US20190232505A1 - Robotic power and signal distribution using laminated cable with separator webs - Google Patents

Robotic power and signal distribution using laminated cable with separator webs Download PDF

Info

Publication number
US20190232505A1
US20190232505A1 US16/378,745 US201916378745A US2019232505A1 US 20190232505 A1 US20190232505 A1 US 20190232505A1 US 201916378745 A US201916378745 A US 201916378745A US 2019232505 A1 US2019232505 A1 US 2019232505A1
Authority
US
United States
Prior art keywords
joint
cable
sub
cables
relative motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/378,745
Inventor
Michael Sussman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rethink Robotics Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US16/378,745 priority Critical patent/US20190232505A1/en
Assigned to RETHINK ROBOTICS, INC. reassignment RETHINK ROBOTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SUSSMAN, MICHAEL
Publication of US20190232505A1 publication Critical patent/US20190232505A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0025Means for supplying energy to the end effector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20207Multiple controlling elements for single controlled element
    • Y10T74/20305Robotic arm
    • Y10T74/20311Robotic arm including power cable or connector

Definitions

  • Embodiments of the present invention generally relate to cable management and, in particular, to managing cables that traverse moving robot joints.
  • a robotic arm generally requires complex cable systems to, for example, distribute power to multiple motor-actuated joints or convey signals detected by electro-mechanical sensors placed in various locations within the joints.
  • Robotic arms that include distributed control and vision systems require additional wiring, such as Ethernet, USB, or RS-232, to link to control nodes for serial communications.
  • the cable systems passing through robotic arms must be capable of accommodating joint movements and various mechanical displacements yet remain resistant to mechanical wear.
  • a large robotic arm is centrally controlled and large bundles of cables are routed externally to the joints.
  • This approach may avoid the design difficulties of accommodating cables internally in the space-constrained package of the joints, but requires large cable loops with support structures to accommodate the motion of the robotic arm. Additionally, the externally bundled cables risk snagging the cable on an external object during joint movement.
  • Another cable-management strategy utilizes internalized cable wiring; this is sometimes used for smaller arms intended for use in proximity to human operators.
  • slip rings are used in small, compact robots to link wiring between flexible joints.
  • a highly flexible cable can be routed through the joints.
  • the highly flexible cables must be rated for millions of flex cycles before they experience mechanical wear; cable wear may result in increased electrical noise or intermittent connections.
  • approaches employing either the slip rings or the highly flexible cable are expensive and thereby increase system cost.
  • bundles of torsion-rated cables are employed and passed through the center of a robot joint in order to minimize displacement of the cables during joint movement.
  • This approach requires creation of internal spaces within the joints for the cable flexure. Additionally, large holes through the central axis of each joint are typically necessary to accommodate passage of the bundled cables and/or facilitate connection to different elements inside the joints; this approach thus typically requires more space in the joint and/or special joint configurations, thereby increasing system complexity and cost.
  • the present invention relates to systems and methods for facilitating cable passage through moving, space-constrained joints and conveying power and/or signals to various robotic joint-associated elements.
  • the systems and methods disclosed herein allow cables to be more easily connected and disconnected from the joint-associated elements without mechanically interfering with the relative motion therebetween.
  • embodiments of the present invention significantly reduce the space occupied by cables passing through robotic joints without subjecting the cables to possible damage or requiring custom support components.
  • a unitary and flat laminated cable is configured to be slack within the joint to accommodate the relative motion of the joint mechanical elements.
  • the laminated cable typically includes multiple “sub-cables” that are attached to the cable and individually insulated, but which are also separable from the other sub-cables.
  • some of the sub-cables are separated from the main laminated cable and electrically connected to joint-associated components that are located at various positions for conveying signals and power thereto.
  • the separated sub-cables which are individually insulated, provide extra degrees of freedom for the laminated cable to be flexibly accommodated within the compact joint space without interfering with the mechanical motions of joint elements or experiencing damage due to torsional or bending stress.
  • the invention pertains to an electromechanical joint for a robot.
  • the joint includes multiple mechanical elements configured to provide relative motion therebetween and one or more cables including multiple insulated sub-cables in a unitary flat configuration for conveying power and signals.
  • the cable passes through the joint and is slack within the joint to accommodate the relative motion.
  • Each of the sub-cables is insulated by an insulating divider made of, e.g., expanded Teflon and separable from all other sub-cables.
  • some the sub-cables are separated from the cable and electrically connected to one or more joint-associated components for conveying signals and power thereto without mechanically interfering with relative motion between mechanical elements of the joint.
  • the joint-associated component may be a sensor for detecting relative motion between two or more mechanical elements.
  • all of the sub-cables are physically accessible for removal from the cable and connection to a spatially separate location along one or more portions of the cable.
  • the invention in a second aspect, relates to a method of conveying power and signals in a robotic system that includes a joint having multiple mechanical elements configured for relative motion therebetween. Passing through the joint are one or more cables including multiple insulated sub-cables in a unitary flat configuration for conveying power and signals.
  • the cable may be slack within the joint to accommodate the relative motion.
  • Each of the sub-cables may be insulated and separable from all other sub-cables to accommodate a space within the joint.
  • the method includes separating one or more sub-cables cable from other sub-cables by cutting along a thinned insulating divider therebetween without electrically affecting any of the sub-cables; making a mechanical and/or an electrical connection between the separated sub-cable and one or more joint-associated components for conveying signals and power thereto; conveying signals and power via the sub-cables; and causing relative motion between mechanical elements of the joint.
  • the cable and the connected sub-cables do not mechanically interfere with the relative motion.
  • one or more joint-associated components are spatially separated from the joint. All of the sub-cables are physically accessible for removal from the cable and connection to a spatially separate location along one or more portions of the cable.
  • the term “approximately” means ⁇ 10%, and in some embodiments, ⁇ 5%.
  • Reference throughout this specification to “one example,” “an example,” “one embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the example is included in at least one example of the present technology.
  • the occurrences of the phrases “in one example,” “in an example,” “one embodiment,” or “an embodiment” in various places throughout this specification are not necessarily all referring to the same example.
  • the particular features, structures, routines, steps, or characteristics may be combined in any suitable manner in one or more examples of the technology.
  • the headings provided herein are for convenience only and are not intended to limit or interpret the scope or meaning of the claimed technology.
  • FIG. 1A is a perspective view of a robotic subsystem including a bend joint and a twist joint;
  • FIG. 1B depicts a laminated cable conveying power and/or signals to joints and joint-associated elements
  • FIGS. 2A and 2B are a top view and a cross-sectional view of the laminated cable, respectively.
  • FIG. 3 depicts the laminated cable connected between two joints and a robotic component located outside the joints.
  • FIG. 1A which illustrates a portion 100 of a robotic system having multiple types of joints, in particular a bend joint 110 and a twist joint 120 .
  • Each joint may have different characteristics, freedom of movement (e.g., range of motion or degrees of freedom), and/or package space; therefore, cables passing through the joints generally require special designs adapted to the particular joint type.
  • a clock-spring system including a cable wound spirally in a space between two cylinders of the joint may be utilized to pass the cable through the joint with reduced cable length, system weight and cost; see, e.g., U.S. Ser. No. 13/446,585, filed on Apr. 13, 2012, the entire disclosure of which is hereby incorporated by reference.
  • the wired cable 130 distributes power to, for example, multiple motor-actuated joints 132 , 134 (which are spatially distributed) and conveys digital and/or analog signals between joint-associated elements 140 , 142 (e.g., electro-mechanical sensors 140 or control circuitry 142 ) that are placed in various locations in physical proximity to and/or connection with the joints.
  • the cable 130 transmits signals from a central controller 144 to the joints 132 , 134 , 136 , 138 and the joint-associated elements 140 , 142 .
  • FIGS. 2A and 2B depict a top view and a cross-sectional view, respectively, of a unitary laminated cable 210 in accordance with embodiments of the present invention.
  • the cable 210 is configured in a flat and thin shape to reduce space consumption, afford flexibility, and simplify cable routing in the joints.
  • the flat and thin cable 210 may be inherently flexible and installed with enough slack to tolerate stresses applied thereto without experiencing significant mechanical wear.
  • the laminated cable 210 includes multiple sub-cables 212 , 214 , 216 , 218 , 220 , 222 , 224 ; each sub-cable conveys power or a signal.
  • sub-cables 212 , 214 , 216 , 218 transmit a torque-sensing signal, a safety-control signal, a cat 5-e (i.e., Ethernet) signal, and a USB signal, respectively;
  • sub-cables 220 , 222 , 224 are identical, each carrying system supply power and return power.
  • sub-cable 212 transmits the torque-sensing signals and may include three conductors 230 ; similarly, sub-cable 214 transmits the safety-control signals may include two conductors 232 .
  • Sub-cables 216 , 218 that convey serial communications, such as USB and Ethernet signals, may include one or two twisted pairs of conductors 234 , 236 , 238 with a characteristic impedance of approximately 100 ⁇ .
  • Each conductor in the sub-cables is surrounded by an insulating material (e.g., expanded Teflon); the insulated conductors may be enclosed by a shielding conductive layer 240 for reducing electronic noise generated from other sub-cables and electromagnetic radiation that may interfere with other devices.
  • the shielding conductive layer 240 is then covered by another layer of insulating material.
  • the shielding conductive layer 240 is made of copper, aluminum, conducting polymer or other conductive materials.
  • finely stranded, plated copper conductors form a spiral sheath in two counter-wound layers.
  • Sub-cables 220 , 222 , 224 that distribute power to the joints and/or joint-associated elements and carry power returned therefrom may include a pair of conductors 242 , 244 , 246 insulated but inseparable from one another; because these insulated conductors do not convey signals; they may or may not be shielded with a conductive layer.
  • an insulating divider 250 is employed between two sub-cables such that a part of each sub-cable can be easily “stripped off” from the other sub-cables; the insulating divider can be cut away without damaging the insulating material surrounding the conductive layers 240 of the sub-cables.
  • the insulating divider 250 may be made of, for example, expanded Teflon, or other materials suitable for insulation but soft enough to be easily cut apart.
  • the separated sub-cables may be electronically connected to joint-associated elements (e.g., a torque sensor or a joint control electronics) located in various positions within or around the joints. Because the width of the separated sub-cables is smaller than that of the main laminated cable 210 and the length of the sub-cables that are stripped off from the main laminated cable 210 is adjustable, the separated sub-cables provide additional degrees of freedom within the compact space around the connected joint-associated elements that may have different geometries. The need for the entire cable to accommodate all electrical connections is thus avoided. The extra degrees of freedom provided by the sub-cables allow the cable 210 to pass through the joint and avoid mechanical interference therewith, without the need for extra cable length or intrinsic cable flexibility.
  • joint-associated elements e.g., a torque sensor or a joint control electronics
  • the present invention is not limited to any number or any spatial arrangement of the sub-cables of the main laminated cable; any number of sub-cables with any spatial arrangement suitable for conveying power and/or various signals are within the scope of the present invention. It should also be understood that any number and/or width of the insulating divider used to separate the sub-cables is within the scope of the present invention.
  • a length of laminated cable 300 as depicted in FIGS. 2A and 2B is utilized to convey power and signals between two joints 310 , 312 .
  • the laminated cable 300 is split into three groups 314 , 316 , 318 of sub-cables within a link 320 between two joints 310 , 321 .
  • Each group may include an integral jacket and/or an integral shield.
  • the group 314 of the sub-cables includes three sub-cables that are connected to a power source (not shown) (i.e., sub-cables 220 , 222 , 224 in FIGS.
  • the six power conductors within the three sub-cables terminate in a connector 322 , which makes contact with respective conductors of the joint-associated elements for conveying power thereto.
  • the second group 316 of the sub-cables may include, for example, one communication sub-cable (e.g., USB sub-cable) terminated at a connector 328 for conducting signals to a communication element associated with the link 320 .
  • the third group 318 may include sub-cables carrying torque-sensing, safety-control and Ethernet signals; this group of sub-cables may terminate in a connector 330 that can be plugged into a control circuit board (not shown) for controlling the movement of the joint 310 .
  • the three groups 314 , 316 , 318 of the sub-cables can be individually accommodated into the space defined by various mechanical constraints around the connected elements; this avoids over-bending or over-twisting the laminated cable 300 and/or interfering with the motion of the mechanical elements of the joint 310 .
  • the unitary flat laminated cable 300 can be split into four groups 332 , 334 , 336 , 338 of sub-cables within the link 340 between joints 312 , 341 .
  • Sub-cables in groups 332 , 334 convey signals to sub-cables 316 , 318 , respectively, in the link 340 .
  • the sub-cable 336 is split off from the sub-cables 314 and power, for example, a local element (not shown) in the link 340 using a connector 342 ; the remaining power conductors in the group 338 of sub-cables provide power to a different element (not shown) associated with the link 340 through another connector 344 .
  • the laminated cable 300 may then pass through the joints 310 , 312 and convey power and/or signals to the next joints using the approach as described above.
  • the laminated cable 300 may convey power and/or signals to robotic components that are located inside the joints 310 , 312 and carry power and/or signals therefrom.
  • the robotic components 346 , 348 located inside the joints 310 , 312 are a twist joint torque sensor and a bend joint torque sensor, respectively.
  • the sub-cable 350 that carries torque-sensing signals is separated from the laminated cable 300 along the insulating divider 250 (on each side thereof unless the sub-cable 350 is at an edge of the cable 300 ) and connects to the twist joint torque sensor 346 via a connector 352 ; this provides signal communication between the twist joint torque sensor 346 and, for example, the joint control electronics 354 or the joint actuator 324 without requiring the entirety of the cable 300 to approach or connect to the torque sensor 346 .
  • sub-cable 356 connects the bend joint torque sensor 348 to the joint control electronics 358 located adjacent to the sub-cable group 334 .
  • the separable sub-cables thus provide an approach to add or subtract power and/or signals from the laminated cable 300 at different locations that are associated with various robotic components.
  • the joint actuator 324 may be driven by the joint control electronics 354 local to the actuator 324 to minimize the number of conductors wired through the joints.
  • the joint control electronics 354 on a control board may drive two joints, each associated with a single brushless DC motor that requires ten conductors—three for the windings, five for position sensing, and two for thermal sensing.
  • four low-power Ethernet communication wires are substituted for the twenty motor actuator wires traversing the joints.
  • the separation mechanism therefore, enables sub-cables to traverse flexible portions of the joint together while terminating in different locations. For example, if a pair of joints are stacked together, sub-cables between a pair of “clock spring” laminated cables may be separated to access sensors located between the joint pairs. Additionally, the separable sub-cables may terminate and transmit separate signals and power to circuit boards located in the links 320 , 340 between joint pairs. Further, when conductors in the links 320 , 340 do not terminate in a circuit board, the sub-cables may be easily mated with a section of the joint cable that connects to the next most-distal joint pair.
  • the bulk cable 300 may be configured to accommodate joint motion via, e.g., a clock-spring deployment as described above while facilitating mechanically and spatially separate connections to the two torque sensors.
  • the mechanical configuration of the bulk cable in other words, may be adapted to accommodate a certain type of motion, and that configuration and movement accommodation are not disturbed by connections made by various ones of the sub-cables.
  • the ability to establish electrical connections is not limited by the geometry of the cable or the ability of the bulk cable to pass close to the point of connection.

Abstract

Systems and methods that facilitate cables to pass through moving, space-constrained joints and conveying power and/or signals to various robotic joint-associated elements utilize a unitary and flat laminated cable slack within the joint to accommodate the relative motion between mechanical elements of the joints. In various embodiments, the cable has multiple insulated sub-cables; each sub-cable is insulated and physically separable from all other sub-cables. Some of the sub-cables are separated from the cable and electrically connected to joint-associated components for conveying signals and power thereto without mechanically interfering with relative motion between mechanical elements of the joint.

Description

    FIELD OF THE INVENTION
  • Embodiments of the present invention generally relate to cable management and, in particular, to managing cables that traverse moving robot joints.
  • BACKGROUND
  • A robotic arm generally requires complex cable systems to, for example, distribute power to multiple motor-actuated joints or convey signals detected by electro-mechanical sensors placed in various locations within the joints. Robotic arms that include distributed control and vision systems require additional wiring, such as Ethernet, USB, or RS-232, to link to control nodes for serial communications. The cable systems passing through robotic arms must be capable of accommodating joint movements and various mechanical displacements yet remain resistant to mechanical wear.
  • Conventionally, a large robotic arm is centrally controlled and large bundles of cables are routed externally to the joints. This approach may avoid the design difficulties of accommodating cables internally in the space-constrained package of the joints, but requires large cable loops with support structures to accommodate the motion of the robotic arm. Additionally, the externally bundled cables risk snagging the cable on an external object during joint movement.
  • Another cable-management strategy utilizes internalized cable wiring; this is sometimes used for smaller arms intended for use in proximity to human operators. Typically, slip rings are used in small, compact robots to link wiring between flexible joints. Alternatively, a highly flexible cable can be routed through the joints. The highly flexible cables, however, must be rated for millions of flex cycles before they experience mechanical wear; cable wear may result in increased electrical noise or intermittent connections. In addition, approaches employing either the slip rings or the highly flexible cable are expensive and thereby increase system cost.
  • In still another approach, bundles of torsion-rated cables are employed and passed through the center of a robot joint in order to minimize displacement of the cables during joint movement. This approach, however, requires creation of internal spaces within the joints for the cable flexure. Additionally, large holes through the central axis of each joint are typically necessary to accommodate passage of the bundled cables and/or facilitate connection to different elements inside the joints; this approach thus typically requires more space in the joint and/or special joint configurations, thereby increasing system complexity and cost.
  • Consequently, there is a need for an approach to cable management that provides for connection among various elements associated with the robot joints without the need for extra space or expensive support components, while avoiding cable wear.
  • SUMMARY
  • In various embodiments, the present invention relates to systems and methods for facilitating cable passage through moving, space-constrained joints and conveying power and/or signals to various robotic joint-associated elements. Compared with conventional cable-management approaches, the systems and methods disclosed herein allow cables to be more easily connected and disconnected from the joint-associated elements without mechanically interfering with the relative motion therebetween. In addition, embodiments of the present invention significantly reduce the space occupied by cables passing through robotic joints without subjecting the cables to possible damage or requiring custom support components. In a representative embodiment, a unitary and flat laminated cable is configured to be slack within the joint to accommodate the relative motion of the joint mechanical elements. The laminated cable typically includes multiple “sub-cables” that are attached to the cable and individually insulated, but which are also separable from the other sub-cables. In one implementation, some of the sub-cables are separated from the main laminated cable and electrically connected to joint-associated components that are located at various positions for conveying signals and power thereto. The separated sub-cables, which are individually insulated, provide extra degrees of freedom for the laminated cable to be flexibly accommodated within the compact joint space without interfering with the mechanical motions of joint elements or experiencing damage due to torsional or bending stress.
  • Accordingly, in one aspect, the invention pertains to an electromechanical joint for a robot. The joint includes multiple mechanical elements configured to provide relative motion therebetween and one or more cables including multiple insulated sub-cables in a unitary flat configuration for conveying power and signals. In various embodiments, the cable passes through the joint and is slack within the joint to accommodate the relative motion. Each of the sub-cables is insulated by an insulating divider made of, e.g., expanded Teflon and separable from all other sub-cables. In one embodiment, some the sub-cables are separated from the cable and electrically connected to one or more joint-associated components for conveying signals and power thereto without mechanically interfering with relative motion between mechanical elements of the joint.
  • The joint-associated component may be a sensor for detecting relative motion between two or more mechanical elements. In some embodiments, all of the sub-cables are physically accessible for removal from the cable and connection to a spatially separate location along one or more portions of the cable.
  • In a second aspect, the invention relates to a method of conveying power and signals in a robotic system that includes a joint having multiple mechanical elements configured for relative motion therebetween. Passing through the joint are one or more cables including multiple insulated sub-cables in a unitary flat configuration for conveying power and signals. The cable may be slack within the joint to accommodate the relative motion. Each of the sub-cables may be insulated and separable from all other sub-cables to accommodate a space within the joint. The method includes separating one or more sub-cables cable from other sub-cables by cutting along a thinned insulating divider therebetween without electrically affecting any of the sub-cables; making a mechanical and/or an electrical connection between the separated sub-cable and one or more joint-associated components for conveying signals and power thereto; conveying signals and power via the sub-cables; and causing relative motion between mechanical elements of the joint. In various embodiments, the cable and the connected sub-cables do not mechanically interfere with the relative motion.
  • In one embodiment, one or more joint-associated components are spatially separated from the joint. All of the sub-cables are physically accessible for removal from the cable and connection to a spatially separate location along one or more portions of the cable.
  • As used herein, the term “approximately” means±10%, and in some embodiments, ±5%. Reference throughout this specification to “one example,” “an example,” “one embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the example is included in at least one example of the present technology. Thus, the occurrences of the phrases “in one example,” “in an example,” “one embodiment,” or “an embodiment” in various places throughout this specification are not necessarily all referring to the same example. Furthermore, the particular features, structures, routines, steps, or characteristics may be combined in any suitable manner in one or more examples of the technology. The headings provided herein are for convenience only and are not intended to limit or interpret the scope or meaning of the claimed technology.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, with an emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the present invention are described with reference to the following drawings, in which:
  • FIG. 1A is a perspective view of a robotic subsystem including a bend joint and a twist joint;
  • FIG. 1B depicts a laminated cable conveying power and/or signals to joints and joint-associated elements;
  • FIGS. 2A and 2B are a top view and a cross-sectional view of the laminated cable, respectively; and
  • FIG. 3 depicts the laminated cable connected between two joints and a robotic component located outside the joints.
  • DETAILED DESCRIPTION
  • Refer first to FIG. 1A, which illustrates a portion 100 of a robotic system having multiple types of joints, in particular a bend joint 110 and a twist joint 120. Each joint may have different characteristics, freedom of movement (e.g., range of motion or degrees of freedom), and/or package space; therefore, cables passing through the joints generally require special designs adapted to the particular joint type. For example, a clock-spring system including a cable wound spirally in a space between two cylinders of the joint may be utilized to pass the cable through the joint with reduced cable length, system weight and cost; see, e.g., U.S. Ser. No. 13/446,585, filed on Apr. 13, 2012, the entire disclosure of which is hereby incorporated by reference. Referring to FIG. 1B, in various embodiments, the wired cable 130 distributes power to, for example, multiple motor-actuated joints 132, 134 (which are spatially distributed) and conveys digital and/or analog signals between joint-associated elements 140, 142 (e.g., electro-mechanical sensors 140 or control circuitry 142) that are placed in various locations in physical proximity to and/or connection with the joints. In one embodiment, the cable 130 transmits signals from a central controller 144 to the joints 132, 134, 136, 138 and the joint-associated elements 140, 142.
  • FIGS. 2A and 2B depict a top view and a cross-sectional view, respectively, of a unitary laminated cable 210 in accordance with embodiments of the present invention. The cable 210 is configured in a flat and thin shape to reduce space consumption, afford flexibility, and simplify cable routing in the joints. The flat and thin cable 210 may be inherently flexible and installed with enough slack to tolerate stresses applied thereto without experiencing significant mechanical wear. In various embodiments, the laminated cable 210 includes multiple sub-cables 212, 214, 216, 218, 220, 222, 224; each sub-cable conveys power or a signal. For example, sub-cables 212, 214, 216, 218 transmit a torque-sensing signal, a safety-control signal, a cat 5-e (i.e., Ethernet) signal, and a USB signal, respectively; sub-cables 220, 222, 224 are identical, each carrying system supply power and return power. As depicted in FIG. 2B, sub-cable 212 transmits the torque-sensing signals and may include three conductors 230; similarly, sub-cable 214 transmits the safety-control signals may include two conductors 232. Sub-cables 216, 218 that convey serial communications, such as USB and Ethernet signals, may include one or two twisted pairs of conductors 234, 236, 238 with a characteristic impedance of approximately 100Ω. Each conductor in the sub-cables is surrounded by an insulating material (e.g., expanded Teflon); the insulated conductors may be enclosed by a shielding conductive layer 240 for reducing electronic noise generated from other sub-cables and electromagnetic radiation that may interfere with other devices. The shielding conductive layer 240 is then covered by another layer of insulating material.
  • In one embodiment, the shielding conductive layer 240 is made of copper, aluminum, conducting polymer or other conductive materials. In some embodiments, finely stranded, plated copper conductors form a spiral sheath in two counter-wound layers. Sub-cables 220, 222, 224 that distribute power to the joints and/or joint-associated elements and carry power returned therefrom may include a pair of conductors 242, 244, 246 insulated but inseparable from one another; because these insulated conductors do not convey signals; they may or may not be shielded with a conductive layer. In some embodiments, an insulating divider 250 is employed between two sub-cables such that a part of each sub-cable can be easily “stripped off” from the other sub-cables; the insulating divider can be cut away without damaging the insulating material surrounding the conductive layers 240 of the sub-cables. The insulating divider 250 may be made of, for example, expanded Teflon, or other materials suitable for insulation but soft enough to be easily cut apart.
  • The separated sub-cables may be electronically connected to joint-associated elements (e.g., a torque sensor or a joint control electronics) located in various positions within or around the joints. Because the width of the separated sub-cables is smaller than that of the main laminated cable 210 and the length of the sub-cables that are stripped off from the main laminated cable 210 is adjustable, the separated sub-cables provide additional degrees of freedom within the compact space around the connected joint-associated elements that may have different geometries. The need for the entire cable to accommodate all electrical connections is thus avoided. The extra degrees of freedom provided by the sub-cables allow the cable 210 to pass through the joint and avoid mechanical interference therewith, without the need for extra cable length or intrinsic cable flexibility. Note that the present invention is not limited to any number or any spatial arrangement of the sub-cables of the main laminated cable; any number of sub-cables with any spatial arrangement suitable for conveying power and/or various signals are within the scope of the present invention. It should also be understood that any number and/or width of the insulating divider used to separate the sub-cables is within the scope of the present invention.
  • Referring to FIG. 3, a length of laminated cable 300 as depicted in FIGS. 2A and 2B is utilized to convey power and signals between two joints 310, 312. In one embodiment, the laminated cable 300 is split into three groups 314, 316, 318 of sub-cables within a link 320 between two joints 310, 321. Each group may include an integral jacket and/or an integral shield. The group 314 of the sub-cables includes three sub-cables that are connected to a power source (not shown) (i.e., sub-cables 220, 222, 224 in FIGS. 2A and 2B); the six power conductors within the three sub-cables terminate in a connector 322, which makes contact with respective conductors of the joint-associated elements for conveying power thereto. The second group 316 of the sub-cables may include, for example, one communication sub-cable (e.g., USB sub-cable) terminated at a connector 328 for conducting signals to a communication element associated with the link 320. The third group 318 may include sub-cables carrying torque-sensing, safety-control and Ethernet signals; this group of sub-cables may terminate in a connector 330 that can be plugged into a control circuit board (not shown) for controlling the movement of the joint 310. The three groups 314, 316, 318 of the sub-cables can be individually accommodated into the space defined by various mechanical constraints around the connected elements; this avoids over-bending or over-twisting the laminated cable 300 and/or interfering with the motion of the mechanical elements of the joint 310. Similarly, the unitary flat laminated cable 300 can be split into four groups 332, 334, 336, 338 of sub-cables within the link 340 between joints 312, 341. Sub-cables in groups 332, 334, for example, convey signals to sub-cables 316, 318, respectively, in the link 340. The sub-cable 336 is split off from the sub-cables 314 and power, for example, a local element (not shown) in the link 340 using a connector 342; the remaining power conductors in the group 338 of sub-cables provide power to a different element (not shown) associated with the link 340 through another connector 344. The laminated cable 300 may then pass through the joints 310, 312 and convey power and/or signals to the next joints using the approach as described above.
  • The laminated cable 300 may convey power and/or signals to robotic components that are located inside the joints 310, 312 and carry power and/or signals therefrom. With reference to FIG. 3, in some embodiments, the robotic components 346, 348 located inside the joints 310, 312 are a twist joint torque sensor and a bend joint torque sensor, respectively. The sub-cable 350 that carries torque-sensing signals is separated from the laminated cable 300 along the insulating divider 250 (on each side thereof unless the sub-cable 350 is at an edge of the cable 300) and connects to the twist joint torque sensor 346 via a connector 352; this provides signal communication between the twist joint torque sensor 346 and, for example, the joint control electronics 354 or the joint actuator 324 without requiring the entirety of the cable 300 to approach or connect to the torque sensor 346. Likewise, sub-cable 356 connects the bend joint torque sensor 348 to the joint control electronics 358 located adjacent to the sub-cable group 334. The separable sub-cables thus provide an approach to add or subtract power and/or signals from the laminated cable 300 at different locations that are associated with various robotic components.
  • The joint actuator 324 may be driven by the joint control electronics 354 local to the actuator 324 to minimize the number of conductors wired through the joints. For example, the joint control electronics 354 on a control board may drive two joints, each associated with a single brushless DC motor that requires ten conductors—three for the windings, five for position sensing, and two for thermal sensing. In one embodiment, four low-power Ethernet communication wires are substituted for the twenty motor actuator wires traversing the joints.
  • The separation mechanism, therefore, enables sub-cables to traverse flexible portions of the joint together while terminating in different locations. For example, if a pair of joints are stacked together, sub-cables between a pair of “clock spring” laminated cables may be separated to access sensors located between the joint pairs. Additionally, the separable sub-cables may terminate and transmit separate signals and power to circuit boards located in the links 320, 340 between joint pairs. Further, when conductors in the links 320, 340 do not terminate in a circuit board, the sub-cables may be easily mated with a section of the joint cable that connects to the next most-distal joint pair.
  • The bulk cable 300, for example, may be configured to accommodate joint motion via, e.g., a clock-spring deployment as described above while facilitating mechanically and spatially separate connections to the two torque sensors. The mechanical configuration of the bulk cable, in other words, may be adapted to accommodate a certain type of motion, and that configuration and movement accommodation are not disturbed by connections made by various ones of the sub-cables. Moreover, because all of the sub-cables are physically accessible throughout the length of the flat laminated cable 300—i.e., none are subsumed within a bundle or sheath—and may be disengaged therefrom for external connection at any arbitrary point along that length, the ability to establish electrical connections is not limited by the geometry of the cable or the ability of the bulk cable to pass close to the point of connection.
  • The terms and expressions employed herein are used as terms and expressions of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described or portions thereof. In addition, having described certain embodiments of the invention, it will be apparent to those of ordinary skill in the art that other embodiments incorporating the concepts disclosed herein may be used without departing from the spirit and scope of the invention. Accordingly, the described embodiments are to be considered in all respects as only illustrative and not restrictive.

Claims (14)

What is claimed is:
1.-8. (canceled)
9. An electromechanical joint for a robot, the joint comprising:
a plurality of mechanical elements configured for relative motion therebetween;
passing through the joint, a cable comprising a plurality of insulated sub-cables in a unitary flat configuration for conveying power and signals, wherein:
(i) the cable is slack within the joint to accommodate the relative motion;
(ii) each of the sub-cables is insulated and separable from all other sub-cables along at least a portion of a length of the cable; and
(iii) at least some of the sub-cables are only partially separated from the cable, via cuts along thinned insulating dividers disposed between the sub-cables, and the at least some of the sub-cables are electrically connected to at least one joint-associated component for conveying signals and power thereto without mechanically interfering with relative motion between mechanical elements of the joint.
10. The joint of claim 9, wherein separated lengths of at least two of the sub-cables are different from each other.
11. The joint of claim 9, wherein each of the sub-cables is separated from a neighboring sub-cable by an insulating divider that extends between and contacts the sub-cable and the neighboring sub-cable.
12. The joint of claim 11, wherein the insulating divider is made of expanded Teflon.
13. The joint of claim 11, wherein a width of the insulating divider extending between neighboring sub-cables is greater than a height of the insulating divider, the height being perpendicular to the width.
14. The joint of claim 9, wherein, along at least a portion of the cable, all of the sub-cables are physically accessible for removal from the cable and connection to a spatially separate location.
15. The joint of claim 9, wherein, along an entirety of a length of the cable, all of the sub-cables are physically accessible for removal from the cable and connection to a spatially separate location.
16. The joint of claim 9, wherein at least one of the sub-cables is electrically connected to a joint-associated component at an intermediate point along the cable spaced away from both ends of the cable.
17. The joint of claim 9, wherein an entirety of a length of the cable within the joint is slack.
18. The joint of claim 9, wherein total lengths of at least two of the sub-cables are different.
19. The joint of claim 9, wherein at least one of the sub-cables comprises two conductors therewithin, the two conductors being insulated from each other but inseparable from each other.
20. The joint of claim 9, wherein a length of the cable passing through the joint remains constant during relative motion of the plurality of mechanical elements.
21. The joint of claim 9, wherein, along a second portion of the length of the cable, none of the sub-cables are partially or completely separated from the cable.
US16/378,745 2012-08-23 2019-04-09 Robotic power and signal distribution using laminated cable with separator webs Abandoned US20190232505A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/378,745 US20190232505A1 (en) 2012-08-23 2019-04-09 Robotic power and signal distribution using laminated cable with separator webs

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/592,886 US9579806B2 (en) 2012-08-23 2012-08-23 Robotic power and signal distribution using laminated cable with separator webs
US15/410,275 US10293496B2 (en) 2012-08-23 2017-01-19 Robotic power and signal distribution using laminated cable with separator webs
US16/378,745 US20190232505A1 (en) 2012-08-23 2019-04-09 Robotic power and signal distribution using laminated cable with separator webs

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/410,275 Continuation US10293496B2 (en) 2012-08-23 2017-01-19 Robotic power and signal distribution using laminated cable with separator webs

Publications (1)

Publication Number Publication Date
US20190232505A1 true US20190232505A1 (en) 2019-08-01

Family

ID=50146837

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/592,886 Active 2035-01-14 US9579806B2 (en) 2012-08-23 2012-08-23 Robotic power and signal distribution using laminated cable with separator webs
US15/410,275 Active US10293496B2 (en) 2012-08-23 2017-01-19 Robotic power and signal distribution using laminated cable with separator webs
US16/378,745 Abandoned US20190232505A1 (en) 2012-08-23 2019-04-09 Robotic power and signal distribution using laminated cable with separator webs

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US13/592,886 Active 2035-01-14 US9579806B2 (en) 2012-08-23 2012-08-23 Robotic power and signal distribution using laminated cable with separator webs
US15/410,275 Active US10293496B2 (en) 2012-08-23 2017-01-19 Robotic power and signal distribution using laminated cable with separator webs

Country Status (1)

Country Link
US (3) US9579806B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140352483A1 (en) * 2013-06-04 2014-12-04 General Electric Company Remote alignment tool
DE102016210603B4 (en) * 2016-06-15 2020-01-16 Leoni Kabel Gmbh Device, supply line for such, sensor line and method for torsion measurement
DE102016008112A1 (en) * 2016-06-28 2017-12-28 Eisele Pneumatics Gmbh & Co. Kg handling system
JP2018001315A (en) * 2016-06-29 2018-01-11 セイコーエプソン株式会社 Robot, control device, and robot system

Family Cites Families (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2751565A (en) * 1950-10-09 1956-06-19 Philco Corp Slip ring device for electric cable reel
US3027419A (en) * 1959-12-28 1962-03-27 Nathan B Owen Device for harnessing multiple wires
US3145934A (en) * 1962-01-22 1964-08-25 Kenneth F Guggemos Lighting device
US3412951A (en) 1967-01-06 1968-11-26 Robbins & Myers Cable coiler apparatus
US4499341A (en) * 1982-09-22 1985-02-12 Amp Incorporated Extensible electrical cable assembly
US4577085A (en) * 1984-01-20 1986-03-18 Marelco Power Systems, Inc. System of transformers for a welding apparatus
US4545555A (en) 1984-07-02 1985-10-08 Koch Mark B Adjustable arm member for use with a lamp or the like
US4710593A (en) * 1986-07-14 1987-12-01 Oyo Corporation Geophone cable splice and method
DE3631024A1 (en) 1986-09-09 1988-03-17 Mannesmann Ag ROBOT ARM
JPH01101123A (en) 1987-10-15 1989-04-19 Pioneer Electron Corp Device for production of optical disc
JP2958989B2 (en) * 1988-09-30 1999-10-06 ぺんてる株式会社 Robot hand device and method for mounting a thin work in a mold
US5065062A (en) * 1988-10-20 1991-11-12 Tokico Ltd. Motor-drive industrial robot
JPH0720868Y2 (en) 1988-12-22 1995-05-15 アルプス電気株式会社 Cable reel
US5053583A (en) 1989-01-18 1991-10-01 Amp Incorporated Bundled hybrid ribbon electrical cable
JPH02198792A (en) * 1989-01-24 1990-08-07 Mitsubishi Electric Corp Service life prediction device for movable cable part of industrial robot
JPH03226917A (en) 1990-01-31 1991-10-07 Junkosha Co Ltd Flat cable for robot
US5304071A (en) 1990-04-14 1994-04-19 Alps Electric Co., Ltd. Clock spring
JPH0711424Y2 (en) 1990-10-05 1995-03-15 古河電気工業株式会社 Rotating connector
US5224871A (en) 1991-04-30 1993-07-06 Alps Electric Co., Ltd. Clock spring connector
FR2678368A1 (en) * 1991-06-28 1992-12-31 Filotex Sa Measurement chain
US5339866A (en) * 1991-10-18 1994-08-23 Hose Specialties/Capri, Inc. Multiple hose assembly
US5201903A (en) * 1991-10-22 1993-04-13 Pi (Medical) Corporation Method of making a miniature multi-conductor electrical cable
US5382172A (en) 1993-07-15 1995-01-17 Klier; Jurgen Spiral cable box
JP3287374B2 (en) * 1993-10-27 2002-06-04 株式会社安川電機 Joint drive structure of industrial robot
US5794487A (en) 1995-07-10 1998-08-18 Smart Machines Drive system for a robotic arm
JPH09123083A (en) 1995-10-31 1997-05-13 Denso Corp Robot hand device
JPH09141590A (en) * 1995-11-20 1997-06-03 Tokico Ltd Industrial robot
US5732898A (en) 1996-01-03 1998-03-31 Gte Airfone Incorporated Cord reel assembly
US6372988B1 (en) 1997-01-07 2002-04-16 Paul C. Burke Seamless flat-round conductive cable for a retractable cord reel
FI112334B (en) 1997-04-08 2003-11-28 Abb Research Ltd Procedure and arrangement for assembly of car body
US5863010A (en) 1997-10-16 1999-01-26 General Electric Company Apparatus for routing resilient cable across rotary joint
SE513887C2 (en) * 1998-10-16 2000-11-20 Abb Ab Industrial robot and control means for cabling for an industrial robot and use of the control means
JP4456696B2 (en) 1999-07-06 2010-04-28 住友電気工業株式会社 Coaxial cable strands, coaxial cables, and coaxial cable bundles
JP3326472B2 (en) * 1999-11-10 2002-09-24 独立行政法人 航空宇宙技術研究所 Articulated robot
SE516877C2 (en) * 1999-12-01 2002-03-19 Abb Ab A method and a rotary means for pulling a cabling for an industrial robot
EP1215683A3 (en) 2000-11-20 2003-05-21 Framatome ANP Segmented link robot for waste removal
JP2002307370A (en) 2001-04-17 2002-10-23 Kondo Seisakusho:Kk Rotary joint
US6460795B1 (en) 2001-06-07 2002-10-08 James M. Brown, Jr. Dual-feed ribbon cable reel for telescoping antenna masts
US6592254B2 (en) * 2001-06-26 2003-07-15 Mamac Systems, Inc. Multiple point averaging duct temperature sensor
US6966791B1 (en) 2001-06-27 2005-11-22 Farr Phillip G Cable storage device
US7100861B2 (en) 2002-01-23 2006-09-05 Control Products, Inc. Lead guide for cable extension type position sensors
EP1474271A1 (en) 2002-01-31 2004-11-10 Abb Research Ltd. Robot machining tool position and orientation calibration
NO317898B1 (en) 2002-05-24 2004-12-27 Abb Research Ltd Procedure and system for programming an industrial robot
US6644582B1 (en) 2002-07-05 2003-11-11 Sheng Hsin Liao Cable reel with a positioning mechanism
WO2004023419A2 (en) 2002-08-17 2004-03-18 Abb Research Ltd. Method for operating a system comprising a plurality of nodes and a base station according to tdma, and associated system
SE524627C2 (en) 2002-10-07 2004-09-07 Abb Research Ltd Wireless controller and method for controlling a device arranged relative to a robot
SE525108C2 (en) 2002-12-30 2004-11-30 Abb Research Ltd Method and system for programming an industrial robot, computer program product, computer-readable medium and use
US7017267B2 (en) * 2003-10-15 2006-03-28 James Allen Carroll Method and apparatus for zone cabling
SE0303145D0 (en) 2003-11-23 2003-11-23 Abb Research Ltd Method for optimizing the performance of a robot
SE526119C2 (en) 2003-11-24 2005-07-05 Abb Research Ltd Method and system for programming an industrial robot
US7181314B2 (en) 2003-11-24 2007-02-20 Abb Research Ltd. Industrial robot with controlled flexibility and simulated force for automated assembly
SE0303445L (en) 2003-12-17 2005-06-18 Abb Research Ltd Tools for an industrial robot
US7236854B2 (en) 2004-01-05 2007-06-26 Abb Research Ltd. Method and a system for programming an industrial robot
KR100732221B1 (en) 2004-02-12 2007-06-27 알프스 덴키 가부시키가이샤 Rotary connector
JP3987845B2 (en) * 2004-08-13 2007-10-10 ファナック株式会社 Striated structure of industrial robot
JP4233503B2 (en) * 2004-09-06 2009-03-04 ファナック株式会社 Torch cable processing structure of arc welding robot
US9110456B2 (en) 2004-09-08 2015-08-18 Abb Research Ltd. Robotic machining with a flexible manipulator
US10646292B2 (en) 2004-09-30 2020-05-12 Intuitive Surgical Operations, Inc. Electro-mechanical strap stack in robotic arms
SE0402750D0 (en) 2004-11-10 2004-11-10 Abb Ab A calibration method
SE0402891D0 (en) 2004-11-26 2004-11-26 Abb Ab A system and a method for controlling movements of an industrial robot
SE0402945D0 (en) 2004-11-30 2004-11-30 Abb Research Ltd Industrial robot
JP2006202593A (en) 2005-01-20 2006-08-03 Oki Electric Cable Co Ltd Highly slidable flat type broadband composite shield cable
US20060178775A1 (en) 2005-02-04 2006-08-10 George Zhang Accelerometer to monitor movement of a tool assembly attached to a robot end effector
US7643907B2 (en) 2005-02-10 2010-01-05 Abb Research Ltd. Method and apparatus for developing a metadata-infused software program for controlling a robot
US7147062B2 (en) 2005-03-25 2006-12-12 Task Force Tips, Inc. Cable management apparatus
US7372230B2 (en) 2005-04-27 2008-05-13 Focal Technologies Corporation Off-axis rotary joint
EP1719588A1 (en) 2005-05-02 2006-11-08 Abb Research Ltd. A robot control system comprising a portable operating device with safety equipment
US20060262492A1 (en) * 2005-05-17 2006-11-23 Tsai Tsung Y Power supply of a computer with a power output device
WO2006127732A2 (en) 2005-05-23 2006-11-30 Flextronics Ap, Llc Cable management techniques for power converters
JP2007015053A (en) 2005-07-07 2007-01-25 Fanuc Ltd Industrial robot
JP4614878B2 (en) * 2005-12-28 2011-01-19 株式会社ハーモニック・ドライブ・システムズ Finger unit of robot hand and assembling method
US8079143B2 (en) 2006-01-18 2011-12-20 Abb Research Ltd. Method and apparatus for engine piston installation by use of industrial robots
EP1820611B1 (en) 2006-02-17 2008-10-08 Abb Research Ltd. An industrial robot system
US7544063B2 (en) 2006-05-09 2009-06-09 Eaton Corporation Rotating display device having wiring harness retention member
US20080065257A1 (en) 2006-09-13 2008-03-13 Jianmin He Controlled material removal rate (CMRR) and self-tuning force control in robotic machining process
CN101309784B (en) * 2006-10-13 2010-06-09 松下电器产业株式会社 Industrial robot
EP1927440A1 (en) 2006-11-30 2008-06-04 Abb Research Ltd. Method and device for monitoring the condition of an industrial robot
EP1932629B1 (en) 2006-12-11 2019-04-24 ABB Research Ltd. A method and a control system for monitoring the condition of an industrial robot
EP2101962B1 (en) 2006-12-19 2010-04-28 ABB Research Ltd. Method and system for handling parts
EP1935578B1 (en) 2006-12-22 2012-01-25 ABB Research Ltd. Control system
EP1955830B1 (en) 2007-02-06 2014-04-09 Abb Research Ltd. A method and a control system for monitoring the condition of an industrial robot
EP1958738B1 (en) 2007-02-13 2013-08-14 Abb Research Ltd. Remote diagnostic system for robots
EP1965281A1 (en) 2007-03-02 2008-09-03 Abb Research Ltd. Dynamic maintenance plan for an industrial robot
EP1967333A1 (en) 2007-03-09 2008-09-10 Abb Research Ltd. Detection of condition changes in an industrial robot system
JP4280295B2 (en) 2007-06-20 2009-06-17 ファナック株式会社 Industrial robot
JP4793376B2 (en) * 2007-11-15 2011-10-12 株式会社デンソーウェーブ Suspension robot
WO2009071567A1 (en) 2007-12-05 2009-06-11 Abb Research Ltd A production line and a method for operating a such
EP2219090B1 (en) 2007-12-06 2012-02-01 ABB Research Ltd. A robot service system and a method for providing remote service for a robot
WO2009103335A1 (en) 2008-02-20 2009-08-27 Abb Research Ltd. Method and system for optimizing the layout of a robot work cell
EP2331303A1 (en) * 2008-08-27 2011-06-15 ABB Research Ltd. A robot for harsh outdoor environment
EP2169438B1 (en) 2008-09-30 2014-06-18 CCS Technology Inc. System for distribution of optical fibers
KR20100053005A (en) * 2008-11-12 2010-05-20 삼성전자주식회사 Electricity connecting device of joint unit and robot having the same
WO2010063319A1 (en) 2008-12-03 2010-06-10 Abb Research Ltd. A robot safety system and a method
US9108316B2 (en) 2008-12-10 2015-08-18 Abb Research Ltd. Method and system for in-production optimization of the parameters of a robot used for assembly
CN102256755B (en) 2008-12-17 2014-09-17 Abb研究有限公司 Damage-preventing system for manipulator
US7627224B1 (en) 2008-12-24 2009-12-01 At&T Intellectual Property I, L.P. Cabinet fiber manager
CN102123670B (en) * 2009-03-24 2014-03-19 奥林巴斯医疗株式会社 Robot system for endoscope treatment
US8677854B2 (en) 2009-04-15 2014-03-25 ABB Researched Ltd. Apparatus for a robot arm
US20100312391A1 (en) 2009-06-05 2010-12-09 Abb Research Ltd. Calibration Of A Lead-Through Teaching Device For An Industrial Robot
US8992113B2 (en) * 2009-06-08 2015-03-31 Re2, Inc. Robust manual connector for robotic arm end effector
JP5375353B2 (en) 2009-06-15 2013-12-25 株式会社デンソーウェーブ Cable holding structure for robot rotation axis
US20110045689A1 (en) * 2009-08-23 2011-02-24 Tsung-Yen Tsai Power supply device with a power output assembly
US8118147B2 (en) 2009-09-11 2012-02-21 Better Place GmbH Cable dispensing system
EP2490867B1 (en) 2009-10-22 2014-08-06 ABB Research Ltd. A robot part and a method for protecting a robot part
CN102085668A (en) * 2009-12-03 2011-06-08 鸿富锦精密工业(深圳)有限公司 Mechanical arm and assembling method thereof
WO2011153156A2 (en) 2010-06-02 2011-12-08 Abb Research Ltd Robotic assembly with partial fixturing
EP2404712A1 (en) 2010-07-07 2012-01-11 ABB Research Ltd. A dual arm robot and a method for controlling a dual arm robot
SE1050763A1 (en) 2010-07-08 2010-07-12 Abb Research Ltd A method for calibration of a mobile robot
EP2608938B1 (en) 2010-08-27 2014-07-02 ABB Research LTD Vision-guided alignment system and method
WO2012031635A1 (en) 2010-09-10 2012-03-15 Abb Research Ltd. Industrial robot
JP5201186B2 (en) * 2010-09-16 2013-06-05 株式会社安川電機 robot
EP2673119B1 (en) 2011-02-07 2015-12-16 ABB Research Ltd. Industrial robot with a collapsible process force applicator
US20120255388A1 (en) * 2011-04-05 2012-10-11 Mcclosky Stan H Line management system and a method for routing flexible lines for a robot
US20130270399A1 (en) 2012-04-13 2013-10-17 Ben Berkowitz Management of Cables That Traverse Moving Robot Joints

Also Published As

Publication number Publication date
US20170157781A1 (en) 2017-06-08
US10293496B2 (en) 2019-05-21
US9579806B2 (en) 2017-02-28
US20140053676A1 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
US20190232505A1 (en) Robotic power and signal distribution using laminated cable with separator webs
CN103069506B (en) Conducting element in cable sheathing and spacer
US9837189B2 (en) Nested shielded ribbon cables
JP4358353B2 (en) Balanced transmission shield cable
US10861622B2 (en) High-speed cable assembly
US20070031232A1 (en) Industrial robot
US10615524B2 (en) Electrical cable assembly
US6362432B1 (en) Flexible power and control cable for high noise environments
US8010811B2 (en) Power controller coupling assemblies and methods
JP2017010666A (en) Wiring member
EP2289073B1 (en) Power cable
US10418153B2 (en) Fabricatable data transmission cable
US7074073B2 (en) Electrical connector insert and apparatus and associated fabrication method
US20110280526A1 (en) Electrical Cable Having Return Wires Positioned Between Force Wires
US10027062B2 (en) Signal transmission cable
EP3349542B1 (en) Induction heating cables including control conductors
CN115377715A (en) Wire row and power wire device
WO2003070097A1 (en) Precordial cable apparatus
JPH05159637A (en) Conductive constituent body
JPH046097Y2 (en)
CN112750568A (en) Cooperative robot system and external integrated cable thereof
JP2002289041A (en) Electric wire processed article
KR200417408Y1 (en) A falt-type cable module
KR19980087839A (en) Low voltage power supply / signal control wire and its manufacturing method
KR20120003195U (en) Unshielded twisted pair cable

Legal Events

Date Code Title Description
AS Assignment

Owner name: RETHINK ROBOTICS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SUSSMAN, MICHAEL;REEL/FRAME:049097/0369

Effective date: 20120910

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION