US20190264454A1 - Concrete Form Lock - Google Patents

Concrete Form Lock Download PDF

Info

Publication number
US20190264454A1
US20190264454A1 US15/906,597 US201815906597A US2019264454A1 US 20190264454 A1 US20190264454 A1 US 20190264454A1 US 201815906597 A US201815906597 A US 201815906597A US 2019264454 A1 US2019264454 A1 US 2019264454A1
Authority
US
United States
Prior art keywords
pin
concrete
slot
forms
engagement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/906,597
Inventor
Chad D. Godwin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Godwin Formwork Solutions LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US15/906,597 priority Critical patent/US20190264454A1/en
Publication of US20190264454A1 publication Critical patent/US20190264454A1/en
Priority to US17/169,043 priority patent/US12024905B2/en
Assigned to GODWIN FORMWORK SOLUTIONS, LLC reassignment GODWIN FORMWORK SOLUTIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: Godwin, Chad D.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G17/00Connecting or other auxiliary members for forms, falsework structures, or shutterings
    • E04G17/06Tying means; Spacers ; Devices for extracting or inserting wall ties
    • E04G17/075Tying means, the tensional elements of which are fastened or tensioned by other means
    • E04G17/0751One-piece elements
    • E04G17/0752One-piece elements fully recoverable
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G17/00Connecting or other auxiliary members for forms, falsework structures, or shutterings
    • E04G17/06Tying means; Spacers ; Devices for extracting or inserting wall ties
    • E04G17/075Tying means, the tensional elements of which are fastened or tensioned by other means
    • E04G17/0751One-piece elements
    • E04G17/0754One-piece elements remaining completely or partially embedded in the cast material
    • E04G2017/0631

Definitions

  • the invention generally relates to the installation of concrete forms for creating walls, columns, and other predominately vertical concrete structures.
  • the invention relates to an apparatus for positioning and locking concrete forms for receipt of concrete, thereby maintaining a desired distance and preventing the forms from separating during the filling operation and simplifying the removal and preventing the loss of the apparatus after removal from the concrete forms.
  • the current methods for preparing concrete forms for construction projects are manpower-intensive, material-intensive, do not properly maintain the desired spacing easily, are costly, and inefficient.
  • One common method for pouring a concrete wall requires two forms to be placed parallel with a desired wall thickness represented by distance between the forms.
  • the form builders then insert a multitude of heavy threaded rods into holes in the forms at various locations.
  • the threaded rods extend from the concrete forms and the form builders then place a multitude of large washers and nuts on protruding threaded rods.
  • the nuts are then tightened using a wrench to create the desired width.
  • the form builders then cut blocks to the desired thickness and place them inside the cavity to maintain this thickness. After pouring and curing of the concrete, the form builders disassemble the concrete forms.
  • the present invention overcomes these shortcomings by providing an apparatus that allows one skilled in the art, such as a form builder, to quickly construct and disassemble concrete forms with two separate assemblies that are relatively large and not easily lost at the construction site.
  • the apparatus also prevents the concrete forms from moving inwardly or outwardly thus maintaining a consistent thickness of the concrete. Additionally, the apparatus does not require tools for assembly or disassembly of the concrete forms.
  • the apparatus may consist of an elongated locking pin, a pin retainer, and a form connector.
  • FIG. 1 is a side view of a locking pin.
  • FIG. 2 is a side view of a pin retainer.
  • FIG. 3 is a top view of a T-cam form connector attached to the pin retainer.
  • FIG. 4 is side view of the T-cam form connector engaging the pin retainer.
  • FIG. 5 is a side view of a concrete form.
  • FIG. 6 is a side view a concrete form with a pair of T-cam form connectors and pin retainers attached.
  • FIG. 7 is a top view of a pair of concrete forms with the concrete form locks installed
  • FIG. 8 is a view of a L-cam pin retainer.
  • FIG. 9 is a view of a L-cam pin retainer affixed to a concrete form
  • FIG. 1 is a side view of a locking pin 100 .
  • the locking pin 100 may comprise a elongated cylindrical pin 102 preferably with a tapered surface 104 having a proximate end 106 and a distal end 108 preferably with a plurality of locking pin slots 110 at each end 106 , 108 .
  • the tapered surface 104 allows a user to place the locking pin, 100 , through one side of the concrete form 500 , exit the first concrete form 500 and enters a second concrete form 500 , and protrudes from the second concrete form 500 .
  • the proximate end 106 and distal end 108 both protrude from the adjacent concrete forms 500 allowing access to locking pin slots 110 .
  • FIG. 7 illustrates this in greater detail.
  • the diameter of the proximate end 106 preferably is greater than the diameter of the distal end 108 and the pin hole 510 such that as the locking pin 100 is placed inside the pin hole 510 of the concrete forms 500 it will easily penetrate both concrete forms 500 , but the diameter of the proximate end 106 will prevent the locking pin 100 from passing all the way through the pin hole 510 of the first concrete form 500 .
  • This tapered surface 104 from the proximate end 106 to the distal end 108 allows the user to easily place the concrete form locking pin 100 into the forms for set up and also allows a user to easily remove the locking pin 100 .
  • the surface of the locking pin 100 may be coated with a release agent that allows the locking pin 100 to be more easily removed after the concrete pour.
  • a user may alternate the locking pins 100 entering from the different sides of the concrete forms 500 wherein once they are locked in place they will also help prevent blowouts due to the concrete pressure.
  • a locking pin 100 there may be several locking pin slots 110 near the proximate end 106 and the distal end 108 . These locking pin slots 110 cooperatively engage the pin retention channel 204 in the pin retainer 200 . The spacing of the locking pin slots 110 allow the user to create different form widths for various sizes of concrete walls or structures.
  • FIG. 2 is a sideview of a pin retainer 200 .
  • the pin retainer 200 may comprise an engagement member 202 defining therein a pin retention channel 204 with a curved engagement surface 206 an arm 208 with an adjustment slot 210 .
  • the pin retainer 200 may be rotated about the T-cam form connector 300 to engage the locking pin 100 at the locking pin slots 110 .
  • the preferred method of engaging the locking pin slots 100 is to engage the locking pin 100 from the top with the pin retainer 200 so if movement was to occur and loosen the T-cam form connector 300 , the pin retainer 200 would remain in place by the force of gravity and may prevent release of the concrete form 500 .
  • the curved engagement surface 206 allows the user to engage and disengage a locking pin 100 while the T-cam form connector 300 is loosely affixed to the concrete form 500 . Without the curved engagement surface 206 , the user would have to control the concrete form 500 , the locking pin 100 , the pin retainer 200 and the T-cam connector 300 simultaneously making the assembly of the forms difficult.
  • the curvature of the pin retainer 200 allows the user to connect the T-cam form connector 300 to the concrete form 500 and tighten the T-cam form connector 300 sufficiently to maintain its affixation with the concrete form 500 while allowing the pin retainer 200 to be adjusted slideably and rotatebly by the user to engage the locking pin slots 110 .
  • the area of the engagement member 202 where the curved surface 206 and the pin retention channel 204 reside may be sized by one skilled in the art such that the pressure may spread over an area to prevent failure and pull through but also sized to manageable for the user.
  • FIG. 3 is a top view of a T-cam form connector 300 attached to the pin retainer 200 .
  • the T-cam form connector 300 preferably comprises a form connector handle 302 , a torque handle 304 and a T-cam 306 .
  • the T-cam 306 allows a user to place the T-cam form connector 300 to engage the pin retainer 200 through the adjustment slot 210 and also engage a concrete form 500 wherein the user placed a T-cam 306 in the corresponding slot 508 of the concrete form 500 .
  • the user may rotate the T-cam form connector 300 wherein the T-cam 306 engages the concrete form 500 . This engagement prevents the T-cam form connector 300 from disengaging from the concrete form 500 .
  • a user may then hold the form connector handle 302 and rotate the torque handle 304 to engage the pin retainer 200 and secure in place the pin retainer 200 against the concrete form 500 while engaged with the locking pin 100 .
  • FIG. 4 is a side view 400 of the T-cam form connector 300 engaged with the pin retainer 200 .
  • the T-cam form connector 300 may further comprise a threaded rod 402 , an engagement washer 404 and a retaining washer, 406 .
  • T-cam form connector 300 engages the pin retainer 200 such that the retaining washer 406 prevents the T-cam form connector 300 from becoming detached from the pin retainer 200 , thereby making the combination of the pin retainer 200 and the T-cam form connector 300 a single unit.
  • an engagement washer 404 allows a user to rotate the torque handle 304 disposed within the adjustment slot 210 of the pin retainer 200 , thereby securing the T-cam form connector 300 and pin retainer 200 in place and engaged not only with the concrete form 500 , but also engaging and preventing the locking pin 100 from moving.
  • quick release clamp U.S. Pat. No. 6,712,376 Eberhardt et al.
  • the user may rotate the T-cam a pre-determined distance to engage the concrete form 500 then actuate the quick release cam to secure the pin retainer 200 .
  • One skilled in the art could substitute other mechanisms to tighten these components.
  • the retaining washer 406 may be removed before the T-cam 306 is affixed to the threaded rod 402 .
  • form connector handle 302 may be removable to facilitate the removal of the retaining washer 406 thereby allowing a user to separate the form connector 300 and pin retainer 200 .
  • the handle 302 may have mated thread to affix to the threaded rod 402 . Other methods of attaching the handle 302 to the threaded rod 402 allowing a user to remove the handle 302 would be apparent to one skilled in the art.
  • FIG. 5 is a front view of a concrete form, 500 .
  • the concrete form 500 may comprise an exterior railing 502 , interior form rails 504 , a face sheet 506 , form slots 508 , and pin holes 510 .
  • Concrete forms 500 may be connected such that they create an extended single form to create a monolithic wall when the concrete is poured between the concrete forms 500 .
  • the exterior railing 502 contains the face sheets 506 wherein the face sheet may have different designs as desired by the user erecting the wall.
  • the interior form rails 504 create a grid pattern throughout the concrete form 500 to provide rigidity of the concrete form 500 when in place and to prevent concrete from blowing out through the frame.
  • the forms may be set such that one form connecter 300 engages a single form 500 wherein the pin is connected to a second form 500 where upon engaging the pin retainer 200 to the locking pin 100 creating a monolithic form. This may be done over an extended span wherein the concrete forms 500 would be as one and provide a continuous surface for the concrete and the wall.
  • FIG. 6 is a front view 600 of a concrete form 500 with locking pins 100 secured in place by pin retainers 200 that may engage the concrete forms 500 via the T-cam form connectors 300 .
  • This view 600 shows an exemplar of two locking pins 100 placed through the pin holes 510 in the concrete forms 500 .
  • a user may preferably attach the pin retainer 200 to the concrete forms 500 by inserting the T-cam 306 into the form slots 508 then rotating the T-cam 306 by the form connector handle 302 ninety degrees to fully engage the form 500 . The user may then while holding the form connector handle 302 in position, rotatably and slideably position the pin retainer 200 to engage the locking pin 100 at the desired locking pin slot 110 with the pin retention channel 204 .
  • the locking pin 100 may no longer slide out of the pin hole 510 .
  • a user may then rotate the torque handle 304 to secure the engagement member 202 to the concrete form 500 to prevent an undesired release.
  • This sequence of events may be performed where there in pin holes 510 in conjunction with a companion concrete form 500 disposed a desired distance thus creating a cavity 702 for the concrete to be poured.
  • a user may release the concrete form 500 by rotating the torque handle 304 in the opposite direction from above thereby releasing the pin retainer 200 allowing it to freely move.
  • the user may disengage the pin retainer 200 from the locking pin 100 allowing the locking pin 100 to be removed. Once the locking pins 100 are removed the concrete forms any also be removed leaving a concrete structure.
  • FIG. 7 is a side view 700 of a pair of concrete forms 500 with locking pins 100 positioned and secured in place by pin retainers 200 using T-cam form connectors 300 .
  • This view illustrates concrete forms 500 in their ready position to accept concrete.
  • the locking pins 100 may be inserted into the first concrete form 500 , then extended to and through the second concrete form 500 .
  • Pin retainers 200 and T-cam form connectors 300 may be placed at the proximate end 106 and the distal end 108 of the locking pins 100 . After the T-cam form connectors 300 engage the concrete forms 500 , the pin retainers 200 may then engage the locking pins 100 at the locking pin slot 110 .
  • the user may then tighten the torque handles 304 to secure the locking pins 100 in place to prevent them from moving.
  • By tightening the torque handles 304 a semi-rigid to rigid structure is created thus reducing the possibility of preventing a blowout caused by the pressure of the concrete.
  • a series of locking pin slots 110 may be created near the ends 106 , 108 of the locking pins 100 .
  • This series of locking pin slots 110 provides a user the ability to adjust the width of the cavity 702 created by the concrete forms 500 by selecting different locking pin slot 110 to achieve a desired distance. Additionally, a user may use different locking pin slots 110 to create a tapering effect in the horizontal direction and/or in the vertical direction.
  • FIG. 8 and FIG. 9 are views of the L-cam form connector 800 .
  • FIG. 8 is a side view of the L-cam form connector 800 engaged with the pin retainer 200 affixed to L-cam concrete form 900 .
  • the L-cam form connector 800 is similar to the T-cam form connector 300 described in FIG. 4 .
  • the L-cam form connector 800 utilizes an L-cam 802 to lock and secure the L-cam form connector 800 to the concrete forms 900 instead of a T-cam 306 .
  • Different concrete forms in the industry require different engagement methods for securing the pin retainer 200 to the concrete forms.
  • FIG. 9 illustrates the L-cam form connector 800 engaging the L-cam concrete form 900 and securing the pin retainer 200 and locking pin 100 in place.
  • a user may place the L-cam 802 into the L-cam engagement holes 904 , then rotate the torque handle 304 to sufficiently secure the L-cam form connector 800 such that it will not disengage the L-cam concrete form 900 but will allow the pin retainer 200 to be sildeably and rotatably moved to engage the locking pin 100 .
  • the T-cam and the L-cam are two embodiments for engaging the concrete form. Other embodiments known to one skilled in the art for engaging concrete forms may also be used with the concrete form lock.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)

Abstract

An apparatus for connecting a pair of wall concrete form sections disposed at a relative distance from each other defining a space therebetween to receive concrete to be poured, the apparatus preventing the sections from separating, the apparatus comprising an elongated locking pin, a form connector to be rotatably, and releasably affixed to a form, and a pin retainer affixed to the arm defining a channel therein sized to be engaged within the engagement slot whereby the pin is placed through corresponding holes in adjacent forms and the pin engages a first form, extends through the relative distance between the forms, exits through an aligned hole in the second form, and the channel of the pin retainer attached to the second form engages the engagement slot on the pin thus providing a fixed distance between the forms and preventing the form separation when concrete is poured.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • None.
  • FIELD OF THE INVENTION
  • The invention generally relates to the installation of concrete forms for creating walls, columns, and other predominately vertical concrete structures. In particular, the invention relates to an apparatus for positioning and locking concrete forms for receipt of concrete, thereby maintaining a desired distance and preventing the forms from separating during the filling operation and simplifying the removal and preventing the loss of the apparatus after removal from the concrete forms.
  • BACKGROUND
  • The current methods for preparing concrete forms for construction projects are manpower-intensive, material-intensive, do not properly maintain the desired spacing easily, are costly, and inefficient. One common method for pouring a concrete wall requires two forms to be placed parallel with a desired wall thickness represented by distance between the forms. The form builders then insert a multitude of heavy threaded rods into holes in the forms at various locations. The threaded rods extend from the concrete forms and the form builders then place a multitude of large washers and nuts on protruding threaded rods. The nuts are then tightened using a wrench to create the desired width. The form builders then cut blocks to the desired thickness and place them inside the cavity to maintain this thickness. After pouring and curing of the concrete, the form builders disassemble the concrete forms. During this deconstruction process, the nuts and washers are lost and require replacement. Additionally, the threaded rods may be damaged during removal. The current method for constructing and deconstructing concrete forms using threaded rod, nuts, washers, and wrenches have significant disadvantages that are manpower intensive, equipment intensive, costly, wasteful, and ultimately inefficient.
  • SUMMARY OF THE INVENTION
  • The present invention overcomes these shortcomings by providing an apparatus that allows one skilled in the art, such as a form builder, to quickly construct and disassemble concrete forms with two separate assemblies that are relatively large and not easily lost at the construction site. The apparatus also prevents the concrete forms from moving inwardly or outwardly thus maintaining a consistent thickness of the concrete. Additionally, the apparatus does not require tools for assembly or disassembly of the concrete forms. The apparatus may consist of an elongated locking pin, a pin retainer, and a form connector.
  • There have thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional features of the invention that will be described hereinafter and which will form the subject matter of the claims appended hereto.
  • In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in this application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting. As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. Additional benefits and advantages of the present invention will become apparent to those skilled in the art to which the present invention relates from the subsequent description of the preferred embodiment and the appended claims, taken in conjunction with the accompanying drawings. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
  • Further, the purpose of the foregoing abstract is to enable the U.S. Patent and Trademark Office and the public generally, and especially the scientist, engineers and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application. The abstract is neither intended to define the invention of the application, which is measured by the claims, nor is it intended to be limiting as to the scope of the invention in any way.
  • DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a side view of a locking pin.
  • FIG. 2 is a side view of a pin retainer.
  • FIG. 3 is a top view of a T-cam form connector attached to the pin retainer.
  • FIG. 4 is side view of the T-cam form connector engaging the pin retainer.
  • FIG. 5 is a side view of a concrete form.
  • FIG. 6 is a side view a concrete form with a pair of T-cam form connectors and pin retainers attached.
  • FIG. 7 is a top view of a pair of concrete forms with the concrete form locks installed
  • FIG. 8 is a view of a L-cam pin retainer.
  • FIG. 9 is a view of a L-cam pin retainer affixed to a concrete form
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 is a side view of a locking pin 100. The locking pin 100 may comprise a elongated cylindrical pin 102 preferably with a tapered surface 104 having a proximate end 106 and a distal end 108 preferably with a plurality of locking pin slots 110 at each end 106, 108. The tapered surface 104 allows a user to place the locking pin, 100, through one side of the concrete form 500, exit the first concrete form 500 and enters a second concrete form 500, and protrudes from the second concrete form 500. The proximate end 106 and distal end 108 both protrude from the adjacent concrete forms 500 allowing access to locking pin slots 110. FIG. 7 illustrates this in greater detail. The diameter of the proximate end 106 preferably is greater than the diameter of the distal end 108 and the pin hole 510 such that as the locking pin 100 is placed inside the pin hole 510 of the concrete forms 500 it will easily penetrate both concrete forms 500, but the diameter of the proximate end 106 will prevent the locking pin 100 from passing all the way through the pin hole 510 of the first concrete form 500. This tapered surface 104 from the proximate end 106 to the distal end 108 allows the user to easily place the concrete form locking pin 100 into the forms for set up and also allows a user to easily remove the locking pin 100. Additionally, the surface of the locking pin 100 may be coated with a release agent that allows the locking pin 100 to be more easily removed after the concrete pour. Also, a user may alternate the locking pins 100 entering from the different sides of the concrete forms 500 wherein once they are locked in place they will also help prevent blowouts due to the concrete pressure. In a locking pin 100 there may be several locking pin slots 110 near the proximate end 106 and the distal end 108. These locking pin slots 110 cooperatively engage the pin retention channel 204 in the pin retainer 200. The spacing of the locking pin slots 110 allow the user to create different form widths for various sizes of concrete walls or structures.
  • FIG. 2 is a sideview of a pin retainer 200. The pin retainer 200 may comprise an engagement member 202 defining therein a pin retention channel 204 with a curved engagement surface 206 an arm 208 with an adjustment slot 210. The pin retainer 200 may be rotated about the T-cam form connector 300 to engage the locking pin 100 at the locking pin slots 110. The preferred method of engaging the locking pin slots 100 is to engage the locking pin 100 from the top with the pin retainer 200 so if movement was to occur and loosen the T-cam form connector 300, the pin retainer 200 would remain in place by the force of gravity and may prevent release of the concrete form 500. The curved engagement surface 206 allows the user to engage and disengage a locking pin 100 while the T-cam form connector 300 is loosely affixed to the concrete form 500. Without the curved engagement surface 206, the user would have to control the concrete form 500, the locking pin 100, the pin retainer 200 and the T-cam connector 300 simultaneously making the assembly of the forms difficult. The curvature of the pin retainer 200 allows the user to connect the T-cam form connector 300 to the concrete form 500 and tighten the T-cam form connector 300 sufficiently to maintain its affixation with the concrete form 500 while allowing the pin retainer 200 to be adjusted slideably and rotatebly by the user to engage the locking pin slots 110. The area of the engagement member 202 where the curved surface 206 and the pin retention channel 204 reside may be sized by one skilled in the art such that the pressure may spread over an area to prevent failure and pull through but also sized to manageable for the user.
  • FIG. 3 is a top view of a T-cam form connector 300 attached to the pin retainer 200. The T-cam form connector 300 preferably comprises a form connector handle 302, a torque handle 304 and a T-cam 306. The T-cam 306 allows a user to place the T-cam form connector 300 to engage the pin retainer 200 through the adjustment slot 210 and also engage a concrete form 500 wherein the user placed a T-cam 306 in the corresponding slot 508 of the concrete form 500. The user may rotate the T-cam form connector 300 wherein the T-cam 306 engages the concrete form 500. This engagement prevents the T-cam form connector 300 from disengaging from the concrete form 500. A user may then hold the form connector handle 302 and rotate the torque handle 304 to engage the pin retainer 200 and secure in place the pin retainer 200 against the concrete form 500 while engaged with the locking pin 100.
  • FIG. 4 is a side view 400 of the T-cam form connector 300 engaged with the pin retainer 200. The T-cam form connector 300 may further comprise a threaded rod 402, an engagement washer 404 and a retaining washer, 406. In this preferred embodiment, T-cam form connector 300 engages the pin retainer 200 such that the retaining washer 406 prevents the T-cam form connector 300 from becoming detached from the pin retainer 200, thereby making the combination of the pin retainer 200 and the T-cam form connector 300 a single unit. Additionally, an engagement washer 404 allows a user to rotate the torque handle 304 disposed within the adjustment slot 210 of the pin retainer 200, thereby securing the T-cam form connector 300 and pin retainer 200 in place and engaged not only with the concrete form 500, but also engaging and preventing the locking pin 100 from moving. Incorporated by reference is quick release clamp (U.S. Pat. No. 6,712,376 Eberhardt et al.) that may replace the torque handle 304 and the threaded rod 402. It would be apparent to one skilled in the art to employ a quick release clamp to engage the pin retainer 200 and secure it to the form 500. The user may rotate the T-cam a pre-determined distance to engage the concrete form 500 then actuate the quick release cam to secure the pin retainer 200. One skilled in the art could substitute other mechanisms to tighten these components.
  • If one skilled in the art desired the pin retainer 200 to be separated from the T-cam form connector 300, the retaining washer 406 may be removed before the T-cam 306 is affixed to the threaded rod 402. Additionally, form connector handle 302 may be removable to facilitate the removal of the retaining washer 406 thereby allowing a user to separate the form connector 300 and pin retainer 200. The handle 302 may have mated thread to affix to the threaded rod 402. Other methods of attaching the handle 302 to the threaded rod 402 allowing a user to remove the handle 302 would be apparent to one skilled in the art.
  • FIG. 5 is a front view of a concrete form, 500. The concrete form 500 may comprise an exterior railing 502, interior form rails 504, a face sheet 506, form slots 508, and pin holes 510. Concrete forms 500 may be connected such that they create an extended single form to create a monolithic wall when the concrete is poured between the concrete forms 500. The exterior railing 502 contains the face sheets 506 wherein the face sheet may have different designs as desired by the user erecting the wall. The interior form rails 504 create a grid pattern throughout the concrete form 500 to provide rigidity of the concrete form 500 when in place and to prevent concrete from blowing out through the frame. Within the interior rails form rails 504 there may be a multitude of form slots 508 allowing different positioning of the T-cam form connector 300. Also in the interior form rails 504, there may be a multitude of pin holes 510 allowing for various placement of the locking pins 100 depending on the desires of the user and the type of construction that is involved. Additionally, the forms may be set such that one form connecter 300 engages a single form 500 wherein the pin is connected to a second form 500 where upon engaging the pin retainer 200 to the locking pin 100 creating a monolithic form. This may be done over an extended span wherein the concrete forms 500 would be as one and provide a continuous surface for the concrete and the wall.
  • FIG. 6 is a front view 600 of a concrete form 500 with locking pins 100 secured in place by pin retainers 200 that may engage the concrete forms 500 via the T-cam form connectors 300. This view 600 shows an exemplar of two locking pins 100 placed through the pin holes 510 in the concrete forms 500. A user may preferably attach the pin retainer 200 to the concrete forms 500 by inserting the T-cam 306 into the form slots 508 then rotating the T-cam 306 by the form connector handle 302 ninety degrees to fully engage the form 500. The user may then while holding the form connector handle 302 in position, rotatably and slideably position the pin retainer 200 to engage the locking pin 100 at the desired locking pin slot 110 with the pin retention channel 204. Once the pin retainer 200 engages the locking pin 100, the locking pin 100 may no longer slide out of the pin hole 510. Once the engagement has occurred, a user may then rotate the torque handle 304 to secure the engagement member 202 to the concrete form 500 to prevent an undesired release. This sequence of events may be performed where there in pin holes 510 in conjunction with a companion concrete form 500 disposed a desired distance thus creating a cavity 702 for the concrete to be poured.
  • A user may release the concrete form 500 by rotating the torque handle 304 in the opposite direction from above thereby releasing the pin retainer 200 allowing it to freely move. The user may disengage the pin retainer 200 from the locking pin 100 allowing the locking pin 100 to be removed. Once the locking pins 100 are removed the concrete forms any also be removed leaving a concrete structure.
  • FIG. 7 is a side view 700 of a pair of concrete forms 500 with locking pins 100 positioned and secured in place by pin retainers 200 using T-cam form connectors 300. This view illustrates concrete forms 500 in their ready position to accept concrete. In this preferred embodiment, there may be upper and lower locking pins 100. The locking pins 100 may be inserted into the first concrete form 500, then extended to and through the second concrete form 500. Pin retainers 200 and T-cam form connectors 300 may be placed at the proximate end 106 and the distal end 108 of the locking pins 100. After the T-cam form connectors 300 engage the concrete forms 500, the pin retainers 200 may then engage the locking pins 100 at the locking pin slot 110. The user may then tighten the torque handles 304 to secure the locking pins 100 in place to prevent them from moving. By tightening the torque handles 304, a semi-rigid to rigid structure is created thus reducing the possibility of preventing a blowout caused by the pressure of the concrete.
  • As described earlier, a series of locking pin slots 110 may be created near the ends 106, 108 of the locking pins 100. This series of locking pin slots 110 provides a user the ability to adjust the width of the cavity 702 created by the concrete forms 500 by selecting different locking pin slot 110 to achieve a desired distance. Additionally, a user may use different locking pin slots 110 to create a tapering effect in the horizontal direction and/or in the vertical direction.
  • FIG. 8 and FIG. 9 are views of the L-cam form connector 800. FIG. 8 is a side view of the L-cam form connector 800 engaged with the pin retainer 200 affixed to L-cam concrete form 900. The L-cam form connector 800 is similar to the T-cam form connector 300 described in FIG. 4. The L-cam form connector 800 utilizes an L-cam 802 to lock and secure the L-cam form connector 800 to the concrete forms 900 instead of a T-cam 306. Different concrete forms in the industry require different engagement methods for securing the pin retainer 200 to the concrete forms. The interior railing 504 of the concrete form 500 allows the insertion of the T-cam 306 into the top of the interior rail 504 whereas the L-cam rail 902 has no top for insertion but instead has a rectangular rail with series of L-cam engagement holes 904 along the length of the rail 902 for affixing the L-cam form connector 800. FIG. 9 illustrates the L-cam form connector 800 engaging the L-cam concrete form 900 and securing the pin retainer 200 and locking pin 100 in place. A user may place the L-cam 802 into the L-cam engagement holes 904, then rotate the torque handle 304 to sufficiently secure the L-cam form connector 800 such that it will not disengage the L-cam concrete form 900 but will allow the pin retainer 200 to be sildeably and rotatably moved to engage the locking pin 100. The T-cam and the L-cam are two embodiments for engaging the concrete form. Other embodiments known to one skilled in the art for engaging concrete forms may also be used with the concrete form lock.

Claims (8)

Having thus described the invention, I claim:
1. An apparatus for connecting at least one pair of wall concrete form sections disposed at a relative distance from each other defining a space therebetween to receive concrete to be poured, the apparatus preventing the sections from separating beyond a desired relative distance, the apparatus comprising:
a. at least one elongated locking pin having a first end defining therein at least one first end engagement slot, a second end defining therein at least one second engagement slot, the pin defining between the selected first end engagement slot and the selected second end engagement slot the relative distance desired between the two forms;
b. at least one form connector rotatably and releasably affixed to a form having—
i. an arm defining a slot therein,
ii. an elongated rod having a diameter sized to be received within the arm slot and defining threads thereon for at least a portion of its length with a first torque means for applying twisting force at a first end and a cam at a second end sized both to be received within a slot defined in a form and to pass through the arm slot, the cam having shoulders sized to engage corresponding shoulders of the form slot when the cam is rotated 90 degrees from an angle of insertion through the form slot,
iii. an engagement member having a central body with a width greater than that of the arm slot and defining threads therein engaging the threads of the elongated rod, the engagement member also having a second torque application means for applying torque to spin the engagement member moving it along the rod threads;
c. a pin retainer affixed to the arm defining a channel therein sized to be engaged within the engagement slot;
whereby the pin is placed through corresponding holes in adjacent forms and the pin engages a first form, extends through the relative distance between the forms, exits through an aligned hole in the second form, and the channel of the pin retainer attached to the second form engages the engagement slot on the pin thus providing a fixed distance between the forms and preventing the forms from separating when concrete is poured.
2. The apparatus of claim 1, where the torque means is a handle.
3. The apparatus of claim 2, where the second handle is removable.
4. The apparatus of claim 1, where the torque means is a torque application surface and a removable torque tool to engage the surface and prevent movement.
5. The apparatus of claim 1, where the pin has multiple slots for different relative distances between the forms.
6. The apparatus of claim 1, where the pins are alternated entering from the different sides of the concrete forms to prevent blowouts of the form due to the concrete pressure.
7. A concrete wall form having a pair of wall sections disposed at a relative distance to each other, a concrete form clamp for connecting and preventing the sections from separating comprising:
a. a pin removably positioned to engage a concrete form—
i. an tapered cylindrical elongated member, and
ii. a plurality of engagement slots;
b. a form connector to releasably affix the pin retainer to a section of the concrete form
i. at least one handle fixedly attached to the elongated member,
ii. an threaded elongated member,
iii. an rotatable engagement member, and
iv. a threaded clamp;
c. a pin retainer slidably and pivotably affixed to the form connector—
i. a pin engagement slot to releasably engage the pin,
ii. a form connector position adjustment slot, and
iii. a clamping area;
whereby the pin is placed through a slot in the concrete wall forms and the pin engages one wall section, extends through the space between the wall sections, exits through an aligned slot on the opposing wall section, where the pin retainer is attached to the opposing wall section engages the slot on the pin and is clamped in the desired position using a threaded clamp thus providing a fixed distance between the wall sections and preventing the wall section from separating when concrete is poured into the form.
8. A concrete wall form having a pair of wall sections disposed at a relative distance to each other, a concrete form clamp for connecting and preventing the sections from separating comprising:
a. a pin removably positioned to engage a concrete form—
i. an tapered cylindrical elongated member, and
ii. a plurality of engagement slots;
b. a form connector to releasably affix the pin retainer to a section of the concrete form
i. at least one handle with cammed exterior surface fixedly attached to the elongated member,
ii. an elongated member, and
iii. an rotatable engagement member;
c. a pin retainer slidably and pivotably affixed to the form connector—
i. a pin engagement slot to releasably engage the pin,
ii. a form connector position adjustment slot, and
iii. a clamping area;
whereby the pin is placed through a slot in the concrete wall forms and the pin engages one wall section, extends through the space between the wall sections, exits through an aligned slot on the opposing wall section, where the pin retainer is attached to the opposing wall section engages the slot on the pin and is clamped in the desired position using the cammed handle thus providing a fixed distance between the wall sections and preventing the wall section from separating when concrete is poured into the form.
US15/906,597 2018-02-27 2018-02-27 Concrete Form Lock Abandoned US20190264454A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/906,597 US20190264454A1 (en) 2018-02-27 2018-02-27 Concrete Form Lock
US17/169,043 US12024905B2 (en) 2021-02-05 Concrete form construction apparatus and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/906,597 US20190264454A1 (en) 2018-02-27 2018-02-27 Concrete Form Lock

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/169,043 Continuation-In-Part US12024905B2 (en) 2021-02-05 Concrete form construction apparatus and system

Publications (1)

Publication Number Publication Date
US20190264454A1 true US20190264454A1 (en) 2019-08-29

Family

ID=67684328

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/906,597 Abandoned US20190264454A1 (en) 2018-02-27 2018-02-27 Concrete Form Lock

Country Status (1)

Country Link
US (1) US20190264454A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110774422A (en) * 2019-11-04 2020-02-11 江苏千禧杭萧装配式建筑科技有限公司 Detachable assembly type building mould

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1925689A (en) * 1932-06-29 1933-09-05 Erich W Dietrich Form clamp
US1940278A (en) * 1931-08-14 1933-12-19 Barnes Corning Company Form clamp
US2133574A (en) * 1936-11-11 1938-10-18 Allen V Roemisch Concrete form tie
US2358975A (en) * 1944-02-18 1944-09-26 Superior Concrete Accessories Wall form tie
US2433934A (en) * 1944-06-24 1948-01-06 Arthur H Symons Tie device for wall forms
US2920371A (en) * 1958-01-13 1960-01-12 Simplex Forms Systems Inc Tie-wires for concrete forms
US3363877A (en) * 1965-04-05 1968-01-16 Gates & Sons Sliding tie-end latch assembly for gang forms
US3529800A (en) * 1969-12-11 1970-09-22 Gates & Sons Concrete form tie end latch
US3693931A (en) * 1969-04-30 1972-09-26 Burke Concrete Accessories Apparatus for constructing concrete forms
US3767158A (en) * 1971-03-29 1973-10-23 Flexicore Co Concrete form construction
US3888455A (en) * 1971-03-29 1975-06-10 Glenn H Mikus Tie bar for supporting form walls of a concrete form
US3984079A (en) * 1974-08-05 1976-10-05 Gates & Sons, Inc. Clamping lock for tie rod ends
US4044986A (en) * 1975-05-12 1977-08-30 Strickland Systems Inc. Concrete form panel tying apparatus
US4254932A (en) * 1979-09-04 1981-03-10 James Durbin Concrete wall forming system
US4545163A (en) * 1983-11-15 1985-10-08 Ovila Asselin Heat insulated tie rod for concrete wall members
US4899978A (en) * 1988-12-16 1990-02-13 Gates & Sons, Inc. Locking bracket for holding tie rod ends
US5255488A (en) * 1992-04-20 1993-10-26 Kevin Johnson Tie-wire for concrete form

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1940278A (en) * 1931-08-14 1933-12-19 Barnes Corning Company Form clamp
US1925689A (en) * 1932-06-29 1933-09-05 Erich W Dietrich Form clamp
US2133574A (en) * 1936-11-11 1938-10-18 Allen V Roemisch Concrete form tie
US2358975A (en) * 1944-02-18 1944-09-26 Superior Concrete Accessories Wall form tie
US2433934A (en) * 1944-06-24 1948-01-06 Arthur H Symons Tie device for wall forms
US2920371A (en) * 1958-01-13 1960-01-12 Simplex Forms Systems Inc Tie-wires for concrete forms
US3363877A (en) * 1965-04-05 1968-01-16 Gates & Sons Sliding tie-end latch assembly for gang forms
US3693931A (en) * 1969-04-30 1972-09-26 Burke Concrete Accessories Apparatus for constructing concrete forms
US3529800A (en) * 1969-12-11 1970-09-22 Gates & Sons Concrete form tie end latch
US3767158A (en) * 1971-03-29 1973-10-23 Flexicore Co Concrete form construction
US3888455A (en) * 1971-03-29 1975-06-10 Glenn H Mikus Tie bar for supporting form walls of a concrete form
US3984079A (en) * 1974-08-05 1976-10-05 Gates & Sons, Inc. Clamping lock for tie rod ends
US4044986A (en) * 1975-05-12 1977-08-30 Strickland Systems Inc. Concrete form panel tying apparatus
US4254932A (en) * 1979-09-04 1981-03-10 James Durbin Concrete wall forming system
US4545163A (en) * 1983-11-15 1985-10-08 Ovila Asselin Heat insulated tie rod for concrete wall members
US4899978A (en) * 1988-12-16 1990-02-13 Gates & Sons, Inc. Locking bracket for holding tie rod ends
US5255488A (en) * 1992-04-20 1993-10-26 Kevin Johnson Tie-wire for concrete form

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110774422A (en) * 2019-11-04 2020-02-11 江苏千禧杭萧装配式建筑科技有限公司 Detachable assembly type building mould

Similar Documents

Publication Publication Date Title
US5594977A (en) Smooth rod-gripping apparatus
US20080173788A1 (en) Lightweight Crane-Set Forming Panel
DE4207666A1 (en) DEVICE FOR FIXING COMPONENTS
US20190264454A1 (en) Concrete Form Lock
US3822860A (en) Reusable tie assembly for concrete forms
WO2019185573A1 (en) Fixing device for fixing a temporary maintenance railing to a supporting structure of a people-transporting system
US20180298704A1 (en) Modified die block for drilling rig floor wrench
CN104989118A (en) Detachable protection rail fixed seat
MXPA06014710A (en) Locking system for concrete form panels.
US12024905B2 (en) Concrete form construction apparatus and system
DE202015002187U1 (en) Support and clamping parts for mounting components, in particular in dry construction and for overhead mounting
US20220290450A1 (en) Concrete Form Construction Apparatus and System
US10975585B2 (en) Connection assembly for formwork
JP2004108080A (en) Lifting tool for panel
CN214090937U (en) Scaffold fixing device and scaffold
US8752804B2 (en) Wedge-activated rod clamp assembly
US3927856A (en) Internal spreader means for use with a reusable tie rod
EP1964993A1 (en) Nut for reinforcing bar
KR100909031B1 (en) Installation and dismantling method of fall prevention net using bracket and installation bracket
US2046674A (en) Combined spacer and clamp for concrete forms
JP2008031734A (en) Scaffold supporter
CN210132437U (en) Back-up wrench
JP6695591B2 (en) Wrench tool
CN212583300U (en) Shear force wall construction light reinforcing bar fixture is built in room
NZ620398A (en) Improvements in and relating to fastening systems

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: GODWIN FORMWORK SOLUTIONS, LLC, OKLAHOMA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GODWIN, CHAD D.;REEL/FRAME:059461/0970

Effective date: 20220331