers, corrosion inhibitors, rust inhibitors, metal deactivators, extreme pressure additives, anti-seizure agents, wax modifiers, fluid-loss additives, seal compatibility agents, lubricity agents, anti-staining agents, chromophoric agents, defoamants, demulsifiers, emulsifiers, densifiers, wetting agents, gelling agents, tackiness agents, colorants, and others.
  • the other commonly used lubricating oil performance additives including but not limited to antiwear agents, dispersants, detergents, friction modifiers, organic metallic friction modifiers, corrosion inhibitors, rust inhibitors, metal deactivators, extreme pressure additives, anti-seizure agents, wax modifiers, fluid-loss additives, seal compatibility agents, lubric
  • a friction modifier is any material or materials that can alter the coefficient of friction of a surface lubricated by any lubricant or fluid containing such material(s).
  • Friction modifiers also known as friction reducers, or lubricity agents or oiliness agents, and other such agents that change the ability of base oils, formulated lubricant compositions, or functional fluids, to modify the coefficient of friction of a lubricated surface may be effectively used in combination with the base oils or lubricant compositions of the present disclosure if desired. Friction modifiers that lower the coefficient of friction are particularly advantageous in combination with the base oils and lube compositions of this disclosure.
  • Illustrative friction modifiers may include, for example, organometallic compounds or materials, or mixtures thereof.
  • Illustrative organometallic friction modifiers useful in the lubricating engine oil formulations of this disclosure include, for example, molybdenum amine, molybdenum diamine, an organotungstenate, a molybdenum dithiocarbamate, molybdenum dithiophosphates, molybdenum amine complexes, molybdenum carboxylates, and the like, and mixtures thereof. Similar tungsten based compounds may be preferable.
  • illustrative friction modifiers useful in the lubricating engine oil formulations of this disclosure include, for example, alkoxylated fatty acid esters, alkanolamides, polyol fatty acid esters, borated glycerol fatty acid esters, fatty alcohol ethers, and mixtures thereof.
  • Illustrative alkoxylated fatty acid esters include, for example, polyoxyethylene stearate, fatty acid polyglycol ester, and the like. These can include polyoxypropylene stearate, polyoxybutylene stearate, polyoxyethylene isosterate, polyoxypropylene isostearate, polyoxyethylene palmitate, and the like.
  • Illustrative alkanolamides include, for example, lauric acid diethylalkanolamide, palmic acid diethylalkanolamide, and the like. These can include oleic acid diethyalkanolamide, stearic acid diethylalkanolamide, oleic acid diethylalkanolamide, polyethoxylated hydrocarbylamides, polypropoxylated hydrocarbylamides, and the like.
  • Illustrative polyol fatty acid esters include, for example, glycerol mono-oleate, saturated mono-, di-, and tri-glyceride esters, glycerol mono-stearate, and the like. These can include polyol esters, hydroxyl-containing polyol esters, and the like.
  • Illustrative borated glycerol fatty acid esters include, for example, borated glycerol mono-oleate, borated saturated mono-, di-, and tri-glyceride esters, borated glycerol mono-sterate, and the like.
  • glycerol polyols these can include trimethylolpropane, pentaerythritol, sorbitan, and the like.
  • esters can be polyol monocarboxylate esters, polyol dicarboxylate esters, and on occasion polyoltricarboxylate esters.
  • Preferred can be the glycerol mono-oleates, glycerol dioleates, glycerol trioleates, glycerol monostearates, glycerol distearates, and glycerol tristearates and the corresponding glycerol monopalmitates, glycerol dipalmitates, and glycerol tripalmitates, and the respective isostearates, linoleates, and the like.
  • the glycerol esters can be preferred as well as mixtures containing any of these. Ethoxylated, propoxylated, butoxylated fatty acid esters of polyols, especially using glycerol as underlying polyol can be preferred.
  • Illustrative fatty alcohol ethers include, for example, stearyl ether, myristyl ether, and the like. Alcohols, including those that have carbon numbers from C 3 to C 50 , can be ethoxylated, propoxylated, or butoxylated to form the corresponding fatty alkyl ethers.
  • the underlying alcohol portion can preferably be stearyl, myristyl, C 11 -C 13 hydrocarbon, oleyl, isosteryl, and the like.
  • the lubricating oils of this disclosure exhibit desired properties, e.g., wear control, in the presence or absence of a friction modifier.
  • Useful concentrations of friction modifiers may range from 0.01 weight percent to 5 weight percent, or about 0.1 weight percent to about 2.5 weight percent, or about 0.1 weight percent to about 1.5 weight percent, or about 0.1 weight percent to about 1 weight percent. Concentrations of molybdenum-containing materials are often described in terms of Mo metal concentration. Advantageous concentrations of Mo may range from 25 ppm to 700 ppm or more, and often with a preferred range of 50-200 ppm. Friction modifiers of all types may be used alone or in mixtures with the materials of this disclosure. Often mixtures of two or more friction modifiers, or mixtures of friction modifier(s) with alternate surface active material(s), are also desirable.
  • organic metallic friction modifiers may also be used in the lubricating engine oil formulations of this disclosure.
  • Illustrative organic metallic friction modifiers useful in the lubricating engine oil formulations of this disclosure include, for example, molybdenum amine, molybdenum diamine, an organotungstenate, a molybdenum dithiocarbamate, molybdenum dithiophosphates, molybdenum amine complexes, molybdenum carboxylates, and the like. Similar tungsten based compounds may be preferable.
  • Useful concentrations of the organic metallic friction modifiers may range from 0.01 weight percent to 5 weight percent, or 0.1 weight percent to 2.5 weight percent.
  • Useful concentration of molybdenum can range from 25 to 700 ppm, or more preferably from 50 to 200 ppm.
  • Organic molybdenum containing friction modifiers are particularly preferred for the friction modifier mixture of the lubricating oils and the method for improving fuel efficiency and reducing frictional properties, while maintaining or improving deposit control, in an engine lubricated with a lubricating oil of the instant disclosure.
  • the organic molybdenum containing friction modifier is selected from the group consisting of trimeric molybdenum carbamate, moly amine moly ester, molybdenum amine, molybdenum diamine, molybdenum dithiocarbamate, molybdenum dithiophosphates, molybdenum amine complexes, molybdenum carboxylates and combinations thereof.
  • the organic molybdenum containing friction modifier in the friction modifier mixture contributes elemental molybdenum to the lubricating engine oil that yields an elemental molybdenum level in the lubricating engine oil of from 80 to 500 ppm, or 100 to 490 ppm, or 150 to 485 ppm, or 200 to 480 ppm, or 220 to 460 ppm, or 240 to 440 ppm, or 260 to 420 ppm, or 280 to 400 ppm, or 300 to 380 ppm, or 320 to 360 ppm of the lubricating engine oil.
  • a metal alkylthiophosphate and more particularly a metal dialkyl dithio phosphate in which the metal constituent is zinc, or zinc dialkyl dithio phosphate is a useful component of the lubricating oils of this disclosure.
  • ZDDP can be derived from primary alcohols, secondary alcohols or mixtures thereof.
  • ZDDP compounds generally are of the formula Zn[SP(S)(OR 1 )(OR 2 )] 2 where R 1 and R 2 are C 1 -C 18 alkyl groups, preferably C 2 -C 12 alkyl groups. These alkyl groups may be straight chain or branched.
  • Alcohols used in the ZDDP can be 2-propanol, butanol, secondary butanol, pentanols, hexanols such as 4-methyl-2-pentanol, n-hexanol, n-octanol, 2-ethyl hexanol, alkylated phenols, and the like. Mixtures of secondary alcohols or of primary and secondary alcohol can be preferred. Alkyl aryl groups may also be used.
  • Preferable zinc dithiophosphates which are commercially available include secondary zinc dithiophosphates such as those available from for example, The Lubrizol Corporation under the trade designations “LZ 677A”, “LZ 1095” and “LZ 1371”, from for example Chevron Oronite under the trade designation “OLOA 262” and from for example Afton Chemical under the trade designation “HITEC 7169”.
  • the ZDDP is typically used in amounts of from 0.4 weight percent to 1.2 weight percent, preferably from 0.5 weight percent to 1.0 weight percent, and more preferably from 0.6 weight percent to 0.8 weight percent, based on the total weight of the lubricating oil, although more or less can often be used advantageously.
  • the ZDDP is a secondary ZDDP and present in an amount of from 0.6 to 1.0 weight percent of the total weight of the lubricating oil.
  • the zinc dialkyl dithio phosphate (ZDDP) anti-wear additive may be included in the lubricating oil at from 0 to 1.1 wt. %, or 0.1 to 1.0 wt. %, or 0.2 to 0.9 wt. %, or 0.3 to 0.8 wt. %, or 0.4 to 0.7 wt. % of the lubricating engine oil.
  • the elemental phosphorus level in the lubricating engine oil may range from 0 to 760 ppm, or 100 to 600 ppm, or 150 to 550 ppm, or 200 to 500 ppm, or 250 to 450 ppm, or 300 to 400 ppm of the lubricating engine oil.
  • Low phosphorus engine oil formulations are included in this disclosure.
  • the phosphorus content is typically less than 0.12 weight percent preferably less than 0.10 weight percent and most preferably less than 0.085 weight percent. Low phosphorus can be preferred in combination with the friction modifier mixture.
  • Illustrative detergents useful in this disclosure include, for example, alkali metal detergents, alkaline earth metal detergents, or mixtures of one or more alkali metal detergents and one or more alkaline earth metal detergents.
  • a typical detergent is an anionic material that contains a long chain hydrophobic portion of the molecule and a smaller anionic or oleophobic hydrophilic portion of the molecule.
  • the anionic portion of the detergent is typically derived from an organic acid such as a sulfur acid, carboxylic acid, phosphorus acid, phenol, or mixtures thereof.
  • the counterion is typically an alkaline earth or alkali metal.
  • Salts that contain a substantially stochiometric amount of the metal are described as neutral salts and have a total base number (TBN, as measured by ASTM D2896) of from 0 to 80.
  • TBN total base number
  • Many compositions are overbased, containing large amounts of a metal base that is achieved by reacting an excess of a metal compound (a metal hydroxide or oxide, for example) with an acidic gas (such as carbon dioxide).
  • a metal compound a metal hydroxide or oxide, for example
  • an acidic gas such as carbon dioxide
  • Useful detergents can be neutral, mildly overbased, or highly overbased. These detergents can be used in mixtures of neutral, overbased, highly overbased calcium salicylate, sulfonates, phenates and/or magnesium salicylate, sulfonates, phenates.
  • the TBN ranges can vary from low, medium to high TBN products, including as low as 0 to as high as 600.
  • Mixtures of low, medium, high TBN can be used, along with mixtures of calcium and magnesium metal based detergents, and including sulfonates, phenates, salicylates, and carboxylates.
  • a detergent mixture with a metal ratio of 1, in conjunction of a detergent with a metal ratio of 2, and as high as a detergent with a metal ratio of 5, can be used.
  • Borated detergents can also be used.
  • Alkaline earth phenates are another useful class of detergent. These detergents can be made by reacting alkaline earth metal hydroxide or oxide (CaO, Ca(OH) 2 , BaO, Ba(OH) 2 , MgO, Mg(OH) 2 , for example) with an alkyl phenol or sulfurized alkylphenol.
  • alkaline earth metal hydroxide or oxide Ca(OH) 2 , BaO, Ba(OH) 2 , MgO, Mg(OH) 2 , for example
  • Useful alkyl groups include straight chain or branched C 1 -C 30 alkyl groups, preferably, C 4 -C 20 or mixtures thereof. Examples of suitable phenols include isobutylphenol, 2-ethylhexylphenol, nonylphenol, dodecyl phenol, and the like.
  • starting alkylphenols may contain more than one alkyl substituent that are each independently straight chain or branched and can be used from 0.5 to 6 weight percent.
  • the sulfurized product may be obtained by methods well known in the art. These methods include heating a mixture of alkylphenol and sulfurizing agent (including elemental sulfur, sulfur halides such as sulfur dichloride, and the like) and then reacting the sulfurized phenol with an alkaline earth metal base.
  • carboxylic acids are also useful as detergents. These carboxylic acid detergents may be prepared by reacting a basic metal compound with at least one carboxylic acid and removing free water from the reaction product. These compounds may be overbased to produce the desired TBN level.
  • Detergents made from salicylic acid are one preferred class of detergents derived from carboxylic acids.
  • Useful salicylates include long chain alkyl salicylates.
  • One useful family of compositions is of the formula
  • R is an alkyl group having 1 to 30 carbon atoms
  • n is an integer from 1 to 4
  • M is an alkaline earth metal.
  • Preferred R groups are alkyl chains of at least C 11 , preferably C 13 or greater. R may be optionally substituted with substituents that do not interfere with the detergent's function.
  • M is preferably, calcium, magnesium, or barium. More preferably, M is calcium.
  • Hydrocarbyl-substituted salicylic acids may be prepared from phenols by the Kolbe reaction (see U.S. Pat. No. 3,595,791).
  • the metal salts of the hydrocarbyl-substituted salicylic acids may be prepared by double decomposition of a metal salt in a polar solvent such as water or alcohol.
  • Alkaline earth metal phosphates are also used as detergents and are known in the art.
  • Detergents may be simple detergents or what is known as hybrid or complex detergents. The latter detergents can provide the properties of two detergents without the need to blend separate materials. See U.S. Pat. No. 6,034,039.
  • Preferred detergents include calcium phenates, calcium sulfonates, calcium salicylates, magnesium phenates, magnesium sulfonates, magnesium salicylates and other related components (including borated detergents), and mixtures thereof.
  • Preferred mixtures of detergents include magnesium sulfonate and calcium salicylate, magnesium sulfonate and calcium sulfonate, magnesium sulfonate and calcium phenate, calcium phenate and calcium salicylate, calcium phenate and calcium sulfonate, calcium phenate and magnesium salicylate, calcium phenate and magnesium phenate.
  • the detergent concentration in the lubricating oils of this disclosure can range from 1.0 to 6.0 weight percent, preferably 2.0 to 5.0 weight percent, and more preferably from 2.0 weight percent to 4.0 weight percent, based on the total weight of the lubricating oil.
  • One particularly preferred detergent for the inventive lubricating engine oil and the inventive method for improving fuel efficiency, frictional properties and deposit control is an overbased calcium salicylate detergent and a magnesium sulfonate or a calcium sulfonate detergent.
  • the overbased calcium salicylate detergent may be included in the formulated oil at from 0.5 to 2.5 wt %, or 1.0 to 2.0 wt %, or 1.2 to 1.8 wt %.
  • the magnesium sulfonate or a calcium sulfonate detergent may also be included in the formulated oil at from 0.5 to 2.5 wt %, or 1.0 to 2.0 wt %, or 1.2 to 1.8 wt %.
  • the overbased calcium salicylate detergent may also be included in the formulated oil such that it contributes elemental calcium based on the weight of the lubricating engine oil of from 200 ppm to 2000 ppm, or 300 to 1900 ppm, or 400 to 1800 ppm, or 500 to 1600 ppm, or 600 to 1500 ppm, or 700 to 1400 ppm, or 800 to 1300 ppm, or 900 to 1200 ppm.
  • mixtures of an overbased calcium salicylate detergent and a magnesium sulfonate or a calcium sulfonate detergent provide for advantageous lubricating engine oils and advantageous methods for improving fuel efficiency, frictional properties and deposit control.
  • the magnesium sulfonate or a calcium sulfonate detergent may also be included in the formulated oil at from 0.5 to 2.5 wt %, or 1.0 to 2.0 wt %, or 1.2 to 1.8 wt %.
  • the detergent concentrations are given on an “as delivered” basis.
  • the active detergent is delivered with a process oil.
  • the “as delivered” detergent typically contains from 20 weight percent to 80 weight percent, or from 40 weight percent to 60 weight percent, of active detergent in the “as delivered” detergent product.
  • Dispersants help keep these byproducts in solution, thus diminishing their deposition on metal surfaces.
  • Dispersants used in the formulation of the lubricating oil may be ashless or ash-forming in nature.
  • the dispersant is ashless.
  • So-called ashless dispersants are organic materials that form substantially no ash upon combustion.
  • non-metal-containing or borated metal-free dispersants are considered ashless.
  • metal-containing detergents discussed above form ash upon combustion.
  • Suitable dispersants typically contain a polar group attached to a relatively high molecular weight hydrocarbon chain.
  • the polar group typically contains at least one element of nitrogen, oxygen, or phosphorus.
  • Typical hydrocarbon chains contain 50 to 400 carbon atoms.
  • a particularly useful class of dispersants are the alkenylsuccinic derivatives, typically produced by the reaction of a long chain hydrocarbyl substituted succinic compound, usually a hydrocarbyl substituted succinic anhydride, with a polyhydroxy or polyamino compound.
  • the long chain hydrocarbyl group constituting the oleophilic portion of the molecule which confers solubility in the oil, is normally a polyisobutylene group.
  • Many examples of this type of dispersant are well known commercially and in the literature. Exemplary U.S. patents describing such dispersants are U.S. Pat. Nos.
  • Hydrocarbyl-substituted succinic acid and hydrocarbyl-substituted succinic anhydride derivatives are useful dispersants.
  • succinimide, succinate esters, or succinate ester amides prepared by the reaction of a hydrocarbon-substituted succinic acid compound preferably having at least 50 carbon atoms in the hydrocarbon substituent, with at least one equivalent of an alkylene amine are particularly useful, although on occasion, having a hydrocarbon substituent between 20-50 carbon atoms can be useful.
  • Succinimides are formed by the condensation reaction between hydrocarbyl substituted succinic anhydrides and amines. Molar ratios can vary depending on the polyamine. For example, the molar ratio of hydrocarbyl substituted succinic anhydride to TEPA can vary from 1:1 to 5:1. Representative examples are shown in U.S. Pat. Nos. 3,087,936; 3,172,892; 3,219,666; 3,272,746; 3,322,670; and 3,652,616, 3,948,800; and Canada Patent No. 1,094,044.
  • Succinate esters are formed by the condensation reaction between hydrocarbyl substituted succinic anhydrides and alcohols or polyols. Molar ratios can vary depending on the alcohol or polyol used. For example, the condensation product of a hydrocarbyl substituted succinic anhydride and pentaerythritol is a useful dispersant.
  • Succinate ester amides are formed by condensation reaction between hydrocarbyl substituted succinic anhydrides and alkanol amines.
  • suitable alkanol amines include ethoxylated polyalkylpolyamines, propoxylated polyalkylpolyamines and polyalkenylpolyamines such as polyethylene polyamines.
  • propoxylated hexamethylenediamine Representative examples are shown in U.S. Pat. No. 4,426,305.
  • the molecular weight of the hydrocarbyl substituted succinic anhydrides used in the preceding paragraphs will typically range between 800 and 2,500 or more.
  • the above products can be post-reacted with various reagents such as sulfur, oxygen, formaldehyde, carboxylic acids such as oleic acid.
  • the above products can also be post reacted with boron compounds such as boric acid, borate esters or highly borated dispersants, to form borated dispersants generally having from 0.1 to 5 moles of boron per mole of dispersant reaction product.
  • Mannich base dispersants are made from the reaction of alkylphenols, formaldehyde, and amines. See U.S. Pat. No. 4,767,551, which is incorporated herein by reference. Process aids and catalysts, such as oleic acid and sulfonic acids, can also be part of the reaction mixture. Molecular weights of the alkylphenols range from 800 to 2,500. Representative examples are shown in U.S. Pat. Nos. 3,697,574; 3,703,536; 3,704,308; 3,751,365; 3,756,953; 3,798,165; and 3,803,039.
  • Typical high molecular weight aliphatic acid modified Mannich condensation products useful in this disclosure can be prepared from high molecular weight alkyl-substituted hydroxyaromatics or HNR2 group-containing reactants.
  • Hydrocarbyl substituted amine ashless dispersant additives are well known to one skilled in the art; see, for example, U.S. Pat. Nos. 3,275,554; 3,438,757; 3,565,804; 3,755,433, 3,822,209, and 5,084,197.
  • Preferred dispersants include borated and non-borated succinimides, including those derivatives from mono-succinimides, bis-succinimides, and/or mixtures of mono- and bis-succinimides, wherein the hydrocarbyl succinimide is derived from a hydrocarbylene group such as polyisobutylene having a Mn of from 500 to 5000, or from 1000 to 3000, or 1000 to 2000, or a mixture of such hydrocarbylene groups, often with high terminal vinylic groups.
  • Other preferred dispersants include succinic acid-esters and amides, alkylphenol-polyamine-coupled Mannich adducts, their capped derivatives, and other related components.
  • Such additives may be used in an amount of 0.1 to 20 weight percent, preferably 0.5 to 8 weight percent, or more preferably 0.5 to 4 weight percent. On an active ingredient basis, such additives may be used in an amount of 0.06 to 14 weight percent, preferably 0.3 to 6 weight percent.
  • the hydrocarbon portion of the dispersant atoms can range from C 60 to C 400 , or from C 70 to C 300 , or from C 70 to C 200 .
  • These dispersants may contain both neutral and basic nitrogen, and mixtures of both. Dispersants can be end-capped by borates and/or cyclic carbonates.
  • One particularly preferred dispersant for the inventive lubricating engine oil and the inventive method for improving fuel efficiency, frictional properties and deposit control is a non-borated polyisobutenyl bis-succinimide (PIBSA) dispersant.
  • the non-borated PIBSA dispersant may be included in the formulated oil at from 2.0 to 6.0 wt %, or 3.0 to 5.0 wt %, or 3.5 to 4.5 wt %.
  • the dispersant concentrations are given on an “as delivered” basis.
  • the active dispersant is delivered with a process oil.
  • the “as delivered” dispersant typically contains from 20 weight percent to 80 weight percent, or from 40 weight percent to 60 weight percent, of active dispersant in the “as delivered” dispersant product.
  • Antioxidants retard the oxidative degradation of base oils during service. Such degradation may result in deposits on metal surfaces, the presence of sludge, or a viscosity increase in the lubricant.
  • oxidation inhibitors that are useful in lubricating oil compositions. See, Klamann in Lubricants and Related Products, op cite, and U.S. Pat. Nos. 4,798,684 and 5,084,197, for example.
  • Useful antioxidants include hindered phenols. These phenolic antioxidants may be ashless (metal-free) phenolic compounds or neutral or basic metal salts of certain phenolic compounds. Typical phenolic antioxidant compounds are the hindered phenolics which are the ones which contain a sterically hindered hydroxyl group, and these include those derivatives of dihydroxy aryl compounds in which the hydroxyl groups are in the o- or p-position to each other. Typical phenolic antioxidants include the hindered phenols substituted with C 6 + alkyl groups and the alkylene coupled derivatives of these hindered phenols.
  • phenolic materials of this type 2-t-butyl-4-heptyl phenol; 2-t-butyl-4-octyl phenol; 2-t-butyl-4-dodecyl phenol; 2,6-di-t-butyl-4-heptyl phenol; 2,6-di-t-butyl-4-dodecyl phenol; 2-methyl-6-t-butyl-4-heptyl phenol; and 2-methyl-6-t-butyl-4-dodecyl phenol.
  • Other useful hindered mono-phenolic antioxidants may include for example hindered 2,6-di-alkyl-phenolic proprionic ester derivatives.
  • Bis-phenolic antioxidants may also be advantageously used in combination with the instant disclosure.
  • ortho-coupled phenols include: 2,2′-bis(4-heptyl-6-t-butyl-phenol); 2,2′-bis(4-octyl-6-t-butyl-phenol); and 2,2′-bis(4-dodecyl-6-t-butyl-phenol).
  • Para-coupled bisphenols include for example 4,4′-bis(2,6-di-t-butyl phenol) and 4,4′-methylene-bis(2,6-di-t-butyl phenol).
  • catalytic antioxidants comprise an effective amount of a) one or more oil soluble polymetal organic compounds; and, effective amounts of b) one or more substituted N,N′-diaryl-o-phenylenediamine compounds or c) one or more hindered phenol compounds; or a combination of both b) and c).
  • Catalytic antioxidants are more fully described in U.S. Pat. No. 8,048,833, herein incorporated by reference in its entirety.
  • Non-phenolic oxidation inhibitors which may be used include aromatic amine antioxidants and these may be used either as such or in combination with phenolics.
  • Typical examples of non-phenolic antioxidants include: alkylated and non-alkylated aromatic amines such as aromatic monoamines of the formula R 8 R 9 R 10 N where R 8 is an aliphatic, aromatic or substituted aromatic group, R 9 is an aromatic or a substituted aromatic group, and R 12 is H, alkyl, aryl or R 11 S(O) X R 12 where R 11 is an alkylene, alkenylene, or aralkylene group, R 12 is a higher alkyl group, or an alkenyl, aryl, or alkaryl group, and x is 0, 1 or 2.
  • the aliphatic group R 8 may contain from 1 to 20 carbon atoms, and preferably contains from 6 to 12 carbon atoms.
  • the aliphatic group is a saturated aliphatic group.
  • both R 8 and R 9 are aromatic or substituted aromatic groups, and the aromatic group may be a fused ring aromatic group such as naphthyl.
  • Aromatic groups R 8 and R 9 may be joined together with other groups such as S.
  • Typical aromatic amines antioxidants have alkyl substituent groups of at least 6 carbon atoms.
  • Examples of aliphatic groups include hexyl, heptyl, octyl, nonyl, and decyl. Generally, the aliphatic groups will not contain more than 14 carbon atoms.
  • the general types of amine antioxidants useful in the present compositions include diphenylamines, phenyl naphthylamines, phenothiazines, imidodibenzyls and diphenyl phenylene diamines. Mixtures of two or more aromatic amines are also useful. Polymeric amine antioxidants can also be used.
  • aromatic amine antioxidants useful in the present disclosure include: p,p′-dioctyldiphenylamine; t-octylphenyl-alpha-naphthylamine; phenyl-alphanaphthylamine; and p-octylphenyl-alpha-naphthylamine.
  • Sulfurized alkyl phenols and alkali or alkaline earth metal salts thereof also are useful antioxidants.
  • Preferred antioxidants include hindered phenols, arylamines. These antioxidants may be used individually by type or in combination with one another. Such additives may be used in an amount of 0.01 to 5 weight percent, preferably 0.01 to 1.5 weight percent, more preferably zero to less than 1.5 weight percent, more preferably zero to less than 1 weight percent.
  • pour point depressants also known as lube oil flow improvers
  • pour point depressants may be added to lubricating compositions of the present disclosure to lower the minimum temperature at which the fluid will flow or can be poured.
  • suitable pour point depressants include polymethacrylates, polyacrylates, polyarylamides, condensation products of haloparaffin waxes and aromatic compounds, vinyl carboxylate polymers, and terpolymers of dialkylfumarates, vinyl esters of fatty acids and allyl vinyl ethers.
  • 1,815,022; 2,015,748; 2,191,498; 2,387,501; 2,655, 479; 2,666,746; 2,721,877; 2,721,878; and 3,250,715 describe useful pour point depressants and/or the preparation thereof.
  • Such additives may be used in an amount of 0.01 to 5 weight percent, preferably 0.01 to 1.5 weight percent.
  • Seal compatibility agents help to swell elastomeric seals by causing a chemical reaction in the fluid or physical change in the elastomer.
  • Suitable seal compatibility agents for lubricating oils include organic phosphates, alkoxysulfonlanes (C 10 alcohol, for example), aromatic esters, aromatic hydrocarbons, esters (butylbenzyl phthalate, for example), and polybutenyl succinic anhydride. Such additives may be used in an amount of 0.01 to 3 weight percent, preferably 0.01 to 2 weight percent.
  • Antifoam agents may advantageously be added to lubricant compositions. These agents retard the formation of stable foams. Silicones and organic polymers are typical antifoam agents. For example, polysiloxanes, such as silicon oil or polydimethyl siloxane, provide antifoam properties. Antifoam agents are commercially available and may be used in conventional minor amounts along with other additives such as demulsifiers; usually the amount of these additives combined is less than 1 weight percent and often less than 0.1 weight percent.
  • Antirust additives are additives that protect lubricated metal surfaces against chemical attack by water or other contaminants. A wide variety of these are commercially available.
  • antirust additive is a polar compound that wets the metal surface preferentially, protecting it with a film of oil.
  • Another type of antirust additive absorbs water by incorporating it in a water-in-oil emulsion so that only the oil touches the metal surface.
  • Yet another type of antirust additive chemically adheres to the metal to produce a non-reactive surface.
  • suitable additives include zinc dithiophosphates, metal phenolates, basic metal sulfonates, fatty acids and amines. Such additives may be used in an amount of 0.01 to 5 weight percent, preferably 0.01 to 1.5 weight percent.
  • additives When lubricating oil compositions contain one or more of the additives discussed above, the additive(s) are blended into the composition in an amount sufficient for it to perform its intended function. Typical amounts of such additives useful in the present disclosure are shown in Table 2 below.
  • the weight amounts in the table below, as well as other amounts mentioned herein, are directed to the amount of active ingredient (that is the non-diluent portion of the ingredient).
  • the weight percent (wt %) indicated below is based on the total weight of the lubricating oil composition.
  • additives are all commercially available materials. These additives may be added independently but are usually precombined in packages which can be obtained from suppliers of lubricant oil additives. Additive packages with a variety of ingredients, proportions and characteristics are available and selection of the appropriate package will take the requisite use of the ultimate composition into account.
  • Comparative and inventive lubricating engine oils were prepared according to the formulations shown in FIGS. 2-5 . Formulation details are shown in weight percent based on the total weight percent of the formulation, of the various comparative and inventive formulations.
  • FIG. 1 shows the various base stocks and the properties of the base stocks used in accordance with the lubricating engine oils of FIGS. 2-5 . Seven different ester based Group V base stocks (second lubricating oil base stock) were evaluated in combination with a first lubricating oil base stock (GTL4, GTL8, PAO-4, PAO-6 or combinations thereof).
  • the inventive and comparative lubricating engine oils also included at least one viscosity modifier.
  • the five different viscosity modifiers (VM) evaluated either individually or in combination with one another were 1) a polymethacrylate comb VM, 2) a star VM containing styrene, 3) a styrene isoprene diblock VM solid polymer, 4) an isoprene star VM containing styrene in star arms and 5) an ethylene propylene OCP VM.
  • the lubricating engine oils also included other lubricating oil additives, which were held constant in terms of compositional ingredients and weight loading (13.95 or 13.95 wt %) of the total lubricating engine oil.
  • the SAE oil viscosity grade of all the lubricating engine oils were 0W-30 or 5W-30.
  • the comparative and inventive lubricating engine oils were bench tested or evaluated for Kinematic viscosity at 25, 40 and 100 deg. C. measured by ASTM D445, high temperature high shear viscosity at 150 deg. C. measured by ASTM D4683, thermo-oxidation engine oil simulation test (TEOST 33C deposits) measured by ASTM D6335, Viscosity Index as measured by ASTM D2270, and CCS viscosity at 25, 30 and 35 deg. C. as measured by D5293.
  • the property results for the comparative and inventive lubricating engine oils are also depicted in FIGS. 2-5 . All inventive examples were blended such that the D4683 High Temperature High Shear viscosity was 3.5 cP. This viscosity is a common requirement for many European auto-builders.
  • the bench test results of FIGS. 2-5 show that the inventive lubricating engine oils provide a low kinematic viscosity at 25 deg. C. as a measure of fuel efficiency improvement and a low TEOST 33C deposits as measure of deposit control improvement.
  • the inventive lubricating engine oils of FIGS. 2-5 provide a novel combination of a kinematic viscosity at 25 deg. C. of less than or equal to 125 cSt and a TEOST 33C total deposits of less than or equal to 60 mg. in comparison to the comparative lubricating engine oils.
  • the inventive lubricating engine oils included a combination of from 20 to 85 wt % of a first lubricating oil base stock including a GTL, a PAO and combinations thereof; and from 5 to 55 wt % of a second lubricating oil base stock comprising at least one ester based Group V base stock selected from the types shown in FIGS.
  • Comparative example 1 of FIG. 2 contains no Group V base stock and no viscosity modifier. This formulation had a KV25C of 140 cSt, which is expected to provide unacceptable NEDC/WLTP fuel economy performance. Comparative example 1 also failed to meet the D4683 target of 3.5 cP. Comparative examples 11, 13, and 14 use a star VM containing styrene, a star VM containing styrene in the arms, and an ethylene propylene OCP VM respectively. However, these formulations contain no Group V basestock. All three of these examples met the D4683 target of 3.5 cP. However, all three of these formulations failed to provide acceptable D6335 TEOST 33C deposit control.
  • Each formulation contained an identical additive system but used a combination of one of two ester treat rates (either 5% or 50% wt % based on the total lubricating oil) with either a styrene isoprene VM or a PMA VM.
  • PMA VMs have been shown to improve fuel economy because they generate a desirable viscosity vs. temperature profile.
  • Two formulations using PMA VMs were used as comparative benchmarks in this example.
  • the ester treat rates in these formulations were 5 wt % (A) and 50 wt % (B) in combination with a PMA VM.
  • Reference formulations (C) contained 5 wt % ester and two styrene isoprene VMs (1.
  • the inventive lubricating engine oils of this Example contained 50% ester and replaced the PMA VM with the two styrene isoprene VMs indicated above.
  • VM treat rates varied between 4.50 and 10.65 and were adjusted to target an HTHS 150° C. value of 3.5 as determined by ASTM D4683.
  • the seven esters tested were labeled as Ester 1-7.
  • Ester 1 is an Estolide ester
  • Ester 2-4 and 6-7 are TMP esters
  • Ester 5 is a diester.
  • the four different combinations of VM/ester treat rate as shown below in Table 3 and are labeled A through D.
  • each formulation was labeled with the ester used in the formulation (1-7) and the combination of VM type and ester treat rate (A-D).
  • Each formulation was tested for turbocharger deposit control in ASTM D6335 TEOST 33C test and KV at 25° C. (which was used to rank the performance of the oils in NEDC and WLTP fuel economy tests). Having a KV 25° C. ⁇ 125 cSt is advantageous for fuel efficiency.
  • TEOST 33C deposits of less than or equal to 60 mg is considered advantageous for engine cleanliness.
  • formulation A 5% ester+PMA VM
  • formulation D (50% ester+styrene isoprene VM) exhibited less than 60 mg deposits.
  • formulation D For each ester, formulation D (50% ester+styrene isoprene VM) showed a KV at 25° C. value between 78.6 and 107.8° C., which is expected to provide excellent performance in NEDC and WLTP fuel economy tests.
  • Formulation A (5% ester+PMA VM) showed lower KV values resulting in higher FEI predictions.
  • the reference formulations C (5% ester+styrene isoprene VM) exhibited KV@25° C. values ranging from 118.1 to 123.9° C. and thus are expected to provide acceptable results in NEDC and WLTP fuel economy tests.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
US16/389,220 2018-05-11 2019-04-19 Method for improving engine fuel efficiency Abandoned US20190345407A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/389,220 US20190345407A1 (en) 2018-05-11 2019-04-19 Method for improving engine fuel efficiency

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862670099P 2018-05-11 2018-05-11
US16/389,220 US20190345407A1 (en) 2018-05-11 2019-04-19 Method for improving engine fuel efficiency

Publications (1)

Publication Number Publication Date
US20190345407A1 true US20190345407A1 (en) 2019-11-14

Family

ID=66429628

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/389,220 Abandoned US20190345407A1 (en) 2018-05-11 2019-04-19 Method for improving engine fuel efficiency

Country Status (2)

Country Link
US (1) US20190345407A1 (fr)
WO (1) WO2019217058A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190127655A1 (en) * 2017-10-30 2019-05-02 Exxonmobil Research And Engineering Company Lubricating oil compositions having improved cleanliness and wear performance
US20230227748A1 (en) * 2022-01-18 2023-07-20 Afton Chemical Corporation Lubricating compositions for reduced high temperature deposits

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846782B2 (en) * 2003-04-04 2005-01-25 The Lubrizol Corporation Method of reducing intake valve deposits in a direct injection engine
US20150175923A1 (en) * 2013-12-23 2015-06-25 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US20170058228A1 (en) * 2015-08-26 2017-03-02 Infineum International Limited Lubricating oil compositions

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US479A (en) 1837-11-23 Improvement in windmills
US2655A (en) 1842-05-30 Manner of constructing portable tents
US1815022A (en) 1930-05-03 1931-07-14 Standard Oil Dev Co Hydrocarbon oil and process for manufacturing the same
US2015748A (en) 1933-06-30 1935-10-01 Standard Oil Dev Co Method for producing pour inhibitors
US2191498A (en) 1935-11-27 1940-02-27 Socony Vacuum Oil Co Inc Mineral oil composition and method of making
US2387501A (en) 1944-04-04 1945-10-23 Du Pont Hydrocarbon oil
US2721878A (en) 1951-08-18 1955-10-25 Exxon Research Engineering Co Strong acid as a polymerization modifier in the production of liquid polymers
US2721877A (en) 1951-08-22 1955-10-25 Exxon Research Engineering Co Lubricating oil additives and a process for their preparation
US2666746A (en) 1952-08-11 1954-01-19 Standard Oil Dev Co Lubricating oil composition
US2817693A (en) 1954-03-29 1957-12-24 Shell Dev Production of oils from waxes
US3036003A (en) 1957-08-07 1962-05-22 Sinclair Research Inc Lubricating oil composition
US3444170A (en) 1959-03-30 1969-05-13 Lubrizol Corp Process which comprises reacting a carboxylic intermediate with an amine
DE1248643B (de) 1959-03-30 1967-08-31 The Lubrizol Corporation, Cleveland, Ohio (V. St. A.) Verfahren zur Herstellung von öllöslichen aeylierten Aminen
US3215707A (en) 1960-06-07 1965-11-02 Lubrizol Corp Lubricant
US3200107A (en) 1961-06-12 1965-08-10 Lubrizol Corp Process for preparing acylated amine-cs2 compositions and products
US3087936A (en) 1961-08-18 1963-04-30 Lubrizol Corp Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound
US3449250A (en) 1962-05-14 1969-06-10 Monsanto Co Dispersency oil additives
US3329658A (en) 1962-05-14 1967-07-04 Monsanto Co Dispersency oil additives
NL137371C (fr) 1963-08-02
US3322670A (en) 1963-08-26 1967-05-30 Standard Oil Co Detergent-dispersant lubricant additive having anti-rust and anti-wear properties
US3250715A (en) 1964-02-04 1966-05-10 Lubrizol Corp Terpolymer product and lubricating composition containing it
US3316177A (en) 1964-12-07 1967-04-25 Lubrizol Corp Functional fluid containing a sludge inhibiting detergent comprising the polyamine salt of the reaction product of maleic anhydride and an oxidized interpolymer of propylene and ethylene
NL145565B (nl) 1965-01-28 1975-04-15 Shell Int Research Werkwijze ter bereiding van een smeermiddelcompositie.
US3382291A (en) 1965-04-23 1968-05-07 Mobil Oil Corp Polymerization of olefins with bf3
US3574576A (en) 1965-08-23 1971-04-13 Chevron Res Distillate fuel compositions having a hydrocarbon substituted alkylene polyamine
US3751365A (en) 1965-10-22 1973-08-07 Standard Oil Co Concentrates and crankcase oils comprising oil solutions of boron containing high molecular weight mannich reaction condensation products
US3704308A (en) 1965-10-22 1972-11-28 Standard Oil Co Boron-containing high molecular weight mannich condensation
US3798165A (en) 1965-10-22 1974-03-19 Standard Oil Co Lubricating oils containing high molecular weight mannich condensation products
US3697574A (en) 1965-10-22 1972-10-10 Standard Oil Co Boron derivatives of high molecular weight mannich condensation products
US3756953A (en) 1965-10-22 1973-09-04 Standard Oil Co Vatives of high molecular weight mannich reaction condensation concentrate and crankcase oils comprising oil solutions of boron deri
US3272746A (en) 1965-11-22 1966-09-13 Lubrizol Corp Lubricating composition containing an acylated nitrogen compound
US3413347A (en) 1966-01-26 1968-11-26 Ethyl Corp Mannich reaction products of high molecular weight alkyl phenols, aldehydes and polyaminopolyalkyleneamines
US3822209A (en) 1966-02-01 1974-07-02 Ethyl Corp Lubricant additives
US3519565A (en) 1967-09-19 1970-07-07 Lubrizol Corp Oil-soluble interpolymers of n-vinylthiopyrrolidones
US3703536A (en) 1967-11-24 1972-11-21 Standard Oil Co Preparation of oil-soluble boron derivatives of an alkylene polyamine-substituted phenol-formaldehyde addition product
US3541012A (en) 1968-04-15 1970-11-17 Lubrizol Corp Lubricants and fuels containing improved acylated nitrogen additives
GB1244435A (en) 1968-06-18 1971-09-02 Lubrizol Corp Oil-soluble graft polymers derived from degraded ethylene-propylene interpolymers
GB1282887A (en) 1968-07-03 1972-07-26 Lubrizol Corp Acylation of nitrogen-containing products
US3725480A (en) 1968-11-08 1973-04-03 Standard Oil Co Ashless oil additives
US3726882A (en) 1968-11-08 1973-04-10 Standard Oil Co Ashless oil additives
US3702300A (en) 1968-12-20 1972-11-07 Lubrizol Corp Lubricant containing nitrogen-containing ester
US3454607A (en) 1969-02-10 1969-07-08 Lubrizol Corp High molecular weight carboxylic compositions
US3595791A (en) 1969-03-11 1971-07-27 Lubrizol Corp Basic,sulfurized salicylates and method for their preparation
US3652616A (en) 1969-08-14 1972-03-28 Standard Oil Co Additives for fuels and lubricants
US3632511A (en) 1969-11-10 1972-01-04 Lubrizol Corp Acylated nitrogen-containing compositions processes for their preparationand lubricants and fuels containing the same
FR2194767B1 (fr) 1972-08-04 1975-03-07 Shell France
FR2133524B2 (fr) 1970-06-05 1975-10-10 Shell Berre Raffinage
US3803039A (en) 1970-07-13 1974-04-09 Standard Oil Co Oil solution of aliphatic acid derivatives of high molecular weight mannich condensation product
GB1390359A (en) 1971-05-13 1975-04-09 Shell Int Research Process for the preparation of lubricating oil with high viscosity index
US3804763A (en) 1971-07-01 1974-04-16 Lubrizol Corp Dispersant compositions
US3787374A (en) 1971-09-07 1974-01-22 Lubrizol Corp Process for preparing high molecular weight carboxylic compositions
US3742082A (en) 1971-11-18 1973-06-26 Mobil Oil Corp Dimerization of olefins with boron trifluoride
US3755433A (en) 1971-12-16 1973-08-28 Texaco Inc Ashless lubricating oil dispersant
US3769363A (en) 1972-03-13 1973-10-30 Mobil Oil Corp Oligomerization of olefins with boron trifluoride
CA1003778A (en) 1972-04-06 1977-01-18 Peter Ladeur Hydrocarbon conversion process
US3876720A (en) 1972-07-24 1975-04-08 Gulf Research Development Co Internal olefin
US4100082A (en) 1976-01-28 1978-07-11 The Lubrizol Corporation Lubricants containing amino phenol-detergent/dispersant combinations
US4149178A (en) 1976-10-05 1979-04-10 American Technology Corporation Pattern generating system and method
US4454059A (en) 1976-11-12 1984-06-12 The Lubrizol Corporation Nitrogenous dispersants, lubricants and concentrates containing said nitrogenous dispersants
BR7800984A (pt) 1977-02-25 1979-01-02 Lubrizol Corp Composicao lubrificante;e concentrado para formulacao de composicoes lubrificantes
US4218330A (en) 1978-06-26 1980-08-19 Ethyl Corporation Lubricant
US4234435A (en) 1979-02-23 1980-11-18 The Lubrizol Corporation Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation
US4239930A (en) 1979-05-17 1980-12-16 Pearsall Chemical Company Continuous oligomerization process
JPS56126315A (en) 1980-03-11 1981-10-03 Sony Corp Oscillator
US4367352A (en) 1980-12-22 1983-01-04 Texaco Inc. Oligomerized olefins for lubricant stock
US4426305A (en) 1981-03-23 1984-01-17 Edwin Cooper, Inc. Lubricating compositions containing boronated nitrogen-containing dispersants
US4956122A (en) 1982-03-10 1990-09-11 Uniroyal Chemical Company, Inc. Lubricating composition
US4413156A (en) 1982-04-26 1983-11-01 Texaco Inc. Manufacture of synthetic lubricant additives from low molecular weight olefins using boron trifluoride catalysts
US4897178A (en) 1983-05-02 1990-01-30 Uop Hydrocracking catalyst and hydrocracking process
NL8401253A (nl) 1984-04-18 1985-11-18 Shell Int Research Werkwijze voor de bereiding van koolwaterstoffen.
US4921594A (en) 1985-06-28 1990-05-01 Chevron Research Company Production of low pour point lubricating oils
US4975177A (en) 1985-11-01 1990-12-04 Mobil Oil Corporation High viscosity index lubricants
US4767551A (en) 1985-12-02 1988-08-30 Amoco Corporation Metal-containing lubricant compositions
US4827064A (en) 1986-12-24 1989-05-02 Mobil Oil Corporation High viscosity index synthetic lubricant compositions
US4798684A (en) 1987-06-09 1989-01-17 The Lubrizol Corporation Nitrogen containing anti-oxidant compositions
US4943672A (en) 1987-12-18 1990-07-24 Exxon Research And Engineering Company Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403)
US4827073A (en) 1988-01-22 1989-05-02 Mobil Oil Corporation Process for manufacturing olefinic oligomers having lubricating properties
US4910355A (en) 1988-11-02 1990-03-20 Ethyl Corporation Olefin oligomer functional fluid using internal olefins
US5075269A (en) 1988-12-15 1991-12-24 Mobil Oil Corp. Production of high viscosity index lubricating oil stock
US5366648A (en) 1990-02-23 1994-11-22 The Lubrizol Corporation Functional fluids useful at high temperatures
AU638336B2 (en) 1990-07-05 1993-06-24 Mobil Oil Corporation Production of high viscosity index lubricants
AU640490B2 (en) 1990-07-05 1993-08-26 Mobil Oil Corporation Production of high viscosity index lubricants
US5068487A (en) 1990-07-19 1991-11-26 Ethyl Corporation Olefin oligomerization with BF3 alcohol alkoxylate co-catalysts
US5084197A (en) 1990-09-21 1992-01-28 The Lubrizol Corporation Antiemulsion/antifoam agent for use in oils
AU719520B2 (en) 1995-09-19 2000-05-11 Lubrizol Corporation, The Additive compositions for lubricants and functional fluids
US6090989A (en) 1997-10-20 2000-07-18 Mobil Oil Corporation Isoparaffinic lube basestock compositions
ES2380791T3 (es) 1997-11-28 2012-05-18 Infineum Usa L.P. Composiciones de aceites lubricantes
US6080301A (en) 1998-09-04 2000-06-27 Exxonmobil Research And Engineering Company Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins
US6165949A (en) 1998-09-04 2000-12-26 Exxon Research And Engineering Company Premium wear resistant lubricant
US20030191032A1 (en) 2002-01-31 2003-10-09 Deckman Douglas E. Mixed TBN detergents and lubricating oil compositions containing such detergents
US8048833B2 (en) 2007-08-17 2011-11-01 Exxonmobil Research And Engineering Company Catalytic antioxidants
JP5288861B2 (ja) * 2008-04-07 2013-09-11 Jx日鉱日石エネルギー株式会社 潤滑油組成物
US20120018001A1 (en) * 2009-02-09 2012-01-26 The Lubrizol Corporation Method for Improved Performance of a Functional Fluid
JP5717481B2 (ja) * 2011-03-16 2015-05-13 Jx日鉱日石エネルギー株式会社 ギヤ油組成物
US10190072B2 (en) * 2013-12-23 2019-01-29 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US9506009B2 (en) * 2014-05-29 2016-11-29 Exxonmobil Research And Engineering Company Lubricating oil compositions with engine wear protection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846782B2 (en) * 2003-04-04 2005-01-25 The Lubrizol Corporation Method of reducing intake valve deposits in a direct injection engine
US20150175923A1 (en) * 2013-12-23 2015-06-25 Exxonmobil Research And Engineering Company Method for improving engine fuel efficiency
US20170058228A1 (en) * 2015-08-26 2017-03-02 Infineum International Limited Lubricating oil compositions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190127655A1 (en) * 2017-10-30 2019-05-02 Exxonmobil Research And Engineering Company Lubricating oil compositions having improved cleanliness and wear performance
US20230227748A1 (en) * 2022-01-18 2023-07-20 Afton Chemical Corporation Lubricating compositions for reduced high temperature deposits
US11807827B2 (en) * 2022-01-18 2023-11-07 Afton Chemical Corporation Lubricating compositions for reduced high temperature deposits

Also Published As

Publication number Publication date
WO2019217058A1 (fr) 2019-11-14

Similar Documents

Publication Publication Date Title
US9885004B2 (en) Method for improving engine fuel efficiency
EP3149132B1 (fr) Composition lubrifiante avec protection d'usure pour les moteurs
US9228149B2 (en) Enhanced durability performance of lubricants using functionalized metal phosphate nanoplatelets
EP2941476B1 (fr) Utilisation pour améliorer les performances à haute température dans un moteur
EP3087166B1 (fr) Utilisation pour améliorer le rendement de carburant d'un moteur
US20150175924A1 (en) Method for improving engine fuel efficiency
EP3087165B1 (fr) Utilisation pour améliorer le rendement d'un carburant pour un moteur
US10190072B2 (en) Method for improving engine fuel efficiency
US9506008B2 (en) Method for improving engine fuel efficiency
WO2018144167A1 (fr) Huile lubrifiante pour moteur et procédé pour améliorer l'efficacité de combustible pour moteur
US20180037841A1 (en) Lubricating engine oil for improved wear protection and fuel efficiency
US20200102519A1 (en) Low viscosity lubricating oils with improved oxidative stability and traction performance
US20140221260A1 (en) Method for improving engine fuel efficiency
US20190153351A1 (en) Lubricating oil compositions with oxidative stability in diesel engines
US20130137617A1 (en) Method for improving engine fuel efficiency
US20190345407A1 (en) Method for improving engine fuel efficiency
US20200165537A1 (en) Lubricating oil compositions with improved deposit resistance and methods thereof
US20200181525A1 (en) Method for improving oxidation and deposit resistance of lubricating oils
US20150299598A1 (en) Method for improving antiwear performance and demulsibility performance
US20200190425A1 (en) Lubricating oil compositions having functionalized quercetin antioxidants
US20200199477A1 (en) Method for improving high temperature antifoaming performance of a lubricating oil
US20200024538A1 (en) Lubricating oil compositions with oxidative stability in diesel engines using biodiesel fuel
US9617494B2 (en) Method for improving deposit control
US20190031975A1 (en) Method for improving deposit control and cleanliness performance in an engine lubricated with a lubricating oil

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION