US20190240798A1 - Hand-held and hand-guided power tool having a working element releasably attached thereto, and working element in the form of a backing pad for such a power tool - Google Patents

Hand-held and hand-guided power tool having a working element releasably attached thereto, and working element in the form of a backing pad for such a power tool Download PDF

Info

Publication number
US20190240798A1
US20190240798A1 US16/251,388 US201916251388A US2019240798A1 US 20190240798 A1 US20190240798 A1 US 20190240798A1 US 201916251388 A US201916251388 A US 201916251388A US 2019240798 A1 US2019240798 A1 US 2019240798A1
Authority
US
United States
Prior art keywords
backing pad
pad member
plate
rotational axis
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US16/251,388
Inventor
Guido Valentini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20190240798A1 publication Critical patent/US20190240798A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • B24B23/04Portable grinding machines, e.g. hand-guided; Accessories therefor with oscillating grinding tools; Accessories therefor
    • B24B23/046Clamping or tensioning means for abrasive sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • B24B23/02Portable grinding machines, e.g. hand-guided; Accessories therefor with rotating grinding tools; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • B24B23/04Portable grinding machines, e.g. hand-guided; Accessories therefor with oscillating grinding tools; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B45/00Means for securing grinding wheels on rotary arbors
    • B24B45/006Quick mount and release means for disc-like wheels, e.g. on power tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/10Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces
    • B24B47/12Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces by mechanical gearing or electric power

Definitions

  • the present invention refers to a plate-like backing pad member for use with a hand-held and hand-guided power tool comprising a housing with a driving motor located therein for actuating a driving shaft upon operation of the motor.
  • the backing pad member has a rotational axis.
  • the backing pad member is adapted for releasable attachment to the driving shaft by means of a mechanical form fit connection arrangement comprising at least one protrusion member directly or indirectly connected to the driving shaft and at least one corresponding recess member connected to the backing pad member.
  • the protrusion member and the recess member are adapted to enter into engagement with each other in order to realize the mechanical form fit connection.
  • the mechanical form fit connection arrangement is adapted for providing a torque proof connection between the protrusion member and the recess member in a plane extending perpendicular to the rotational axis of the backing pad member.
  • the mechanical form fit connection arrangement is releasable in an axial direction running parallel to the rotational axis of the backing pad member.
  • the protrusion member is held in the axial direction within the recess member by means of an axial holding arrangement.
  • the invention refers to a hand-held and hand-guided power tool comprising a housing with a driving motor located therein for actuating a driving shaft upon operation of the motor and further comprising a backing pad member performing a working movement about its rotational axis in a working plane extending perpendicular to its rotational axis upon actuation of the driving shaft.
  • the backing pad member is attached to the driving shaft by means of a mechanical form fit connection arrangement comprising at least one protrusion member directly or indirectly connected to the driving shaft and at least one recess member connected to the backing pad member.
  • the mechanical form fit connection arrangement is adapted for providing a torque proof connection between the protrusion member and the recess member in a plane extending perpendicular to the rotational axis of the backing pad member.
  • the mechanical form fit connection arrangement is releasable in an axial direction running parallel to the rotational axis of the backing pad member.
  • the protrusion member is held in the axial direction within the recess member by means of an axial holding arrangement.
  • the axial holding arrangement usually comprises a securing screw which is inserted from a bottom surface of the backing pad into an opening provided in the centre of the backing pad member along its rotational axis and screwed into a threaded opening located in the protrusion member. This provides for a secure attachment of the backing pad member to the rest of the power tool, in particular of the recess member to the protrusion member, in an axial direction parallel to the rotational axis of the backing pad.
  • the two adapter parts may be releasably attached to one another in a torque proof manner in a plane extending perpendicular to a rotational axis of the driving shaft by means of a form fit connection.
  • the form fit connection can be released in an axial direction parallel to the rotational axis.
  • the two adapter parts are held together in the axial direction by means of magnetic force.
  • the abrasive or polishing member of the known power tool performs only a purely rotational working movement.
  • the known power tool has the disadvantage that the proposed idea cannot simply be transferred to a power tool comprising a backing pad member with a flexible sheet-like polishing or abrasive material releasably attached to a bottom surface of the backing pad member because it would not be possible to provide an additional adapter of the type disclosed by the above reference between the driving shaft of the power tool and the backing pad member.
  • the power tool disclosed by the above reference is very large, heavy, bulky and unhandy.
  • the backing pad member and, hence, also the abrasive or polishing member performs a working movement comprising an orbital component (e.g.
  • the present invention suggests a backing pad member with the features of claim 1 .
  • the axial holding arrangement comprises at least one permanent magnet on the one hand and at least one ferromagnetic element or at least one further permanent magnet on the other hand exerting a magnetic force for holding the protrusion member in the axial direction within the recess member, wherein the at least one permanent magnet or the at least one ferromagnetic element or the at least one further permanent magnet is located in or makes part of the recess member.
  • an important aspect of the present invention is the idea of attaching a backing pad performing a working movement with an orbital component to a power tool by means of the mechanical form fit connection arrangement in combination with a magnetic axial holding arrangement for holding the backing pad in an axial direction. It is particularly advantageous that at least part of the magnetic axial holding arrangement is integrated into and forms part of the mechanical form fit connection arrangement.
  • one of the components for realizing the axial magnetic holding arrangement i.e. at least one of the permanent magnets or at least one of the ferromagnetic elements, is located in or makes part of the recess member provided on the top side of the backing pad member.
  • the backing pad member is made of semi-rigid plastic material.
  • the backing pad member has two opposing surfaces extending in parallel to each other, the surfaces comprising a first bottom surface for releasable attachment of a flexible sheet-like polishing or abrasive member by means of a hook-and-loop fastener.
  • the opposing surfaces of the backing pad member comprise an opposite top surface with a backing pad-connection arrangement attached thereto, the backing pad-connection arrangement comprising the recess member.
  • the top surface of the backing pad member is attached to the driving shaft of the power tool without the use of additional adapters or the like.
  • a metal insert making part of the backing pad-connection arrangement is moulded into the backing pad during its manufacturing allowing direct access to the backing pad-connection arrangement.
  • the metal insert constitutes or makes part of the recess member of the backing pad member.
  • the protrusion member attached to the distal end of the driving shaft can directly access and engage with the recess member provided on the top surface of the backing pad.
  • the metal insert can form the at least one ferromagnetic element or the at least one further permanent magnet, which interacts with the at least one permanent magnet of the protrusion member.
  • the protrusion member can be directly attached to the driving shaft in a torque proof manner, e.g. by means of a threaded connection.
  • the protrusion member could also be indirectly attached to driving shaft, e.g. by means of a tool-connection arrangement.
  • the tool-connection arrangement can be directly attached to the driving shaft in a torque proof manner, e.g. by means of a threaded connection.
  • the protrusion member can be connected to the tool-connection arrangement in a freely rotatable manner, e.g. guided in one or more bearings of the tool-connection arrangement. In this manner, a random orbital working movement of the backing pad member can be achieved.
  • the tool-connection arrangement comprises a gear mechanism for realizing a forced rotation of the protrusion member depending on the rotation of the tool-connection arrangement about the rotational axis of the driving shaft. In this manner, a roto-orbital (or gear driven) working movement of the backing pad member can be achieved.
  • the proposed backing pad allows the continuous use of conventional power tools with conventional tool-connection arrangements and protrusion members provided at the distal end of the tool's driving shaft.
  • the recess members are formed at least in part by the metal insert moulded into the top surface of the backing pad during its manufacturing.
  • the engagement of the protrusion member with a corresponding recess member provides for a form fit connection between the two members.
  • the backing pad In the axial direction running parallel to the rotational axis of the backing pad, the backing pad is held by magnetic force in respect to the rest of the power tool.
  • the backing pad can be provided with at least one permanent magnet adapted for interacting with at least one respective ferromagnetic element or further permanent magnet of opposite polarity provided in the rest of the tool, in particular in the protrusion member.
  • the protrusion member itself forms a ferromagnetic element with which the at least one permanent magnet provided in the recess interacts.
  • the present invention uses the magnetic force of a magnetic holding arrangement for securing the backing pad to the rest of the power tool, in particular to the protrusion member.
  • the power tool with the backing pad and the flexible sheet-like polishing or abrasive pad is also referred to as a polisher or a sander, which is often used for working vehicle, boat or ship bodies.
  • the backing pad may perform a purely rotational, a purely orbital, a random-orbital or a roto-orbital (gear driven) working movement.
  • the backing pad member preferably has a circular form and in a sectional view an isosceles trapezoid form with the top surface being smaller than the bottom surface and the top and the bottom surfaces being connected by means of an inclined external wall section.
  • Such a circular backing pad preferably is driven in a manner to perform a random orbital or roto-orbital (gear driven) working movement.
  • the backing pad member may also have a triangle form, preferably with the sides of the triangle slightly convexly arched to the outside.
  • Such a triangular backing pad preferably is driven in a manner to perform a purely orbital movement.
  • the backing pad may have any other desired form, too.
  • the recess member in the plane extending perpendicular to the rotational axis of the backing pad member has a circumferential form comprising two opposing arc shaped sections of a circle with the rotational axis running through the circle's centre and further comprising two opposing straight walls running essentially parallel to one another and interconnecting the arc shaped sections.
  • the recess member in the plane extending perpendicular to the rotational axis of the backing pad member has a circumferential form comprising a circle with the rotational axis running through the circle's centre and further comprising two grooves extending on opposite sides of the circle radially outwards.
  • a plurality of, preferably four, permanent magnets are located in the recess member around and equidistant to the rotational axis of the backing pad member, with neighbouring permanent magnets having opposite polarities.
  • the magnetic force used for holding the recess member of the backing pad in the protrusion member of the rest of the tool can be increased considerably.
  • the increase is not simply a result of the greater number of permanent magnets but rather a combination with the advantageous flow of the magnetic flux due to the opposite polarities of neighbouring magnets.
  • the plurality of permanent magnets are located such that neighbouring permanent magnets are in direct lateral abutment with one another. Further, it is suggested that the plurality of permanent magnets are located in direct contact with one another along the rotational axis of the backing pad member.
  • the permanent magnets may have any desired form. However, it was found that certain forms of permanent magnets have advantages over other forms in terms of compact arrangement in the recess member and/or higher overall magnetic force.
  • the plurality of permanent magnets each have the form of a triangle, in particular an isosceles triangle, and the triangles are dimensioned such that the sum of the vertex angles of all triangles is 360°.
  • the plurality of permanent magnets each may have the form of a circular sector, and the circular sectors are dimensioned such that the circular sectors of all permanent magnets together form a circle.
  • the recess member of the backing pad-connection arrangement has a bottom surface in which the at least one permanent magnet is located adapted for interacting with at least one ferromagnetic element or at least one further permanent magnet attached to or making part of the protrusion member of the tool-connection arrangement, wherein the at least one permanent magnet is located in the bottom surface of the recess member facing the at least one ferromagnetic element or further permanent magnet after insertion of the protrusion member into the recess member.
  • the at least one ferromagnetic element or further permanent magnet in the bottom surface of the recess member. In that case the at least one first permanent magnet would be attached to or make part of the protrusion member.
  • the integration of the at least one permanent magnet or of the at least one ferromagnetic element or of the at least one further permanent magnet into the recess member allows a very small and compact design of the connection arrangement provided between the backing pad member and the tool-connection arrangement. Furthermore, metal parts of the tool-connection arrangement or the backing pad-connection arrangement can be used as the at least one ferromagnetic element, thereby reducing the overall number of separate parts necessary for realising the connection arrangement.
  • the backing pad member Even if during intended use of the power tool a force is applied to a side region of the first surface of the backing pad member carrying the polishing or abrasive member in a distance to the rotational axis of the backing pad member, the backing pad member will not be tilted and detached from the tool-connection arrangement due to the strong magnetic force acting directly in the region of the mechanical form fit connection arrangement.
  • the risk of tilting and detachment of the backing pad from the tool-connection arrangement due to excessive force on the side region of the first surface of the backing pad member can be reduced, if the lateral internal side walls of the recess member and the corresponding lateral external side walls of the protrusion member, respectively, lie against each other along their entire surfaces.
  • the risk of tilting and detachment of the backing pad from the tool-connection arrangement due to excessive force on the side region of the backing pad member can be further reduced, if the lateral internal side walls of the recess member and the corresponding lateral external side walls of the protrusion member, respectively, have a sufficiently long axial extension. This prevents the backing pad member from being tilted about a tilting axis running essentially perpendicular to the rotational axis of the backing pad member, when attached to the tool-connection arrangement; the backing pad member can only be disconnected from the tool-connection arrangement in the axial direction.
  • the backing pad member can be easily and quickly removed from the rest of the power tool by simply holding the backing pad member in one hand and the rest of the power tool in the other hand and by applying a force in the axial direction along the rotational axis of the backing pad member pulling them apart thereby overcoming the magnetic force acting between them. No additional tools are required, no threaded connections have to be loosened and fastened and the operator of the power tool can keep on his working or safety gloves throughout the entire process of detachment of a backing pad from the power tool and attachment of an alternative backing pad.
  • the attachment of the backing pad to the tool-connection arrangement proposed by the present invention is particularly advantageous in the rough and dirt laden environment of vehicle and boat detailing centres, vehicle body shops and shipyards, where the power tool according to the present invention is often used. Dust and other small debris particles cannot significantly impair the magnetic forces acting between the backing pad member and the rest of the power tool and, therefore, even with some dust and other small debris particles located between the backing pad member and the rest of the power tool, a safe and secure attachment of the backing pad member to the rest of the power tool in the axial direction can be achieved. This is usually not the case with the conventional mechanical axial holding arrangements.
  • FIG. 1 a power tool according to the present invention in a preferred embodiment in a perspective view
  • FIG. 2 the power tool of FIG. 1 in a sectional schematic view
  • FIG. 3 a first type of tool-connection arrangement of a conventional power tool known in the art
  • FIG. 4 a second type of tool-connection arrangement of a conventional power tool known in the art
  • FIG. 5 a backing pad member of a conventional power tool known in the art
  • FIG. 6 a first type of tool-connection arrangement of a power tool according to the present invention
  • FIG. 7 a second type of tool-connection arrangement of a power tool according to the present invention.
  • FIG. 8 a first type of backing pad member according to the present invention connected to a tool-connection arrangement of FIG. 6 ;
  • FIG. 9 the first type of backing pad member according to the present invention connected to a tool-connection arrangement of FIG. 7 ;
  • FIG. 10 a second type of backing pad member according to the present invention.
  • FIG. 11 a tool-connection arrangement about to be connected to a backing pad-connection arrangement according to the present invention
  • FIG. 12 a top view on a backing pad and its backing pad connection arrangement according to the present invention.
  • FIG. 13 a first embodiment of a magnetic axial holding arrangement
  • FIG. 14 a second embodiment of a magnetic axial holding arrangement
  • FIG. 15 a third embodiment of a magnetic axial holding arrangement
  • FIG. 16 a fourth embodiment of a magnetic axial holding arrangement
  • FIG. 17 a third type of backing pad member according to the present invention adapted for connection to a hexagonal protrusion member of a tool-connection arrangement.
  • FIG. 1 an example of a hand-guided and hand-held motor driven power tool according to the present invention is designated with reference sign 1 in its entirety.
  • the power tool 1 is embodied as a random orbital polisher.
  • the polisher 1 has a housing 2 , essentially made of plastic material.
  • the housing 2 has a handle 3 at its rear end and a grip 4 at its front end.
  • a switch 6 is provided for turning on and off the power tool 1 .
  • the switch 6 can be continuously held in its activated position by means of a push button 7 .
  • the power tool 1 can be provided with speed adjustment means 10 (e.g.
  • the housing 2 can be provided with cooling openings 8 for allowing heat from electronic components and/or the electric motor both located inside the housing 2 to dissipate into the environment and for allowing cooling air to enter the housing 2 .
  • the power tool 1 has an electric motor 11 located inside the housing 2 for driving a tool-connection arrangement 12 having a protrusion member 16 protruding from the housing 2 and a plate-like backing pad member 9 releasably attached thereto.
  • the power tool 1 according to the present invention could also be equipped with a pneumatic motor, which is especially advantageous in explosive environments, where sparks from an electric motor could provoke an explosion of an explosive mixture (e.g. oxygen and very fine dust) contained in the environment. In that case, the power tool 1 would be connected to a compressed-air line instead of the electric cable 5 .
  • the power tool 1 could alternatively be equipped with a rechargeable battery (not shown) located inside the housing 2 . In that case the electric energy for driving the electric motor 11 and for other electronic components would be provided by the battery.
  • the backing pad member 9 is rotatable about a rotational axis 13 . In this embodiment it performs a random-orbital working movement. However, to those skilled in the art it is clear that the backing pad 9 could also perform any other type of working movement, e.g. a purely orbital or a roto-orbital (gear driven) working movement.
  • the backing pad member 9 has two opposing surfaces, a first bottom surface 9 a for releasable attachment of a flexible sheet-like polishing or abrasive member 14 (e.g. by means of hook-and-loop fastening surfaces) and an opposite top surface 9 b with a backing pad-connection arrangement 15 attached thereto.
  • the backing pad-connection arrangement 15 may comprise a metal insert (e.g. see FIG. 12 ) which is moulded into the material of the backing pad member 9 and/or the backing pad arrangement 15 during its production by means of a moulding or an injection moulding process.
  • the tool-connection arrangement 12 comprises the protrusion member 16 and the backing pad-connection arrangement 15 comprises a recess member 17 .
  • the tool-connection arrangement 12 could also comprise the recess member and the backing pad-connection arrangement 15 could comprise the protrusion member.
  • the tool-connection arrangement 12 and the backing pad-connection arrangement 15 constitute a connection arrangement.
  • the protrusion member 16 and the recess member 17 are adapted for interacting with one another for releasably connecting the backing pad member 9 to the rest of the power tool 1 in a torque proof manner by means of a form fit connection.
  • the recess member 17 of the connection arrangement 15 has an inner circumferential wall 18 rotationally asymmetrical in respect to the rotational axis 13 of the backing pad 9 .
  • the protrusion member 16 has an outer circumferential surface 19 rotationally asymmetrical in respect to the rotational axis 13 of the backing pad 9 .
  • the protrusion member 16 and the recess member 17 are adapted for entering into mutual engagement with one another in order to realize a torque-proof connection about the rotational axis 13 of the backing pad member 9 .
  • the backing pad member 9 with its recess member 17 can be detached from the protrusion member 16 in an axial direction running parallel to the rotational axis 13 of the backing pad member 9 .
  • an axial holding arrangement is provided in order to avoid unintentional detachment of the backing pad member 9 .
  • the electric motor 11 is powered by electricity arriving through the electric cable 5 from a mains power supply.
  • An electronic control unit (ECU) 20 is provided inside the housing 2 for controlling the speed of the electric motor 11 and possibly other functions of the power tool 1 .
  • the speed adjustment means 10 generate a set-point signal 21 which is forwarded to the ECU 20 for controlling the rotational speed of the motor 11 .
  • the ECU 20 generates a control signal 22 which is forwarded to the motor 11 .
  • the motor 11 rotates at a certain speed and actuates a motor shaft 23 .
  • a gear arrangement 24 may be located between the motor shaft 23 and the tool-connection arrangement 12 in order to reduce the rotational speed and to enhance the torque output at the tool-connection arrangement 12 .
  • a bevel gear arrangement 25 may be provided in order to translate the rotation of an intermediate shaft 26 extending in an essentially horizontal direction into the rotation of a driving shaft 27 extending in an essentially vertical direction.
  • the bevel gear 25 is necessary for realizing angular power tools.
  • the bevel gear arrangement 25 could also realize a translation of a rotation by different angles other than 90°.
  • the tool-connection arrangement 12 is connected to the driving shaft 27 in a torque proof manner.
  • the driving shaft 27 could be constituted by the motor shaft 23 or the intermediate shaft 26 , when no gear arrangement 24 and/or no bevel gear arrangement 25 is present.
  • FIGS. 3 and 4 show two different types of tool-connection arrangements 12 for realizing a random-orbital working movement of the backing pad member 9 , both types known from the prior art.
  • the driving shaft 27 is connected to the tool-connection arrangement 12 on the side (eccentrically) in a distance to a central axis 28 of gravity of the tool-connection arrangement 12 , with the axis of gravity 28 and a rotational axis 29 of the driving shaft 27 running essentially parallel in respect to one another.
  • the protrusion member 16 is guided freely rotatable about the rotational axis 13 in respect to the rest of the tool-connection arrangement 12 .
  • bearings 30 may be provided between the protrusion member 16 and the rest of the tool-connection arrangement 12 .
  • the axis of gravity 28 of the tool-connection arrangement 12 and the rotational axis 13 of the backing pad member 9 are identical.
  • the driving shaft 27 is connected to the tool-connection arrangement 12 in the center of gravity of the tool-connection arrangement 12 , with the axis of gravity 28 and the rotational axis 29 of the driving shaft 27 being identical.
  • the protrusion member 16 is guided freely rotatable about the rotational axis 13 in respect to the rest of the tool-connection arrangement 12 .
  • the axis of gravity 28 of the tool-connection arrangement 12 is located in a distance (eccentrically) to the rotational axis 13 of the backing pad member 9 .
  • the driving shaft 27 can be connected to the tool-connection arrangement 12 in a torque proof manner, for example by a threaded connection.
  • a rotation of the driving shaft 27 about the axis 29 leads to a random-orbital working movement of the protrusion member 16 and, consequently, of the backing pad member 9 attached thereto.
  • the recess member 17 of the backing pad-connection arrangement 15 is connected to the protrusion member 16 of the tool-connection arrangement 12 in a torque proof manner.
  • the flexible sheet-like polishing or abrasive member 14 is releasably attached to the bottom surface 9 a of the backing pad 9 .
  • a polishing member it may comprise but is not limited to a sponge, a microfiber, and real or synthetic lambs' wool.
  • an abrasive member it may comprise but is not limited to a sanding paper or a sanding fabric.
  • the sheet-like polishing or abrasive member 14 is preferably attached to the backing pad member 9 by means of a hook-and-loop fastener (or Velcro®).
  • a first layer of the hook-and-loop fastener may be provided on the bottom surface 9 a of the backing pad 9 , wherein the top surface of the sheet-like polishing or abrasive member 14 is provided with a corresponding second layer of the hook-and-loop fastener.
  • the two layers of the hook-and-loop fastener interact with one another in order to releasably but safely fix the sheet-like polishing or abrasive member 14 to the bottom surface 9 a of the backing pad 9 .
  • the polishing or abrasive member 14 covers the entire bottom surface 9 a of the backing pad member 9 .
  • the entire bottom surface of the sheet-like polishing or abrasive member 14 is in contact with the surface to be worked.
  • the backing pad member 9 is preferably made of a semi-rigid material, in particular a plastic material, which on the one hand is rigid enough to carry and support the sheet-like polishing or abrasive member 14 during the intended use of the power tool 1 and to apply a force to the polishing or abrasive member 14 in a direction essentially parallel to the backing pad's rotational axis 13 and which on the other hand is flexible enough to avoid damage or scratching of the surface to be worked by the backing pad member 9 or the polishing or abrasive member 14 , respectively, during the intended use of the power tool 1 .
  • the backing pad member 9 may comprise different materials e.g. having different rigidities, which are fixed together, e.g. by means of a moulding process.
  • the different materials may comprise different plastic materials or plastic and metal.
  • plastic materials or plastic and metal for stabilizing the backing pad member 9 it could be possible to introduce a metal support structure into the backing pad member 9 during the moulding process for manufacturing it. This metal inlay could form at least part of the recess member 17 .
  • the axial holding arrangement for securing the backing pad member 9 to the protrusion member 16 of the tool-connection arrangement 12 in an axial direction essentially parallel to the rotational axis 13 of the backing pad member 9 comprises a securing screw 31 having a threaded shaft 32 and a screw head 33 .
  • the shaft 32 may be inserted from the bottom of the backing pad member 9 into a through hole 34 provided in the backing pad member 9 along its rotational axis 13 .
  • a recessed portion 35 of the through hole 34 is adapted for receiving the screw head 33 .
  • the threaded shaft 32 is screwed into a threaded hole 36 provided in the protrusion member 16 of the tool-connection arrangement 12 .
  • replacement of the backing pad member 9 is rather complicated and time consuming because first the screw 31 has to be loosened and unscrewed before an old backing pad member 9 can be detached from the tool-connection arrangement 12 and then the screw 31 has to be rescrewed and tightened again after a new backing pad member 9 has been attached to the tool-connection arrangement 12 .
  • the present invention suggests a magnetic axial holding arrangement for securing the backing pad member 9 in the form fit connection in respect to the protrusion member 16 of the tool-connection arrangement 12 by means of magnetic force.
  • the recess member 17 of the backing pad member 9 is connected to the protrusion member 16 of the tool-connection arrangement 12 in a torque proof manner by means of the form fit connection.
  • the form fit connection acts in a plane extending essentially perpendicular to the rotational axis 13 of the backing pad member 9 .
  • the form fit connection 16 , 17 is releasable in an axial direction only.
  • the backing pad member 9 is held within the form fit connection 16 , 17 in respect to the protrusion member 16 in the axial direction by means of magnetic force. Additional force for holding the backing pad member 9 within the form fit connection 16 , 17 in the axial direction may be applied by means of an additional snapping or clinching mechanism (not shown). Preferred embodiments of the invention are shown in FIGS. 6 to 17 .
  • At least one permanent magnet 40 is provided within or attached to the backing pad member 9 (see FIGS. 8-10 ), preferably near or inside the recess member 17 of the backing pad-connection arrangement 15 .
  • one permanent magnet 40 is provided in a bottom surface of the recess member 17 of the backing pad-connection arrangement 15 .
  • at least one ferromagnetic element 41 or further permanent magnet is provided within or attached to the protrusion member 16 (see FIGS. 6 and 7 ) of the tool-connection arrangement 12 .
  • the protrusion member 16 of the tool-connection arrangement 12 is made of iron (Fe) or steel and constitutes the ferromagnetic element 41 .
  • FIGS. 8 to 10 only one permanent magnet 40 and one corresponding ferromagnetic element 41 or further permanent magnet is provided in the magnetic axial holding arrangement (see FIG. 13 ).
  • the number of permanent magnets 40 and corresponding ferromagnetic elements 41 or further permanent magnets may vary (see FIGS. 14 to 16 ).
  • a plurality of, preferably four, permanent magnets 40 are located in the recess member 17 around and equidistant to the rotational axis 13 of the backing pad member 9 , with neighbouring permanent magnets 40 having opposite polarities.
  • the plurality of permanent magnets 40 are located such that neighbouring permanent magnets 40 are in direct lateral abutment with one another (see FIGS. 14 and 16 ). In FIGS. 14 and 16 the plurality of permanent magnets 40 are located in direct contact with one another along the rotational axis 13 of the backing pad member 9 .
  • the plurality of permanent magnets 40 may each have the form of a triangle, preferably an isosceles triangle, wherein the triangles are dimensioned such that the sum of the vertex angles of all triangles is 360° (not shown). Hence, if four triangular permanent magnets 40 are provided they each have a vertex angle of 90°. Correspondingly, six permanent magnets 40 would have a vertex angle of 60°.
  • the plurality of permanent magnets 40 may each have the form of a rectangle, preferably of a square (see FIG. 16 ).
  • the plurality of permanent magnets 40 each have the form of a circular sector, wherein the circular sectors are dimensioned such that the circular sectors of all permanent magnets 40 together form a circle (see FIG. 14 ).
  • the form and dimensions of the ferromagnetic elements 41 or further permanent magnets correspond to the form of the respective permanent magnets 40 .
  • the at least one permanent magnet 40 is provided at the protrusion member 16 of the tool-connection arrangement 12
  • the at least one ferromagnetic element 41 or the further permanent magnet is provided in the recess member 17 of the backing pad-connection arrangement 15 .
  • the backing pad member 9 had an insert made of iron or steel (e.g. see FIG. 12 ) which makes part of or defines the recess member 17
  • the metal insert itself could constitute the ferromagnetic element 41 .
  • conventional backing pad members 9 could be used with the power tool 1 according to the present invention with at least one permanent magnet 40 located at the protrusion member 16 of the tool-connection arrangement 12 .
  • torque may be transmitted in a plane essentially perpendicular in respect to the rotational axis 13 by means of a mechanical form fit connection and the backing pad member 9 is held in an axial direction essentially parallel to the rotational axis 13 by magnetic force.
  • the invention has the further advantage that the backing pad member 9 as well as the tool-connection arrangement 12 can be embodied much less complicated.
  • the through hole 34 and the recess 35 for the securing screw 31 in the backing pad 9 there is no need for the threaded hole 36 for the securing screw 31 in the protrusion member 16 of the tool-connection arrangement 12 .
  • detachment and attachment of the backing pad member 9 can be achieved by an operator of the power tool 1 without him having to take off working or safety gloves and without the need for specific tools for actuating separate mechanical axial holding arrangements such as a securing screw 31 .
  • the securing of the backing pad member 9 to the rest of the power tool 1 still works very safely and reliably even if abrasive dust and other small debris particles enter between the backing pad-connection arrangement 15 and the tool-connection arrangement 12 .
  • a protective cover sheet 42 may be provided, which is located between the at least one permanent magnet 40 and the respective part of the protrusion member 16 when establishing the axial attachment of the backing pad-connection arrangement 15 to the tool-connection arrangement 12 (see FIG. 10 ).
  • the cover sheet 42 is made of a material having damping characteristics such as plastic or rubber.
  • the cover sheet 42 could also be made of some ferromagnetic material having the advantage that the magnetic forces from the permanent magnet 40 are better transmitted towards the tool-connection arrangement 12 resulting in a higher magnetic force acting on the ferromagnetic element 41 .
  • the cover sheet 42 could also comprise more than one layer, the various layers preferably made of different materials, such as a first very thin layer made of plastic or rubber on top of the permanent magnet 40 and a second layer made of strong and resistant metal on top of the first layer.
  • FIGS. 11 and 12 show the tool-connection arrangement 12 and the backing pad-connection arrangement 15 in further detail.
  • the protrusion member 16 with its outer circumferential walls 19 is shown in FIG. 11 .
  • the recess member 17 with its inner circumferential walls 18 located at the top surface 9 b of the backing pad member 9 is shown in FIG. 12 . It can be clearly seen that the protrusion member 16 as well as the recess member 17 have a circumferential contour, which is rotationally asymmetric (non-circular) in respect to the rotational axis 13 in order to provide for a torque proof connection.
  • the outer circumferential contours of the protrusion member 16 and the recess member 17 correspond to each other in terms of allowing introduction and a precise fitting of the protrusion member 16 in the recess member 17 .
  • the form fit connection between the protrusion member 16 and the recess member 17 is such that the outer and inner walls 19 , 18 abut against each other with their entire surfaces when the protrusion member 16 is inserted into the recess member 17 .
  • the form fit connection between the protrusion member 16 and the recess member 17 is releasable in the axial direction.
  • magnetic force is used.
  • the metal insert of the backing pad-connection arrangement 15 is made of permanent magnetic material thereby constituting the permanent magnet 40 .
  • the at least one permanent magnet 40 is located in the bottom surface of the recess member 17 .
  • the backing pad-connection arrangement 15 visible on the top surface 9 b of the backing pad member 9 may be covered with a protective sheet material such as plastic or rubber (not shown).
  • the backing pad-connection arrangement 15 comprises a metal insert member forming the recess member 17 and having an inner circumferential wall 18 , which in the plane extending perpendicular to the rotational axis 13 of the backing pad member 9 comprises two opposing arc shaped sections 18 a of a circle with the rotational axis 13 running through the circle's centre.
  • the arc shaped sections 18 a are interconnected by two opposing straight walls 18 b running essentially parallel to one another.
  • the straight walls 18 b form two chords of the circle spaced apart from the circle's centre and both having the same length.
  • the circle has a radius of appr. 19 mm
  • the parallel straight walls 18 b are spaced appr. 17.2 mm apart.
  • the outer contour of the protrusion member 16 is shaped correspondingly (see FIG. 11 ) comprising arc shaped sections 19 a of a circle with the rotational axis 13 running through the circle's centre.
  • the arc shaped sections 19 a are interconnected by two opposing straight lines 19 b running essentially parallel to one another.
  • the outer contour of the protrusion member 16 comprises a circle with the rotational axis 13 running through the circle's centre and further two noses extending on opposite sides of the circle radially outwards, which fit into the grooves of the recess member 17 .
  • FIG. 17 A further embodiment is shown in FIG. 17 , where the recess member 17 has a hexagonal form with six straight walls 18 c of equal length and oriented at equal angles of 60° in respect to one another.
  • many other polygon forms, in particular polygons with equal side lengths are conceivable, too, e.g. a triangle, rectangle, square, pentagon, heptagon, octagon and so on.
  • the protrusion member 16 has a corresponding circumferential form, in order to allow the form fit connection between the protrusion member 16 and the recess member 17 .
  • the present invention is not limited to that kind of power tool. Rather, the invention may be realized with any type of power tool having a backing pad member 9 of any type releasably attached thereto.
  • the power tool could be an oscillating sander, where the backing pad member 9 has the form of a rectangle or triangle (see FIG. 17 ) performing a purely oscillating working movement.
  • connection arrangement provided between the backing pad 9 and the rest of the power tool 1 comprises a mechanical form fit connection for providing a torque proof connection between the protrusion member 16 of the tool-connection arrangement 12 and the recess member 17 of the backing pad-connection arrangement 15 and an axial magnetic holding arrangement comprising at least one permanent magnet 40 on the one hand and at least one ferromagnetic element 41 or at least one further permanent magnet on the other hand for holding the backing pad member 9 in the form fit connection in respect to the rest of the power tool 1 in an axial direction.
  • at least part of the axial magnetic holding arrangement is integrated in or forms part of the mechanical form fit connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

The invention refers to a plate-like backing pad member (9) for use with a hand-held and hand-guided power tool (1). The backing pad member (9) is adapted for releasable attachment to a driving shaft (27) of the power tool (1) by means of a mechanical form fit connection arrangement comprising a protrusion member (16) connected to the driving shaft (27) and a recess member (17) connected to the backing pad member (9). The form fit connection is releasable in an axial direction running parallel to a rotational axis (13) of the backing pad member (9). The protrusion member (16) is held in the axial direction within the recess member (17) by means of an axial holding arrangement. It is suggested that the axial holding arrangement comprises at least one permanent magnet (40) on the one hand and at least one ferromagnetic element (41) or at least one further permanent magnet on the other hand exerting a magnetic force for holding the protrusion member (16) in the axial direction within the recess member (17). The at least one permanent magnet (40) or the at least one ferromagnetic element (41) or the at least one further permanent magnet is located in or makes part of the recess member (17).

Description

  • The present invention refers to a plate-like backing pad member for use with a hand-held and hand-guided power tool comprising a housing with a driving motor located therein for actuating a driving shaft upon operation of the motor. The backing pad member has a rotational axis. The backing pad member is adapted for releasable attachment to the driving shaft by means of a mechanical form fit connection arrangement comprising at least one protrusion member directly or indirectly connected to the driving shaft and at least one corresponding recess member connected to the backing pad member. The protrusion member and the recess member are adapted to enter into engagement with each other in order to realize the mechanical form fit connection. The mechanical form fit connection arrangement is adapted for providing a torque proof connection between the protrusion member and the recess member in a plane extending perpendicular to the rotational axis of the backing pad member. The mechanical form fit connection arrangement is releasable in an axial direction running parallel to the rotational axis of the backing pad member. The protrusion member is held in the axial direction within the recess member by means of an axial holding arrangement.
  • Furthermore, the invention refers to a hand-held and hand-guided power tool comprising a housing with a driving motor located therein for actuating a driving shaft upon operation of the motor and further comprising a backing pad member performing a working movement about its rotational axis in a working plane extending perpendicular to its rotational axis upon actuation of the driving shaft. The backing pad member is attached to the driving shaft by means of a mechanical form fit connection arrangement comprising at least one protrusion member directly or indirectly connected to the driving shaft and at least one recess member connected to the backing pad member. The mechanical form fit connection arrangement is adapted for providing a torque proof connection between the protrusion member and the recess member in a plane extending perpendicular to the rotational axis of the backing pad member. The mechanical form fit connection arrangement is releasable in an axial direction running parallel to the rotational axis of the backing pad member.
  • The protrusion member is held in the axial direction within the recess member by means of an axial holding arrangement.
  • Power tools and backing pad members of the above-identified kind are well known in the prior art, e.g. EP 2 669 044 A1. In the prior art, the axial holding arrangement usually comprises a securing screw which is inserted from a bottom surface of the backing pad into an opening provided in the centre of the backing pad member along its rotational axis and screwed into a threaded opening located in the protrusion member. This provides for a secure attachment of the backing pad member to the rest of the power tool, in particular of the recess member to the protrusion member, in an axial direction parallel to the rotational axis of the backing pad. However, it is disadvantageous that replacement of the backing pad member is rather cumbersome and time consuming due to the fact that the securing screw has to be untightened and unscrewed, in order to allow detachment of an old backing pad member, and after attachment of a new backing pad member has to be inserted into the threaded opening, has to be screwed therein and tightened again. To this end, a special tool is required, e.g. comprising a hexagon head for insertion into an Allen® screw of the securing screw.
  • Furthermore, a similar power tool and backing pad are disclosed by DE 44 44 496 A1. This reference emanates from a power tool where a rigid polishing or abrasive disc was directly fixed to the driving shaft of the power tool by means of a clamping nut. In order to make replacement of the polishing or abrasive disc faster and easier, an additional adapter is suggested which is mounted between the driving shaft and the polishing or abrasive disc. The adapter consists of two plate-shaped parts, a first part attached to the driving shaft of the power tool in a torque proof manner and another part to which the polishing or abrasive disc is attached by means of a clamping nut. The two adapter parts may be releasably attached to one another in a torque proof manner in a plane extending perpendicular to a rotational axis of the driving shaft by means of a form fit connection. The form fit connection can be released in an axial direction parallel to the rotational axis. The two adapter parts are held together in the axial direction by means of magnetic force. The abrasive or polishing member of the known power tool performs only a purely rotational working movement.
  • The known power tool has the disadvantage that the proposed idea cannot simply be transferred to a power tool comprising a backing pad member with a flexible sheet-like polishing or abrasive material releasably attached to a bottom surface of the backing pad member because it would not be possible to provide an additional adapter of the type disclosed by the above reference between the driving shaft of the power tool and the backing pad member. The power tool disclosed by the above reference is very large, heavy, bulky and unhandy. In particular, in a power tool where the backing pad member and, hence, also the abrasive or polishing member performs a working movement comprising an orbital component (e.g. in purely orbital, random-orbital, roto-orbital or gear-driven working movements), the use of a separate adaptor would lead to considerable vibrations. Therefore, what is clearly needed is a possibility to safely and reliably attach a backing pad member performing a working movement comprising an orbital component to a power tool such that the backing pad member can be replaced or interchanged in a fast and easy way. In particular, it is an object of the invention to provide for a small, lightweight and cheap solution, preferably without an additional adapter and without having to modify existing power tools.
  • In order to solve this object, the present invention suggests a backing pad member with the features of claim 1. In particular, starting from the backing pad member of the above identified kind, it is suggested that the axial holding arrangement comprises at least one permanent magnet on the one hand and at least one ferromagnetic element or at least one further permanent magnet on the other hand exerting a magnetic force for holding the protrusion member in the axial direction within the recess member, wherein the at least one permanent magnet or the at least one ferromagnetic element or the at least one further permanent magnet is located in or makes part of the recess member.
  • Thus, an important aspect of the present invention is the idea of attaching a backing pad performing a working movement with an orbital component to a power tool by means of the mechanical form fit connection arrangement in combination with a magnetic axial holding arrangement for holding the backing pad in an axial direction. It is particularly advantageous that at least part of the magnetic axial holding arrangement is integrated into and forms part of the mechanical form fit connection arrangement. In particular, one of the components for realizing the axial magnetic holding arrangement, i.e. at least one of the permanent magnets or at least one of the ferromagnetic elements, is located in or makes part of the recess member provided on the top side of the backing pad member.
  • It is suggested that the backing pad member is made of semi-rigid plastic material. Preferably, the backing pad member has two opposing surfaces extending in parallel to each other, the surfaces comprising a first bottom surface for releasable attachment of a flexible sheet-like polishing or abrasive member by means of a hook-and-loop fastener. The opposing surfaces of the backing pad member comprise an opposite top surface with a backing pad-connection arrangement attached thereto, the backing pad-connection arrangement comprising the recess member. The top surface of the backing pad member is attached to the driving shaft of the power tool without the use of additional adapters or the like.
  • It is suggested that a metal insert making part of the backing pad-connection arrangement is moulded into the backing pad during its manufacturing allowing direct access to the backing pad-connection arrangement. Hence, the metal insert constitutes or makes part of the recess member of the backing pad member. In particular, the protrusion member attached to the distal end of the driving shaft can directly access and engage with the recess member provided on the top surface of the backing pad. The metal insert can form the at least one ferromagnetic element or the at least one further permanent magnet, which interacts with the at least one permanent magnet of the protrusion member.
  • The protrusion member can be directly attached to the driving shaft in a torque proof manner, e.g. by means of a threaded connection. However, the protrusion member could also be indirectly attached to driving shaft, e.g. by means of a tool-connection arrangement. The tool-connection arrangement can be directly attached to the driving shaft in a torque proof manner, e.g. by means of a threaded connection. The protrusion member can be connected to the tool-connection arrangement in a freely rotatable manner, e.g. guided in one or more bearings of the tool-connection arrangement. In this manner, a random orbital working movement of the backing pad member can be achieved. It is also possible that the tool-connection arrangement comprises a gear mechanism for realizing a forced rotation of the protrusion member depending on the rotation of the tool-connection arrangement about the rotational axis of the driving shaft. In this manner, a roto-orbital (or gear driven) working movement of the backing pad member can be achieved.
  • Furthermore, the proposed backing pad allows the continuous use of conventional power tools with conventional tool-connection arrangements and protrusion members provided at the distal end of the tool's driving shaft. The recess members are formed at least in part by the metal insert moulded into the top surface of the backing pad during its manufacturing. The engagement of the protrusion member with a corresponding recess member provides for a form fit connection between the two members. In the axial direction running parallel to the rotational axis of the backing pad, the backing pad is held by magnetic force in respect to the rest of the power tool. To this end the backing pad can be provided with at least one permanent magnet adapted for interacting with at least one respective ferromagnetic element or further permanent magnet of opposite polarity provided in the rest of the tool, in particular in the protrusion member. Preferably, the protrusion member itself forms a ferromagnetic element with which the at least one permanent magnet provided in the recess interacts. The magnetic force acting between the backing pad and the rest of the power tool, in particular between the protrusion member and the recess member, prevents an unintentional release of the backing pad from the protrusion member. So instead of securing screws or similar mechanical holding arrangements, the present invention uses the magnetic force of a magnetic holding arrangement for securing the backing pad to the rest of the power tool, in particular to the protrusion member.
  • The power tool with the backing pad and the flexible sheet-like polishing or abrasive pad is also referred to as a polisher or a sander, which is often used for working vehicle, boat or ship bodies. Depending on the type of gear arrangement provided between the motor and the backing pad, the backing pad may perform a purely rotational, a purely orbital, a random-orbital or a roto-orbital (gear driven) working movement. In a top view the backing pad member preferably has a circular form and in a sectional view an isosceles trapezoid form with the top surface being smaller than the bottom surface and the top and the bottom surfaces being connected by means of an inclined external wall section. Such a circular backing pad preferably is driven in a manner to perform a random orbital or roto-orbital (gear driven) working movement. Alternatively, in a top view the backing pad member may also have a triangle form, preferably with the sides of the triangle slightly convexly arched to the outside. Such a triangular backing pad preferably is driven in a manner to perform a purely orbital movement. Of course, the backing pad may have any other desired form, too.
  • Preferably, the recess member in the plane extending perpendicular to the rotational axis of the backing pad member has a circumferential form comprising two opposing arc shaped sections of a circle with the rotational axis running through the circle's centre and further comprising two opposing straight walls running essentially parallel to one another and interconnecting the arc shaped sections. Alternatively, it is suggested that the recess member in the plane extending perpendicular to the rotational axis of the backing pad member has a circumferential form comprising a circle with the rotational axis running through the circle's centre and further comprising two grooves extending on opposite sides of the circle radially outwards.
  • According to a preferred embodiment of the present invention it is suggested that a plurality of, preferably four, permanent magnets are located in the recess member around and equidistant to the rotational axis of the backing pad member, with neighbouring permanent magnets having opposite polarities. In such a manner the magnetic force used for holding the recess member of the backing pad in the protrusion member of the rest of the tool, can be increased considerably. The increase is not simply a result of the greater number of permanent magnets but rather a combination with the advantageous flow of the magnetic flux due to the opposite polarities of neighbouring magnets.
  • Preferably, the plurality of permanent magnets are located such that neighbouring permanent magnets are in direct lateral abutment with one another. Further, it is suggested that the plurality of permanent magnets are located in direct contact with one another along the rotational axis of the backing pad member.
  • The permanent magnets may have any desired form. However, it was found that certain forms of permanent magnets have advantages over other forms in terms of compact arrangement in the recess member and/or higher overall magnetic force. Preferably, the plurality of permanent magnets each have the form of a triangle, in particular an isosceles triangle, and the triangles are dimensioned such that the sum of the vertex angles of all triangles is 360°. Alternatively, the plurality of permanent magnets each may have the form of a circular sector, and the circular sectors are dimensioned such that the circular sectors of all permanent magnets together form a circle.
  • It is further suggested that the recess member of the backing pad-connection arrangement has a bottom surface in which the at least one permanent magnet is located adapted for interacting with at least one ferromagnetic element or at least one further permanent magnet attached to or making part of the protrusion member of the tool-connection arrangement, wherein the at least one permanent magnet is located in the bottom surface of the recess member facing the at least one ferromagnetic element or further permanent magnet after insertion of the protrusion member into the recess member. Of course, it would also be possible to locate the at least one ferromagnetic element or further permanent magnet in the bottom surface of the recess member. In that case the at least one first permanent magnet would be attached to or make part of the protrusion member. The integration of the at least one permanent magnet or of the at least one ferromagnetic element or of the at least one further permanent magnet into the recess member allows a very small and compact design of the connection arrangement provided between the backing pad member and the tool-connection arrangement. Furthermore, metal parts of the tool-connection arrangement or the backing pad-connection arrangement can be used as the at least one ferromagnetic element, thereby reducing the overall number of separate parts necessary for realising the connection arrangement.
  • Even if during intended use of the power tool a force is applied to a side region of the first surface of the backing pad member carrying the polishing or abrasive member in a distance to the rotational axis of the backing pad member, the backing pad member will not be tilted and detached from the tool-connection arrangement due to the strong magnetic force acting directly in the region of the mechanical form fit connection arrangement. The risk of tilting and detachment of the backing pad from the tool-connection arrangement due to excessive force on the side region of the first surface of the backing pad member can be reduced, if the lateral internal side walls of the recess member and the corresponding lateral external side walls of the protrusion member, respectively, lie against each other along their entire surfaces. The risk of tilting and detachment of the backing pad from the tool-connection arrangement due to excessive force on the side region of the backing pad member can be further reduced, if the lateral internal side walls of the recess member and the corresponding lateral external side walls of the protrusion member, respectively, have a sufficiently long axial extension. This prevents the backing pad member from being tilted about a tilting axis running essentially perpendicular to the rotational axis of the backing pad member, when attached to the tool-connection arrangement; the backing pad member can only be disconnected from the tool-connection arrangement in the axial direction.
  • Despite the safe and reliable attachment of the backing pad member to the rest of the power tool, the backing pad member can be easily and quickly removed from the rest of the power tool by simply holding the backing pad member in one hand and the rest of the power tool in the other hand and by applying a force in the axial direction along the rotational axis of the backing pad member pulling them apart thereby overcoming the magnetic force acting between them. No additional tools are required, no threaded connections have to be loosened and fastened and the operator of the power tool can keep on his working or safety gloves throughout the entire process of detachment of a backing pad from the power tool and attachment of an alternative backing pad. Finally, the attachment of the backing pad to the tool-connection arrangement proposed by the present invention is particularly advantageous in the rough and dirt laden environment of vehicle and boat detailing centres, vehicle body shops and shipyards, where the power tool according to the present invention is often used. Dust and other small debris particles cannot significantly impair the magnetic forces acting between the backing pad member and the rest of the power tool and, therefore, even with some dust and other small debris particles located between the backing pad member and the rest of the power tool, a safe and secure attachment of the backing pad member to the rest of the power tool in the axial direction can be achieved. This is usually not the case with the conventional mechanical axial holding arrangements.
  • Preferred embodiments of the present invention are the subject of the dependent claims.
  • Further features and advantages of the present invention can be taken from the figures and the following detailed description. The figures show:
  • FIG. 1 a power tool according to the present invention in a preferred embodiment in a perspective view;
  • FIG. 2 the power tool of FIG. 1 in a sectional schematic view;
  • FIG. 3 a first type of tool-connection arrangement of a conventional power tool known in the art;
  • FIG. 4 a second type of tool-connection arrangement of a conventional power tool known in the art;
  • FIG. 5 a backing pad member of a conventional power tool known in the art;
  • FIG. 6 a first type of tool-connection arrangement of a power tool according to the present invention;
  • FIG. 7 a second type of tool-connection arrangement of a power tool according to the present invention;
  • FIG. 8 a first type of backing pad member according to the present invention connected to a tool-connection arrangement of FIG. 6;
  • FIG. 9 the first type of backing pad member according to the present invention connected to a tool-connection arrangement of FIG. 7;
  • FIG. 10 a second type of backing pad member according to the present invention;
  • FIG. 11 a tool-connection arrangement about to be connected to a backing pad-connection arrangement according to the present invention;
  • FIG. 12 a top view on a backing pad and its backing pad connection arrangement according to the present invention;
  • FIG. 13 a first embodiment of a magnetic axial holding arrangement;
  • FIG. 14 a second embodiment of a magnetic axial holding arrangement;
  • FIG. 15 a third embodiment of a magnetic axial holding arrangement;
  • FIG. 16 a fourth embodiment of a magnetic axial holding arrangement; and
  • FIG. 17 a third type of backing pad member according to the present invention adapted for connection to a hexagonal protrusion member of a tool-connection arrangement.
  • In FIG. 1 an example of a hand-guided and hand-held motor driven power tool according to the present invention is designated with reference sign 1 in its entirety. In this embodiment the power tool 1 is embodied as a random orbital polisher. The polisher 1 has a housing 2, essentially made of plastic material. The housing 2 has a handle 3 at its rear end and a grip 4 at its front end. An electric power supply line 5 with an electric plug at its distal end exits the housing 2 at the rear end of the handle 3. At the bottom side of the handle 3 a switch 6 is provided for turning on and off the power tool 1. The switch 6 can be continuously held in its activated position by means of a push button 7. The power tool 1 can be provided with speed adjustment means 10 (e.g. a knurled wheel) for adjusting the rotational speed of the tool's motor. The housing 2 can be provided with cooling openings 8 for allowing heat from electronic components and/or the electric motor both located inside the housing 2 to dissipate into the environment and for allowing cooling air to enter the housing 2.
  • As can be seen from FIG. 2, the power tool 1 has an electric motor 11 located inside the housing 2 for driving a tool-connection arrangement 12 having a protrusion member 16 protruding from the housing 2 and a plate-like backing pad member 9 releasably attached thereto. Of course, the power tool 1 according to the present invention could also be equipped with a pneumatic motor, which is especially advantageous in explosive environments, where sparks from an electric motor could provoke an explosion of an explosive mixture (e.g. oxygen and very fine dust) contained in the environment. In that case, the power tool 1 would be connected to a compressed-air line instead of the electric cable 5. Furthermore, instead of the connection of the power tool 1 to a mains power supply by means of the electric cable 5, the power tool 1 could alternatively be equipped with a rechargeable battery (not shown) located inside the housing 2. In that case the electric energy for driving the electric motor 11 and for other electronic components would be provided by the battery.
  • The backing pad member 9 is rotatable about a rotational axis 13. In this embodiment it performs a random-orbital working movement. However, to those skilled in the art it is clear that the backing pad 9 could also perform any other type of working movement, e.g. a purely orbital or a roto-orbital (gear driven) working movement. The backing pad member 9 has two opposing surfaces, a first bottom surface 9 a for releasable attachment of a flexible sheet-like polishing or abrasive member 14 (e.g. by means of hook-and-loop fastening surfaces) and an opposite top surface 9 b with a backing pad-connection arrangement 15 attached thereto. The backing pad-connection arrangement 15 may comprise a metal insert (e.g. see FIG. 12) which is moulded into the material of the backing pad member 9 and/or the backing pad arrangement 15 during its production by means of a moulding or an injection moulding process.
  • In the embodiment shown in the figures, the tool-connection arrangement 12 comprises the protrusion member 16 and the backing pad-connection arrangement 15 comprises a recess member 17. To those having skill in the art it is clear that the tool-connection arrangement 12 could also comprise the recess member and the backing pad-connection arrangement 15 could comprise the protrusion member. The tool-connection arrangement 12 and the backing pad-connection arrangement 15 constitute a connection arrangement. The protrusion member 16 and the recess member 17 are adapted for interacting with one another for releasably connecting the backing pad member 9 to the rest of the power tool 1 in a torque proof manner by means of a form fit connection.
  • As can be seen from FIG. 12, the recess member 17 of the connection arrangement 15 has an inner circumferential wall 18 rotationally asymmetrical in respect to the rotational axis 13 of the backing pad 9. As can be seen from FIG. 11, the protrusion member 16 has an outer circumferential surface 19 rotationally asymmetrical in respect to the rotational axis 13 of the backing pad 9. The protrusion member 16 and the recess member 17 are adapted for entering into mutual engagement with one another in order to realize a torque-proof connection about the rotational axis 13 of the backing pad member 9. The backing pad member 9 with its recess member 17 can be detached from the protrusion member 16 in an axial direction running parallel to the rotational axis 13 of the backing pad member 9. In order to avoid unintentional detachment of the backing pad member 9, an axial holding arrangement is provided.
  • Returning now to FIG. 2, the internal components of the power tool 1 are described in more detail. The electric motor 11 is powered by electricity arriving through the electric cable 5 from a mains power supply. An electronic control unit (ECU) 20 is provided inside the housing 2 for controlling the speed of the electric motor 11 and possibly other functions of the power tool 1. The speed adjustment means 10 generate a set-point signal 21 which is forwarded to the ECU 20 for controlling the rotational speed of the motor 11. The ECU 20 generates a control signal 22 which is forwarded to the motor 11. Depending on the value of the control signal 22 the motor 11 rotates at a certain speed and actuates a motor shaft 23. A gear arrangement 24 may be located between the motor shaft 23 and the tool-connection arrangement 12 in order to reduce the rotational speed and to enhance the torque output at the tool-connection arrangement 12. A bevel gear arrangement 25 may be provided in order to translate the rotation of an intermediate shaft 26 extending in an essentially horizontal direction into the rotation of a driving shaft 27 extending in an essentially vertical direction. The bevel gear 25 is necessary for realizing angular power tools. Of course, the bevel gear arrangement 25 could also realize a translation of a rotation by different angles other than 90°. The tool-connection arrangement 12 is connected to the driving shaft 27 in a torque proof manner. Of course, in other embodiments of the invention the driving shaft 27 could be constituted by the motor shaft 23 or the intermediate shaft 26, when no gear arrangement 24 and/or no bevel gear arrangement 25 is present.
  • FIGS. 3 and 4 show two different types of tool-connection arrangements 12 for realizing a random-orbital working movement of the backing pad member 9, both types known from the prior art. In a first example according to FIG. 3 the driving shaft 27 is connected to the tool-connection arrangement 12 on the side (eccentrically) in a distance to a central axis 28 of gravity of the tool-connection arrangement 12, with the axis of gravity 28 and a rotational axis 29 of the driving shaft 27 running essentially parallel in respect to one another. The protrusion member 16 is guided freely rotatable about the rotational axis 13 in respect to the rest of the tool-connection arrangement 12. To this end, bearings 30 may be provided between the protrusion member 16 and the rest of the tool-connection arrangement 12. In this embodiment the axis of gravity 28 of the tool-connection arrangement 12 and the rotational axis 13 of the backing pad member 9 are identical.
  • According to another example shown in FIG. 4 the driving shaft 27 is connected to the tool-connection arrangement 12 in the center of gravity of the tool-connection arrangement 12, with the axis of gravity 28 and the rotational axis 29 of the driving shaft 27 being identical. Again, the protrusion member 16 is guided freely rotatable about the rotational axis 13 in respect to the rest of the tool-connection arrangement 12. In this example the axis of gravity 28 of the tool-connection arrangement 12 is located in a distance (eccentrically) to the rotational axis 13 of the backing pad member 9. In both examples the driving shaft 27 can be connected to the tool-connection arrangement 12 in a torque proof manner, for example by a threaded connection. In both examples a rotation of the driving shaft 27 about the axis 29 leads to a random-orbital working movement of the protrusion member 16 and, consequently, of the backing pad member 9 attached thereto. Despite the freely rotatable connection of the backing pad member 9 to the tool-connection arrangement 12 about its rotational axis 13, the recess member 17 of the backing pad-connection arrangement 15 is connected to the protrusion member 16 of the tool-connection arrangement 12 in a torque proof manner.
  • The flexible sheet-like polishing or abrasive member 14 is releasably attached to the bottom surface 9 a of the backing pad 9. In the case of a polishing member it may comprise but is not limited to a sponge, a microfiber, and real or synthetic lambs' wool. In the case of an abrasive member it may comprise but is not limited to a sanding paper or a sanding fabric. The sheet-like polishing or abrasive member 14 is preferably attached to the backing pad member 9 by means of a hook-and-loop fastener (or Velcro®). A first layer of the hook-and-loop fastener may be provided on the bottom surface 9 a of the backing pad 9, wherein the top surface of the sheet-like polishing or abrasive member 14 is provided with a corresponding second layer of the hook-and-loop fastener. The two layers of the hook-and-loop fastener interact with one another in order to releasably but safely fix the sheet-like polishing or abrasive member 14 to the bottom surface 9 a of the backing pad 9. Except for some aspiration openings in the backing pad member 9 and/or the sheet-like polishing or abrasive member 14, the polishing or abrasive member 14 covers the entire bottom surface 9 a of the backing pad member 9. Preferably, during intended use of the power tool 1, the entire bottom surface of the sheet-like polishing or abrasive member 14 is in contact with the surface to be worked.
  • The backing pad member 9 is preferably made of a semi-rigid material, in particular a plastic material, which on the one hand is rigid enough to carry and support the sheet-like polishing or abrasive member 14 during the intended use of the power tool 1 and to apply a force to the polishing or abrasive member 14 in a direction essentially parallel to the backing pad's rotational axis 13 and which on the other hand is flexible enough to avoid damage or scratching of the surface to be worked by the backing pad member 9 or the polishing or abrasive member 14, respectively, during the intended use of the power tool 1. The backing pad member 9 may comprise different materials e.g. having different rigidities, which are fixed together, e.g. by means of a moulding process. The different materials may comprise different plastic materials or plastic and metal. For example, for stabilizing the backing pad member 9 it could be possible to introduce a metal support structure into the backing pad member 9 during the moulding process for manufacturing it. This metal inlay could form at least part of the recess member 17.
  • According to the state of the art shown in FIG. 5, the axial holding arrangement for securing the backing pad member 9 to the protrusion member 16 of the tool-connection arrangement 12 in an axial direction essentially parallel to the rotational axis 13 of the backing pad member 9 comprises a securing screw 31 having a threaded shaft 32 and a screw head 33. After bringing the recess member 17 of the backing pad-connection arrangement 15 into engagement with the protrusion member 16 of the tool-connection arrangement 12, the shaft 32 may be inserted from the bottom of the backing pad member 9 into a through hole 34 provided in the backing pad member 9 along its rotational axis 13. At the bottom surface 9 a of the backing pad 9 a recessed portion 35 of the through hole 34 is adapted for receiving the screw head 33. The threaded shaft 32 is screwed into a threaded hole 36 provided in the protrusion member 16 of the tool-connection arrangement 12. In the prior art replacement of the backing pad member 9 is rather complicated and time consuming because first the screw 31 has to be loosened and unscrewed before an old backing pad member 9 can be detached from the tool-connection arrangement 12 and then the screw 31 has to be rescrewed and tightened again after a new backing pad member 9 has been attached to the tool-connection arrangement 12.
  • In order to overcome this drawback, the present invention suggests a magnetic axial holding arrangement for securing the backing pad member 9 in the form fit connection in respect to the protrusion member 16 of the tool-connection arrangement 12 by means of magnetic force. In particular, it is suggested that the recess member 17 of the backing pad member 9 is connected to the protrusion member 16 of the tool-connection arrangement 12 in a torque proof manner by means of the form fit connection. The form fit connection acts in a plane extending essentially perpendicular to the rotational axis 13 of the backing pad member 9. The form fit connection 16, 17 is releasable in an axial direction only. The backing pad member 9 is held within the form fit connection 16, 17 in respect to the protrusion member 16 in the axial direction by means of magnetic force. Additional force for holding the backing pad member 9 within the form fit connection 16, 17 in the axial direction may be applied by means of an additional snapping or clinching mechanism (not shown). Preferred embodiments of the invention are shown in FIGS. 6 to 17.
  • According to the invention it is suggested that at least one permanent magnet 40 is provided within or attached to the backing pad member 9 (see FIGS. 8-10), preferably near or inside the recess member 17 of the backing pad-connection arrangement 15. In the embodiments of FIGS. 8 and 9 one permanent magnet 40 is provided in a bottom surface of the recess member 17 of the backing pad-connection arrangement 15. Correspondingly, at least one ferromagnetic element 41 or further permanent magnet is provided within or attached to the protrusion member 16 (see FIGS. 6 and 7) of the tool-connection arrangement 12. In the embodiments of FIGS. 6 to 10 the protrusion member 16 of the tool-connection arrangement 12 is made of iron (Fe) or steel and constitutes the ferromagnetic element 41. This has the advantage that conventional power tools 1 and tool-connection arrangements 12 known from the prior art can be used together with the backing pad member 9 according to the present invention provided with the at least one permanent magnet 40. The at least one permanent magnet 40 on the one hand and the at least one ferromagnetic element 41 on the other hand are adapted for interacting with one another in order to exert the axial holding force.
  • In FIGS. 8 to 10 only one permanent magnet 40 and one corresponding ferromagnetic element 41 or further permanent magnet is provided in the magnetic axial holding arrangement (see FIG. 13). In a variation from what is shown in FIGS. 8 to 10 the number of permanent magnets 40 and corresponding ferromagnetic elements 41 or further permanent magnets may vary (see FIGS. 14 to 16). In particular, it is suggested there that a plurality of, preferably four, permanent magnets 40 are located in the recess member 17 around and equidistant to the rotational axis 13 of the backing pad member 9, with neighbouring permanent magnets 40 having opposite polarities. Preferably, the plurality of permanent magnets 40 are located such that neighbouring permanent magnets 40 are in direct lateral abutment with one another (see FIGS. 14 and 16). In FIGS. 14 and 16 the plurality of permanent magnets 40 are located in direct contact with one another along the rotational axis 13 of the backing pad member 9.
  • The plurality of permanent magnets 40 may each have the form of a triangle, preferably an isosceles triangle, wherein the triangles are dimensioned such that the sum of the vertex angles of all triangles is 360° (not shown). Hence, if four triangular permanent magnets 40 are provided they each have a vertex angle of 90°. Correspondingly, six permanent magnets 40 would have a vertex angle of 60°. Alternatively, the plurality of permanent magnets 40 may each have the form of a rectangle, preferably of a square (see FIG. 16). Preferably, the plurality of permanent magnets 40 each have the form of a circular sector, wherein the circular sectors are dimensioned such that the circular sectors of all permanent magnets 40 together form a circle (see FIG. 14). The form and dimensions of the ferromagnetic elements 41 or further permanent magnets correspond to the form of the respective permanent magnets 40.
  • Furthermore, it would also be possible that the at least one permanent magnet 40 is provided at the protrusion member 16 of the tool-connection arrangement 12, whereas the at least one ferromagnetic element 41 or the further permanent magnet is provided in the recess member 17 of the backing pad-connection arrangement 15. If the backing pad member 9 had an insert made of iron or steel (e.g. see FIG. 12) which makes part of or defines the recess member 17, the metal insert itself could constitute the ferromagnetic element 41. In that case, conventional backing pad members 9 could be used with the power tool 1 according to the present invention with at least one permanent magnet 40 located at the protrusion member 16 of the tool-connection arrangement 12.
  • It is understood that it would also be possible to realize the axial magnetic attachment of the backing pad member 9 to the rest of the power tool 1 by means of at least two permanent magnets of opposite polarities, one of the permanent magnets having a first polarity located in the recess member 17 of the backing pad-connection arrangement 15, and the other permanent magnet having an opposing polarity located at the protrusion member 16 of the tool-connection arrangement 12.
  • In the embodiments shown in FIGS. 6 to 10, when the backing pad member 9 is attached to the rest of the power tool 1, in particular when the protrusion member 16 of the tool-connection arrangement 12 is inserted into the recess member 17 of the backing pad-connection arrangement 15 in an axial direction, the ferromagnetic element 41 or the further permanent magnet is attracted by the permanent magnet 40 due to the magnetic force. The protrusion member 16 is tightly held in the recess member 17 in the axial direction by means of the magnetic force. No mechanical axial holding arrangement, like the securing screw 31 in the prior art, are needed for holding the backing pad 9 in an axial direction in respect to the rest of the power tool 1.
  • The present invention provides for a quick fastening and releasing mechanism for the backing pad member 9. Despite the quick attachment and detachment of the backing pad member 9, the use of magnetic force for securing the backing pad member 9 to the rest of the power tool 1 provides for a sufficiently safe and strong attachment of the backing pad member 9 to the rest of the power tool 1. The transmission of high torque values is possible, too, because the torque is transmitted by means of the form fit connection between the protrusion member 16 and the recess member 17 and the corresponding inner and outer walls 18, 19 interacting with one another. With other words, in the present invention torque may be transmitted in a plane essentially perpendicular in respect to the rotational axis 13 by means of a mechanical form fit connection and the backing pad member 9 is held in an axial direction essentially parallel to the rotational axis 13 by magnetic force.
  • Besides the possibility for quick attachment and detachment of the backing pad member 9, the invention has the further advantage that the backing pad member 9 as well as the tool-connection arrangement 12 can be embodied much less complicated. In particular, there is no need for the through hole 34 and the recess 35 for the securing screw 31 in the backing pad 9. Further, there is no need for the threaded hole 36 for the securing screw 31 in the protrusion member 16 of the tool-connection arrangement 12. Furthermore, detachment and attachment of the backing pad member 9 can be achieved by an operator of the power tool 1 without him having to take off working or safety gloves and without the need for specific tools for actuating separate mechanical axial holding arrangements such as a securing screw 31. Finally, the securing of the backing pad member 9 to the rest of the power tool 1 still works very safely and reliably even if abrasive dust and other small debris particles enter between the backing pad-connection arrangement 15 and the tool-connection arrangement 12.
  • In order to avoid damage to the at least one permanent magnet 40 when establishing the connection between the backing pad member 9 and the rest of the power tool 1, a protective cover sheet 42 may be provided, which is located between the at least one permanent magnet 40 and the respective part of the protrusion member 16 when establishing the axial attachment of the backing pad-connection arrangement 15 to the tool-connection arrangement 12 (see FIG. 10). Preferably, the cover sheet 42 is made of a material having damping characteristics such as plastic or rubber. However, the cover sheet 42 could also be made of some ferromagnetic material having the advantage that the magnetic forces from the permanent magnet 40 are better transmitted towards the tool-connection arrangement 12 resulting in a higher magnetic force acting on the ferromagnetic element 41. There could be an air gap between the at least one permanent magnet 40 and the protective cover sheet 42. The cover sheet 42 could also comprise more than one layer, the various layers preferably made of different materials, such as a first very thin layer made of plastic or rubber on top of the permanent magnet 40 and a second layer made of strong and resistant metal on top of the first layer.
  • FIGS. 11 and 12 show the tool-connection arrangement 12 and the backing pad-connection arrangement 15 in further detail. The protrusion member 16 with its outer circumferential walls 19 is shown in FIG. 11. Furthermore, the recess member 17 with its inner circumferential walls 18 located at the top surface 9 b of the backing pad member 9 is shown in FIG. 12. It can be clearly seen that the protrusion member 16 as well as the recess member 17 have a circumferential contour, which is rotationally asymmetric (non-circular) in respect to the rotational axis 13 in order to provide for a torque proof connection. It can be further clearly seen that the outer circumferential contours of the protrusion member 16 and the recess member 17 correspond to each other in terms of allowing introduction and a precise fitting of the protrusion member 16 in the recess member 17. In particular, the form fit connection between the protrusion member 16 and the recess member 17 is such that the outer and inner walls 19, 18 abut against each other with their entire surfaces when the protrusion member 16 is inserted into the recess member 17.
  • As can further be seen by FIGS. 11 and 12, the form fit connection between the protrusion member 16 and the recess member 17 is releasable in the axial direction. In order to hold the protrusion member 16 of the tool-connection arrangement 12 in the recess member 17 of the backing pad-connection arrangement 15 magnetic force is used. In the embodiment of FIGS. 11 and 12 the metal insert of the backing pad-connection arrangement 15 is made of permanent magnetic material thereby constituting the permanent magnet 40. Alternatively, the at least one permanent magnet 40 is located in the bottom surface of the recess member 17. The backing pad-connection arrangement 15 visible on the top surface 9 b of the backing pad member 9 may be covered with a protective sheet material such as plastic or rubber (not shown). The protrusion member 16 of the tool-connection arrangement 12 is made of ferromagnetic material thereby constituting the ferromagnetic element 41. After insertion of the protrusion member 16 into the recess member 17, the tool-connection arrangement 12 and the backing pad-connection arrangement 15 are tightly held together in their form fit connection in an axial direction by means of magnetic force, thereby firmly attaching the backing pad member 9 to the rest of the power tool 1.
  • In FIG. 12 it can be seen that the backing pad-connection arrangement 15 comprises a metal insert member forming the recess member 17 and having an inner circumferential wall 18, which in the plane extending perpendicular to the rotational axis 13 of the backing pad member 9 comprises two opposing arc shaped sections 18 a of a circle with the rotational axis 13 running through the circle's centre. The arc shaped sections 18 a are interconnected by two opposing straight walls 18 b running essentially parallel to one another. The straight walls 18 b form two chords of the circle spaced apart from the circle's centre and both having the same length. Preferably, the circle has a radius of appr. 19 mm, the parallel straight walls 18 b are spaced appr. 17.2 mm apart. The outer contour of the protrusion member 16 is shaped correspondingly (see FIG. 11) comprising arc shaped sections 19 a of a circle with the rotational axis 13 running through the circle's centre. The arc shaped sections 19 a are interconnected by two opposing straight lines 19 b running essentially parallel to one another.
  • Of course, the outer and inner contours of the outer and inner walls 19, 18 of the protrusion member 16 and the recess member 17 shown in FIGS. 11 and 12 are purely exemplary and may have almost any other form, too, which is rotationally asymmetric (non-circular) in respect to the rotational axis 13. According to another embodiment, the inner contour of the recess member 17 in the plane extending perpendicular to the rotational axis 13 of the backing pad member 9 comprises a circle with the rotational axis 13 running through the circle's centre and further two grooves extending on opposite sides of the circle radially outwards. Correspondingly, the outer contour of the protrusion member 16 comprises a circle with the rotational axis 13 running through the circle's centre and further two noses extending on opposite sides of the circle radially outwards, which fit into the grooves of the recess member 17. A further embodiment is shown in FIG. 17, where the recess member 17 has a hexagonal form with six straight walls 18 c of equal length and oriented at equal angles of 60° in respect to one another. Of course, many other polygon forms, in particular polygons with equal side lengths, are conceivable, too, e.g. a triangle, rectangle, square, pentagon, heptagon, octagon and so on. Of course, the protrusion member 16 has a corresponding circumferential form, in order to allow the form fit connection between the protrusion member 16 and the recess member 17.
  • Although the power tool 1 is shown as a random orbital polisher in the present embodiment, the present invention is not limited to that kind of power tool. Rather, the invention may be realized with any type of power tool having a backing pad member 9 of any type releasably attached thereto. In particular, the power tool could be an oscillating sander, where the backing pad member 9 has the form of a rectangle or triangle (see FIG. 17) performing a purely oscillating working movement.
  • Summing up, according to the present invention the connection arrangement provided between the backing pad 9 and the rest of the power tool 1 comprises a mechanical form fit connection for providing a torque proof connection between the protrusion member 16 of the tool-connection arrangement 12 and the recess member 17 of the backing pad-connection arrangement 15 and an axial magnetic holding arrangement comprising at least one permanent magnet 40 on the one hand and at least one ferromagnetic element 41 or at least one further permanent magnet on the other hand for holding the backing pad member 9 in the form fit connection in respect to the rest of the power tool 1 in an axial direction. In particular, it is suggested that at least part of the axial magnetic holding arrangement is integrated in or forms part of the mechanical form fit connection.
  • It should be understood that, unless stated otherwise herein, any of the features, characteristics, alternatives or modifications described regarding a particular embodiment herein may also be applied, used, or incorporated with any other embodiment described herein. Also, the drawing herein is not drawn to scale.
  • Although the invention has been described and illustrated with respect to exemplary embodiments thereof, the foregoing and various other additions and omissions may be made therein and thereto without departing from the spirit and scope of the present invention.

Claims (20)

1. Plate-like backing pad member (9) for use with a hand-held and hand-guided power tool (1) comprising a housing (2) with a driving motor (11) located therein for actuating a driving shaft (27) upon operation of the driving motor (11), the plate-like backing pad member (9) having a rotational axis (13), wherein the plate-like backing pad member (9) is adapted for releasable attachment to the driving shaft (27) by means of a mechanical form fit connection arrangement comprising at least one protrusion member (16) directly or indirectly connected to the driving shaft (27) and at least one recess member (17) connected to the plate-like backing pad member (9), the mechanical form fit connection arrangement being adapted for providing a torque proof connection between the at least one protrusion member (16) and the at least one recess member (17) in a plane extending perpendicular to the rotational axis (13) of the plate-like backing pad member (9), wherein the mechanical form fit connection arrangement is releasable in an axial direction running parallel to the rotational axis (13) of the plate-like backing pad member (9), wherein the at least one protrusion member (16) is held in the axial direction within the at least one recess member (17) by means of an axial holding arrangement, characterized in that the axial holding arrangement comprises at least one permanent magnet (40) and either least one ferromagnetic element (41) or at least one further permanent magnet exerting a magnetic force for holding the at least one protrusion member (16) in the axial direction within the at least one recess member (17), wherein the at least one permanent magnet (40), or the at least one ferromagnetic element (41), or the at least one further permanent magnet is located in or makes part of the at least one recess member (17).
2. The plate-like backing pad member (9) according to claim 1, wherein the plate-like backing pad member (9) has two opposing surfaces extending in parallel to each other, the surfaces comprising a first bottom surface (9 a) for releasable attachment of a sheet-like polishing or abrasive member (14) by means of a hook-and-loop fastener.
3. The plate-like backing pad member (9) according to claim 2, wherein the opposing surfaces of the plate-like backing pad member (9) comprise an opposite top surface (9 b) with a backing pad-connection arrangement (15) attached thereto, the backing pad-connection arrangement (15) comprising the at least one recess member (17).
4. The plate-like backing pad member (9) according to claim 1, wherein the plate-like backing pad member (9) is made of a semi-rigid plastic material and comprises a metal insert moulded into the plastic material during production of the plate-like backing pad member (9) by means of a moulding or an injection moulding process, the metal insert forming at least part of the at least one recess member (17) and constituting the at least one ferromagnetic element (41) or the at least one further permanent magnet.
5. The plate-like backing pad member (9) according to claim 1, wherein the at least one recess member (17) in the plane extending perpendicular to the rotational axis (13) of the plate-like backing pad member (9) has a circumferential form comprising two opposing arc-shaped sections (18 a) of a circle with the rotational axis (13) running through the centre of the circle, and the plate-like backing pad member (9) further comprising two opposing straight walls (18 b) running substantially parallel to one another and interconnecting the two opposing arc-shaped sections (18 a).
6. The plate-like backing pad member (9) according to claim 1, wherein the at least one recess member (17) in the plane extending perpendicular to the rotational axis (13) of the backing pad member (9) has a circumferential form comprising a circle with the rotational axis (13) running through the centre of the circle, and the plate-like backing pad member (9) further comprising two grooves extending on opposite sides of the circle radially outwards.
7. The plate-like backing pad member (9) according to claim 1, wherein the at least one recess member (17) in the plane extending perpendicular to the rotational axis (13) of the plate-like backing pad member (9) has a circumferential form of a polygon, including a polygon having equal side lengths, with the rotational axis (13) running through the centre of gravity of the polygon.
8. The plate-like backing pad member (9) according to claim 1, wherein a plurality of permanent magnets (40), including four permanent magnets, are located in the recess member (17) around and equidistant to the rotational axis (13) of the plate-like backing pad member (9), with neighbouring permanent magnets (40) having opposite polarities.
9. The plate-like backing pad member (9) according to claim 8, wherein the plurality of permanent magnets (40) are located so that neighbouring permanent magnets (40) are in direct lateral abutment with one another.
10. The plate-like backing pad member (9) according to claim 8, wherein the plurality of permanent magnets (40) are located in direct contact with one another along the rotational axis (13) of the plate-like backing pad member (9).
11. The plate-like backing pad member (9) according to one of the claims 8 to 10, wherein each of the plurality of permanent magnets (40) is formed as a respective triangle having a respective vertex angle, including an isosceles triangle, and wherein all triangles are dimensioned so that the sum of all vertex angles is 360°.
12. The plate-like backing pad member (9) according to claim 8, wherein each of the plurality of permanent magnets (40) is termed with a circular sector, and wherein all circular sectors are dimensioned so that all permanent magnets (40) together form a circle.
13. Hand-held and hand-guided power tool (1) comprising a housing (2) with a driving motor (11) located therein for actuating a driving shaft (27) upon operation of the driving motor (11) and further comprising a backing pad member (9) performing a working movement about its rotational axis (13) in a working plane extending perpendicular to its rotational axis (13) upon actuation of the driving shaft (27), wherein the backing pad member (9) is attached to the driving shaft (27) by means of a mechanical form fit connection arrangement comprising at least one protrusion member (16) directly or indirectly connected to the driving shaft (27) and at least one recess member (17) connected to the backing pad member (9), the mechanical form fit connection arrangement being adapted for providing a torque proof connection between the at least one protrusion member (16) and the at least one recess member (17) in a plane extending perpendicular to the rotational axis (13) of the backing pad member (9), wherein the mechanical form fit connection arrangement is releasable in an axial direction running parallel to the rotational axis (13) of the backing pad member (9), wherein the at least one protrusion member (16) is held in the axial direction within the al least one recess member (17) by means of an axial holding arrangement, characterized in that the axial holding arrangement comprises at least one permanent magnet (40) and either at least one ferromagnetic element (41) or at least one further permanent magnet exerting a magnetic force for holding the at least one protrusion member (16) in the axial direction within the at least one recess member (17), wherein at least part of the axial magnetic holding arrangement (40, 41) forms an integral part of at least part of the mechanical form fit connection arrangement (16, 17).
14. The hand-held and hand-guided power tool (1) according to claim 13, wherein the at least one permanent magnet (40), or the at least one ferromagnetic element (41), or the at least one further permanent magnet is located in or makes part of the at least one recess member (17).
15. The hand-held and hand-guided power tool (1) according to claim 13, wherein the at least one ferromagnetic element (41), or the at least one further permanent magnet, or the at least one permanent magnet (40) is attached to or makes part of the at least one protrusion member (16).
16. The hand-held and hand-guided power tool (1) according to claim 13, wherein the protrusion member (16) in the plane extending perpendicular to the rotational axis (13) of the backing pad member (9) has a circumferential form corresponding to the circumferential form of the at least one recess member (17).
17. The plate-like backing pad member (9) according to claim 2, wherein the plate-like backing pad member (9) is made of a semi-rigid plastic material and comprises a metal insert moulded into the plastic material during production of the plate-like backing pad member (9) by means of a moulding or an injection moulding process, the metal insert forming at least part of the at least one recess member (17) and constituting the at least one ferromagnetic element (41) or the at least one further permanent magnet.
18. The plate-like backing pad member (9) according to claim 2, wherein the at least one recess member (17) in the plane extending perpendicular to the rotational axis (13) of the plate-like backing pad member (9) has a circumferential form comprising two opposing arc-shaped sections (18 a) of a circle with the rotational axis (13) running through the centre of the circle, and the plate-like backing pad member (9) further comprising two opposing straight walls (18 b) running substantially parallel to one another and interconnecting the two opposing arc-shaped sections (18 a).
19. The plate-like backing pad member (9) according to claim 2, wherein the at least one recess member (17) in the plane extending perpendicular to the rotational axis (13) of the backing pad member (9) has a circumferential form comprising a circle with the rotational axis (13) running through the centre of the circle, and the plate-like backing pad member (9) further comprising two grooves extending on opposite sides of the circle radially outwards.
20. The plate-like backing pad member (9) according to claim 2, wherein the at least one recess member (17) in the plane extending perpendicular to the rotational axis (13) of the plate-like backing pad member (9) has a circumferential form of a polygon, including a polygon having equal side lengths, with the rotational axis (13) running through the centre of gravity of the polygon.
US16/251,388 2018-02-06 2019-01-18 Hand-held and hand-guided power tool having a working element releasably attached thereto, and working element in the form of a backing pad for such a power tool Pending US20190240798A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP18155369.4 2018-02-06
EP18155369.4A EP3520960B1 (en) 2018-02-06 2018-02-06 Hand-held and hand-guided power tool comprising a working element releasably attached thereto and working element in the form of a backing pad for such a power tool
EP18186573.4A EP3520962B1 (en) 2018-02-06 2018-07-31 Hand-held and hand-guided power tool comprising a working element releasably attached thereto and working element in the form of a backing pad for such a power tool
EP18186573.4 2018-07-31

Publications (1)

Publication Number Publication Date
US20190240798A1 true US20190240798A1 (en) 2019-08-08

Family

ID=61168011

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/251,388 Pending US20190240798A1 (en) 2018-02-06 2019-01-18 Hand-held and hand-guided power tool having a working element releasably attached thereto, and working element in the form of a backing pad for such a power tool

Country Status (3)

Country Link
US (1) US20190240798A1 (en)
EP (2) EP3520960B1 (en)
CN (1) CN110116354B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200189065A1 (en) * 2018-10-29 2020-06-18 Guido Valentini Hand-held and hand-guided random orbital polishing or sanding power tool
USD946370S1 (en) * 2018-10-29 2022-03-22 Lake Country Manufacturing, Inc. Abrading, buffing and finishing spherocylinder
JP2022151769A (en) * 2021-03-23 2022-10-07 ヴァレンティーニ アンドレア Plate-like backing pad adapted for releasable attachment to a hand-held polishing or sanding power tool
EP4368350A1 (en) * 2022-11-08 2024-05-15 Andrea Valentini Hand-held electric polishing or sanding power tool

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3854523A1 (en) 2020-01-23 2021-07-28 Guido Valentini Functional unit for a hand-guided power tool and power tool with such a functional unit
EP3854526A1 (en) * 2020-01-23 2021-07-28 Guido Valentini Protective shroud for a hand-guided power tool and hand-guided power tool with such a protective shroud
EP3967457B1 (en) * 2020-09-10 2024-03-20 Guido Valentini Hand-guided battery-operated electric power tool
AT18203U1 (en) * 2023-09-08 2024-05-15 Invicon Chemical Solutions Gmbh Vibration grinder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040340A (en) * 1990-08-29 1991-08-20 Marshco Products, Inc. Random orbital sander adapter
US6394887B1 (en) * 1999-04-19 2002-05-28 Stillman Eugene Edinger Apparatus for use with automated abrading equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3162876A (en) * 1962-12-14 1964-12-29 Ronson Corp Coupling arrangement for polishing machine
DE4444496C2 (en) 1994-12-14 1999-01-14 Metec Cnc Praezisionsteile Gmb Adapter for connecting changeable tools to a working device
JPH10249698A (en) * 1997-03-17 1998-09-22 Takasaki Tetsudo Seibi Kk Handy polisher for corner
DE29923017U1 (en) * 1999-12-30 2000-02-24 Koenig J Gmbh & Co Werkzeugfab Device for releasably attaching a grinding wheel to a grinding machine
CN101365368A (en) * 2005-10-31 2009-02-11 J·J·奥斯本 Snap-ring system for connecting separate components
CN200967164Y (en) * 2006-10-11 2007-10-31 李建军 Sander
US20120304841A1 (en) * 2009-06-16 2012-12-06 Bort Tracey A Spacer for Cut-Off Wheel
DE102012010828A1 (en) 2012-06-01 2013-12-05 Festool Group Gmbh & Co. Kg System with a hand machine tool and a plate tool
EP3238878A1 (en) * 2016-04-27 2017-11-01 Guido Valentini Hand held or hand guided grinding or polishing machine tool
CN206154086U (en) * 2016-09-08 2017-05-10 鼎朋企业股份有限公司 Electronic grinding machine with switching formula magnetic resistance motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5040340A (en) * 1990-08-29 1991-08-20 Marshco Products, Inc. Random orbital sander adapter
US6394887B1 (en) * 1999-04-19 2002-05-28 Stillman Eugene Edinger Apparatus for use with automated abrading equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200189065A1 (en) * 2018-10-29 2020-06-18 Guido Valentini Hand-held and hand-guided random orbital polishing or sanding power tool
USD946370S1 (en) * 2018-10-29 2022-03-22 Lake Country Manufacturing, Inc. Abrading, buffing and finishing spherocylinder
JP2022151769A (en) * 2021-03-23 2022-10-07 ヴァレンティーニ アンドレア Plate-like backing pad adapted for releasable attachment to a hand-held polishing or sanding power tool
JP7453271B2 (en) 2021-03-23 2024-03-19 ヴァレンティーニ アンドレア Plate-shaped support pad suitable for removable attachment to hand-held polishing or sanding power tools
EP4368350A1 (en) * 2022-11-08 2024-05-15 Andrea Valentini Hand-held electric polishing or sanding power tool

Also Published As

Publication number Publication date
EP3520960B1 (en) 2022-05-18
EP3520962A1 (en) 2019-08-07
CN110116354A (en) 2019-08-13
CN110116354B (en) 2022-03-18
EP3520962B1 (en) 2022-05-18
EP3520960A1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
EP3520962B1 (en) Hand-held and hand-guided power tool comprising a working element releasably attached thereto and working element in the form of a backing pad for such a power tool
ES2786188T3 (en) Apparatus for mounting / dismounting a grinding tool for grinder
US20170312877A1 (en) Hand held or hand guided grinding or polishing machine tool
US20190001459A1 (en) Polishing pad for a releasable attachment to a bottom surface of a plate-like backing pad of a power tool, backing pad and hand-held power tool
KR20090074461A (en) Attachable device for hand grinding disk
US20210229232A1 (en) Functional unit for a hand-guided power tool and power tool with such a functional unit
US20210308824A1 (en) Double-sided polishing or sanding member for attachment to a hand-guided power tool and power tool with such a polishing or sanding member
EP3736084B1 (en) Hand-held power tool for sanding or polishing a workpiece
US4311063A (en) Bearing and bearing mount and tools incorporating same
JP2019513570A (en) PORTABLE MACHINE TOOL HAVING HEAD
JP7453271B2 (en) Plate-shaped support pad suitable for removable attachment to hand-held polishing or sanding power tools
CN214519995U (en) Hand-held and/or manually operated power tool
US12005542B2 (en) Hand-held power tool for sending or polishing a workpiece
CN113146437A (en) Protective cover for a power tool of the manual type and power tool of the manual type
JP3157305U (en) Portable disc grinder
US20220072677A1 (en) Hand-guided battery-operated electric power tool
EP3597364B1 (en) Hand held or hand guided sanding or polishing power tool and backing pad for use in such a power tool
US11518000B2 (en) Backing pad,orbital sander or polisher with such a backing pad, and sheet-like sanding or polishing member for releasable attachment to such a backing pad
US20190226674A1 (en) Tool light
JPH07642U (en) Rotary grinding tool
JPH0556352U (en) Electric grinder device
JP2001225274A (en) Rotary polishing tool usable in any direction

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION