US20190323625A1 - Valve With Reinforcement Ports And Manually Removable Scrubber - Google Patents

Valve With Reinforcement Ports And Manually Removable Scrubber Download PDF

Info

Publication number
US20190323625A1
US20190323625A1 US15/960,129 US201815960129A US2019323625A1 US 20190323625 A1 US20190323625 A1 US 20190323625A1 US 201815960129 A US201815960129 A US 201815960129A US 2019323625 A1 US2019323625 A1 US 2019323625A1
Authority
US
United States
Prior art keywords
scrubber
inlet
valve body
irrigation valve
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/960,129
Inventor
Peter Michael Niess
Kevin James Markley
Leonard Francisco Challenger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rain Bird Corp
Original Assignee
Rain Bird Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rain Bird Corp filed Critical Rain Bird Corp
Priority to US15/960,129 priority Critical patent/US20190323625A1/en
Assigned to RAIN BIRD CORPORATION reassignment RAIN BIRD CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHALLENGER, LEONARD FRANCISCO, MARKLEY, KEVIN JAMES, NIESS, PETER MICHAEL
Priority to US16/556,315 priority patent/US11391392B2/en
Publication of US20190323625A1 publication Critical patent/US20190323625A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B1/00Cleaning by methods involving the use of tools, brushes, or analogous members
    • B08B1/001Cleaning by methods involving the use of tools, brushes, or analogous members characterised by the type of cleaning tool
    • B08B1/005Scrapers
    • B08B1/165
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • F16K27/0236Diaphragm cut-off apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/36Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor
    • F16K31/40Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor
    • F16K31/402Actuating devices; Operating means; Releasing devices actuated by fluid in which fluid from the circuit is constantly supplied to the fluid motor with electrically-actuated member in the discharge of the motor acting on a diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K51/00Other details not peculiar to particular types of valves or cut-off apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • F16K7/14Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat
    • F16K7/17Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm arranged to be deformed against a flat seat the diaphragm being actuated by fluid pressure

Definitions

  • the subject matter of this application relates to improvements of valves, more particularly, to reinforced valve ports and manually removable filter scrubbers.
  • Irrigation valves in an irrigation system are used to control the flow of water to emission devices, which distribute water to vegetation.
  • Valves can be standalone valves that control water flow through irrigation piping. Valves are used with main supply lines and zone lines that have one or more emission devices.
  • Valves are often required to handle water flow rates in the pipes reaching approximately 300 gallons/minute. Therefore, the valves need to be securely fastened to the pipes to avoid leakage; however, overtightening of the pipes can lead to cracks in the valve body and/or the piping.
  • the irrigation pipes and/or fittings are threaded into valve ports extending from the valve body. It is desired to have reinforced valve ports to avoid fracturing of the valve body due to overtightening.
  • the water entering the valves may include debris, such as sand, grit or algae.
  • a valve may have a filter in the valve body to capture debris before it can enter other areas of the valve where the debris cannot pass through, thereby avoiding clogging passageways.
  • the filter may have holes or slots to prevent passage of debris; however, the holes or slots themselves may become clogged or blocked over time.
  • a scrubber may be used to break up and free debris trapped on the filter.
  • Scrubbers may require maintenance in the field or even replacement due to degradation over time.
  • scrubbers may be fixed in place to the valve body via a screw or screws; however, if the scrubber is damaged or needs routine maintenance, then it may be cumbersome to extract the scrubber from the valve as it can require inserting a tool into delicate and small areas of the valve. Therefore, it is desired to have a scrubber that can be easily removed manually at the valve without the need for tools and without the need to remove the valve.
  • FIG. 1 is a side perspective view of an irrigation valve
  • FIG. 2 is an exploded side perspective view of a valve body of the irrigation valve of FIG. 1 showing embedded reinforcement rings;
  • FIG. 3 is a cross-sectional view of one of the reinforcement rings of FIG. 2 ;
  • FIG. 4 is an exploded bottom perspective view of the irrigation valve of FIG. 1 showing a plug and an o-ring associated with the valve body;
  • FIG. 5 is a cross-sectional view of the irrigation valve of FIG. 1 taken along line 5 - 5 of FIG. 1 ;
  • FIG. 6 is a side perspective view of a scrubber of the irrigation valve of FIG. 1 ;
  • FIG. 7 is a top perspective view of the scrubber of FIG. 6 ;
  • FIG. 8 is a top perspective view of the valve body of FIG. 2 ;
  • FIG. 9 is a bottom perspective view of the valve body of FIG. 2 ;
  • FIG. 10 is a top perspective, partial cross-sectional view of the valve body of FIG. 2 and the scrubber of FIG. 6 ;
  • FIG. 11 is a side perspective view of another irrigation valve
  • FIG. 12 is an exploded side perspective view of a valve body of the irrigation valve of FIG. 11 showing embedded reinforcement rings and insert rings;
  • FIG. 13 is an exploded bottom perspective view of the irrigation valve of FIG. 11 showing a plug and an o-ring associated with the valve body;
  • FIG. 14 is a cross-sectional view of the irrigation valve of FIG. 11 taken along line 14 - 14 of FIG. 11 ;
  • FIG. 15 is a side perspective view of a scrubber of the irrigation valve of FIG. 11 ;
  • FIG. 16 is a top perspective view of the scrubber of FIG. 15 ;
  • FIG. 17 is a top perspective view of the valve body of FIG. 12 ;
  • FIG. 18 is a bottom perspective view of the valve body of FIG. 12 ;
  • FIG. 19 is a top perspective, partial cross-sectional view of the valve body of FIG. 12 and the scrubber of FIG. 15 ;
  • FIG. 20 is a cross-sectional view of a portion of one of the insert rings of FIG. 12 ;
  • FIG. 21 is a bottom perspective view of one of the insert rings of FIG. 12 ;
  • FIG. 22 is a partial cross-sectional view of one of the insert rings and one of the reinforcement rings of FIG. 12 ;
  • FIG. 23 is a cross-sectional view of one of the insert rings and the reinforcement ring of FIG. 22 embedded in the valve body of FIG. 12 ;
  • FIG. 24 is a side perspective view of another irrigation valve.
  • FIG. 25 is a cross-sectional view of a reinforcement ring embedded in the valve body of FIG. 24 .
  • valve 10 with a valve body 12 and a bonnet 14 .
  • the bonnet 14 is attached to the valve body 12 with screws 16 .
  • the valve body 12 includes an outlet 18 a , an inlet 18 b opposite the outlet 18 a , and an inlet 18 c at the bottom of the valve body 14 .
  • Each of the inlets and outlet 18 a,b,c include internal threads 26 .
  • a pipe is connected to the outlet 18 a and one of the two threaded inlets 18 b,c .
  • the unused inlet is closed with a plug 20 having a threading 21 ( FIG. 4 ).
  • the flow path that is located upstream has the irrigation piping threaded into the inlet 18 b for water to flow into the valve 10 .
  • the plug 20 is threaded into the other inlet 18 c.
  • the valve 10 is attached to a main irrigation supply line as well as some piping that supplies different irrigation zones.
  • the valves often handle water flow rates as high as 300 gallons/minute. Therefore, it is desired that pipes be sufficiently secured to the valve 10 as to avoid leakage particularly at the outlet and inlets 18 a,b,c .
  • overtightening to prevent leakage may result in cracking of the valve body 12 as well as the attached piping. Therefore, it is desired to reinforce the outlet and inlets 18 a,b,c to prevent fracturing of the valve body 12 and/or piping.
  • the reinforcement rings 24 can be made of steel but also can be made of other materials, such as plastic, that add strength to the outlet and inlets 18 a,b,c . Preferred materials are 17 gage 302/304 stainless or galvanized steel.
  • the rings 24 are embedded into the walls of the outlet and inlets 18 a,b,c . Holes 28 in the rings 24 allow plastic to fill in the area and lock the rings 24 into place. During the molding process, plastic flows into and through the holes 28 .
  • the holes 28 are shown oblong but could be any shape, including circular, triangular, and rectangular shape.
  • An annular face 34 of the outlet and inlets 18 a,b,c has slots 36 spaced annularly about it. These slots 36 are formed by a molding tool that holds the rings 24 in place during molding. More specifically, the annular faces 34 of the outlet and inlets 18 a,b,c allow for a molding device with teeth to be inserted slightly into the walls of the outlet and inlets 18 a,b,c to hold the rings 24 in place as the plastic is being injected into the mold. The plastic flows around the tool holding the rings 24 , and the slots 36 are formed where the tool is removed. After the mold is filled and the tool with the teeth is retracted, the rings 24 are set in place. The sides of the outlet and inlets 18 a,b,c also include small depressions 40 formed by pins extending inward in the mold to provide further stabilization of the rings 24 during molding.
  • the inlet 18 c may be sealed with the plug 20 .
  • the plug 20 may be made of rubber, plastic, or any other material conducive to forming a seal to prevent water leakage.
  • a preferred material is Nylon 6/6 35% Glass Reinforced which is commercially available from BASF as Ultramid® A3WG7.
  • the plug 20 has threads 21 for connecting the plug 20 to the threads 26 of the inlet 18 c or 18 b .
  • the annular face 34 of the outlet and inlets 18 a,b,c supports an o-ring 42 that sits between the annular face 34 and the plug 20 .
  • the diameter of the o-ring 42 is smaller than the diameter of an imaginary circle on which the slots 36 sit at the annular face 34 , and does not cover the slots 36 .
  • the o-ring 42 may be in the shape of a torus, and is preferably made of elastomeric material, such as rubber or plastic.
  • the o-ring 42 seals the plug 20 to the inlet 18 c to prevent leakage.
  • the o-ring 42 may be seated on the face 34 of the side inlet 18 b , and the plug 20 is threaded into the side inlet 18 b .
  • a pipe may be threaded into the bottom inlet 18 c , forming a vertical inlet for water to flow into the valve body 12 .
  • the plug 20 includes an annular flange 25 that engages the o-ring 42 and compresses it against the face 34 .
  • the position of the slots 36 in the face 34 is preferably closer to the outer diameter of the face 34 than the inner diameter of the face 34 . This accommodates the placement of the o-ring 42 onto the face 34 in such a position as to help seal the plug 20 . This configuration also inhibits the passage of water into the slots 36 . Water entering the slots 36 could degrade the reinforcement rings 24 over time.
  • the annular faces 34 have a slightly larger outer diameter than the threaded outlet and inlets 18 a,b,c . Therefore, with the slots 36 disposed toward the outer diameter of the annular face 34 , the embedded rings 24 have a radially outward lip 44 to extend up and in line with the slots 36 , as shown in FIG. 3 .
  • the radially outward lip 44 has a first outward bend 35 followed by a second bend 37 that axially aligns the remainder 39 of the lip with the ring 24 .
  • a steel ring may have a uniform diameter extending straight through the valve body 12 from the slots 36 of the face 34 , and the tooling used to set the rings would remain the same. This would provide reinforcement; however, this may place the slots 36 in a position that would result in unequal amounts of plastic at different locations on the inside and the outside of the rings 24 , thus leading to increased stress on the rings 24 . Having the ring located more centrally on the seating face 34 could interfere with the sealing of the plug 20 and the o-ring 42 against the seating face 34 . While this version would still increase the strength of the inlets and outlet, the version above is preferred because the widening diameter of the outlet and inlets 18 a,b,c permits having a similar amount of material on both the inner and outer surfaces of the reinforcement rings 24 .
  • the valve 10 includes a diaphragm assembly 46 , a filter 48 , and a scrubber 50 .
  • the embedded rings 24 are also seen over-molded with plastic around the threaded inlets 18 b,c and outlet 18 a , and the inlet 18 c is sealed with the plug 20 .
  • the pressure of the inflowing water pushes the diaphragm assembly 46 off a valve seat 54 if the pressure is sufficient to counteract the downward pressure from a spring 56 and any remaining pressure in a pressure chamber 62 pushing down on a top side 58 of the diaphragm assembly 46 .
  • a solenoid 164 can open a pilot valve 161 to release the water in the pressure chamber 162 allowing water to exit through a passage 163 to the outlet 118 a and downward pressure on the diaphragm assembly to be decreased.
  • the filter 48 has an upper portion 68 that threads on to a threaded stem portion 70 of the diaphragm assembly 46 .
  • the filter 48 blocks debris attempting to enter the passageway 66 that could otherwise cause blockage throughout the passageway 66 . Such blockage could prevent the desired amount of water entering the pressure chamber 62 .
  • the filter includes holes 71 (or slots) that allow water to pass through, yet the holes 71 are of predetermined size and number to block debris from entering the passageway 66 while also allowing the appropriate amount of water flow.
  • Debris can encounter the filter 48 just from water containing debris flowing through the valve 10 and/or from being drawn into the filter 48 as it flows into the pressure chamber 62 . Any debris that builds on the filter 48 can become trapped in the filter holes 71 and can impede performance of the valve 10 , including the desired flow to the pressure chamber 62 .
  • the scrubber 50 scrubs the filter 48 as the diaphragm assembly 46 moves to break free any debris that may be on the filter or clogging the filter holes 71 .
  • the scrubber 50 has an upper portion 73 with scrubber fingers 69 having arcuate edges 72 at the top of the fingers 69 .
  • the arcuate edges 72 match the arcuate outer profile of the filter 48 to scrape against the filter 48 as the filter 48 moves vertically up and down with the diaphragm assembly 46 during operation of the valve 10 .
  • the fingers 69 of the upper portion 73 are supported by stanchions 89 .
  • the stanchions 89 extend from a ledge 107 of a base portion 74 to the upper portion 73 .
  • the fingers 69 are separated by longitudinal finger grooves 87 and inlet ports 85 that enable the fingers 69 to flex in and out radially.
  • the inlet ports 85 also allow water to pass into the filter 48 and then into the passageway 66 .
  • the base portion 74 of the scrubber 50 has wings 76 , each wing 76 being moveable radially.
  • the wings 76 each have a locking ledge 77 for attachment to the valve body 12 and a handle or tab 79 that enables one to manually move the wings 76 radially inward against an outward bias of the wings 76 to disengage the locking ledge 77 from the valve body 12 to remove the scrubber 50 .
  • the handles/tabs 79 extend away from the scrubber 150 to provide enhanced leverage in unlatching the locking ledge 77 for manual removal of the scrubber 50 .
  • the handles/tabs 79 are enlarged for easy location and manipulation by a user reaching into the valve body 12 .
  • the valve body 12 includes a scrubber boss 78 to mount the scrubber 50 inside the inner cavity 52 of the valve body 12 .
  • the scrubber boss 78 is supported by three support spokes 80 extending from the boss 78 to an inner wall 88 of the inner cavity 52 . More specifically, the three support spokes 80 extend radially outward from the boss 78 to the inner wall 88 .
  • the scrubber boss 78 includes two diametrically opposed openings 91 that each form ledges 82 at the upper portion of the boss 78 .
  • the scrubber 50 also includes protrusions 84 ( FIG. 6 ) that seat in complementary shaped channels 86 axially extending along the inside of the boss 78 .
  • valve body 12 with the scrubber boss 78 and support spokes 80 can be molded of plastic, such as Nylon 6/6 35% Glass Reinforced which is commercially available from BASF as Ultramid® A3WG7.
  • the valve body 12 may be molded as a single piece.
  • the wings 76 are naturally biased outward to their fullest extent when the scrubber 50 is not seated in the scrubber boss 78 .
  • the wings 76 operate about a living hinge 81 .
  • the operating gap 95 provides room for the wings 76 to be forced inward so that the locking ledges 77 can pass the boss ledges 82 .
  • the wings 76 then move radially outward, and the locking ledges 77 clip underneath the boss ledges 82 .
  • the locking ledges 77 have an angled surface 109 at the bottom portion of the ledges 77 . The angled surface 109 slides against the boss 78 to push the wings 76 inward as the locking ledges 77 pass the boss ledges 82 .
  • FIG. 9 the underside of the scrubber boss 78 and the openings 91 are shown along with a scrubber boss seat 93 .
  • the protrusions 84 slide into the complementary shaped channels 86 , and then, the wings 76 are deflected inward by the boss 78 so that the scrubber 50 slides inside the boss 78 . This is done with the aid of the angled surfaces 109 of the locking ledges 77 .
  • the scrubber 50 sits on the boss seat 93 , and the locking ledges 77 are clipped into place underneath the boss ledges 82 , as discussed above.
  • FIG. 10 shows the scrubber 50 affixed in the scrubber boss 78 .
  • the handles 79 of the wings 76 To manually remove the scrubber 50 , one easily locates the handles 79 of the wings 76 and pinches the handles 79 sufficiently inwards into the operating gaps 95 , such that the locking ledges 77 release from the boss ledges 82 , and then pulls the scrubber 50 longitudinally from the boss 78 .
  • the handles 79 are positioned and sized to be readily accessible and designed to provide enhanced leverage for easy removal of the scrubber. More specifically, the wings 76 include a latching (or lower) portion 96 which includes the locking ledge 77 and the handle (or upper portion) 79 .
  • the handle 79 is stepped radially outward from the latching portion 96 by a radially extending portion 99 transitioning the latching portion 96 to the handle 79 .
  • the handle 79 is arcuately elongated and longitudinally elongated to provide sufficient surface for a user's finger to operate it.
  • the longitudinal length increases the leverage to make it easier for the user to squeeze the wings 76 together to release the scrubber 50 from the valve body 12 .
  • the handle/tab 79 of the wings 76 could have an approximate width of 0.215 inches and an approximate height of 0.380 inches.
  • the approximate length of the wing 76 is one inch.
  • the scrubber 50 may be molded from plastic, such as 15% Glass Filled Nylon, which is commercially available from BASF as product A3EGE.
  • FIGS. 11-23 illustrate an alternative approach to reinforcing the inlet and outlet ports of the valve body and providing a screen scrubber. More specifically, with reference to FIG. 11 , there is illustrated a valve 110 with a valve body 112 and a bonnet 114 . The bonnet 114 is attached to the valve body 112 with screws 116 .
  • the valve body 112 includes an outlet 118 a , an inlet 118 b opposite the outlet 118 a , and an inlet 118 c at the bottom of the valve body 114 .
  • Each of the inlets and outlet 118 a,b,c include internal threads 126 .
  • a pipe is connected to the outlet 118 a and one of the two threaded inlets 118 b,c .
  • the unused inlet is closed with a plug 120 having a threading 121 ( FIG. 13 ).
  • the flow path that is located upstream has the irrigation piping threaded into the inlet 118 b for water to flow into the valve 110 .
  • the plug 120 is threaded into the other inlet 118 c.
  • the valve 110 is commonly attached to a main irrigation supply line as well as some piping that supplies different irrigation zones. Again, the valves often handle water flow rates as high as 300 gallons/minute. Therefore, it is desired that pipes be sufficiently secured to the valve 110 as to avoid leakage particularly at the outlet and inlets 18 a,b,c . Thus, it is desired to reinforce the outlet and inlets 18 a,b,c to prevent fracturing of the valve body 112 and/or piping caused by overtightening which could lead to leakage from cracking of the valve body 112 as well as the attached piping.
  • the reinforcement rings 124 can be made of steel but also can be made of other materials, such as plastic, that add strength to the outlet and inlets 118 a,b,c . Preferred materials are 17 gage 302/304 stainless or galvanized steel.
  • the reinforcement rings 124 are embedded into the walls of the outlet and inlets 118 a,b,c . Holes 128 in the rings 124 allow plastic to fill in the area defined by the holes 128 to further help to lock the rings 124 into place. During the molding process, plastic flows into and through the holes 128 .
  • the holes 128 are shown oblong but could be any shape, including circular, triangular, and rectangular shape.
  • a molding tool insert ring 133 is attached to each of the reinforcement rings 124 , as described further below. During molding operations, a molding tool holds the insert rings 133 in the outlet and inlets 118 a,b,c to maintain the reinforcement rings 124 in place as plastic is being injected into the mold and the valve body 112 is being formed.
  • each insert ring 133 has a groove 202 , a seat 204 and a skirt 206 .
  • the molding tool connects to the insert ring 133 using an annular pocket 210 formed between an annular rib 208 of the skirt 206 and the seat 204 .
  • the end of the molding tool is configured to cooperate with the pocket 210 of the insert ring 133 .
  • the reinforcement ring is the same as the ring 124 shown in FIG. 12 .
  • the reinforcement rings 124 have a radially outward lip 144 that has a first outward bend 135 followed by a second bend 137 that axially aligns the remainder 139 of the lip 144 with the reinforcement ring 124 .
  • the remainder 139 of the lip 144 extends into the groove 202 and is held in place by friction or adhesive.
  • the groove 202 includes arcuate or chamfered edges 209 to aid in receiving the remainder 139 of the lip.
  • the insert ring 133 includes an outer angular stepped profile 212 ( FIGS. 20-23 ).
  • the step 212 is at the transition between the portion forming a continuous groove 214 ( FIGS. 12 and 23 ) and the skirt 206 so that an outer groove surface (forming the pocket 210 ) of the continuous groove 214 has a smaller diameter than an outer skirt surface 218 of the skirt 206 .
  • the stepped profile 212 allows the insert ring 133 to fit around the molding tool, while maintaining generally equal material thickness throughout the insert ring 133 .
  • the reinforcement rings 124 are molded into the valve body 112 , and the insert rings 133 (being made of the same or similar plastic material as the valve body 112 ) chemically bond to or with the material of the valve body 112 .
  • the reinforcement rings are secured against movement in the valve body and sealed against exposure to moisture.
  • the insert rings 133 help prevent exposure of the metal reinforcement rings 124 to harmful elements, such as rain, condensation and leakage, which can degrade the metal over time.
  • the insert rings 133 may be made of plastic (as opposed to, for instance, metal, such as stainless steel), which can also help to alleviate degradation to the mold that otherwise may occur when there is metal-to-metal contact.
  • the insert rings 133 may also be made of the same material as the valve body 12 .
  • the sides of the outlet and inlets 118 a,b,c also include small depressions 140 formed by pins extending inward in the mold to provide further stabilization of the reinforcement rings 124 during molding.
  • the insert rings 133 enable formation of the continuous grooves 214 .
  • the continuous grooves 214 aid in allowing the molding cores that produce the threads 126 to unwind during the molding operation.
  • the inlet 118 c may be sealed with the plug 120 .
  • the plug 120 may be made of rubber, plastic, or any other material conducive to forming a seal to prevent water leakage.
  • a preferred material is Nylon 6/6 35% Glass Reinforced which is commercially available from BASF as Ultramid® A3WG7.
  • the plug 120 has threads 121 for connecting the plug 120 to the threads 126 of the inlet 118 c or 118 b .
  • An annular face 134 of the outlet and inlets 118 a,b,c provides an engagement surface for an o-ring 142 that sits between the annular face 134 and the plug 120 .
  • the diameter of the o-ring 142 is smaller than the inner diameter of the continuous groove 214 so that it does not extend over the continuous groove 214 when compressed for sealing.
  • the o-ring 142 may be in the shape of a torus, and is preferably made of elastomeric material, such as rubber or plastic.
  • the o-ring 142 seals the plug 120 to the inlet 118 c to prevent leakage.
  • the o-ring 142 may be seated on the face 134 of the side inlet 118 b , and the plug 120 is threaded into the side inlet 118 b .
  • a pipe may be threaded into the bottom inlet 118 c , forming a vertical inlet for water to flow into the valve body 112 .
  • the plug 120 includes an annular flange 125 that engages the o-ring 142 and compresses it against the face 134 .
  • a metal ring may have a uniform diameter extending straight through the valve body 112 from the continuous groove 214 of the face 134 , and the tooling used to set the reinforcement rings 124 would remain the same. This would provide reinforcement; however, this would place the continuous groove 214 in a position that would result in unequal amounts of plastic at different locations on the inside and the outside of the reinforcement rings 124 , thus potentially leading to increased stress on the reinforcement rings 124 . Also, having the insert ring 133 located more centrally on the seating face 134 could interfere with the sealing of the plug 120 and the o-ring 142 against the seating face 134 . While this version would still increase the strength of the inlets and outlet, the version above is preferred because the widening diameter of the outlet and inlets 118 a,b,c permits having a similar amount of material on both the inner and outer surfaces of the reinforcement rings 124 .
  • the valve 110 includes a diaphragm assembly 146 , a filter 148 , and a scrubber 150 .
  • the embedded reinforcement rings 124 are also seen overmolded with plastic around the threaded inlets 118 b,c and outlet 118 a , and the inlet 118 c is sealed with the plug 120 .
  • the pressure of the inflowing water pushes the diaphragm assembly 146 off a valve seat 154 if the pressure is sufficient to counteract the downward pressure from a spring 156 and any remaining pressure in a pressure chamber 162 pushing down on a top side 158 of the diaphragm assembly 146 .
  • a solenoid 164 can open a pilot valve 161 to release the water in the pressure chamber 162 allowing water to exit through a passage 163 to the outlet 118 a and downward pressure on the diaphragm assembly to be decreased.
  • the filter 148 has a top portion 168 that threads on to a threaded stem portion 170 of the diaphragm assembly 146 .
  • the filter 148 blocks debris attempting to enter the passageway 166 that could otherwise cause blockage throughout the passageway 166 . Such blockage could prevent the desired amount of water entering the pressure chamber 162 and affect the control of the valve 110 .
  • the filter 148 includes holes 171 (or slots) that allow water to pass through, yet the holes 171 are of predetermined size and number to block debris from entering the passageway 166 while also allowing the appropriate amount of water flow.
  • Debris can encounter the filter 148 just from water containing debris flowing through the valve 110 and/or from being drawn into the filter 148 as it flows into the pressure chamber 162 . Any debris that builds on the filter 148 can become trapped in the filter holes 171 and can impede performance of the valve 110 , including the desired flow to the pressure chamber 162 .
  • the scrubber 150 scrubs the filter 148 as the diaphragm assembly 146 moves to break free debris that may be on the filter or clogging the filter holes 171 .
  • the scrubber 150 has an upper portion 173 with scrubber fingers 169 having arcuate edges 172 at the top of the fingers 169 .
  • the arcuate edges 172 match the arcuate outer profile of the filter 148 to scrape against the filter 148 as the filter 148 moves vertically up and down with the diaphragm 146 during operation of the valve 110 .
  • the fingers 169 of the upper portion 173 are supported by stanchions 189 .
  • the stanchions 189 extend from a ledge 207 of a base portion 174 to the upper portion 173 .
  • the fingers 169 are separated by longitudinal finger grooves 187 that enable the fingers 169 to flex in and out radially.
  • the finger grooves 187 also allow water to pass into the filter 148 and then into the passageway 166 .
  • the base portion 174 of the scrubber 150 has wings 176 , each wing 176 being moveable radially.
  • the wings 176 each have a locking ledge 177 for attachment to the valve body 112 and a handle or tab 179 that enables one to manually move the wings 176 radially inward against an outward bias of the wings 176 to disengage the locking ledge 177 from the valve body 112 to remove the scrubber 150 .
  • the handles/tabs 179 extend away from the scrubber 150 to provide enhanced leverage in unlatching the locking ledge 177 for manual removal of the scrubber 150 .
  • the handles/tabs 179 are enlarged for easy location and manipulation by a user reaching into the valve body 112 .
  • the valve body 112 includes a scrubber boss 178 to mount the scrubber 150 inside the inner cavity 152 of the valve body 112 .
  • the scrubber boss 178 is supported by three support spokes 180 extending from the boss 178 to an inner wall 188 of the inner cavity 152 . More specifically, the three support spokes 180 extend radially outward from the boss 178 to the inner wall 188 .
  • the scrubber boss 178 includes two diametrically opposed openings 191 that each form ledges 182 at the upper portion of the boss 178 .
  • the scrubber 150 also includes protrusions 184 ( FIG. 15 ) that seat in complementary shaped channels 186 axially extending along the inside of the boss 178 .
  • valve body 112 with the scrubber boss 178 and support spokes 180 can be molded of plastic, such as Nylon 6/6 35% Glass Reinforced which is commercially available from BASF as Ultramid® A3WG7.
  • the valve body 112 may be molded as a single piece.
  • the wings 176 are naturally biased outward to their fullest extent when the scrubber 150 is not seated in the scrubber boss 178 .
  • the wings 176 pivot at a living hinge 181 .
  • the operating gap 195 provides room for the wings 176 to push inward so that the locking ledges 177 can pass the boss ledges 182 .
  • the wings 176 then move radially outward, and the locking ledges 177 clip underneath the boss ledges 182 .
  • the locking ledges 177 have an angled surface 209 at the bottom portion of the ledges 177 . The angled surface 209 slides against the boss 178 to push the wings 176 inward as the locking ledges 177 pass the boss ledges 182 .
  • FIG. 18 the underside of the scrubber boss 178 and the openings 191 are shown along with a scrubber boss seat 193 .
  • the scrubber 150 is manually inserted downward into the boss 178 , the protrusions 184 slide into the complementary shaped channels 186 , and then, the wings 176 are deflected inward by the boss 178 so that the scrubber 150 slides inside the boss 178 . This is done with the aid of the angled surfaces 209 of the locking ledges 177 .
  • the scrubber 150 sits on the boss seat 193 , and the locking ledges 177 are clipped into place underneath the boss ledges 182 , as discussed above.
  • FIG. 19 shows the scrubber 150 affixed in the scrubber boss 178 .
  • the handles 179 are positioned to be readily located and accessible and designed to provide enhanced leverage for easy removal of the scrubber. More specifically, the wings 176 include a latching (or lower) portion 196 which includes the locking ledge 177 and the handle (or upper portion) 179 . The handle 179 is stepped radially outward from the latching portion 196 by a radially extending portion 199 transitioning the latching portion 196 to the handle 179 .
  • the handle 179 is arcuately elongated and longitudinally elongated to provide sufficient surface for a user's finger to operate it.
  • the longitudinal length increases the leverage to make it easier for the user to squeeze the wings 176 together to release the scrubber 150 from the valve body 112 .
  • the handle/tab 179 of the wings 176 could have an approximate width of 0.215 inches and an approximate height of 0.380 inches.
  • the approximate length of the wing 176 is one inch.
  • the scrubber 50 may be molded from plastic, such as 15% Glass Filled Nylon, which is commercially available from BASF as product A3EGE.
  • FIGS. 24-25 illustrate an alternative approach to reinforcing inlet and outlet ports of a valve body as explained below. While described for only inlet port 318 b , the following also applies for the other ports ( 318 a,c ) of a valve body 312 .
  • a continuous groove 314 surrounds the entrance of the inlet 318 b .
  • the continuous groove 314 is formed by a mold core holding a reinforcement ring 324 during the molding process. More specifically, the reinforcement ring 324 is magnetically secured in place within the valve body 312 .
  • the reinforcement rings 324 may be the same as those in the previous embodiments, but now are preferably formulated to have enhanced magnetic properties. For example, the above reinforcement rings may be coated in zinc.
  • the metal-to-metal contact between an annular, end face 313 of the reinforcement ring 324 and the metal rods of the tool is magnetized, resulting in enhanced stabilization during the molding process.
  • the tool is removed, and the continuous 314 groove remains.
  • the continuous groove 314 has an outer annular surface 319 and inner annular surface 321 on the valve body 312 and a base 317 extending between the two surfaces.
  • the base 317 is formed from the combination of the annular end face 313 and the valve body 312 .
  • the continuous groove 314 aides in removing the molding core for the threads.

Abstract

There is provided an irrigation valve with embedded rings for reinforcement of valve ports. The valve has a valve body and threaded flow paths, the flow paths including an outlet and an inlet on opposite sides of the valve body. Irrigation piping is attached to the inlet and to the outlet. The reinforcement rings at the inlet and the outlet prevent fracturing of the valve body and/or piping due to overtightening of the piping. Further provided is a scrubber for an irrigation valve. The scrubber and frees debris on a filter. The scrubber may be manually extracted for maintenance or replacement without the need for mechanical tools.

Description

    FIELD
  • The subject matter of this application relates to improvements of valves, more particularly, to reinforced valve ports and manually removable filter scrubbers.
  • BACKGROUND
  • Irrigation valves in an irrigation system are used to control the flow of water to emission devices, which distribute water to vegetation. Valves can be standalone valves that control water flow through irrigation piping. Valves are used with main supply lines and zone lines that have one or more emission devices.
  • Valves are often required to handle water flow rates in the pipes reaching approximately 300 gallons/minute. Therefore, the valves need to be securely fastened to the pipes to avoid leakage; however, overtightening of the pipes can lead to cracks in the valve body and/or the piping. The irrigation pipes and/or fittings are threaded into valve ports extending from the valve body. It is desired to have reinforced valve ports to avoid fracturing of the valve body due to overtightening.
  • Additionally, the water entering the valves may include debris, such as sand, grit or algae. A valve may have a filter in the valve body to capture debris before it can enter other areas of the valve where the debris cannot pass through, thereby avoiding clogging passageways. The filter may have holes or slots to prevent passage of debris; however, the holes or slots themselves may become clogged or blocked over time. Thus, a scrubber may be used to break up and free debris trapped on the filter.
  • Scrubbers may require maintenance in the field or even replacement due to degradation over time. In general, scrubbers may be fixed in place to the valve body via a screw or screws; however, if the scrubber is damaged or needs routine maintenance, then it may be cumbersome to extract the scrubber from the valve as it can require inserting a tool into delicate and small areas of the valve. Therefore, it is desired to have a scrubber that can be easily removed manually at the valve without the need for tools and without the need to remove the valve.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side perspective view of an irrigation valve;
  • FIG. 2 is an exploded side perspective view of a valve body of the irrigation valve of FIG. 1 showing embedded reinforcement rings;
  • FIG. 3 is a cross-sectional view of one of the reinforcement rings of FIG. 2;
  • FIG. 4 is an exploded bottom perspective view of the irrigation valve of FIG. 1 showing a plug and an o-ring associated with the valve body;
  • FIG. 5 is a cross-sectional view of the irrigation valve of FIG. 1 taken along line 5-5 of FIG. 1;
  • FIG. 6 is a side perspective view of a scrubber of the irrigation valve of FIG. 1;
  • FIG. 7 is a top perspective view of the scrubber of FIG. 6;
  • FIG. 8 is a top perspective view of the valve body of FIG. 2;
  • FIG. 9 is a bottom perspective view of the valve body of FIG. 2;
  • FIG. 10 is a top perspective, partial cross-sectional view of the valve body of FIG. 2 and the scrubber of FIG. 6;
  • FIG. 11 is a side perspective view of another irrigation valve;
  • FIG. 12 is an exploded side perspective view of a valve body of the irrigation valve of FIG. 11 showing embedded reinforcement rings and insert rings;
  • FIG. 13 is an exploded bottom perspective view of the irrigation valve of FIG. 11 showing a plug and an o-ring associated with the valve body;
  • FIG. 14 is a cross-sectional view of the irrigation valve of FIG. 11 taken along line 14-14 of FIG. 11;
  • FIG. 15 is a side perspective view of a scrubber of the irrigation valve of FIG. 11;
  • FIG. 16 is a top perspective view of the scrubber of FIG. 15;
  • FIG. 17 is a top perspective view of the valve body of FIG. 12;
  • FIG. 18 is a bottom perspective view of the valve body of FIG. 12;
  • FIG. 19 is a top perspective, partial cross-sectional view of the valve body of FIG. 12 and the scrubber of FIG. 15;
  • FIG. 20 is a cross-sectional view of a portion of one of the insert rings of FIG. 12;
  • FIG. 21 is a bottom perspective view of one of the insert rings of FIG. 12;
  • FIG. 22 is a partial cross-sectional view of one of the insert rings and one of the reinforcement rings of FIG. 12;
  • FIG. 23 is a cross-sectional view of one of the insert rings and the reinforcement ring of FIG. 22 embedded in the valve body of FIG. 12;
  • FIG. 24 is a side perspective view of another irrigation valve; and
  • FIG. 25 is a cross-sectional view of a reinforcement ring embedded in the valve body of FIG. 24.
  • DETAILED DESCRIPTION
  • With reference to FIG. 1, there is illustrated a valve 10 with a valve body 12 and a bonnet 14. The bonnet 14 is attached to the valve body 12 with screws 16. The valve body 12 includes an outlet 18 a, an inlet 18 b opposite the outlet 18 a, and an inlet 18 c at the bottom of the valve body 14. Each of the inlets and outlet 18 a,b,c include internal threads 26. In a typical irrigation system, a pipe is connected to the outlet 18 a and one of the two threaded inlets 18 b,c. The unused inlet is closed with a plug 20 having a threading 21 (FIG. 4). For example, the flow path that is located upstream has the irrigation piping threaded into the inlet 18 b for water to flow into the valve 10. The flow path threaded into the outlet 18 a for water to flow out of the valve 10 and into the piping. The plug 20 is threaded into the other inlet 18 c.
  • In many instances, the valve 10 is attached to a main irrigation supply line as well as some piping that supplies different irrigation zones. The valves often handle water flow rates as high as 300 gallons/minute. Therefore, it is desired that pipes be sufficiently secured to the valve 10 as to avoid leakage particularly at the outlet and inlets 18 a,b,c. However, overtightening to prevent leakage may result in cracking of the valve body 12 as well as the attached piping. Therefore, it is desired to reinforce the outlet and inlets 18 a,b,c to prevent fracturing of the valve body 12 and/or piping.
  • Referring to FIG. 2, an exploded view of the valve body 12 with reinforcement rings 24 is shown. The reinforcement rings 24 can be made of steel but also can be made of other materials, such as plastic, that add strength to the outlet and inlets 18 a,b,c. Preferred materials are 17 gage 302/304 stainless or galvanized steel. The rings 24 are embedded into the walls of the outlet and inlets 18 a,b,c. Holes 28 in the rings 24 allow plastic to fill in the area and lock the rings 24 into place. During the molding process, plastic flows into and through the holes 28. The holes 28 are shown oblong but could be any shape, including circular, triangular, and rectangular shape.
  • An annular face 34 of the outlet and inlets 18 a,b,c has slots 36 spaced annularly about it. These slots 36 are formed by a molding tool that holds the rings 24 in place during molding. More specifically, the annular faces 34 of the outlet and inlets 18 a,b,c allow for a molding device with teeth to be inserted slightly into the walls of the outlet and inlets 18 a,b,c to hold the rings 24 in place as the plastic is being injected into the mold. The plastic flows around the tool holding the rings 24, and the slots 36 are formed where the tool is removed. After the mold is filled and the tool with the teeth is retracted, the rings 24 are set in place. The sides of the outlet and inlets 18 a,b,c also include small depressions 40 formed by pins extending inward in the mold to provide further stabilization of the rings 24 during molding.
  • Referring to FIG. 4, the inlet 18 c may be sealed with the plug 20. The plug 20 may be made of rubber, plastic, or any other material conducive to forming a seal to prevent water leakage. A preferred material is Nylon 6/6 35% Glass Reinforced which is commercially available from BASF as Ultramid® A3WG7. The plug 20 has threads 21 for connecting the plug 20 to the threads 26 of the inlet 18 c or 18 b. The annular face 34 of the outlet and inlets 18 a,b,c supports an o-ring 42 that sits between the annular face 34 and the plug 20. The diameter of the o-ring 42 is smaller than the diameter of an imaginary circle on which the slots 36 sit at the annular face 34, and does not cover the slots 36. The o-ring 42 may be in the shape of a torus, and is preferably made of elastomeric material, such as rubber or plastic. The o-ring 42 seals the plug 20 to the inlet 18 c to prevent leakage. Alternatively, the o-ring 42 may be seated on the face 34 of the side inlet 18 b, and the plug 20 is threaded into the side inlet 18 b. In this configuration, a pipe may be threaded into the bottom inlet 18 c, forming a vertical inlet for water to flow into the valve body 12. In either case, the plug 20 includes an annular flange 25 that engages the o-ring 42 and compresses it against the face 34.
  • The position of the slots 36 in the face 34 is preferably closer to the outer diameter of the face 34 than the inner diameter of the face 34. This accommodates the placement of the o-ring 42 onto the face 34 in such a position as to help seal the plug 20. This configuration also inhibits the passage of water into the slots 36. Water entering the slots 36 could degrade the reinforcement rings 24 over time. The annular faces 34 have a slightly larger outer diameter than the threaded outlet and inlets 18 a,b,c. Therefore, with the slots 36 disposed toward the outer diameter of the annular face 34, the embedded rings 24 have a radially outward lip 44 to extend up and in line with the slots 36, as shown in FIG. 3. The radially outward lip 44 has a first outward bend 35 followed by a second bend 37 that axially aligns the remainder 39 of the lip with the ring 24.
  • Alternatively, it would be possible to manufacture a steel ring that did not have a radially outward lip. For instance, a steel ring may have a uniform diameter extending straight through the valve body 12 from the slots 36 of the face 34, and the tooling used to set the rings would remain the same. This would provide reinforcement; however, this may place the slots 36 in a position that would result in unequal amounts of plastic at different locations on the inside and the outside of the rings 24, thus leading to increased stress on the rings 24. Having the ring located more centrally on the seating face 34 could interfere with the sealing of the plug 20 and the o-ring 42 against the seating face 34. While this version would still increase the strength of the inlets and outlet, the version above is preferred because the widening diameter of the outlet and inlets 18 a,b,c permits having a similar amount of material on both the inner and outer surfaces of the reinforcement rings 24.
  • With reference to FIG. 5, the valve 10 includes a diaphragm assembly 46, a filter 48, and a scrubber 50. The embedded rings 24 are also seen over-molded with plastic around the threaded inlets 18 b,c and outlet 18 a, and the inlet 18 c is sealed with the plug 20. As water flows through the inlet 18 b, the water enters a main cavity 52. The pressure of the inflowing water pushes the diaphragm assembly 46 off a valve seat 54 if the pressure is sufficient to counteract the downward pressure from a spring 56 and any remaining pressure in a pressure chamber 62 pushing down on a top side 58 of the diaphragm assembly 46. A solenoid 164 can open a pilot valve 161 to release the water in the pressure chamber 162 allowing water to exit through a passage 163 to the outlet 118 a and downward pressure on the diaphragm assembly to be decreased.
  • Furthermore, water in the main cavity 52 will also proceed through the filter 48 and into a passageway 66. This water enters the pressure chamber 62 to help close the valve 10 and maintain the valve 10 closed when the solenoid 64 and the pilot valve 61 prevent flow from the pressure chamber 62 through the passage 63 to the outlet 18 a. The filter 48 has an upper portion 68 that threads on to a threaded stem portion 70 of the diaphragm assembly 46. The filter 48 blocks debris attempting to enter the passageway 66 that could otherwise cause blockage throughout the passageway 66. Such blockage could prevent the desired amount of water entering the pressure chamber 62. The filter includes holes 71 (or slots) that allow water to pass through, yet the holes 71 are of predetermined size and number to block debris from entering the passageway 66 while also allowing the appropriate amount of water flow.
  • Debris can encounter the filter 48 just from water containing debris flowing through the valve 10 and/or from being drawn into the filter 48 as it flows into the pressure chamber 62. Any debris that builds on the filter 48 can become trapped in the filter holes 71 and can impede performance of the valve 10, including the desired flow to the pressure chamber 62. The scrubber 50 scrubs the filter 48 as the diaphragm assembly 46 moves to break free any debris that may be on the filter or clogging the filter holes 71.
  • As seen in FIG. 6, the scrubber 50 has an upper portion 73 with scrubber fingers 69 having arcuate edges 72 at the top of the fingers 69. The arcuate edges 72 match the arcuate outer profile of the filter 48 to scrape against the filter 48 as the filter 48 moves vertically up and down with the diaphragm assembly 46 during operation of the valve 10. The fingers 69 of the upper portion 73 are supported by stanchions 89. The stanchions 89 extend from a ledge 107 of a base portion 74 to the upper portion 73. The fingers 69 are separated by longitudinal finger grooves 87 and inlet ports 85 that enable the fingers 69 to flex in and out radially. The inlet ports 85 also allow water to pass into the filter 48 and then into the passageway 66. The base portion 74 of the scrubber 50 has wings 76, each wing 76 being moveable radially. The wings 76 each have a locking ledge 77 for attachment to the valve body 12 and a handle or tab 79 that enables one to manually move the wings 76 radially inward against an outward bias of the wings 76 to disengage the locking ledge 77 from the valve body 12 to remove the scrubber 50. The handles/tabs 79 extend away from the scrubber 150 to provide enhanced leverage in unlatching the locking ledge 77 for manual removal of the scrubber 50. The handles/tabs 79 are enlarged for easy location and manipulation by a user reaching into the valve body 12.
  • Referring to FIGS. 8 and 9, the valve body 12 includes a scrubber boss 78 to mount the scrubber 50 inside the inner cavity 52 of the valve body 12. The scrubber boss 78 is supported by three support spokes 80 extending from the boss 78 to an inner wall 88 of the inner cavity 52. More specifically, the three support spokes 80 extend radially outward from the boss 78 to the inner wall 88. The scrubber boss 78 includes two diametrically opposed openings 91 that each form ledges 82 at the upper portion of the boss 78. The scrubber 50 also includes protrusions 84 (FIG. 6) that seat in complementary shaped channels 86 axially extending along the inside of the boss 78. This arrangement aligns the scrubber 50 with the boss 78 and prevents the scrubber 50 from rotating. The valve body 12 with the scrubber boss 78 and support spokes 80 can be molded of plastic, such as Nylon 6/6 35% Glass Reinforced which is commercially available from BASF as Ultramid® A3WG7. The valve body 12 may be molded as a single piece.
  • Referring to FIG. 7, the wings 76 are naturally biased outward to their fullest extent when the scrubber 50 is not seated in the scrubber boss 78. The wings 76 operate about a living hinge 81. When the scrubber 50 is placed in the scrubber boss 78, the wings 76 deflect inward into an operating gap 95. The operating gap 95 provides room for the wings 76 to be forced inward so that the locking ledges 77 can pass the boss ledges 82. The wings 76 then move radially outward, and the locking ledges 77 clip underneath the boss ledges 82. The locking ledges 77 have an angled surface 109 at the bottom portion of the ledges 77. The angled surface 109 slides against the boss 78 to push the wings 76 inward as the locking ledges 77 pass the boss ledges 82.
  • With reference to FIG. 9, the underside of the scrubber boss 78 and the openings 91 are shown along with a scrubber boss seat 93. As the scrubber 50 is manually inserted downward into the boss 78, the protrusions 84 slide into the complementary shaped channels 86, and then, the wings 76 are deflected inward by the boss 78 so that the scrubber 50 slides inside the boss 78. This is done with the aid of the angled surfaces 109 of the locking ledges 77. Upon final insertion, the scrubber 50 sits on the boss seat 93, and the locking ledges 77 are clipped into place underneath the boss ledges 82, as discussed above. FIG. 10 shows the scrubber 50 affixed in the scrubber boss 78.
  • To manually remove the scrubber 50, one easily locates the handles 79 of the wings 76 and pinches the handles 79 sufficiently inwards into the operating gaps 95, such that the locking ledges 77 release from the boss ledges 82, and then pulls the scrubber 50 longitudinally from the boss 78. The handles 79 are positioned and sized to be readily accessible and designed to provide enhanced leverage for easy removal of the scrubber. More specifically, the wings 76 include a latching (or lower) portion 96 which includes the locking ledge 77 and the handle (or upper portion) 79. The handle 79 is stepped radially outward from the latching portion 96 by a radially extending portion 99 transitioning the latching portion 96 to the handle 79. The handle 79 is arcuately elongated and longitudinally elongated to provide sufficient surface for a user's finger to operate it. The longitudinal length increases the leverage to make it easier for the user to squeeze the wings 76 together to release the scrubber 50 from the valve body 12.
  • The handle/tab 79 of the wings 76 could have an approximate width of 0.215 inches and an approximate height of 0.380 inches. The approximate length of the wing 76 is one inch. The scrubber 50 may be molded from plastic, such as 15% Glass Filled Nylon, which is commercially available from BASF as product A3EGE.
  • FIGS. 11-23 illustrate an alternative approach to reinforcing the inlet and outlet ports of the valve body and providing a screen scrubber. More specifically, with reference to FIG. 11, there is illustrated a valve 110 with a valve body 112 and a bonnet 114. The bonnet 114 is attached to the valve body 112 with screws 116. The valve body 112 includes an outlet 118 a, an inlet 118 b opposite the outlet 118 a, and an inlet 118 c at the bottom of the valve body 114. Each of the inlets and outlet 118 a,b,c include internal threads 126. In a typical irrigation system, a pipe is connected to the outlet 118 a and one of the two threaded inlets 118 b,c. The unused inlet is closed with a plug 120 having a threading 121 (FIG. 13). For example, the flow path that is located upstream has the irrigation piping threaded into the inlet 118 b for water to flow into the valve 110. The flow path threaded into the outlet 118 a for water to flow out of the valve 110 and into the piping. The plug 120 is threaded into the other inlet 118 c.
  • As noted for the embodiment above, the valve 110 is commonly attached to a main irrigation supply line as well as some piping that supplies different irrigation zones. Again, the valves often handle water flow rates as high as 300 gallons/minute. Therefore, it is desired that pipes be sufficiently secured to the valve 110 as to avoid leakage particularly at the outlet and inlets 18 a,b,c. Thus, it is desired to reinforce the outlet and inlets 18 a,b,c to prevent fracturing of the valve body 112 and/or piping caused by overtightening which could lead to leakage from cracking of the valve body 112 as well as the attached piping.
  • Referring to FIG. 12, an exploded view of the valve body 112 with reinforcement rings 124 is shown. The reinforcement rings 124 can be made of steel but also can be made of other materials, such as plastic, that add strength to the outlet and inlets 118 a,b,c. Preferred materials are 17 gage 302/304 stainless or galvanized steel. The reinforcement rings 124 are embedded into the walls of the outlet and inlets 118 a,b,c. Holes 128 in the rings 124 allow plastic to fill in the area defined by the holes 128 to further help to lock the rings 124 into place. During the molding process, plastic flows into and through the holes 128. The holes 128 are shown oblong but could be any shape, including circular, triangular, and rectangular shape.
  • A molding tool insert ring 133 is attached to each of the reinforcement rings 124, as described further below. During molding operations, a molding tool holds the insert rings 133 in the outlet and inlets 118 a,b,c to maintain the reinforcement rings 124 in place as plastic is being injected into the mold and the valve body 112 is being formed.
  • More specifically, and with reference to FIGS. 20 and 21, each insert ring 133 has a groove 202, a seat 204 and a skirt 206. The molding tool connects to the insert ring 133 using an annular pocket 210 formed between an annular rib 208 of the skirt 206 and the seat 204. The end of the molding tool is configured to cooperate with the pocket 210 of the insert ring 133. The reinforcement ring is the same as the ring 124 shown in FIG. 12. With reference to FIG. 22, the reinforcement rings 124 have a radially outward lip 144 that has a first outward bend 135 followed by a second bend 137 that axially aligns the remainder 139 of the lip 144 with the reinforcement ring 124. The remainder 139 of the lip 144 extends into the groove 202 and is held in place by friction or adhesive. The groove 202 includes arcuate or chamfered edges 209 to aid in receiving the remainder 139 of the lip.
  • The insert ring 133 includes an outer angular stepped profile 212 (FIGS. 20-23). The step 212 is at the transition between the portion forming a continuous groove 214 (FIGS. 12 and 23) and the skirt 206 so that an outer groove surface (forming the pocket 210) of the continuous groove 214 has a smaller diameter than an outer skirt surface 218 of the skirt 206. The stepped profile 212 allows the insert ring 133 to fit around the molding tool, while maintaining generally equal material thickness throughout the insert ring 133. During the molding process, the reinforcement rings 124 are molded into the valve body 112, and the insert rings 133 (being made of the same or similar plastic material as the valve body 112) chemically bond to or with the material of the valve body 112. Thus, the reinforcement rings are secured against movement in the valve body and sealed against exposure to moisture. More specifically, the insert rings 133 help prevent exposure of the metal reinforcement rings 124 to harmful elements, such as rain, condensation and leakage, which can degrade the metal over time. The insert rings 133 may be made of plastic (as opposed to, for instance, metal, such as stainless steel), which can also help to alleviate degradation to the mold that otherwise may occur when there is metal-to-metal contact. The insert rings 133 may also be made of the same material as the valve body 12. The sides of the outlet and inlets 118 a,b,c also include small depressions 140 formed by pins extending inward in the mold to provide further stabilization of the reinforcement rings 124 during molding. The insert rings 133 enable formation of the continuous grooves 214. The continuous grooves 214 aid in allowing the molding cores that produce the threads 126 to unwind during the molding operation.
  • Referring to FIG. 13, the inlet 118 c may be sealed with the plug 120. The plug 120 may be made of rubber, plastic, or any other material conducive to forming a seal to prevent water leakage. A preferred material is Nylon 6/6 35% Glass Reinforced which is commercially available from BASF as Ultramid® A3WG7. The plug 120 has threads 121 for connecting the plug 120 to the threads 126 of the inlet 118 c or 118 b. An annular face 134 of the outlet and inlets 118 a,b,c provides an engagement surface for an o-ring 142 that sits between the annular face 134 and the plug 120. The diameter of the o-ring 142 is smaller than the inner diameter of the continuous groove 214 so that it does not extend over the continuous groove 214 when compressed for sealing. The o-ring 142 may be in the shape of a torus, and is preferably made of elastomeric material, such as rubber or plastic. The o-ring 142 seals the plug 120 to the inlet 118 c to prevent leakage. Alternatively, the o-ring 142 may be seated on the face 134 of the side inlet 118 b, and the plug 120 is threaded into the side inlet 118 b. In this configuration, a pipe may be threaded into the bottom inlet 118 c, forming a vertical inlet for water to flow into the valve body 112. In either case, the plug 120 includes an annular flange 125 that engages the o-ring 142 and compresses it against the face 134.
  • Also for this alternative embodiment, it would be possible to use a metal ring that did not have a radially outward lip. For instance, a metal ring may have a uniform diameter extending straight through the valve body 112 from the continuous groove 214 of the face 134, and the tooling used to set the reinforcement rings 124 would remain the same. This would provide reinforcement; however, this would place the continuous groove 214 in a position that would result in unequal amounts of plastic at different locations on the inside and the outside of the reinforcement rings 124, thus potentially leading to increased stress on the reinforcement rings 124. Also, having the insert ring 133 located more centrally on the seating face 134 could interfere with the sealing of the plug 120 and the o-ring 142 against the seating face 134. While this version would still increase the strength of the inlets and outlet, the version above is preferred because the widening diameter of the outlet and inlets 118 a,b,c permits having a similar amount of material on both the inner and outer surfaces of the reinforcement rings 124.
  • With reference to FIG. 14, the valve 110 includes a diaphragm assembly 146, a filter 148, and a scrubber 150. The embedded reinforcement rings 124 are also seen overmolded with plastic around the threaded inlets 118 b,c and outlet 118 a, and the inlet 118 c is sealed with the plug 120. As water flows through the inlet 118 b, the water enters a main cavity 152. The pressure of the inflowing water pushes the diaphragm assembly 146 off a valve seat 154 if the pressure is sufficient to counteract the downward pressure from a spring 156 and any remaining pressure in a pressure chamber 162 pushing down on a top side 158 of the diaphragm assembly 146. A solenoid 164 can open a pilot valve 161 to release the water in the pressure chamber 162 allowing water to exit through a passage 163 to the outlet 118 a and downward pressure on the diaphragm assembly to be decreased.
  • Furthermore, water in the main cavity 152 will also proceed through the filter 148 and into a passageway 166. This water enters the pressure chamber 162 to help close the valve 110 and maintain the valve 110 closed when the solenoid 164 and the pilot valve 161 prevent flow from the pressure chamber 162 through the passage 163 to the outlet 118 a. The filter 148 has a top portion 168 that threads on to a threaded stem portion 170 of the diaphragm assembly 146. The filter 148 blocks debris attempting to enter the passageway 166 that could otherwise cause blockage throughout the passageway 166. Such blockage could prevent the desired amount of water entering the pressure chamber 162 and affect the control of the valve 110. The filter 148 includes holes 171 (or slots) that allow water to pass through, yet the holes 171 are of predetermined size and number to block debris from entering the passageway 166 while also allowing the appropriate amount of water flow.
  • Debris can encounter the filter 148 just from water containing debris flowing through the valve 110 and/or from being drawn into the filter 148 as it flows into the pressure chamber 162. Any debris that builds on the filter 148 can become trapped in the filter holes 171 and can impede performance of the valve 110, including the desired flow to the pressure chamber 162. The scrubber 150 scrubs the filter 148 as the diaphragm assembly 146 moves to break free debris that may be on the filter or clogging the filter holes 171.
  • As seen in FIG. 15, the scrubber 150 has an upper portion 173 with scrubber fingers 169 having arcuate edges 172 at the top of the fingers 169. The arcuate edges 172 match the arcuate outer profile of the filter 148 to scrape against the filter 148 as the filter 148 moves vertically up and down with the diaphragm 146 during operation of the valve 110. The fingers 169 of the upper portion 173 are supported by stanchions 189. The stanchions 189 extend from a ledge 207 of a base portion 174 to the upper portion 173. The fingers 169 are separated by longitudinal finger grooves 187 that enable the fingers 169 to flex in and out radially. The finger grooves 187 also allow water to pass into the filter 148 and then into the passageway 166. The base portion 174 of the scrubber 150 has wings 176, each wing 176 being moveable radially. The wings 176 each have a locking ledge 177 for attachment to the valve body 112 and a handle or tab 179 that enables one to manually move the wings 176 radially inward against an outward bias of the wings 176 to disengage the locking ledge 177 from the valve body 112 to remove the scrubber 150. The handles/tabs 179 extend away from the scrubber 150 to provide enhanced leverage in unlatching the locking ledge 177 for manual removal of the scrubber 150. The handles/tabs 179 are enlarged for easy location and manipulation by a user reaching into the valve body 112.
  • Referring to FIGS. 17 and 18, the valve body 112 includes a scrubber boss 178 to mount the scrubber 150 inside the inner cavity 152 of the valve body 112. The scrubber boss 178 is supported by three support spokes 180 extending from the boss 178 to an inner wall 188 of the inner cavity 152. More specifically, the three support spokes 180 extend radially outward from the boss 178 to the inner wall 188. The scrubber boss 178 includes two diametrically opposed openings 191 that each form ledges 182 at the upper portion of the boss 178. The scrubber 150 also includes protrusions 184 (FIG. 15) that seat in complementary shaped channels 186 axially extending along the inside of the boss 178. This arrangement aligns the scrubber 150 with the boss 178 and prevents the scrubber 150 from rotating. The valve body 112 with the scrubber boss 178 and support spokes 180 can be molded of plastic, such as Nylon 6/6 35% Glass Reinforced which is commercially available from BASF as Ultramid® A3WG7. The valve body 112 may be molded as a single piece.
  • Referring to FIG. 16, the wings 176 are naturally biased outward to their fullest extent when the scrubber 150 is not seated in the scrubber boss 178. The wings 176 pivot at a living hinge 181. When the scrubber 150 is placed in the scrubber boss 178, the wings 176 deflect inward into an operating gap 195. The operating gap 195 provides room for the wings 176 to push inward so that the locking ledges 177 can pass the boss ledges 182. The wings 176 then move radially outward, and the locking ledges 177 clip underneath the boss ledges 182. The locking ledges 177 have an angled surface 209 at the bottom portion of the ledges 177. The angled surface 209 slides against the boss 178 to push the wings 176 inward as the locking ledges 177 pass the boss ledges 182.
  • With reference to FIG. 18, the underside of the scrubber boss 178 and the openings 191 are shown along with a scrubber boss seat 193. As the scrubber 150 is manually inserted downward into the boss 178, the protrusions 184 slide into the complementary shaped channels 186, and then, the wings 176 are deflected inward by the boss 178 so that the scrubber 150 slides inside the boss 178. This is done with the aid of the angled surfaces 209 of the locking ledges 177. Upon final insertion, the scrubber 150 sits on the boss seat 193, and the locking ledges 177 are clipped into place underneath the boss ledges 182, as discussed above. FIG. 19 shows the scrubber 150 affixed in the scrubber boss 178.
  • To manually remove the scrubber 150, one pinches the handles 179 sufficiently inwards into the operating gaps 195, such that the locking ledges 177 release from the boss ledges 182, and then pulls the scrubber 150 longitudinally from the boss 178. The handles 179 are positioned to be readily located and accessible and designed to provide enhanced leverage for easy removal of the scrubber. More specifically, the wings 176 include a latching (or lower) portion 196 which includes the locking ledge 177 and the handle (or upper portion) 179. The handle 179 is stepped radially outward from the latching portion 196 by a radially extending portion 199 transitioning the latching portion 196 to the handle 179. The handle 179 is arcuately elongated and longitudinally elongated to provide sufficient surface for a user's finger to operate it. The longitudinal length increases the leverage to make it easier for the user to squeeze the wings 176 together to release the scrubber 150 from the valve body 112.
  • The handle/tab 179 of the wings 176 could have an approximate width of 0.215 inches and an approximate height of 0.380 inches. The approximate length of the wing 176 is one inch. The scrubber 50 may be molded from plastic, such as 15% Glass Filled Nylon, which is commercially available from BASF as product A3EGE.
  • FIGS. 24-25 illustrate an alternative approach to reinforcing inlet and outlet ports of a valve body as explained below. While described for only inlet port 318 b, the following also applies for the other ports (318 a,c) of a valve body 312. A continuous groove 314 surrounds the entrance of the inlet 318 b. The continuous groove 314 is formed by a mold core holding a reinforcement ring 324 during the molding process. More specifically, the reinforcement ring 324 is magnetically secured in place within the valve body 312. The reinforcement rings 324 may be the same as those in the previous embodiments, but now are preferably formulated to have enhanced magnetic properties. For example, the above reinforcement rings may be coated in zinc. A molding tool with magnetic metal rods in its core magnetically support and stabilize the reinforcement rings 324 the valve body 312 is being molded. The metal-to-metal contact between an annular, end face 313 of the reinforcement ring 324 and the metal rods of the tool is magnetized, resulting in enhanced stabilization during the molding process. After the mold is poured, the tool is removed, and the continuous 314 groove remains. The continuous groove 314 has an outer annular surface 319 and inner annular surface 321 on the valve body 312 and a base 317 extending between the two surfaces. The base 317 is formed from the combination of the annular end face 313 and the valve body 312. As with the above alternative, the continuous groove 314 aides in removing the molding core for the threads.
  • The matter set forth in the foregoing description and accompanying drawings is offered by way of illustration only and not as a limitation. While particular embodiments have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made without departing from the broader aspects of the technological contribution. The actual scope of the protection sought is intended to be defined in the following claims.

Claims (26)

1. An irrigation valve body comprising:
an inlet;
an outlet; and
a first reinforcement support at the inlet and a second reinforcement support at the outlet to mitigate stress on the inlet and the outlet.
2. The irrigation valve body of claim 1 wherein the inlet has an inlet annular wall and the outlet each has an outlet annular wall and the first reinforcement support is embedded at least partially into the inlet annular wall and the second reinforcement support is embedded at least partially into the outlet annular wall.
3. The irrigation valve body of claim 2 wherein the body is made of plastic and the inlet annular wall is over-molded onto the first reinforcement support and the outlet annular wall is over-molded onto the second reinforcement support.
4. The irrigation valve body of claim 2 wherein the first and second reinforcement supports include at least one hole filled with the material of the inlet annular wall and the outlet annular wall.
5. The irrigation valve body of claim 4 wherein the first and second reinforcement supports are ring-shaped.
6. The irrigation valve body of claim 1 wherein the first and second reinforcement supports have a proximal end of a first diameter and a distal end of a second diameter and the first diameter being smaller than the second diameter.
7. The irrigation valve body of claim 6 wherein at least the inlet has a first seating face inside of the second diameter of the second distal end.
8. The irrigation valve body of claim 7 further comprising a second inlet with a third reinforcement support and wherein the second inlet has a second seating face.
9. The irrigation valve body of claim 8 further comprising a removable plug that can be mounted to either of the first inlet and the second inlet.
10. The irrigation valve body of claim 9 further comprising a seal, the seal being disposed between the plug and either of the first seating face and the second seating face.
11. The irrigation valve body of claim 2 further comprising a first insert attached to the first reinforcement support and a second insert attached to the second reinforcement support.
12. The irrigation valve body of claim 11 wherein the first and second inserts are made of a plastic material and the first and second reinforcement supports are made of a metal material.
13. The irrigation valve body of claim 11 wherein the first and second inserts include a groove for connection to the first and second the reinforcement rings.
14. The irrigation valve body of claim 11 wherein the first and second inserts define at least in part a first continuous groove in the inlet annular wall and a second continuous groove in the outlet annular wall.
15. The irrigation valve body of claim 11 wherein the first and second reinforcement supports include magnetic properties.
16. The irrigation valve body of claim 15 wherein the magnetic properties enable the first and second reinforcement supports to be held by molding tools with magnets.
17. The irrigation valve body of claim 16 wherein the first and second inserts and the first and second reinforcement supports are ring-shaped.
18. An irrigation valve comprising:
a body defining an inlet and outlet, and a valve seat between the inlet and the outlet;
a diaphragm mounted at the body to engage the valve seat to prevent flow from the inlet to the outlet and to move away from the valve seat to allow flow between the inlet and the outlet;
a pressure chamber formed by the body and the diaphragm, the chamber controlling movement of the diaphragm depending on the pressure in the pressure chamber;
a solenoid controlling the pressure in the pressure chamber;
a flow path for fluid from the inlet to pass into the pressure chamber;
a filter attached to the diaphragm to filter debris from fluid flowing into the flow path, the filter moving with the diaphragm;
a scrubber fixed to the body that engages the filter to remove debris from the filter as the filter moves with the diaphragm; and
the scrubber having at least one outward biased member, the member being manually movable by a user from a locked position with the body to an unlocked position relative to the body.
19. The irrigation valve of claim 18 wherein the body comprises a support to mount the scrubber.
20. The irrigation valve of claim 19 wherein the support defines a socket to receive at least a portion of the scrubber.
21. The irrigation valve of claim 20 wherein the socket includes a ledge and the at least one outward biased member of the scrubber engages the ledge when installed in the socket.
22. The irrigation valve of claim 21 wherein the at least one outward biased member of the scrubber naturally biases toward the ledge.
23. The irrigation valve of claim 22 wherein the at least one outward biased member of the scrubber includes a tab to be engaged manually to unlatch the at least one outward biased member from the ledge to enable removal of the scrubber from the socket.
24. The irrigation valve of claim 22 wherein the tab is arcuately elongated and longitudinally elongated to provide a prominent surface for a user to manually unlatch the scrubber from the socket.
25. The irrigation valve of claim 18 wherein the scrubber includes a protrusion that seats in a complementary shaped channel of the socket, the arrangement orienting the scrubber with the socket.
26. The irrigation valve of claim 23 wherein the tab is arcuately elongated and longitudinally elongated to provide a prominent surface for a user to manually unlatch the scrubber from the socket.
US15/960,129 2018-04-23 2018-04-23 Valve With Reinforcement Ports And Manually Removable Scrubber Abandoned US20190323625A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/960,129 US20190323625A1 (en) 2018-04-23 2018-04-23 Valve With Reinforcement Ports And Manually Removable Scrubber
US16/556,315 US11391392B2 (en) 2018-04-23 2019-08-30 Valve with reinforcement ports and manually removable scrubber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/960,129 US20190323625A1 (en) 2018-04-23 2018-04-23 Valve With Reinforcement Ports And Manually Removable Scrubber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/556,315 Division US11391392B2 (en) 2018-04-23 2019-08-30 Valve with reinforcement ports and manually removable scrubber

Publications (1)

Publication Number Publication Date
US20190323625A1 true US20190323625A1 (en) 2019-10-24

Family

ID=68237614

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/960,129 Abandoned US20190323625A1 (en) 2018-04-23 2018-04-23 Valve With Reinforcement Ports And Manually Removable Scrubber
US16/556,315 Active 2038-09-14 US11391392B2 (en) 2018-04-23 2019-08-30 Valve with reinforcement ports and manually removable scrubber

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/556,315 Active 2038-09-14 US11391392B2 (en) 2018-04-23 2019-08-30 Valve with reinforcement ports and manually removable scrubber

Country Status (1)

Country Link
US (2) US20190323625A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115006906A (en) * 2022-05-27 2022-09-06 安徽斯瑞尔阀门有限公司 Self-adaptive flow direction regulating water valve and implementation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11655908B2 (en) * 2019-05-02 2023-05-23 Engineered Controls International, Llc Low pressure shut off valve and system

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2166402A (en) * 1937-05-03 1939-07-18 Jenkins Bros Coupling
US2317376A (en) * 1942-04-15 1943-04-27 Fluid Control Engineering Co Flow control device
US3118646A (en) * 1961-01-09 1964-01-21 Dura Bond Bearing Company Pilot operated valve
US3522926A (en) * 1968-05-23 1970-08-04 Grove Valve & Regulator Co Expansible sleeve valve
US3526386A (en) * 1967-06-30 1970-09-01 Jean Gachot Valve of plastic material
US3777771A (en) * 1971-05-27 1973-12-11 Visscher P De Joining of containers
US3825030A (en) * 1973-03-20 1974-07-23 Acf Ind Inc Lined valves
US3990675A (en) * 1973-12-11 1976-11-09 Applications Mecaniques Et Robineterie A.M.R.I. Butterfly valve
US4759530A (en) * 1984-11-14 1988-07-26 Neotecha Ag Stem and disc seal construction for butterfly valves
US4830333A (en) * 1988-09-02 1989-05-16 General Motors Corporation Solenoid valve
US5716081A (en) * 1996-03-11 1998-02-10 Automotive Products (Usa), Inc. Spring clip for quick connect coupling
US6257287B1 (en) * 1999-12-10 2001-07-10 Saturn Electronics & Engineering, Inc. Fuel fill pipe shut-off device
US6394412B2 (en) * 1993-04-02 2002-05-28 Netafim (A.C.S.) Ltd. Controlled valve
US6575187B2 (en) * 1999-03-23 2003-06-10 Entergris, Inc. Three-way plastic valve
US20070075284A1 (en) * 2003-11-07 2007-04-05 Ckd Corporation Diaphragm valve
US7665713B1 (en) * 2006-06-21 2010-02-23 Hunter Industries, Inc. Sleeve valve for residential and commercial irrigation systems
US20110272611A1 (en) * 2010-05-04 2011-11-10 Huang Chung Shu Water valve body
US8307840B2 (en) * 2007-10-02 2012-11-13 Nifco Inc. Valve device
US8651132B1 (en) * 2012-09-07 2014-02-18 Globe Union Industrial Corp. Plastic faucet body with copper connecting legs
US8671964B2 (en) * 2010-04-05 2014-03-18 Daniel Py Aseptic connector with deflectable ring of concern and method
US9151256B2 (en) * 2011-03-16 2015-10-06 Piolax, Inc. Overfill prevention valve
US20160305582A1 (en) * 2015-04-17 2016-10-20 Meissner Filtration Products, Inc. Modular molding
US9739367B2 (en) * 2011-07-14 2017-08-22 Oetiker Ny, Inc. Transmission anti-leak valve
US20170334111A1 (en) * 2014-11-21 2017-11-23 Solvay Specialty Polymers Usa, Llc Overmolded inserts and methods for forming the same

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1679779A (en) 1926-04-08 1928-08-07 William F Oberhuber Valve and flanged seal
US2338760A (en) 1941-06-17 1944-01-11 Air Reduction Pressure regulator
US2302930A (en) 1941-10-06 1942-11-24 Hills Mccanna Co Valve diaphragm
US2567071A (en) 1944-10-19 1951-09-04 Thompson Prod Inc Balanced valve diaphragm assembly
US2615471A (en) 1949-03-28 1952-10-28 Hills Mccanna Co Valve diaphragm
US2659565A (en) 1950-10-05 1953-11-17 Weatherhead Co Cylinder valve
US2716017A (en) 1952-08-28 1955-08-23 Grinnell Corp Diaphragm valves
US2819013A (en) 1953-08-13 1958-01-07 Cline Electric Mfg Co Diaphragm compressor pump
US2812777A (en) 1953-11-20 1957-11-12 George W Dahl Diaphragm mounting in valve body
US2742785A (en) 1954-04-29 1956-04-24 Weatherhead Co Meter diaphragm
US2918089A (en) 1955-11-03 1959-12-22 Hills Mccanna Co Diaphragm assembly
US2947325A (en) 1956-02-06 1960-08-02 Hills Mccanna Co Valve diaphragm and method of making the same
US3011758A (en) 1958-05-01 1961-12-05 Hills Mccanna Co Valve diaphragms
US3020020A (en) 1958-09-29 1962-02-06 Grinnell Corp Diaphragm valvce
US3130954A (en) 1960-04-28 1964-04-28 Hills Mccanna Co Valve diaphragm structure
US3154286A (en) 1960-11-03 1964-10-27 Hills Mccanna Co Weir valve
US3218978A (en) 1964-01-16 1965-11-23 Acf Ind Inc Diaphragm device
GB1116561A (en) 1964-08-20 1968-06-06 Saunders Valve Co Ltd Fluid controlling valves
CH500388A (en) 1967-04-05 1970-12-15 Aackersberg Mortensen Dowels for setting in concrete
US3532265A (en) 1969-02-26 1970-10-06 Alfa Laval Ab Fluid controlled membrane valve for centrifuges
US3614137A (en) 1970-04-09 1971-10-19 Perfection Corp Reinforced plastic fitting
US3827456A (en) 1970-08-21 1974-08-06 W Sheppard Fluid valves
DE2455329B2 (en) 1974-11-22 1980-09-18 Clouth Gummiwerke Ag, 5000 Koeln Diaphragm valve
US4044793A (en) 1975-08-25 1977-08-30 Shiley Laboratories, Inc. Relief valve
US4360037A (en) 1981-01-05 1982-11-23 Anthony Manufacturing Corp. Self-cleaning filter assembly for solenoid-actuated valve
US4081171A (en) * 1976-06-07 1978-03-28 Clemar Manufacturing Corporation Self-cleaning filter assembly for solenoid-actuated valves
DE2631993C3 (en) 1976-07-16 1980-05-29 J. Lorch Gesellschaft & Co Kg, 7035 Waldenbuch Plastic part, such as the housing, with a reinforcement part
US4180239A (en) * 1977-06-13 1979-12-25 Electron Fusion Devices Inc. Metering valves
US4270441A (en) 1978-10-30 1981-06-02 Wilden Pump & Engineering Co. Pump diaphragm
US4348006A (en) 1979-07-19 1982-09-07 Kerotest Manufacturing Corp. Plastic valve assembly
US4493339A (en) 1982-05-05 1985-01-15 Porter Instrument Company, Inc. Air valve for a breathing system
US4606374A (en) 1983-04-05 1986-08-19 Nupro Company Valve
US4666166A (en) 1984-11-13 1987-05-19 American Standard Inc. Clamping arrangement for diaphragm-type piston
US4596265A (en) 1984-11-15 1986-06-24 Allied Corporation Quick release valve
US5100103A (en) 1985-06-03 1992-03-31 Kerotest Manufacturing Corp. Reinforced plastic valve
US4988077A (en) 1985-06-03 1991-01-29 Kerotest Manufacturing Corp. Reinforced plastic valve
US4682533A (en) 1986-01-28 1987-07-28 Acorn Engineering Company Vandal resistant and tamper proof pneumatic push button assembly for moving a volume of fluid
US4750709A (en) 1986-05-16 1988-06-14 Nupro Company Diaphragm valve
US4981155A (en) 1988-09-30 1991-01-01 Eaton Corporation Electrically operated valve assembly
US5076541A (en) 1989-12-15 1991-12-31 A. Y. Mcdonald Manufacturing Company Tamperproof rotary valve
US5031875A (en) 1990-06-13 1991-07-16 The Toro Company Diaphragm seal
US5186615A (en) 1990-06-26 1993-02-16 Karldom Corporation Diaphragm pump
DE4136805A1 (en) 1991-11-08 1993-05-13 Almatec Tech Innovationen Gmbh DOUBLE DIAPHRAGM PUMP
US5222850A (en) 1992-05-22 1993-06-29 The Fastron Company Method and insert for connecting components to plastic members
US5769256A (en) 1992-05-22 1998-06-23 Unimation, Inc. Method and apparatus for securing one plastic member to another plastic member
US5861072A (en) 1992-05-22 1999-01-19 Unimation, Inc. Ultrasonic energy directing attachment of plastic parts to one another
US5291822A (en) 1992-11-16 1994-03-08 Orbital Walbro Corporation Diaphragm for pressure regulators and method of making
US5443083A (en) 1993-02-11 1995-08-22 Itt Corporation Pressure-reducing regulator for compressed natural gas
JP3355254B2 (en) 1994-09-26 2002-12-09 エヌオーケー株式会社 Diaphragm valve
CA2263687C (en) 1996-08-21 2006-03-21 Fisher Controls International, Inc. Elastomeric element valve
IL119963A (en) 1997-01-05 2003-02-12 Raphael Valves Ind 1975 Ltd Spring diaphragm for shut-off valves and regulators
DE69814815T2 (en) 1997-02-03 2004-04-08 Swagelok Co., Solon REED VALVE
US5865423A (en) 1997-07-11 1999-02-02 Parker Intangibles, Inc. High flow diaphragm valve
US5836571A (en) 1997-07-18 1998-11-17 Westinghouse Air Brake Company Disc diaphragm for an intergrated cock valve
US5964247A (en) * 1997-11-19 1999-10-12 American Standard Inc. Fill valve
US6155535A (en) 1997-12-09 2000-12-05 Marcilese; Joseph Peter Diaphragm compression limit stops
US5996608A (en) * 1998-07-31 1999-12-07 Hunter Industries, Inc. Diaphragm valve with filter screen and movable wiper element
US6079437A (en) * 1999-01-25 2000-06-27 Hunter Industries, Inc. Diaphragm valve with flow control stem air bleed
US6295918B1 (en) 1999-10-15 2001-10-02 John M. Simmons Suspended diaphragm
US6840460B2 (en) * 2001-06-01 2005-01-11 Hunter Industries, Inc. Rotor type sprinkler with insertable drive subassembly including horizontal turbine and reversing mechanism
ITSV20020032A1 (en) 2002-07-09 2004-01-09 Alberto Lodolo DIAPHRAGM VALVE AND SHUTTER FOR SUCH VALVE
ITSV20030003A1 (en) 2003-02-04 2004-08-05 Scubapro Europ DIAPHRAGM VALVE AND SECOND STAGE OF PRESSURE REDUCTION
IL156797A (en) 2003-07-06 2007-06-17 Raphael Valves Ind 1975 Ltd Diaphragm and hydraulically-operated valve using same
US7201187B2 (en) 2004-07-23 2007-04-10 Rain Bird Corporation Low-flow valve
US7168675B2 (en) 2004-12-21 2007-01-30 Honeywell International Inc. Media isolated electrostatically actuated valve
US7571892B2 (en) 2004-12-23 2009-08-11 Pharmenta, Inc. Sanitary drain valve
US8807158B2 (en) 2005-01-20 2014-08-19 Hydra-Flex, Inc. Eductor assembly with dual-material eductor body
DE202005001250U1 (en) 2005-01-26 2006-06-08 GEMÜ Gebr. Müller Apparatebau GmbH & Co. KG Diaphragm for diaphragm valve
WO2006083783A1 (en) 2005-01-31 2006-08-10 Swagelok Company Flow control device
US9422968B2 (en) 2005-07-21 2016-08-23 Steven L. Thompson Encapsulated fastener and method and tooling for manufacturing same
US7250003B2 (en) 2005-07-21 2007-07-31 Thompson Steven L Encapsulated fastener and method and tooling for manufacturing same
US20080206016A1 (en) 2005-07-21 2008-08-28 Thompson Steven L Encapsulated fastener and method and tooling for manufacturing same
US7694934B2 (en) 2006-08-04 2010-04-13 Rain Bird Corporation Diaphragm valve for irrigation systems
US7647861B2 (en) 2006-12-22 2010-01-19 Fisher Controls International Llc Apparatus to seal a shaft to a diaphragm for use in diaphragm actuators
US20080166204A1 (en) 2007-01-05 2008-07-10 Nilsen Martin J Fastening device and method of fabricating the same
US8235352B2 (en) 2007-05-21 2012-08-07 Rain Bird Corporation Diaphragm valve for irrigation systems
JP5090824B2 (en) 2007-08-29 2012-12-05 株式会社ケーヒン Pressure reducing valve
US20090095935A1 (en) 2007-10-10 2009-04-16 Wlodarczyk Anthony M Irrigation valve
JP4380775B1 (en) 2008-05-29 2009-12-09 トヨタ自動車株式会社 FRP member manufacturing method and FRP member
JP5298780B2 (en) * 2008-11-04 2013-09-25 セイコーエプソン株式会社 Liquid supply apparatus, printing apparatus, and control method of liquid supply apparatus
JP5394122B2 (en) 2009-02-02 2014-01-22 株式会社ケーヒン Pressure reducing valve
CN102597585A (en) 2009-07-27 2012-07-18 默沙东公司 Diaphragm valve with improved sealing performance and leak detection
US9109707B2 (en) 2009-10-19 2015-08-18 Parker-Hannifin Corporation Seal assembly
AU2010314759B2 (en) 2009-11-09 2016-07-14 Goyen Controls Co Pty Ltd. Diaphragm and diaphragm valve
JP5369037B2 (en) 2010-03-29 2013-12-18 Nok株式会社 Diaphragm
US20130008542A1 (en) * 2011-07-05 2013-01-10 Irwin Kevin M Diaphragm valve and methods and accessories therefor
JP5964139B2 (en) 2012-05-30 2016-08-03 株式会社フジキン Diaphragm and diaphragm valve
JP5964140B2 (en) 2012-05-30 2016-08-03 株式会社フジキン Diaphragm and diaphragm valve
JP5435439B2 (en) 2012-06-22 2014-03-05 Smc株式会社 Two-way valve
US9016307B2 (en) 2012-07-20 2015-04-28 Itt Manufacturing Enterprises Llc. Quick connect, post energized flanged joint for a diaphragm valve
US9322482B2 (en) 2012-07-20 2016-04-26 Itt Manufacturing Enterprises Llc. Temperature compensating flanged joint for a teflon diaphragm valve
US9157534B2 (en) 2012-07-20 2015-10-13 Itt Manufacturing Enterprises Llc. Two-stud diaphragm for diaphragm valves
JP5710569B2 (en) 2012-09-27 2015-04-30 株式会社フジキン Diaphragm valve
US20140264103A1 (en) 2013-03-15 2014-09-18 Wabtec Holding Corp. Shaped Diaphragm with Retaining Feature
US9371925B2 (en) 2013-07-30 2016-06-21 Tescom Corporation Fluid regulators having corrugated diaphragms
US9441745B2 (en) 2014-03-03 2016-09-13 Emerson Process Management Regulator Technologies, Inc. Apparatus to interface with a corrugated diaphragm
US20160053899A1 (en) 2014-08-20 2016-02-25 Swagelok Company Valve with welded diaphragm to assist opening force
US10562056B2 (en) 2017-12-19 2020-02-18 Nelson Irrigation Corporation Scrubber filter assembly for control valve on a water supply pipe in an irrigation system
US11408527B2 (en) 2018-10-16 2022-08-09 The Toro Company Reinforcement band for irrigation valve

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2166402A (en) * 1937-05-03 1939-07-18 Jenkins Bros Coupling
US2317376A (en) * 1942-04-15 1943-04-27 Fluid Control Engineering Co Flow control device
US3118646A (en) * 1961-01-09 1964-01-21 Dura Bond Bearing Company Pilot operated valve
US3526386A (en) * 1967-06-30 1970-09-01 Jean Gachot Valve of plastic material
US3522926A (en) * 1968-05-23 1970-08-04 Grove Valve & Regulator Co Expansible sleeve valve
US3777771A (en) * 1971-05-27 1973-12-11 Visscher P De Joining of containers
US3825030A (en) * 1973-03-20 1974-07-23 Acf Ind Inc Lined valves
US3990675A (en) * 1973-12-11 1976-11-09 Applications Mecaniques Et Robineterie A.M.R.I. Butterfly valve
US4759530A (en) * 1984-11-14 1988-07-26 Neotecha Ag Stem and disc seal construction for butterfly valves
US4830333A (en) * 1988-09-02 1989-05-16 General Motors Corporation Solenoid valve
US6394412B2 (en) * 1993-04-02 2002-05-28 Netafim (A.C.S.) Ltd. Controlled valve
US5716081A (en) * 1996-03-11 1998-02-10 Automotive Products (Usa), Inc. Spring clip for quick connect coupling
US6575187B2 (en) * 1999-03-23 2003-06-10 Entergris, Inc. Three-way plastic valve
US6257287B1 (en) * 1999-12-10 2001-07-10 Saturn Electronics & Engineering, Inc. Fuel fill pipe shut-off device
US20070075284A1 (en) * 2003-11-07 2007-04-05 Ckd Corporation Diaphragm valve
US7665713B1 (en) * 2006-06-21 2010-02-23 Hunter Industries, Inc. Sleeve valve for residential and commercial irrigation systems
US8307840B2 (en) * 2007-10-02 2012-11-13 Nifco Inc. Valve device
US8671964B2 (en) * 2010-04-05 2014-03-18 Daniel Py Aseptic connector with deflectable ring of concern and method
US20110272611A1 (en) * 2010-05-04 2011-11-10 Huang Chung Shu Water valve body
US9151256B2 (en) * 2011-03-16 2015-10-06 Piolax, Inc. Overfill prevention valve
US9739367B2 (en) * 2011-07-14 2017-08-22 Oetiker Ny, Inc. Transmission anti-leak valve
US8651132B1 (en) * 2012-09-07 2014-02-18 Globe Union Industrial Corp. Plastic faucet body with copper connecting legs
US20170334111A1 (en) * 2014-11-21 2017-11-23 Solvay Specialty Polymers Usa, Llc Overmolded inserts and methods for forming the same
US20160305582A1 (en) * 2015-04-17 2016-10-20 Meissner Filtration Products, Inc. Modular molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115006906A (en) * 2022-05-27 2022-09-06 安徽斯瑞尔阀门有限公司 Self-adaptive flow direction regulating water valve and implementation method thereof

Also Published As

Publication number Publication date
US20190383418A1 (en) 2019-12-19
US11391392B2 (en) 2022-07-19

Similar Documents

Publication Publication Date Title
US9611945B2 (en) Faucet waterway
US11391392B2 (en) Valve with reinforcement ports and manually removable scrubber
US8695625B2 (en) Centerset faucet with mountable spout
US4261545A (en) Flush valve piston having filtered orifice
CA2987174C (en) Ball valve with components integrated into the ball member
US5743291A (en) Sanitary safety device
US7409964B2 (en) Faucet type valve with backflow control in handle structure
US9862591B2 (en) Faucet with shearing valve element
US2923308A (en) Irrigation coupler gasket
WO2003103851A1 (en) Emitter with pressure compensating fluid control valve
US6616119B2 (en) Bypass orifice and filter for diaphragm type flush valve
US20040217319A1 (en) Injectable packing unit in a single knife gate body
RU2699597C2 (en) Fittings with replaceable saddle system
US9816636B2 (en) Rigid piston retrofit for a diaphragm flush valve
WO2009031994A1 (en) Faucet type valve with backflow control in handle structure
US3572630A (en) Irrigation slide gate valve and system
US6857446B1 (en) Flow controlling dual hydrant
US20190194966A1 (en) Pool valve assembly
CN211175542U (en) Plastic valve body convenient to clean
KR102141708B1 (en) Flow control valve
US9222584B2 (en) Rigid piston retrofit for a diaphragm flush valve
US10082235B1 (en) Floor trap primer valve
DK1650362T3 (en) Pipes and shut-off fittings
JPH08128548A (en) Check valve
KR200330864Y1 (en) Connector for flowing backward prevention

Legal Events

Date Code Title Description
AS Assignment

Owner name: RAIN BIRD CORPORATION, CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NIESS, PETER MICHAEL;MARKLEY, KEVIN JAMES;CHALLENGER, LEONARD FRANCISCO;REEL/FRAME:046044/0159

Effective date: 20180530

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION