US20190202836A1 - Selective dual inhibitors of pi3 delta and gamma protein kinases - Google Patents
Selective dual inhibitors of pi3 delta and gamma protein kinases Download PDFInfo
- Publication number
- US20190202836A1 US20190202836A1 US16/212,447 US201816212447A US2019202836A1 US 20190202836 A1 US20190202836 A1 US 20190202836A1 US 201816212447 A US201816212447 A US 201816212447A US 2019202836 A1 US2019202836 A1 US 2019202836A1
- Authority
- US
- United States
- Prior art keywords
- disease
- compound
- cell
- amino
- chromen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000009977 dual effect Effects 0.000 title abstract description 16
- 239000003112 inhibitor Substances 0.000 title description 26
- 102000001253 Protein Kinase Human genes 0.000 title description 10
- 108060006633 protein kinase Proteins 0.000 title description 10
- 230000014725 late viral mRNA transcription Effects 0.000 title 1
- 108091007960 PI3Ks Proteins 0.000 claims abstract description 73
- 238000000034 method Methods 0.000 claims abstract description 66
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 55
- 201000010099 disease Diseases 0.000 claims abstract description 38
- 238000011282 treatment Methods 0.000 claims abstract description 34
- 208000035475 disorder Diseases 0.000 claims abstract description 17
- FQJDPQWNJMRUNA-HNNXBMFYSA-N N-[5-[4-amino-1-[(1S)-1-[5-fluoro-3-(3-fluorophenyl)-4-oxochromen-2-yl]ethyl]pyrazolo[3,4-d]pyrimidin-3-yl]-2-methoxyphenyl]methanesulfonamide Chemical compound CS(=O)(=O)NC1=C(C=CC(=C1)C1=NN(C2=NC=NC(=C21)N)[C@@H](C)C=1OC2=CC=CC(=C2C(C=1C1=CC(=CC=C1)F)=O)F)OC FQJDPQWNJMRUNA-HNNXBMFYSA-N 0.000 claims abstract description 14
- 102000038030 PI3Ks Human genes 0.000 claims abstract description 6
- 150000001875 compounds Chemical class 0.000 claims description 187
- 239000000203 mixture Substances 0.000 claims description 32
- 230000005764 inhibitory process Effects 0.000 claims description 27
- 150000003839 salts Chemical class 0.000 claims description 25
- 230000002401 inhibitory effect Effects 0.000 claims description 21
- 108091000080 Phosphotransferase Proteins 0.000 claims description 11
- 102000020233 phosphotransferase Human genes 0.000 claims description 11
- 230000002062 proliferating effect Effects 0.000 claims description 11
- 230000008901 benefit Effects 0.000 claims description 10
- 239000013543 active substance Substances 0.000 claims description 7
- 208000027866 inflammatory disease Diseases 0.000 claims description 7
- LTCAFBBLMHVYAV-AWEZNQCLSA-N 2-[(1S)-1-[4-amino-3-(3-amino-4-methoxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-5-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound NC1=C2C(=NC=N1)N(N=C2C1=CC(=C(C=C1)OC)N)[C@@H](C)C=1OC2=CC=CC(=C2C(C=1C1=CC(=CC=C1)F)=O)F LTCAFBBLMHVYAV-AWEZNQCLSA-N 0.000 claims description 6
- MIJJOTSYXJLZOL-AWEZNQCLSA-N 2-[(1S)-1-[4-amino-3-(4-methoxy-3-nitrophenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-5-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound NC1=C2C(=NC=N1)N(N=C2C1=CC(=C(C=C1)OC)[N+](=O)[O-])[C@@H](C)C=1OC2=CC=CC(=C2C(C=1C1=CC(=CC=C1)F)=O)F MIJJOTSYXJLZOL-AWEZNQCLSA-N 0.000 claims description 6
- 239000002246 antineoplastic agent Substances 0.000 claims description 6
- 230000003197 catalytic effect Effects 0.000 claims description 6
- 208000026278 immune system disease Diseases 0.000 claims description 5
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 claims description 5
- 208000020084 Bone disease Diseases 0.000 claims 3
- 208000020446 Cardiac disease Diseases 0.000 claims 3
- 208000012902 Nervous system disease Diseases 0.000 claims 3
- 208000007536 Thrombosis Diseases 0.000 claims 3
- 208000016097 disease of metabolism Diseases 0.000 claims 3
- 208000019622 heart disease Diseases 0.000 claims 3
- 208000030159 metabolic disease Diseases 0.000 claims 3
- 208000023504 respiratory system disease Diseases 0.000 claims 3
- 229940035676 analgesics Drugs 0.000 claims 1
- 239000000730 antalgic agent Substances 0.000 claims 1
- 239000002260 anti-inflammatory agent Substances 0.000 claims 1
- 229940121363 anti-inflammatory agent Drugs 0.000 claims 1
- 229940125715 antihistaminic agent Drugs 0.000 claims 1
- 239000000739 antihistaminic agent Substances 0.000 claims 1
- 239000003018 immunosuppressive agent Substances 0.000 claims 1
- 229940125721 immunosuppressive agent Drugs 0.000 claims 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 claims 1
- 150000003431 steroids Chemical class 0.000 claims 1
- 239000008194 pharmaceutical composition Substances 0.000 abstract description 20
- 230000001404 mediated effect Effects 0.000 abstract description 11
- 230000002265 prevention Effects 0.000 abstract description 3
- 108010065251 protein kinase modulator Proteins 0.000 abstract 1
- 210000004027 cell Anatomy 0.000 description 74
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 description 68
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 description 68
- 238000003556 assay Methods 0.000 description 36
- 241001465754 Metazoa Species 0.000 description 34
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 27
- 230000000694 effects Effects 0.000 description 27
- 238000012360 testing method Methods 0.000 description 27
- 241000282414 Homo sapiens Species 0.000 description 23
- 239000000543 intermediate Substances 0.000 description 22
- 210000004369 blood Anatomy 0.000 description 19
- 239000008280 blood Substances 0.000 description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 241000699670 Mus sp. Species 0.000 description 18
- 239000002158 endotoxin Substances 0.000 description 18
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 17
- 229920006008 lipopolysaccharide Polymers 0.000 description 17
- 206010028980 Neoplasm Diseases 0.000 description 16
- 239000012530 fluid Substances 0.000 description 16
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 15
- 210000001519 tissue Anatomy 0.000 description 15
- 239000003981 vehicle Substances 0.000 description 15
- 108010029485 Protein Isoforms Proteins 0.000 description 14
- 102000001708 Protein Isoforms Human genes 0.000 description 14
- 241000700157 Rattus norvegicus Species 0.000 description 14
- 210000000265 leukocyte Anatomy 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 241000699666 Mus <mouse, genus> Species 0.000 description 13
- 241000700159 Rattus Species 0.000 description 13
- 210000003719 b-lymphocyte Anatomy 0.000 description 13
- 229940002612 prodrug Drugs 0.000 description 13
- 239000000651 prodrug Substances 0.000 description 13
- 210000003491 skin Anatomy 0.000 description 13
- 208000009386 Experimental Arthritis Diseases 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 12
- -1 phosphoinositide lipids Chemical class 0.000 description 12
- 238000003419 tautomerization reaction Methods 0.000 description 12
- 230000001225 therapeutic effect Effects 0.000 description 12
- 210000000440 neutrophil Anatomy 0.000 description 11
- 230000026731 phosphorylation Effects 0.000 description 11
- 238000006366 phosphorylation reaction Methods 0.000 description 11
- 208000006673 asthma Diseases 0.000 description 10
- 239000000872 buffer Substances 0.000 description 10
- 201000011510 cancer Diseases 0.000 description 10
- 230000009467 reduction Effects 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 239000006228 supernatant Substances 0.000 description 10
- FQJDPQWNJMRUNA-UHFFFAOYSA-N N-[5-[4-amino-1-[1-[5-fluoro-3-(3-fluorophenyl)-4-oxochromen-2-yl]ethyl]pyrazolo[3,4-d]pyrimidin-3-yl]-2-methoxyphenyl]methanesulfonamide Chemical compound NC1=C2C(=NC=N1)N(N=C2C=1C=CC(=C(C=1)NS(=O)(=O)C)OC)C(C)C=1OC2=CC=CC(=C2C(C=1C1=CC(=CC=C1)F)=O)F FQJDPQWNJMRUNA-UHFFFAOYSA-N 0.000 description 9
- 201000004681 Psoriasis Diseases 0.000 description 9
- 229960002751 imiquimod Drugs 0.000 description 9
- DOUYETYNHWVLEO-UHFFFAOYSA-N imiquimod Chemical compound C1=CC=CC2=C3N(CC(C)C)C=NC3=C(N)N=C21 DOUYETYNHWVLEO-UHFFFAOYSA-N 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000035755 proliferation Effects 0.000 description 9
- 206010039073 rheumatoid arthritis Diseases 0.000 description 9
- 208000023275 Autoimmune disease Diseases 0.000 description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 8
- 206010015150 Erythema Diseases 0.000 description 8
- 206010061218 Inflammation Diseases 0.000 description 8
- 108010058846 Ovalbumin Proteins 0.000 description 8
- 229940124639 Selective inhibitor Drugs 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 8
- 206010003246 arthritis Diseases 0.000 description 8
- 230000037396 body weight Effects 0.000 description 8
- 235000019504 cigarettes Nutrition 0.000 description 8
- 230000004054 inflammatory process Effects 0.000 description 8
- 229940092253 ovalbumin Drugs 0.000 description 8
- 235000018102 proteins Nutrition 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 230000001413 cellular effect Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 231100000321 erythema Toxicity 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 230000008961 swelling Effects 0.000 description 7
- SFHYNDMGZXWXBU-LIMNOBDPSA-N 6-amino-2-[[(e)-(3-formylphenyl)methylideneamino]carbamoylamino]-1,3-dioxobenzo[de]isoquinoline-5,8-disulfonic acid Chemical compound O=C1C(C2=3)=CC(S(O)(=O)=O)=CC=3C(N)=C(S(O)(=O)=O)C=C2C(=O)N1NC(=O)N\N=C\C1=CC=CC(C=O)=C1 SFHYNDMGZXWXBU-LIMNOBDPSA-N 0.000 description 6
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 6
- 229940126062 Compound A Drugs 0.000 description 6
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 6
- 206010025323 Lymphomas Diseases 0.000 description 6
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 6
- 239000002585 base Substances 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 230000028709 inflammatory response Effects 0.000 description 6
- 210000002540 macrophage Anatomy 0.000 description 6
- 230000037361 pathway Effects 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 230000019491 signal transduction Effects 0.000 description 6
- 230000011664 signaling Effects 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 108090000695 Cytokines Proteins 0.000 description 5
- 102000004127 Cytokines Human genes 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- FQJDPQWNJMRUNA-OAHLLOKOSA-N N-[5-[4-amino-1-[(1R)-1-[5-fluoro-3-(3-fluorophenyl)-4-oxochromen-2-yl]ethyl]pyrazolo[3,4-d]pyrimidin-3-yl]-2-methoxyphenyl]methanesulfonamide Chemical compound NC1=C2C(=NC=N1)N(N=C2C=1C=CC(=C(C=1)NS(=O)(=O)C)OC)[C@H](C)C=1OC2=CC=CC(=C2C(C=1C1=CC(=CC=C1)F)=O)F FQJDPQWNJMRUNA-OAHLLOKOSA-N 0.000 description 5
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 description 5
- 210000001744 T-lymphocyte Anatomy 0.000 description 5
- 206010052779 Transplant rejections Diseases 0.000 description 5
- 239000000427 antigen Substances 0.000 description 5
- 108091007433 antigens Proteins 0.000 description 5
- 102000036639 antigens Human genes 0.000 description 5
- 230000004663 cell proliferation Effects 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 210000002950 fibroblast Anatomy 0.000 description 5
- 210000002683 foot Anatomy 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 210000003630 histaminocyte Anatomy 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 210000001503 joint Anatomy 0.000 description 5
- 210000004072 lung Anatomy 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 230000000144 pharmacologic effect Effects 0.000 description 5
- 230000000069 prophylactic effect Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 208000024891 symptom Diseases 0.000 description 5
- 230000000699 topical effect Effects 0.000 description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 4
- FATOTJMSWBOERM-UHFFFAOYSA-N 2-[1-(4-amino-3-iodopyrazolo[3,4-d]pyrimidin-1-yl)ethyl]-5-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound N1=C(I)C2=C(N)N=CN=C2N1C(C)C=1OC2=CC=CC(F)=C2C(=O)C=1C1=CC=CC(F)=C1 FATOTJMSWBOERM-UHFFFAOYSA-N 0.000 description 4
- ABSWWOAJWQZCQK-SECBINFHSA-N 5-fluoro-3-(3-fluorophenyl)-2-[(1r)-1-hydroxyethyl]chromen-4-one Chemical compound C[C@@H](O)C=1OC2=CC=CC(F)=C2C(=O)C=1C1=CC=CC(F)=C1 ABSWWOAJWQZCQK-SECBINFHSA-N 0.000 description 4
- 102000007469 Actins Human genes 0.000 description 4
- 108010085238 Actins Proteins 0.000 description 4
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 4
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 4
- 102100040214 Apolipoprotein(a) Human genes 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 201000004624 Dermatitis Diseases 0.000 description 4
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- 208000009329 Graft vs Host Disease Diseases 0.000 description 4
- 208000017604 Hodgkin disease Diseases 0.000 description 4
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 4
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 4
- 208000022559 Inflammatory bowel disease Diseases 0.000 description 4
- 108010044467 Isoenzymes Proteins 0.000 description 4
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 4
- 206010070834 Sensitisation Diseases 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 208000026935 allergic disease Diseases 0.000 description 4
- 229940037003 alum Drugs 0.000 description 4
- 229940024606 amino acid Drugs 0.000 description 4
- 235000001014 amino acid Nutrition 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- 230000001363 autoimmune Effects 0.000 description 4
- 210000003651 basophil Anatomy 0.000 description 4
- 210000001185 bone marrow Anatomy 0.000 description 4
- 239000006285 cell suspension Substances 0.000 description 4
- 239000006071 cream Substances 0.000 description 4
- 239000012043 crude product Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 231100000673 dose–response relationship Toxicity 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 210000003979 eosinophil Anatomy 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 210000004744 fore-foot Anatomy 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 208000024908 graft versus host disease Diseases 0.000 description 4
- 210000002865 immune cell Anatomy 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 210000000987 immune system Anatomy 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 210000004969 inflammatory cell Anatomy 0.000 description 4
- 208000032839 leukemia Diseases 0.000 description 4
- 230000002503 metabolic effect Effects 0.000 description 4
- QARBMVPHQWIHKH-UHFFFAOYSA-N methanesulfonyl chloride Chemical compound CS(Cl)(=O)=O QARBMVPHQWIHKH-UHFFFAOYSA-N 0.000 description 4
- 229920000609 methyl cellulose Polymers 0.000 description 4
- 239000001923 methylcellulose Substances 0.000 description 4
- 235000010981 methylcellulose Nutrition 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 201000006417 multiple sclerosis Diseases 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 230000008313 sensitization Effects 0.000 description 4
- 239000000779 smoke Substances 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 238000002054 transplantation Methods 0.000 description 4
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- ZSZXYWFCIKKZBT-IVYVYLGESA-N 1,2-dihexadecanoyl-sn-glycero-3-phospho-(1D-myo-inositol-3,4,5-trisphosphate) Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCC)COP(O)(=O)O[C@@H]1[C@H](O)[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H]1O ZSZXYWFCIKKZBT-IVYVYLGESA-N 0.000 description 3
- OPGNSNDTPPIYPG-UHFFFAOYSA-N 5-bromo-2-methoxyaniline Chemical compound COC1=CC=C(Br)C=C1N OPGNSNDTPPIYPG-UHFFFAOYSA-N 0.000 description 3
- 208000030507 AIDS Diseases 0.000 description 3
- 208000031261 Acute myeloid leukaemia Diseases 0.000 description 3
- 108091008875 B cell receptors Proteins 0.000 description 3
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 3
- 241000282693 Cercopithecidae Species 0.000 description 3
- 201000003883 Cystic fibrosis Diseases 0.000 description 3
- 206010018364 Glomerulonephritis Diseases 0.000 description 3
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical class NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 3
- 241000725303 Human immunodeficiency virus Species 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 3
- PRQROPMIIGLWRP-UHFFFAOYSA-N N-formyl-methionyl-leucyl-phenylalanin Chemical compound CSCCC(NC=O)C(=O)NC(CC(C)C)C(=O)NC(C(O)=O)CC1=CC=CC=C1 PRQROPMIIGLWRP-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 230000000735 allogeneic effect Effects 0.000 description 3
- 210000003423 ankle Anatomy 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 230000000747 cardiac effect Effects 0.000 description 3
- 239000008004 cell lysis buffer Substances 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000003292 diminished effect Effects 0.000 description 3
- 210000002889 endothelial cell Anatomy 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 210000000548 hind-foot Anatomy 0.000 description 3
- 230000036039 immunity Effects 0.000 description 3
- 230000008595 infiltration Effects 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- 230000002757 inflammatory effect Effects 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 3
- 208000017169 kidney disease Diseases 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 3
- 208000019423 liver disease Diseases 0.000 description 3
- 210000001853 liver microsome Anatomy 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 206010025135 lupus erythematosus Diseases 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- LSFHPKHSTQDABW-UHFFFAOYSA-N n-(5-bromo-2-methoxyphenyl)methanesulfonamide Chemical compound COC1=CC=C(Br)C=C1NS(C)(=O)=O LSFHPKHSTQDABW-UHFFFAOYSA-N 0.000 description 3
- NZSTWDFNWRRIAK-UHFFFAOYSA-N n-[2-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]methanesulfonamide Chemical compound C1=C(NS(C)(=O)=O)C(OC)=CC=C1B1OC(C)(C)C(C)(C)O1 NZSTWDFNWRRIAK-UHFFFAOYSA-N 0.000 description 3
- 238000003305 oral gavage Methods 0.000 description 3
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 3
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 210000000130 stem cell Anatomy 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 239000011534 wash buffer Substances 0.000 description 3
- PUYVJBBSBPUKBT-AWEZNQCLSA-N 2-[(1s)-1-[(2-amino-7h-purin-6-yl)amino]ethyl]-5-methyl-3-(2-methylphenyl)quinazolin-4-one Chemical compound C1([C@@H](NC=2C=3NC=NC=3N=C(N)N=2)C)=NC2=CC=CC(C)=C2C(=O)N1C1=CC=CC=C1C PUYVJBBSBPUKBT-AWEZNQCLSA-N 0.000 description 2
- AZKSAVLVSZKNRD-UHFFFAOYSA-M 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide Chemical compound [Br-].S1C(C)=C(C)N=C1[N+]1=NC(C=2C=CC=CC=2)=NN1C1=CC=CC=C1 AZKSAVLVSZKNRD-UHFFFAOYSA-M 0.000 description 2
- TYBMQVYMAGJDNR-UHFFFAOYSA-N 3-(4-methoxy-3-nitrophenyl)-2H-pyrazolo[3,4-d]pyrimidin-4-amine Chemical compound COc1ccc(cc1[N+]([O-])=O)-c1n[nH]c2ncnc(N)c12 TYBMQVYMAGJDNR-UHFFFAOYSA-N 0.000 description 2
- GCNTZFIIOFTKIY-UHFFFAOYSA-N 4-hydroxypyridine Chemical compound OC1=CC=NC=C1 GCNTZFIIOFTKIY-UHFFFAOYSA-N 0.000 description 2
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 2
- SJVQHLPISAIATJ-ZDUSSCGKSA-N 8-chloro-2-phenyl-3-[(1S)-1-(7H-purin-6-ylamino)ethyl]-1-isoquinolinone Chemical compound C1([C@@H](NC=2C=3N=CNC=3N=CN=2)C)=CC2=CC=CC(Cl)=C2C(=O)N1C1=CC=CC=C1 SJVQHLPISAIATJ-ZDUSSCGKSA-N 0.000 description 2
- 208000036762 Acute promyelocytic leukaemia Diseases 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 2
- 208000032467 Aplastic anaemia Diseases 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 208000003950 B-cell lymphoma Diseases 0.000 description 2
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 2
- 102000004506 Blood Proteins Human genes 0.000 description 2
- 108010017384 Blood Proteins Proteins 0.000 description 2
- POYIYPFTXZAMHU-RRHAQCGESA-N CC1=CC=C(C2=NN([C@@H](C)C3=C(C4=CC=CC(F)=C4)C(=O)C4=C(F)C=CC=C4O3)C3=C2C(N)=NC=N3)C=C1NS(C)(=O)=O.CC1=CC=C(C2=NN([C@H](C)C3=C(C4=CC=CC(F)=C4)C(=O)C4=C(F)C=CC=C4O3)C3=C2C(N)=NC=N3)C=C1NS(C)(=O)=O Chemical compound CC1=CC=C(C2=NN([C@@H](C)C3=C(C4=CC=CC(F)=C4)C(=O)C4=C(F)C=CC=C4O3)C3=C2C(N)=NC=N3)C=C1NS(C)(=O)=O.CC1=CC=C(C2=NN([C@H](C)C3=C(C4=CC=CC(F)=C4)C(=O)C4=C(F)C=CC=C4O3)C3=C2C(N)=NC=N3)C=C1NS(C)(=O)=O POYIYPFTXZAMHU-RRHAQCGESA-N 0.000 description 2
- 102100025222 CD63 antigen Human genes 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 102000003952 Caspase 3 Human genes 0.000 description 2
- 108090000397 Caspase 3 Proteins 0.000 description 2
- 241000700198 Cavia Species 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 2
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 2
- 101000934368 Homo sapiens CD63 antigen Proteins 0.000 description 2
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 2
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 102000004388 Interleukin-4 Human genes 0.000 description 2
- 108090000978 Interleukin-4 Proteins 0.000 description 2
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 206010027476 Metastases Diseases 0.000 description 2
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 2
- 208000033776 Myeloid Acute Leukemia Diseases 0.000 description 2
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Chemical class CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 2
- 206010029379 Neutrophilia Diseases 0.000 description 2
- 208000001132 Osteoporosis Diseases 0.000 description 2
- 239000012828 PI3K inhibitor Substances 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- 241001111421 Pannus Species 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 2
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 2
- 208000002200 Respiratory Hypersensitivity Diseases 0.000 description 2
- 206010039085 Rhinitis allergic Diseases 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 241000710960 Sindbis virus Species 0.000 description 2
- 206010042971 T-cell lymphoma Diseases 0.000 description 2
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 2
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 2
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 2
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 2
- 208000036142 Viral infection Diseases 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 230000010085 airway hyperresponsiveness Effects 0.000 description 2
- 230000008369 airway response Effects 0.000 description 2
- 201000010105 allergic rhinitis Diseases 0.000 description 2
- 230000007815 allergy Effects 0.000 description 2
- 238000001949 anaesthesia Methods 0.000 description 2
- 230000037005 anaesthesia Effects 0.000 description 2
- 208000007502 anemia Diseases 0.000 description 2
- 230000003110 anti-inflammatory effect Effects 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000002917 arthritic effect Effects 0.000 description 2
- 208000010668 atopic eczema Diseases 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- IPWKHHSGDUIRAH-UHFFFAOYSA-N bis(pinacolato)diboron Chemical compound O1C(C)(C)C(C)(C)OB1B1OC(C)(C)C(C)(C)O1 IPWKHHSGDUIRAH-UHFFFAOYSA-N 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 210000000845 cartilage Anatomy 0.000 description 2
- 230000020411 cell activation Effects 0.000 description 2
- 230000011712 cell development Effects 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000012292 cell migration Effects 0.000 description 2
- 230000033077 cellular process Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000002113 chemopreventative effect Effects 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 238000011260 co-administration Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000013270 controlled release Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 210000004087 cornea Anatomy 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- NXQGGXCHGDYOHB-UHFFFAOYSA-L cyclopenta-1,4-dien-1-yl(diphenyl)phosphane;dichloropalladium;iron(2+) Chemical compound [Fe+2].Cl[Pd]Cl.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1.[CH-]1C=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 NXQGGXCHGDYOHB-UHFFFAOYSA-L 0.000 description 2
- 239000000824 cytostatic agent Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 210000004443 dendritic cell Anatomy 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Chemical class CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 2
- 208000037765 diseases and disorders Diseases 0.000 description 2
- 239000007884 disintegrant Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007783 downstream signaling Effects 0.000 description 2
- 201000002491 encephalomyelitis Diseases 0.000 description 2
- 230000008029 eradication Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 201000005787 hematologic cancer Diseases 0.000 description 2
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000002868 homogeneous time resolved fluorescence Methods 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 230000004968 inflammatory condition Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 231100000682 maximum tolerated dose Toxicity 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000009401 metastasis Effects 0.000 description 2
- NZWOPGCLSHLLPA-UHFFFAOYSA-N methacholine Chemical compound C[N+](C)(C)CC(C)OC(C)=O NZWOPGCLSHLLPA-UHFFFAOYSA-N 0.000 description 2
- 229960002329 methacholine Drugs 0.000 description 2
- 230000000877 morphologic effect Effects 0.000 description 2
- 208000010125 myocardial infarction Diseases 0.000 description 2
- 238000002663 nebulization Methods 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000036407 pain Effects 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 150000003905 phosphatidylinositols Chemical class 0.000 description 2
- 229940043441 phosphoinositide 3-kinase inhibitor Drugs 0.000 description 2
- 210000004180 plasmocyte Anatomy 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 235000011056 potassium acetate Nutrition 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- VVWRJUBEIPHGQF-UHFFFAOYSA-N propan-2-yl n-propan-2-yloxycarbonyliminocarbamate Chemical compound CC(C)OC(=O)N=NC(=O)OC(C)C VVWRJUBEIPHGQF-UHFFFAOYSA-N 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 208000005069 pulmonary fibrosis Diseases 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000001959 radiotherapy Methods 0.000 description 2
- 230000007781 signaling event Effects 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 210000004988 splenocyte Anatomy 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 239000012192 staining solution Substances 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 230000004083 survival effect Effects 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 210000001685 thyroid gland Anatomy 0.000 description 2
- 208000037816 tissue injury Diseases 0.000 description 2
- 210000003437 trachea Anatomy 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229910052722 tritium Inorganic materials 0.000 description 2
- 230000005747 tumor angiogenesis Effects 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 241001529453 unidentified herpesvirus Species 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 230000009385 viral infection Effects 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- KZPYGQFFRCFCPP-UHFFFAOYSA-N 1,1'-bis(diphenylphosphino)ferrocene Chemical compound [Fe+2].C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=C[C-]1P(C=1C=CC=CC=1)C1=CC=CC=C1 KZPYGQFFRCFCPP-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- MWGATWIBSKHFMR-UHFFFAOYSA-N 2-anilinoethanol Chemical compound OCCNC1=CC=CC=C1 MWGATWIBSKHFMR-UHFFFAOYSA-N 0.000 description 1
- KIZQNNOULOCVDM-UHFFFAOYSA-M 2-hydroxyethyl(trimethyl)azanium;hydroxide Chemical compound [OH-].C[N+](C)(C)CCO KIZQNNOULOCVDM-UHFFFAOYSA-M 0.000 description 1
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical class OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 description 1
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- BRQIMWBIZLRLSV-UHFFFAOYSA-N 4-acetamido-3-nitrobenzoic acid Chemical compound CC(=O)NC1=CC=C(C(O)=O)C=C1[N+]([O-])=O BRQIMWBIZLRLSV-UHFFFAOYSA-N 0.000 description 1
- POILWHVDKZOXJZ-UHFFFAOYSA-N 4-hydroxypent-3-en-2-one Chemical compound CC(O)=CC(C)=O POILWHVDKZOXJZ-UHFFFAOYSA-N 0.000 description 1
- 206010065040 AIDS dementia complex Diseases 0.000 description 1
- 206010000349 Acanthosis Diseases 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 208000032116 Autoimmune Experimental Encephalomyelitis Diseases 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 229940124291 BTK inhibitor Drugs 0.000 description 1
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 description 1
- 208000008439 Biliary Liver Cirrhosis Diseases 0.000 description 1
- 208000033222 Biliary cirrhosis primary Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010066091 Bronchial Hyperreactivity Diseases 0.000 description 1
- 206010006482 Bronchospasm Diseases 0.000 description 1
- 102100028990 C-X-C chemokine receptor type 3 Human genes 0.000 description 1
- APEYLLLTNSNUCT-UHFFFAOYSA-N CC1=CC=C(C2=NN(C(C)C3=C(C4=CC=CC(F)=C4)C(=O)C4=C(F)C=CC=C4O3)C3=C2C(N)=NC=N3)C=C1NS(C)(=O)=O Chemical compound CC1=CC=C(C2=NN(C(C)C3=C(C4=CC=CC(F)=C4)C(=O)C4=C(F)C=CC=C4O3)C3=C2C(N)=NC=N3)C=C1NS(C)(=O)=O APEYLLLTNSNUCT-UHFFFAOYSA-N 0.000 description 1
- VNPBOZOFQXWIEP-CQYLEEIWSA-N CC1=CC=C(C2=NN(C(C)C3=C(C4=CC=CC(F)=C4)C(=O)C4=C(F)C=CC=C4O3)C3=C2C(N)=NC=N3)C=C1NS(C)(=O)=O.CC1=CC=C(C2=NN([C@@H](C)C3=C(C4=CC=CC(F)=C4)C(=O)C4=C(F)C=CC=C4O3)C3=C2C(N)=NC=N3)C=C1NS(C)(=O)=O.CC1=CC=C(C2=NN([C@H](C)C3=C(C4=CC=CC(F)=C4)C(=O)C4=C(F)C=CC=C4O3)C3=C2C(N)=NC=N3)C=C1NS(C)(=O)=O Chemical compound CC1=CC=C(C2=NN(C(C)C3=C(C4=CC=CC(F)=C4)C(=O)C4=C(F)C=CC=C4O3)C3=C2C(N)=NC=N3)C=C1NS(C)(=O)=O.CC1=CC=C(C2=NN([C@@H](C)C3=C(C4=CC=CC(F)=C4)C(=O)C4=C(F)C=CC=C4O3)C3=C2C(N)=NC=N3)C=C1NS(C)(=O)=O.CC1=CC=C(C2=NN([C@H](C)C3=C(C4=CC=CC(F)=C4)C(=O)C4=C(F)C=CC=C4O3)C3=C2C(N)=NC=N3)C=C1NS(C)(=O)=O VNPBOZOFQXWIEP-CQYLEEIWSA-N 0.000 description 1
- APEYLLLTNSNUCT-INIZCTEOSA-N CC1=CC=C(C2=NN([C@@H](C)C3=C(C4=CC=CC(F)=C4)C(=O)C4=C(F)C=CC=C4O3)C3=C2C(N)=NC=N3)C=C1NS(C)(=O)=O Chemical compound CC1=CC=C(C2=NN([C@@H](C)C3=C(C4=CC=CC(F)=C4)C(=O)C4=C(F)C=CC=C4O3)C3=C2C(N)=NC=N3)C=C1NS(C)(=O)=O APEYLLLTNSNUCT-INIZCTEOSA-N 0.000 description 1
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 1
- FKHVKZKRPVMSLB-UHFFFAOYSA-N COC1=CC=C(C2=NCC3=NC=NC(N)=C32)C=C1[N+](=O)[O-] Chemical compound COC1=CC=C(C2=NCC3=NC=NC(N)=C32)C=C1[N+](=O)[O-] FKHVKZKRPVMSLB-UHFFFAOYSA-N 0.000 description 1
- 101100123850 Caenorhabditis elegans her-1 gene Proteins 0.000 description 1
- 206010058019 Cancer Pain Diseases 0.000 description 1
- OKTJSMMVPCPJKN-NJFSPNSNSA-N Carbon-14 Chemical compound [14C] OKTJSMMVPCPJKN-NJFSPNSNSA-N 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 1
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 1
- 102000004353 Class I Phosphatidylinositol 3-Kinases Human genes 0.000 description 1
- 108010017000 Class I Phosphatidylinositol 3-Kinases Proteins 0.000 description 1
- 102000041075 Class I family Human genes 0.000 description 1
- 108091060777 Class I family Proteins 0.000 description 1
- 102000000503 Collagen Type II Human genes 0.000 description 1
- 108010041390 Collagen Type II Proteins 0.000 description 1
- 206010010744 Conjunctivitis allergic Diseases 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 229940123780 DNA topoisomerase I inhibitor Drugs 0.000 description 1
- 229940124087 DNA topoisomerase II inhibitor Drugs 0.000 description 1
- 206010012438 Dermatitis atopic Diseases 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- 239000003109 Disodium ethylene diamine tetraacetate Substances 0.000 description 1
- OVBJJZOQPCKUOR-UHFFFAOYSA-L EDTA disodium salt dihydrate Chemical compound O.O.[Na+].[Na+].[O-]C(=O)C[NH+](CC([O-])=O)CC[NH+](CC([O-])=O)CC([O-])=O OVBJJZOQPCKUOR-UHFFFAOYSA-L 0.000 description 1
- 101150029707 ERBB2 gene Proteins 0.000 description 1
- 206010014824 Endotoxic shock Diseases 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 201000008808 Fibrosarcoma Diseases 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 206010017533 Fungal infection Diseases 0.000 description 1
- 102000013446 GTP Phosphohydrolases Human genes 0.000 description 1
- 108091006109 GTPases Proteins 0.000 description 1
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 208000032612 Glial tumor Diseases 0.000 description 1
- 206010018338 Glioma Diseases 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- QMXOFBXZEKTJIK-UHFFFAOYSA-N Glycinol Natural products C1=C(O)C=C2OCC3(O)C4=CC=C(O)C=C4OC3C2=C1 QMXOFBXZEKTJIK-UHFFFAOYSA-N 0.000 description 1
- 102000009465 Growth Factor Receptors Human genes 0.000 description 1
- 108010009202 Growth Factor Receptors Proteins 0.000 description 1
- 208000023661 Haematological disease Diseases 0.000 description 1
- 101000916050 Homo sapiens C-X-C chemokine receptor type 3 Proteins 0.000 description 1
- 101000998146 Homo sapiens Interleukin-17A Proteins 0.000 description 1
- 101001010626 Homo sapiens Interleukin-22 Proteins 0.000 description 1
- 101000669402 Homo sapiens Toll-like receptor 7 Proteins 0.000 description 1
- 101000800483 Homo sapiens Toll-like receptor 8 Proteins 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 102100033461 Interleukin-17A Human genes 0.000 description 1
- 102100030703 Interleukin-22 Human genes 0.000 description 1
- 102000013264 Interleukin-23 Human genes 0.000 description 1
- 108010065637 Interleukin-23 Proteins 0.000 description 1
- 208000005615 Interstitial Cystitis Diseases 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- 208000007766 Kaposi sarcoma Diseases 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- 150000000994 L-ascorbates Chemical class 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 1
- 239000002177 L01XE27 - Ibrutinib Substances 0.000 description 1
- CZQHHVNHHHRRDU-UHFFFAOYSA-N LY294002 Chemical compound C1=CC=C2C(=O)C=C(N3CCOCC3)OC2=C1C1=CC=CC=C1 CZQHHVNHHHRRDU-UHFFFAOYSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 108010028275 Leukocyte Elastase Proteins 0.000 description 1
- 102000016799 Leukocyte elastase Human genes 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical class CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 238000006751 Mitsunobu reaction Methods 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- 201000002481 Myositis Diseases 0.000 description 1
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000009905 Neurofibromatoses Diseases 0.000 description 1
- 102100026379 Neurofibromin Human genes 0.000 description 1
- 208000036110 Neuroinflammatory disease Diseases 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 208000005775 Parakeratosis Diseases 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 208000012654 Primary biliary cholangitis Diseases 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 208000004403 Prostatic Hyperplasia Diseases 0.000 description 1
- 102000009516 Protein Serine-Threonine Kinases Human genes 0.000 description 1
- 108010009341 Protein Serine-Threonine Kinases Proteins 0.000 description 1
- 102000016971 Proto-Oncogene Proteins c-kit Human genes 0.000 description 1
- 108010014608 Proto-Oncogene Proteins c-kit Proteins 0.000 description 1
- 206010063837 Reperfusion injury Diseases 0.000 description 1
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 1
- 208000007014 Retinitis pigmentosa Diseases 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 201000010208 Seminoma Diseases 0.000 description 1
- 206010040070 Septic Shock Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 208000021386 Sjogren Syndrome Diseases 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- 208000006011 Stroke Diseases 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 206010042674 Swelling Diseases 0.000 description 1
- JZRWCGZRTZMZEH-UHFFFAOYSA-N Thiamine Natural products CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N JZRWCGZRTZMZEH-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- JLRGJRBPOGGCBT-UHFFFAOYSA-N Tolbutamide Chemical compound CCCCNC(=O)NS(=O)(=O)C1=CC=C(C)C=C1 JLRGJRBPOGGCBT-UHFFFAOYSA-N 0.000 description 1
- 102100039390 Toll-like receptor 7 Human genes 0.000 description 1
- 102100033110 Toll-like receptor 8 Human genes 0.000 description 1
- 239000000365 Topoisomerase I Inhibitor Substances 0.000 description 1
- 239000000317 Topoisomerase II Inhibitor Substances 0.000 description 1
- 102000004243 Tubulin Human genes 0.000 description 1
- 108090000704 Tubulin Proteins 0.000 description 1
- 206010046851 Uveitis Diseases 0.000 description 1
- 206010046914 Vaginal infection Diseases 0.000 description 1
- 201000008100 Vaginitis Diseases 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 206010047115 Vasculitis Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- JSTADIGKFYFAIY-GJNDDOAHSA-K [2-[bis[[hydroxy(oxido)phosphoryl]methyl]amino]ethyl-(phosphonomethyl)amino]methyl-hydroxyphosphinate;samarium-153(3+) Chemical compound [H+].[H+].[H+].[H+].[H+].[153Sm+3].[O-]P([O-])(=O)CN(CP([O-])([O-])=O)CCN(CP([O-])([O-])=O)CP([O-])([O-])=O JSTADIGKFYFAIY-GJNDDOAHSA-K 0.000 description 1
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 229940022663 acetate Drugs 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 229910052767 actinium Inorganic materials 0.000 description 1
- QQINRWTZWGJFDB-UHFFFAOYSA-N actinium atom Chemical compound [Ac] QQINRWTZWGJFDB-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 208000037883 airway inflammation Diseases 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 208000002205 allergic conjunctivitis Diseases 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 230000009285 allergic inflammation Effects 0.000 description 1
- LBDSXVIYZYSRII-IGMARMGPSA-N alpha-particle Chemical compound [4He+2] LBDSXVIYZYSRII-IGMARMGPSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 229940121369 angiogenesis inhibitor Drugs 0.000 description 1
- 238000002399 angioplasty Methods 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940124599 anti-inflammatory drug Drugs 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 238000011394 anticancer treatment Methods 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 229940127219 anticoagulant drug Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 210000000544 articulatio talocruralis Anatomy 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 208000024998 atopic conjunctivitis Diseases 0.000 description 1
- 201000008937 atopic dermatitis Diseases 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical class OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 210000000941 bile Anatomy 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 238000010256 biochemical assay Methods 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000013060 biological fluid Substances 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 238000010322 bone marrow transplantation Methods 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- 210000000481 breast Anatomy 0.000 description 1
- 230000036427 bronchial hyperreactivity Effects 0.000 description 1
- 230000007885 bronchoconstriction Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000008568 cell cell communication Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 108091092328 cellular RNA Proteins 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 208000025434 cerebellar degeneration Diseases 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 239000012069 chiral reagent Substances 0.000 description 1
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011443 conventional therapy Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229940043378 cyclin-dependent kinase inhibitor Drugs 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000001085 cytostatic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 201000001981 dermatomyositis Diseases 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 235000019301 disodium ethylene diamine tetraacetate Nutrition 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 229960003668 docetaxel Drugs 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000007876 drug discovery Methods 0.000 description 1
- 229940125436 dual inhibitor Drugs 0.000 description 1
- 210000000624 ear auricle Anatomy 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000008378 epithelial damage Effects 0.000 description 1
- 229930013356 epothilone Natural products 0.000 description 1
- HESCAJZNRMSMJG-KKQRBIROSA-N epothilone A Chemical class C/C([C@@H]1C[C@@H]2O[C@@H]2CCC[C@@H]([C@@H]([C@@H](C)C(=O)C(C)(C)[C@@H](O)CC(=O)O1)O)C)=C\C1=CSC(C)=N1 HESCAJZNRMSMJG-KKQRBIROSA-N 0.000 description 1
- 229940082789 erbitux Drugs 0.000 description 1
- 229960001433 erlotinib Drugs 0.000 description 1
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000005713 exacerbation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 208000012997 experimental autoimmune encephalomyelitis Diseases 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 230000003325 follicular Effects 0.000 description 1
- 239000012458 free base Substances 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 229940097043 glucuronic acid Drugs 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 150000002315 glycerophosphates Chemical class 0.000 description 1
- 210000000224 granular leucocyte Anatomy 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 208000035474 group of disease Diseases 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 150000002357 guanidines Chemical class 0.000 description 1
- 230000003394 haemopoietic effect Effects 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 230000002949 hemolytic effect Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 229940022353 herceptin Drugs 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229940125697 hormonal agent Drugs 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 230000001969 hypertrophic effect Effects 0.000 description 1
- 229960001507 ibrutinib Drugs 0.000 description 1
- XYFPWWZEPKGCCK-GOSISDBHSA-N ibrutinib Chemical compound C1=2C(N)=NC=NC=2N([C@H]2CN(CCC2)C(=O)C=C)N=C1C(C=C1)=CC=C1OC1=CC=CC=C1 XYFPWWZEPKGCCK-GOSISDBHSA-N 0.000 description 1
- 230000002519 immonomodulatory effect Effects 0.000 description 1
- 230000005931 immune cell recruitment Effects 0.000 description 1
- 230000037451 immune surveillance Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 230000000495 immunoinflammatory effect Effects 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 230000002584 immunomodulator Effects 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012606 in vitro cell culture Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000000266 injurious effect Effects 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical group O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- XMBWDFGMSWQBCA-YPZZEJLDSA-N iodane Chemical compound [125IH] XMBWDFGMSWQBCA-YPZZEJLDSA-N 0.000 description 1
- 229940044173 iodine-125 Drugs 0.000 description 1
- 229940084651 iressa Drugs 0.000 description 1
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 208000037906 ischaemic injury Diseases 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- FABUFPQFXZVHFB-CFWQTKTJSA-N ixabepilone Chemical compound C/C([C@@H]1C[C@@H]2O[C@]2(C)CCC[C@@H]([C@@H]([C@H](C)C(=O)C(C)(C)[C@H](O)CC(=O)N1)O)C)=C\C1=CSC(C)=N1 FABUFPQFXZVHFB-CFWQTKTJSA-N 0.000 description 1
- 229960002014 ixabepilone Drugs 0.000 description 1
- 208000018937 joint inflammation Diseases 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000000021 kinase assay Methods 0.000 description 1
- 238000011813 knockout mouse model Methods 0.000 description 1
- 210000001821 langerhans cell Anatomy 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 206010024378 leukocytosis Diseases 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000007937 lozenge Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 210000003519 mature b lymphocyte Anatomy 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- XZWYZXLIPXDOLR-UHFFFAOYSA-N metformin Chemical compound CN(C)C(=N)NC(N)=N XZWYZXLIPXDOLR-UHFFFAOYSA-N 0.000 description 1
- 229960003105 metformin Drugs 0.000 description 1
- HNQIVZYLYMDVSB-UHFFFAOYSA-N methanesulfonimidic acid Chemical compound CS(N)(=O)=O HNQIVZYLYMDVSB-UHFFFAOYSA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 230000002297 mitogenic effect Effects 0.000 description 1
- 210000001616 monocyte Anatomy 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000002346 musculoskeletal system Anatomy 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 1
- WNYIBZHOMJZDKN-UHFFFAOYSA-N n-(2-acetamidoethyl)acetamide Chemical compound CC(=O)NCCNC(C)=O WNYIBZHOMJZDKN-UHFFFAOYSA-N 0.000 description 1
- 230000006654 negative regulation of apoptotic process Effects 0.000 description 1
- 208000007538 neurilemmoma Diseases 0.000 description 1
- 201000004931 neurofibromatosis Diseases 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000011242 neutrophil chemotaxis Effects 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000035781 nonspecific defense system Effects 0.000 description 1
- 231100000590 oncogenic Toxicity 0.000 description 1
- 230000002246 oncogenic effect Effects 0.000 description 1
- 230000004650 oncogenic pathway Effects 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 201000008482 osteoarthritis Diseases 0.000 description 1
- 201000008968 osteosarcoma Diseases 0.000 description 1
- 229940127084 other anti-cancer agent Drugs 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 210000000496 pancreas Anatomy 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 210000001428 peripheral nervous system Anatomy 0.000 description 1
- 239000003330 peritoneal dialysis fluid Substances 0.000 description 1
- 230000003285 pharmacodynamic effect Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 230000000865 phosphorylative effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 208000015768 polyposis Diseases 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229940127293 prostanoid Drugs 0.000 description 1
- 150000003814 prostanoids Chemical class 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 201000009732 pulmonary eosinophilia Diseases 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 239000011535 reaction buffer Substances 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 230000019254 respiratory burst Effects 0.000 description 1
- 208000037803 restenosis Diseases 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000006965 reversible inhibition Effects 0.000 description 1
- 201000009410 rhabdomyosarcoma Diseases 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 230000036573 scar formation Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 201000009890 sinusitis Diseases 0.000 description 1
- 201000008261 skin carcinoma Diseases 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007909 solid dosage form Substances 0.000 description 1
- 230000035886 specific defense system Effects 0.000 description 1
- 208000002320 spinal muscular atrophy Diseases 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 230000003393 splenic effect Effects 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 239000012128 staining reagent Substances 0.000 description 1
- 238000011476 stem cell transplantation Methods 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000012089 stop solution Substances 0.000 description 1
- CIOAGBVUUVVLOB-OUBTZVSYSA-N strontium-89 Chemical compound [89Sr] CIOAGBVUUVVLOB-OUBTZVSYSA-N 0.000 description 1
- 229940006509 strontium-89 Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 150000003890 succinate salts Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000009044 synergistic interaction Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 229960001603 tamoxifen Drugs 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 208000001608 teratocarcinoma Diseases 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 235000019157 thiamine Nutrition 0.000 description 1
- KYMBYSLLVAOCFI-UHFFFAOYSA-N thiamine Chemical compound CC1=C(CCO)SCN1CC1=CN=C(C)N=C1N KYMBYSLLVAOCFI-UHFFFAOYSA-N 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- 239000011721 thiamine Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 206010043554 thrombocytopenia Diseases 0.000 description 1
- 230000026727 thymocyte apoptotic process Effects 0.000 description 1
- 206010043778 thyroiditis Diseases 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 230000007838 tissue remodeling Effects 0.000 description 1
- 229960005371 tolbutamide Drugs 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 1
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 238000007631 vascular surgery Methods 0.000 description 1
- 239000002525 vasculotropin inhibitor Substances 0.000 description 1
- 230000002227 vasoactive effect Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 231100000054 whole-body exposure Toxicity 0.000 description 1
- QDLHCMPXEPAAMD-QAIWCSMKSA-N wortmannin Chemical compound C1([C@]2(C)C3=C(C4=O)OC=C3C(=O)O[C@@H]2COC)=C4[C@@H]2CCC(=O)[C@@]2(C)C[C@H]1OC(C)=O QDLHCMPXEPAAMD-QAIWCSMKSA-N 0.000 description 1
- QDLHCMPXEPAAMD-UHFFFAOYSA-N wortmannin Natural products COCC1OC(=O)C2=COC(C3=O)=C2C1(C)C1=C3C2CCC(=O)C2(C)CC1OC(C)=O QDLHCMPXEPAAMD-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
- A61P11/06—Antiasthmatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/08—Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C303/00—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
- C07C303/36—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids
- C07C303/38—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids by reaction of ammonia or amines with sulfonic acids, or with esters, anhydrides, or halides thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/02—Boron compounds
- C07F5/025—Boronic and borinic acid compounds
Definitions
- the present invention provides dual delta ( ⁇ ) and gamma ( ⁇ ) PI3K protein kinase modulators, methods of preparing them, pharmaceutical compositions containing them and methods of treatment, prevention and/or amelioration of PI3K kinase mediated diseases or disorders using them.
- Phosphoinositide-3 kinase belongs to a class of intracellular lipid kinases that phosphorylate the 3-position hydroxyl group of the inositol ring of phosphoinositide lipids (PIs) generating lipid second messengers. While ⁇ and ⁇ isoforms of PI3K are ubiquitous in their distribution, expression of ⁇ and ⁇ forms of PI3K is restricted to circulating haematogenous cells and endothelial cells. Unlike PI3K ⁇ or PI3K ⁇ , mice lacking expression of PI3K ⁇ or PI3K ⁇ do not show any adverse phenotype indicating that targeting of these specific isoforms would not result in overt toxicity.
- PI3K pathway serves multiple functions in immune cell signaling, primarily through the generation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), a membrane bound second messenger.
- PIP3 recruits proteins to the cytoplasmic side of the lipid bilayer, including protein kinases and GTPases, initiating a complex network of downstream signaling cascades important in the regulation of immune cell adhesion, migration, and cell-cell communication.
- PI3K ⁇ and PI3K ⁇ are ubiquitous and activated downstream of receptor tyrosine kinases (RTK), whereas PI3K ⁇ and PI3K ⁇ are primarily limited to hematopoietic and endothelial cells, and are activated downstream of RTKs, and G protein coupled receptors (GPCR), respectively.
- RTK receptor tyrosine kinases
- GPCR G protein coupled receptors
- PI3K ⁇ and PI3K ⁇ have generated much interest in developing PI3K ⁇ / ⁇ inhibitors as active agents for the treatment of many diseases, including, for example, rheumatoid arthritis, allergies, asthma, chronic obstructive pulmonary disease and multiple sclerosis (Hirsch et al., Pharmacol. Ther., 118, 192-205, 2008; Marone et al., Biochim. Biophys. Acta., 1784, 159-185, 2008; Rommel et al., Nat. Rev. Immunol., 7, 191-201, 2007; Ruckle et al., Nat. Rev. Drug Discov., 5, 903-918, 2006).
- diseases including, for example, rheumatoid arthritis, allergies, asthma, chronic obstructive pulmonary disease and multiple sclerosis (Hirsch et al., Pharmacol. Ther., 118, 192-205, 2008; Marone et al., Biochim. Biophys. Acta
- PI3K ⁇ is essential for degranulation in response to IgE cross-linking of Fc-receptors (Ali et al., J. Immunol., 180, 2538-2544, 2008), while PI3K ⁇ plays an important role in amplifying the response (Laffargue et al., Immunity, 16, 441-451, 2002).
- mice that lack PI3K ⁇ and/or PI3K ⁇ or express kinase-dead variants of PI3K ⁇ and PI3K ⁇ have been valuable tools in understanding their roles.
- PI3K ⁇ knockout mice demonstrated diminished neutrophil chemotaxis, diminished antibody production (both T cell dependent and independent) (Jou et al., Mol. Cell. Biol., 22, 8580-8591, 2002), and lower numbers of mature B cells (Clayton et al., J. Exp. Med., 196, 753-763, 2002; Jou et al., Mol. Cell.
- the PI3K ⁇ knockout contained higher numbers of, but less responsive, neutrophils, lower numbers of and less responsive macrophages, and dendritic cells displayed decreased mast cell degranulation (Laffargue et al., Immunity, 16, 441-451, 2002), a higher ratio of CD4+ to CD8+ T cells, increased thymocyte apoptosis, diminished induction of CXCR3 on activated T cells and decreased cardiac contractility. This latter effect on cardiac tissue was a concern for chronic dosing of patients with PI3K ⁇ inhibitors.
- PI3K ⁇ knockout/PI3K ⁇ kinase-dead combination produced a similar phenotype suggesting that at least within the immune system, the role of PI3K ⁇ is likely only a catalytic one.
- knockout and kinase-dead mice can be challenging because these models provide only a steady-state picture of the immune system, lack temporal and dose control, and do not permit a full understanding of how a dynamic immune response will react to reversible inhibition.
- PI3K ⁇ , PI3K ⁇ , and PI3K ⁇ / ⁇ are necessary for studies of leukocyte signaling in order to assess the relative contributions of each PI3K to immune cell activation (Olusegon et al., supra, including the references cited therein).
- Disruption of PI3K ⁇ / ⁇ signaling therefore provides a novel strategy aimed at counteracting the immuno-inflammatory response.
- inhibitors specifically targeting the PI3K ⁇ and PI3K ⁇ isoforms would be expected to attenuate the progression of immune response encountered in airway inflammation and rheumatoid arthritis (William et. al Chemistry & Biology, 17, 123-134, 2010 and Thompson, et al. Chemistry & Biology, 17:101-102, 2010)
- IPI-145 and CAL130 have been reported as dual inhibitors of Pi3K ⁇ / ⁇ (WO2012/008302 & WO2012/121953 respectively), IPI-145 is under clinical investigation for cancer, asthma and rheumatoid arthritis. IPI-45 has been reported to have a maximum tolerated dose (MTD) of 75 mg BID (55th ASH® Annual Meeting. New Orleans, La., Dec. 7-10, 2013). There are no reports of CAL-130 being investigated for clinical purposes.
- MTD maximum tolerated dose
- the present invention is directed to selective dual inhibitors of PI3K delta ( ⁇ ) and gamma ( ⁇ ) protein kinases. These compounds are suitable for use in a pharmaceutical composition for the treatment of PI3K associated diseases, disorders or conditions, e.g., a proliferative disease such as cancer. Inhibition of both PI3K ⁇ and PI3K ⁇ protein kinases may provide beneficial effects in the treatment of certain diseases and disorders.
- the selective dual inhibitors of the present invention include N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl) ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide, pharmaceutically acceptable salts thereof, and prodrugs thereof.
- the selective dual inhibitor may be selected from the following compounds, pharmaceutically acceptable salts thereof, and prodrugs thereof:
- the compound (S)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl)ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide or a pharmaceutically acceptable salt thereof is substantially free (e.g., contains less than about 10%, such as less than about 5%, less than about 2.5%, less than about 1%, less than about 0.1% by weight) or is free of (R)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl) ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide and
- the compound (S)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl)ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide or a pharmaceutically acceptable salt thereof has an enantiomeric excess of greater than about 90%, such as greater than about 91%, greater than about 92%, greater than about 93%, greater than about 94%, greater than about 95%, greater than about 96%, greater than about 97%, greater than about 98%, greater than about 99%, greater than about 99.5%, greater than about 99.9%, or greater than about 99.99%.
- the present invention relates to the compound (S)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl) ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide (Compound A1).
- the present invention relates to the compound (S)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl)ethyl)-1H-pyrazolo [3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide or a pharmaceutically acceptable salt thereof.
- Another embodiment of the present invention is (R)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl) ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide (Compound A2), a pharmaceutically acceptable salt thereof, or prodrug thereof.
- Compound A2 is an inhibitor of PI3K delta ( ⁇ ) protein kinase. These compounds are suitable for use in a pharmaceutical composition for the treatment of PI3K associated diseases, disorders or conditions, e.g., a proliferative disease such as cancer.
- the present invention further provides a pharmaceutical composition comprising one or more compounds of the present invention (such as compound A1) together with a pharmaceutically acceptable carrier.
- the pharmaceutical composition may further comprise one or more of additional active agents (such as anti-cancer agents and the active agents discussed below).
- the pharmaceutical composition includes a therapeutically effective amount of one or more compounds of the present invention.
- Another aspect of the present invention relates to a process for the preparation of N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl) ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide:
- the process comprises the steps of:
- Yet another embodiment relates to a process for preparation of a compound of formula (A1):
- the process comprises the steps of:
- Still another embodiment are intermediates useful for preparing the compounds of the present invention such as (S)-2-(1-(4-amino-3-(4-methoxy-3-nitrophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-5-fluoro-3-(3-fluorophenyl)-4H-chromen-4-one, (S)-2-(1-(4-amino-3-(3-amino-4-methoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-5-fluoro-3-(3-fluorophenyl)-4H-chromen-4-one, and salts thereof.
- Yet another embodiment of the present invention is a method of inhibiting PI3K ⁇ and PI3K ⁇ in a patient comprising administering to the patient an effective amount of at least one compound of the present invention.
- Yet another embodiment of the present invention is a method of inhibiting PI3K ⁇ in a patient comprising administering to the patient an effective amount of at least one of (R)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl) ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide (compound A2), a pharmaceutically acceptable salt thereof, or a prodrug thereof.
- Yet another embodiment of the present invention is a method of treating, preventing, and/or inhibiting a PI3K protein kinase mediated disease, disorder or condition (such a proliferative disease or disorder, e.g., cancer) in a patient comprising administering to the patient an effective amount of at least one compound of the present invention.
- a PI3K protein kinase mediated disease, disorder or condition such as a proliferative disease or disorder, e.g., cancer
- Yet another embodiment of the present invention is a method for inhibiting PI3K, in particular PI3K ⁇ and PI3K ⁇ , in a patient comprising administering to the patient an effective amount of at least one compound of the present invention.
- Yet another embodiment of the present invention is a method for treating an inflammatory, autoimmune or proliferative disease via modulation of a protein kinase (such as PI3K ⁇ and PI3K ⁇ ) comprising administering to a patient in need of such treatment an effective amount of at least one compound of the present invention.
- a protein kinase such as PI3K ⁇ and PI3K ⁇
- the compound of the present invention inhibits both PI3K ⁇ and PI3K ⁇ .
- Yet another embodiment of the present invention is a method for treating an inflammatory, autoimmune or proliferative disease via modulation of a protein kinase (such as PI3K ⁇ and PI3K ⁇ ) by administering to a patient in need of such treatment an effective amount of at least one compound of the present invention, in combination (simultaneously or sequentially) with at least one other anti-inflammatory, immunomodulator or anti-cancer agent, or a combination thereof.
- the compound of the present invention inhibits both PI3K ⁇ and PI3K ⁇ .
- the compounds of the present invention are useful in the treatment of a variety of cancers, including, but not limited to:
- carcinoma including, but not limited to, that of the bladder, breast, colon, kidney, liver, lung, including small cell lung cancer, esophagus, gall bladder, ovary, pancreas, stomach, cervix, thyroid, prostate, and skin, including squamous cell carcinoma;
- hematopoietic tumors of lymphoid lineage including, but not limited to, leukemia, acute lymphocytic leukemia, acute lymphoblastic leukemia, B-cell lymphoma, T-cell lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hairy cell lymphoma and Burkett's lymphoma;
- hematopoietic tumors of myeloid lineage including, but not limited to, acute and chronic myelogenous leukemias, myelodysplastic syndrome and promyelocytic leukemia;
- tumors of mesenchymal origin including, but not limited to, fibrosarcoma and rhabdomyosarcoma;
- tumors of the central and peripheral nervous system including, but not limited to, astrocytoma, neuroblastoma, glioma and schwannomas; and
- tumors including, but not limited to, melanoma, seminoma, teratocarcinoma, osteosarcoma, xenoderoma pigmentosum, keratoctanthoma, thyroid follicular cancer and Kaposi's sarcoma.
- an effective amount of a compound of the present invention is administered to treat a leukemia, acute lymphocytic leukemia, acute lymphoblastic leukemia, B-cell lymphoma, T-cell lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hairy cell lymphoma, Burkett's lymphoma, acute and chronic myelogenous leukemias, myelodysplastic syndrome or promyelocytic leukemia.
- the compounds of the present invention may act as reversible cytostatic agents, and may therefore be useful in the treatment of any disease process which features abnormal cellular proliferation, such as, e.g., benign prostatic hyperplasia, familial adenomatosis polyposis, neuro-fibromatosis, atherosclerosis, pulmonary fibrosis, arthritis, psoriasis, glomerulonephritis, restenosis following angioplasty or vascular surgery, hypertrophic scar formation, inflammatory bowel disease, transplantation rejection, endotoxic shock, and fungal infections.
- abnormal cellular proliferation such as, e.g., benign prostatic hyperplasia, familial adenomatosis polyposis, neuro-fibromatosis, atherosclerosis, pulmonary fibrosis, arthritis, psoriasis, glomerulonephritis, restenosis following angioplasty or vascular surgery, hypertrophic scar formation, inflammatory bowel disease, transplantation rejection, endotoxic shock, and fun
- the compounds of the present invention as modulators of apoptosis are useful in the treatment of cancer (including, but not limited to, those types mentioned herein above), viral infections (including, but not limited to, herpes virus, poxvirus, Epstein-Barr virus, Sindbis virus and adenovirus), autoimmune diseases (including, but not limited to, systemic lupus, erythematosus, autoimmune mediated glomerulonephritis, rheumatoid arthritis, psoriasis, inflammatory bowel disease, and autoimmune diabetes mellitus), neurodegenerative disorders (including, but not limited to, Alzheimer's disease, AIDS-related dementia, Parkinson's disease, amyotrophic lateral sclerosis, retinitis pigmentosa, spinal muscular atrophy and cerebellar degeneration), myelodysplastic syndromes, aplastic anemia, ischemic injury associated with myocardial infarctions, stroke and reperfusion injury, arrhythmia, atherosclerosis, to
- the compounds of the present invention may modulate the level of cellular RNA and DNA synthesis.
- the compounds of the present invention are therefore useful in the treatment of viral infections, including, but not limited to, HIV, human papilloma virus, herpes virus, poxvirus, Epstein-Barr virus, Sindbis virus and adenovirus.
- the compounds of the present invention are useful in the chemoprevention of cancer.
- Chemoprevention is defined herein as inhibiting the development of invasive cancer by either blocking the initiating mutagenic event or by blocking the progression of pre-malignant cells that have already suffered an insult or inhibiting tumor relapse.
- the compounds of the present invention are also useful in inhibiting tumor angiogenesis and metastasis.
- One embodiment of the present invention is a method of inhibiting tumor angiogenesis or metastasis in a patient in need thereof by administering an effective amount of one or more compounds of the present invention.
- Another embodiment of the present invention is a method of treating an immune system-related disease or immune disorder (e.g., an autoimmune disease), a disease or disorder involving inflammation (e.g., asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, inflammatory bowel disease, glomerulonephritis, neuroinflammatory diseases, multiple sclerosis, uveitis and disorders of the immune system), cancer or other proliferative disease, a hepatic disease or disorder, a renal disease or disorder.
- the method includes administering an effective amount of one or more compounds of the present invention.
- immune disorders include, but are not limited to, psoriasis, rheumatoid arthritis, vasculitis, inflammatory bowel disease, dermatitis, osteoarthritis, asthma, inflammatory muscle disease, allergic rhinitis, vaginitis, interstitial cystitis, scleroderma, osteoporosis, eczema, allogeneic or xenogeneic transplantation (organ, bone marrow, stem cells and other cells and tissues) graft rejection, graft-versus-host disease, lupus erythematosus, inflammatory disease, type I diabetes, pulmonary fibrosis, dermatomyositis, Sjogren's syndrome, thyroiditis (e.g., Hashimoto's and autoimmune thyroiditis), myasthenia gravis, autoimmune haemolytic anemia, multiple sclerosis, cystic fibrosis, chronic relapsing hepatitis, primary biliary cirr
- the compounds described herein are useful as immunosuppresants to prevent transplant graft rejections, allogeneic or xenogeneic transplantation rejection (organ, bone marrow, stem cells, other cells and tissues), and graft-versus-host disease.
- transplant graft rejections result from tissue or organ transplants.
- the graft-versus-host disease results from bone marrow or stem cell transplantation.
- One embodiment of the present invention is a method of preventing or decreasing the risk of transplant graft rejection, allogeneic or xenogeneic transplantation rejection (organ, bone marrow, stem cells, other cells and tissues) or graft-versus-host disease comprising administering an effective amount of one or more compounds of the present invention.
- the compounds of the present invention are also useful in combination (administered together or sequentially) with known anti-cancer treatments, such as, for example, radiation therapy or with cytostatic or cytotoxic or anticancer agents, such as, for example, DNA interactive agents, such as cisplatin or doxorubicin; topoisomerase II inhibitors, such as etoposide; topoisomerase I inhibitors such as CPT-11 or topotecan; tubulin interacting agents, such as paclitaxel, docetaxel or the epothilones (for example ixabepilone), either naturally occurring or synthetic; hormonal agents, such as tamoxifen; thymidilate synthase inhibitors, such as 5-fluorouracil; and anti-metabolites, such as methotrexate, other tyrosine kinase inhibitors, such as Iressa and OSI-774; angiogenesis inhibitors; EGF inhibitors; VEGF inhibitors; CDK inhibitors; S
- the compounds of the present invention are also useful in combination (administered together or sequentially) with one or more steroidal anti-inflammatory drugs, non-steroidal anti-inflammatory drugs (NSAIDs) and immune selective anti-inflammatory derivatives (ImSAIDs), and any combination thereof.
- NSAIDs non-steroidal anti-inflammatory drugs
- ImSAIDs immune selective anti-inflammatory derivatives
- the present invention further provides a pharmaceutical composition comprising one or more compounds of the present invention and a pharmaceutically acceptable carrier.
- the pharmaceutical composition may further comprise one or more of the active ingredients identified above, such as other anti-cancer agents.
- the leukemia is selected from chronic lymphocytic leukemia (CLL), non-Hodgkin lymphoma (NHL), Hodgkin lymphoma (HL), acute myeloid leukemia (AML), multiple myeloma (MM), small lymphocytic lymphoma (SLL), and indolent non-Hodgkin's lymphoma (I-NHL).
- CLL chronic lymphocytic leukemia
- NHL non-Hodgkin lymphoma
- NHL Hodgkin lymphoma
- AML acute myeloid leukemia
- MM multiple myeloma
- SLL small lymphocytic lymphoma
- I-NHL indolent non-Hodgkin's lymphoma
- Yet another embodiment of the present invention is a method of treating an autoimmune disorder in a patient in need thereof comprising administering a therapeutically effective amount of a compound of the present invention.
- the autoimmune disorder is selected from asthma, COPD, rheumatoid arthritis, psoriasis, lupus and experimental autoimmune encephalomyelitis (EAE).
- Yet another embodiment of the present invention is a method of treating allergic rhinitis in a patient in need thereof comprising administering to the patient a therapeutically effective amount of a compound of the present invention.
- the compound(s) of the present invention and optional additional active agents can be administered in the form of a pharmaceutical composition as described herein.
- FIG. 1 depicts a bar graph of the neutrophil count in bronchoalveolar lavage fluid (BALF) from female Wistar rats treated with 10 mg/kg of Compound A1 (po) according to the lipopolysaccharide induced pulmonary neutrophilia model described in Assay 7.
- BALF bronchoalveolar lavage fluid
- FIG. 2 depicts a bar graph of the neutrophil count in peritoneal lavage fluid from Wistar rats treated with 1, 3, and 10 mg/kg of Compound A1 (po) according to the lipopolysaccharide-induced rat air pouch inflammation model described in Assay 8.
- FIGS. 3A and 3B depict the line and bar graphs of individual clinical scores for hind and fore paws and AUC for clinical score, respectively, in Wistar rats with collagen induced arthritis treated with a control or 10 mg/kg/QD of Compound A1 according to the procedure in Assay 11.
- FIGS. 3C and 3D depict line and bar graphs of individual clinical scores for hind and fore paws, respectively, in Wistar rats with collagen induced arthritis treated with vehicle or 10 mg/kg/QD of Compound A1 according to the procedure in Assay 11.
- FIGS. 4A and 4B depict the line and bar graphs of volume for hind paws and AUC of paw volume, respectively, in Wistar rats with collagen induced arthritis treated with vehicle or 10 mg/kg/QD of Compound A1 according to the procedure in Assay 11.
- FIGS. 4C and 4D depict line and bar graphs of ankle diameter for hind paws and AUC of ankle diameter, respectively, in Wistar rats with collagen induced arthritis treated with vehicle or 10 mg/kg/QD of Compound A1 according to the procedure in Assay 11.
- FIGS. 4E to 4G depict bar graphs of histopathological score for inhibition of inflammation, cartilage and pannus, respectively, of all the hind and fore paws in Wistar rats with collagen induced arthritis treated with vehicle or 10 mg/kg/QD of Compound A1 according to the procedure in Assay 11.
- FIG. 4H depicts a bar graph of total histopathological score of all the hind and fore paws in Wistar rats with collagen induced arthritis treated with vehicle or 10 mg/kg/QD of Compound A1 according to the procedure in Assay 11.
- FIG. 5 depicts a bar graph of the percentage incidence of arthritis in Wistar rats with collagen induced arthritis treated with vehicle or 10 mg/kg/QD of Compound A1 according to the procedure in Assay 11.
- FIGS. 6A and 6B depict bar graphs showing the antipsoratic effect of Compound A1 (3, 10, 30 mg/kg) on imiquimod induced psoriasis in Balb/c mice according to the procedure in Assay 13.
- Certain of the compounds described herein contain one or more asymmetric centers and can thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that can be defined, in terms of absolute stereochemistry, as (R)- or (S)-.
- the present chemical entities, pharmaceutical compositions and methods are meant to include all such possible isomers, including racemic mixtures, optically pure forms and intermediate mixtures.
- non-limiting example of intermediate mixtures include a mixture of R:S or S:R isomers in a ratio of 10:90, 13:87, 17:83, 20:80, or 22:78.
- Optically active (R)- and (S)-isomers can be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques.
- the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers.
- tautomers refers to compounds, which are characterized by relatively easy interconversion of isomeric forms in equilibrium. These isomers are intended to be covered by this invention. “Tautomers” are structurally distinct isomers that interconvert by tautomerization. “Tautomerization” is a form of isomerization and includes prototropic or proton-shift tautomerization, which is considered a subset of acid-base chemistry. “Prototropic tautomerization” or “proton-shift tautomerization” involves the migration of a proton accompanied by changes in bond order, often the interchange of a single bond with an adjacent double bond. Where tautomerization is possible (e.g. in solution), a chemical equilibrium of tautomers can be reached.
- keto-enol tautomerization An example of tautomerization is keto-enol tautomerization.
- keto-enol tautomerization is the interconversion of pentane-2,4-dione and 4-hydroxypent-3-en-2-one tautomers.
- phenol-keto tautomerization Another example of tautomerization is phenol-keto tautomerization.
- phenol-keto tautomerization is the interconversion of pyridin-4-ol and pyridin-4(1H)-one tautomers.
- prodrug refers to a compound, which is an inactive precursor of a compound that is converted into its active form in the body by normal metabolic processes. Prodrug design is discussed generally in Hardma, et al. (Eds.), Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed., pp. 11-16 (1996). A thorough discussion is provided in Higuchi, et al., Prodrugs as Novel Delivery Systems, Vol. 14, ASCD Symposium Series, and in Roche (ed.), Bioreversible Carriers in Drug Design, American Pharmaceutical Association and Pergamon Press (1987).
- prodrugs can be converted into a pharmacologically active form through hydrolysis of, for example, an ester or amide linkage, thereby introducing or exposing a functional group on the resultant product.
- the prodrugs can be designed to react with an endogenous compound to form a water-soluble conjugate that further enhances the pharmacological properties of the compound, for example, increased circulatory half-life.
- prodrugs can be designed to undergo covalent modification on a functional group with, for example, glucuronic acid, sulphate, glutathione, amino acids, or acetate.
- the resulting conjugate can be inactivated and excreted in the urine, or rendered more potent than the parent compound.
- High molecular weight conjugates also can be excreted into the bile, subjected to enzymatic cleavage, and released back into the circulation, thereby effectively increasing the biological half-life of the originally administered compound.
- ester refers to a compound, which is formed by reaction between an acid and an alcohol with elimination of water.
- An ester can be represented by the general formula RCOOR′ (where R is a drug and R′ is a chemical group).
- the instant invention also includes the compounds which differ only in the presence of one or more isotopically enriched atoms for example replacement of hydrogen with deuterium or tritium, or the replacement of a carbon by 13 C- or 14 C-enriched carbon.
- the compounds of the present invention may also contain unnatural proportions of atomic isotopes at one or more of atoms that constitute such compounds.
- the compounds may be radiolabeled with radioactive isotopes, such as for example tritium ( 3 H), iodine-125 ( 125 I) or carbon-14 ( 14 C). All isotopic variations of the compounds of the present invention, whether radioactive or not, are encompassed within the scope of the present invention.
- Pharmaceutically acceptable salts forming part of this invention include salts derived from inorganic bases such as Li, Na, K, Ca, Mg, Fe, Cu, Zn, and Mn; salts of organic bases such as N,N′-diacetylethylenediamine, glucamine, triethylamine, choline, hydroxide, dicyclohexylamine, metformin, benzylamine, trialkylamine, and thiamine; chiral bases such as alkylphenylamine, glycinol, and phenyl glycinol; salts of natural amino acids such as glycine, alanine, valine, leucine, isoleucine, norleucine, tyrosine, cystine, cysteine, methionine, proline, hydroxy proline, histidine, omithine, lysine, arginine, and serine; quaternary ammonium salts of the compounds of invention with alkyl hal
- Salts may include acid addition salts where appropriate which may be sulphates, nitrates, phosphates, perchlorates, borates, hydrohalides, acetates, tartrates, maleates, citrates, fumarates, succinates, palmoates, methanesulphonates, benzoates, salicylates, benzenesulfonates, ascorbates, glycerophosphates, and ketoglutarates.
- acid addition salts where appropriate which may be sulphates, nitrates, phosphates, perchlorates, borates, hydrohalides, acetates, tartrates, maleates, citrates, fumarates, succinates, palmoates, methanesulphonates, benzoates, salicylates, benzenesulfonates, ascorbates, glycerophosphates, and ketoglutarates.
- PI3-K Phosphoinositide 3-kinase
- PI phosphatidylinositol
- AIDS Acquired Immuno Deficiency Syndrome
- HIV Human Immunodeficiency Virus
- MeI Methyl Iodide
- ND Not determined.
- cell proliferation refers to a phenomenon by which the cell number has changed as a result of division. This term also encompasses cell growth by which the cell morphology has changed (e.g., increased in size) consistent with a proliferative signal.
- co-administration encompass administration of two or more agents to an animal so that both agents and/or their metabolites are present in the animal at the same time.
- Co-administration includes simultaneous administration in separate compositions, administration at different times in separate compositions, or administration in a composition in which both agents are present.
- the term “effective amount” or “therapeutically effective amount” refers to that amount of a compound described herein that is sufficient to effect the intended application including but not limited to disease treatment, as defined below.
- the therapeutically effective amount may vary depending upon the intended application (in vitro or in vivo), or the subject and disease condition being treated, e.g., the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by one of ordinary skill in the art.
- the term also applies to a dose that will induce a particular response in target cells, e.g. reduction of platelet adhesion and/or cell migration.
- the specific dose will vary depending on the particular compounds chosen, the dosing regimen to be followed, whether it is administered in combination with other compounds, timing of administration, the tissue to which it is administered, and the physical delivery system in which it is carried.
- treatment As used herein, “treatment,” “treating,” or “ameliorating” are used interchangeably. These terms refers to an approach for obtaining beneficial or desired results including but, not limited to, therapeutic benefit and/or a prophylactic benefit.
- therapeutic benefit is meant eradication or amelioration of the underlying disorder being treated.
- a therapeutic benefit is achieved with the eradication or amelioration of one or more of the physiological symptoms associated with the underlying disorder such that an improvement is observed in the patient, notwithstanding that the patient may still be afflicted with the underlying disorder.
- the compositions may be administered to a patient at risk of developing a particular disease, or to a patient reporting one or more of the physiological symptoms of a disease, even though a diagnosis of this disease may not have been made.
- a prophylactic effect includes delaying or eliminating the appearance of a disease or condition, delaying or eliminating the onset of symptoms of a disease or condition, slowing, halting, or reversing the progression of a disease or condition, or any combination thereof.
- subject refers to an animal (e.g., a dog, cat, horse, or pig), such as a mammal, for example a human.
- animal e.g., a dog, cat, horse, or pig
- the methods described herein can be useful in both human therapeutics and veterinary applications.
- the patient is a mammal.
- the patient is human.
- Radionuclides e.g., actinium and thorium radionuclides
- LET low linear energy transfer
- beta emitters i.e. beta emitters
- conversion electron emitters e.g. strontium-89 and samarium-153-EDTMP
- high-energy radiation including, without limitation, x-rays, gamma rays, and neutrons.
- selective inhibition or “selectively inhibit” as applied to a biologically active agent refers to the agent's ability to selectively reduce the target signaling activity as compared to off-target signaling activity, via direct or indirect interaction with the target.
- pharmaceutically acceptable carrier or “pharmaceutically acceptable excipient” includes, but is not limited to, any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, one or more suitable diluents, fillers, salts, disintegrants, binders, lubricants, glidants, wetting agents, controlled release matrices, colorants/flavouring, carriers, excipients, buffers, stabilizers, solubilizers, and combinations thereof. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions of the invention is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- the compounds of the present invention selectively inhibit one or more members of type I or class I phosphatidylinositol 3-kinases (PI3-kinase) with an IC 50 value of about 100 nM or less, about 50 nM or less, about 10 nM or less, about 5 nM or less, about 100 pM or less, about 10 pM or less, or about 1 pM or less as measured in an in vitro kinase assay.
- PI3-kinase phosphatidylinositol 3-kinases
- an inhibitor that selectively inhibits one or more members of type I PI3-kinases or an inhibitor that selectively inhibits one or more type I PI3-kinase mediated signaling pathways, alternatively can be understood to refer to a compound that exhibits a 50% inhibitory concentration (IC 50 ) with respect to a given type I PI3-kinase, that is at least 10-fold lower, at least 20-fold lower, at least 50-fold lower, at least 100-fold lower, or at least 1000-fold lower than the inhibitor's IC 50 with respect to the rest of the other type I PI3-kinases.
- IC 50 50% inhibitory concentration
- dual PI3-kinase ⁇ / ⁇ inhibitor and “dual PI3-kinase ⁇ / ⁇ selective inhibitor” refers to a compound that inhibits the activity of both the PI3-kinase ⁇ and ⁇ isozyme more effectively than other isozymes of the PI3K family.
- a dual PI3-kinase ⁇ / ⁇ inhibitor is therefore more selective for PI3-kinase ⁇ and ⁇ than conventional PI3K inhibitors such as CAL-130, wortmannin and LY294002, which are nonselective PI3K inhibitors.
- Inhibition of PI3-kinase ⁇ and ⁇ may be of therapeutic benefit in treatment of various conditions, e.g., conditions characterized by an inflammatory response including, but not limited to, autoimmune diseases, allergic diseases, and arthritic diseases. Importantly, inhibition of PI3-kinase ⁇ and ⁇ function does not appear to affect biological functions such as viability and fertility.
- Inflammatory response is characterized by redness, heat, swelling and pain (i.e., inflammation) and typically involves tissue injury or destruction.
- An inflammatory response is usually a localized, protective response elicited by injury or destruction of tissues, which serves to destroy, dilute or wall off (sequester) both the injurious agent and the injured tissue.
- Inflammatory responses are notably associated with the influx of leukocytes and/or leukocyte (e.g., neutrophil) chemotaxis.
- Inflammatory responses may result from infection with pathogenic organisms and viruses, noninfectious means such as trauma or reperfusion following myocardial infarction or stroke, immune responses to foreign antigens, and autoimmune diseases.
- Inflammatory responses amenable to treatment with the methods and compounds according to the invention encompass conditions associated with reactions of the specific defense system as well as conditions associated with reactions of the non-specific defense system.
- the therapeutic methods of the invention include methods for the amelioration of conditions associated with inflammatory cell activation.
- “Inflammatory cell activation” refers to the induction by a stimulus (including but not limited to, cytokines, antigens or auto-antibodies) of a proliferative cellular response, the production of soluble mediators (including but not limited to cytokines, oxygen radicals, enzymes, prostanoids, or vasoactive amines), or cell surface expression of new or increased numbers of mediators (including, but not limited to, major histocompatibility antigens or cell adhesion molecules) in inflammatory cells (including but not limited to monocytes, macrophages, T lymphocytes, B lymphocytes, granulocytes (polymorphonuclear leukocytes including neutrophils, basophils, and eosinophils) mast cells, dendritic cells, Langerhans cells, and endothelial cells).
- a stimulus including but not limited to, cytokines, antigen
- Autoimmune disease refers to any group of disorders in which tissue injury is associated with humoral or cell-mediated responses to the body's own constituents.
- Transplant rejection refers-to any immune response directed against grafted tissue (including organs or cells (e.g., bone marrow), characterized by a loss of function of the grafted and surrounding tissues, pain, swelling, leukocytosis, and thrombocytopenia).
- Allergic disease refers to any symptoms, tissue damage, or loss of tissue function resulting from allergy.
- Article disease refers to any disease that is characterized by inflammatory lesions of the joints attributable to a variety of etiologies.
- Dispermatitis refers to any of a large family of diseases of the skin that are characterized by inflammation of the skin attributable to a variety of etiologies.
- the term “dual PI3-kinase ⁇ / ⁇ selective inhibitor” generally refers to a compound that inhibits the activity of the PI3-kinase ⁇ and ⁇ isozyme more effectively than other isozymes of the PI3K family.
- the relative efficacies of compounds as inhibitors of an enzyme activity (or other biological activity) can be established by determining the concentrations at which each compound inhibits the activity to a predefined extent and then comparing the results.
- the preferred determination is the concentration that inhibits 50% of the activity in a biochemical assay, i.e., the 50% inhibitory concentration or “IC 50 ”.
- IC 50 determinations can be accomplished using conventional techniques known in the art.
- an IC 50 can be determined by measuring the activity of a given enzyme in the presence of a range of concentrations of the inhibitor under study. The experimentally obtained values of enzyme activity then are plotted against the inhibitor concentrations used. The concentration of the inhibitor that shows 50% enzyme activity (as compared to the activity in the absence of any inhibitor) is taken as the IC 50 value.
- other inhibitory concentrations can be defined through appropriate determinations of activity. For example, in some settings it can be desirable to establish a 90% inhibitory concentration, i.e., IC 90 , etc.
- a dual PI3-kinase ⁇ / ⁇ selective inhibitor alternatively can be understood to refer to a compound that exhibits a 50% inhibitory concentration (IC 50 ) with respect to PI3-kinase ⁇ and ⁇ , that is at least 10-fold lower, at least 20-fold lower, or at least 30-fold lower than the IC 50 value with respect to any or all of the other class I PI3K family members.
- IC 50 50% inhibitory concentration
- dual PI3-kinase ⁇ / ⁇ selective inhibitor can be understood to refer to a compound that exhibits an IC 50 with respect to PI3-kinase ⁇ and ⁇ that is at least 30-fold lower, at least 50-fold lower, at least 100-fold lower, at least 200-fold lower, or at least 500-fold lower than the IC 50 with respect to any or all of the other PI3K class I family members.
- a dual PI3-kinase ⁇ / ⁇ selective inhibitor is typically administered in an amount such that it selectively inhibits both PI3-kinase ⁇ and ⁇ activity, as described above.
- the compounds of the present invention exhibit PI3-kinase ⁇ and ⁇ inhibition almost equally ( ⁇ 1:1) or at a maximum ratio of 1:5, i.e., the compound the of the present invention exhibit almost equal IC 50 values for both PI3-kinase ⁇ and ⁇ enzyme, or at most a 3 to 8 fold difference between the two.
- the methods of the invention may be applied to cell populations in vivo or ex vivo.
- “In vivo” means within a living individual, as within an animal or human or in a subject's body. In this context, the methods of the invention may be used therapeutically or prophylactically in an individual.
- “Ex vivo” or “in vitro” means outside of a living individual. Examples of ex vivo cell populations include in vitro cell cultures and biological samples including but not limited to fluid or tissue samples obtained from individuals. Such samples may be obtained by methods known in the art. Exemplary biological fluid samples include blood, cerebrospinal fluid, urine, and saliva. Exemplary tissue samples include tumors and biopsies thereof. In this context, the invention may be used for a variety of purposes, including therapeutic and experimental purposes.
- the invention may be used ex vivo or in vitro to determine the optimal schedule and/or dosing of administration of a PI3-kinase ⁇ selective inhibitor for a given indication, cell type, individual, and other parameters. Information gleaned from such use may be used for experimental or diagnostic purposes or in the clinic to set protocols for in vivo treatment. Other ex vivo uses for which the invention may be suited are described below or will become apparent to those skilled in the art.
- the compounds of the present invention can be prepared by methods known in the art, such as those described in International Publication Nos. WO 2011/055215, WO 2012/151525, and WO 2013/164801, each of which is hereby incorporated by reference in its entirety.
- the present invention also provides a pharmaceutical composition comprising one or more compounds of the present invention and one or more pharmaceutically acceptable carriers or excipients.
- the pharmaceutical composition includes a therapeutically effective amount of one or more compounds of the present invention.
- the pharmaceutical composition may include one or more additional active ingredients as described herein.
- the pharmaceutical carriers and/or excipients may be selected from, for example, diluents, fillers, salts, disintegrants, binders, lubricants, glidants, wetting agents, controlled release matrices, colorants, flavourings, buffers, stabilizers, solubilizers, and combinations thereof.
- the pharmaceutical compositions described herein contain from about 0.1 mg to about 1,000 mg, such as from about 1 mg to about 1,000 mg, from about 20 mg to about 800 mg, from about 50 mg to about 600 mg or from about 50 mg to about 600 mg of one or more compounds of the present invention. In another embodiment, the pharmaceutical compositions described herein contain from about 100 mg to about 400 mg of one or more compounds of the present invention.
- compositions of the present invention can be administered alone or in combination with one or more other active agents.
- the subject compounds and other agent(s) may be mixed into a preparation or both components may be formulated into separate preparations to use them in combination separately or at the same time.
- the compounds and pharmaceutical compositions of the present invention can be administered by any route that enables delivery of the compounds to the site of action, such as orally, intranasally, topically (e.g., transdermally), intraduodenally, parenterally (including intravenously, intraarterially, intramuscularally, intravascularally, intraperitoneally or by injection or infusion), intradermally, by intramammary, intrathecally, intraocularly, retrobulbarly, intrapulmonary (e.g., aerosolized drugs) or subcutaneously (including depot administration for long term release e.g., embedded-under the-splenic capsule, brain, or in the cornea), sublingually, anally, rectally, vaginally, or by surgical implantation (e.g., embedded under the splenic capsule, brain, or in the cornea).
- routes that enables delivery of the compounds to the site of action, such as orally, intranasally, topically (e.g., transdermally), intraduodenally,
- compositions can be administered in solid, semi-solid, liquid or gaseous form, or may be in dried powder, such as lyophilized form.
- the pharmaceutical compositions can be packaged in forms convenient for delivery, including, for example, solid dosage forms such as capsules, sachets, cachets, gelatins, papers, tablets, suppositories, pellets, pills, troches, and lozenges.
- solid dosage forms such as capsules, sachets, cachets, gelatins, papers, tablets, suppositories, pellets, pills, troches, and lozenges.
- the type of packaging will generally depend on the desired route of administration.
- Implantable sustained release formulations are also contemplated, as are transdermal formulations.
- the amount of the compound to be administered is dependent on the mammal being treated, the severity of the disorder or condition, the rate of administration, the disposition of the compound and the discretion of the prescribing physician. However, an effective dosage is in the range of from about 0.001 to about 100 mg/kg body weight per day, preferably from about 1 to about 35 mg/kg/day, in single or divided doses. For a 70 kg human, this would amount to from about 0.05 to about 7 g/day, preferably from about 0.05 to about 2.5 g/day
- An effective amount of a compound of the invention may be administered in either single or multiple doses (e.g., twice or three times a day).
- the compounds of the present invention may be used in combination with one or more of anti-cancer agents (e.g., chemotherapeutic agents), therapeutic antibodies, and radiation treatment.
- anti-cancer agents e.g., chemotherapeutic agents
- therapeutic antibodies e.g., IL-12, IL-12, and radiation treatment.
- the compounds of the invention may be formulated or administered in conjunction with other agents that act to relieve the symptoms of inflammatory conditions such as encephalomyelitis, asthma, and the other diseases described herein.
- agents include non-steroidal anti-inflammatory drugs (NSAIDs).
- Example A1 (S-isomer): Brown solid (0.247 g). Enantiomeric excess: 97.4%. Retention time: 2.14 min. Mass: 619.1 (M + +1). MP: 156-158° C.
- Example A2 (R-isomer): Brown solid (0.182 g). Enantiomeric excess: 99.3%. Retention t: 3.43 min. Mass: 619.1 (M + +1). MP: 168-171° C.
- the metabolic stability data for Compound A1 indicates that it exhibits a superior pharmacokinetic profile.
- the plasma protein binding data for Compound A1 is provided in Table 2 below:
- Test item formulations were prepared in 1% Tween 80 and 99% media (0.5% Methyl cellulose, 4000cPs, pH 2.2).
- the blood samples 150 ⁇ L from each animal) were collected from the orbital sinus, and placed into a micro centrifuge tube containing disodium EDTA as an anticoagulant. Blood samples were centrifuged immediately with a speed of 1000 g for 10 min at 4° C. and separated plasma samples were frozen at below ⁇ 80° C. and stored until analysis.
- concentrations of test item in all formulations were analyzed by HPLC.
- the plasma concentrations of test item in all samples were analyzed by LC-MS/MS.
- Compounds A and A1 showed superior pharmacokinetic profiles compared to Example 128 of WO 2012/151525. For instance, Compound A showed a ⁇ 1.5 fold increase in C max , ⁇ 4 fold increase in AUC 0-t , and ⁇ 2.8 fold increase in t 1/2 as compared to Example 128 of WO 2012/151525. Compound A1 showed a ⁇ 16 fold increase in C max , 48 fold increase in AUC 0-t , and ⁇ 1.6 fold increase in t 1/2 as compared to Example 128 of WO 2012/151525.
- Phosphoinositide 3 kinases belong to a class of lipid kinases that play a critical role in the regulation of several key cellular processes.
- the PI3K are capable of phosphorylating the 3-hydroxy position of phosphoinositols thereby generating second messengers involved in downstream signaling events.
- the homogenous time resolved fluorescence (HTRF) assay allows detection of 3,4,5-triphosphate (PIPS) formed as a result of phosphorylation of phosphotidylinositol 4,5-biphosphate (PIP2) by PI3K isoforms such as ⁇ , ⁇ , ⁇ or ⁇ .
- PI3K isoform activity for ⁇ , ⁇ , ⁇ or ⁇ was determined using a PI3K human HTRFTM Assay Kit (Millipore, Billerica, Mass.) with modifications. All incubations were carried out at room temperature. 0.5 ⁇ l of 40 ⁇ inhibitor (in 100% DMSO) or 100% DMSO were added to each well of a 384-well white plate (Greiner Bio-One, Monroe, N.C.) containing 14.5 ⁇ l 1 ⁇ reaction buffer/PIP2 (10 mM MgCl 2 , 5 mM DTT, 1.38 ⁇ M PIP2) mix with or without enzyme, followed by 5 ⁇ l/well of 400 ⁇ M ATP and incubated for an additional 30 minutes.
- Growth inhibition assays were carried out using 10% FBS supplemented media. Cells were seeded at a concentration of 5000-20,000 cells/well in a 96-well plate. Test compounds at a concentration ranging from 0.01 to 10000 nM were added after 24 hours. Growth was assessed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) dye reduction test at 0 hour (prior to the addition of the test compound) and 72 hours after the addition of test compound. Absorbance was read on a Fluostar Optima (BMG Labtech, Germany) at a wavelength of 450 nm. Data were analysed using GraphPad Prism and percent inhibition due to the test compound compared to the control was calculated accordingly.
- MTT 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide
- Compound A1 caused a reduction in T-lymphoma (MOLT-4, Jurkat, CCRF-CEM, Hut-78 and HuT-102) cell viability with GI 50 values ranging from 2.5-12.8 ⁇ M for the dose range tested. Additionally, compound A1 did not display any apparent cytotoxicity over the 72 hour incubation period.
- MOLT-4, Jurkat, CCRF-CEM, and Hut-78 cells were incubated with desired concentrations of compound for 48 hours. Cells were lysed and pAKT determined by Western Blotting. Bands were quantified using ImageJ and normalized to actin.
- Compound A1 caused a reduction in pAKT expression in T-lymphoma (MOLT-4, Jurkat, CCRF-CEM and Hut-78) cell lines with EC 50 values ranging from 0.02-1.6 ⁇ M for the dose range tested.
- PI3K ⁇ and ⁇ signaling in basophils manifested by an alteration of anti-Fc ⁇ R1 or fMLP induced CD63 expression is a useful pharmacodynamic marker determined using the Flow2CAST® kit (Buhlmann Laboratories, Switzerland). The test procedure involves the following steps:
- Percent CD63 positive cells within the gated basophil population were determined in different treatment groups and normalized to vehicle control.
- Assay 4A Cellular Activity Demonstrating Selectivity of Compound A1 towards PI3K Delta and PI3K Gamma Isoforms
- Assay 4A1 Anti-IgM Induced B-Cell Proliferation (For PI3K ⁇ Selectivity)
- the objective of this study was to assess the inhibitory potential of Compound A1 on anti-IgM induced human B-cell proliferation.
- Isolated B-cells were re-suspended to 1.0 ⁇ 10 6 cells per ml. 100 ⁇ l of cell suspension was added to each well of a 96-well plate. Triplicates were maintained.
- the treated plate was incubated for 30 minutes at 37° C., 5% CO 2 and then 50 ⁇ l of 4 ⁇ inducer was added and mixed by pipetting.
- the plate was incubated at 37° C., 5% CO 2 for 72 hours.
- the data demonstrates the inhibitory potential of Compound A1 on PI3K ⁇ mediated induction of human B-cell proliferation. See, e.g., Baeker et al., Journal of Immunology, 134: 3532-3538, 1985.
- Assay 4A2 LPA Induced AktS473 Phosphorylation in 3T3 Fibroblasts (for PI3K ⁇ Selectivity)
- the objective of this study was to determine the effect of Compound A1 on PI3K ⁇ kinase mediated LPA induced AktS473 phosphorylation in 3T3 fibroblasts.
- 3T3 cells were treated with desired concentrations of the test compound for 15 minutes. 1 ml of 2 ⁇ LPA was added such that the final concentration was 5 ⁇ M and incubated for 5 minutes.
- Samples were analyzed by Western Blotting using pAKT (S473) as the primary and anti-rabbit IgG-HRP as a secondary antibody.
- Assay 4A3 c5a Induced AktS473 Phosphorylation in RAW 264.7 Macrophages (For PI3K ⁇ Selectivity)
- the objective of this study was to determine the effect of Compound A1 on PI3K ⁇ kinase mediated c5a induced AktS473 phosphorylation in RAW 264.7 macrophages.
- RAW 264.7 cells were treated with desired concentrations of the test compound for 15 minutes. 1 ml of 2 ⁇ c5a was added such that the final concentration was 50 ng/ml and incubated for 15 minutes.
- Samples were analyzed by Western Blotting using pAKT (S473) as the primary and anti-rabbit IgG-HRP as a secondary antibody.
- Assay 4A4 PDGF Induced Akt Phosphorylation in 3T3 cells (For PI3K a Selectivity)
- the objective of this study was to determine the effect of Compound A1 on PI3K ⁇ kinase mediated AktS473 phosphorylation in PDGF induced 3T3 fibroblasts.
- Apoptosis in leukemic cells was determined using an in situ Caspase 3 kit (Millipore, US) as outlined below:
- Percent increase in caspase-3 activity manifested by an increase in fluorescence compared to the control blank is to be calculated.
- the objective of this study was to assess the inhibitory potential of Compound A1 on antigen-induced cytokine release in human PBMC
- EC 50 values were calculated from 2-3 independent experiments.
- Compound A1 inhibited antigen-induced TNF ⁇ , IL-2, and IL-4 with an EC 50 of 7.1, 9.5, and 3.5 nM, respectively.
- CD19 is a protein present on B cells from the earliest recognizable B-lineage cells during development to B-cell blasts but is however lost on maturation to plasma cells.
- LPS is an endotoxin and a major component of environmental microbes with a potent mitogenic activity on B-cells via the BCR signaling pathway.
- Diluted human whole blood was treated with DMSO or desired concentrations of Compound A1.
- Samples were induced with LPS 15 minutes after addition of compound and incubated for 72 hours at 37° C. and 5% CO 2 .
- Cells positive for CD45 and CD19 were determined by flow cytometry and data are expressed as percentage CD19 positive cells in the total population.
- CD45R (B220) is expressed on mouse B-lymphocytes throughout their development from early pro-B stages onwards and is down-regulated upon terminal differentiation to plasma cells. Briefly, diluted mouse whole blood was treated with of DMSO or desired concentrations of Compound A1. Samples were induced with LPS 15 minutes after compound addition, and incubated for 72 hours at 37° C. and 5% CO 2 . Cells positive for CD45 and CD45R were determined by flow cytometry. Data are expressed as percentage CD45R positive cells in the total population.
- the PI3K pathway is regulated downstream by AKT, a serine-threonine kinase that modulates several oncogenic processes such as cell proliferation, growth, and survival.
- AKT a serine-threonine kinase that modulates several oncogenic processes such as cell proliferation, growth, and survival.
- LPS-induced AKT phosphorylation was determined ex vivo using isolated mouse splenocytes. Cells were plated and incubated with a desired concentration of Compound A1 for 15 minutes followed by induction with LPS (20 ⁇ g/mL) for 30 minutes. Following induction, cells were lysed and pAKT was determined by ELISA using pAKT S473 capture/detection antibody pair and anti-mouse-HRP secondary antibody.
- Assay 7 Lipopolysaccharide Induced Pulmonary Neutrophilia in Female Wistar Rat Model
- neutrophil neutrophil elastase
- free oxygen radicals When released, these compounds can cause bronchoconstriction, bronchial hyperreactivity, hyper-secretion, epithelial damage, and tissue remodeling in the airways.
- test compound (Compound A1) was prepared as a suspension in a vehicle consisting of 0.5% methylcellulose in which Tween 80 as a suspending agent.
- the compound or vehicle was administered by oral gavage at a volume of 10 mL/kg.
- Female Wistar rats were anaesthetized with ketamine and LPS solution was administered intratracheally one hour after compound administration at a dose of 1 mg/kg.
- the total numbers of white blood cells were determined in BAL fluid or blood by using a blood cell counter and was adjusted to 1 ⁇ 10 6 cell/ml. Differential cell count was calculated manually. One hundred microliters of the cell suspension was centrifuged using a Cytospin 3 to prepare a cell smear. The cell smear was stained with a blood staining solution for differentiation and slides were microscopically observed to identify eosinophil according to their morphological characteristics. The number of each cell type among 300 white blood cells in the cell smear was determined and expressed as a percentage. The number of eosinophil in each BALf or blood was calculated.
- Compound A1 showed a reduction of neutrophil infiltration into the lungs with an inhibition of 65.29% at 10 mg/kg compared to the control group, suggesting a therapeutic role in inflammatory disorders.
- the results are shown in FIG. 1 .
- mice Female Wistar rats (175-200 g) were acclimatized for seven days prior to the start of the experiment. Animals were randomly distributed to various groups based on their body weights. Animals were anaesthetised with ether and subcutaneous air pouches were made by injecting 20 ml of sterile air under the skin in the intra-scapular area (day 0) and maintained with a second 10 ml injection of sterile-filtered air on day 4. On day 6, oral treatment was commenced 1 hour prior to induction of inflammation by s.c. injection of LPS solution on day 6. A volume of 5 ml of LPS solution dissolved in sterile saline (100 ⁇ g/kg) was injected into each pouch.
- Compound A1 caused a dose-dependent reduction of neutrophil migration into the rat air pouch with an ED 50 of 2.65 mg/kg suggesting a therapeutic role in rheumatoid arthritis.
- the results are shown in FIG. 2 .
- 0.3 ml of blood samples are collected from orbital vein by retro-orbital plexus method from each individual animal and analysed on a cell analyser (ADVIA 2120, Siemens). Based on their total cell count, guinea pigs are randomized and divided into various groups. Ear pinna is marked with an indelible marking pen for identification. On day 0, weights are recorded and animals are sensitized with 50 ⁇ g of ovalbumin (OVA) and 10 mg of alum solution (1 ml) intraperitoneally. On day 7 and day 14, the above sensitization protocol is repeated. Animals are observed for any signs of illness or reaction to the sensitization up to day 19 and recorded if any.
- OVA ovalbumin
- Control and sham group animals were treated with 0.5% w/v methyl cellulose (vehicle). Sham control groups were sensitized with 10 mg of alum on day 0, 7 and 14 and exposed to saline solution with the same nebulization rate on day 24, 25 and 26.
- airway hyperresponsiveness was measured by whole body plethysmograph against cumulative doses of methacholine challenge (2.5, 10, 50 and 100 mg/ml). After measuring the airway response, blood samples and BAL fluid were collected. Samples were analysed for total cell count by using a neubuear chamber under microscope and differential leukocyte count was done manually.
- mice Female wistar rats were acclimatized for seven days prior to the start of the experiment and were randomly distributed to various groups based on their body weights. On day 0, animals were treated by intradermal injection of 500 ⁇ g of bovine collagen type II emulsified with complete Freund's adjuvant (IFA) containing MTB (4 mg/mL) delivered at the base of the tail. On day 7 after primary immunization, animals were treated by booster injection of 300 ⁇ g CII in incomplete Freund's adjuvant by intradermal injection at the base of the tail. Onset of arthritis in ankle joints usually became visually apparent between days 12 and 14. Animals were treated with test compound or vehicle (orally administered) from the day after onset of arthritis and the treatment continued for the next 9 consecutive days.
- IFA complete Freund's adjuvant
- Compound A1 dosed therapeutically in the rat CIA model demonstrates significant efficacy in the reduction of the clinical score ( FIGS. 3A and 3B ) observed in both prophylactic paws ( FIG. 3C ) and therapeutic paws ( FIG. 3D ).
- Compound A1 dosed therapeutically in the rat CIA model demonstrates significant efficacy in reducing the average paw volumes of both the hind paws ( FIGS. 4A and 4B ) and in ankle diameter ( FIGS. 4C and 4D ).
- Compound A1 dosed therapeutically in the rat CIA model demonstrates significant efficacy in inhibition of inflammation (58.3%, see FIG. 4A ), cartilage (46.51%, see FIG. 4B ) and pannus (49.18%, see FIG. 4C ) observed by histopathology of all the hind and fore paws.
- Assay 12 Acute Cigarette Smoke Induced Cell Infiltration in Male Balb/c Mice
- mice Male Balb/c mice
- Animals Male Balb/c mice
- Animals are to be acclimatized for seven days prior to the start of the experiment. Animals are then to be randomly distributed to various groups based on their body weights.
- the mice are to be administered test compound or vehicle by oral/intranasal route and after 1 hour, the test compound administered animals are to be placed in a whole body exposure box.
- mice are exposed to the mainstream smoke of 6 cigarettes, of 8 cigarettes on day 3, and of 10 cigarettes on day 4. Exposure to the smoke of each cigarette will last for 10 minutes.
- the cigarettes are to be completely burned in the first two minutes, followed by an air flow with animal ventilator and the next 20 minutes will be exposure with fresh room air.
- mice After every second cigarette, an additional break of 20 minutes with exposure to fresh room air is to be conducted. Control animals are to be exposed to room air chamber. From day 1 to day 4, animals will be administered the test compound either by oral or intranasal route. On day 5, 24 hours after the last cigarette smoke (CS) exposure, animals will be exsanguinated under anaesthesia, and the trachea will be cannulated and the lungs lavaged with 0.5-ml aliquots of heparinised PBS (1 unit/ml) four times through tracheal cannula (total volume 2 ml). Bronchioalveolar (BAL) collected is to be stored at 2-8° C. until assayed for total cell and differential leukocyte count.
- CS cigarette smoke
- BAL fluid is to be centrifuged (500 ⁇ g for 10 min) and the resulting cell pellet is resuspended in 0.5 ml of heparinised saline.
- the total number of white blood cells is to be determined in BAL fluid and blood using a blood cell counter and adjusted to 1 ⁇ 10 6 cell/ml. Differential cell count is calculated manually.
- Forty microliters of the cell suspension is centrifuged using Cytospin 3 to prepare a cell smear.
- the cell smear is stained with a blood staining solution for differentiation and microscopically observed to identify eosinophil according to their morphological characteristics.
- the number of each cell type among 300 white blood cells in the cell smear are to be determined and expressed as a percentage, and the number of neutrophils and macrophages in each BAL fluid are to be calculated.
- Imiquimod is a ligand for TLR7 and TLR8, originally used for the treatment of non-melanoma skin cancers.
- the topical application of IMQ on the shaved back skin of the mouse induces a psoriasis-like skin condition exhibiting most of the human psoriasis pathology characteristic features including acanthosis, parakeratosis, and infiltration of immune cells and involvement of the IL23/IL17/IL22 pathway.
- Animals male Balb/c mice
- Animals were randomly distributed to various groups based on their body weights.
- the back skin of the mice was shaved by topical application of hair removal cream.
- mice were administered the test compound or vehicle by the oral route and after 1 hour the mice that received the test compound received a topical application of 62.5 mg of commercially available IMQ cream (5%; Beselna Cream; Mochida Pharmaceuticals, Tokyo, Japan) on the shaved back skin.
- the mice were treated with topical application of imiquimod for the next 5 consecutive days, one hour after test compound or vehicle administration. Animals were allowed to dry for one hour before returning to their cages after topical application on every day.
- Four hours after the final application of IMQ cream the mice were killed and skin samples were obtained. Back skin thickness was measured using dial thickness gauge. After measuring skin thickness, skin samples were fixed in 10% neutral buffered formalin solution and embedded in paraffin.
- HE hematoxylin-eosin
- Compound A1 reduced back skin thickness, erythema, and scaling (as shown by the histopathological score) compared to the control group animals.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Rheumatology (AREA)
- Pulmonology (AREA)
- Physical Education & Sports Medicine (AREA)
- Diabetes (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Transplantation (AREA)
- Pain & Pain Management (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Dermatology (AREA)
- Obesity (AREA)
- Oncology (AREA)
- Heart & Thoracic Surgery (AREA)
- Cardiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
The present invention relates to a selective dual delta (δ) and gamma (γ) PI3K protein kinase modulator (S)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl)ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl) methane sulfonamide, methods of preparing them, pharmaceutical compositions containing them and methods of treatment, prevention and/or amelioration of PI3K kinase mediated diseases or disorders with them.
Description
- The present application claims the benefit of Indian Patent Application No. 3144/CHE/2014, filed Jun. 27, 2014 which is hereby incorporated by reference in its entirety.
- The present invention provides dual delta (δ) and gamma (γ) PI3K protein kinase modulators, methods of preparing them, pharmaceutical compositions containing them and methods of treatment, prevention and/or amelioration of PI3K kinase mediated diseases or disorders using them.
- Phosphoinositide-3 kinase (PI3K) belongs to a class of intracellular lipid kinases that phosphorylate the 3-position hydroxyl group of the inositol ring of phosphoinositide lipids (PIs) generating lipid second messengers. While α and β isoforms of PI3K are ubiquitous in their distribution, expression of δ and γ forms of PI3K is restricted to circulating haematogenous cells and endothelial cells. Unlike PI3Kα or PI3Kβ, mice lacking expression of PI3Kδ or PI3Kγ do not show any adverse phenotype indicating that targeting of these specific isoforms would not result in overt toxicity.
- Recently, targeted inhibitors of the PI3K pathway have been suggested as immunomodulatory agents. This interest stems from the fact that the PI3K pathway serves multiple functions in immune cell signaling, primarily through the generation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), a membrane bound second messenger. PIP3 recruits proteins to the cytoplasmic side of the lipid bilayer, including protein kinases and GTPases, initiating a complex network of downstream signaling cascades important in the regulation of immune cell adhesion, migration, and cell-cell communication.
- The four class I PI3K isoforms differ significantly in their tissue distribution. PI3Kα and PI3Kβ are ubiquitous and activated downstream of receptor tyrosine kinases (RTK), whereas PI3Kδ and PI3Kγ are primarily limited to hematopoietic and endothelial cells, and are activated downstream of RTKs, and G protein coupled receptors (GPCR), respectively. Mouse genetic studies have revealed that PI3Kα and PI3Kβ are essential for normal development, whereas loss of PI3Kδ and/or PI3Kγ yields viable offspring with selective immune deficits.
- The expression pattern and functions of PI3Kδ and PI3Kγ have generated much interest in developing PI3Kδ/γ inhibitors as active agents for the treatment of many diseases, including, for example, rheumatoid arthritis, allergies, asthma, chronic obstructive pulmonary disease and multiple sclerosis (Hirsch et al., Pharmacol. Ther., 118, 192-205, 2008; Marone et al., Biochim. Biophys. Acta., 1784, 159-185, 2008; Rommel et al., Nat. Rev. Immunol., 7, 191-201, 2007; Ruckle et al., Nat. Rev. Drug Discov., 5, 903-918, 2006). Studies using both pharmacologic and genetic methods have shown these two isoforms often demonstrate synergistic interactions with each other (Konrad et al., J. Biol. Chem., 283, 33296-33303, 2008; Laffargue et al., Immunity, 16, 441-451, 2002). In mast cells, for example, PI3Kδ is essential for degranulation in response to IgE cross-linking of Fc-receptors (Ali et al., J. Immunol., 180, 2538-2544, 2008), while PI3Kγ plays an important role in amplifying the response (Laffargue et al., Immunity, 16, 441-451, 2002). Similar effects have been seen in other cellular functions, including lymphocyte homing and the neutrophil respiratory burst where PI3Kγ plays a critical role and PI3Kδ amplifies each process. The nonredundant but related roles of PI3Kδ and PI3Kγ have made it difficult to determine which of the two isoforms (alone or in combination) is best targeted in a particular inflammatory disorder.
- Studies using mice that lack PI3Kδ and/or PI3Kγ or express kinase-dead variants of PI3Kδ and PI3Kγ have been valuable tools in understanding their roles. For example, PI3Kδ knockout mice demonstrated diminished neutrophil chemotaxis, diminished antibody production (both T cell dependent and independent) (Jou et al., Mol. Cell. Biol., 22, 8580-8591, 2002), and lower numbers of mature B cells (Clayton et al., J. Exp. Med., 196, 753-763, 2002; Jou et al., Mol. Cell. Biol., 22, 8580-8591, 2002), and a decrease in their proliferation in response to anti-IgM (Jou et al., Mol. Cell. Biol., 22, 8580-8591, 2002). This phenotype was replicated in the PI3Kδ kinase-dead variant and with PI3Kδ selective inhibitors along with a decreased number and proliferation of mast cells, and an attenuated allergic response. The PI3Kγ knockout contained higher numbers of, but less responsive, neutrophils, lower numbers of and less responsive macrophages, and dendritic cells displayed decreased mast cell degranulation (Laffargue et al., Immunity, 16, 441-451, 2002), a higher ratio of CD4+ to CD8+ T cells, increased thymocyte apoptosis, diminished induction of CXCR3 on activated T cells and decreased cardiac contractility. This latter effect on cardiac tissue was a concern for chronic dosing of patients with PI3Kγ inhibitors. However, this concern was largely mitigated when the PI3Kγ kinase-dead variant (which better mimics inhibition of the kinase rather than loss of the protein) showed similar immune cell phenotypes, but importantly had no cardiac defects. The cardiac effect was later shown to be due to scaffolding effects rather than the catalytic activity of PI3Kγ (Olusegon et al., Chemistry & Biology, 1, 123-134, 2010, including the references cited therein). The dual PI3Kδ/PI3Kγ knockout was viable but exhibited serious defects in T cell development and thymocyte survival. The PI3Kγ knockout/PI3Kδ kinase-dead combination produced a similar phenotype suggesting that at least within the immune system, the role of PI3Kδ is likely only a catalytic one. Interpretation of studies using knockout and kinase-dead mice can be challenging because these models provide only a steady-state picture of the immune system, lack temporal and dose control, and do not permit a full understanding of how a dynamic immune response will react to reversible inhibition. Selective inhibitors with varying profiles (PI3Kδ, PI3Kγ, and PI3Kδ/γ) are necessary for studies of leukocyte signaling in order to assess the relative contributions of each PI3K to immune cell activation (Olusegon et al., supra, including the references cited therein).
- Dual inhibition of δ/γ is strongly implicated as an intervention strategy in allergic and non-allergic inflammation of the airways and other autoimmune diseases. Scientific evidence for PI3Kδ and PI3K γ involvement in various cellular processes underlying asthma and chronic obstructive pulmonary disease (COPD) stems from inhibitor studies and gene-targeting approaches (William et. al Chemistry & Biology, 17, 123-134, 2010 and Thompson, et al. Chemistry & Biology, 17:101-102, 2010). Also, resistance to conventional therapies such as corticosteroids in several COPD patients has been attributed to an up-regulation of the PI3K δ/γ pathway. Disruption of PI3Kδ/γ signaling therefore provides a novel strategy aimed at counteracting the immuno-inflammatory response. Due to the pivotal role played by PI3Kδ and PI3Kγ in mediating inflammatory cell functionality such as leukocyte migration and activation, and mast cell degranulation, blocking these isoforms may also be an effective strategy for the treatment of rheumatoid arthritis as well. Given the established criticality of these isoforms in immune surveillance, inhibitors specifically targeting the PI3Kδ and PI3Kγ isoforms would be expected to attenuate the progression of immune response encountered in airway inflammation and rheumatoid arthritis (William et. al Chemistry & Biology, 17, 123-134, 2010 and Thompson, et al. Chemistry & Biology, 17:101-102, 2010)
- Reviews and studies regarding PI3K and related protein kinase pathways have been given by Liu et al., Nature Reviews Drug Discovery, 8, 627-644, 2009); Nathan et. al., Mol Cancer Ther., 8(1), 2009; Marone et al., Biochimica et Biophysica Acta, 1784, 159-185, 2008 and Markman et al., Annals of Oncology Advance Access, published August 2009. Similarly reviews and studies regarding role of PI3Kδ and PI3Kγ have been given by William et al., Chemistry & Biology, 17, 123-134, 2010 and Timothy et al. J. Med. Chem., 55 (20), 8559-8581, 2012. All of these literature disclosures are hereby incorporated by reference in their entirety.
- Compounds such as IPI-145 and CAL130 have been reported as dual inhibitors of Pi3K δ/γ (WO2012/008302 & WO2012/121953 respectively), IPI-145 is under clinical investigation for cancer, asthma and rheumatoid arthritis. IPI-45 has been reported to have a maximum tolerated dose (MTD) of 75 mg BID (55th ASH® Annual Meeting. New Orleans, La., Dec. 7-10, 2013). There are no reports of CAL-130 being investigated for clinical purposes.
- There still remains an unmet need for dual δ/γ PI3K modulators for the treatment of diseases and disorders associated with δ/γ PI3K kinases-mediated events.
- Further reference is made herein to International Publication Nos. WO 11/055215 and
WO 12/151525 and U.S. Publication Nos. 2011/0118257 and 2012/0289496, each of which is incorporated herein by reference in its entirety. - The present invention is directed to selective dual inhibitors of PI3K delta (δ) and gamma (γ) protein kinases. These compounds are suitable for use in a pharmaceutical composition for the treatment of PI3K associated diseases, disorders or conditions, e.g., a proliferative disease such as cancer. Inhibition of both PI3Kδ and PI3Kγ protein kinases may provide beneficial effects in the treatment of certain diseases and disorders.
- The selective dual inhibitors of the present invention include N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl) ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide, pharmaceutically acceptable salts thereof, and prodrugs thereof. For example, the selective dual inhibitor may be selected from the following compounds, pharmaceutically acceptable salts thereof, and prodrugs thereof:
- (RS)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl) ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide (Compound A); and
- (S)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl) ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide (Compound A1).
- In one embodiment, the compound (S)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl)ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide or a pharmaceutically acceptable salt thereof is substantially free (e.g., contains less than about 10%, such as less than about 5%, less than about 2.5%, less than about 1%, less than about 0.1% by weight) or is free of (R)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl) ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide and pharmaceutically acceptable salts thereof.
- In another embodiment, the compound (S)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl)ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide or a pharmaceutically acceptable salt thereof has an enantiomeric excess of greater than about 90%, such as greater than about 91%, greater than about 92%, greater than about 93%, greater than about 94%, greater than about 95%, greater than about 96%, greater than about 97%, greater than about 98%, greater than about 99%, greater than about 99.5%, greater than about 99.9%, or greater than about 99.99%.
- In one preferred embodiment, the present invention relates to the compound (S)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl) ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide (Compound A1).
- In another embodiment, the present invention relates to the compound (S)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl)ethyl)-1H-pyrazolo [3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide or a pharmaceutically acceptable salt thereof.
- Another embodiment of the present invention is (R)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl) ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide (Compound A2), a pharmaceutically acceptable salt thereof, or prodrug thereof. Compound A2 is an inhibitor of PI3K delta (δ) protein kinase. These compounds are suitable for use in a pharmaceutical composition for the treatment of PI3K associated diseases, disorders or conditions, e.g., a proliferative disease such as cancer.
- The chemical structures of N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl) ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide, compound A1, and compound A2 are shown below.
- The present invention further provides a pharmaceutical composition comprising one or more compounds of the present invention (such as compound A1) together with a pharmaceutically acceptable carrier. The pharmaceutical composition may further comprise one or more of additional active agents (such as anti-cancer agents and the active agents discussed below). In one embodiment, the pharmaceutical composition includes a therapeutically effective amount of one or more compounds of the present invention.
- Another aspect of the present invention relates to a process for the preparation of N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl) ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide:
- The process comprises the steps of:
- (a) reacting 5-bromo-2-methoxyaniline
- with methane sulphonyl chloride to give N-(5-bromo-2-methoxyphenyl)methanesulfonamide (Intermediate 1):
- (b) reacting Intermediate 1 with bis(pinacolato)diboron, for example in the presence of potassium acetate, to give N-(2-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methanesulfonamide (Intermediate 2):
- and
- (c) reacting 2-(1-(4-amino-3-iodo-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-5-fluoro-3-(3-fluorophenyl)-4H-chromen-4-one
- with intermediate 2 in the presence of a base (such as, for example, sodium carbonate) to give the desired compound N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl) ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide;
- (d) optionally converting N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl) ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide to a pharmaceutically acceptable salt thereof or prodrug thereof.
- Yet another embodiment relates to a process for preparation of a compound of formula (A1):
- The process comprises the steps of:
- (a) subjecting (R)-5-fluoro-3-(3-fluorophenyl)-2-(1-hydroxyethyl)-4H-chromen-4-one:
- to a Mitsunobu reaction with 3-(4-methoxy-3-nitrophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine:
- (for example, in the presence of triphenylphosphine and diisopropylazodicarboxylate) to give (S)-2-(1-(4-amino-3-(4-methoxy-3-nitrophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-5-fluoro-3-(3-fluorophenyl)-4H-chromen-4-one (Intermediate 3):
- (b) reducing Intermediate 3, for example with a reducing agent such as Raney Ni, to give (S)-2-(1-(4-amino-3-(3-amino-4-methoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-5-fluoro-3-(3-fluorophenyl)-4H-chromen-4-one (Intermediate 4):
- (c) treating
Intermediate 4 with methanesulphonyl chloride to give the desired compound of the formula (A1); and - (d) optionally converting compound (A1) to a pharmaceutically acceptable salt thereof or prodrug thereof.
- Yet another embodiment are intermediates useful for preparing the compounds of the present invention such as (S)-2-(1-(4-amino-3-(4-methoxy-3-nitrophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-5-fluoro-3-(3-fluorophenyl)-4H-chromen-4-one, (S)-2-(1-(4-amino-3-(3-amino-4-methoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-5-fluoro-3-(3-fluorophenyl)-4H-chromen-4-one, and salts thereof.
- Yet another embodiment of the present invention is a method of inhibiting PI3Kδ and PI3Kγ in a patient comprising administering to the patient an effective amount of at least one compound of the present invention.
- Yet another embodiment of the present invention is a method of inhibiting PI3Kδ in a patient comprising administering to the patient an effective amount of at least one of (R)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl) ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide (compound A2), a pharmaceutically acceptable salt thereof, or a prodrug thereof.
- Yet another embodiment of the present invention is a method of treating, preventing, and/or inhibiting a PI3K protein kinase mediated disease, disorder or condition (such a proliferative disease or disorder, e.g., cancer) in a patient comprising administering to the patient an effective amount of at least one compound of the present invention.
- Yet another embodiment of the present invention is a method for inhibiting PI3K, in particular PI3Kδ and PI3Kγ, in a patient comprising administering to the patient an effective amount of at least one compound of the present invention.
- Yet another embodiment of the present invention is a method for treating an inflammatory, autoimmune or proliferative disease via modulation of a protein kinase (such as PI3Kδ and PI3Kγ) comprising administering to a patient in need of such treatment an effective amount of at least one compound of the present invention. In one embodiment, the compound of the present invention inhibits both PI3Kδ and PI3Kγ.
- Yet another embodiment of the present invention is a method for treating an inflammatory, autoimmune or proliferative disease via modulation of a protein kinase (such as PI3Kδ and PI3Kγ) by administering to a patient in need of such treatment an effective amount of at least one compound of the present invention, in combination (simultaneously or sequentially) with at least one other anti-inflammatory, immunomodulator or anti-cancer agent, or a combination thereof. In one embodiment, the compound of the present invention inhibits both PI3Kδ and PI3Kγ.
- The compounds of the present invention are useful in the treatment of a variety of cancers, including, but not limited to:
- carcinoma, including, but not limited to, that of the bladder, breast, colon, kidney, liver, lung, including small cell lung cancer, esophagus, gall bladder, ovary, pancreas, stomach, cervix, thyroid, prostate, and skin, including squamous cell carcinoma;
- hematopoietic tumors of lymphoid lineage, including, but not limited to, leukemia, acute lymphocytic leukemia, acute lymphoblastic leukemia, B-cell lymphoma, T-cell lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hairy cell lymphoma and Burkett's lymphoma;
- hematopoietic tumors of myeloid lineage, including, but not limited to, acute and chronic myelogenous leukemias, myelodysplastic syndrome and promyelocytic leukemia;
- tumors of mesenchymal origin, including, but not limited to, fibrosarcoma and rhabdomyosarcoma;
- tumors of the central and peripheral nervous system, including, but not limited to, astrocytoma, neuroblastoma, glioma and schwannomas; and
- other tumors, including, but not limited to, melanoma, seminoma, teratocarcinoma, osteosarcoma, xenoderoma pigmentosum, keratoctanthoma, thyroid follicular cancer and Kaposi's sarcoma.
- In one embodiment, an effective amount of a compound of the present invention is administered to treat a leukemia, acute lymphocytic leukemia, acute lymphoblastic leukemia, B-cell lymphoma, T-cell lymphoma, Hodgkin's lymphoma, non-Hodgkin's lymphoma, hairy cell lymphoma, Burkett's lymphoma, acute and chronic myelogenous leukemias, myelodysplastic syndrome or promyelocytic leukemia.
- Due to the key role of protein kinases in the regulation of cellular proliferation in general, the compounds of the present invention may act as reversible cytostatic agents, and may therefore be useful in the treatment of any disease process which features abnormal cellular proliferation, such as, e.g., benign prostatic hyperplasia, familial adenomatosis polyposis, neuro-fibromatosis, atherosclerosis, pulmonary fibrosis, arthritis, psoriasis, glomerulonephritis, restenosis following angioplasty or vascular surgery, hypertrophic scar formation, inflammatory bowel disease, transplantation rejection, endotoxic shock, and fungal infections.
- The compounds of the present invention as modulators of apoptosis are useful in the treatment of cancer (including, but not limited to, those types mentioned herein above), viral infections (including, but not limited to, herpes virus, poxvirus, Epstein-Barr virus, Sindbis virus and adenovirus), autoimmune diseases (including, but not limited to, systemic lupus, erythematosus, autoimmune mediated glomerulonephritis, rheumatoid arthritis, psoriasis, inflammatory bowel disease, and autoimmune diabetes mellitus), neurodegenerative disorders (including, but not limited to, Alzheimer's disease, AIDS-related dementia, Parkinson's disease, amyotrophic lateral sclerosis, retinitis pigmentosa, spinal muscular atrophy and cerebellar degeneration), myelodysplastic syndromes, aplastic anemia, ischemic injury associated with myocardial infarctions, stroke and reperfusion injury, arrhythmia, atherosclerosis, toxin-induced or alcohol related liver diseases, haematological diseases (including, but not limited to, chronic anemia and aplastic anemia), degenerative diseases of the musculoskeletal system (including, but not limited to, osteoporosis and arthritis) aspirin-sensitive rhinosinusitis, cystic fibrosis, multiple sclerosis, kidney diseases and cancer pain. The compounds of the present invention are also useful in the prevention, inhibition, or suppression of AIDS development in HIV-infected individuals.
- The compounds of the present invention may modulate the level of cellular RNA and DNA synthesis. The compounds of the present invention are therefore useful in the treatment of viral infections, including, but not limited to, HIV, human papilloma virus, herpes virus, poxvirus, Epstein-Barr virus, Sindbis virus and adenovirus.
- The compounds of the present invention are useful in the chemoprevention of cancer. Chemoprevention is defined herein as inhibiting the development of invasive cancer by either blocking the initiating mutagenic event or by blocking the progression of pre-malignant cells that have already suffered an insult or inhibiting tumor relapse. The compounds of the present invention are also useful in inhibiting tumor angiogenesis and metastasis. One embodiment of the present invention is a method of inhibiting tumor angiogenesis or metastasis in a patient in need thereof by administering an effective amount of one or more compounds of the present invention.
- Another embodiment of the present invention is a method of treating an immune system-related disease or immune disorder (e.g., an autoimmune disease), a disease or disorder involving inflammation (e.g., asthma, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, inflammatory bowel disease, glomerulonephritis, neuroinflammatory diseases, multiple sclerosis, uveitis and disorders of the immune system), cancer or other proliferative disease, a hepatic disease or disorder, a renal disease or disorder. The method includes administering an effective amount of one or more compounds of the present invention.
- Examples of immune disorders include, but are not limited to, psoriasis, rheumatoid arthritis, vasculitis, inflammatory bowel disease, dermatitis, osteoarthritis, asthma, inflammatory muscle disease, allergic rhinitis, vaginitis, interstitial cystitis, scleroderma, osteoporosis, eczema, allogeneic or xenogeneic transplantation (organ, bone marrow, stem cells and other cells and tissues) graft rejection, graft-versus-host disease, lupus erythematosus, inflammatory disease, type I diabetes, pulmonary fibrosis, dermatomyositis, Sjogren's syndrome, thyroiditis (e.g., Hashimoto's and autoimmune thyroiditis), myasthenia gravis, autoimmune haemolytic anemia, multiple sclerosis, cystic fibrosis, chronic relapsing hepatitis, primary biliary cirrhosis, allergic conjunctivitis and atopic dermatitis.
- In one embodiment, the compounds described herein are useful as immunosuppresants to prevent transplant graft rejections, allogeneic or xenogeneic transplantation rejection (organ, bone marrow, stem cells, other cells and tissues), and graft-versus-host disease. In one particular embodiment, transplant graft rejections result from tissue or organ transplants. In further embodiments, the graft-versus-host disease results from bone marrow or stem cell transplantation. One embodiment of the present invention is a method of preventing or decreasing the risk of transplant graft rejection, allogeneic or xenogeneic transplantation rejection (organ, bone marrow, stem cells, other cells and tissues) or graft-versus-host disease comprising administering an effective amount of one or more compounds of the present invention.
- The compounds of the present invention are also useful in combination (administered together or sequentially) with known anti-cancer treatments, such as, for example, radiation therapy or with cytostatic or cytotoxic or anticancer agents, such as, for example, DNA interactive agents, such as cisplatin or doxorubicin; topoisomerase II inhibitors, such as etoposide; topoisomerase I inhibitors such as CPT-11 or topotecan; tubulin interacting agents, such as paclitaxel, docetaxel or the epothilones (for example ixabepilone), either naturally occurring or synthetic; hormonal agents, such as tamoxifen; thymidilate synthase inhibitors, such as 5-fluorouracil; and anti-metabolites, such as methotrexate, other tyrosine kinase inhibitors, such as Iressa and OSI-774; angiogenesis inhibitors; EGF inhibitors; VEGF inhibitors; CDK inhibitors; SRC inhibitors; c-Kit inhibitors; Her1/2 inhibitors and monoclonal antibodies directed against growth factor receptors such as erbitux (EGF) and herceptin (Her2); BTK inhibitor, such as ibrutinib; and other protein kinase modulators, and any combination thereof.
- The compounds of the present invention are also useful in combination (administered together or sequentially) with one or more steroidal anti-inflammatory drugs, non-steroidal anti-inflammatory drugs (NSAIDs) and immune selective anti-inflammatory derivatives (ImSAIDs), and any combination thereof.
- The present invention further provides a pharmaceutical composition comprising one or more compounds of the present invention and a pharmaceutically acceptable carrier. The pharmaceutical composition may further comprise one or more of the active ingredients identified above, such as other anti-cancer agents.
- Yet another embodiment is a method of treating leukemia in a patient in need thereof comprising administering a therapeutically effective amount of a compound of the present invention. In one embodiment, the leukemia is selected from chronic lymphocytic leukemia (CLL), non-Hodgkin lymphoma (NHL), Hodgkin lymphoma (HL), acute myeloid leukemia (AML), multiple myeloma (MM), small lymphocytic lymphoma (SLL), and indolent non-Hodgkin's lymphoma (I-NHL).
- Yet another embodiment of the present invention is a method of treating an autoimmune disorder in a patient in need thereof comprising administering a therapeutically effective amount of a compound of the present invention. In one embodiment, the autoimmune disorder is selected from asthma, COPD, rheumatoid arthritis, psoriasis, lupus and experimental autoimmune encephalomyelitis (EAE).
- Yet another embodiment of the present invention is a method of treating allergic rhinitis in a patient in need thereof comprising administering to the patient a therapeutically effective amount of a compound of the present invention.
- In any of the aforementioned methods, the compound(s) of the present invention and optional additional active agents can be administered in the form of a pharmaceutical composition as described herein.
-
FIG. 1 depicts a bar graph of the neutrophil count in bronchoalveolar lavage fluid (BALF) from female Wistar rats treated with 10 mg/kg of Compound A1 (po) according to the lipopolysaccharide induced pulmonary neutrophilia model described inAssay 7. -
FIG. 2 depicts a bar graph of the neutrophil count in peritoneal lavage fluid from Wistar rats treated with 1, 3, and 10 mg/kg of Compound A1 (po) according to the lipopolysaccharide-induced rat air pouch inflammation model described inAssay 8. -
FIGS. 3A and 3B depict the line and bar graphs of individual clinical scores for hind and fore paws and AUC for clinical score, respectively, in Wistar rats with collagen induced arthritis treated with a control or 10 mg/kg/QD of Compound A1 according to the procedure in Assay 11. -
FIGS. 3C and 3D depict line and bar graphs of individual clinical scores for hind and fore paws, respectively, in Wistar rats with collagen induced arthritis treated with vehicle or 10 mg/kg/QD of Compound A1 according to the procedure in Assay 11. -
FIGS. 4A and 4B depict the line and bar graphs of volume for hind paws and AUC of paw volume, respectively, in Wistar rats with collagen induced arthritis treated with vehicle or 10 mg/kg/QD of Compound A1 according to the procedure in Assay 11. -
FIGS. 4C and 4D depict line and bar graphs of ankle diameter for hind paws and AUC of ankle diameter, respectively, in Wistar rats with collagen induced arthritis treated with vehicle or 10 mg/kg/QD of Compound A1 according to the procedure in Assay 11. -
FIGS. 4E to 4G depict bar graphs of histopathological score for inhibition of inflammation, cartilage and pannus, respectively, of all the hind and fore paws in Wistar rats with collagen induced arthritis treated with vehicle or 10 mg/kg/QD of Compound A1 according to the procedure in Assay 11. -
FIG. 4H depicts a bar graph of total histopathological score of all the hind and fore paws in Wistar rats with collagen induced arthritis treated with vehicle or 10 mg/kg/QD of Compound A1 according to the procedure in Assay 11. -
FIG. 5 depicts a bar graph of the percentage incidence of arthritis in Wistar rats with collagen induced arthritis treated with vehicle or 10 mg/kg/QD of Compound A1 according to the procedure in Assay 11. -
FIGS. 6A and 6B depict bar graphs showing the antipsoratic effect of Compound A1 (3, 10, 30 mg/kg) on imiquimod induced psoriasis in Balb/c mice according to the procedure inAssay 13. - As used herein the following definitions shall apply unless otherwise indicated. Further many of the groups defined herein can be optionally substituted. The listing of substituents in the definition is exemplary and is not to be construed to limit the substituents defined elsewhere in the specification.
- Certain of the compounds described herein contain one or more asymmetric centers and can thus give rise to enantiomers, diastereomers, and other stereoisomeric forms that can be defined, in terms of absolute stereochemistry, as (R)- or (S)-. Unless otherwise specified, the present chemical entities, pharmaceutical compositions and methods are meant to include all such possible isomers, including racemic mixtures, optically pure forms and intermediate mixtures. For the instance, non-limiting example of intermediate mixtures include a mixture of R:S or S:R isomers in a ratio of 10:90, 13:87, 17:83, 20:80, or 22:78. Optically active (R)- and (S)-isomers can be prepared using chiral synthons or chiral reagents, or resolved using conventional techniques. When the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended that the compounds include both E and Z geometric isomers.
- The term “tautomers” refers to compounds, which are characterized by relatively easy interconversion of isomeric forms in equilibrium. These isomers are intended to be covered by this invention. “Tautomers” are structurally distinct isomers that interconvert by tautomerization. “Tautomerization” is a form of isomerization and includes prototropic or proton-shift tautomerization, which is considered a subset of acid-base chemistry. “Prototropic tautomerization” or “proton-shift tautomerization” involves the migration of a proton accompanied by changes in bond order, often the interchange of a single bond with an adjacent double bond. Where tautomerization is possible (e.g. in solution), a chemical equilibrium of tautomers can be reached. An example of tautomerization is keto-enol tautomerization. A specific example of keto-enol tautomerization is the interconversion of pentane-2,4-dione and 4-hydroxypent-3-en-2-one tautomers. Another example of tautomerization is phenol-keto tautomerization. A specific example of phenol-keto tautomerization is the interconversion of pyridin-4-ol and pyridin-4(1H)-one tautomers.
- The term “prodrug” refers to a compound, which is an inactive precursor of a compound that is converted into its active form in the body by normal metabolic processes. Prodrug design is discussed generally in Hardma, et al. (Eds.), Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed., pp. 11-16 (1996). A thorough discussion is provided in Higuchi, et al., Prodrugs as Novel Delivery Systems, Vol. 14, ASCD Symposium Series, and in Roche (ed.), Bioreversible Carriers in Drug Design, American Pharmaceutical Association and Pergamon Press (1987). To illustrate, prodrugs can be converted into a pharmacologically active form through hydrolysis of, for example, an ester or amide linkage, thereby introducing or exposing a functional group on the resultant product. The prodrugs can be designed to react with an endogenous compound to form a water-soluble conjugate that further enhances the pharmacological properties of the compound, for example, increased circulatory half-life. Alternatively, prodrugs can be designed to undergo covalent modification on a functional group with, for example, glucuronic acid, sulphate, glutathione, amino acids, or acetate. The resulting conjugate can be inactivated and excreted in the urine, or rendered more potent than the parent compound. High molecular weight conjugates also can be excreted into the bile, subjected to enzymatic cleavage, and released back into the circulation, thereby effectively increasing the biological half-life of the originally administered compound.
- The term “ester” refers to a compound, which is formed by reaction between an acid and an alcohol with elimination of water. An ester can be represented by the general formula RCOOR′ (where R is a drug and R′ is a chemical group).
- These prodrugs and esters are intended to be covered within the scope of this invention.
- Additionally the instant invention also includes the compounds which differ only in the presence of one or more isotopically enriched atoms for example replacement of hydrogen with deuterium or tritium, or the replacement of a carbon by 13C- or 14C-enriched carbon.
- The compounds of the present invention may also contain unnatural proportions of atomic isotopes at one or more of atoms that constitute such compounds. For example, the compounds may be radiolabeled with radioactive isotopes, such as for example tritium (3H), iodine-125 (125I) or carbon-14 (14C). All isotopic variations of the compounds of the present invention, whether radioactive or not, are encompassed within the scope of the present invention.
- Pharmaceutically acceptable salts forming part of this invention include salts derived from inorganic bases such as Li, Na, K, Ca, Mg, Fe, Cu, Zn, and Mn; salts of organic bases such as N,N′-diacetylethylenediamine, glucamine, triethylamine, choline, hydroxide, dicyclohexylamine, metformin, benzylamine, trialkylamine, and thiamine; chiral bases such as alkylphenylamine, glycinol, and phenyl glycinol; salts of natural amino acids such as glycine, alanine, valine, leucine, isoleucine, norleucine, tyrosine, cystine, cysteine, methionine, proline, hydroxy proline, histidine, omithine, lysine, arginine, and serine; quaternary ammonium salts of the compounds of invention with alkyl halides, alkyl sulphates such as MeI and (Me)2SO4; non-natural amino acids such as D-isomers or substituted amino acids; guanidine; and substituted guanidine wherein the substituents are selected from nitro, amino, alkyl, alkenyl, alkynyl, ammonium or substituted ammonium salts and aluminum salts. Salts may include acid addition salts where appropriate which may be sulphates, nitrates, phosphates, perchlorates, borates, hydrohalides, acetates, tartrates, maleates, citrates, fumarates, succinates, palmoates, methanesulphonates, benzoates, salicylates, benzenesulfonates, ascorbates, glycerophosphates, and ketoglutarates.
- When ranges are used herein for physical properties, such as molecular weight, or chemical properties, such as chemical formulae, all combinations and subcombinations of ranges and specific embodiments therein are intended to be included. The term “about” when referring to a number or a numerical range means that the number or numerical range referred to is an approximation within experimental variability (or within statistical experimental error), and thus the number or numerical range may vary from, for example, between 1% and 15% of the stated number or numerical range. The term “comprising” (and related terms such as “comprise” or “comprises” or “having” or “including”) includes those embodiments, for example, an embodiment of any composition of matter, composition, method, or process, or the like, that “consist of” or “consist essentially of” the described features.
- The following abbreviations and terms have the indicated meanings throughout: PI3-K=Phosphoinositide 3-kinase; PI=phosphatidylinositol; AIDS=Acquired Immuno Deficiency Syndrome; HIV=Human Immunodeficiency Virus; MeI=Methyl Iodide; ND: Not determined.
- Abbreviations used herein have their conventional meaning within the chemical and biological arts.
- The term “cell proliferation” refers to a phenomenon by which the cell number has changed as a result of division. This term also encompasses cell growth by which the cell morphology has changed (e.g., increased in size) consistent with a proliferative signal.
- The terms “co-administration,” “administered in combination with,” and their grammatical equivalents, as used herein, encompass administration of two or more agents to an animal so that both agents and/or their metabolites are present in the animal at the same time. Co-administration includes simultaneous administration in separate compositions, administration at different times in separate compositions, or administration in a composition in which both agents are present.
- The term “effective amount” or “therapeutically effective amount” refers to that amount of a compound described herein that is sufficient to effect the intended application including but not limited to disease treatment, as defined below. The therapeutically effective amount may vary depending upon the intended application (in vitro or in vivo), or the subject and disease condition being treated, e.g., the weight and age of the subject, the severity of the disease condition, the manner of administration and the like, which can readily be determined by one of ordinary skill in the art. The term also applies to a dose that will induce a particular response in target cells, e.g. reduction of platelet adhesion and/or cell migration. The specific dose will vary depending on the particular compounds chosen, the dosing regimen to be followed, whether it is administered in combination with other compounds, timing of administration, the tissue to which it is administered, and the physical delivery system in which it is carried.
- As used herein, “treatment,” “treating,” or “ameliorating” are used interchangeably. These terms refers to an approach for obtaining beneficial or desired results including but, not limited to, therapeutic benefit and/or a prophylactic benefit. By therapeutic benefit is meant eradication or amelioration of the underlying disorder being treated. Also, a therapeutic benefit is achieved with the eradication or amelioration of one or more of the physiological symptoms associated with the underlying disorder such that an improvement is observed in the patient, notwithstanding that the patient may still be afflicted with the underlying disorder. For prophylactic benefit, the compositions may be administered to a patient at risk of developing a particular disease, or to a patient reporting one or more of the physiological symptoms of a disease, even though a diagnosis of this disease may not have been made.
- A “therapeutic effect,” as that term is used herein, encompasses a therapeutic benefit and/or a prophylactic benefit as described above. A prophylactic effect includes delaying or eliminating the appearance of a disease or condition, delaying or eliminating the onset of symptoms of a disease or condition, slowing, halting, or reversing the progression of a disease or condition, or any combination thereof.
- The term “subject” or “patient” refers to an animal (e.g., a dog, cat, horse, or pig), such as a mammal, for example a human. The methods described herein can be useful in both human therapeutics and veterinary applications. In some embodiments, the patient is a mammal. In a preferred embodiment, the patient is human.
- “Radiation therapy” means exposing a patient, using routine methods and compositions known to the practitioner, to radiation emitters such as alpha-particle emitting radionuclides (e.g., actinium and thorium radionuclides), low linear energy transfer (LET) radiation emitters (i.e. beta emitters), conversion electron emitters (e.g. strontium-89 and samarium-153-EDTMP), or high-energy radiation, including, without limitation, x-rays, gamma rays, and neutrons.
- “Signal transduction” is a process during which stimulatory or inhibitory signals are transmitted into and within a cell to elicit an intracellular response. A modulator of a signal transduction pathway refers to a compound which modulates the activity of one or more cellular proteins mapped to the same specific signal transduction pathway. A modulator may augment (agonist) or suppress (antagonist) the activity of a signaling molecule.
- The term “selective inhibition” or “selectively inhibit” as applied to a biologically active agent refers to the agent's ability to selectively reduce the target signaling activity as compared to off-target signaling activity, via direct or indirect interaction with the target.
- The term “pharmaceutically acceptable carrier” or “pharmaceutically acceptable excipient” includes, but is not limited to, any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, one or more suitable diluents, fillers, salts, disintegrants, binders, lubricants, glidants, wetting agents, controlled release matrices, colorants/flavouring, carriers, excipients, buffers, stabilizers, solubilizers, and combinations thereof. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions of the invention is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
- In other embodiments, the compounds of the present invention selectively inhibit one or more members of type I or class I phosphatidylinositol 3-kinases (PI3-kinase) with an IC50 value of about 100 nM or less, about 50 nM or less, about 10 nM or less, about 5 nM or less, about 100 pM or less, about 10 pM or less, or about 1 pM or less as measured in an in vitro kinase assay.
- In yet another aspect, an inhibitor that selectively inhibits one or more members of type I PI3-kinases, or an inhibitor that selectively inhibits one or more type I PI3-kinase mediated signaling pathways, alternatively can be understood to refer to a compound that exhibits a 50% inhibitory concentration (IC50) with respect to a given type I PI3-kinase, that is at least 10-fold lower, at least 20-fold lower, at least 50-fold lower, at least 100-fold lower, or at least 1000-fold lower than the inhibitor's IC50 with respect to the rest of the other type I PI3-kinases.
- As used herein, the term “dual PI3-kinase δ/γ inhibitor” and “dual PI3-kinase δ/γ selective inhibitor” refers to a compound that inhibits the activity of both the PI3-kinase δ and γ isozyme more effectively than other isozymes of the PI3K family. A dual PI3-kinase δ/γ inhibitor is therefore more selective for PI3-kinase δ and γ than conventional PI3K inhibitors such as CAL-130, wortmannin and LY294002, which are nonselective PI3K inhibitors.
- Inhibition of PI3-kinase δ and γ may be of therapeutic benefit in treatment of various conditions, e.g., conditions characterized by an inflammatory response including, but not limited to, autoimmune diseases, allergic diseases, and arthritic diseases. Importantly, inhibition of PI3-kinase δ and γ function does not appear to affect biological functions such as viability and fertility.
- “Inflammatory response” as used herein is characterized by redness, heat, swelling and pain (i.e., inflammation) and typically involves tissue injury or destruction. An inflammatory response is usually a localized, protective response elicited by injury or destruction of tissues, which serves to destroy, dilute or wall off (sequester) both the injurious agent and the injured tissue. Inflammatory responses are notably associated with the influx of leukocytes and/or leukocyte (e.g., neutrophil) chemotaxis. Inflammatory responses may result from infection with pathogenic organisms and viruses, noninfectious means such as trauma or reperfusion following myocardial infarction or stroke, immune responses to foreign antigens, and autoimmune diseases. Inflammatory responses amenable to treatment with the methods and compounds according to the invention encompass conditions associated with reactions of the specific defense system as well as conditions associated with reactions of the non-specific defense system.
- The therapeutic methods of the invention include methods for the amelioration of conditions associated with inflammatory cell activation. “Inflammatory cell activation” refers to the induction by a stimulus (including but not limited to, cytokines, antigens or auto-antibodies) of a proliferative cellular response, the production of soluble mediators (including but not limited to cytokines, oxygen radicals, enzymes, prostanoids, or vasoactive amines), or cell surface expression of new or increased numbers of mediators (including, but not limited to, major histocompatibility antigens or cell adhesion molecules) in inflammatory cells (including but not limited to monocytes, macrophages, T lymphocytes, B lymphocytes, granulocytes (polymorphonuclear leukocytes including neutrophils, basophils, and eosinophils) mast cells, dendritic cells, Langerhans cells, and endothelial cells). It will be appreciated by persons skilled in the art that the activation of one or a combination of these phenotypes in these cells can contribute to the initiation, perpetuation, or exacerbation of an inflammatory condition.
- “Autoimmune disease” as used herein refers to any group of disorders in which tissue injury is associated with humoral or cell-mediated responses to the body's own constituents.
- “Transplant rejection” as used herein refers-to any immune response directed against grafted tissue (including organs or cells (e.g., bone marrow), characterized by a loss of function of the grafted and surrounding tissues, pain, swelling, leukocytosis, and thrombocytopenia).
- “Allergic disease” as used herein refers to any symptoms, tissue damage, or loss of tissue function resulting from allergy.
- “Arthritic disease” as used herein refers to any disease that is characterized by inflammatory lesions of the joints attributable to a variety of etiologies.
- “Dermatitis” as used herein refers to any of a large family of diseases of the skin that are characterized by inflammation of the skin attributable to a variety of etiologies.
- As previously described, the term “dual PI3-kinase δ/γ selective inhibitor” generally refers to a compound that inhibits the activity of the PI3-kinase δ and γ isozyme more effectively than other isozymes of the PI3K family. The relative efficacies of compounds as inhibitors of an enzyme activity (or other biological activity) can be established by determining the concentrations at which each compound inhibits the activity to a predefined extent and then comparing the results. Typically, the preferred determination is the concentration that inhibits 50% of the activity in a biochemical assay, i.e., the 50% inhibitory concentration or “IC50”. IC50 determinations can be accomplished using conventional techniques known in the art. In general, an IC50 can be determined by measuring the activity of a given enzyme in the presence of a range of concentrations of the inhibitor under study. The experimentally obtained values of enzyme activity then are plotted against the inhibitor concentrations used. The concentration of the inhibitor that shows 50% enzyme activity (as compared to the activity in the absence of any inhibitor) is taken as the IC50 value. Analogously, other inhibitory concentrations can be defined through appropriate determinations of activity. For example, in some settings it can be desirable to establish a 90% inhibitory concentration, i.e., IC90, etc.
- Accordingly, a dual PI3-kinase δ/γ selective inhibitor alternatively can be understood to refer to a compound that exhibits a 50% inhibitory concentration (IC50) with respect to PI3-kinase δ and γ, that is at least 10-fold lower, at least 20-fold lower, or at least 30-fold lower than the IC50 value with respect to any or all of the other class I PI3K family members. In an alternative embodiment of the invention, the term dual PI3-kinase δ/γ selective inhibitor can be understood to refer to a compound that exhibits an IC50 with respect to PI3-kinase δ and γ that is at least 30-fold lower, at least 50-fold lower, at least 100-fold lower, at least 200-fold lower, or at least 500-fold lower than the IC50 with respect to any or all of the other PI3K class I family members. A dual PI3-kinase δ/γ selective inhibitor is typically administered in an amount such that it selectively inhibits both PI3-kinase δ and γ activity, as described above.
- In certain embodiments, the compounds of the present invention exhibit PI3-kinase δ and γ inhibition almost equally (˜1:1) or at a maximum ratio of 1:5, i.e., the compound the of the present invention exhibit almost equal IC50 values for both PI3-kinase δ and γ enzyme, or at most a 3 to 8 fold difference between the two.
- The methods of the invention may be applied to cell populations in vivo or ex vivo. “In vivo” means within a living individual, as within an animal or human or in a subject's body. In this context, the methods of the invention may be used therapeutically or prophylactically in an individual. “Ex vivo” or “in vitro” means outside of a living individual. Examples of ex vivo cell populations include in vitro cell cultures and biological samples including but not limited to fluid or tissue samples obtained from individuals. Such samples may be obtained by methods known in the art. Exemplary biological fluid samples include blood, cerebrospinal fluid, urine, and saliva. Exemplary tissue samples include tumors and biopsies thereof. In this context, the invention may be used for a variety of purposes, including therapeutic and experimental purposes. For example, the invention may be used ex vivo or in vitro to determine the optimal schedule and/or dosing of administration of a PI3-kinase δ selective inhibitor for a given indication, cell type, individual, and other parameters. Information gleaned from such use may be used for experimental or diagnostic purposes or in the clinic to set protocols for in vivo treatment. Other ex vivo uses for which the invention may be suited are described below or will become apparent to those skilled in the art.
- The compounds of the present invention can be prepared by methods known in the art, such as those described in International Publication Nos. WO 2011/055215, WO 2012/151525, and WO 2013/164801, each of which is hereby incorporated by reference in its entirety.
- The present invention also provides a pharmaceutical composition comprising one or more compounds of the present invention and one or more pharmaceutically acceptable carriers or excipients. In one embodiment, the pharmaceutical composition includes a therapeutically effective amount of one or more compounds of the present invention. The pharmaceutical composition may include one or more additional active ingredients as described herein.
- The pharmaceutical carriers and/or excipients may be selected from, for example, diluents, fillers, salts, disintegrants, binders, lubricants, glidants, wetting agents, controlled release matrices, colorants, flavourings, buffers, stabilizers, solubilizers, and combinations thereof.
- In one embodiment, the pharmaceutical compositions described herein contain from about 0.1 mg to about 1,000 mg, such as from about 1 mg to about 1,000 mg, from about 20 mg to about 800 mg, from about 50 mg to about 600 mg or from about 50 mg to about 600 mg of one or more compounds of the present invention. In another embodiment, the pharmaceutical compositions described herein contain from about 100 mg to about 400 mg of one or more compounds of the present invention.
- The pharmaceutical compositions of the present invention can be administered alone or in combination with one or more other active agents. Where desired, the subject compounds and other agent(s) may be mixed into a preparation or both components may be formulated into separate preparations to use them in combination separately or at the same time.
- The compounds and pharmaceutical compositions of the present invention can be administered by any route that enables delivery of the compounds to the site of action, such as orally, intranasally, topically (e.g., transdermally), intraduodenally, parenterally (including intravenously, intraarterially, intramuscularally, intravascularally, intraperitoneally or by injection or infusion), intradermally, by intramammary, intrathecally, intraocularly, retrobulbarly, intrapulmonary (e.g., aerosolized drugs) or subcutaneously (including depot administration for long term release e.g., embedded-under the-splenic capsule, brain, or in the cornea), sublingually, anally, rectally, vaginally, or by surgical implantation (e.g., embedded under the splenic capsule, brain, or in the cornea).
- The compositions can be administered in solid, semi-solid, liquid or gaseous form, or may be in dried powder, such as lyophilized form. The pharmaceutical compositions can be packaged in forms convenient for delivery, including, for example, solid dosage forms such as capsules, sachets, cachets, gelatins, papers, tablets, suppositories, pellets, pills, troches, and lozenges. The type of packaging will generally depend on the desired route of administration. Implantable sustained release formulations are also contemplated, as are transdermal formulations.
- The amount of the compound to be administered is dependent on the mammal being treated, the severity of the disorder or condition, the rate of administration, the disposition of the compound and the discretion of the prescribing physician. However, an effective dosage is in the range of from about 0.001 to about 100 mg/kg body weight per day, preferably from about 1 to about 35 mg/kg/day, in single or divided doses. For a 70 kg human, this would amount to from about 0.05 to about 7 g/day, preferably from about 0.05 to about 2.5 g/day An effective amount of a compound of the invention may be administered in either single or multiple doses (e.g., twice or three times a day).
- The compounds of the present invention may be used in combination with one or more of anti-cancer agents (e.g., chemotherapeutic agents), therapeutic antibodies, and radiation treatment.
- The compounds of the invention may be formulated or administered in conjunction with other agents that act to relieve the symptoms of inflammatory conditions such as encephalomyelitis, asthma, and the other diseases described herein. These agents include non-steroidal anti-inflammatory drugs (NSAIDs).
- The examples and preparations provided below further illustrate and exemplify the compounds of the present invention and methods of preparing such compounds. It is to be understood that the scope of the present invention is not limited in any way by the scope of the following examples and preparations. In the following examples molecules with a single chiral center, unless otherwise noted, exist as a racemic mixture. Those molecules with two or more chiral centers, unless otherwise noted, exist as a racemic mixture of diastereomers. Single enantiomers/diastereomers may be obtained by methods known to those skilled in the art.
- The intermediates described herein may be prepared by the methods described in International Publication Nos. WO 11/055215 and WO 12/151525, both of which are hereby incorporated by reference.
- Intermediate 1: N-(5-bromo-2-methoxyphenyl)methanesulfonamide: To a solution of 5-bromo-2-methoxyaniline (1.00 g, 4.94 mmol) in dichloromethane (10 ml), pyridine (0.800 ml, 9.89 mmol) was added and cooled to 0° C. Methane sulphonyl chloride (0.40 ml, 5.19 mmol) was added and stirred for 30 min. The reaction mixture was quenched with water, extracted with ethyl acetate, dried over anhydrous sodium sulphate and concentrated under reduced pressure. The crude product was chromatographed with ethyl acetate:petroleum ether to afford the title compound as a reddish solid (1.20 g, 87%).
- Intermediate 2: N-(2-methoxy-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methanesulfonamide: Potassium acetate (0.841 g, 8.57 mmol) and bis(pinacolato)diboron (1.190 g, 4.71 mmol) were added to a solution of intermediate 1 (1.20 g, 4.28 mmol) in dioxane (17.5 ml) and the solution was degassed for 30 min. [1,1′-Bis(diphenylphosphino)ferrocene]dichloro palladium(II).CH2Cl2 (0.104 g, 0.128 mmol) was added under nitrogen atmosphere and heated to 80° C. After 2 h the reaction mixture was filtered through celite and concentrated. The crude product was purified by column chromatography with ethyl acetate:petroleum ether to afford the title compound as a yellow solid (1.00 g, 71%). 1H-NMR (δ ppm, CDCl3, 400 MHz): 7. 91 (d, J=1.2 Hz, 1H), 7. 62 (dd, J=8.1, 1.2 Hz, 1H), 6. 92 (d, J=8.1 Hz, 1H), 6.73 (s, 1H), 3.91 (s, 3H), 2.98 (s, 3H), 1.32 (s, 12H).
- Intermediate 3: (S)-2-(1-(4-amino-3-(4-methoxy-3-nitrophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-5-fluoro-3-(3-fluorophenyl)-4H-chromen-4-one: (S)-2-(1-(4-amino-3-(4-methoxy-3-nitrophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-5-fluoro-3-(3-fluorophenyl)-4H-chromen-4-one: To a solution of (R)-5-fluoro-3-(3-fluorophenyl)-2-(1-hydroxyethyl)-4H-chromen-4-one (0.500 g, 1.64 mmol) in THF (5 ml), 3-(4-methoxy-3-nitrophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (0.564 g, 1.97 mmol) and triphenylphosphine (0.649 g, 2.47 mmol) were added followed by the addition of diisopropylazodicarboxylate (0.50 ml, 2.47 mmol). ((R)-5-fluoro-3-(3-fluorophenyl)-2-(1-hydroxyethyl)-4H-chromen-4-one can be prepared as described for Intermediates 23, 25, and 26 in International Publication No. WO 2012/0151525.). After 4 h at room temperature, the mixture was concentrated and the residue was purified by column chromatography with ethyl acetate:petroleum ether to afford the title compound as a brown solid (0.270 g, 29%). 1H-NMR (δ ppm, DMSO-d6, 400 MHz): 8.04 (s, 1H), 7.83 (m, 1H), 7.63-7.50 (m, 3H), 7.29 (m, 2H), 7.06 (dt, J=8.7,2.2 Hz, 1H), 6.94 (m, 2H), 6.75 (dd, J=8.1,2.1 Hz, 1H), 5.95 (q, J=7.0 Hz, 1H), 4.98 (s, 2H), 3.81 (s, 3H), 1.86 (d, J=7.0 Hz, 3H).
- Intermediate 4: (S)-2-(1-(4-amino-3-(3-amino-4-methoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-5-fluoro-3-(3-fluorophenyl)-4H-chromen-4-one: (S)-2-(1-(4-amino-3-(3-amino-4-methoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-5-fluoro-3-(3-fluorophenyl)-4H-chromen-4-one: To a solution of Intermediate 3 (0.260 g, 0.455 mmol) in ethanol (5 ml), Raney Ni (0.130 g) was added and hydrogenated at 20 psi at 50° C. for 24 h. The reaction mixture was passed through celitepad and concentrated to afford the title compound as a brown solid (0.150 g, 60%). Mass: 540.8 (M+).
- To a solution of 2-(1-(4-amino-3-iodo-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-5-fluoro-3-(3-fluorophenyl)-4H-chromen-4-one (0.200 g, 0.366 mmol) in DME (2.1 ml) and water (0.67 ml), intermediate 2 (0.179 g, 0.550 mmol) and sodium carbonate (0.116 g, 1.10 mmol) were added and the system was degassed for 30 min. (2-(1-(4-amino-3-iodo-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-5-fluoro-3-(3-fluorophenyl)-4H-chromen-4-one can be prepared as described for Intermediates 23, 25, and 26 in International Publication No. WO 2012/0151525). Bis(diphenylphosphino) ferrocene]dichloropalladium(II) (0.059 g, 0.075 mmol) was added and kept under microwave irradiation (microwave power=100 W, temperature=100° C.) for 45 min. The reaction mixture was Celite filtered, concentrated and extracted with ethyl acetate. The organic layer was dried over sodium sulphate and concentrated under reduced pressure. The crude product was purified by column chromatography with methanol: dichloromethane to afford the title compound as a brown solid (0.080 g, 35%). MP: 216-218° C. 1H-NMR (δ ppm, CDCl3, 400 MHz): 8.20 (s, 1H), 7.73 (s, 1H), 7.53 (m, 2H), 7.31 (m, 2H), 7.07-6.73 (m, 6H), 6.07 (q, J=6.2 Hz, 1H), 3.98 (s, 3H), 3.14 (s, 3H), 2.01 (d, J=6.0 Hz, 3H).
- (S)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl)ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide
-
- The two enantiomerically pure isomers were separated by preparative SFC (supercritical fluid) conditions from N-(5-(4-amino-1-(145-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl)ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide (0.500 g) on a CHIRALPAK AS-H column (250×30 mm; 5 μm) using methanol: CO2 (55:45) as the mobile phase at a flow rate of 80 g/min.
- Example A1 (S-isomer): Brown solid (0.247 g). Enantiomeric excess: 97.4%. Retention time: 2.14 min. Mass: 619.1 (M++1). MP: 156-158° C.
- Example A2 (R-isomer): Brown solid (0.182 g). Enantiomeric excess: 99.3%. Retention t: 3.43 min. Mass: 619.1 (M++1). MP: 168-171° C.
-
- The two enantiomerically pure isomers were separated by preparative SFC (supercritical fluid) conditions from N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl)ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl) methanesulfonamide (15.0 g) on a CHIRALPAK AS-H column (250×20 mm; 5 μm) using methanol: CO2 (45:55) as the mobile phase at a flow rate of 120 g/min.
- Example A1 (S-isomer): Enantiomeric excess: 100%. Retention time: 2.21 min. Mass: 619.1 (M++1). MP: 175-178° C. Specific optical rotation (C=1 in chloroform, at 25° C.): [α]D=+147.16.
- Example A2 (R-isomer): Enantiomeric excess: 99.3%. Retention t: 3.72 min. Mass: 619.1 (M++1). MP: 154-157° C. Specific optical rotation (C=1 in chloroform, at 25° C.): [α]D=−159.54.
- To a solution of Intermediate 4 (0.500 g, 0.923 mmol) in dichloromethane (5 ml) cooled to 0° C., pyridine (0.200 ml, 1.84 mmol) was added and stirred for 10 min. Methanesulphonyl chloride (0.100 ml, 0.923 mmol) was added stirred for 30 min. The reaction mixture was quenched with water, extracted with dichloromethane and dried over sodium sulphate. The crude product was column chromatographed with methanol:dichloromethane to afford the title compound as an off-white solid (0.240 g, 42%). MP: 211-213° C. 1H-NMR (δ ppm, DMSO-d6, 400 MHz): 9.15 (s, 1H), 8.06 (s, 1H), 7.83 (m, 1H), 7.49 (m, 4H), 7.28 (m, 4H), 7.08 (dt, J=8.6,1.7 Hz, 1H), 6.92 (s, 2H), 5.98 (q, J=6.9 Hz, 1H), 3.88 (s, 3H), 2.99 (s, 3H), 1.88 (d, J=7.0 Hz, 3H). Enantiomeric excess: 85.4% as determined by HPLC on a chiralpak AS-3R column, enriched in the fast eluting isomer (retention time=7.46 min.).
- Metabolic stability studies were conducted on Compounds A, A1, and A2 as well as Example 128 of WO 2012/151525 using mouse, rat, dog, monkey, and human liver microsomes. The protocol for the studies with mouse, rat, and human liver microsomes (all from BD Gentest, USA) is provided below. 0.4 mg protein was preincubated with 2 mM NADPH (cofactor) in phosphate buffer (pH-7.4) for 15 minutes at 37° C. and then added with 1 μM test item and incubated further for 60 minutes in triplicate. The reaction mixture was terminated with methanol containing an internal standard and centrifuged further to analyze the test item remaining in the supernatant by LC-MS/MS. The percent parent compound remaining was calculated in comparison with similar samples terminated at 0 minutes. The results are provided in Table 1 below.
- The metabolic stability data for Compound A1 indicates that it exhibits a superior pharmacokinetic profile.
-
TABLE 1 Metabolic stability in liver microsomes Compound Mouse Rat Dog Monkey Human Example 128 of 85.0 73.3 ND ND 70.4 WO 2012/151525 Compound A 96 91 64.3 42.3 69.7 Compound A1 85.9 94.2 83.5 78.8 95.7 Compound A2 68.9 79.5 52.3 1.9 60.2 ND—Not Determined - Below is provided the procedure for measuring plasma protein binding (using an equilibrium dialysis method). 745 μL of plasma was transferred into a 2 ml micro centrifuge tube. To that 5 μL of Compound A1 (150 μM) was added. Samples were mixed in the table top vortexer for 2 minutes. 50 μL plasma (n=2) was transferred in a pre-labeled 1.5 mL micro centrifuge tube treated as 0 hour sample.
- The remaining 650 μL plasma sample were incubated for 30 minutes at 37° C. in a water bath. After 30 minute incubation, 50 μL plasma (n=2) was removed in a pre-labelled 1.5 mL micro centrifuge tube treated as 0.5 hour sample. 200 μL of the plasma sample (n=2) was transferred into the sample chamber which was indicated by the red ring. The red insert was placed into the base plate and 350 μL of buffer was transferred into the buffer chamber. Plates were incubated at 37° C. at approximately 100 RPM on an orbital shaker or 20 RPM on an up-and-down shaker for 4 hours. 50 μL of post dialysis-sample from the buffer and the plasma chambers were transferred into a pre-labelled micro centrifuged tube. 50 μL of plasma was added to the buffer samples and an equal volume of buffer (KH2PO4 Buffer pH 7.4) to the collected plasma samples. 150 μL of methanol containing internal standard (Tolbutamide 250 ng/ml) was added to precipitate the protein and release compound. Samples were vortexed for 3 minutes in a table top vortexer and centrifuge for 5 minutes at 14,000 RPM. Supernatant was subjected to LC-MS/MS analysis.
- The plasma protein binding data for Compound A1 is provided in Table 2 below:
-
TABLE 2 Protein Binding (%) Mouse Rat Dog Monkey Human 97.61 99.04 95.85 94.71 97.24 - The oral bioavailability of Compound A1 (free base) was evaluated in rats and mice. The protocol for the pharmacokinetics studies in rat is provided below.
- All animals were fasted overnight (12 hours) before dosing and continued till 4.0 hours after administration of test item. Test item formulations were prepared in 1% Tween 80 and 99% media (0.5% Methyl cellulose, 4000cPs, pH 2.2). The blood samples (150 μL from each animal) were collected from the orbital sinus, and placed into a micro centrifuge tube containing disodium EDTA as an anticoagulant. Blood samples were centrifuged immediately with a speed of 1000 g for 10 min at 4° C. and separated plasma samples were frozen at below −80° C. and stored until analysis. The concentrations of test item in all formulations were analyzed by HPLC. The plasma concentrations of test item in all samples were analyzed by LC-MS/MS. Pharmacokinetic parameters (Cmax, AUC0-t, Tmax, and t1/2) were estimated by using WinNonlin software. Results are provided in Table 3 for Compound A, A1, and Example 128 of WO 2012/151525 in rats and Compound A1 in mice.
-
TABLE 3 Ex. 128 of WO Compound Compound Units 2012/151525 Compound A Compound A1 A1 Animal Rat Mice Route Oral Oral Oral Oral Dose mg/ kg 10 10 10 10 N 2 2 4 3 Cmax μM 0.68 1.02 11.38 3.78 AUC0-t μM · hr 2.01 7.95 97.76 7.49 Tmax Hr 0.83 2.67 1.83 0.50 t1/2 Hr 1.56 4.52 2.45 1.45 - Compounds A and A1 showed superior pharmacokinetic profiles compared to Example 128 of WO 2012/151525. For instance, Compound A showed a ˜1.5 fold increase in Cmax, ˜4 fold increase in AUC0-t, and ˜2.8 fold increase in t1/2 as compared to Example 128 of WO 2012/151525. Compound A1 showed a ˜16 fold increase in Cmax, 48 fold increase in AUC0-t, and ˜1.6 fold increase in t1/2 as compared to Example 128 of WO 2012/151525.
- The pharmacological properties of the compounds described herein may be confirmed by a number of pharmacological assays, as exemplified below.
-
Phosphoinositide 3 kinases (PI3K) belong to a class of lipid kinases that play a critical role in the regulation of several key cellular processes. The PI3K are capable of phosphorylating the 3-hydroxy position of phosphoinositols thereby generating second messengers involved in downstream signaling events. The homogenous time resolved fluorescence (HTRF) assay allows detection of 3,4,5-triphosphate (PIPS) formed as a result of phosphorylation ofphosphotidylinositol 4,5-biphosphate (PIP2) by PI3K isoforms such as α, β, γ or δ. - PI3K isoform activity for α, β, γ or δ was determined using a PI3K human HTRF™ Assay Kit (Millipore, Billerica, Mass.) with modifications. All incubations were carried out at room temperature. 0.5 μl of 40× inhibitor (in 100% DMSO) or 100% DMSO were added to each well of a 384-well white plate (Greiner Bio-One, Monroe, N.C.) containing 14.5
μl 1× reaction buffer/PIP2 (10 mM MgCl2, 5 mM DTT, 1.38 μM PIP2) mix with or without enzyme, followed by 5 μl/well of 400 μM ATP and incubated for an additional 30 minutes. The reaction was terminated by adding 5 μl/well stop solution (Millipore, Billerica, Mass.). 5 μl of detection mix (Millipore, Billerica, Mass.) was then added to each well and incubated for 6-18 hours in the dark. HRTF ratio was measured on a microplate reader (BMG Labtech., Germany) at an excitation wavelength of 337 nm and emission wavelengths of 665 and 615 nm with an integration time of 400 msec counting delay of 50 msec. The results for Compounds A, A1 and A2 are shown in Table 4 below. Comparative data for Compound A1 and Example 128 of WO2012/151525 are provided in Table 5 below. -
TABLE 4 IC50 (nM) Compound Pi3Kδ Pi3Kα Pi3Kβ Pi3Kγ A 102.8 ND ND 82.94 A1 30.46 >10000 1359 48.72 A2 92.95 ND ND >10 μM ND: Not Determined -
TABLE 5 Selectivity profile Assay IC50 (nM) Fold-Selectivity Compound PI3Kδ PI3Kγ PI3Kα PI3Kβ Example 128 of 76.01 70.70 NC (38.29*) NC (51.04*) WO 2012/151525 Compound A 102.8 82.94 ND ND Compound A1 30.46 48.72 >329 >45 (46.8*) (23.02**) (IC50 = 1359 nM) Compound A2 92.95 >10000 ND ND *% inhibition @ 1 μM; **% inhibition @ 10 uM; NC—Not Calculated and ND: Not Determined - Growth inhibition assays were carried out using 10% FBS supplemented media. Cells were seeded at a concentration of 5000-20,000 cells/well in a 96-well plate. Test compounds at a concentration ranging from 0.01 to 10000 nM were added after 24 hours. Growth was assessed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) dye reduction test at 0 hour (prior to the addition of the test compound) and 72 hours after the addition of test compound. Absorbance was read on a Fluostar Optima (BMG Labtech, Germany) at a wavelength of 450 nm. Data were analysed using GraphPad Prism and percent inhibition due to the test compound compared to the control was calculated accordingly.
- Compound A1 caused a reduction in T-lymphoma (MOLT-4, Jurkat, CCRF-CEM, Hut-78 and HuT-102) cell viability with GI50 values ranging from 2.5-12.8 μM for the dose range tested. Additionally, compound A1 did not display any apparent cytotoxicity over the 72 hour incubation period.
- MOLT-4, Jurkat, CCRF-CEM, and Hut-78 cells were incubated with desired concentrations of compound for 48 hours. Cells were lysed and pAKT determined by Western Blotting. Bands were quantified using ImageJ and normalized to actin.
- Compound A1 caused a reduction in pAKT expression in T-lymphoma (MOLT-4, Jurkat, CCRF-CEM and Hut-78) cell lines with EC50 values ranging from 0.02-1.6 μM for the dose range tested.
- Assay 4: Inhibition of PI3K δ and γ Signaling in Basophils from Human Whole Blood
- PI3K δ and γ signaling in basophils manifested by an alteration of anti-FcεR1 or fMLP induced CD63 expression is a useful pharmacodynamic marker determined using the Flow2CAST® kit (Buhlmann Laboratories, Switzerland). The test procedure involves the following steps:
-
- Mix the anti-coagulated blood sample by inverting the venipuncture tube several times;
- Prepare fresh and pyrogen-free 3.5 ml polypropylene or polystyrene tubes suitable for Flow Cytometry measurements;
- Add 49 μl of patient's whole blood to each tube;
- Add 1 μl of 10% DMSO (background) or test compound (10% DMSO) to the assigned tubes and mix gently. Incubate at room temperature for 15 minutes;
-
Pipet 50 μl of the Stimulation buffer (background) or anti-FcεRI Ab or fMLP to each tube; - Add 100 μl of Stimulation Buffer to each tube;
- Mix gently. Add 20 μl Staining Reagent (1:1 mix of FITC-CD63 and PE-CCR3) to each tube;
- Mix gently, cover the tubes and incubate for 15 minutes at 37° C. in a water bath. (using an incubator will take about 10 minutes longer incubation time due to less efficient heat transfer);
- Add 2 ml pre-warmed (18-28° C.) Lysing Reagent to each tube, mix gently;
- Incubate for 5-10 minutes at 18-28° C.;
- Centrifuge the tubes for 5 minutes at 500×g;
- Decant the supernatant by using blotting paper;
- Resuspend the cell pellet with 300-800 μl of Wash Buffer; and
- Vortex gently and acquire the data on the flow cytometer within the same day.
- Percent CD63 positive cells within the gated basophil population were determined in different treatment groups and normalized to vehicle control.
- Compound A1 exhibited an EC50 of <30 nM for FcεR1(PI3K 6) and an IC50 of <70 nM for fMLP (PI3K γ)(n=1).
- Assay 4A: Cellular Activity Demonstrating Selectivity of Compound A1 towards PI3K Delta and PI3K Gamma Isoforms
- The objective of this study was to assess the inhibitory potential of Compound A1 on anti-IgM induced human B-cell proliferation.
- Isolated B-cells were re-suspended to 1.0×106 cells per ml. 100 μl of cell suspension was added to each well of a 96-well plate. Triplicates were maintained.
- 50 μl of drug dilution was added and mixed well. A DMSO blank and inducer blank were maintained.
- The treated plate was incubated for 30 minutes at 37° C., 5% CO2 and then 50 μl of 4× inducer was added and mixed by pipetting.
- The plate was incubated at 37° C., 5% CO2 for 72 hours.
- Media was aspirated and 150 μl of DMSO was added to dissolve the formazan crystals.
- Absorbance was read at A560 and A640 nm.
- The data demonstrates the inhibitory potential of Compound A1 on PI3Kδ mediated induction of human B-cell proliferation. See, e.g., Baeker et al., Journal of Immunology, 134: 3532-3538, 1985.
- The objective of this study was to determine the effect of Compound A1 on PI3Kβ kinase mediated LPA induced AktS473 phosphorylation in 3T3 fibroblasts.
- 3T3 cells were treated with desired concentrations of the test compound for 15 minutes. 1 ml of 2× LPA was added such that the final concentration was 5 μM and incubated for 5 minutes.
- Media was discarded and washed with 1 ml of ice-cold 1× PBS.
- 250 μl of cell lysis buffer was added and incubated on ice for 30 minutes.
- Samples were centrifuged and supernatant was maintained at −80° C. until analysis.
- Samples were analyzed by Western Blotting using pAKT (S473) as the primary and anti-rabbit IgG-HRP as a secondary antibody.
- Intensity of the bands was determined using ImageJ 1.42q (NIH, USA) and normalized to Actin (loading control). Data was plotted using GraphPad Prism (Version 5.02).
- The results demonstrate the selectivity of Compound A1 over the beta isoform of PI3K. See Albuquerque et al., J. Biol. Chem., 278, 39830-39838, 2003.
- The objective of this study was to determine the effect of Compound A1 on PI3Kγ kinase mediated c5a induced AktS473 phosphorylation in RAW 264.7 macrophages.
- RAW 264.7 cells were treated with desired concentrations of the test compound for 15 minutes. 1 ml of 2× c5a was added such that the final concentration was 50 ng/ml and incubated for 15 minutes.
- Media was discarded and washed with 1 ml of ice-cold 1× PBS.
- 250 μl of cell lysis buffer was added and incubated on ice for 30 minutes.
- Samples were centrifuged and supernatant was stored at −80° C. until analysis
- Samples were analyzed by Western Blotting using pAKT (S473) as the primary and anti-rabbit IgG-HRP as a secondary antibody.
- Intensity of the bands was determined using ImageJ 1.42q (NIH, USA) and normalized to Actin (loading control). Data was plotted using GraphPad Prism (Version 5.02).
- Inhibition of pAktS473, a downstream marker of PI3Kγ signaling suggests a role for Compound A1 in the oncogenic pathways regulated by Akt in c5a induced RAW 264.7 cells. See To et al., Am. J. Respir. Crit. Care Med., 182, 897-904, 2010.
- Assay 4A4: PDGF Induced Akt Phosphorylation in 3T3 cells (For PI3K a Selectivity)
- The objective of this study was to determine the effect of Compound A1 on PI3Kα kinase mediated AktS473 phosphorylation in PDGF induced 3T3 fibroblasts.
-
- 3T3 cells were treated with desired concentrations of the test compound for 15 minutes. 1 ml of 2× PDGF was added such that the final concentration was 20 ng/ml and incubated for 10 minutes.
- Media was discarded and washed with 1 ml of ice-cold 1× PBS.
- 250 μl of cell lysis buffer was added and incubated on ice for 30 minutes.
- Samples were centrifuged and supernatant was collected and stored at −80° C. until analysis.
- Samples were analyzed by Western Blotting using pAKT (S473) as the primary and anti-rabbit IgG-HRP as a secondary antibody.
- Intensity of the bands was determined using ImageJ 1.42q (NIH, USA) and normalized to Actin (loading control). Data was plotted using GraphPad Prism (Version 5.02).
- No inhibition was observed at 10 μM of Compound A1, demonstrating the selectivity of Compound A1 over the alpha isoform of PI3K. See Albuquerque et al., J. Biol. Chem. 278, 39830-39838, 2003.
- Table 6 below summarizes the results from Assays 4A1-4A4.
-
TABLE 6 CELLULAR ACTIVITY DEMONSTRATING SELECTIVITY OF COMPOUND A1 TOWARDS PI3K δ AND PI3K γ ISOFORMS Cellular IC50 PI3K alpha (PDGF induced pAKT in 3T3 >10000 nM fibroblasts) Cellular IC50 PI3K beta (LPA induced pAKT in 3T3 1324 nM fibroblasts) Cellular IC50 PI3K delta (anti-IgM induced human B-cell 11.03 nM proliferation) Cellular IC50 PI3K gamma (c5a induced pAKT in RAW 51.73 nM macrophages) - Apoptosis in leukemic cells was determined using an in situ
Caspase 3 kit (Millipore, US) as outlined below: - Seed leukemic cells at a density of 1×106 cells/well in a 6 well plate
- Add test compound/DMSO at desired concentrations
- Incubate the plate for 24 hours at 37° C. in 5% CO2 incubator
- Collect cells in a 2 ml centrifuge tube
- Add 1.6 μL of freshly prepared 5× FLICA reagent and mix cells by slightly flicking the tubes
- Incubate tubes for 1 hour at 37° C. under 5% CO2
- Add 2 ml of 1× wash buffer to each tube and mix
- Centrifuge cells at <400×g for 5 minutes at room temperature.
- Carefully remove and discard supernatant, and gently vortex cell pellet to disrupt any cell-to-cell clumping.
- Re-suspend cell pellet in 300 ul of 1× wash buffer
-
Place 100 μL of each cell suspension into each of two wells of a black microtiter plate. Avoid creation of bubbles. - Read absorbance of each microwell using an excitation wavelength of 490 nm and an emission wavelength of 520 nm.
- Percent increase in caspase-3 activity manifested by an increase in fluorescence compared to the control blank is to be calculated.
- The objective of this study was to assess the inhibitory potential of Compound A1 on antigen-induced cytokine release in human PBMC
-
-
- Heparinized human whole blood was diluted 1:1 with PBS, over laid on leukocyte separation medium and centrifuged at 400 g for 40 minutes.
- Buffy layer was removed and washed with PBS
- 0.15*106 of PBMCs were plated in 100 μl per well in RPMI media and incubated for 2 h.
- 50 μl of 3× of the compound dilution in media was added and incubated for 15 min.
- TNFα—induced with 50 μl of LPS in RPMI such that final concentration was 1 μg/ml. Supernatant was collected at 6 hours.
- IL-2-induced with 50 μl of PHA in RPMI such that final concentration was 20 μg/ml. Supernatant was collected at 24 hours.
- IL-4-induced with 50 μl of PHA in RPMI such that final concentration was 20 μg/ml. Supernatant was collected at 48 hours.
- ELISA was performed used kits from eBioscience.
- EC50 was calculated using
GraphPad Prism 5.
- EC50 values were calculated from 2-3 independent experiments. Compound A1 inhibited antigen-induced TNFα, IL-2, and IL-4 with an EC50 of 7.1, 9.5, and 3.5 nM, respectively.
- The effect of Compound A1 on modulating B-cell receptor (BCR)-activated proliferation of human or mouse B-lymphocytes was determined. CD19 is a protein present on B cells from the earliest recognizable B-lineage cells during development to B-cell blasts but is however lost on maturation to plasma cells. LPS is an endotoxin and a major component of environmental microbes with a potent mitogenic activity on B-cells via the BCR signaling pathway.
- Diluted human whole blood was treated with DMSO or desired concentrations of Compound A1. Samples were induced with
LPS 15 minutes after addition of compound and incubated for 72 hours at 37° C. and 5% CO2. Cells positive for CD45 and CD19 were determined by flow cytometry and data are expressed as percentage CD19 positive cells in the total population. Treatment with Compound A1 resulted in a dose-dependent inhibition of LPS-induced human whole blood B-cell proliferation (EC50=117.7 nM) manifested by a reduction in CD19 expression. - Similar to CD19, CD45R (B220) is expressed on mouse B-lymphocytes throughout their development from early pro-B stages onwards and is down-regulated upon terminal differentiation to plasma cells. Briefly, diluted mouse whole blood was treated with of DMSO or desired concentrations of Compound A1. Samples were induced with
LPS 15 minutes after compound addition, and incubated for 72 hours at 37° C. and 5% CO2. Cells positive for CD45 and CD45R were determined by flow cytometry. Data are expressed as percentage CD45R positive cells in the total population. Consistent with CD19+ cell proliferation data, treatment with Compound A1 resulted in a dose-dependent inhibition of LPS-induced mouse whole blood B-cell proliferation (EC50=128.2 nM) manifested by a reduction in CD45R expression. - The PI3K pathway is regulated downstream by AKT, a serine-threonine kinase that modulates several oncogenic processes such as cell proliferation, growth, and survival. Because the spleen is a repertoire for vast quantities of B- and T-lymphocytes, inhibition of LPS-induced AKT phosphorylation was determined ex vivo using isolated mouse splenocytes. Cells were plated and incubated with a desired concentration of Compound A1 for 15 minutes followed by induction with LPS (20 μg/mL) for 30 minutes. Following induction, cells were lysed and pAKT was determined by ELISA using pAKTS473 capture/detection antibody pair and anti-mouse-HRP secondary antibody. Blank subtracted absorbance values were obtained to calculate percent inhibition of pAKT in test samples. Compound A1 caused a dose-dependent reduction (EC50=347.4 nM) in phosphorylation of the downstream marker, AKT, at low concentrations thereby elucidating the signaling pathway
- An exaggerated recruitment and subsequent activation of neutrophil is likely to be important for the development and course of several inflammatory diseases in the airways and lungs, such as severe asthma, chronic obstructive pulmonary disease, cystic fibrosis, and acute respiratory distress syndrome. The mechanisms by which neutrophil contributes to these diseases may involve the release of proteolytic enzymes, such as neutrophil elastase, and free oxygen radicals. When released, these compounds can cause bronchoconstriction, bronchial hyperreactivity, hyper-secretion, epithelial damage, and tissue remodeling in the airways.
- After the quarantine period, fasted animals were randomized and divided into various groups depending on their body weights. The test compound (Compound A1) was prepared as a suspension in a vehicle consisting of 0.5% methylcellulose in which Tween 80 as a suspending agent. The compound or vehicle was administered by oral gavage at a volume of 10 mL/kg. Female Wistar rats were anaesthetized with ketamine and LPS solution was administered intratracheally one hour after compound administration at a dose of 1 mg/kg. 6 hours after LPS instillation, animals were exsanguinated under anaesthesia, and then the trachea was cannulated and the lungs were lavaged with 5 ml aliquots of heparinised PBS (1 unit/ml) four times through a tracheal cannula (
total volume 20 mL). Bronchoalveolar lavage (BAL) fluid was stored at 2-8° C. until assayed for total cell and differential leukocyte count. Bronchioalveolar fluid was centrifuged (500×g for 10 minutes) and the resulting cell pellet was resuspended in 0.5 ml of heparinised saline. The total numbers of white blood cells were determined in BAL fluid or blood by using a blood cell counter and was adjusted to 1×106 cell/ml. Differential cell count was calculated manually. One hundred microliters of the cell suspension was centrifuged using aCytospin 3 to prepare a cell smear. The cell smear was stained with a blood staining solution for differentiation and slides were microscopically observed to identify eosinophil according to their morphological characteristics. The number of each cell type among 300 white blood cells in the cell smear was determined and expressed as a percentage. The number of eosinophil in each BALf or blood was calculated. - Compound A1 showed a reduction of neutrophil infiltration into the lungs with an inhibition of 65.29% at 10 mg/kg compared to the control group, suggesting a therapeutic role in inflammatory disorders. The results are shown in
FIG. 1 . - Female Wistar rats (175-200 g) were acclimatized for seven days prior to the start of the experiment. Animals were randomly distributed to various groups based on their body weights. Animals were anaesthetised with ether and subcutaneous air pouches were made by injecting 20 ml of sterile air under the skin in the intra-scapular area (day 0) and maintained with a second 10 ml injection of sterile-filtered air on
day 4. Onday 6, oral treatment was commenced 1 hour prior to induction of inflammation by s.c. injection of LPS solution onday 6. A volume of 5 ml of LPS solution dissolved in sterile saline (100 μg/kg) was injected into each pouch. Samples of pouch fluid were taken at 6 h after administration of LPS by flushing the pouch with 5 ml of sterile saline and withdrawing 4 ml of fluid. The number of leukocytes present in pouch fluid was determined microscopically using a haemocytometer. Differential cell content was determined by microscopic examination of fluid smears stained with Diff-Quik. - Compound A1 caused a dose-dependent reduction of neutrophil migration into the rat air pouch with an ED50 of 2.65 mg/kg suggesting a therapeutic role in rheumatoid arthritis. The results are shown in
FIG. 2 . - After the quarantine period, 0.3 ml of blood samples are collected from orbital vein by retro-orbital plexus method from each individual animal and analysed on a cell analyser (ADVIA 2120, Siemens). Based on their total cell count, guinea pigs are randomized and divided into various groups. Ear pinna is marked with an indelible marking pen for identification. On
day 0, weights are recorded and animals are sensitized with 50 μg of ovalbumin (OVA) and 10 mg of alum solution (1 ml) intraperitoneally. Onday 7 andday 14, the above sensitization protocol is repeated. Animals are observed for any signs of illness or reaction to the sensitization up to day 19 and recorded if any. Onday 19, 20, and 21, after the treatment with test compound by oral gavage, 30 minutes later animals are exposed to 0.5% w/v, 0.5% and 1% ovalbumin challenge respectively. Control and sham group animals are treated with 0.5% w/v methyl cellulose (vehicle). Sham control groups are sensitized with 10 mg of alum onday - After the quarantine period, based on their body weights, mice were randomized and divided into four groups (n=7). Tails were marked with an indelible marking pen for identification. On
day 0, weights were recorded and animals were sensitized with 100 μg of ovalbumin and 10 mg of alum solution (0.2 mL) intraperitoneally. - On
day 7 andday 14, the above sensitization protocol was repeated. Animals were observed for any signs of illness or reaction to the sensitization up to day 24 and recorded if any. On day 24, 25, and 26, after the treatment with test compound by oral gavage, 30 minutes later animals were exposed to 10% w/v ovalbumin challenge. - Control and sham group animals were treated with 0.5% w/v methyl cellulose (vehicle). Sham control groups were sensitized with 10 mg of alum on
day - Forty eight hours after the last OVA challenge, airway hyperresponsiveness was measured by whole body plethysmograph against cumulative doses of methacholine challenge (2.5, 10, 50 and 100 mg/ml). After measuring the airway response, blood samples and BAL fluid were collected. Samples were analysed for total cell count by using a neubuear chamber under microscope and differential leukocyte count was done manually.
- Female wistar rats were acclimatized for seven days prior to the start of the experiment and were randomly distributed to various groups based on their body weights. On
day 0, animals were treated by intradermal injection of 500 μg of bovine collagen type II emulsified with complete Freund's adjuvant (IFA) containing MTB (4 mg/mL) delivered at the base of the tail. Onday 7 after primary immunization, animals were treated by booster injection of 300 μg CII in incomplete Freund's adjuvant by intradermal injection at the base of the tail. Onset of arthritis in ankle joints usually became visually apparent betweendays days - Compound A1 dosed therapeutically in the rat CIA model demonstrates significant efficacy in the reduction of the clinical score (
FIGS. 3A and 3B ) observed in both prophylactic paws (FIG. 3C ) and therapeutic paws (FIG. 3D ). - Compound A1 dosed therapeutically in the rat CIA model demonstrates significant efficacy in reducing the average paw volumes of both the hind paws (
FIGS. 4A and 4B ) and in ankle diameter (FIGS. 4C and 4D ). - Histological analysis: Compound A1 dosed therapeutically in the rat CIA model demonstrates significant efficacy in inhibition of inflammation (58.3%, see
FIG. 4A ), cartilage (46.51%, seeFIG. 4B ) and pannus (49.18%, seeFIG. 4C ) observed by histopathology of all the hind and fore paws. - The incidence and progression of arthritis was significantly reduced in treatment group compared to control group animals (
FIG. 5 ). - Animals (male Balb/c mice) are to be acclimatized for seven days prior to the start of the experiment. Animals are then to be randomly distributed to various groups based on their body weights. On
day 1, the mice are to be administered test compound or vehicle by oral/intranasal route and after 1 hour, the test compound administered animals are to be placed in a whole body exposure box. Onday 1 andday 2, mice are exposed to the mainstream smoke of 6 cigarettes, of 8 cigarettes onday 3, and of 10 cigarettes onday 4. Exposure to the smoke of each cigarette will last for 10 minutes. The cigarettes are to be completely burned in the first two minutes, followed by an air flow with animal ventilator and the next 20 minutes will be exposure with fresh room air. After every second cigarette, an additional break of 20 minutes with exposure to fresh room air is to be conducted. Control animals are to be exposed to room air chamber. Fromday 1 today 4, animals will be administered the test compound either by oral or intranasal route. Onday 5, 24 hours after the last cigarette smoke (CS) exposure, animals will be exsanguinated under anaesthesia, and the trachea will be cannulated and the lungs lavaged with 0.5-ml aliquots of heparinised PBS (1 unit/ml) four times through tracheal cannula (total volume 2 ml). Bronchioalveolar (BAL) collected is to be stored at 2-8° C. until assayed for total cell and differential leukocyte count. BAL fluid is to be centrifuged (500×g for 10 min) and the resulting cell pellet is resuspended in 0.5 ml of heparinised saline. The total number of white blood cells is to be determined in BAL fluid and blood using a blood cell counter and adjusted to 1×106 cell/ml. Differential cell count is calculated manually. Forty microliters of the cell suspension is centrifuged usingCytospin 3 to prepare a cell smear. The cell smear is stained with a blood staining solution for differentiation and microscopically observed to identify eosinophil according to their morphological characteristics. The number of each cell type among 300 white blood cells in the cell smear are to be determined and expressed as a percentage, and the number of neutrophils and macrophages in each BAL fluid are to be calculated. - Imiquimod (IMQ) is a ligand for TLR7 and TLR8, originally used for the treatment of non-melanoma skin cancers. The topical application of IMQ on the shaved back skin of the mouse induces a psoriasis-like skin condition exhibiting most of the human psoriasis pathology characteristic features including acanthosis, parakeratosis, and infiltration of immune cells and involvement of the IL23/IL17/IL22 pathway. Animals (male Balb/c mice) were acclimatized for seven days prior to the start of the experiment. Animals were randomly distributed to various groups based on their body weights. On
day 0, the back skin of the mice was shaved by topical application of hair removal cream. Onday 1, mice were administered the test compound or vehicle by the oral route and after 1 hour the mice that received the test compound received a topical application of 62.5 mg of commercially available IMQ cream (5%; Beselna Cream; Mochida Pharmaceuticals, Tokyo, Japan) on the shaved back skin. The mice were treated with topical application of imiquimod for the next 5 consecutive days, one hour after test compound or vehicle administration. Animals were allowed to dry for one hour before returning to their cages after topical application on every day. Four hours after the final application of IMQ cream, the mice were killed and skin samples were obtained. Back skin thickness was measured using dial thickness gauge. After measuring skin thickness, skin samples were fixed in 10% neutral buffered formalin solution and embedded in paraffin. Deparaffinised sections were stained with hematoxylin-eosin (HE). Epidermal thickness was quantified by averaging the values of five independent fields per section. To score the severity of inflammation of the back skin, an objective scoring system was used based on the human clinical Psoriasis Area and Severity Index (PASI). Erythema, scaling, and thickening were scored independently on a scale from 0 to 4: 0=none; 1=slight; 2=moderate; 3=marked; and 4=very marked. - As shown in
FIGS. 6A and 6B , Compound A1 reduced back skin thickness, erythema, and scaling (as shown by the histopathological score) compared to the control group animals. - Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as described above. It is intended that the appended claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
- All publications and patent and/or patent applications cited in this application are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated herein by reference.
Claims (11)
1-26. (canceled)
27. A method of inhibiting a catalytic activity of a PI3 δ kinase in a cell comprising contacting the cell with an effective amount of (S)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl)ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide or a pharmaceutically acceptable salt thereof.
28. A method of inhibiting a catalytic activity of a PI3 γ kinase in a cell comprising contacting the cell with an effective amount of (S)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl)ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide or a pharmaceutically acceptable salt thereof.
29. A method of inhibiting a catalytic activity of a PI3 δ kinase and PI3 γ kinase in a cell comprising contacting the cell with an effective amount of (S)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl)ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide or a pharmaceutically acceptable salt thereof.
30. The method of claim 27 , wherein the inhibition takes place in a subject suffering from a disease, disorder or condition selected from a proliferative disease, a bone disorder, an inflammatory disease, an immune disease, a nervous system disease, a metabolic disease, a respiratory disease, thrombosis, cardiac disease, and any combination thereof.
31. The method of claim 28 , wherein the inhibition takes place in a subject suffering from a disease, disorder or condition selected from a proliferative disease, a bone disorder, an inflammatory disease, an immune disease, a nervous system disease, a metabolic disease, a respiratory disease, thrombosis, cardiac disease, and any combination thereof.
32. The method of claim 29 , wherein the inhibition takes place in a subject suffering from a disease, disorder or condition selected from a proliferative disease, a bone disorder, an inflammatory disease, an immune disease, a nervous system disease, a metabolic disease, a respiratory disease, thrombosis, cardiac disease, and any combination thereof.
33. A method of treating a disease, disorder or condition that would benefit from inhibiting catalytic activity of a PI3 δ/γ kinase comprising administering to a subject in need thereof an effective amount of (S)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl)ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide or a pharmaceutically acceptable salt thereof.
34. A method for the treatment of a PI3K associated disease, disorder or condition comprising administering to a subject in need thereof an effective amount of (S)—N-(5-(4-amino-1-(1-(5-fluoro-3-(3-fluorophenyl)-4-oxo-4H-chromen-2-yl)ethyl)-1H-pyrazolo[3,4-d]pyrimidin-3-yl)-2-methoxyphenyl)methanesulfonamide or a pharmaceutically acceptable salt thereof.
35. The method of claim 34 , further comprising administering an additional active agent selected from anti-cancer agents, anti-inflammatory agents, immunosuppressive agents, steroids, non-steroidal anti-inflammatory agents, antihistamines, analgesics, and any mixture thereof.
36. A compound selected from
(S)-2-(1-(4-amino-3-(4-methoxy-3-nitrophenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-5-fluoro-3-(3-fluorophenyl)-4H-chromen-4-one,
(S)-2-(1-(4-amino-3-(3-amino-4-methoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)ethyl)-5-fluoro-3-(3-fluorophenyl)-4H-chromen-4-one,
and pharmaceutically acceptable salts thereof.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/212,447 US20190202836A1 (en) | 2014-06-27 | 2018-12-06 | Selective dual inhibitors of pi3 delta and gamma protein kinases |
US16/810,219 US20200199133A1 (en) | 2014-06-27 | 2020-03-05 | Selective dual inhibitors of pi3 delta and gamma protein kinases |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN3144CH2014 | 2014-06-27 | ||
IN3144/CHE/2014 | 2014-06-27 | ||
US14/752,243 US9708329B2 (en) | 2014-06-27 | 2015-06-26 | Selective dual inhibitors of PI3 delta and gamma protein kinases |
US15/480,181 US10179786B2 (en) | 2014-06-27 | 2017-04-05 | Selective dual inhibitors of PI3 delta and gamma protein kinases |
US16/212,447 US20190202836A1 (en) | 2014-06-27 | 2018-12-06 | Selective dual inhibitors of pi3 delta and gamma protein kinases |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/480,181 Continuation US10179786B2 (en) | 2014-06-27 | 2017-04-05 | Selective dual inhibitors of PI3 delta and gamma protein kinases |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/810,219 Division US20200199133A1 (en) | 2014-06-27 | 2020-03-05 | Selective dual inhibitors of pi3 delta and gamma protein kinases |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190202836A1 true US20190202836A1 (en) | 2019-07-04 |
Family
ID=53761447
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/752,243 Active US9708329B2 (en) | 2014-06-27 | 2015-06-26 | Selective dual inhibitors of PI3 delta and gamma protein kinases |
US15/480,181 Expired - Fee Related US10179786B2 (en) | 2014-06-27 | 2017-04-05 | Selective dual inhibitors of PI3 delta and gamma protein kinases |
US16/212,447 Abandoned US20190202836A1 (en) | 2014-06-27 | 2018-12-06 | Selective dual inhibitors of pi3 delta and gamma protein kinases |
US16/810,219 Abandoned US20200199133A1 (en) | 2014-06-27 | 2020-03-05 | Selective dual inhibitors of pi3 delta and gamma protein kinases |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/752,243 Active US9708329B2 (en) | 2014-06-27 | 2015-06-26 | Selective dual inhibitors of PI3 delta and gamma protein kinases |
US15/480,181 Expired - Fee Related US10179786B2 (en) | 2014-06-27 | 2017-04-05 | Selective dual inhibitors of PI3 delta and gamma protein kinases |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/810,219 Abandoned US20200199133A1 (en) | 2014-06-27 | 2020-03-05 | Selective dual inhibitors of pi3 delta and gamma protein kinases |
Country Status (18)
Country | Link |
---|---|
US (4) | US9708329B2 (en) |
EP (1) | EP3160968B1 (en) |
JP (1) | JP6557266B2 (en) |
KR (1) | KR20170016489A (en) |
CN (1) | CN106661029B (en) |
AP (1) | AP2017009670A0 (en) |
AU (1) | AU2015278699B2 (en) |
CA (1) | CA2951370A1 (en) |
CL (1) | CL2016003328A1 (en) |
CO (1) | CO2017000687A2 (en) |
DK (1) | DK3160968T3 (en) |
EA (1) | EA031135B1 (en) |
ES (1) | ES2708748T3 (en) |
IL (1) | IL249740A0 (en) |
MX (1) | MX2016016892A (en) |
PH (1) | PH12016502572A1 (en) |
SG (1) | SG11201610745XA (en) |
WO (1) | WO2015198289A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JOP20190052A1 (en) | 2016-09-22 | 2019-03-21 | Astrazeneca Ab | 5-[2-(pyridin-2-ylamino)-1,3-thiazol-5-yl]-2,3-dihydro-1 h-isoindol-1 -one derivatives and their use as dual inhibitors of phosphatidylinositol 3-kinase delta & gamma |
EP4157281A1 (en) * | 2020-05-27 | 2023-04-05 | Duke University | Compositions and methods for sensitizing acute myeloid leukemias to chemotherapy |
CN114258393A (en) * | 2020-07-21 | 2022-03-29 | 中国医药研究开发中心有限公司 | Heterocyclic compound with dual phosphatidylinositol 3-kinase delta and gamma inhibitor activity and medical application thereof |
CN114891005B (en) * | 2022-03-30 | 2024-01-19 | 武汉九州钰民医药科技有限公司 | Preparation process of Wupalision p-toluenesulfonate |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012151525A1 (en) * | 2011-05-04 | 2012-11-08 | Rhizen Pharmaceuticals Sa | Novel compounds as modulators of protein kinases |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU4779897A (en) * | 1996-10-02 | 1998-04-24 | Novartis Ag | Fused pyrazole derivatives and processes for their preparation |
CA3022722A1 (en) * | 2009-11-05 | 2011-05-12 | Rhizen Pharmaceuticals S.A. | Pi3k protein kinase modulators |
US9476041B2 (en) | 2010-07-12 | 2016-10-25 | National University Corporation Tottori University | Method for producing novel hipsc by means of siRNA introduction |
US20140213630A1 (en) | 2011-03-08 | 2014-07-31 | Thomas Diacovo | Methods and pharmaceutical compositions for treating lymphoid malignancy |
WO2012131953A1 (en) | 2011-03-30 | 2012-10-04 | トヨタ自動車株式会社 | In-wheel motor vehicle |
BR112014027470A2 (en) * | 2012-05-04 | 2017-06-27 | Rhizen Pharmaceuticals S A | novel process for preparing optically substituted 2- (1-hydroxyalkyl) -chromen-4-one derivatives and their use in the preparation of pharmaceuticals. |
DK3260455T3 (en) * | 2012-07-04 | 2019-06-11 | Rhizen Pharmaceuticals S A | SELECTIVE PI3K DELTA REQUESTS |
CN105431437B (en) * | 2013-07-02 | 2020-03-10 | 理森制药股份公司 | PI3K protein kinase inhibitors, in particular delta inhibitors and/or gamma inhibitors |
-
2015
- 2015-06-26 AU AU2015278699A patent/AU2015278699B2/en not_active Ceased
- 2015-06-26 EP EP15744357.3A patent/EP3160968B1/en not_active Not-in-force
- 2015-06-26 CA CA2951370A patent/CA2951370A1/en not_active Abandoned
- 2015-06-26 KR KR1020177000926A patent/KR20170016489A/en not_active Application Discontinuation
- 2015-06-26 MX MX2016016892A patent/MX2016016892A/en active IP Right Grant
- 2015-06-26 CN CN201580034240.6A patent/CN106661029B/en not_active Expired - Fee Related
- 2015-06-26 WO PCT/IB2015/054844 patent/WO2015198289A1/en active Application Filing
- 2015-06-26 JP JP2016575454A patent/JP6557266B2/en not_active Expired - Fee Related
- 2015-06-26 AP AP2017009670A patent/AP2017009670A0/en unknown
- 2015-06-26 ES ES15744357T patent/ES2708748T3/en active Active
- 2015-06-26 US US14/752,243 patent/US9708329B2/en active Active
- 2015-06-26 DK DK15744357.3T patent/DK3160968T3/en active
- 2015-06-26 EA EA201692297A patent/EA031135B1/en unknown
- 2015-06-26 SG SG11201610745XA patent/SG11201610745XA/en unknown
-
2016
- 2016-12-21 PH PH12016502572A patent/PH12016502572A1/en unknown
- 2016-12-22 IL IL249740A patent/IL249740A0/en unknown
- 2016-12-26 CL CL2016003328A patent/CL2016003328A1/en unknown
-
2017
- 2017-01-26 CO CONC2017/0000687A patent/CO2017000687A2/en unknown
- 2017-04-05 US US15/480,181 patent/US10179786B2/en not_active Expired - Fee Related
-
2018
- 2018-12-06 US US16/212,447 patent/US20190202836A1/en not_active Abandoned
-
2020
- 2020-03-05 US US16/810,219 patent/US20200199133A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012151525A1 (en) * | 2011-05-04 | 2012-11-08 | Rhizen Pharmaceuticals Sa | Novel compounds as modulators of protein kinases |
Non-Patent Citations (1)
Title |
---|
Nagarathnam et al the parent case # 14/752 ,243 * |
Also Published As
Publication number | Publication date |
---|---|
IL249740A0 (en) | 2017-02-28 |
AU2015278699B2 (en) | 2019-10-31 |
CN106661029A (en) | 2017-05-10 |
NZ727214A (en) | 2021-08-27 |
CL2016003328A1 (en) | 2017-12-01 |
EA201692297A1 (en) | 2017-06-30 |
ES2708748T3 (en) | 2019-04-11 |
AU2015278699A1 (en) | 2017-01-05 |
SG11201610745XA (en) | 2017-01-27 |
US10179786B2 (en) | 2019-01-15 |
US20170204106A1 (en) | 2017-07-20 |
MX2016016892A (en) | 2017-07-28 |
PH12016502572A1 (en) | 2017-04-17 |
US20150376188A1 (en) | 2015-12-31 |
JP2017526631A (en) | 2017-09-14 |
KR20170016489A (en) | 2017-02-13 |
CA2951370A1 (en) | 2015-12-30 |
CO2017000687A2 (en) | 2017-06-09 |
WO2015198289A1 (en) | 2015-12-30 |
US9708329B2 (en) | 2017-07-18 |
CN106661029B (en) | 2019-04-05 |
DK3160968T3 (en) | 2019-02-18 |
EP3160968B1 (en) | 2018-10-31 |
EA031135B1 (en) | 2018-11-30 |
EP3160968A1 (en) | 2017-05-03 |
JP6557266B2 (en) | 2019-08-07 |
US20200199133A1 (en) | 2020-06-25 |
AP2017009670A0 (en) | 2017-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11466006B2 (en) | Dual selective PI3 delta and gamma kinase inhibitors | |
US20200199133A1 (en) | Selective dual inhibitors of pi3 delta and gamma protein kinases | |
EP2870157A1 (en) | Selective pi3k delta inhibitors | |
OA18327A (en) | Substituted chromene derivatives as selective dual inhibitors of Pi3 delta and gamma protein kinases | |
OA17589A (en) | Dual selective PI3 delta and gamma kinase inhibitors | |
NZ714465B2 (en) | Dual selective pi3 delta and gamma kinase inhibitors | |
NZ727214B2 (en) | Substituted chromene derivatives as selective dual inhibitors of pi3 delta and gamma protein kinases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: RHIZEN PHARMACEUTICALS SA, SWITZERLAND Free format text: CHANGE OF ADDRESS;ASSIGNOR:RHIZEN PHARMACEUTICALS SA;REEL/FRAME:056775/0375 Effective date: 20201208 |