US20140213630A1 - Methods and pharmaceutical compositions for treating lymphoid malignancy - Google Patents
Methods and pharmaceutical compositions for treating lymphoid malignancy Download PDFInfo
- Publication number
- US20140213630A1 US20140213630A1 US14/003,873 US201214003873A US2014213630A1 US 20140213630 A1 US20140213630 A1 US 20140213630A1 US 201214003873 A US201214003873 A US 201214003873A US 2014213630 A1 US2014213630 A1 US 2014213630A1
- Authority
- US
- United States
- Prior art keywords
- inhibitor
- kinase
- pi3kδ
- pi3kγ
- delta
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 83
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 69
- 239000008194 pharmaceutical composition Substances 0.000 title claims abstract description 31
- 201000011510 cancer Diseases 0.000 title claims abstract description 26
- 230000036210 malignancy Effects 0.000 title claims abstract description 23
- 239000003112 inhibitor Substances 0.000 claims abstract description 165
- 230000000694 effects Effects 0.000 claims abstract description 112
- 208000029052 T-cell acute lymphoblastic leukemia Diseases 0.000 claims abstract description 67
- 101710132081 Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN Proteins 0.000 claims abstract description 53
- 102100032543 Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and dual-specificity protein phosphatase PTEN Human genes 0.000 claims abstract description 53
- 150000001875 compounds Chemical class 0.000 claims abstract description 25
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 23
- 150000003906 phosphoinositides Chemical class 0.000 claims abstract description 21
- 230000002401 inhibitory effect Effects 0.000 claims abstract description 14
- 101150073900 PTEN gene Proteins 0.000 claims abstract description 11
- 238000011278 co-treatment Methods 0.000 claims abstract description 10
- 230000008901 benefit Effects 0.000 claims abstract description 9
- 210000004027 cell Anatomy 0.000 claims description 128
- PUYVJBBSBPUKBT-AWEZNQCLSA-N 2-[(1s)-1-[(2-amino-7h-purin-6-yl)amino]ethyl]-5-methyl-3-(2-methylphenyl)quinazolin-4-one Chemical compound C1([C@@H](NC=2C=3NC=NC=3N=C(N)N=2)C)=NC2=CC=CC(C)=C2C(=O)N1C1=CC=CC=C1C PUYVJBBSBPUKBT-AWEZNQCLSA-N 0.000 claims description 86
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 62
- 108091007960 PI3Ks Proteins 0.000 claims description 51
- 102000038030 PI3Ks Human genes 0.000 claims description 42
- 239000003814 drug Substances 0.000 claims description 40
- 150000007523 nucleic acids Chemical group 0.000 claims description 36
- 108020004707 nucleic acids Proteins 0.000 claims description 35
- 102000039446 nucleic acids Human genes 0.000 claims description 35
- -1 fludrocortisones Chemical compound 0.000 claims description 27
- GNWHRHGTIBRNSM-UHFFFAOYSA-N IC-87114 Chemical compound CC1=CC=CC=C1N1C(=O)C2=C(C)C=CC=C2N=C1CN1C2=NC=NC(N)=C2N=C1 GNWHRHGTIBRNSM-UHFFFAOYSA-N 0.000 claims description 24
- 239000004055 small Interfering RNA Substances 0.000 claims description 24
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 claims description 23
- 229960003957 dexamethasone Drugs 0.000 claims description 23
- 230000037361 pathway Effects 0.000 claims description 23
- 108091027967 Small hairpin RNA Proteins 0.000 claims description 21
- 239000002246 antineoplastic agent Substances 0.000 claims description 19
- 229940127089 cytotoxic agent Drugs 0.000 claims description 19
- 108090000430 Phosphatidylinositol 3-kinases Proteins 0.000 claims description 16
- 102000003993 Phosphatidylinositol 3-kinases Human genes 0.000 claims description 16
- 239000003862 glucocorticoid Substances 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 14
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 claims description 12
- 102000006306 Antigen Receptors Human genes 0.000 claims description 11
- 108010083359 Antigen Receptors Proteins 0.000 claims description 11
- 208000015914 Non-Hodgkin lymphomas Diseases 0.000 claims description 11
- 239000002552 dosage form Substances 0.000 claims description 9
- 239000003937 drug carrier Substances 0.000 claims description 9
- 239000002935 phosphatidylinositol 3 kinase inhibitor Substances 0.000 claims description 9
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 claims description 8
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 claims description 6
- ZESRJSPZRDMNHY-YFWFAHHUSA-N 11-deoxycorticosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 ZESRJSPZRDMNHY-YFWFAHHUSA-N 0.000 claims description 6
- VHRSUDSXCMQTMA-PJHHCJLFSA-N 6alpha-methylprednisolone Chemical compound C([C@@]12C)=CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2[C@@H](O)C[C@]2(C)[C@@](O)(C(=O)CO)CC[C@H]21 VHRSUDSXCMQTMA-PJHHCJLFSA-N 0.000 claims description 6
- PQSUYGKTWSAVDQ-ZVIOFETBSA-N Aldosterone Chemical compound C([C@@]1([C@@H](C(=O)CO)CC[C@H]1[C@@H]1CC2)C=O)[C@H](O)[C@@H]1[C@]1(C)C2=CC(=O)CC1 PQSUYGKTWSAVDQ-ZVIOFETBSA-N 0.000 claims description 6
- PQSUYGKTWSAVDQ-UHFFFAOYSA-N Aldosterone Natural products C1CC2C3CCC(C(=O)CO)C3(C=O)CC(O)C2C2(C)C1=CC(=O)CC2 PQSUYGKTWSAVDQ-UHFFFAOYSA-N 0.000 claims description 6
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 claims description 6
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 claims description 6
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 claims description 6
- ZDZOTLJHXYCWBA-VCVYQWHSSA-N N-debenzoyl-N-(tert-butoxycarbonyl)-10-deacetyltaxol Chemical compound O([C@H]1[C@H]2[C@@](C([C@H](O)C3=C(C)[C@@H](OC(=O)[C@H](O)[C@@H](NC(=O)OC(C)(C)C)C=4C=CC=CC=4)C[C@]1(O)C3(C)C)=O)(C)[C@@H](O)C[C@H]1OC[C@]12OC(=O)C)C(=O)C1=CC=CC=C1 ZDZOTLJHXYCWBA-VCVYQWHSSA-N 0.000 claims description 6
- 229960002478 aldosterone Drugs 0.000 claims description 6
- 229960004495 beclometasone Drugs 0.000 claims description 6
- UREBDLICKHMUKA-DVTGEIKXSA-N betamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-DVTGEIKXSA-N 0.000 claims description 6
- 229960002537 betamethasone Drugs 0.000 claims description 6
- 229960004544 cortisone Drugs 0.000 claims description 6
- ZESRJSPZRDMNHY-UHFFFAOYSA-N de-oxy corticosterone Natural products O=C1CCC2(C)C3CCC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 ZESRJSPZRDMNHY-UHFFFAOYSA-N 0.000 claims description 6
- 229940119740 deoxycorticosterone Drugs 0.000 claims description 6
- 229960002949 fluorouracil Drugs 0.000 claims description 6
- 229960000890 hydrocortisone Drugs 0.000 claims description 6
- 201000011649 lymphoblastic lymphoma Diseases 0.000 claims description 6
- 229960004584 methylprednisolone Drugs 0.000 claims description 6
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 claims description 6
- 229960005205 prednisolone Drugs 0.000 claims description 6
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 claims description 6
- 229960004618 prednisone Drugs 0.000 claims description 6
- 229960005294 triamcinolone Drugs 0.000 claims description 6
- GFNANZIMVAIWHM-OBYCQNJPSA-N triamcinolone Chemical compound O=C1C=C[C@]2(C)[C@@]3(F)[C@@H](O)C[C@](C)([C@@]([C@H](O)C4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 GFNANZIMVAIWHM-OBYCQNJPSA-N 0.000 claims description 6
- UJIAQDJKSXQLIT-UHFFFAOYSA-N 3-[2,4-diamino-7-(3-hydroxyphenyl)-6-pteridinyl]phenol Chemical compound C=1C=CC(O)=CC=1C1=NC2=NC(N)=NC(N)=C2N=C1C1=CC=CC(O)=C1 UJIAQDJKSXQLIT-UHFFFAOYSA-N 0.000 claims description 5
- 230000001154 acute effect Effects 0.000 claims description 5
- 229950004941 pictilisib Drugs 0.000 claims description 5
- LHNIIDJUOCFXAP-UHFFFAOYSA-N pictrelisib Chemical compound C1CN(S(=O)(=O)C)CCN1CC1=CC2=NC(C=3C=4C=NNC=4C=CC=3)=NC(N3CCOCC3)=C2S1 LHNIIDJUOCFXAP-UHFFFAOYSA-N 0.000 claims description 5
- LCGTWRLJTMHIQZ-UHFFFAOYSA-N 5H-dibenzo[b,f]azepine Chemical compound C1=CC2=CC=CC=C2NC2=CC=CC=C21 LCGTWRLJTMHIQZ-UHFFFAOYSA-N 0.000 claims description 4
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 claims description 4
- 108010092160 Dactinomycin Proteins 0.000 claims description 4
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 claims description 4
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 claims description 4
- RJURFGZVJUQBHK-UHFFFAOYSA-N actinomycin D Natural products CC1OC(=O)C(C(C)C)N(C)C(=O)CN(C)C(=O)C2CCCN2C(=O)C(C(C)C)NC(=O)C1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)NC4C(=O)NC(C(N5CCCC5C(=O)N(C)CC(=O)N(C)C(C(C)C)C(=O)OC4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-UHFFFAOYSA-N 0.000 claims description 4
- 229960001101 ifosfamide Drugs 0.000 claims description 4
- HOMGKSMUEGBAAB-UHFFFAOYSA-N ifosfamide Chemical compound ClCCNP1(=O)OCCCN1CCCl HOMGKSMUEGBAAB-UHFFFAOYSA-N 0.000 claims description 4
- FABUFPQFXZVHFB-PVYNADRNSA-N ixabepilone Chemical compound C/C([C@@H]1C[C@@H]2O[C@]2(C)CCC[C@@H]([C@@H]([C@@H](C)C(=O)C(C)(C)[C@@H](O)CC(=O)N1)O)C)=C\C1=CSC(C)=N1 FABUFPQFXZVHFB-PVYNADRNSA-N 0.000 claims description 4
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 claims description 4
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 claims description 4
- 229960001756 oxaliplatin Drugs 0.000 claims description 4
- 229940063683 taxotere Drugs 0.000 claims description 4
- SQWZFLMPDUSYGV-POHAHGRESA-N (5Z)-5-(quinoxalin-6-ylmethylidene)-1,3-thiazolidine-2,4-dione Chemical compound S1C(=O)NC(=O)\C1=C\C1=CC=C(N=CC=N2)C2=C1 SQWZFLMPDUSYGV-POHAHGRESA-N 0.000 claims description 2
- SDGWAUUPHUBJNQ-WTKPLQERSA-N (5z)-5-(1,3-benzodioxol-5-ylmethylidene)-1,3-thiazolidine-2,4-dione Chemical compound S1C(=O)NC(=O)\C1=C\C1=CC=C(OCO2)C2=C1 SDGWAUUPHUBJNQ-WTKPLQERSA-N 0.000 claims description 2
- 102100025573 1-alkyl-2-acetylglycerophosphocholine esterase Human genes 0.000 claims description 2
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 claims description 2
- AOJJSUZBOXZQNB-VTZDEGQISA-N 4'-epidoxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-VTZDEGQISA-N 0.000 claims description 2
- IDPUKCWIGUEADI-UHFFFAOYSA-N 5-[bis(2-chloroethyl)amino]uracil Chemical compound ClCCN(CCCl)C1=CNC(=O)NC1=O IDPUKCWIGUEADI-UHFFFAOYSA-N 0.000 claims description 2
- XAUDJQYHKZQPEU-KVQBGUIXSA-N 5-aza-2'-deoxycytidine Chemical compound O=C1N=C(N)N=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XAUDJQYHKZQPEU-KVQBGUIXSA-N 0.000 claims description 2
- DOCINCLJNAXZQF-LBPRGKRZSA-N 6-fluoro-3-phenyl-2-[(1s)-1-(7h-purin-6-ylamino)ethyl]quinazolin-4-one Chemical compound C1([C@@H](NC=2C=3N=CNC=3N=CN=2)C)=NC2=CC=C(F)C=C2C(=O)N1C1=CC=CC=C1 DOCINCLJNAXZQF-LBPRGKRZSA-N 0.000 claims description 2
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 claims description 2
- SJVQHLPISAIATJ-ZDUSSCGKSA-N 8-chloro-2-phenyl-3-[(1S)-1-(7H-purin-6-ylamino)ethyl]-1-isoquinolinone Chemical compound C1([C@@H](NC=2C=3N=CNC=3N=CN=2)C)=CC2=CC=CC(Cl)=C2C(=O)N1C1=CC=CC=C1 SJVQHLPISAIATJ-ZDUSSCGKSA-N 0.000 claims description 2
- 229960005531 AMG 319 Drugs 0.000 claims description 2
- 108010024976 Asparaginase Proteins 0.000 claims description 2
- 108010006654 Bleomycin Proteins 0.000 claims description 2
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 claims description 2
- KLWPJMFMVPTNCC-UHFFFAOYSA-N Camptothecin Natural products CCC1(O)C(=O)OCC2=C1C=C3C4Nc5ccccc5C=C4CN3C2=O KLWPJMFMVPTNCC-UHFFFAOYSA-N 0.000 claims description 2
- GAGWJHPBXLXJQN-UORFTKCHSA-N Capecitabine Chemical compound C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1[C@H]1[C@H](O)[C@H](O)[C@@H](C)O1 GAGWJHPBXLXJQN-UORFTKCHSA-N 0.000 claims description 2
- GAGWJHPBXLXJQN-UHFFFAOYSA-N Capecitabine Natural products C1=C(F)C(NC(=O)OCCCCC)=NC(=O)N1C1C(O)C(O)C(C)O1 GAGWJHPBXLXJQN-UHFFFAOYSA-N 0.000 claims description 2
- DLGOEMSEDOSKAD-UHFFFAOYSA-N Carmustine Chemical compound ClCCNC(=O)N(N=O)CCCl DLGOEMSEDOSKAD-UHFFFAOYSA-N 0.000 claims description 2
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 claims description 2
- HTIJFSOGRVMCQR-UHFFFAOYSA-N Epirubicin Natural products COc1cccc2C(=O)c3c(O)c4CC(O)(CC(OC5CC(N)C(=O)C(C)O5)c4c(O)c3C(=O)c12)C(=O)CO HTIJFSOGRVMCQR-UHFFFAOYSA-N 0.000 claims description 2
- MPBVHIBUJCELCL-UHFFFAOYSA-N Ibandronate Chemical compound CCCCCN(C)CCC(O)(P(O)(O)=O)P(O)(O)=O MPBVHIBUJCELCL-UHFFFAOYSA-N 0.000 claims description 2
- XDXDZDZNSLXDNA-TZNDIEGXSA-N Idarubicin Chemical compound C1[C@H](N)[C@H](O)[C@H](C)O[C@H]1O[C@@H]1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2C[C@@](O)(C(C)=O)C1 XDXDZDZNSLXDNA-TZNDIEGXSA-N 0.000 claims description 2
- XDXDZDZNSLXDNA-UHFFFAOYSA-N Idarubicin Natural products C1C(N)C(O)C(C)OC1OC1C2=C(O)C(C(=O)C3=CC=CC=C3C3=O)=C3C(O)=C2CC(O)(C(C)=O)C1 XDXDZDZNSLXDNA-UHFFFAOYSA-N 0.000 claims description 2
- 101150093335 KIN1 gene Proteins 0.000 claims description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 claims description 2
- GQYIWUVLTXOXAJ-UHFFFAOYSA-N Lomustine Chemical compound ClCCN(N=O)C(=O)NC1CCCCC1 GQYIWUVLTXOXAJ-UHFFFAOYSA-N 0.000 claims description 2
- 229930192392 Mitomycin Natural products 0.000 claims description 2
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 claims description 2
- 229940118166 PI3 kinase delta inhibitor Drugs 0.000 claims description 2
- 229940116355 PI3 kinase inhibitor Drugs 0.000 claims description 2
- 229930012538 Paclitaxel Natural products 0.000 claims description 2
- BPEGJWRSRHCHSN-UHFFFAOYSA-N Temozolomide Chemical compound O=C1N(C)N=NC2=C(C(N)=O)N=CN21 BPEGJWRSRHCHSN-UHFFFAOYSA-N 0.000 claims description 2
- FOCVUCIESVLUNU-UHFFFAOYSA-N Thiotepa Chemical compound C1CN1P(N1CC1)(=S)N1CC1 FOCVUCIESVLUNU-UHFFFAOYSA-N 0.000 claims description 2
- 229940122803 Vinca alkaloid Drugs 0.000 claims description 2
- 229930183665 actinomycin Natural products 0.000 claims description 2
- RJURFGZVJUQBHK-IIXSONLDSA-N actinomycin D Chemical compound C[C@H]1OC(=O)[C@H](C(C)C)N(C)C(=O)CN(C)C(=O)[C@@H]2CCCN2C(=O)[C@@H](C(C)C)NC(=O)[C@H]1NC(=O)C1=C(N)C(=O)C(C)=C2OC(C(C)=CC=C3C(=O)N[C@@H]4C(=O)N[C@@H](C(N5CCC[C@H]5C(=O)N(C)CC(=O)N(C)[C@@H](C(C)C)C(=O)O[C@@H]4C)=O)C(C)C)=C3N=C21 RJURFGZVJUQBHK-IIXSONLDSA-N 0.000 claims description 2
- 229960001220 amsacrine Drugs 0.000 claims description 2
- XCPGHVQEEXUHNC-UHFFFAOYSA-N amsacrine Chemical compound COC1=CC(NS(C)(=O)=O)=CC=C1NC1=C(C=CC=C2)C2=NC2=CC=CC=C12 XCPGHVQEEXUHNC-UHFFFAOYSA-N 0.000 claims description 2
- 229940045799 anthracyclines and related substance Drugs 0.000 claims description 2
- 229960001561 bleomycin Drugs 0.000 claims description 2
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 claims description 2
- 229960002092 busulfan Drugs 0.000 claims description 2
- VSJKWCGYPAHWDS-FQEVSTJZSA-N camptothecin Chemical compound C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-FQEVSTJZSA-N 0.000 claims description 2
- 229940127093 camptothecin Drugs 0.000 claims description 2
- 229960004117 capecitabine Drugs 0.000 claims description 2
- 229960004562 carboplatin Drugs 0.000 claims description 2
- 229960005243 carmustine Drugs 0.000 claims description 2
- 229960004630 chlorambucil Drugs 0.000 claims description 2
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 claims description 2
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 claims description 2
- 229960004316 cisplatin Drugs 0.000 claims description 2
- 229960004397 cyclophosphamide Drugs 0.000 claims description 2
- 229960000640 dactinomycin Drugs 0.000 claims description 2
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 claims description 2
- 229960000975 daunorubicin Drugs 0.000 claims description 2
- 229960003603 decitabine Drugs 0.000 claims description 2
- VSJKWCGYPAHWDS-UHFFFAOYSA-N dl-camptothecin Natural products C1=CC=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)C5(O)CC)C4=NC2=C1 VSJKWCGYPAHWDS-UHFFFAOYSA-N 0.000 claims description 2
- 229960003668 docetaxel Drugs 0.000 claims description 2
- 229960004679 doxorubicin Drugs 0.000 claims description 2
- YJGVMLPVUAXIQN-UHFFFAOYSA-N epipodophyllotoxin Natural products COC1=C(OC)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YJGVMLPVUAXIQN-UHFFFAOYSA-N 0.000 claims description 2
- 229960001904 epirubicin Drugs 0.000 claims description 2
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 claims description 2
- 229960000390 fludarabine Drugs 0.000 claims description 2
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 claims description 2
- SDUQYLNIPVEERB-QPPQHZFASA-N gemcitabine Chemical compound O=C1N=C(N)C=CN1[C@H]1C(F)(F)[C@H](O)[C@@H](CO)O1 SDUQYLNIPVEERB-QPPQHZFASA-N 0.000 claims description 2
- 229960005277 gemcitabine Drugs 0.000 claims description 2
- 229940015872 ibandronate Drugs 0.000 claims description 2
- 229960000908 idarubicin Drugs 0.000 claims description 2
- 229960003445 idelalisib Drugs 0.000 claims description 2
- 229960002014 ixabepilone Drugs 0.000 claims description 2
- 229940111707 ixempra Drugs 0.000 claims description 2
- 229960002247 lomustine Drugs 0.000 claims description 2
- 229960004961 mechlorethamine Drugs 0.000 claims description 2
- HAWPXGHAZFHHAD-UHFFFAOYSA-N mechlorethamine Chemical compound ClCCN(C)CCCl HAWPXGHAZFHHAD-UHFFFAOYSA-N 0.000 claims description 2
- 229960001924 melphalan Drugs 0.000 claims description 2
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 claims description 2
- 229960001428 mercaptopurine Drugs 0.000 claims description 2
- 229960000485 methotrexate Drugs 0.000 claims description 2
- 229960004857 mitomycin Drugs 0.000 claims description 2
- 229960001156 mitoxantrone Drugs 0.000 claims description 2
- KKZJGLLVHKMTCM-UHFFFAOYSA-N mitoxantrone Chemical compound O=C1C2=C(O)C=CC(O)=C2C(=O)C2=C1C(NCCNCCO)=CC=C2NCCNCCO KKZJGLLVHKMTCM-UHFFFAOYSA-N 0.000 claims description 2
- KWRYMZHCQIOOEB-LBPRGKRZSA-N n-[(1s)-1-(7-fluoro-2-pyridin-2-ylquinolin-3-yl)ethyl]-7h-purin-6-amine Chemical group C1([C@@H](NC=2C=3N=CNC=3N=CN=2)C)=CC2=CC=C(F)C=C2N=C1C1=CC=CC=N1 KWRYMZHCQIOOEB-LBPRGKRZSA-N 0.000 claims description 2
- 229960001592 paclitaxel Drugs 0.000 claims description 2
- WBXPDJSOTKVWSJ-ZDUSSCGKSA-N pemetrexed Chemical compound C=1NC=2NC(N)=NC(=O)C=2C=1CCC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 WBXPDJSOTKVWSJ-ZDUSSCGKSA-N 0.000 claims description 2
- YJGVMLPVUAXIQN-XVVDYKMHSA-N podophyllotoxin Chemical compound COC1=C(OC)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@H](O)[C@@H]3[C@@H]2C(OC3)=O)=C1 YJGVMLPVUAXIQN-XVVDYKMHSA-N 0.000 claims description 2
- 229960001237 podophyllotoxin Drugs 0.000 claims description 2
- YVCVYCSAAZQOJI-UHFFFAOYSA-N podophyllotoxin Natural products COC1=C(O)C(OC)=CC(C2C3=CC=4OCOC=4C=C3C(O)C3C2C(OC3)=O)=C1 YVCVYCSAAZQOJI-UHFFFAOYSA-N 0.000 claims description 2
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 claims description 2
- 229960000624 procarbazine Drugs 0.000 claims description 2
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 claims description 2
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 claims description 2
- 229960002930 sirolimus Drugs 0.000 claims description 2
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 claims description 2
- 229960001052 streptozocin Drugs 0.000 claims description 2
- 229960001603 tamoxifen Drugs 0.000 claims description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims description 2
- RCINICONZNJXQF-XAZOAEDWSA-N taxol® Chemical compound O([C@@H]1[C@@]2(CC(C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3(C21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-XAZOAEDWSA-N 0.000 claims description 2
- 229960004964 temozolomide Drugs 0.000 claims description 2
- 229960001278 teniposide Drugs 0.000 claims description 2
- NRUKOCRGYNPUPR-QBPJDGROSA-N teniposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@@H](OC[C@H]4O3)C=3SC=CC=3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 NRUKOCRGYNPUPR-QBPJDGROSA-N 0.000 claims description 2
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 claims description 2
- 229960000303 topotecan Drugs 0.000 claims description 2
- 229960001055 uracil mustard Drugs 0.000 claims description 2
- 229960001722 verapamil Drugs 0.000 claims description 2
- 229960003048 vinblastine Drugs 0.000 claims description 2
- JXLYSJRDGCGARV-CFWMRBGOSA-N vinblastine Chemical compound C([C@H](C[C@]1(C(=O)OC)C=2C(=CC3=C([C@]45[C@H]([C@@]([C@H](OC(C)=O)[C@]6(CC)C=CCN([C@H]56)CC4)(O)C(=O)OC)N3C)C=2)OC)C[C@@](C2)(O)CC)N2CCC2=C1NC1=CC=CC=C21 JXLYSJRDGCGARV-CFWMRBGOSA-N 0.000 claims description 2
- 229960004528 vincristine Drugs 0.000 claims description 2
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 claims description 2
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 claims description 2
- 229960004276 zoledronic acid Drugs 0.000 claims description 2
- KUVIULQEHSCUHY-XYWKZLDCSA-N Beclometasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)COC(=O)CC)(OC(=O)CC)[C@@]1(C)C[C@@H]2O KUVIULQEHSCUHY-XYWKZLDCSA-N 0.000 claims 4
- 125000003785 benzimidazolyl group Chemical class N1=C(NC2=C1C=CC=C2)* 0.000 claims 1
- 190000008236 carboplatin Chemical compound 0.000 claims 1
- XRASPMIURGNCCH-UHFFFAOYSA-N zoledronic acid Chemical compound OP(=O)(O)C(P(O)(O)=O)(O)CN1C=CN=C1 XRASPMIURGNCCH-UHFFFAOYSA-N 0.000 claims 1
- 241000699670 Mus sp. Species 0.000 description 119
- 241001465754 Metazoa Species 0.000 description 63
- 102100036056 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform Human genes 0.000 description 55
- 101710204747 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform Proteins 0.000 description 54
- 102100036052 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Human genes 0.000 description 53
- 101710096503 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Proteins 0.000 description 52
- 210000003317 double-positive, alpha-beta immature T lymphocyte Anatomy 0.000 description 49
- 230000004083 survival effect Effects 0.000 description 46
- 230000014509 gene expression Effects 0.000 description 39
- 101000716102 Homo sapiens T-cell surface glycoprotein CD4 Proteins 0.000 description 38
- 102100036011 T-cell surface glycoprotein CD4 Human genes 0.000 description 38
- 230000009467 reduction Effects 0.000 description 36
- 238000011282 treatment Methods 0.000 description 36
- 101000946843 Homo sapiens T-cell surface glycoprotein CD8 alpha chain Proteins 0.000 description 34
- 102100034922 T-cell surface glycoprotein CD8 alpha chain Human genes 0.000 description 34
- 238000011161 development Methods 0.000 description 33
- 230000018109 developmental process Effects 0.000 description 33
- 108010029485 Protein Isoforms Proteins 0.000 description 29
- 102000001708 Protein Isoforms Human genes 0.000 description 29
- 108091008611 Protein Kinase B Proteins 0.000 description 28
- 101150028321 Lck gene Proteins 0.000 description 26
- 239000000203 mixture Substances 0.000 description 26
- 239000003981 vehicle Substances 0.000 description 25
- 238000000684 flow cytometry Methods 0.000 description 24
- 230000035755 proliferation Effects 0.000 description 22
- 210000001541 thymus gland Anatomy 0.000 description 22
- 230000003185 calcium uptake Effects 0.000 description 21
- 230000026731 phosphorylation Effects 0.000 description 21
- 238000006366 phosphorylation reaction Methods 0.000 description 21
- 238000010186 staining Methods 0.000 description 21
- 238000012217 deletion Methods 0.000 description 20
- 230000037430 deletion Effects 0.000 description 20
- 210000001519 tissue Anatomy 0.000 description 20
- 108020004459 Small interfering RNA Proteins 0.000 description 19
- 238000002474 experimental method Methods 0.000 description 19
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 18
- 230000003197 catalytic effect Effects 0.000 description 18
- 239000003795 chemical substances by application Substances 0.000 description 18
- 230000002950 deficient Effects 0.000 description 18
- 230000002068 genetic effect Effects 0.000 description 18
- 239000002924 silencing RNA Substances 0.000 description 18
- 230000002992 thymic effect Effects 0.000 description 18
- 230000004913 activation Effects 0.000 description 17
- 210000004369 blood Anatomy 0.000 description 17
- 239000008280 blood Substances 0.000 description 17
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 17
- 101000763322 Homo sapiens M1-specific T cell receptor beta chain Proteins 0.000 description 16
- 101000763321 Homo sapiens T cell receptor beta chain MC.7.G5 Proteins 0.000 description 16
- 102100038332 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform Human genes 0.000 description 16
- 230000007547 defect Effects 0.000 description 16
- 201000010099 disease Diseases 0.000 description 16
- 125000003729 nucleotide group Chemical group 0.000 description 16
- 210000005259 peripheral blood Anatomy 0.000 description 16
- 239000011886 peripheral blood Substances 0.000 description 16
- BSDCIRGNJKZPFV-GWOFURMSSA-N (2r,3s,4r,5r)-2-(hydroxymethyl)-5-(2,5,6-trichlorobenzimidazol-1-yl)oxolane-3,4-diol Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=CC(Cl)=C(Cl)C=C2N=C1Cl BSDCIRGNJKZPFV-GWOFURMSSA-N 0.000 description 15
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 15
- 102100026964 M1-specific T cell receptor beta chain Human genes 0.000 description 15
- 102100036061 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform Human genes 0.000 description 15
- 230000006907 apoptotic process Effects 0.000 description 15
- 230000011664 signaling Effects 0.000 description 15
- 210000004881 tumor cell Anatomy 0.000 description 15
- 230000007812 deficiency Effects 0.000 description 14
- 229940079593 drug Drugs 0.000 description 14
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 14
- 230000004044 response Effects 0.000 description 14
- 101710093328 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform Proteins 0.000 description 13
- 101710125691 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform Proteins 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 13
- 210000000952 spleen Anatomy 0.000 description 13
- ZSZXYWFCIKKZBT-IVYVYLGESA-N 1,2-dihexadecanoyl-sn-glycero-3-phospho-(1D-myo-inositol-3,4,5-trisphosphate) Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@@H](OC(=O)CCCCCCCCCCCCCCC)COP(O)(=O)O[C@@H]1[C@H](O)[C@H](OP(O)(O)=O)[C@@H](OP(O)(O)=O)[C@H](OP(O)(O)=O)[C@H]1O ZSZXYWFCIKKZBT-IVYVYLGESA-N 0.000 description 12
- 108091023037 Aptamer Proteins 0.000 description 12
- 229940126656 GS-4224 Drugs 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- 238000001727 in vivo Methods 0.000 description 12
- 210000000265 leukocyte Anatomy 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 101001057504 Homo sapiens Interferon-stimulated gene 20 kDa protein Proteins 0.000 description 11
- 101001055144 Homo sapiens Interleukin-2 receptor subunit alpha Proteins 0.000 description 11
- 102100027268 Interferon-stimulated gene 20 kDa protein Human genes 0.000 description 11
- 238000004132 cross linking Methods 0.000 description 11
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 description 11
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 description 11
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 description 11
- 150000003384 small molecules Chemical class 0.000 description 11
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 10
- 230000001605 fetal effect Effects 0.000 description 10
- 230000005764 inhibitory process Effects 0.000 description 10
- 210000001165 lymph node Anatomy 0.000 description 10
- 230000001404 mediated effect Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 108090000765 processed proteins & peptides Proteins 0.000 description 10
- 102000004169 proteins and genes Human genes 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 238000001262 western blot Methods 0.000 description 10
- 102000017420 CD3 protein, epsilon/gamma/delta subunit Human genes 0.000 description 9
- 108050005493 CD3 protein, epsilon/gamma/delta subunit Proteins 0.000 description 9
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 9
- 101000823316 Homo sapiens Tyrosine-protein kinase ABL1 Proteins 0.000 description 9
- 102100022596 Tyrosine-protein kinase ABL1 Human genes 0.000 description 9
- 239000004480 active ingredient Substances 0.000 description 9
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 9
- 230000004069 differentiation Effects 0.000 description 9
- 239000008103 glucose Substances 0.000 description 9
- 238000000338 in vitro Methods 0.000 description 9
- 239000004615 ingredient Substances 0.000 description 9
- 230000002093 peripheral effect Effects 0.000 description 9
- 108090000672 Annexin A5 Proteins 0.000 description 8
- 102000004121 Annexin A5 Human genes 0.000 description 8
- 108091007958 Class I PI3Ks Proteins 0.000 description 8
- 101001024630 Drosophila melanogaster RNA cytidine acetyltransferase Proteins 0.000 description 8
- 101000652705 Drosophila melanogaster Transcription initiation factor TFIID subunit 4 Proteins 0.000 description 8
- 101000873927 Homo sapiens Squamous cell carcinoma antigen recognized by T-cells 3 Proteins 0.000 description 8
- 239000012828 PI3K inhibitor Substances 0.000 description 8
- 108091000080 Phosphotransferase Proteins 0.000 description 8
- 101000996915 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) Nucleoporin NSP1 Proteins 0.000 description 8
- 102100035748 Squamous cell carcinoma antigen recognized by T-cells 3 Human genes 0.000 description 8
- 238000001514 detection method Methods 0.000 description 8
- 230000012010 growth Effects 0.000 description 8
- 238000003119 immunoblot Methods 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 150000002894 organic compounds Chemical class 0.000 description 8
- 102000020233 phosphotransferase Human genes 0.000 description 8
- 230000001105 regulatory effect Effects 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 7
- 102000004877 Insulin Human genes 0.000 description 7
- 108090001061 Insulin Proteins 0.000 description 7
- 206010064912 Malignant transformation Diseases 0.000 description 7
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 7
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 7
- 230000001640 apoptogenic effect Effects 0.000 description 7
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 229940125396 insulin Drugs 0.000 description 7
- 230000036212 malign transformation Effects 0.000 description 7
- 230000035772 mutation Effects 0.000 description 7
- 239000002773 nucleotide Substances 0.000 description 7
- 229940043441 phosphoinositide 3-kinase inhibitor Drugs 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000007730 Akt signaling Effects 0.000 description 6
- 101000932478 Homo sapiens Receptor-type tyrosine-protein kinase FLT3 Proteins 0.000 description 6
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 102100020718 Receptor-type tyrosine-protein kinase FLT3 Human genes 0.000 description 6
- 230000027455 binding Effects 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000006166 lysate Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 239000003921 oil Substances 0.000 description 6
- 210000000056 organ Anatomy 0.000 description 6
- 229920001184 polypeptide Polymers 0.000 description 6
- 229920001282 polysaccharide Polymers 0.000 description 6
- 239000005017 polysaccharide Substances 0.000 description 6
- 150000004804 polysaccharides Chemical class 0.000 description 6
- 102000004196 processed proteins & peptides Human genes 0.000 description 6
- 125000002652 ribonucleotide group Chemical group 0.000 description 6
- 210000005212 secondary lymphoid organ Anatomy 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 230000007704 transition Effects 0.000 description 6
- 239000013598 vector Substances 0.000 description 6
- 102100021569 Apoptosis regulator Bcl-2 Human genes 0.000 description 5
- 102100032912 CD44 antigen Human genes 0.000 description 5
- 208000005623 Carcinogenesis Diseases 0.000 description 5
- 108010051975 Glycogen Synthase Kinase 3 beta Proteins 0.000 description 5
- 208000017604 Hodgkin disease Diseases 0.000 description 5
- 101000971171 Homo sapiens Apoptosis regulator Bcl-2 Proteins 0.000 description 5
- 101000868273 Homo sapiens CD44 antigen Proteins 0.000 description 5
- 102100033810 RAC-alpha serine/threonine-protein kinase Human genes 0.000 description 5
- 229920002472 Starch Polymers 0.000 description 5
- 208000027585 T-cell non-Hodgkin lymphoma Diseases 0.000 description 5
- 230000005856 abnormality Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 239000013543 active substance Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000036952 cancer formation Effects 0.000 description 5
- 231100000504 carcinogenesis Toxicity 0.000 description 5
- 230000011712 cell development Effects 0.000 description 5
- 230000004663 cell proliferation Effects 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 235000019441 ethanol Nutrition 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 239000002679 microRNA Substances 0.000 description 5
- 238000001000 micrograph Methods 0.000 description 5
- 235000019198 oils Nutrition 0.000 description 5
- 229920001223 polyethylene glycol Polymers 0.000 description 5
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 5
- 235000019698 starch Nutrition 0.000 description 5
- 239000000375 suspending agent Substances 0.000 description 5
- 239000003826 tablet Substances 0.000 description 5
- 239000001993 wax Substances 0.000 description 5
- 239000000080 wetting agent Substances 0.000 description 5
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 108020004414 DNA Proteins 0.000 description 4
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 101000605639 Homo sapiens Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform Proteins 0.000 description 4
- 101000927796 Homo sapiens Rho guanine nucleotide exchange factor 7 Proteins 0.000 description 4
- 108060001084 Luciferase Proteins 0.000 description 4
- 239000005089 Luciferase Substances 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- 239000012823 PI3K/mTOR inhibitor Substances 0.000 description 4
- 102100028286 Proto-oncogene tyrosine-protein kinase receptor Ret Human genes 0.000 description 4
- 102100033200 Rho guanine nucleotide exchange factor 7 Human genes 0.000 description 4
- 108091028664 Ribonucleotide Proteins 0.000 description 4
- 235000011449 Rosa Nutrition 0.000 description 4
- 102100023085 Serine/threonine-protein kinase mTOR Human genes 0.000 description 4
- 108091008874 T cell receptors Proteins 0.000 description 4
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 4
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 4
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 4
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 4
- 102100023038 WD and tetratricopeptide repeats protein 1 Human genes 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- 238000004820 blood count Methods 0.000 description 4
- 210000000170 cell membrane Anatomy 0.000 description 4
- 230000005754 cellular signaling Effects 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- JOGKUKXHTYWRGZ-UHFFFAOYSA-N dactolisib Chemical compound O=C1N(C)C2=CN=C3C=CC(C=4C=C5C=CC=CC5=NC=4)=CC3=C2N1C1=CC=C(C(C)(C)C#N)C=C1 JOGKUKXHTYWRGZ-UHFFFAOYSA-N 0.000 description 4
- 229950006418 dactolisib Drugs 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000009977 dual effect Effects 0.000 description 4
- 239000003995 emulsifying agent Substances 0.000 description 4
- 210000002919 epithelial cell Anatomy 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 230000002779 inactivation Effects 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 239000003701 inert diluent Substances 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 239000002502 liposome Substances 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 210000004698 lymphocyte Anatomy 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 108010011811 mouse 1-phosphatidylinositol 3-kinase p110 subunit Proteins 0.000 description 4
- 239000006072 paste Substances 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 230000036470 plasma concentration Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000003755 preservative agent Substances 0.000 description 4
- 239000002336 ribonucleotide Substances 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 230000019491 signal transduction Effects 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000007920 subcutaneous administration Methods 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 230000008093 supporting effect Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 3
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 3
- 208000028564 B-cell non-Hodgkin lymphoma Diseases 0.000 description 3
- 102000001765 Bcl-2-Like Protein 11 Human genes 0.000 description 3
- 108010040168 Bcl-2-Like Protein 11 Proteins 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- 102100030497 Cytochrome c Human genes 0.000 description 3
- 108010075031 Cytochromes c Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 102000019058 Glycogen Synthase Kinase 3 beta Human genes 0.000 description 3
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 3
- 208000021519 Hodgkin lymphoma Diseases 0.000 description 3
- 208000010747 Hodgkins lymphoma Diseases 0.000 description 3
- 101000595741 Homo sapiens Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform Proteins 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 3
- 241000124008 Mammalia Species 0.000 description 3
- 108700020796 Oncogene Proteins 0.000 description 3
- 108010004729 Phycoerythrin Proteins 0.000 description 3
- 102000001253 Protein Kinase Human genes 0.000 description 3
- 101710113459 RAC-alpha serine/threonine-protein kinase Proteins 0.000 description 3
- 238000000692 Student's t-test Methods 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- 108010009978 Tec protein-tyrosine kinase Proteins 0.000 description 3
- 241000021375 Xenogenes Species 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 3
- 235000012216 bentonite Nutrition 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 229920002988 biodegradable polymer Polymers 0.000 description 3
- 239000004621 biodegradable polymer Substances 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000029918 bioluminescence Effects 0.000 description 3
- 238000005415 bioluminescence Methods 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000001506 calcium phosphate Substances 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 108020001778 catalytic domains Proteins 0.000 description 3
- 230000030833 cell death Effects 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 239000006071 cream Substances 0.000 description 3
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000003828 downregulation Effects 0.000 description 3
- 229940125436 dual inhibitor Drugs 0.000 description 3
- 210000002257 embryonic structure Anatomy 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 3
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000010363 gene targeting Methods 0.000 description 3
- 230000037417 hyperactivation Effects 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000010212 intracellular staining Methods 0.000 description 3
- 238000011813 knockout mouse model Methods 0.000 description 3
- 239000008101 lactose Substances 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 230000002934 lysing effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000002674 ointment Substances 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 239000002953 phosphate buffered saline Substances 0.000 description 3
- 239000006187 pill Substances 0.000 description 3
- 230000000861 pro-apoptotic effect Effects 0.000 description 3
- 108060006633 protein kinase Proteins 0.000 description 3
- 230000008707 rearrangement Effects 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 239000000454 talc Substances 0.000 description 3
- 235000012222 talc Nutrition 0.000 description 3
- 229910052623 talc Inorganic materials 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- SRLVNYDXMUGOFI-XBXARRHUSA-N (5e)-5-[(2,2-difluoro-1,3-benzodioxol-5-yl)methylidene]-1,3-thiazolidine-2,4-dione Chemical compound C1=C2OC(F)(F)OC2=CC=C1\C=C1\SC(=O)NC1=O SRLVNYDXMUGOFI-XBXARRHUSA-N 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- PUYVJBBSBPUKBT-UHFFFAOYSA-N 2-[1-[(2-amino-7h-purin-6-yl)amino]ethyl]-5-methyl-3-(2-methylphenyl)quinazolin-4-one Chemical compound N=1C(N)=NC=2NC=NC=2C=1NC(C)C1=NC2=CC=CC(C)=C2C(=O)N1C1=CC=CC=C1C PUYVJBBSBPUKBT-UHFFFAOYSA-N 0.000 description 2
- LRFVTYWOQMYALW-UHFFFAOYSA-N 9H-xanthine Chemical compound O=C1NC(=O)NC2=C1NC=N2 LRFVTYWOQMYALW-UHFFFAOYSA-N 0.000 description 2
- 102100022900 Actin, cytoplasmic 1 Human genes 0.000 description 2
- 108010085238 Actins Proteins 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 102000000412 Annexin Human genes 0.000 description 2
- 108050008874 Annexin Proteins 0.000 description 2
- 235000003276 Apios tuberosa Nutrition 0.000 description 2
- 102000010565 Apoptosis Regulatory Proteins Human genes 0.000 description 2
- 108010063104 Apoptosis Regulatory Proteins Proteins 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 235000010777 Arachis hypogaea Nutrition 0.000 description 2
- 235000010744 Arachis villosulicarpa Nutrition 0.000 description 2
- 241000416162 Astragalus gummifer Species 0.000 description 2
- 208000010839 B-cell chronic lymphocytic leukemia Diseases 0.000 description 2
- 208000003950 B-cell lymphoma Diseases 0.000 description 2
- 208000011691 Burkitt lymphomas Diseases 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 102100040753 Casein kinase II subunit alpha' Human genes 0.000 description 2
- 102100037916 Cyclin-dependent kinase 11B Human genes 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- 210000001570 DN4 alpha-beta immature T lymphocyte Anatomy 0.000 description 2
- 206010012335 Dependence Diseases 0.000 description 2
- 206010059866 Drug resistance Diseases 0.000 description 2
- 108010040476 FITC-annexin A5 Proteins 0.000 description 2
- 102100027842 Fibroblast growth factor receptor 3 Human genes 0.000 description 2
- 101710182396 Fibroblast growth factor receptor 3 Proteins 0.000 description 2
- 239000004606 Fillers/Extenders Substances 0.000 description 2
- 102000003688 G-Protein-Coupled Receptors Human genes 0.000 description 2
- 108090000045 G-Protein-Coupled Receptors Proteins 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 241000206672 Gelidium Species 0.000 description 2
- 102100038104 Glycogen synthase kinase-3 beta Human genes 0.000 description 2
- 206010066476 Haematological malignancy Diseases 0.000 description 2
- 101000892015 Homo sapiens Casein kinase II subunit alpha' Proteins 0.000 description 2
- 101000844245 Homo sapiens Non-receptor tyrosine-protein kinase TYK2 Proteins 0.000 description 2
- 101000595746 Homo sapiens Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform Proteins 0.000 description 2
- 101000595751 Homo sapiens Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform Proteins 0.000 description 2
- 101000984753 Homo sapiens Serine/threonine-protein kinase B-raf Proteins 0.000 description 2
- 101000987295 Homo sapiens Serine/threonine-protein kinase PAK 5 Proteins 0.000 description 2
- 101000983111 Homo sapiens Serine/threonine-protein kinase PAK 6 Proteins 0.000 description 2
- 101000997835 Homo sapiens Tyrosine-protein kinase JAK1 Proteins 0.000 description 2
- 108060006678 I-kappa-B kinase Proteins 0.000 description 2
- 102000001284 I-kappa-B kinase Human genes 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 102000005705 Keratin-5 Human genes 0.000 description 2
- 108010070553 Keratin-5 Proteins 0.000 description 2
- 208000006404 Large Granular Lymphocytic Leukemia Diseases 0.000 description 2
- 208000031422 Lymphocytic Chronic B-Cell Leukemia Diseases 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 229940124647 MEK inhibitor Drugs 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 102100035044 Myosin light chain kinase, smooth muscle Human genes 0.000 description 2
- 102100032028 Non-receptor tyrosine-protein kinase TYK2 Human genes 0.000 description 2
- 240000007817 Olea europaea Species 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 102000043276 Oncogene Human genes 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 108010033276 Peptide Fragments Proteins 0.000 description 2
- 102000007079 Peptide Fragments Human genes 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 2
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- 238000010240 RT-PCR analysis Methods 0.000 description 2
- 235000004443 Ricinus communis Nutrition 0.000 description 2
- 239000008156 Ringer's lactate solution Substances 0.000 description 2
- 101001117144 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) [Pyruvate dehydrogenase (acetyl-transferring)] kinase 1, mitochondrial Proteins 0.000 description 2
- 229940124639 Selective inhibitor Drugs 0.000 description 2
- 102100027103 Serine/threonine-protein kinase B-raf Human genes 0.000 description 2
- 102100031206 Serine/threonine-protein kinase N1 Human genes 0.000 description 2
- 102100026840 Serine/threonine-protein kinase PAK 6 Human genes 0.000 description 2
- 102100028948 Serine/threonine-protein kinase TAO1 Human genes 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 108091027076 Spiegelmer Proteins 0.000 description 2
- 206010042971 T-cell lymphoma Diseases 0.000 description 2
- 210000000662 T-lymphocyte subset Anatomy 0.000 description 2
- 229920001615 Tragacanth Polymers 0.000 description 2
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 2
- 102100033438 Tyrosine-protein kinase JAK1 Human genes 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- SXEHKFHPFVVDIR-UHFFFAOYSA-N [4-(4-hydrazinylphenyl)phenyl]hydrazine Chemical compound C1=CC(NN)=CC=C1C1=CC=C(NN)C=C1 SXEHKFHPFVVDIR-UHFFFAOYSA-N 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000003655 absorption accelerator Substances 0.000 description 2
- 238000004760 accelerator mass spectrometry Methods 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000002424 anti-apoptotic effect Effects 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 238000003782 apoptosis assay Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- NBMKJKDGKREAPL-DVTGEIKXSA-N beclomethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(Cl)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O NBMKJKDGKREAPL-DVTGEIKXSA-N 0.000 description 2
- 239000000440 bentonite Substances 0.000 description 2
- 229910000278 bentonite Inorganic materials 0.000 description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 2
- SESFRYSPDFLNCH-UHFFFAOYSA-N benzyl benzoate Chemical compound C=1C=CC=CC=1C(=O)OCC1=CC=CC=C1 SESFRYSPDFLNCH-UHFFFAOYSA-N 0.000 description 2
- 230000008827 biological function Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 150000001720 carbohydrates Chemical group 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000012754 cardiac puncture Methods 0.000 description 2
- 230000003833 cell viability Effects 0.000 description 2
- 230000033077 cellular process Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 235000019868 cocoa butter Nutrition 0.000 description 2
- 229940110456 cocoa butter Drugs 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 230000006552 constitutive activation Effects 0.000 description 2
- 238000011254 conventional chemotherapy Methods 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 230000001054 cortical effect Effects 0.000 description 2
- 235000012343 cottonseed oil Nutrition 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 206010012818 diffuse large B-cell lymphoma Diseases 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 239000008298 dragée Substances 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 230000001804 emulsifying effect Effects 0.000 description 2
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 230000004077 genetic alteration Effects 0.000 description 2
- 231100000118 genetic alteration Toxicity 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- 102000034345 heterotrimeric G proteins Human genes 0.000 description 2
- 108091006093 heterotrimeric G proteins Proteins 0.000 description 2
- 230000002962 histologic effect Effects 0.000 description 2
- 239000003906 humectant Substances 0.000 description 2
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 2
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 2
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 2
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 230000001900 immune effect Effects 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 238000003364 immunohistochemistry Methods 0.000 description 2
- 230000000266 injurious effect Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- DRAVOWXCEBXPTN-UHFFFAOYSA-N isoguanine Chemical compound NC1=NC(=O)NC2=C1NC=N2 DRAVOWXCEBXPTN-UHFFFAOYSA-N 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- 239000008297 liquid dosage form Substances 0.000 description 2
- 210000005229 liver cell Anatomy 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 108091070501 miRNA Proteins 0.000 description 2
- 239000004530 micro-emulsion Substances 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 201000005962 mycosis fungoides Diseases 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000009437 off-target effect Effects 0.000 description 2
- 231100000590 oncogenic Toxicity 0.000 description 2
- 230000002246 oncogenic effect Effects 0.000 description 2
- 238000003305 oral gavage Methods 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 239000002304 perfume Substances 0.000 description 2
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 2
- 230000002688 persistence Effects 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000005522 programmed cell death Effects 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- 229960004063 propylene glycol Drugs 0.000 description 2
- 239000003197 protein kinase B inhibitor Substances 0.000 description 2
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N puromycin Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000003340 retarding agent Substances 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000007909 solid dosage form Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 229940032147 starch Drugs 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000003765 sweetening agent Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 235000010487 tragacanth Nutrition 0.000 description 2
- 239000000196 tragacanth Substances 0.000 description 2
- 229940116362 tragacanth Drugs 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 238000002054 transplantation Methods 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical class [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 230000005748 tumor development Effects 0.000 description 2
- 230000005740 tumor formation Effects 0.000 description 2
- 230000009750 upstream signaling Effects 0.000 description 2
- 230000035899 viability Effects 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- CALDMMCNNFPJSI-CRCLSJGQSA-N (3r,5s)-5-(hydroxymethyl)pyrrolidin-3-ol Chemical compound OC[C@@H]1C[C@@H](O)CN1 CALDMMCNNFPJSI-CRCLSJGQSA-N 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- GZEFTKHSACGIBG-UGKPPGOTSA-N 1-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)-2-propyloxolan-2-yl]pyrimidine-2,4-dione Chemical compound C1=CC(=O)NC(=O)N1[C@]1(CCC)O[C@H](CO)[C@@H](O)[C@H]1O GZEFTKHSACGIBG-UGKPPGOTSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- 102100026205 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 Human genes 0.000 description 1
- XQCZBXHVTFVIFE-UHFFFAOYSA-N 2-amino-4-hydroxypyrimidine Chemical compound NC1=NC=CC(O)=N1 XQCZBXHVTFVIFE-UHFFFAOYSA-N 0.000 description 1
- JNODDICFTDYODH-UHFFFAOYSA-N 2-hydroxytetrahydrofuran Chemical compound OC1CCCO1 JNODDICFTDYODH-UHFFFAOYSA-N 0.000 description 1
- WEVYNIUIFUYDGI-UHFFFAOYSA-N 3-[6-[4-(trifluoromethoxy)anilino]-4-pyrimidinyl]benzamide Chemical compound NC(=O)C1=CC=CC(C=2N=CN=C(NC=3C=CC(OC(F)(F)F)=CC=3)C=2)=C1 WEVYNIUIFUYDGI-UHFFFAOYSA-N 0.000 description 1
- 102100037263 3-phosphoinositide-dependent protein kinase 1 Human genes 0.000 description 1
- QNNMMIMBOFCDQK-UHFFFAOYSA-N 4-(4-bromophenyl)-3h-1,3-thiazole-2-thione Chemical compound S1C(S)=NC(C=2C=CC(Br)=CC=2)=C1 QNNMMIMBOFCDQK-UHFFFAOYSA-N 0.000 description 1
- SDGWAUUPHUBJNQ-UHFFFAOYSA-N 5-(1,3-benzodioxol-5-ylmethylidene)-1,3-thiazolidine-2,4-dione Chemical compound S1C(=O)NC(=O)C1=CC1=CC=C(OCO2)C2=C1 SDGWAUUPHUBJNQ-UHFFFAOYSA-N 0.000 description 1
- AGFIRQJZCNVMCW-UAKXSSHOSA-N 5-bromouridine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 AGFIRQJZCNVMCW-UAKXSSHOSA-N 0.000 description 1
- ASUCSHXLTWZYBA-UMMCILCDSA-N 8-Bromoguanosine Chemical compound C1=2NC(N)=NC(=O)C=2N=C(Br)N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O ASUCSHXLTWZYBA-UMMCILCDSA-N 0.000 description 1
- HDZZVAMISRMYHH-UHFFFAOYSA-N 9beta-Ribofuranosyl-7-deazaadenin Natural products C1=CC=2C(N)=NC=NC=2N1C1OC(CO)C(O)C1O HDZZVAMISRMYHH-UHFFFAOYSA-N 0.000 description 1
- 102100038079 AP2-associated protein kinase 1 Human genes 0.000 description 1
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical class CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 1
- 102100036409 Activated CDC42 kinase 1 Human genes 0.000 description 1
- 102100021028 Activating signal cointegrator 1 complex subunit 1 Human genes 0.000 description 1
- 102100034111 Activin receptor type-1 Human genes 0.000 description 1
- 102100034134 Activin receptor type-1B Human genes 0.000 description 1
- 102100021886 Activin receptor type-2A Human genes 0.000 description 1
- 102100027647 Activin receptor type-2B Human genes 0.000 description 1
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 description 1
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 208000009746 Adult T-Cell Leukemia-Lymphoma Diseases 0.000 description 1
- 208000016683 Adult T-cell leukemia/lymphoma Diseases 0.000 description 1
- 229940126638 Akt inhibitor Drugs 0.000 description 1
- 108700028369 Alleles Proteins 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 206010073478 Anaplastic large-cell lymphoma Diseases 0.000 description 1
- 102100022014 Angiopoietin-1 receptor Human genes 0.000 description 1
- 102100039182 Ankyrin repeat and protein kinase domain-containing protein 1 Human genes 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 101000995861 Arabidopsis thaliana Regulatory protein NPR1 Proteins 0.000 description 1
- 102100035958 Atypical kinase COQ8A, mitochondrial Human genes 0.000 description 1
- 102100035952 Atypical kinase COQ8B, mitochondrial Human genes 0.000 description 1
- 102000004000 Aurora Kinase A Human genes 0.000 description 1
- 108090000461 Aurora Kinase A Proteins 0.000 description 1
- 102100032306 Aurora kinase B Human genes 0.000 description 1
- 102100026630 Aurora kinase C Human genes 0.000 description 1
- 108010014380 Autophagy-Related Protein-1 Homolog Proteins 0.000 description 1
- 102100035080 BDNF/NT-3 growth factors receptor Human genes 0.000 description 1
- 101150017888 Bcl2 gene Proteins 0.000 description 1
- 102100025423 Bone morphogenetic protein receptor type-1A Human genes 0.000 description 1
- 102100027052 Bone morphogenetic protein receptor type-1B Human genes 0.000 description 1
- 102100025422 Bone morphogenetic protein receptor type-2 Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 101100289995 Caenorhabditis elegans mac-1 gene Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 102100021535 Calcium/calmodulin-dependent protein kinase kinase 1 Human genes 0.000 description 1
- 102100021534 Calcium/calmodulin-dependent protein kinase kinase 2 Human genes 0.000 description 1
- 102100033086 Calcium/calmodulin-dependent protein kinase type 1 Human genes 0.000 description 1
- 102100033088 Calcium/calmodulin-dependent protein kinase type 1D Human genes 0.000 description 1
- 102100033089 Calcium/calmodulin-dependent protein kinase type 1G Human genes 0.000 description 1
- 102100033093 Calcium/calmodulin-dependent protein kinase type II subunit alpha Human genes 0.000 description 1
- 102100025232 Calcium/calmodulin-dependent protein kinase type II subunit beta Human genes 0.000 description 1
- 102100025228 Calcium/calmodulin-dependent protein kinase type II subunit delta Human genes 0.000 description 1
- 102100025227 Calcium/calmodulin-dependent protein kinase type II subunit gamma Human genes 0.000 description 1
- 102100022789 Calcium/calmodulin-dependent protein kinase type IV Human genes 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 102100034356 Casein kinase I isoform alpha-like Human genes 0.000 description 1
- 102100037402 Casein kinase I isoform delta Human genes 0.000 description 1
- 102100037398 Casein kinase I isoform epsilon Human genes 0.000 description 1
- 102100037397 Casein kinase I isoform gamma-1 Human genes 0.000 description 1
- 102100023060 Casein kinase I isoform gamma-2 Human genes 0.000 description 1
- 102100023067 Casein kinase I isoform gamma-3 Human genes 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- ZEOWTGPWHLSLOG-UHFFFAOYSA-N Cc1ccc(cc1-c1ccc2c(n[nH]c2c1)-c1cnn(c1)C1CC1)C(=O)Nc1cccc(c1)C(F)(F)F Chemical compound Cc1ccc(cc1-c1ccc2c(n[nH]c2c1)-c1cnn(c1)C1CC1)C(=O)Nc1cccc(c1)C(F)(F)F ZEOWTGPWHLSLOG-UHFFFAOYSA-N 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 102000020313 Cell-Penetrating Peptides Human genes 0.000 description 1
- 108010051109 Cell-Penetrating Peptides Proteins 0.000 description 1
- 102000019034 Chemokines Human genes 0.000 description 1
- 108010012236 Chemokines Proteins 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 206010008805 Chromosomal abnormalities Diseases 0.000 description 1
- 208000031404 Chromosome Aberrations Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 229920002785 Croscarmellose sodium Polymers 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 108010024986 Cyclin-Dependent Kinase 2 Proteins 0.000 description 1
- 108010025454 Cyclin-Dependent Kinase 5 Proteins 0.000 description 1
- 102100037912 Cyclin-dependent kinase 11A Human genes 0.000 description 1
- 102100038113 Cyclin-dependent kinase 14 Human genes 0.000 description 1
- 102100033250 Cyclin-dependent kinase 15 Human genes 0.000 description 1
- 102100033245 Cyclin-dependent kinase 16 Human genes 0.000 description 1
- 102100033234 Cyclin-dependent kinase 17 Human genes 0.000 description 1
- 102100033144 Cyclin-dependent kinase 18 Human genes 0.000 description 1
- 102100036239 Cyclin-dependent kinase 2 Human genes 0.000 description 1
- 102100036329 Cyclin-dependent kinase 3 Human genes 0.000 description 1
- 102100026810 Cyclin-dependent kinase 7 Human genes 0.000 description 1
- 102100024456 Cyclin-dependent kinase 8 Human genes 0.000 description 1
- 102100024457 Cyclin-dependent kinase 9 Human genes 0.000 description 1
- 102100031685 Cyclin-dependent kinase-like 2 Human genes 0.000 description 1
- 102100031684 Cyclin-dependent kinase-like 3 Human genes 0.000 description 1
- 102100034746 Cyclin-dependent kinase-like 5 Human genes 0.000 description 1
- 102100026805 Cyclin-dependent-like kinase 5 Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 210000001086 DN3 alpha-beta immature T lymphocyte Anatomy 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 108010031042 Death-Associated Protein Kinases Proteins 0.000 description 1
- 102100038587 Death-associated protein kinase 1 Human genes 0.000 description 1
- 102100038605 Death-associated protein kinase 2 Human genes 0.000 description 1
- 102100038606 Death-associated protein kinase 3 Human genes 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 101000876610 Dictyostelium discoideum Extracellular signal-regulated kinase 2 Proteins 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 102100031480 Dual specificity mitogen-activated protein kinase kinase 1 Human genes 0.000 description 1
- 101710146526 Dual specificity mitogen-activated protein kinase kinase 1 Proteins 0.000 description 1
- 102100023266 Dual specificity mitogen-activated protein kinase kinase 2 Human genes 0.000 description 1
- 101710146529 Dual specificity mitogen-activated protein kinase kinase 2 Proteins 0.000 description 1
- 102100023275 Dual specificity mitogen-activated protein kinase kinase 3 Human genes 0.000 description 1
- 102100023274 Dual specificity mitogen-activated protein kinase kinase 4 Human genes 0.000 description 1
- 102100023401 Dual specificity mitogen-activated protein kinase kinase 6 Human genes 0.000 description 1
- 102100040862 Dual specificity protein kinase CLK1 Human genes 0.000 description 1
- 102100040844 Dual specificity protein kinase CLK2 Human genes 0.000 description 1
- 102100040856 Dual specificity protein kinase CLK3 Human genes 0.000 description 1
- 102100040858 Dual specificity protein kinase CLK4 Human genes 0.000 description 1
- 102100036492 Dual specificity testis-specific protein kinase 1 Human genes 0.000 description 1
- 102100028554 Dual specificity tyrosine-phosphorylation-regulated kinase 1A Human genes 0.000 description 1
- 102100033363 Dual specificity tyrosine-phosphorylation-regulated kinase 1B Human genes 0.000 description 1
- 102100023115 Dual specificity tyrosine-phosphorylation-regulated kinase 2 Human genes 0.000 description 1
- 101150076616 EPHA2 gene Proteins 0.000 description 1
- 101150016325 EPHA3 gene Proteins 0.000 description 1
- 101150097734 EPHB2 gene Proteins 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 102100030013 Endoribonuclease Human genes 0.000 description 1
- 208000002460 Enteropathy-Associated T-Cell Lymphoma Diseases 0.000 description 1
- 108010055211 EphA1 Receptor Proteins 0.000 description 1
- 108010055323 EphB4 Receptor Proteins 0.000 description 1
- 101150078651 Epha4 gene Proteins 0.000 description 1
- 101150025643 Epha5 gene Proteins 0.000 description 1
- 102100030322 Ephrin type-A receptor 1 Human genes 0.000 description 1
- 102100030340 Ephrin type-A receptor 2 Human genes 0.000 description 1
- 102100030324 Ephrin type-A receptor 3 Human genes 0.000 description 1
- 102100021616 Ephrin type-A receptor 4 Human genes 0.000 description 1
- 102100021605 Ephrin type-A receptor 5 Human genes 0.000 description 1
- 102100021604 Ephrin type-A receptor 6 Human genes 0.000 description 1
- 102100021606 Ephrin type-A receptor 7 Human genes 0.000 description 1
- 102100021601 Ephrin type-A receptor 8 Human genes 0.000 description 1
- 102100030779 Ephrin type-B receptor 1 Human genes 0.000 description 1
- 102100031968 Ephrin type-B receptor 2 Human genes 0.000 description 1
- 102100031982 Ephrin type-B receptor 3 Human genes 0.000 description 1
- 102100031983 Ephrin type-B receptor 4 Human genes 0.000 description 1
- 102100031984 Ephrin type-B receptor 6 Human genes 0.000 description 1
- 102100036725 Epithelial discoidin domain-containing receptor 1 Human genes 0.000 description 1
- 101710131668 Epithelial discoidin domain-containing receptor 1 Proteins 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000402754 Erythranthe moschata Species 0.000 description 1
- 108700039887 Essential Genes Proteins 0.000 description 1
- 241000197727 Euscorpius alpha Species 0.000 description 1
- 208000016937 Extranodal nasal NK/T cell lymphoma Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102000008946 Fibrinogen Human genes 0.000 description 1
- 108010049003 Fibrinogen Proteins 0.000 description 1
- 102100023593 Fibroblast growth factor receptor 1 Human genes 0.000 description 1
- 101710182386 Fibroblast growth factor receptor 1 Proteins 0.000 description 1
- 102100023600 Fibroblast growth factor receptor 2 Human genes 0.000 description 1
- 101710182389 Fibroblast growth factor receptor 2 Proteins 0.000 description 1
- 102100027844 Fibroblast growth factor receptor 4 Human genes 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 102100023734 G protein-coupled receptor kinase 4 Human genes 0.000 description 1
- 208000034951 Genetic Translocation Diseases 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- 102100022975 Glycogen synthase kinase-3 alpha Human genes 0.000 description 1
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 1
- NYHBQMYGNKIUIF-UUOKFMHZSA-N Guanosine Chemical class C1=NC=2C(=O)NC(N)=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O NYHBQMYGNKIUIF-UUOKFMHZSA-N 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 102100035108 High affinity nerve growth factor receptor Human genes 0.000 description 1
- 208000025795 Hodgkin lymphoma, lymphocytic depletion Diseases 0.000 description 1
- 102100032822 Homeodomain-interacting protein kinase 1 Human genes 0.000 description 1
- 102100032827 Homeodomain-interacting protein kinase 2 Human genes 0.000 description 1
- 102100032826 Homeodomain-interacting protein kinase 3 Human genes 0.000 description 1
- 102100022603 Homeodomain-interacting protein kinase 4 Human genes 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000691599 Homo sapiens 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 Proteins 0.000 description 1
- 101000600756 Homo sapiens 3-phosphoinositide-dependent protein kinase 1 Proteins 0.000 description 1
- 101000742699 Homo sapiens AP2-associated protein kinase 1 Proteins 0.000 description 1
- 101000928956 Homo sapiens Activated CDC42 kinase 1 Proteins 0.000 description 1
- 101000799140 Homo sapiens Activin receptor type-1 Proteins 0.000 description 1
- 101000799189 Homo sapiens Activin receptor type-1B Proteins 0.000 description 1
- 101000970954 Homo sapiens Activin receptor type-2A Proteins 0.000 description 1
- 101000937269 Homo sapiens Activin receptor type-2B Proteins 0.000 description 1
- 101000753291 Homo sapiens Angiopoietin-1 receptor Proteins 0.000 description 1
- 101000889403 Homo sapiens Ankyrin repeat and protein kinase domain-containing protein 1 Proteins 0.000 description 1
- 101000875771 Homo sapiens Atypical kinase COQ8A, mitochondrial Proteins 0.000 description 1
- 101000875775 Homo sapiens Atypical kinase COQ8B, mitochondrial Proteins 0.000 description 1
- 101000798306 Homo sapiens Aurora kinase B Proteins 0.000 description 1
- 101000765862 Homo sapiens Aurora kinase C Proteins 0.000 description 1
- 101000596896 Homo sapiens BDNF/NT-3 growth factors receptor Proteins 0.000 description 1
- 101000934638 Homo sapiens Bone morphogenetic protein receptor type-1A Proteins 0.000 description 1
- 101000984546 Homo sapiens Bone morphogenetic protein receptor type-1B Proteins 0.000 description 1
- 101000934635 Homo sapiens Bone morphogenetic protein receptor type-2 Proteins 0.000 description 1
- 101000990005 Homo sapiens CLIP-associating protein 1 Proteins 0.000 description 1
- 101000971625 Homo sapiens Calcium/calmodulin-dependent protein kinase kinase 1 Proteins 0.000 description 1
- 101000971617 Homo sapiens Calcium/calmodulin-dependent protein kinase kinase 2 Proteins 0.000 description 1
- 101000944250 Homo sapiens Calcium/calmodulin-dependent protein kinase type 1 Proteins 0.000 description 1
- 101000944258 Homo sapiens Calcium/calmodulin-dependent protein kinase type 1D Proteins 0.000 description 1
- 101000944259 Homo sapiens Calcium/calmodulin-dependent protein kinase type 1G Proteins 0.000 description 1
- 101000944249 Homo sapiens Calcium/calmodulin-dependent protein kinase type II subunit alpha Proteins 0.000 description 1
- 101001077352 Homo sapiens Calcium/calmodulin-dependent protein kinase type II subunit beta Proteins 0.000 description 1
- 101001077338 Homo sapiens Calcium/calmodulin-dependent protein kinase type II subunit delta Proteins 0.000 description 1
- 101001077334 Homo sapiens Calcium/calmodulin-dependent protein kinase type II subunit gamma Proteins 0.000 description 1
- 101000974816 Homo sapiens Calcium/calmodulin-dependent protein kinase type IV Proteins 0.000 description 1
- 101000994694 Homo sapiens Casein kinase I isoform alpha-like Proteins 0.000 description 1
- 101001026336 Homo sapiens Casein kinase I isoform delta Proteins 0.000 description 1
- 101001026376 Homo sapiens Casein kinase I isoform epsilon Proteins 0.000 description 1
- 101001026384 Homo sapiens Casein kinase I isoform gamma-1 Proteins 0.000 description 1
- 101001049881 Homo sapiens Casein kinase I isoform gamma-2 Proteins 0.000 description 1
- 101001049879 Homo sapiens Casein kinase I isoform gamma-3 Proteins 0.000 description 1
- 101000892026 Homo sapiens Casein kinase II subunit alpha Proteins 0.000 description 1
- 101000738403 Homo sapiens Cyclin-dependent kinase 11A Proteins 0.000 description 1
- 101000738400 Homo sapiens Cyclin-dependent kinase 11B Proteins 0.000 description 1
- 101000884374 Homo sapiens Cyclin-dependent kinase 14 Proteins 0.000 description 1
- 101000944355 Homo sapiens Cyclin-dependent kinase 15 Proteins 0.000 description 1
- 101000944357 Homo sapiens Cyclin-dependent kinase 16 Proteins 0.000 description 1
- 101000944358 Homo sapiens Cyclin-dependent kinase 17 Proteins 0.000 description 1
- 101000944341 Homo sapiens Cyclin-dependent kinase 18 Proteins 0.000 description 1
- 101000944345 Homo sapiens Cyclin-dependent kinase 19 Proteins 0.000 description 1
- 101000715946 Homo sapiens Cyclin-dependent kinase 3 Proteins 0.000 description 1
- 101000911952 Homo sapiens Cyclin-dependent kinase 7 Proteins 0.000 description 1
- 101000980937 Homo sapiens Cyclin-dependent kinase 8 Proteins 0.000 description 1
- 101000980930 Homo sapiens Cyclin-dependent kinase 9 Proteins 0.000 description 1
- 101000777764 Homo sapiens Cyclin-dependent kinase-like 2 Proteins 0.000 description 1
- 101000777768 Homo sapiens Cyclin-dependent kinase-like 3 Proteins 0.000 description 1
- 101000945692 Homo sapiens Cyclin-dependent kinase-like 5 Proteins 0.000 description 1
- 101000956145 Homo sapiens Death-associated protein kinase 1 Proteins 0.000 description 1
- 101000956149 Homo sapiens Death-associated protein kinase 3 Proteins 0.000 description 1
- 101001115394 Homo sapiens Dual specificity mitogen-activated protein kinase kinase 3 Proteins 0.000 description 1
- 101001115395 Homo sapiens Dual specificity mitogen-activated protein kinase kinase 4 Proteins 0.000 description 1
- 101000624426 Homo sapiens Dual specificity mitogen-activated protein kinase kinase 6 Proteins 0.000 description 1
- 101000749294 Homo sapiens Dual specificity protein kinase CLK1 Proteins 0.000 description 1
- 101000749291 Homo sapiens Dual specificity protein kinase CLK2 Proteins 0.000 description 1
- 101000749304 Homo sapiens Dual specificity protein kinase CLK3 Proteins 0.000 description 1
- 101000749298 Homo sapiens Dual specificity protein kinase CLK4 Proteins 0.000 description 1
- 101000714159 Homo sapiens Dual specificity testis-specific protein kinase 1 Proteins 0.000 description 1
- 101000838016 Homo sapiens Dual specificity tyrosine-phosphorylation-regulated kinase 1A Proteins 0.000 description 1
- 101000926738 Homo sapiens Dual specificity tyrosine-phosphorylation-regulated kinase 1B Proteins 0.000 description 1
- 101001049990 Homo sapiens Dual specificity tyrosine-phosphorylation-regulated kinase 2 Proteins 0.000 description 1
- 101000967216 Homo sapiens Eosinophil cationic protein Proteins 0.000 description 1
- 101000898696 Homo sapiens Ephrin type-A receptor 6 Proteins 0.000 description 1
- 101000898708 Homo sapiens Ephrin type-A receptor 7 Proteins 0.000 description 1
- 101000898676 Homo sapiens Ephrin type-A receptor 8 Proteins 0.000 description 1
- 101001064150 Homo sapiens Ephrin type-B receptor 1 Proteins 0.000 description 1
- 101001064458 Homo sapiens Ephrin type-B receptor 3 Proteins 0.000 description 1
- 101001064451 Homo sapiens Ephrin type-B receptor 6 Proteins 0.000 description 1
- 101000917134 Homo sapiens Fibroblast growth factor receptor 4 Proteins 0.000 description 1
- 101000829481 Homo sapiens G protein-coupled receptor kinase 4 Proteins 0.000 description 1
- 101001066129 Homo sapiens Glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 101000903717 Homo sapiens Glycogen synthase kinase-3 alpha Proteins 0.000 description 1
- 101001066435 Homo sapiens Hepatocyte growth factor-like protein Proteins 0.000 description 1
- 101000596894 Homo sapiens High affinity nerve growth factor receptor Proteins 0.000 description 1
- 101001066404 Homo sapiens Homeodomain-interacting protein kinase 1 Proteins 0.000 description 1
- 101001066401 Homo sapiens Homeodomain-interacting protein kinase 2 Proteins 0.000 description 1
- 101001066389 Homo sapiens Homeodomain-interacting protein kinase 3 Proteins 0.000 description 1
- 101001045363 Homo sapiens Homeodomain-interacting protein kinase 4 Proteins 0.000 description 1
- 101000852815 Homo sapiens Insulin receptor Proteins 0.000 description 1
- 101001034652 Homo sapiens Insulin-like growth factor 1 receptor Proteins 0.000 description 1
- 101000926535 Homo sapiens Interferon-induced, double-stranded RNA-activated protein kinase Proteins 0.000 description 1
- 101000852483 Homo sapiens Interleukin-1 receptor-associated kinase 1 Proteins 0.000 description 1
- 101000977768 Homo sapiens Interleukin-1 receptor-associated kinase 3 Proteins 0.000 description 1
- 101001005128 Homo sapiens LIM domain kinase 1 Proteins 0.000 description 1
- 101001042360 Homo sapiens LIM domain kinase 2 Proteins 0.000 description 1
- 101001047640 Homo sapiens Linker for activation of T-cells family member 1 Proteins 0.000 description 1
- 101001064870 Homo sapiens Lon protease homolog, mitochondrial Proteins 0.000 description 1
- 101001090688 Homo sapiens Lymphocyte cytosolic protein 2 Proteins 0.000 description 1
- 101000573522 Homo sapiens MAP kinase-interacting serine/threonine-protein kinase 1 Proteins 0.000 description 1
- 101001018978 Homo sapiens MAP kinase-interacting serine/threonine-protein kinase 2 Proteins 0.000 description 1
- 101001059429 Homo sapiens MAP/microtubule affinity-regulating kinase 3 Proteins 0.000 description 1
- 101001059427 Homo sapiens MAP/microtubule affinity-regulating kinase 4 Proteins 0.000 description 1
- 101000916644 Homo sapiens Macrophage colony-stimulating factor 1 receptor Proteins 0.000 description 1
- 101001106413 Homo sapiens Macrophage-stimulating protein receptor Proteins 0.000 description 1
- 101000687968 Homo sapiens Membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase Proteins 0.000 description 1
- 101001018259 Homo sapiens Microtubule-associated serine/threonine-protein kinase 1 Proteins 0.000 description 1
- 101001052493 Homo sapiens Mitogen-activated protein kinase 1 Proteins 0.000 description 1
- 101000628949 Homo sapiens Mitogen-activated protein kinase 10 Proteins 0.000 description 1
- 101000976899 Homo sapiens Mitogen-activated protein kinase 15 Proteins 0.000 description 1
- 101001052477 Homo sapiens Mitogen-activated protein kinase 4 Proteins 0.000 description 1
- 101000950710 Homo sapiens Mitogen-activated protein kinase 6 Proteins 0.000 description 1
- 101000950687 Homo sapiens Mitogen-activated protein kinase 7 Proteins 0.000 description 1
- 101000950695 Homo sapiens Mitogen-activated protein kinase 8 Proteins 0.000 description 1
- 101000950669 Homo sapiens Mitogen-activated protein kinase 9 Proteins 0.000 description 1
- 101000958409 Homo sapiens Mitogen-activated protein kinase kinase kinase 10 Proteins 0.000 description 1
- 101001005602 Homo sapiens Mitogen-activated protein kinase kinase kinase 11 Proteins 0.000 description 1
- 101001005552 Homo sapiens Mitogen-activated protein kinase kinase kinase 15 Proteins 0.000 description 1
- 101001005556 Homo sapiens Mitogen-activated protein kinase kinase kinase 19 Proteins 0.000 description 1
- 101001018141 Homo sapiens Mitogen-activated protein kinase kinase kinase 2 Proteins 0.000 description 1
- 101001018145 Homo sapiens Mitogen-activated protein kinase kinase kinase 3 Proteins 0.000 description 1
- 101001018147 Homo sapiens Mitogen-activated protein kinase kinase kinase 4 Proteins 0.000 description 1
- 101001018196 Homo sapiens Mitogen-activated protein kinase kinase kinase 5 Proteins 0.000 description 1
- 101001055097 Homo sapiens Mitogen-activated protein kinase kinase kinase 6 Proteins 0.000 description 1
- 101001055085 Homo sapiens Mitogen-activated protein kinase kinase kinase 9 Proteins 0.000 description 1
- 101001059991 Homo sapiens Mitogen-activated protein kinase kinase kinase kinase 1 Proteins 0.000 description 1
- 101001059990 Homo sapiens Mitogen-activated protein kinase kinase kinase kinase 2 Proteins 0.000 description 1
- 101001059989 Homo sapiens Mitogen-activated protein kinase kinase kinase kinase 3 Proteins 0.000 description 1
- 101001059984 Homo sapiens Mitogen-activated protein kinase kinase kinase kinase 4 Proteins 0.000 description 1
- 101001059982 Homo sapiens Mitogen-activated protein kinase kinase kinase kinase 5 Proteins 0.000 description 1
- 101000584208 Homo sapiens Myosin light chain kinase 2, skeletal/cardiac muscle Proteins 0.000 description 1
- 101001022780 Homo sapiens Myosin light chain kinase, smooth muscle Proteins 0.000 description 1
- 101000635935 Homo sapiens Myosin-IIIa Proteins 0.000 description 1
- 101000583016 Homo sapiens Myosin-IIIb Proteins 0.000 description 1
- 101000970023 Homo sapiens NUAK family SNF1-like kinase 1 Proteins 0.000 description 1
- 101000663003 Homo sapiens Non-receptor tyrosine-protein kinase TNK1 Proteins 0.000 description 1
- 101000598781 Homo sapiens Oxidative stress-responsive serine-rich protein 1 Proteins 0.000 description 1
- 101100244966 Homo sapiens PRKX gene Proteins 0.000 description 1
- 101000730433 Homo sapiens Phosphatidylinositol 4-kinase beta Proteins 0.000 description 1
- 101000730454 Homo sapiens Phosphatidylinositol 4-phosphate 5-kinase type-1 alpha Proteins 0.000 description 1
- 101001001527 Homo sapiens Phosphatidylinositol 5-phosphate 4-kinase type-2 beta Proteins 0.000 description 1
- 101000731078 Homo sapiens Phosphorylase b kinase gamma catalytic chain, liver/testis isoform Proteins 0.000 description 1
- 101001126783 Homo sapiens Phosphorylase b kinase gamma catalytic chain, skeletal muscle/heart isoform Proteins 0.000 description 1
- 101001126417 Homo sapiens Platelet-derived growth factor receptor alpha Proteins 0.000 description 1
- 101000979748 Homo sapiens Protein NDRG1 Proteins 0.000 description 1
- 101001026854 Homo sapiens Protein kinase C delta type Proteins 0.000 description 1
- 101001026852 Homo sapiens Protein kinase C epsilon type Proteins 0.000 description 1
- 101000971400 Homo sapiens Protein kinase C eta type Proteins 0.000 description 1
- 101000613717 Homo sapiens Protein odd-skipped-related 1 Proteins 0.000 description 1
- 101000702132 Homo sapiens Protein spinster homolog 1 Proteins 0.000 description 1
- 101000878540 Homo sapiens Protein-tyrosine kinase 2-beta Proteins 0.000 description 1
- 101000686031 Homo sapiens Proto-oncogene tyrosine-protein kinase ROS Proteins 0.000 description 1
- 101000779418 Homo sapiens RAC-alpha serine/threonine-protein kinase Proteins 0.000 description 1
- 101000798015 Homo sapiens RAC-beta serine/threonine-protein kinase Proteins 0.000 description 1
- 101000798007 Homo sapiens RAC-gamma serine/threonine-protein kinase Proteins 0.000 description 1
- 101000712530 Homo sapiens RAF proto-oncogene serine/threonine-protein kinase Proteins 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 101001109145 Homo sapiens Receptor-interacting serine/threonine-protein kinase 1 Proteins 0.000 description 1
- 101001089248 Homo sapiens Receptor-interacting serine/threonine-protein kinase 4 Proteins 0.000 description 1
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 1
- 101000669917 Homo sapiens Rho-associated protein kinase 1 Proteins 0.000 description 1
- 101000669921 Homo sapiens Rho-associated protein kinase 2 Proteins 0.000 description 1
- 101000829506 Homo sapiens Rhodopsin kinase GRK1 Proteins 0.000 description 1
- 101000871032 Homo sapiens Rhodopsin kinase GRK7 Proteins 0.000 description 1
- 101000944909 Homo sapiens Ribosomal protein S6 kinase alpha-1 Proteins 0.000 description 1
- 101000944921 Homo sapiens Ribosomal protein S6 kinase alpha-2 Proteins 0.000 description 1
- 101000945090 Homo sapiens Ribosomal protein S6 kinase alpha-3 Proteins 0.000 description 1
- 101000945093 Homo sapiens Ribosomal protein S6 kinase alpha-4 Proteins 0.000 description 1
- 101000945096 Homo sapiens Ribosomal protein S6 kinase alpha-5 Proteins 0.000 description 1
- 101001051723 Homo sapiens Ribosomal protein S6 kinase alpha-6 Proteins 0.000 description 1
- 101000826081 Homo sapiens SRSF protein kinase 1 Proteins 0.000 description 1
- 101000826077 Homo sapiens SRSF protein kinase 2 Proteins 0.000 description 1
- 101000826079 Homo sapiens SRSF protein kinase 3 Proteins 0.000 description 1
- 101000701497 Homo sapiens STE20/SPS1-related proline-alanine-rich protein kinase Proteins 0.000 description 1
- 101000628578 Homo sapiens Serine/threonine-protein kinase 16 Proteins 0.000 description 1
- 101000661821 Homo sapiens Serine/threonine-protein kinase 17A Proteins 0.000 description 1
- 101000661819 Homo sapiens Serine/threonine-protein kinase 17B Proteins 0.000 description 1
- 101000628647 Homo sapiens Serine/threonine-protein kinase 24 Proteins 0.000 description 1
- 101000628693 Homo sapiens Serine/threonine-protein kinase 25 Proteins 0.000 description 1
- 101000701393 Homo sapiens Serine/threonine-protein kinase 26 Proteins 0.000 description 1
- 101000880439 Homo sapiens Serine/threonine-protein kinase 3 Proteins 0.000 description 1
- 101000697600 Homo sapiens Serine/threonine-protein kinase 32B Proteins 0.000 description 1
- 101000697610 Homo sapiens Serine/threonine-protein kinase 32C Proteins 0.000 description 1
- 101000701396 Homo sapiens Serine/threonine-protein kinase 33 Proteins 0.000 description 1
- 101000701395 Homo sapiens Serine/threonine-protein kinase 35 Proteins 0.000 description 1
- 101000701405 Homo sapiens Serine/threonine-protein kinase 36 Proteins 0.000 description 1
- 101000701401 Homo sapiens Serine/threonine-protein kinase 38 Proteins 0.000 description 1
- 101000697608 Homo sapiens Serine/threonine-protein kinase 38-like Proteins 0.000 description 1
- 101000880431 Homo sapiens Serine/threonine-protein kinase 4 Proteins 0.000 description 1
- 101000695043 Homo sapiens Serine/threonine-protein kinase BRSK1 Proteins 0.000 description 1
- 101000794043 Homo sapiens Serine/threonine-protein kinase BRSK2 Proteins 0.000 description 1
- 101000777293 Homo sapiens Serine/threonine-protein kinase Chk1 Proteins 0.000 description 1
- 101000777277 Homo sapiens Serine/threonine-protein kinase Chk2 Proteins 0.000 description 1
- 101001026870 Homo sapiens Serine/threonine-protein kinase D1 Proteins 0.000 description 1
- 101001026885 Homo sapiens Serine/threonine-protein kinase D3 Proteins 0.000 description 1
- 101000885321 Homo sapiens Serine/threonine-protein kinase DCLK1 Proteins 0.000 description 1
- 101000885387 Homo sapiens Serine/threonine-protein kinase DCLK2 Proteins 0.000 description 1
- 101000885383 Homo sapiens Serine/threonine-protein kinase DCLK3 Proteins 0.000 description 1
- 101001047642 Homo sapiens Serine/threonine-protein kinase LATS1 Proteins 0.000 description 1
- 101001047637 Homo sapiens Serine/threonine-protein kinase LATS2 Proteins 0.000 description 1
- 101001059443 Homo sapiens Serine/threonine-protein kinase MARK1 Proteins 0.000 description 1
- 101001059454 Homo sapiens Serine/threonine-protein kinase MARK2 Proteins 0.000 description 1
- 101000576901 Homo sapiens Serine/threonine-protein kinase MRCK alpha Proteins 0.000 description 1
- 101000576904 Homo sapiens Serine/threonine-protein kinase MRCK beta Proteins 0.000 description 1
- 101000576907 Homo sapiens Serine/threonine-protein kinase MRCK gamma Proteins 0.000 description 1
- 101001129076 Homo sapiens Serine/threonine-protein kinase N1 Proteins 0.000 description 1
- 101000691459 Homo sapiens Serine/threonine-protein kinase N2 Proteins 0.000 description 1
- 101000600885 Homo sapiens Serine/threonine-protein kinase NIM1 Proteins 0.000 description 1
- 101001123846 Homo sapiens Serine/threonine-protein kinase Nek1 Proteins 0.000 description 1
- 101000601441 Homo sapiens Serine/threonine-protein kinase Nek2 Proteins 0.000 description 1
- 101000601467 Homo sapiens Serine/threonine-protein kinase Nek5 Proteins 0.000 description 1
- 101000588540 Homo sapiens Serine/threonine-protein kinase Nek6 Proteins 0.000 description 1
- 101000588545 Homo sapiens Serine/threonine-protein kinase Nek7 Proteins 0.000 description 1
- 101000588553 Homo sapiens Serine/threonine-protein kinase Nek9 Proteins 0.000 description 1
- 101001098464 Homo sapiens Serine/threonine-protein kinase OSR1 Proteins 0.000 description 1
- 101000987310 Homo sapiens Serine/threonine-protein kinase PAK 2 Proteins 0.000 description 1
- 101000987315 Homo sapiens Serine/threonine-protein kinase PAK 3 Proteins 0.000 description 1
- 101000987297 Homo sapiens Serine/threonine-protein kinase PAK 4 Proteins 0.000 description 1
- 101000729945 Homo sapiens Serine/threonine-protein kinase PLK2 Proteins 0.000 description 1
- 101000691614 Homo sapiens Serine/threonine-protein kinase PLK3 Proteins 0.000 description 1
- 101000582914 Homo sapiens Serine/threonine-protein kinase PLK4 Proteins 0.000 description 1
- 101000577652 Homo sapiens Serine/threonine-protein kinase PRP4 homolog Proteins 0.000 description 1
- 101000756066 Homo sapiens Serine/threonine-protein kinase RIO1 Proteins 0.000 description 1
- 101000754913 Homo sapiens Serine/threonine-protein kinase RIO2 Proteins 0.000 description 1
- 101000754911 Homo sapiens Serine/threonine-protein kinase RIO3 Proteins 0.000 description 1
- 101000693598 Homo sapiens Serine/threonine-protein kinase SBK1 Proteins 0.000 description 1
- 101000709250 Homo sapiens Serine/threonine-protein kinase SIK2 Proteins 0.000 description 1
- 101000838579 Homo sapiens Serine/threonine-protein kinase TAO1 Proteins 0.000 description 1
- 101000838578 Homo sapiens Serine/threonine-protein kinase TAO2 Proteins 0.000 description 1
- 101000838596 Homo sapiens Serine/threonine-protein kinase TAO3 Proteins 0.000 description 1
- 101000665442 Homo sapiens Serine/threonine-protein kinase TBK1 Proteins 0.000 description 1
- 101000662993 Homo sapiens Serine/threonine-protein kinase TNNI3K Proteins 0.000 description 1
- 101000607332 Homo sapiens Serine/threonine-protein kinase ULK2 Proteins 0.000 description 1
- 101000607339 Homo sapiens Serine/threonine-protein kinase ULK3 Proteins 0.000 description 1
- 101000595531 Homo sapiens Serine/threonine-protein kinase pim-1 Proteins 0.000 description 1
- 101001001648 Homo sapiens Serine/threonine-protein kinase pim-2 Proteins 0.000 description 1
- 101001001645 Homo sapiens Serine/threonine-protein kinase pim-3 Proteins 0.000 description 1
- 101000799194 Homo sapiens Serine/threonine-protein kinase receptor R3 Proteins 0.000 description 1
- 101000637839 Homo sapiens Serine/threonine-protein kinase tousled-like 1 Proteins 0.000 description 1
- 101000637847 Homo sapiens Serine/threonine-protein kinase tousled-like 2 Proteins 0.000 description 1
- 101000946860 Homo sapiens T-cell surface glycoprotein CD3 epsilon chain Proteins 0.000 description 1
- 101000914514 Homo sapiens T-cell-specific surface glycoprotein CD28 Proteins 0.000 description 1
- 101000662997 Homo sapiens TRAF2 and NCK-interacting protein kinase Proteins 0.000 description 1
- 101000772231 Homo sapiens Testis-specific serine/threonine-protein kinase 1 Proteins 0.000 description 1
- 101000823271 Homo sapiens Tyrosine-protein kinase ABL2 Proteins 0.000 description 1
- 101000997832 Homo sapiens Tyrosine-protein kinase JAK2 Proteins 0.000 description 1
- 101000934996 Homo sapiens Tyrosine-protein kinase JAK3 Proteins 0.000 description 1
- 101000587313 Homo sapiens Tyrosine-protein kinase Srms Proteins 0.000 description 1
- 101000818543 Homo sapiens Tyrosine-protein kinase ZAP-70 Proteins 0.000 description 1
- 101000606129 Homo sapiens Tyrosine-protein kinase receptor TYRO3 Proteins 0.000 description 1
- 101000753253 Homo sapiens Tyrosine-protein kinase receptor Tie-1 Proteins 0.000 description 1
- 101000577737 Homo sapiens U4/U6 small nuclear ribonucleoprotein Prp4 Proteins 0.000 description 1
- 101000693630 Homo sapiens Uncharacterized serine/threonine-protein kinase SBK3 Proteins 0.000 description 1
- 101000851018 Homo sapiens Vascular endothelial growth factor receptor 1 Proteins 0.000 description 1
- 101000851007 Homo sapiens Vascular endothelial growth factor receptor 2 Proteins 0.000 description 1
- 101000621390 Homo sapiens Wee1-like protein kinase Proteins 0.000 description 1
- 101000621401 Homo sapiens Wee1-like protein kinase 2 Proteins 0.000 description 1
- 101001046426 Homo sapiens cGMP-dependent protein kinase 1 Proteins 0.000 description 1
- 101001046427 Homo sapiens cGMP-dependent protein kinase 2 Proteins 0.000 description 1
- 101000926525 Homo sapiens eIF-2-alpha kinase GCN2 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 208000029462 Immunodeficiency disease Diseases 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- 108091006081 Inositol-requiring enzyme-1 Proteins 0.000 description 1
- 102100036721 Insulin receptor Human genes 0.000 description 1
- 102100039137 Insulin receptor-related protein Human genes 0.000 description 1
- 102100039688 Insulin-like growth factor 1 receptor Human genes 0.000 description 1
- 102100034170 Interferon-induced, double-stranded RNA-activated protein kinase Human genes 0.000 description 1
- 102100036342 Interleukin-1 receptor-associated kinase 1 Human genes 0.000 description 1
- 102100023530 Interleukin-1 receptor-associated kinase 3 Human genes 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102100026878 Interleukin-2 receptor subunit alpha Human genes 0.000 description 1
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 1
- 102000005712 Keratin-8 Human genes 0.000 description 1
- 108010070511 Keratin-8 Proteins 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 102100026023 LIM domain kinase 1 Human genes 0.000 description 1
- 102100021756 LIM domain kinase 2 Human genes 0.000 description 1
- 208000031671 Large B-Cell Diffuse Lymphoma Diseases 0.000 description 1
- 206010023791 Large granular lymphocytosis Diseases 0.000 description 1
- 208000032004 Large-Cell Anaplastic Lymphoma Diseases 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- GDBQQVLCIARPGH-UHFFFAOYSA-N Leupeptin Natural products CC(C)CC(NC(C)=O)C(=O)NC(CC(C)C)C(=O)NC(C=O)CCCN=C(N)N GDBQQVLCIARPGH-UHFFFAOYSA-N 0.000 description 1
- 102100024032 Linker for activation of T-cells family member 1 Human genes 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 102000019298 Lipocalin Human genes 0.000 description 1
- 108050006654 Lipocalin Proteins 0.000 description 1
- 102100034709 Lymphocyte cytosolic protein 2 Human genes 0.000 description 1
- 206010025280 Lymphocytosis Diseases 0.000 description 1
- 108010075654 MAP Kinase Kinase Kinase 1 Proteins 0.000 description 1
- 102000019149 MAP kinase activity proteins Human genes 0.000 description 1
- 108040008097 MAP kinase activity proteins Proteins 0.000 description 1
- 102100034069 MAP kinase-activated protein kinase 2 Human genes 0.000 description 1
- 102100028396 MAP kinase-activated protein kinase 5 Human genes 0.000 description 1
- 102100026299 MAP kinase-interacting serine/threonine-protein kinase 1 Human genes 0.000 description 1
- 102100033610 MAP kinase-interacting serine/threonine-protein kinase 2 Human genes 0.000 description 1
- 108010041955 MAP-kinase-activated kinase 2 Proteins 0.000 description 1
- 108010041164 MAP-kinase-activated kinase 5 Proteins 0.000 description 1
- 102100028920 MAP/microtubule affinity-regulating kinase 3 Human genes 0.000 description 1
- 102100028913 MAP/microtubule affinity-regulating kinase 4 Human genes 0.000 description 1
- 102100028198 Macrophage colony-stimulating factor 1 receptor Human genes 0.000 description 1
- 102100021435 Macrophage-stimulating protein receptor Human genes 0.000 description 1
- 240000003183 Manihot esculenta Species 0.000 description 1
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 1
- 102100024299 Maternal embryonic leucine zipper kinase Human genes 0.000 description 1
- 101710154611 Maternal embryonic leucine zipper kinase Proteins 0.000 description 1
- 102100024262 Membrane-associated tyrosine- and threonine-specific cdc2-inhibitory kinase Human genes 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 102100033268 Microtubule-associated serine/threonine-protein kinase 1 Human genes 0.000 description 1
- 102100024193 Mitogen-activated protein kinase 1 Human genes 0.000 description 1
- 102100026931 Mitogen-activated protein kinase 10 Human genes 0.000 description 1
- 102100023483 Mitogen-activated protein kinase 15 Human genes 0.000 description 1
- 102100024189 Mitogen-activated protein kinase 4 Human genes 0.000 description 1
- 102100037801 Mitogen-activated protein kinase 6 Human genes 0.000 description 1
- 102100037805 Mitogen-activated protein kinase 7 Human genes 0.000 description 1
- 102100037808 Mitogen-activated protein kinase 8 Human genes 0.000 description 1
- 102100037809 Mitogen-activated protein kinase 9 Human genes 0.000 description 1
- 102100033115 Mitogen-activated protein kinase kinase kinase 1 Human genes 0.000 description 1
- 102100038243 Mitogen-activated protein kinase kinase kinase 10 Human genes 0.000 description 1
- 102100025207 Mitogen-activated protein kinase kinase kinase 11 Human genes 0.000 description 1
- 102100025216 Mitogen-activated protein kinase kinase kinase 15 Human genes 0.000 description 1
- 102100025217 Mitogen-activated protein kinase kinase kinase 19 Human genes 0.000 description 1
- 102100033058 Mitogen-activated protein kinase kinase kinase 2 Human genes 0.000 description 1
- 102100033059 Mitogen-activated protein kinase kinase kinase 3 Human genes 0.000 description 1
- 102100033060 Mitogen-activated protein kinase kinase kinase 4 Human genes 0.000 description 1
- 102100033127 Mitogen-activated protein kinase kinase kinase 5 Human genes 0.000 description 1
- 102100026889 Mitogen-activated protein kinase kinase kinase 6 Human genes 0.000 description 1
- 102100026888 Mitogen-activated protein kinase kinase kinase 7 Human genes 0.000 description 1
- 102100026909 Mitogen-activated protein kinase kinase kinase 9 Human genes 0.000 description 1
- 102100028199 Mitogen-activated protein kinase kinase kinase kinase 1 Human genes 0.000 description 1
- 102100028192 Mitogen-activated protein kinase kinase kinase kinase 2 Human genes 0.000 description 1
- 102100028193 Mitogen-activated protein kinase kinase kinase kinase 3 Human genes 0.000 description 1
- 102100028194 Mitogen-activated protein kinase kinase kinase kinase 4 Human genes 0.000 description 1
- 102100028195 Mitogen-activated protein kinase kinase kinase kinase 5 Human genes 0.000 description 1
- 208000034578 Multiple myelomas Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101000819572 Mus musculus Glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 101100352302 Mus musculus Pik3cd gene Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100030788 Myosin light chain kinase 2, skeletal/cardiac muscle Human genes 0.000 description 1
- 102100030782 Myosin light chain kinase family member 4 Human genes 0.000 description 1
- 101710087570 Myosin light chain kinase family member 4 Proteins 0.000 description 1
- 101710198035 Myosin light chain kinase, smooth muscle Proteins 0.000 description 1
- 102100030743 Myosin-IIIa Human genes 0.000 description 1
- 102100030369 Myosin-IIIb Human genes 0.000 description 1
- 108010052185 Myotonin-Protein Kinase Proteins 0.000 description 1
- 102100022437 Myotonin-protein kinase Human genes 0.000 description 1
- VQAYFKKCNSOZKM-IOSLPCCCSA-N N(6)-methyladenosine Chemical compound C1=NC=2C(NC)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O VQAYFKKCNSOZKM-IOSLPCCCSA-N 0.000 description 1
- VQAYFKKCNSOZKM-UHFFFAOYSA-N NSC 29409 Natural products C1=NC=2C(NC)=NC=NC=2N1C1OC(CO)C(O)C1O VQAYFKKCNSOZKM-UHFFFAOYSA-N 0.000 description 1
- 102100029166 NT-3 growth factor receptor Human genes 0.000 description 1
- 101150117329 NTRK3 gene Proteins 0.000 description 1
- 102100021732 NUAK family SNF1-like kinase 1 Human genes 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 241000772415 Neovison vison Species 0.000 description 1
- 206010029461 Nodal marginal zone B-cell lymphomas Diseases 0.000 description 1
- 208000019569 Nodular lymphocyte predominant Hodgkin lymphoma Diseases 0.000 description 1
- 102100037669 Non-receptor tyrosine-protein kinase TNK1 Human genes 0.000 description 1
- 102000001759 Notch1 Receptor Human genes 0.000 description 1
- 108010029755 Notch1 Receptor Proteins 0.000 description 1
- 108020005497 Nuclear hormone receptor Proteins 0.000 description 1
- 102000007399 Nuclear hormone receptor Human genes 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 101700056750 PAK1 Proteins 0.000 description 1
- 101150037263 PIP2 gene Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 208000027190 Peripheral T-cell lymphomas Diseases 0.000 description 1
- 102100032619 Phosphatidylinositol 4-kinase beta Human genes 0.000 description 1
- 102100032615 Phosphatidylinositol 4-phosphate 5-kinase type-1 alpha Human genes 0.000 description 1
- 102100036137 Phosphatidylinositol 5-phosphate 4-kinase type-2 beta Human genes 0.000 description 1
- 102100026478 Phosphoinositide 3-kinase regulatory subunit 5 Human genes 0.000 description 1
- 102100032391 Phosphorylase b kinase gamma catalytic chain, liver/testis isoform Human genes 0.000 description 1
- 102100030278 Phosphorylase b kinase gamma catalytic chain, skeletal muscle/heart isoform Human genes 0.000 description 1
- 108091007412 Piwi-interacting RNA Proteins 0.000 description 1
- 208000007452 Plasmacytoma Diseases 0.000 description 1
- 108010051742 Platelet-Derived Growth Factor beta Receptor Proteins 0.000 description 1
- 102100030485 Platelet-derived growth factor receptor alpha Human genes 0.000 description 1
- 102100026547 Platelet-derived growth factor receptor beta Human genes 0.000 description 1
- 102100030264 Pleckstrin Human genes 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229920002732 Polyanhydride Polymers 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 229920001710 Polyorthoester Polymers 0.000 description 1
- 108010066816 Polypeptide N-acetylgalactosaminyltransferase Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 206010065857 Primary Effusion Lymphoma Diseases 0.000 description 1
- 206010036711 Primary mediastinal large B-cell lymphomas Diseases 0.000 description 1
- WDVSHHCDHLJJJR-UHFFFAOYSA-N Proflavine Chemical compound C1=CC(N)=CC2=NC3=CC(N)=CC=C3C=C21 WDVSHHCDHLJJJR-UHFFFAOYSA-N 0.000 description 1
- 208000033766 Prolymphocytic Leukemia Diseases 0.000 description 1
- 208000033759 Prolymphocytic T-Cell Leukemia Diseases 0.000 description 1
- 108010015499 Protein Kinase C-theta Proteins 0.000 description 1
- 108010003506 Protein Kinase D2 Proteins 0.000 description 1
- 102100037340 Protein kinase C delta type Human genes 0.000 description 1
- 102100037339 Protein kinase C epsilon type Human genes 0.000 description 1
- 102100021556 Protein kinase C eta type Human genes 0.000 description 1
- 102100021566 Protein kinase C theta type Human genes 0.000 description 1
- 102100037787 Protein-tyrosine kinase 2-beta Human genes 0.000 description 1
- 108010067787 Proteoglycans Proteins 0.000 description 1
- 102000016611 Proteoglycans Human genes 0.000 description 1
- 108010090931 Proto-Oncogene Proteins c-bcl-2 Proteins 0.000 description 1
- 102000013535 Proto-Oncogene Proteins c-bcl-2 Human genes 0.000 description 1
- 102100023347 Proto-oncogene tyrosine-protein kinase ROS Human genes 0.000 description 1
- 241000219492 Quercus Species 0.000 description 1
- 102100032315 RAC-beta serine/threonine-protein kinase Human genes 0.000 description 1
- 102100032314 RAC-gamma serine/threonine-protein kinase Human genes 0.000 description 1
- 102100033479 RAF proto-oncogene serine/threonine-protein kinase Human genes 0.000 description 1
- 108091008103 RNA aptamers Proteins 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- 238000011530 RNeasy Mini Kit Methods 0.000 description 1
- 239000012980 RPMI-1640 medium Substances 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 102100029986 Receptor tyrosine-protein kinase erbB-3 Human genes 0.000 description 1
- 101710100969 Receptor tyrosine-protein kinase erbB-3 Proteins 0.000 description 1
- 102100029981 Receptor tyrosine-protein kinase erbB-4 Human genes 0.000 description 1
- 101710100963 Receptor tyrosine-protein kinase erbB-4 Proteins 0.000 description 1
- 108010079933 Receptor-Interacting Protein Serine-Threonine Kinase 2 Proteins 0.000 description 1
- 102100022501 Receptor-interacting serine/threonine-protein kinase 1 Human genes 0.000 description 1
- 102100022502 Receptor-interacting serine/threonine-protein kinase 2 Human genes 0.000 description 1
- 102100033734 Receptor-interacting serine/threonine-protein kinase 4 Human genes 0.000 description 1
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 102100039313 Rho-associated protein kinase 1 Human genes 0.000 description 1
- 102100039314 Rho-associated protein kinase 2 Human genes 0.000 description 1
- 102100023742 Rhodopsin kinase GRK1 Human genes 0.000 description 1
- 102100033090 Rhodopsin kinase GRK7 Human genes 0.000 description 1
- 102100033536 Ribosomal protein S6 kinase alpha-1 Human genes 0.000 description 1
- 102100033534 Ribosomal protein S6 kinase alpha-2 Human genes 0.000 description 1
- 102100033643 Ribosomal protein S6 kinase alpha-3 Human genes 0.000 description 1
- 102100033644 Ribosomal protein S6 kinase alpha-4 Human genes 0.000 description 1
- 102100033645 Ribosomal protein S6 kinase alpha-5 Human genes 0.000 description 1
- 102100024897 Ribosomal protein S6 kinase alpha-6 Human genes 0.000 description 1
- 102100036901 SLC2A4 regulator Human genes 0.000 description 1
- 108060006706 SRC Proteins 0.000 description 1
- 102000001332 SRC Human genes 0.000 description 1
- 102100023010 SRSF protein kinase 1 Human genes 0.000 description 1
- 102100023015 SRSF protein kinase 2 Human genes 0.000 description 1
- 102100023017 SRSF protein kinase 3 Human genes 0.000 description 1
- 102100030491 STE20/SPS1-related proline-alanine-rich protein kinase Human genes 0.000 description 1
- 101100262439 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) UBA2 gene Proteins 0.000 description 1
- 102100026758 Serine/threonine-protein kinase 16 Human genes 0.000 description 1
- 102100037955 Serine/threonine-protein kinase 17A Human genes 0.000 description 1
- 102100037959 Serine/threonine-protein kinase 17B Human genes 0.000 description 1
- 102100026764 Serine/threonine-protein kinase 24 Human genes 0.000 description 1
- 102100026737 Serine/threonine-protein kinase 25 Human genes 0.000 description 1
- 102100030617 Serine/threonine-protein kinase 26 Human genes 0.000 description 1
- 102100037628 Serine/threonine-protein kinase 3 Human genes 0.000 description 1
- 102100028030 Serine/threonine-protein kinase 32B Human genes 0.000 description 1
- 102100027903 Serine/threonine-protein kinase 32C Human genes 0.000 description 1
- 102100030515 Serine/threonine-protein kinase 33 Human genes 0.000 description 1
- 102100030620 Serine/threonine-protein kinase 35 Human genes 0.000 description 1
- 102100030513 Serine/threonine-protein kinase 36 Human genes 0.000 description 1
- 102100030514 Serine/threonine-protein kinase 38 Human genes 0.000 description 1
- 102100027898 Serine/threonine-protein kinase 38-like Human genes 0.000 description 1
- 102100037629 Serine/threonine-protein kinase 4 Human genes 0.000 description 1
- 102100028623 Serine/threonine-protein kinase BRSK1 Human genes 0.000 description 1
- 102100029891 Serine/threonine-protein kinase BRSK2 Human genes 0.000 description 1
- 102100031081 Serine/threonine-protein kinase Chk1 Human genes 0.000 description 1
- 102100031075 Serine/threonine-protein kinase Chk2 Human genes 0.000 description 1
- 102100037310 Serine/threonine-protein kinase D1 Human genes 0.000 description 1
- 102100037312 Serine/threonine-protein kinase D2 Human genes 0.000 description 1
- 102100037311 Serine/threonine-protein kinase D3 Human genes 0.000 description 1
- 102100039758 Serine/threonine-protein kinase DCLK1 Human genes 0.000 description 1
- 102100039775 Serine/threonine-protein kinase DCLK2 Human genes 0.000 description 1
- 102100039774 Serine/threonine-protein kinase DCLK3 Human genes 0.000 description 1
- 102100024031 Serine/threonine-protein kinase LATS1 Human genes 0.000 description 1
- 102100024043 Serine/threonine-protein kinase LATS2 Human genes 0.000 description 1
- 102100028921 Serine/threonine-protein kinase MARK1 Human genes 0.000 description 1
- 102100028904 Serine/threonine-protein kinase MARK2 Human genes 0.000 description 1
- 102100025352 Serine/threonine-protein kinase MRCK alpha Human genes 0.000 description 1
- 102100025347 Serine/threonine-protein kinase MRCK beta Human genes 0.000 description 1
- 102100025345 Serine/threonine-protein kinase MRCK gamma Human genes 0.000 description 1
- 102100026180 Serine/threonine-protein kinase N2 Human genes 0.000 description 1
- 102100037345 Serine/threonine-protein kinase NIM1 Human genes 0.000 description 1
- 102100028751 Serine/threonine-protein kinase Nek1 Human genes 0.000 description 1
- 102100037703 Serine/threonine-protein kinase Nek2 Human genes 0.000 description 1
- 102100037702 Serine/threonine-protein kinase Nek5 Human genes 0.000 description 1
- 102100031401 Serine/threonine-protein kinase Nek6 Human genes 0.000 description 1
- 102100031400 Serine/threonine-protein kinase Nek7 Human genes 0.000 description 1
- 102100031398 Serine/threonine-protein kinase Nek9 Human genes 0.000 description 1
- 102100037143 Serine/threonine-protein kinase OSR1 Human genes 0.000 description 1
- 102100027939 Serine/threonine-protein kinase PAK 2 Human genes 0.000 description 1
- 102100027940 Serine/threonine-protein kinase PAK 4 Human genes 0.000 description 1
- 102100027941 Serine/threonine-protein kinase PAK 5 Human genes 0.000 description 1
- 102100031463 Serine/threonine-protein kinase PLK1 Human genes 0.000 description 1
- 102100031462 Serine/threonine-protein kinase PLK2 Human genes 0.000 description 1
- 102100026209 Serine/threonine-protein kinase PLK3 Human genes 0.000 description 1
- 102100030267 Serine/threonine-protein kinase PLK4 Human genes 0.000 description 1
- 102100028868 Serine/threonine-protein kinase PRP4 homolog Human genes 0.000 description 1
- 102100022261 Serine/threonine-protein kinase RIO1 Human genes 0.000 description 1
- 102100022090 Serine/threonine-protein kinase RIO2 Human genes 0.000 description 1
- 102100022109 Serine/threonine-protein kinase RIO3 Human genes 0.000 description 1
- 102100025554 Serine/threonine-protein kinase SBK1 Human genes 0.000 description 1
- 102100034377 Serine/threonine-protein kinase SIK2 Human genes 0.000 description 1
- 102100026715 Serine/threonine-protein kinase STK11 Human genes 0.000 description 1
- 101710181599 Serine/threonine-protein kinase STK11 Proteins 0.000 description 1
- 101710106079 Serine/threonine-protein kinase TAO1 Proteins 0.000 description 1
- 102100028954 Serine/threonine-protein kinase TAO3 Human genes 0.000 description 1
- 102100038192 Serine/threonine-protein kinase TBK1 Human genes 0.000 description 1
- 102100037670 Serine/threonine-protein kinase TNNI3K Human genes 0.000 description 1
- 102100039988 Serine/threonine-protein kinase ULK1 Human genes 0.000 description 1
- 102100039987 Serine/threonine-protein kinase ULK2 Human genes 0.000 description 1
- 102100039985 Serine/threonine-protein kinase ULK3 Human genes 0.000 description 1
- 102100036077 Serine/threonine-protein kinase pim-1 Human genes 0.000 description 1
- 102100036120 Serine/threonine-protein kinase pim-2 Human genes 0.000 description 1
- 102100036119 Serine/threonine-protein kinase pim-3 Human genes 0.000 description 1
- 102100034136 Serine/threonine-protein kinase receptor R3 Human genes 0.000 description 1
- 102100032015 Serine/threonine-protein kinase tousled-like 1 Human genes 0.000 description 1
- 102100032014 Serine/threonine-protein kinase tousled-like 2 Human genes 0.000 description 1
- 244000000231 Sesamum indicum Species 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 208000009359 Sezary Syndrome Diseases 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- SSZBUIDZHHWXNJ-UHFFFAOYSA-N Stearinsaeure-hexadecylester Natural products CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCC SSZBUIDZHHWXNJ-UHFFFAOYSA-N 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 208000010502 Subcutaneous panniculitis-like T-cell lymphoma Diseases 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 108010016672 Syk Kinase Proteins 0.000 description 1
- 102000000551 Syk Kinase Human genes 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 208000031673 T-Cell Cutaneous Lymphoma Diseases 0.000 description 1
- 208000031672 T-Cell Peripheral Lymphoma Diseases 0.000 description 1
- 201000008717 T-cell large granular lymphocyte leukemia Diseases 0.000 description 1
- 208000026651 T-cell prolymphocytic leukemia Diseases 0.000 description 1
- 102100035794 T-cell surface glycoprotein CD3 epsilon chain Human genes 0.000 description 1
- 102100027213 T-cell-specific surface glycoprotein CD28 Human genes 0.000 description 1
- 102100033456 TGF-beta receptor type-1 Human genes 0.000 description 1
- 102100033455 TGF-beta receptor type-2 Human genes 0.000 description 1
- 102100037671 TRAF2 and NCK-interacting protein kinase Human genes 0.000 description 1
- 102100029350 Testis-specific serine/threonine-protein kinase 1 Human genes 0.000 description 1
- 208000000728 Thymus Neoplasms Diseases 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 108010011702 Transforming Growth Factor-beta Type I Receptor Proteins 0.000 description 1
- 108010082684 Transforming Growth Factor-beta Type II Receptor Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 102100022651 Tyrosine-protein kinase ABL2 Human genes 0.000 description 1
- 102100033444 Tyrosine-protein kinase JAK2 Human genes 0.000 description 1
- 102100025387 Tyrosine-protein kinase JAK3 Human genes 0.000 description 1
- 102100022356 Tyrosine-protein kinase Mer Human genes 0.000 description 1
- 102100029654 Tyrosine-protein kinase Srms Human genes 0.000 description 1
- 102100021125 Tyrosine-protein kinase ZAP-70 Human genes 0.000 description 1
- 102100039127 Tyrosine-protein kinase receptor TYRO3 Human genes 0.000 description 1
- 102100022007 Tyrosine-protein kinase receptor Tie-1 Human genes 0.000 description 1
- 102100025558 Uncharacterized serine/threonine-protein kinase SBK3 Human genes 0.000 description 1
- 101150042678 VAV1 gene Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 108010053100 Vascular Endothelial Growth Factor Receptor-3 Proteins 0.000 description 1
- 102100033178 Vascular endothelial growth factor receptor 1 Human genes 0.000 description 1
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 1
- 102100033179 Vascular endothelial growth factor receptor 3 Human genes 0.000 description 1
- 208000033559 Waldenström macroglobulinemia Diseases 0.000 description 1
- 102100023037 Wee1-like protein kinase Human genes 0.000 description 1
- 102100023040 Wee1-like protein kinase 2 Human genes 0.000 description 1
- 101001038499 Yarrowia lipolytica (strain CLIB 122 / E 150) Lysine acetyltransferase Proteins 0.000 description 1
- 108010046882 ZAP-70 Protein-Tyrosine Kinase Proteins 0.000 description 1
- 102000007624 ZAP-70 Protein-Tyrosine Kinase Human genes 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- QOMNQGZXFYNBNG-UHFFFAOYSA-N acetyloxymethyl 2-[2-[2-[5-[3-(acetyloxymethoxy)-2,7-difluoro-6-oxoxanthen-9-yl]-2-[bis[2-(acetyloxymethoxy)-2-oxoethyl]amino]phenoxy]ethoxy]-n-[2-(acetyloxymethoxy)-2-oxoethyl]-4-methylanilino]acetate Chemical compound CC(=O)OCOC(=O)CN(CC(=O)OCOC(C)=O)C1=CC=C(C)C=C1OCCOC1=CC(C2=C3C=C(F)C(=O)C=C3OC3=CC(OCOC(C)=O)=C(F)C=C32)=CC=C1N(CC(=O)OCOC(C)=O)CC(=O)OCOC(C)=O QOMNQGZXFYNBNG-UHFFFAOYSA-N 0.000 description 1
- 230000033289 adaptive immune response Effects 0.000 description 1
- 239000012082 adaptor molecule Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 150000003838 adenosines Chemical class 0.000 description 1
- 201000006966 adult T-cell leukemia Diseases 0.000 description 1
- 208000015230 aggressive NK-cell leukemia Diseases 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- PPQRONHOSHZGFQ-LMVFSUKVSA-N aldehydo-D-ribose 5-phosphate Chemical group OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PPQRONHOSHZGFQ-LMVFSUKVSA-N 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 108010087408 alpha-beta T-Cell Antigen Receptors Proteins 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 239000012491 analyte Substances 0.000 description 1
- 150000001448 anilines Chemical class 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000719 anti-leukaemic effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008267 autocrine signaling Effects 0.000 description 1
- 230000005784 autoimmunity Effects 0.000 description 1
- 108010007734 bcl-Associated Death Protein Proteins 0.000 description 1
- 102000007348 bcl-Associated Death Protein Human genes 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001556 benzimidazoles Chemical class 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 229960002903 benzyl benzoate Drugs 0.000 description 1
- 239000012148 binding buffer Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- 108010018804 c-Mer Tyrosine Kinase Proteins 0.000 description 1
- 102100029402 cAMP-dependent protein kinase catalytic subunit PRKX Human genes 0.000 description 1
- 238000010805 cDNA synthesis kit Methods 0.000 description 1
- 102100022422 cGMP-dependent protein kinase 1 Human genes 0.000 description 1
- 102100022421 cGMP-dependent protein kinase 2 Human genes 0.000 description 1
- 230000001275 ca(2+)-mobilization Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- BPKIGYQJPYCAOW-FFJTTWKXSA-I calcium;potassium;disodium;(2s)-2-hydroxypropanoate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].C[C@H](O)C([O-])=O BPKIGYQJPYCAOW-FFJTTWKXSA-I 0.000 description 1
- BMLSTPRTEKLIPM-UHFFFAOYSA-I calcium;potassium;disodium;hydrogen carbonate;dichloride;dihydroxide;hydrate Chemical compound O.[OH-].[OH-].[Na+].[Na+].[Cl-].[Cl-].[K+].[Ca+2].OC([O-])=O BMLSTPRTEKLIPM-UHFFFAOYSA-I 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- YAYRGNWWLMLWJE-UHFFFAOYSA-L carboplatin Chemical compound O=C1O[Pt](N)(N)OC(=O)C11CCC1 YAYRGNWWLMLWJE-UHFFFAOYSA-L 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000000423 cell based assay Methods 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000006721 cell death pathway Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 238000003570 cell viability assay Methods 0.000 description 1
- 238000012200 cell viability kit Methods 0.000 description 1
- 230000007253 cellular alteration Effects 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 150000005829 chemical entities Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 150000005827 chlorofluoro hydrocarbons Chemical class 0.000 description 1
- 230000019113 chromatin silencing Effects 0.000 description 1
- 208000032852 chronic lymphocytic leukemia Diseases 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000011260 co-administration Methods 0.000 description 1
- 230000001447 compensatory effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000003246 corticosteroid Substances 0.000 description 1
- 229960001334 corticosteroids Drugs 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 235000010947 crosslinked sodium carboxy methyl cellulose Nutrition 0.000 description 1
- 239000001767 crosslinked sodium carboxy methyl cellulose Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 201000007241 cutaneous T cell lymphoma Diseases 0.000 description 1
- 150000001923 cyclic compounds Chemical class 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000326 densiometry Methods 0.000 description 1
- 239000005547 deoxyribonucleotide Substances 0.000 description 1
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000008356 dextrose and sodium chloride injection Substances 0.000 description 1
- 239000008355 dextrose injection Substances 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 238000010864 dual luciferase reporter gene assay Methods 0.000 description 1
- 102100034175 eIF-2-alpha kinase GCN2 Human genes 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 230000001204 effect on thymocyte Effects 0.000 description 1
- 230000000551 effect on thymus Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- 239000002702 enteric coating Substances 0.000 description 1
- 238000009505 enteric coating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000010429 evolutionary process Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 229940012952 fibrinogen Drugs 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 201000003444 follicular lymphoma Diseases 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 101150046266 foxo gene Proteins 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000007903 gelatin capsule Substances 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 108091006104 gene-regulatory proteins Proteins 0.000 description 1
- 102000034356 gene-regulatory proteins Human genes 0.000 description 1
- 238000003205 genotyping method Methods 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 230000004153 glucose metabolism Effects 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 201000009277 hairy cell leukemia Diseases 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 208000024200 hematopoietic and lymphoid system neoplasm Diseases 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- 238000010562 histological examination Methods 0.000 description 1
- 238000012333 histopathological diagnosis Methods 0.000 description 1
- 102000047486 human GAPDH Human genes 0.000 description 1
- 102000057995 human PIK3CA Human genes 0.000 description 1
- 102000050523 human PIK3CD Human genes 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 229940127121 immunoconjugate Drugs 0.000 description 1
- 230000007813 immunodeficiency Effects 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 230000004957 immunoregulator effect Effects 0.000 description 1
- 238000011503 in vivo imaging Methods 0.000 description 1
- 230000006882 induction of apoptosis Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 230000015788 innate immune response Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 238000012528 insulin ELISA Methods 0.000 description 1
- 108010042209 insulin receptor tyrosine kinase Proteins 0.000 description 1
- 108010054372 insulin receptor-related receptor Proteins 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000007927 intramuscular injection Substances 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 208000026876 intravascular large B-cell lymphoma Diseases 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- PGHMRUGBZOYCAA-ADZNBVRBSA-N ionomycin Chemical compound O1[C@H](C[C@H](O)[C@H](C)[C@H](O)[C@H](C)/C=C/C[C@@H](C)C[C@@H](C)C(/O)=C/C(=O)[C@@H](C)C[C@@H](C)C[C@@H](CCC(O)=O)C)CC[C@@]1(C)[C@@H]1O[C@](C)([C@@H](C)O)CC1 PGHMRUGBZOYCAA-ADZNBVRBSA-N 0.000 description 1
- PGHMRUGBZOYCAA-UHFFFAOYSA-N ionomycin Natural products O1C(CC(O)C(C)C(O)C(C)C=CCC(C)CC(C)C(O)=CC(=O)C(C)CC(C)CC(CCC(O)=O)C)CCC1(C)C1OC(C)(C(C)O)CC1 PGHMRUGBZOYCAA-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229960002725 isoflurane Drugs 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000000021 kinase assay Methods 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- GDBQQVLCIARPGH-ULQDDVLXSA-N leupeptin Chemical compound CC(C)C[C@H](NC(C)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C=O)CCCN=C(N)N GDBQQVLCIARPGH-ULQDDVLXSA-N 0.000 description 1
- 108010052968 leupeptin Proteins 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000001325 log-rank test Methods 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 210000001365 lymphatic vessel Anatomy 0.000 description 1
- 210000000207 lymphocyte subset Anatomy 0.000 description 1
- 208000037515 lymphocytic depletion Hodgkin lymphoma Diseases 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 208000037652 lymphocytic-histiocytic predominance Hodgkin lymphoma Diseases 0.000 description 1
- 208000003747 lymphoid leukemia Diseases 0.000 description 1
- 201000007919 lymphoplasmacytic lymphoma Diseases 0.000 description 1
- 238000012792 lyophilization process Methods 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 201000007924 marginal zone B-cell lymphoma Diseases 0.000 description 1
- 208000021937 marginal zone lymphoma Diseases 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 108010082117 matrigel Proteins 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 208000020968 mature T-cell and NK-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 210000003470 mitochondria Anatomy 0.000 description 1
- 208000037524 mixed cellularity Hodgkin lymphoma Diseases 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 208000025113 myeloid leukemia Diseases 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- JTSLALYXYSRPGW-UHFFFAOYSA-N n-[5-(4-cyanophenyl)-1h-pyrrolo[2,3-b]pyridin-3-yl]pyridine-3-carboxamide Chemical compound C=1C=CN=CC=1C(=O)NC(C1=C2)=CNC1=NC=C2C1=CC=C(C#N)C=C1 JTSLALYXYSRPGW-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 230000006654 negative regulation of apoptotic process Effects 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 201000006039 nodal marginal zone lymphoma Diseases 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 102000002574 p38 Mitogen-Activated Protein Kinases Human genes 0.000 description 1
- 108010068338 p38 Mitogen-Activated Protein Kinases Proteins 0.000 description 1
- 230000014306 paracrine signaling Effects 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 230000009038 pharmacological inhibition Effects 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 150000003905 phosphatidylinositols Chemical class 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 230000002186 photoactivation Effects 0.000 description 1
- 230000007180 physiological regulation Effects 0.000 description 1
- 208000031223 plasma cell leukemia Diseases 0.000 description 1
- 108010026735 platelet protein P47 Proteins 0.000 description 1
- 108010056274 polo-like kinase 1 Proteins 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 235000021085 polyunsaturated fats Nutrition 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 208000025638 primary cutaneous T-cell non-Hodgkin lymphoma Diseases 0.000 description 1
- 208000000814 primary cutaneous anaplastic large cell lymphoma Diseases 0.000 description 1
- 108091007428 primary miRNA Proteins 0.000 description 1
- 210000001948 pro-b lymphocyte Anatomy 0.000 description 1
- 230000009219 proapoptotic pathway Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000012342 propidium iodide staining Methods 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000751 protein extraction Methods 0.000 description 1
- 229950010131 puromycin Drugs 0.000 description 1
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003290 ribose derivatives Chemical group 0.000 description 1
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 1
- 229960001860 salicylate Drugs 0.000 description 1
- 229930182490 saponin Natural products 0.000 description 1
- 150000007949 saponins Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000021003 saturated fats Nutrition 0.000 description 1
- 239000004017 serum-free culture medium Substances 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000008354 sodium chloride injection Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000008109 sodium starch glycolate Substances 0.000 description 1
- 229940079832 sodium starch glycolate Drugs 0.000 description 1
- 229920003109 sodium starch glycolate Polymers 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003393 splenic effect Effects 0.000 description 1
- 206010062113 splenic marginal zone lymphoma Diseases 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 238000004885 tandem mass spectrometry Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 108091008743 testicular receptors 4 Proteins 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 230000026727 thymocyte apoptotic process Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000027 toxicology Toxicity 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000012033 transcriptional gene silencing Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 229940078499 tricalcium phosphate Drugs 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- HDZZVAMISRMYHH-KCGFPETGSA-N tubercidin Chemical compound C1=CC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O HDZZVAMISRMYHH-KCGFPETGSA-N 0.000 description 1
- 230000010304 tumor cell viability Effects 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 231100000588 tumorigenic Toxicity 0.000 description 1
- 230000000381 tumorigenic effect Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 235000021081 unsaturated fats Nutrition 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
- 239000012130 whole-cell lysate Substances 0.000 description 1
- 229940075420 xanthine Drugs 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
- A61K31/52—Purines, e.g. adenine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/56—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
- A61K31/57—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
- A61K31/573—Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
- A61K31/713—Double-stranded nucleic acids or oligonucleotides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
- C12N15/1137—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/12—Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
- C12N9/1205—Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/01—Phosphotransferases with an alcohol group as acceptor (2.7.1)
- C12Y207/01137—Phosphatidylinositol 3-kinase (2.7.1.137)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y207/00—Transferases transferring phosphorus-containing groups (2.7)
- C12Y207/01—Phosphotransferases with an alcohol group as acceptor (2.7.1)
- C12Y207/01153—Phosphatidylinositol-4,5-bisphosphate 3-kinase (2.7.1.153), i.e. phosphoinositide 3-kinase
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/502—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
- G01N33/5041—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects involving analysis of members of signalling pathways
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/573—Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
Definitions
- the present invention relates to, inter alia, methods and pharmaceutical compositions to treat, prevent, or ameliorate the effects of a lymphoid malignancy, such as T-cell acute lymphoblastic leukemia (T-ALL) or T-cell acute lymphoblastic lymphoma.
- a lymphoid malignancy such as T-cell acute lymphoblastic leukemia (T-ALL) or T-cell acute lymphoblastic lymphoma.
- T-ALL T-cell acute lymphoblastic leukemia
- PI3K ⁇ phosphoinositide 3-kinase-gamma
- Thymocyte development relies on a series of intracellular signaling events that regulate cell differentiation, proliferation, and survival. This process can be followed based on the presence or absence of cell surface markers such as CD4, CD8, CD25, and CD44 (Shortman et al.; 1996, Germain, 2002; Zuniga-Pflucker, 2004).
- Early thymocyte progenitors lack CD4 and CD8 expression and are termed double-negative (DN) cells.
- the DN stage is subdivided into 4 categories.
- the DN1 stage is characterized by surface expression of CD44 (CD25 ⁇ CD44 + ).
- ⁇ -selection occurs at the DN3 stage. This involves T cell receptor ⁇ (TCRB) gene rearrangement and expression, which permits the subsequent formation of the pre-TCR complex (Dudley et al., 1994; Borowski et al., 2002).
- TCRB T cell receptor ⁇
- Thymocytes unable to generate a functionally rearranged TCRB gene die by apoptosis (Falk et al., 2001; Michie et al., 2002).
- pre-TCR pre-T cell receptor
- DP double positive
- a small subset of these cells ultimately bear a mature TCR ⁇ ⁇ CD3 complex and then further differentiate into CD4 + or CD8 + single-positive (SP) T cells.
- thymocyte development is also shaped by the induction or inhibition of apoptosis. Although many different molecules can regulate this process, the proto-oncogene Bcl-2 appears to have a protective effect with regard to thymocyte survival (Kroemer, 1997; Williams et al., 1998). This is supported by the observation that thymocytes in mice expressing a Bcl2 transgene are less prone to dexamethasone-induced cell death (Sentman et al., 1991; Strasser et al., 1991).
- Bcl-2 expression and sensitivity of specific thymocyte populations to apoptotic signals induced not only through stimulation of the TCR and coregulatory molecules, such as CD28, but also by cAMP and corticosteroids (McKean, 2001).
- CD4 + CD8 + DP thymocytes do not express Bcl-2, which may contribute to their relatively short lifespan of 3 to 4 days and to their increased sensitivity to various apoptotic stimuli, unlike their CD4 + and CD8 + SP counterparts (Gratiot-Deans et al., 1993; Linette et al., 1994; .Punt et al., 1995).
- diminished Bcl-2 expression in DP cells appears to be the result of specific down-regulation, rendering these cells more amenable to thymic selection.
- Class 1 phosphoinositide 3-kinases can also provide survival signals (Yao et al., 1995; Shelton et al., 2004). Structurally, they exist as heterodimeric complexes, consisting of a p110 catalytic (classified as ⁇ , ⁇ , ⁇ , or ⁇ ) and a p50, p55, p85, or p101 regulatory subunit (Wymann et al., 1998; Vanhaesebroeck et al., 1997). These enzymes can be further divided into 2 subclasses (1a and 1b) based on their mechanism of activation.
- Class 1a contains p110a, p110 ⁇ , and p110 ⁇ , each of which associates with a p85 regulatory protein and is activated directly or indirectly on engagement of several cell surface receptors, including TCR (Wymann et al., 1998; Vanhaesebroeck et al., 1997; Cantley et al., 2002).
- class 1b consists solely of p110 ⁇ , which associates with the p101 adaptor molecule and is stimulated by G protein-coupled receptors.
- both subclasses transmit signals by generating a common second messenger known as phosphatidylinositol (3,4,5) trisphosphate (PIP3), which remains tethered to the lipid bilayer of the cell membrane.
- PIP3 phosphatidylinositol
- PIP3 phosphatidylinositol
- PIP3 phosphatidylinositol
- Phosphorylation of Akt/PBK by PDK-1 results in its activation, which then affects cell survival by direct targeting of the proapoptotic proteins BAD and FoxO or by indirect influence on the transcriptional response to apoptotic stimuli (Franke et al., 2003; Downward, 2004).
- class 1 PI3K may participate in thymocyte differentiation. For instance, mice lacking p110 ⁇ have reduced thymus size and cellularity and altered percentages of DN and DP thymocytes (Sasaki et al., 2000). Further characterization of this defect suggests partial impairment in pre-TCR-dependent DN-to-DP transition does not affect T-cell numbers in blood or secondary lymphoid organs (Rodriguez-Borlado et al., 2003). Moreover, no abnormalities were reported in TCR-mediated Ca 2+ flux, tyrosine phosphorylation, or activation of tyrosine kinases in T cells; results that have not been confirmed in thymocytes.
- T-cell sensitivity to typical apoptotic stimuli such as ⁇ irradiation or dexamethasone, also remained unaltered, although proliferation and IL-2 secretion were impaired.
- apoptotic stimuli such as ⁇ irradiation or dexamethasone
- the catalytic inactivation of p110 ⁇ did not perturb thymus size, cellularity, or thymocyte development but did impair antigen receptor signaling and proliferation of T cells in vitro (Okkenhaug et al., 2002).
- Similar observations were reported for genetic deletion of the p85 regulatory subunit, which affects the activity of all class 1a PI3Ks (Suzuki et al., 1999; Fruman et al., 1999).
- PI3K ⁇ is not required for thymic development. This may be the consequence of a lack of function, given that it is not known whether p110 ⁇ is expressed in developing thymocytes, or of residual PI3K activity due to other class 1a isoforms or perhaps by p110 ⁇ .
- Class 1a and 1b PI3Ks work in concert to regulate specific cellular processes.
- a deficiency in p110 ⁇ and p110 ⁇ catalytic subunits in venular endothelium had an additive effect in terms of the ability of this cell type to recruit neutrophils in response to cytokine stimulation (Puri et al., 2005).
- T-ALL T-cell acute lymphoblastic leukemia
- class I PI3Ks are heterodimeric molecules composed of a regulatory and a catalytic subunit, the latter consisting of four unique isoforms that include p110 ⁇ , p110 ⁇ , p110 ⁇ , and p110 ⁇ .
- p110a is involved in oncogenesis, because function-enhancing mutations in this catalytic subunit are found in many cancers of solid organs (Samuels et al., 2004; Zunder et al., 2008). In contrast, cancer-specific mutations have yet to be identified for the other p110 isoforms. That said, over-expression of p110 ⁇ , p110 ⁇ , or p110 ⁇ in an in vitro culture system induces cellular transformation (Kang et al., 2006). Moreover, increased or preferential expression of p110 ⁇ and p110 ⁇ has been described in chronic and acute forms of myeloid leukemia, respectively (Hickey and Cotter, 2005; Sujobert et al., 2005).
- PTEN is a nonredundant plasma-membrane phosphatase that is responsible for counteracting the potential cancer-promoting activities of class I PI3K (Sulis and Parsons, 2003; Salmena et al., 2008). It does so by limiting the levels of PIP3 generated in response to the activation of these lipid kinases.
- mutations in the Pten tumor suppressor gene are common in multiple types of human cancer, resulting in unbridled PI3K/Akt signaling as well as conferring resistance to chemotherapeutic agents (Carnero et al., 2008; Huang et al., 2009).
- Gutierrez et al. (2009) have reported a loss of PTEN function due to mutations or deletions in approximately 40% of primary T-ALL samples, suggesting that hyperactivation of the PI3K/Akt signaling pathway is a common feature of this hematological malignancy.
- One embodiment of the present invention is a method for treating, preventing, or ameliorating the effects of a lymphoid malignancy.
- This method comprises administering to a subject in need thereof an effective amount of a phosphoinositide 3-kinase-delta (PI3K ⁇ ) inhibitor and a phosphoinositide 3-kinase-gamma (PI3K ⁇ ) inhibitor.
- PI3K ⁇ phosphoinositide 3-kinase-delta
- PI3K ⁇ phosphoinositide 3-kinase-gamma
- Another embodiment of the present invention is a method for treating, preventing, or ameliorating the effects of a lymphoid malignancy associated with a mutated phosphatase and tensin homolog (PTEN) gene in a subject.
- This method comprises administering to the subject an effective amount of a PI3K ⁇ inhibitor and a PI3K ⁇ inhibitor.
- Yet another embodiment of the present invention is a pharmaceutical composition for treating the effects of a lymphoid malignancy.
- This pharmaceutical composition comprises a pharmaceutically acceptable carrier and an effective amount of a PI3K ⁇ inhibitor and a PI3K ⁇ inhibitor.
- An additional embodiment of the present invention is a method for treating a subject suffering from T-ALL. This method comprises administering to the subject an effective amount of a pharmaceutical composition comprising a PI3K ⁇ inhibitor and a PI3K ⁇ inhibitor.
- Another embodiment of the present invention is a method for lowering tumor burden in a subject suffering from T-ALL.
- This method comprises administering to the subject an effective amount of a pharmaceutical composition comprising a PI3K ⁇ inhibitor and a PI3K ⁇ inhibitor.
- Yet another embodiment of the present invention is a method for identifying a subject who may benefit from co-treatment with a PI3K ⁇ inhibitor and a PI3K ⁇ inhibitor.
- This method comprises determining from a sample of the subject whether the subject has a mutated PTEN gene, wherein the presence of the mutated PTEN gene is indicative of a subject who may benefit from co-treatment with a PI3K ⁇ inhibitor and a PI3K ⁇ inhibitor.
- An additional embodiment of the present invention is a method for identifying a compound that has both PI3K ⁇ and PI3K ⁇ inhibitory activity. This method comprises:
- FIG. 1 shows the role of class 1 PI3Ks in supporting thymic architecture and cellularity.
- Cortical and medullary regions in the thymus of p110 ⁇ ⁇ / ⁇ mice are indistinguishable, unlike those of WT and reconstituted animals.
- TC indicates thymic cortex; TM, thymic medulla. Data are representative of at least 3 animals for each genotype depicted.
- FIG. 2 shows the role of PI3K ⁇ and PI3K ⁇ in thymocyte development.
- FIG. 3 shows the contribution of p110 ⁇ and p110 ⁇ activity in thymocyte development in vitro.
- FIG. 3A shows representative flow cytometry profiles of fetal thymic organ cultures harvested from day 14.5 WT, p110 ⁇ ⁇ / ⁇ , and p110 ⁇ ⁇ / ⁇ embryos that were treated with either vehicle control or p110 ⁇ -specific inhibitor IC87114 (10 ⁇ M) for 1 week.
- FIG. 4 shows that DP thymocytes lacking p110 ⁇ and p110 ⁇ are prone to apoptosis.
- FIG. 5 shows the evaluation for p110 ⁇ protein and activity in thymocytes.
- FIG. 5A shows representative immunoblots of class 1a and 1b p110 subunits expressed in thymocytes harvested from WT control and p110 ⁇ ⁇ / ⁇ mice. Western blot of ⁇ -actin illustrates equal loading of proteins.
- FIG. 5B shows the detection of Akt/PKB in Western blots of total lysates from p110 ⁇ ⁇ / ⁇ thymocytes treated with vehicle control or the p110 ⁇ -specific inhibitor IC87114 (10 ⁇ M) before TCR cross-linking.
- FIG. 6 shows the effect of p110 ⁇ and p110 ⁇ deletion on extrathymic T cells.
- FIG. 6A shows cell counts and flow cytometry analysis of surface expression of TCRB, which were performed on whole blood and isolated peripheral blood mononuclear cells (PBMCs), respectively.
- PBMCs peripheral blood mononuclear cells
- CD4 and CD8 expression was evaluated on total cells harvested from peripheral lymph nodes ( FIG. 6B ) and spleens ( FIG. 6C ) of WT control and p110 ⁇ ⁇ / ⁇ .
- FIGS. 6B and 6C show histologic examination of hematoxylin and eosin-stained lymph node and splenic sections, respectively (objective magnifications each 4 ⁇ ).
- FIG. 7 shows that absence of p110 ⁇ or p110 ⁇ alone has no apparent effect on the percentage of DP thymocytes or TCR-selection.
- FIG. 7A shows thymic size and architecture in four week old WT, p110 ⁇ ⁇ / ⁇ , and p110 ⁇ ⁇ / ⁇ mice. Histological examination of H&E stained thymic sections from these animals are shown. Data are representative of a minimum of three animals for each genetic background.
- FIGS. 7B-E show representative flow cytometric analysis of expression of CD4 and CD8 SP and DP thymocytes ( FIG. 7B ), DN ( FIG. 7C ), and TCRB + DP ( FIG. 7D ) and CD8 + SP subsets ( FIG. 7E ). Data are representative of three independent experiments.
- FIG. 8 shows that representative flow cytometric analysis of expression of CD4 and CD8 SP and DP ( FIG. 8A ) and DN ( FIG. 8B ) thymocyte subsets from WT, RAG2 ⁇ / ⁇ , and p110 ⁇ ⁇ / ⁇ thymi. Data are representative of two independent experiments.
- FIG. 9 shows the effect of the genetic deletion of p110 ⁇ and p110 ⁇ on thymus size and cellularity.
- Top row shows the size and cell counts of thymi of different PI3K genotypes.
- Bottom row shows the micrographs of hematoxylin and eosin-stained thymi. (Objective, magnification 40 ⁇ 4 ⁇ /NA).
- FIG. 10 shows the effect of genetic deletion of p110 ⁇ and p110 ⁇ on CD4/CD8 DP thymocyte population.
- FIG. 10A shows the thymocyte population expression of CD4 and CD8 as determined by flow cytometry. Percent expression is in bold.
- FIG. 10B shows the total double positive (CD4/CD8 expressing) cell count (mean ⁇ SD). Data indicates an average of 4 independent experiments.
- FIG. 11 shows the effect of genetic deletion of p110 ⁇ and p110 ⁇ on peripheral blood WBC counts. Total WBC and lymphocyte counts for each genotype (mean ⁇ SD) are shown. Data indicates an average of 3 independent experiments.
- FIG. 12 shows the effect of genetic deletion of p110 ⁇ and p110 ⁇ on CD3 cell count in peripheral blood.
- FIG. 12A shows a representative histogram of a CD3 population in peripheral blood.
- FIG. 12B shows the percent CD3 population in peripheral blood. Data indicates 4 independent experiments.
- FIG. 13 shows the effect of genetic deletion of p110 ⁇ and p110 ⁇ on size and cellularity of spleen and lymph nodes.
- Top row shows the micrographs of hematoxylin and eosin-stained peripheral lymph node. (Objective, magnification 40 ⁇ 4 ⁇ /NA 0.16).
- Bottom row shows the micrographs of hematoxylin and eosin-stained spleen. (Objective, magnification 40 ⁇ 4 ⁇ /NA 0.16).
- FIG. 14 shows that PI3K ⁇ or PI3K ⁇ can support leukemogenesis in the context of PTEN deficiency.
- FIG. 14A shows Kaplan-Meyer survival curves demonstrating the requirement for PI3K ⁇ and PI3K ⁇ activity in the development of PTEN-null T-ALL.
- TKO indicates Lck/Pten fl/fl ;Pik3cg ⁇ / ⁇ ;pik3cd ⁇ / ⁇ triple mutant mice. All animals were followed for a period of 7 months.
- FIG. 14B shows representative flow cytometric profiles of peripheral blood from diseased mice lacking p110 ⁇ or p110 ⁇ in the absence of PTEN in T cell progenitors.
- FIG. 14C shows representative immunoblots depicting p110 ⁇ , p110 ⁇ , and PTEN expression as well as Akt activation state (phosphorylation of Ser473) in thymic lysates from the same animals.
- FIG. 15 shows that persistence of cellular and structural defects in thymi is associated with a combined deletion of p110 ⁇ / ⁇ and PTEN.
- FIG. 15A shows hematoxylin/eosin (H&E) staining and flow cytometric analyses of thymi derived from 6 week old mice lacking both p110 ⁇ and p110 ⁇ catalytic subunits in the presence or absence of PTEN. The panels are representative of data from five animals in each group.
- FIG. 15B shows immunoblots assessing for Akt phosphorylation (Ser473) and PTEN levels in thymocyte lysates.
- FIG. 15C shows the number of WBC and T cell subsets in the peripheral blood of the same animals. Data represent the mean ⁇ SD.
- FIG. 15D shows representative micrographs of H&E-stained peripheral lymph nodes and spleen
- FIG. 16 shows the inhibitory profile of CAL-130.
- FIG. 16A shows the chemical structure of CAL-130.
- FIGS. 16B and 16C show the effect of the inhibitor on Akt phosphorylation (Ser473) or Ca 2+ flux in purified thymocytes from wild type animals in response to TCR cross-linking, respectively. Data are representative of 3 separate experiments.
- FIGS. 16E and 16F show the plasma glucose and the corresponding insulin levels, respectively, in wild type mice before and after receiving a single dose of inhibitor (10 mg kg ⁇ 1 ).
- FIG. 16G shows the phenotypic analyses of thymi from mice treated with either CAL-130 (10 mg kg ⁇ 1 every 8 hours) or vehicle control for 7 days. The panels are representative of data from five animals in each group.
- FIG. 16H shows total DP thymocyte count in the same animals. Results are compared to PI3K ⁇ / ⁇ double knockout mice. Data represent the mean ⁇ SD.
- FIG. 17 shows that combined inhibition of p110 ⁇ and p110 ⁇ reduces tumor burden and increases survival in animals with PTEN null T-ALL.
- FIG. 17A shows a Kaplan-Meyer survival curve for Lck/Pten fl/fl mice diagnosed with T-ALL and immediately treated with CAL-130 for a total of 7 days. P ⁇ 0.001 for CAL-130 treated versus vehicle control. *Numbers represent the initial WBC ( ⁇ 10 6 ) for each animal prior to instituting therapy.
- FIG. 17B and 17C show peripheral blood smears and flow cytometric profiles for diseased Lck/Pten fl/fl and Lck/Pten fl/fl ; Pik3cg ⁇ / ⁇ mice, respectively, just before treatment (day 0) and 4 days and 7 days after initiating treatment with either CAL-130 or the PI3K ⁇ specific inhibitor IC87114, respectively.
- the panels are representative of data from four Lck/Pten fl/fl mice and two Lck/Pten fl/fl Pik3d ⁇ / ⁇ mice with T-ALL. An untreated wild type animal is shown for comparison.
- FIG. 17D shows bioluminescent images and corresponding flow cytometric profiles of Lck/PTEN fl/fl /Gt(ROSA)26Sor tm1(Luc)Kael /J animals with T-ALL immediately before and 4 days after treatment.
- Peripheral blood counts (WBC, right axis) represent the mean ⁇ SD prior to treatment.
- FIG. 18 shows that PI3K ⁇ and PI3K ⁇ contribute to the growth and survival of PTEN null human T-ALL tumor cell lines.
- FIGS. 18A and 18B show the proliferation and survival, respectively, of CCRF-CEM cells cultured in the presence of CAL-130 or vehicle control. *P ⁇ 0.01, **P ⁇ 0.001 for CAL-130 treated (2.5 ⁇ M) versus DMSO.
- FIGS. 19C and 19D show the effect of the PI3K ⁇ specific inhibitor IC87114 (10 ⁇ M) on proliferation and survival, respectively, of CCRF-CEM cells in which p110 ⁇ expression was knocked down by shRNA transfection.
- FIGS. 18E and 18F show proliferation and survival, respectively, of CCRF-CEM cells cultured in the presence of dexamethasone alone.
- FIGS. 18G and 18H show proliferation and survival, respectively, of CCRF-CEM cells cultured in the presence of dexamethasone in combination with 2.5 ⁇ M CAL-130. **P ⁇ 0.001 for dexamethasone+CAL-130 treated (2.5 ⁇ M) versus CAL-130 (2.5 ⁇ M) alone. Data represent the mean ⁇ SD of experiments performed in triplicate.
- FIG. 19 shows the effect of CAL-130 on signaling pathways downstream of PI3K ⁇ and PI3K ⁇ .
- FIG. 19A shows representative immunoblots of lysates obtained from CCRF-CEM cells treated for 6 hours with either CAL-130 or vehicle control and probed with the stated antibodies. The PI3K ⁇ specific inhibitor IC87114 (IC) is shown for comparison.
- FIG. 19B shows representative immunoblots demonstrating activation of the pro-apoptotic pathway in CAL-130 treated CCRF-CEM cells.
- FIG. 19A shows representative immunoblots of lysates obtained from CCRF-CEM cells treated for 6 hours with either CAL-130 or vehicle control and probed with the stated antibodies.
- the PI3K ⁇ specific inhibitor IC87114 (IC) is shown for comparison.
- FIG. 19B shows representative immunoblots demonstrating activation of the pro-apoptotic pathway in CAL-130 treated CCRF-CEM cells.
- FIG. 20 shows the susceptibility of primary human T-ALL tumor cells to combined inhibition of p110 ⁇ and p110 ⁇ .
- FIG. 20B shows representative immunoblots of four primary human T-ALL samples to assess for expression of p110 catalytic domains and PTEN as well as phosphorylation state of Akt.
- FIG. 20A shows cell survival analyses of tumors cultured in the presence of increasing concentrations of CAL-130 for 72 hours. Percent viability indicates the proportion of live-gated cells in the treated populations relative to its vehicle control counterpart. Data represent the mean ⁇ SD of experiments performed in duplicate or triplicate.
- FIG. 20C shows the effect of CAL-130 on Akt phosphorylation on the same four representative T-ALL samples after 6 hours of treatment. Densitometry was performed on bands from immunoblots. The P-Akt signal was normalized to total Akt.
- FIG. 21 shows an inhibitory profile of CAL-130.
- FIG. 21A shows Ca 2+ flux in CD4 + -gated wild type versus PI3K ⁇ ko / ⁇ ko thymocytes treated with vehicle control or CAL-130 prior to TCR cross-linking. Data represent the mean ⁇ SD (3 separate experiments for each genotype).
- FIG. 21B shows the effect of CAL-130 versus the pan-PI3K/mTor inhibitor BEZ235 on Akt phosphorylation in response to PDGF-stimulation of SW3T3 cells.
- FIG. 21A shows Ca 2+ flux in CD4 + -gated wild type versus PI3K ⁇ ko / ⁇ ko thymocytes treated with vehicle control or CAL-130 prior to TCR cross-linking. Data represent the mean ⁇ SD (3 separate experiments for each genotype).
- FIG. 21B shows the effect of CAL-130 versus the pan-PI3K/mTor inhibitor BEZ235 on Akt phosphoryl
- 21C shows the effects of CAL-130 on ADP (25 ⁇ M)-induced aggregation of platelets harvested from pik3cg ⁇ / ⁇ ;pik3cd ⁇ / ⁇ mice.
- CAL-130 was either directly added to purified platelets (upper panel) or given as an oral bolus to animals (lower panel) prior to harvesting platelets at a time point that yields a maximum plasma level of compound (2 hours).
- FIG. 22 shows peripheral blood smears and flow cytometric profiles for diseased Lck/Pten fl/fl mice just before and after treatment with either CAL-130 ( FIG. 22A-C ) or IC87114 ( FIG. 22D ) at the indicated time points.
- Forward scatter (FSC) and Ki67 staining are indicators of cell size and proliferation, respectively. Apoptosis was detected by assessing the sub-G0 population after PI staining.
- FIG. 23 shows the contribution of PI3K ⁇ and PI3K ⁇ to the growth and survival of PTEN null human T-ALL tumor cell lines.
- FIGS. 23A-D show the proliferation of CCRF-CEM
- FIGS. 23E-H show the proliferation of MOLT-4 cells cultured in the presence of the indicated class I PI3K inhibitors.
- Annexin V staining of CCRF-CEM cells FIG. 231
- MOLT-4 cells FIG. 23J
- FIGS. 23K and L show siRNA knockdown of p110 ⁇ in CCRF-CEM cells.
- FIGS. 23M and N show siRNA knockdown of p110 ⁇ in CCRF-CEM cells.
- Cell growth and viability were determined by cell counting ( FIGS. 23K and M) and Annexin V staining ( FIGS. 23L and N), respectively.
- Inserts are immunoblots for ( FIG. 23K ) p110 ⁇ and ( FIG. 23M ) p110 ⁇ .
- Data are representative of four independent experiments (mean ⁇ SD).
- One embodiment of the present invention is a method for treating, preventing, or ameliorating the effects of a lymphoid malignancy. This method comprises administering to a subject in need thereof an effective amount of a PI3K ⁇ inhibitor and a PI3K ⁇ inhibitor.
- the terms “treat,” “treating,” “treatment” and grammatical variations thereof mean subjecting an individual subject to a protocol, regimen, process or remedy, in which it is desired to obtain a physiologic response or outcome in that subject, e.g., a patient.
- the methods and compositions of the present invention may be used to slow the development of disease symptoms or delay the onset of the disease or condition, or halt the progression of disease development.
- every treated subject may not respond to a particular treatment protocol, regimen, process or remedy, treating does not require that the desired physiologic response or outcome be achieved in each and every subject or subject, e.g., patient, population. Accordingly, a given subject or subject, e.g., patient, population may fail to respond or respond inadequately to treatment.
- the terms “ameliorate”, “ameliorating” and grammatical variations thereof mean to decrease the severity of the symptoms of a disease in a subject.
- the terms “prevent”, “preventing” and grammatical variations thereof mean to administer a compound or a composition of the present invention to a subject who has not been diagnosed as having the disease or condition at the time of administration, but who could be expected to develop the disease or condition or be at increased risk for the disease or condition. Preventing also includes administration of at least one compound or a composition of the present invention to those subjects thought to be predisposed to the disease or condition due to age, familial history, genetic or chromosomal abnormalities, due to the presence of one or more biological markers for the disease or condition and/or due to environmental factors.
- a “subject” is a mammal, preferably, a human.
- categories of mammals within the scope of the present invention include, for example, agricultural animals, domestic animals, laboratory animals, etc.
- agricultural animals include cows, pigs, horses, goats, etc.
- domestic animals include dogs, cats, etc.
- laboratory animals include rats, mice, rabbits, guinea pigs, etc.
- a “lymphoid malignancy” means an abnormal growth of bodily tissue or cells in the lymphoid system. Such abnormal growth may invade and destroy nearby tissue, and may spread to other parts of the body.
- the term “lymphoid system” refers to all of the cells, tissue aggregates, and organs which function together to produce specific resistance to disease, including without limitation, the bone marrow, the thymus, lymphatic vessels, T-cells and their progenitor cells, as well as B-cells and their progenitor cells.
- Lymphoid malignancies may be divided into three classes, Hodgkin's lymphoma, non-Hodgkin's lymphoma (NHL), and composite Hodgkin's lymphoma and NHL.
- Hodgkin's lymphoma include lymphocyte-rich classical Hodgkin's lymphoma, mixed-cellularity classical Hodgkin's lymphoma, lymphocyte-depleted classical Hodgkin's lymphoma, and nodular lymphocyte predominant Hodgkin's lymphoma.
- NHL may be further divided into B-cell NHL, T-cell NHL, and NHL of unknown lineage.
- Exemplary B-cell NHL include without limitation precursor B-cell NHL (such as B lymphoblastic leukemia and B lymphoblastic lymphoma), chronic lymphocytic leukemia, small lymphocytic lymphoma, prolymphocytic leukemia, mantel-cell lymphoma, lymphoplasmacytic lymphoma, Waldenström macroglobulinemia, Burkitt lymphoma, follicular lymphoma, splenic marginal-zone lymphoma, extranodal marginal-zone lymphoma, nodal marginal-zone lymphoma, hairy-cell leukemia, diffuse large B-cell lymphoma, intravascular large B-cell lymphoma, primary effusion lymphoma, mediastinal large B-cell lymphoma, plasmacytoma, and multiple myeloma/plasma cell leukemia.
- precursor B-cell NHL such as B lymphoblastic leukemia and B lymphoblastic lymphoma
- T-cell NHL include precursor T-cell NHL (such as T-cell acute lymphoblastic leukemia (T-ALL) and T-cell acute lymphoblastic lymphoma), mycosis fungoides, Sézary syndrome, adult T-cell leukemia, adult T-cell lymphoma, NK/T-cell lymphoma, aggressive NK-cell leukemia, T-cell large granular lymphocytic leukemia, T-cell prolymphocytic leukemia, and peripheral T-cell lymphoma (such as angioimmunoblastic lymphoma, subcutaneous panniculitis-like T-cell lymphoma, anaplastic large-cell lymphoma, hepatoplenic T-cell lymphoma, enteropathy-type T-cell lymphoma, cutaneous T-cell lymphoma, primary cutaneous anaplastic large-cell lymphoma).
- the lymphoid malignancy is T-ALL or T-cell acute lymphoblastic lymphoma.
- a “PI3K ⁇ inhibitor” is an agent that is able to lower the activity level or the expression level of PI3K ⁇ .
- the PI3K ⁇ inhibitor has few or no off-target effects; except that it is permissible, in accordance with the present invention, to also have an inhibitory effect on PI3K ⁇ as set forth in more detail below.
- the PI3K ⁇ inhibitor according to the present invention may be a biologic, a chemical, or combinations thereof.
- PI3K ⁇ inhibitors include, without limitation, AMG-319 (Amgen, Thousand Oaks, Calif.); PI3-delta inhibitors, Cellzome (Cellzome AG, Heidelberg, Germany); PI3-delta/gamma inhibitors, Cellzome (Cellzome AG); CHR-4432 (Chroma Therapeutics, Ltd., Abingdon, UK); XL-499 (Evotech, Hamburg, Germany); CAL-120 (Gilead Sciences, Foster City, Calif.); CAL-129 (Gilead Sciences); CAL-130 (Gilead Sciences); CAL-253 (Gilead Sciences); CAL-263 (Gilead Sciences); GS-1101 (CAL-101) (Gilead Sciences); benzimidazole series, Genentech (Roche Holdings Inc., South San Francisco, Calif.); PI3 kinase delta inhibitors, Genentech (Roche Holdings Inc.); PI3 kinase inhibitor, Roche-4 (Roche Holdings Inc
- PI3 kinase delta inhibitors-2, Incozen Incozen Therapeutics
- PI3-delta inhibitors Intellikine (Intellikine Inc., La Jolla, Calif.); PI3-delta/gamma inhibitors, Intellikine (Intellikine Inc.); PI3K delta/gamma inhibitors, Intellikine-1 (Intellikine Inc.); KAR-4139 (Karus Therapeutics, Chilworth, UK); KAR-4141 (Karus Therapeutics); PI3 kinase delta inhibitor, Merck KGaA (Merck & Co., Whitehouse Station, N.J.); OXY-111A (NormOxys Inc., Brighton, Mass.); PI3-alpha/delta inhibitors, Pathway Therapeutics (Pathway Therapeutics Ltd., South San Francisco, Calif.); PI3-delta inhibitors, Pathway Therapeutics-1 (Pathway Therapeutics Ltd.); PI3-delta inhibitors
- a “biologic” means a substance which is derived from or produced by a living organism or synthesized to mimic an in vivo-derived agent or a derivative or product thereof.
- a biologic may be, for example, a nucleic acid, a polypeptide, or a polysaccharide.
- the biologic is a nucleic acid, a protein, or a combination thereof. More preferably, the nucleic acid comprises an shRNA.
- a “chemical” means a substance that has a definite chemical composition and characteristic properties and that is not a biologic.
- Non-limiting examples of chemicals include small organic compounds and small inorganic compounds.
- a “PI3K ⁇ inhibitor” is an agent that is able to lower the activity level or the expression level of PI3K ⁇ .
- the PI3K ⁇ inhibitor has few or no off-target effects; except that it is permissible, in accordance with the present invention, to also have an inhibitory effect on PI3K ⁇ as set forth in more detail above.
- the PI3K ⁇ inhibitor according to the present invention may be a biologic, a chemical, and combinations thereof.
- PI3K ⁇ inhibitors include, without limitation, PI3-delta/gamma inhibitors, Cellzome (Cellzome AG); PI3-gamma inhibitor, Cellzome (Cellzome AG); PI3-gamma inhibitor Evotec (Evotec); PI3 kinase inhibitors, Roche (Roche Holdings Inc.); pictilisib (Roche Holdings, Inc.); IPI-145 (Intellikine Inc.); PI3-delta/gamma inhibitors, Intellikine (Intellikine Inc.); PI3K delta/gamma inhibitors, Intellikine-1 (Intellikine Inc.); KIN-1 (Karus Therapeutics); PI3-delta/gamma inhibitors, Pathway Therapeutics (Pathway Therapeutics Ltd.); PI3-gamma inhibitors, Pathway Therapeutics (Pathway Therapeutics Ltd.); SC-103980 (Pfizer, New York, N.Y.); SF-1126 (Sema
- a single agent that inhibits both PI3K ⁇ and PI3Ky, but has no or limited effect on other PI3K isoforms is also contemplated.
- agents having dual inhibitory function include CAL-130; TG100-115; PI3-delta/gamma inhibitors, Cellzome; PI3 Kinase inhibitors, Roche-5; pictilisib; PI3-delta/gamma inhibitors, Intellikine; PI3-delta/gamma inhibitors, Intellikine-1; PI3-delta/gamma inhibitors, Pathway Therapeutics, and SF-1126.
- the present invention also includes co-treatment with one or more PI3K ⁇ and one or more PI3K ⁇ inhibitors.
- co-treatment may be by co-administration of each inhibitor or administration of one inhibitor followed by another inhibitor with each such administration being temporally spaced apart to achieve a clinically effective result. Determination of such dosing regimens may be determined empirically for each subject or be based on the treating physicians' knowledge and experience.
- this method further comprises co-administering to the subject at least one chemotherapeutic agent.
- chemotherapeutic agent includes, without limitation, actinomycin, amsacrine, anthracycline, busulfan, cisplatin, cytoxan, epirubicin, hexamethylmelamineoxaliplatin, iphosphamide, mitoxantrone, taxotere, teniposide, triethylenethiophosphoramide, hydrocortisone, cortisone, methylprednisolone, prednisolone, dexamethasone, prednisone, betamethasone, triamcinolone, beclometasone, fludrocortisones, deoxycorticosterone, aldosterone, oxaliplatin, zoledronic acid, ibandronate, verapamil, podophyllotoxin, carboplatin, procarbazine, mechlor
- the chemotherapeutic agent is a glucocorticoid, such as hydrocortisone, cortisone, methylprednisolone, prednisolone, dexamethasone, prednisone, betamethasone, triamcinolone, beclometasone, fludrocortisones, deoxycorticosterone, aldosterone, and combinations thereof.
- the chemotherapeutic agent is dexamethasone.
- one or more PI3K ⁇ and/or PI3K ⁇ inhibitors and/or one or more chemotherapeutic agents may be co-administered to a subject in need thereof together in the same composition, simultaneously in separate compositions, or as separate compositions administered at different times, as deemed most appropriate by a physician.
- an “effective amount” or “therapeutically effective amount” of a PI3K inhibitor is an amount of such an inhibitor that is sufficient to effect beneficial or desired results as described herein when administered to a subject.
- Effective dosage forms, modes of administration, and dosage amounts may be determined empirically, and making such determinations is within the skill of the art. It is understood by those skilled in the art that the dosage amount will vary with the route of administration, the rate of excretion, the duration of the treatment, the identity of any other drugs being administered, the age, size, and species of mammal, e.g., human patient, and like factors well known in the arts of medicine and veterinary medicine.
- a suitable dose of a PI3K inhibitor according to the invention will be that amount of the PI3K inhibitor, which is the lowest dose effective to produce the desired effect with no or minimal side effects.
- the effective dose of a PI3K ⁇ inhibitor or a PI3K ⁇ inhibitor may be administered as two, three, four, five, six or more sub-doses, administered separately at appropriate intervals throughout the day, with the proviso that the doses of the PI3K ⁇ inhibitor or a PI3K ⁇ inhibitor simultaneously reduce or inhibit the activity or the expression levels of PI3K ⁇ and PI3K ⁇ .
- a suitable, non-limiting example of a dosage of a PI3K inhibitor according to the present invention, particularly a PI3K ⁇ inhibitor and/or a PI3K ⁇ inhibitor, is from about 1 ng/kg to about 1000 mg/kg, such as from about 1 mg/kg to about 100 mg/kg, including from about 5 mg/kg to about 50 mg/kg.
- PI3K inhibitors include about 1 mg/kg, 5 mg/kg, 10 mg/kg, 15 mg/kg, 20 mg/kg, 25 mg/kg, 30 mg/kg, 35 mg/kg, 40 mg/kg, 45 mg/kg, 50 mg/kg, 60 mg/kg, 70 mg/kg, 80 mg/kg, 90 mg/kg, 100 mg/kg, 125 mg/kg, 150 mg/kg, 175 mg/kg, 200 mg/kg, 250 mg/kg, 300 mg/kg, 400 mg/kg, 500 mg/kg, 600 mg/kg, 700 mg/kg, 800 mg/kg, 900 mg/kg, or 1000 mg/kg.
- Another embodiment of the present invention is a method for treating, preventing, or ameliorating the effects of a lymphoid malignancy associated with a mutated phosphatase and tensin homolog (PTEN) gene in a subject.
- This method comprises administering to the subject an effective amount of a PI3K ⁇ inhibitor and a PI3K ⁇ inhibitor.
- a “mutated phosphatase and tensin homolog (PTEN) gene” means having one or more variations in the exon or the intron sequence of PTEN.
- a lymphoid malignancy “associated with a mutated PTEN gene” means a lymphoid malignancy in which one or more variations in the PTEN gene sequence is found.
- lymphoid malignancies include, e.g., T-ALL, lymphoblastic lymphoma, large B-cell lymphoma, Burkitt's lymphoma, large B-cell lymphoma, and myeloma.
- the PI3K ⁇ inhibitor and the PI3K ⁇ inhibitor are as disclosed herein.
- the PI3K ⁇ inhibitor and the PI3K ⁇ inhibitor are CAL-130.
- the method further comprises administering an effective amount of a chemotherapeutic agent as disclosed herein, such as a glucocorticoid.
- a chemotherapeutic agent as disclosed herein, such as a glucocorticoid.
- the chemotherapeutic agent is dexamethasone.
- Yet another embodiment of the present invention is a pharmaceutical composition for treating the effects of a lymphoid malignancy.
- This pharmaceutical composition comprises a pharmaceutically acceptable carrier and an effective amount of a PI3K ⁇ inhibitor and a PI3K ⁇ inhibitor.
- the pharmaceutical composition is in a unit dosage form.
- the pharmaceutical composition further comprises an effective amount of a chemotherapeutic agent as disclosed herein, such as a glucocorticoid.
- a chemotherapeutic agent as disclosed herein, such as a glucocorticoid.
- the chemotherapeutic agent is dexamethasone.
- An additional embodiment of the present invention is a method for treating a subject suffering from T-ALL. This method comprises administering to the subject an effective amount of a pharmaceutical composition comprising a PI3K ⁇ inhibitor and a PI3K ⁇ inhibitor.
- the PI3K ⁇ inhibitor and the PI3K ⁇ inhibitor are as disclosed herein.
- the PI3K ⁇ inhibitor and the PI3K ⁇ inhibitor are CAL-130.
- the pharmaceutical composition of this embodiment may be a single composition containing a dual inhibitor such as, e.g., CAL-130, a single composition containing two active agents, one a PI3K ⁇ inhibitor and the other a PI3K ⁇ inhibitor, or two or more compositions each containing at least one active agent that is a PI3K ⁇ inhibitor or a PI3K ⁇ inhibitor.
- the method further comprises administering an effective amount of a chemotherapeutic agent as disclosed herein, such as a glucocorticoid.
- a chemotherapeutic agent as disclosed herein, such as a glucocorticoid.
- the chemotherapeutic agent is dexamethasone.
- Another embodiment of the present invention is a method for lowering tumor burden in a subject suffering from T-ALL.
- This method comprises administering to the subject an effective amount of a pharmaceutical composition comprising a PI3K ⁇ inhibitor and a PI3K ⁇ inhibitor.
- tumor burden means the number of tumor (whether benign or malignant) cells in the subject's body, or the size of a tumor.
- the PI3K ⁇ inhibitor and the PI3K ⁇ inhibitor are as disclosed herein.
- the PI3K ⁇ inhibitor and the PI3K ⁇ inhibitor are CAL-130.
- the method further comprises administering an effective amount of a chemotherapeutic agent as disclosed herein, such as a glucocorticoid also as defined herein.
- a chemotherapeutic agent as disclosed herein, such as a glucocorticoid also as defined herein.
- the chemotherapeutic agent is dexamethasone.
- Yet another embodiment of the present invention is a method for identifying a subject who may benefit from co-treatment with a PI3K ⁇ inhibitor and a PI3K ⁇ inhibitor. This method comprises determining from a sample of the subject whether the subject has a mutated PTEN gene, wherein the presence of the mutated PTEN gene is indicative of a subject who may benefit from co-treatment.
- the sample is obtain from the subject by any conventional means.
- a sample contains DNA and may be a tissue and/or blood sample, such as a peripheral blood sample.
- the PI3K ⁇ inhibitor and the PI3K ⁇ inhibitor are as disclosed herein.
- the PI3K ⁇ inhibitor and the PI3K ⁇ inhibitor are CAL-130.
- An additional embodiment of the present invention is a method for identifying a compound that has both PI3K ⁇ and PI3K ⁇ inhibitory activity. This method comprises:
- an “antigen receptor-induced activity” means an event resulting from T-cell receptor signaling, such as, e.g., phosphorylation of AKT, GSK3 ⁇ , mTOR, p70S6K, BAD proteins and calcium flux in CD4 + T cells. Assays for such activities are as disclosed herein.
- a pharmaceutical composition of the present invention may be administered in any desired and effective manner: for oral ingestion, or as an ointment or drop for local administration to the eyes, or for parenteral or other administration in any appropriate manner such as intraperitoneal, subcutaneous, topical, intradermal, inhalation, intrapulmonary, rectal, vaginal, sublingual, intramuscular, intravenous, intraarterial, intrathecal, or intralymphatic. Further, a pharmaceutical composition of the present invention may be administered in conjunction with other treatments.
- a pharmaceutical composition of the present invention maybe encapsulated or otherwise protected against gastric or other secretions, if desired.
- compositions of the invention are pharmaceutically acceptable and comprise one or more active ingredients in admixture with one or more pharmaceutically-acceptable carriers and, optionally, one or more other compounds, drugs, ingredients and/or materials. Regardless of the route of administration selected, the agents/compounds of the present invention are formulated into pharmaceutically-acceptable dosage forms by conventional methods known to those of skill in the art. See, e.g., Remington, The Science and Practice of Pharmacy (21 st Edition, Lippincott Williams and Wilkins, Philadelphia, Pa.).
- Pharmaceutically acceptable carriers are well known in the art (see, e.g., Remington, The Science and Practice of Pharmacy (21 st Edition, Lippincott Williams and Wilkins, Philadelphia, Pa.) and The National Formulary (American Pharmaceutical Association, Washington, D.C.)) and include sugars (e.g., lactose, sucrose, mannitol, and sorbitol), starches, cellulose preparations, calcium phosphates (e.g., dicalcium phosphate, tricalcium phosphate and calcium hydrogen phosphate), sodium citrate, water, aqueous solutions (e.g., saline, sodium chloride injection, Ringer's injection, dextrose injection, dextrose and sodium chloride injection, lactated Ringer's injection), alcohols (e.g., ethyl alcohol, propyl alcohol, and benzyl alcohol), polyols (e.g., glycerol, propylene glycol, and polyethylene glycol), organic esters (e
- Each pharmaceutically acceptable carrier used in a pharmaceutical composition of the invention must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the subject.
- Carriers suitable for a selected dosage form and intended route of administration are well known in the art, and acceptable carriers for a chosen dosage form and method of administration can be determined using ordinary skill in the art.
- compositions of the invention may, optionally, contain additional ingredients and/or materials commonly used in such pharmaceutical compositions.
- ingredients and materials are well known in the art and include (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and silicic acid; (2) binders, such as carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, hydroxypropylmethyl cellulose, sucrose and acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, sodium starch glycolate, cross-linked sodium carboxymethyl cellulose and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as cetyl alcohol and glycerol monostearate; (8) absorbents, such
- compositions suitable for oral administration may be in the form of capsules, cachets, pills, tablets, powders, granules, a solution or a suspension in an aqueous or non-aqueous liquid, an oil-in-water or water-in-oil liquid emulsion, an elixir or syrup, a pastille, a bolus, an electuary or a paste.
- These formulations may be prepared by methods known in the art, e.g., by means of conventional pan-coating, mixing, granulation or lyophilization processes.
- Solid dosage forms for oral administration may be prepared, e.g., by mixing the active ingredient(s) with one or more pharmaceutically-acceptable carriers and, optionally, one or more fillers, extenders, binders, humectants, disintegrating agents, solution retarding agents, absorption accelerators, wetting agents, absorbents, lubricants, and/or coloring agents.
- Solid compositions of a similar type maybe employed as fillers in soft and hard-filled gelatin capsules using a suitable excipient.
- a tablet may be made by compression or molding, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared using a suitable binder, lubricant, inert diluent, preservative, disintegrant, surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine.
- the tablets, and other solid dosage forms, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein. They may be sterilized by, for example, filtration through a bacteria-retaining filter.
- compositions may also optionally contain opacifying agents and may be of a composition such that they release the active ingredient only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner.
- the active ingredient can also be in microencapsulated form.
- Liquid dosage forms for oral administration include pharmaceutically-acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
- the liquid dosage forms may contain suitable inert diluents commonly used in the art.
- the oral compositions may also include adjuvants, such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
- Suspensions may contain suspending agents.
- compositions for rectal or vaginal administration may be presented as a suppository, which maybe prepared by mixing one or more active ingredient(s) with one or more suitable nonirritating carriers which are solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active compound.
- Pharmaceutical compositions which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such pharmaceutically-acceptable carriers as are known in the art to be appropriate.
- Dosage forms for the topical or transdermal administration include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches, drops and inhalants.
- the active agent(s)/compound(s) may be mixed under sterile conditions with a suitable pharmaceutically-acceptable carrier.
- the ointments, pastes, creams and gels may contain excipients.
- Powders and sprays may contain excipients and propellants.
- compositions suitable for parenteral administrations comprise one or more agent(s)/compound(s) in combination with one or more pharmaceutically-acceptable sterile isotonic aqueous or non-aqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain suitable antioxidants, buffers, solutes which render the formulation isotonic with the blood of the intended recipient, or suspending or thickening agents.
- suitable antioxidants, buffers, solutes which render the formulation isotonic with the blood of the intended recipient, or suspending or thickening agents may contain suitable antioxidants, buffers, solutes which render the formulation isotonic with the blood of the intended recipient, or suspending or thickening agents.
- Proper fluidity can be maintained, for example, by the use of coating materials, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
- compositions may also contain suitable adjuvants, such as wetting agents, emulsifying agents and dispersing agents. It may also be desirable to include isotonic agents. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption.
- a drug e.g., pharmaceutical formulation
- the rate of absorption of the active agent/drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form.
- delayed absorption of a parenterally-administered agent/drug may be accomplished by dissolving or suspending the active agent/drug in an oil vehicle.
- injectable depot forms may be made by forming microencapsule matrices of the active ingredient in biodegradable polymers. Depending on the ratio of the active ingredient to polymer, and the nature of the particular polymer employed, the rate of active ingredient release can be controlled. Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissue. The injectable materials can be sterilized for example, by filtration through a bacterial-retaining filter.
- the formulations may be presented in unit-dose or multi-dose sealed containers, for example, ampules and vials, and may be stored in a lyophilized condition requiring only the addition of the sterile liquid carrier, for example water for injection, immediately prior to use.
- sterile liquid carrier for example water for injection
- Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the type described above.
- each intervening number there between with the same degree of precision is explicitly contemplated.
- the numbers 7 and 8 are contemplated in addition to 6 and 9, and for the range 6.0-7.0, the numbers 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6,9, and 7.0 are explicitly contemplated.
- nucleic acid or “oligonucleotide” or “polynucleotide” used herein mean at least two nucleotides covalently linked together. Many variants of a nucleic acid may be used for the same purpose as a given nucleic acid. Thus, a nucleic acid also encompasses substantially identical nucleic acids and complements thereof.
- Nucleic acids may be single stranded or double stranded, or may contain portions of both double stranded and single stranded sequences.
- the nucleic acid may be DNA, both genomic and cDNA, RNA, or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and combinations of bases including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine and isoguanine.
- Nucleic acids may be synthesized as a single stranded molecule or expressed in a cell (in vitro or in vivo) using a synthetic gene. Nucleic acids may be obtained by chemical synthesis methods or by recombinant methods.
- the nucleic acid may also be a RNA such as a mRNA, tRNA, short hairpin RNA (shRNA), short interfering RNA (sRNA), double-stranded RNA (dsRNA), transcriptional gene silencing RNA (ptgsRNA), Piwi-interacting RNA, pri-miRNA, pre-miRNA, micro-RNA (miRNA), or anti-miRNA, as described, e.g., in U.S. patent application Ser. Nos. 11/429,720, 11/384,049, 11/418,870, and 11/429,720 and Published International Application Nos. WO 2005/116250 and WO 2006/126040.
- a RNA such as a mRNA, tRNA, short hairpin RNA (shRNA), short interfering RNA (sRNA), double-stranded RNA (dsRNA), transcriptional gene silencing RNA (ptgsRNA), Piwi-interacting RNA, pri-miRNA
- siRNA gene-targeting may be carried out by transient siRNA transfer into cells, achieved by such classic methods as lipid-mediated transfection (such as encapsulation in liposome, complexing with cationic lipids, cholesterol, and/or condensing polymers, electroporation, or microinjection).
- siRNA gene-targeting may also be carried out by administration of siRNA conjugated with antibodies or siRNA complexed with a fusion protein comprising a cell-penetrating peptide conjugated to a double-stranded (ds) RNA-binding domain (DRBD) that binds to the siRNA (see, e.g., U.S. Patent Application Publication No. 2009/0093026).
- ds double-stranded
- DRBD RNA-binding domain
- shRNA gene-targeting may be carried out by using a vector introduced into cells, such as viral vectors (lentiviral vectors, adenoviral vectors, or adeno-associated viral vectors for example).
- viral vectors lentiviral vectors, adenoviral vectors, or adeno-associated viral vectors for example.
- the design and synthesis of siRNA and shRNA molecules are known in the art, and may be commercially purchased from, e.g., Gene Link (Hawthorne, N.Y.), Invitrogen Corp. (Carlsbad, Calif.), Thermo Fisher Scientific, and Dharmacon Products (Lafayette, Colo.).
- the nucleic acid may also be an aptamer, an intramer, or a spiegelmer.
- aptamer refers to a nucleic acid or oligonucleotide molecule that binds to a specific molecular target. Aptamers are derived from an in vitro evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by EXponential Enrichment), disclosed in U.S. Pat. No. 5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries.
- Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules.
- the nucleotide components of an aptamer may have modified sugar groups (e.g., the 2′-OH group of a ribonucleotide may be replaced by 2′-F or 2′—NH 2 ), which may improve a desired property, e.g., resistance to nucleases or longer lifetime in blood.
- Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system.
- Aptamers may be specifically cross-linked to their cognate ligands, e.g., by photo-activation of a cross-linker (Brody, E. N. and L. Gold (2000) J. Biotechnol. 74:5-13).
- introduction refers to an aptamer which is expressed in vivo.
- a vaccinia virus-based RNA expression system has been used to express specific RNA aptamers at high levels in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl. Acad. Sci. USA 96:3606-3610).
- spiegelmer refers to an aptamer which includes L-DNA, L-RNA, or other left-handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right-handed nucleotides.
- a nucleic acid will generally contain phosphodiester bonds, although nucleic acid analogs may be included that may have at least one different linkage, e.g., phosphoramidate, phosphorothioate, phosphorodithioate, or O-methylphosphoroamidite linkages and peptide nucleic acid backbones and linkages.
- Other analog nucleic acids include those with positive backbones; non-ionic backbones, and non-ribose backbones, including those disclosed in U.S. Pat. Nos. 5,235,033 and 5,034,506. Nucleic acids containing one or more non-naturally occurring or modified nucleotides are also included within the definition of nucleic acid.
- the modified nucleotide analog may be located for example at the 5′-end and/or the 3′-end of the nucleic acid molecule.
- Representative examples of nucleotide analogs may be selected from sugar- or backbone-modified ribonucleotides. It should be noted, however, that also nucleobase-modified ribonucleotides, i.e. ribonucleotides, containing a non-naturally occurring nucleobase instead of a naturally occurring nucleobase such as uridines or cytidines modified at the 5-position, e.g.
- the 2′-OH-group may be replaced by a group selected from H, OR, R, halo, SH, SR, NH 2 , NHR, NR 2 or CN, wherein R is C 1 -C 6 alkyl, alkenyl or alkynyl and halo is F, Cl, Br or I.
- Modified nucleotides also include nucleotides conjugated with cholesterol through, e.g., a hydroxyprolinol linkage as disclosed in Krutzfeldt et al., Nature (Oct. 30, 2005), Soutschek et al., Nature 432:173-178 (2004), and U.S. Patent Application Publication No. 20050107325.
- Modified nucleotides and nucleic acids may also include locked nucleic acids (LNA), as disclosed in U.S. Patent Application Publication No. 20020115080. Additional modified nucleotides and nucleic acids are disclosed in U.S. Patent Application Publication No. 20050182005. Modifications of the ribose-phosphate backbone may be done for a variety of reasons, e.g., to increase the stability and half-life of such molecules in physiological environments, to enhance diffusion across cell membranes, or as probes on a biochip. Mixtures of naturally occurring nucleic acids and analogs may be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.
- LNA locked nucleic acids
- peptide means a linked sequence of amino acids, which may be natural, synthetic, or a modification, or combination of natural and synthetic.
- the term includes antibodies, antibody mimetics, domain antibodies, lipocalins, targeted proteases, and polypeptide mimetics.
- the term also includes vaccines containing a peptide or peptide fragment intended to raise antibodies against the peptide or peptide fragment.
- polysaccharides means polymeric carbohydrate structures, formed of repeating units (either mono- or di-saccharides) joined together by glycosidic bonds.
- the units of mono- or di-saccharides may be the same or different.
- Non-limiting examples of polysaccharides include starch, glycogen, cellulose, and chitin.
- small organic or “small inorganic” molecule includes any chemical or other moiety, other than polysaccharides, polypeptides, and nucleic acids, that can act to affect biological processes.
- Small molecules can include any number of therapeutic agents presently known and used, or can be synthesized in a library of such molecules for the purpose of screening for biological function(s).
- Small molecules are distinguished from macromolecules by size.
- the small molecules of this invention usually have a molecular weight less than about 5,000 daltons (Da), preferably less than about 2,500 Da, more preferably less than 1,000 Da, most preferably less than about 500 Da.
- organic compound refers to any carbon-based compound other than biologics such as nucleic acids, polypeptides, and polysaccharides.
- organic compounds may contain calcium, chlorine, fluorine, copper, hydrogen, iron, potassium, nitrogen, oxygen, sulfur and other elements.
- An organic compound may be in an aromatic or aliphatic form.
- Non-limiting examples of organic compounds include acetones, alcohols, anilines, carbohydrates, mono-saccharides, di-saccharides, amino acids, nucleosides, nucleotides, lipids, retinoids, steroids, proteoglycans, ketones, aldehydes, saturated, unsaturated and polyunsaturated fats, oils and waxes, alkenes, esters, ethers, thiols, sulfides, cyclic compounds, heterocyclic compounds, imidizoles, and phenols.
- An organic compound as used herein also includes nitrated organic compounds and halogenated (e.g., chlorinated) organic compounds.
- Preferred small molecules are relatively easier and less expensively manufactured, formulated or otherwise prepared. Preferred small molecules are stable under a variety of storage conditions. Preferred small molecules may be placed in tight association with macromolecules to form molecules that are biologically active and that have improved pharmaceutical properties. Improved pharmaceutical properties include changes in circulation time, distribution, metabolism, modification, excretion, secretion, elimination, and stability that are favorable to the desired biological activity. Improved pharmaceutical properties include changes in the toxicological and efficacy characteristics of the chemical entity.
- mice All mice were kept in a specific pathogen-free facility at Columbia University Medical Center. All mice studies and breeding were carried out under the approval of the Institutional Animal Care and Use Committee of Columbia University.
- mice (p110 ⁇ ⁇ / ⁇ and p110 ⁇ ⁇ / ⁇ ) on a mixed B6/129 background were described previously (Sasaki et al., 2000; Clayton et al., 2002). Animals were bred to generate a deficiency in both p110 catalytic subunits, the p110 ⁇ ⁇ / ⁇ mice.
- Other names for the mouse include p110 ⁇ ko and Pik3cg ⁇ / ⁇ ; Pik3cd ⁇ / ⁇ , because p110 ⁇ is encoded by Pik3cg and p110 ⁇ is encoded by Pik3cd.
- NOD.Cg-Prkdc scid II2rg tm1 Wjl/Sz mice for xenograft experiments and Gt(ROSA)26Sor tm1(Luc)Kael /J for bioimaging studies were obtained from The Jackson Laboratory (Bar Harbor, Me.). Mice deficient for PTEN in the T cell lineage were generated by crossing Lck-cre with floxed Pten (Hennet et al., 1995; Trotman et al., 2003).
- mice P110 ⁇ ⁇ / ⁇ and p110 ⁇ ⁇ / ⁇ mice were intercrossed with Lckcre/Pten fl/fl animals to generate mice homozygous mutant for either p110 ⁇ or p110 ⁇ and Pten or homozygous mutant for p110 ⁇ , 110 ⁇ , and Pten.
- CEM-luc luminescent CCRF-CEM cells
- FUW-luc lentiviral infection with FUW-luc and selection with neomycin. Luciferase expression was verified with the Dual-Luciferase Reporter Assay kit (Promega Corp., Madison, Wis.). 2.5 ⁇ 10 6 CEM-luc cells embedded in Matrigel (BD Biosciences, San Jose, Calif.) were injected into the flank of NOD.Cg-Prkdc scid II2rg tm1Wjl /Sz mice.
- mice were treated by oral gavage with vehicle (0.5% methyl cellulose, 0.1% Tween-80), or CAL-130 (10 mg kg ⁇ 1 ) (Gilead Sciences, Foster City, Calif.) every 8 hours daily for 4 days and then tumors imaged as follows: mice anesthetized by isoflurane inhalation were injected intraperitoneally with D-luciferin (50 mg kg ⁇ 1 , Xenogen, Calipers Life Sciences, Hopkinton, Mass.). Photonic emission was imaged with the In Vivo Imaging System (IVIS, Xenogen).
- IVIS In Vivo Imaging System
- Tumor bioluminescence was quantified by integrating the photonic flux (photons per second) through a region encircling each tumor using the LIVING IMAGES software package (Xenogen).
- Administration of D-luciferin and detection of tumor bioluminescence in Lck/Pten fl/fl /Gt(ROSA)26Sor tm1(Luc)Kael /J mice was performed in a similar manner.
- mice For intravenous xenograft transplantation, 5 ⁇ 10 6 CCRF-CEM cells were injected intravenously in fourteen NOD.Cg-Prkdc scid II2rg tm1Wjl /Sz mice. After 3 days, mice were segregated into two treatment groups that received either CAL-130 or vehicle by oral gavage as described above for 7 days. Mice in both groups were then followed until moribund (and euthanized).
- Subsets of DN thymocytes were analyzed based on expression of CD25 and CD44 after gating out cells that stained with a cocktail of biotinylated antibodies to CD4, CD8, B220, Mac-1, and Gr-1 followed by streptavidin Cy-Chrome.
- TCRB For intracellular staining of TCRB, cells were first labeled with PE-CD4 and Cy-Chrome-CD8 ⁇ , then were fixed and permeabilized in 1% saponin, and finally were stained with FITC-labeled anti-C ⁇ -specific antibody.
- FITC-labeled anti-C ⁇ -specific antibody For identifying apoptotic thymocytes, cell suspensions in DMEM and 10% fetal calf serum (FCS; 2 ⁇ 10 6 /mL) were first labeled with PE-CD4 or PE-Cy5 CD8a, washed, and incubated with annexin V-FITC (BD Biosciences) according to the manufacturer's recommendations.
- FCS fetal calf serum
- a viable lymphocyte gate was first established based on forward and side scatter parameters, and dead cells were excluded by the detection of propidium iodide (PI) uptake in the absence of CD4 or CD8 labeling.
- thymocytes were resuspended in DMEM, 10% FCS, and 2 mM glutamine (25 ⁇ 10 5 cells/mL), and 200 ⁇ L was placed in 96-well plates (5% CO 2 , 37° C.). Cells were harvested at 24 hours to determine the extent of apoptosis, as described. All samples were analyzed on a FACS Calibur flow cytometer (BD Biosciences) using CellQuest or FlowJo software. Data are displayed as histograms or dot blots with logarithmic scale. Each plot represents analysis of 2 ⁇ 10 5 or more events collected as list mode files.
- Thymic tissue, peripheral blood, spleens, and lymph nodes from the mice displaying the following combinations of PI3K genetic deletion were used: WT (full activity of both PI3K ⁇ and PI3K ⁇ ), ⁇ het / ⁇ het (50% reduction in activity of both PI3K ⁇ and PI3K ⁇ ), ⁇ ko / ⁇ het (full reduction of PI3K ⁇ activity and 50% reduction of PI3K ⁇ activity), ⁇ het / ⁇ ko (50% reduction of PI3K ⁇ activity and full reduction of PI3K ⁇ activity) and ⁇ ko / ⁇ ko to (full reduction of PI3K ⁇ and PI3K ⁇ activity).
- Analyses included tissue histology of thymi, spleens, and lymph nodes to determine structure and organization of cells, cell counts to determine differences of WBC numbers in tissues and blood for each genotype, and flow cytometry to evaluate differences in total thymocyte populations (CD3 + and subsets CD4 + /CD8 + ).
- CCRF-CEM, CEM/C1, and MOLT-4 cells were obtained from ATCC and grown in RPMI-1640 medium containing 10% FBS and antibiotics.
- Antibodies to Akt (catalog #9272), phospho-Akt (S473, clone 193H12), phosphomTOR (S2448, catalog #2971S), mTOR (catalog #2972), phospho-GSK3 ⁇ (S21/9, catalog #9331S), GSK-3 ⁇ (clone 27C10), phospho-p70S6K (Thr389, catalog #9205S) and p70S6K (catalog #9202) and ⁇ -actin (catalog #4967S) were from Cell Signaling Technology (Danvers, Mass.).
- Antibodies to class I PI3K subunits were as follows: p110 ⁇ (catalog #4255) from Cell Signaling Technology; p110 ⁇ (clone Y384) from Millipore and mouse p110 ⁇ from Santa Cruz Biotechnology (Santa Cruz, Calif.) (catalog #sc-602); p110 ⁇ (clone H1) from Jena Biosciences (Jena, Germany); p110 ⁇ (clone H-219) from Santa Cruz Biotechnology.
- Antibodies to PTEN (clone 6H2.1) were from Cascade Bioscience (Winchester, Mass.).
- antibodies were obtained from BD Biosciences: CD3 ⁇ -Alexa 488 (clone 145-2C11), CD4-APC (clone RM4-5), CD8-PerCP-Cy5.5 (clone 53-6.7), CD90.2-APC (Thy-1.2, clone 53-2.1), Ki67-FITC (clone B56), and Annexin V-APC.
- Antibodies to Bim, phospho-Bad, Bad, and BcIXL were from Cell Signaling Technology (pro-apoptotic sampler kit #9942S).
- shRNA construct for p110 ⁇ (MISSION® shRNA Plasmid DNA; clone ID: NM — 002649.2-4744s1c1; TRC number: TRCN0000196870).
- siRNA constructs for p110 ⁇ ON-TARGET plus SMARTpool #L-003018-00
- p110 ⁇ ON-TARGET plus SMARTpool # L-003019-00
- Dharmacon Thermo Scientific, Waltham, Mass.
- Cryopreserved samples were provided by collaborating institutions in the US (Department of Pediatrics, Columbia Presbyterian Hospital and Departments of Medicine and Pathology, Vanderbilt University), The Netherlands (Erasmus MC-Sophia Children's Hospital), and Italy (Hemato-Oncology Laboratory, Department of Pediatrics, University of Padua). All samples were collected with informed consent and under the supervision of the Medical Ethics Committee of the Erasmus Medical Center, the Columbia University Medical Center Institutional Review Board, the Vanderbilt University Medical Center Institutional Review Board, and the Acute Lymphoblastic Leukemia Strategic Scientific Committee.
- CCRF-CEM cells or shRNA transfected CCRF-CEM cells were followed by cell counting of samples in triplicate using a hemocytometer and trypan blue.
- apoptosis determinations of untransfected or shRNA transfected CCRF-CEMs cells were stained with APC-conjugated Annexin-V (BD Biosciences) in Annexin Binding Buffer (Miltyeni Biotec) and analyzed by flow cytometry.
- cell viability was assessed using the BD Cell Viability kit (BD Biosciences) coupled with the use of fluorescent counting beads as previously described (Armstrong et al., 2009).
- BD Biosciences BD Cell Viability kit coupled with the use of fluorescent counting beads as previously described (Armstrong et al., 2009).
- cells were plated with MS5-DL1 stroma cells, and after 72 hours following drug treatment cells were harvested and stained with an APC-conjugated anti-human CD45 followed by a staining with the above kit according to the
- Thymi, spleens, and lymph nodes harvested from 4-week-old mice were either formalin-fixed and paraffin embedded or snap frozen at ⁇ 80° C. in liquid nitrogen. Hematoxylin-eosin staining was applied on fixed material for morphologic analysis.
- Immunohistochemistry was performed according to an indirect immunoperoxidase technique using the following primary antibodies: B220 (Valter Occhiena, Milan, Italy; 1:10), CD3 (Valter Occhiena; 1:10), CD4-biotinylated (Southern Biotechnology, Birmingham, Ala.; 1:200), CD8 (Valter Occhiena; 1:10), cytokeratin 5 (anti-K5, rabbit polyclonal; Covance, Princeton, N.J.; 1:50), and cytokeratin 8 (anti-K8; Progen Biotechnik, Heidelberg, Germany; 1:20). Specimens were visualized using an Olympus BX60 optical microscope, and images were acquired with a DP70 digital camera (Olympus). Image analysis was performed using analySIS (Soft Imaging System, Weg, Germany).
- CAL-130 is a derivative of IC87114 (Gilead Sciences, Foster City, Calif.), the synthesis of which has been previously described (Sadhu et al., 2003 and Sadhu et al., U.S. Pat. Nos. 6,518,277 and 6,667,300, which are incorporated by reference as if recited in full herein).
- IC 50 values for CAL-130 inhibition of PI3K isoforms were determined in ex-vivo P13 kinase assays using recombinant PI3K.
- a 10-point kinase inhibitory profile was determined with ATP at a concentration consistent with the K m for each enzyme (Puri et al., 2004).
- Thymocytes or lymphocytes were preloaded with Fluo-4 AM (Molecular Probes, Eugene, Oreg.) at 5 ⁇ g/mL for 30 minutes at 37° C., labeled with anti-CD4-APC conjugate (BD Biosciences) to permit gating on this T-cell subset during analysis, and finally washed and resuspended (2 ⁇ 10 6 /mL) in DMEM and 10% FCS. After a baseline was established at quiescence, Ca 2+ flux was induced by the addition in tandem of anti-CD3e (hamster antimouse antibody; BD Biosciences) and the anti-hamster IgG polyclonal antibody (Jackson ImmunoResearch, West Grove, Pa.) for cross-linking.
- Fluo-4 AM Molecular Probes, Eugene, Oreg.
- the resultant flux in Ca 2+ was measured for 5 minutes by flow cytometry, and total flux was established by the addition of ionomycin (0.5 ⁇ g/mL). Drug inhibition of Ca 2+ flux was measured after 30 minute pre-incubation with CAL-130 at room temperature of dye loaded cells. Percentage overall change in Ca 2+ flux is reported as (Ca 2+ flux peak ⁇ Ca 2+ flux baseline /Ca 2+ flux ionomycin ⁇ Ca 2+ flux baseline ) ⁇ 100.
- Protein extracts from thymus homogenates (30 ⁇ g protein per lane) were electrophoresed in polyacrylamide gels (Invitrogen Life Technologies, Carlsbad, Calif.), transferred to a PVDF membrane (Immobilon-P; Millipore, Billerica, Mass.) and incubated overnight (4° C.) with antibodies to p110 ⁇ , p110 ⁇ , p110 ⁇ , p110 ⁇ , or p85 ⁇ (Santa Cruz Biotechnology, Santa Cruz, Calif.) and then with horseradish peroxidase-conjugated secondary antibodies. Bound antibody was detected by chemiluminescence according to the manufacturer's instructions (Amersham Biosciences, Piscataway, N.J.). Membranes were stripped and reblotted with anti-actin antibody (Sigma-Aldrich, St Louis, Mo.) to verify equal loading of protein.
- Cell lysates (from cell lines or thymocytes) were prepared on ice in M-PER Mammalian Protein Extraction reagent (Pierce) containing a cocktail of protease and phosphatase inhibitors (Swat et al., 2006). Equal amounts of total protein from lysates were subjected to SDS-PAGE, transferred to PVDF membrane (Immobilon-P, Millipore), and membranes probed by overnight incubation with appropriate primary antibodies. Bound antibodies were visualized with HRP-conjugated secondary antibodies and ECL chemistry (SuperPico West, Pierce).
- mice received intraperitoneal injections with 150 ⁇ L BrdU solution (10 mg/mL), and BrdU incorporation was analyzed 20 hours after injection.
- Thymocyte suspensions were first surface stained with anti-CD4-PE and anti-CD8-CyC antibodies, fixed, and permeabilized in BD Cytofix/Cytoperm buffer, then washed and refixed.
- cells were treated with DNase solution, washed, stained with anti-BrdU-FITC antibodies, and analyzed by flow cytometry.
- Thymus lobes were obtained from mouse embryos, with embryonic day 0 (E0) considered the day of vaginal plug detection. Fetal thymus organ cultures were used to compare the effects of pharmacologic blockade of p110 ⁇ activity on thymocyte development in WT, p110 ⁇ ⁇ / ⁇ , and p110 ⁇ ⁇ / ⁇ mice. Briefly, 3 to 4 intact thymi were placed on bare filter inserts (transwell, 3- ⁇ m pore size; Corning Costar, Cambridge, Mass.) and then were inserted into wells containing DMEM, 10% FCS supplemented with either p110 ⁇ -specific inhibitor IC87114 (10 ⁇ M) or vehicle control (DMSO), and incubated for 1 week at 37° C. in 5% CO 2 . Thymocyte differentiation was evaluated by flow cytometry.
- CCRF-CEMs were transfected using the Amaxa Human T cell Nucleofector kit (Lonza, Basel, Switzerland) according to the manufacturer's optimized protocol kit for this cell line.
- CCRF-CEM (2 ⁇ 10 6 cells) were transfected with 2 ⁇ g of purified plasmid DNA, and clones were selected by high dilution in puromycin used at a concentration pre-determined by a killing curve. Expression of p110 ⁇ and p110 ⁇ were determined by Western blotting.
- CCRF-CEM 2 ⁇ 10 6 cells
- CCRF-CEM 2 ⁇ 10 6 cells
- cells were diluted to between 1-2 ⁇ 10 5 per ml and grown for further 48 hours for cell counting, flow cytometry and Western blotting.
- Plasma Levels of CAL 130, Glucose and Insulin Plasma Levels of CAL 130, Glucose and Insulin.
- CAL-130 level determinations animals received a single oral dose (10 mg kg ⁇ 1 or 20 mg kg ⁇ 1 ) of inhibitor. Plasma was collected at 0, 2, 4, 8, and 12 hours and subjected to high-performance liquid chromatography-MS/MS (sensitivity 1 ng/mL). The concentration of CAL-130 in plasma was determined using a standard curve (analyte peak area versus concentration) generated with calibration standard pools. Values represent the mean ( ⁇ SD) for four animals per group.
- Plasma glucose and insulin levels were determined following a single oral dose of CAL-130 (10 mg kg ⁇ 1 ). Blood was collected into K 2 EDTA tubes by cardiac puncture at baseline and 0, 2, 4, and 8 hours post-dose, and plasma samples frozen at ⁇ 80° C. until analysis. The insulin and glucose levels were determined by using an Ultra Sensitive Mouse Insulin ELISA Kit (Crystall Chem. Inc.) or WaveSense Presto Blood Glucose Monitoring System (Agamatrix Inc., Boston, Mass.), respectively.
- RNA from cells was isolated using the Qiagen RNeasy Mini Kit (cat#74104) according to the manufacturer's protocol. The isolated total RNA was reverse transcribed using a high capacity cDNA synthesis kit (SuperScript First-Stand Synthesis System, Invitrogen part number 11904-018) according to the manufacturer's protocol.
- PCR reactions were set up following the protocol of USB (hotStart-IT Probe qPCR system Cat#75764).
- Real time relative quantitative PCR was run on ABI7500 with cycling conditions of 50° C. for 2 minutes, 95° C. for 10 minutes, 40 cycles of 95° C. for 15 seconds and 60° C. for 1 minute.
- Data exported from the ABI7500 machine were processed and analyzed using an Excel spread sheet. Briefly, target genes were normalized to the housekeeping gene GAPDH to obtain a ⁇ CT value.
- a Student's t-test was used to determine statistical difference in expression levels with P values ⁇ 0.05 considered significant.
- SW3T3 cells were placed in serum free media (3 hours) and incubated with either CAL-130 or the Pan-PI3K/mTor inhibitor BEZ235 (Selleck Chemicals) for 1 hour prior to stimulation with PDGF (10 ng/ml; Cell Signaling) for 10 minutes at 37° C.
- lysis buffer 50 mM HEPES [N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid], pH 7.4, 150 mM NaCl, 10% glycerol, 1% Triton X-100, 1.5 mM MgCl 2 , 1 mM EGTA [ethylene glycol tetraacetic acid], 100 mM NaF, 1 mM phenylmethylsulfonyl fluoride, 1 mM NaVO 4 , 1 ⁇ g/ml leupeptin, and 1 ⁇ g/ml aprotinin) for 15 minutes on ice.
- Whole-cell lysates were obtained by centrifugation, and the soluble protein analyzed by Western blotting for Akt and P-Akt levels. Quantification was done using the Li-COR Odyssey imaging system.
- CAL-130 Inhibits Proliferation and Induces Apoptosis in CEM/C1 and MOLT-4 Cell Lines.
- PI3K ⁇ inhibitor IC87114 Gilead Sciences, Foster City, Calif.
- AS-650240 Selleck Chemicals
- PI3K ⁇ / ⁇ dual inhibitor CAL-130 Gilead Sciences
- Pan-PI3K/mTor inhibitor BEZ235 Selleck Chemicals
- Blood was obtained from anesthetized p110 ⁇ / ⁇ double knockout mice via cardiac puncture. Platelets were purified from PRP by centrifugation and resuspended to a final concentration of 400,000/ ⁇ l in buffer (145 mM NaCl, 10 mM Hepes, 0.5 mM Na 2 HPO 4 , 5 mM KCl, 2 mM MgCl 2 , 1 mM CaCl 2 , 0.1% glucose, pH 7.4). CAL-130 (1 ⁇ M, 2.5 ⁇ M, or 5 ⁇ M final concentration) or DMSO was added to platelet suspensions 5 minutes prior to inducing aggregation with ADP (25 ⁇ M).
- Mouse fibrinogen (final concentration 200 ⁇ g/ml) was also added to the platelet suspensions just prior to activation as previously described (Magallon et al., 2011). Aggregation was assessed using a Chronolog Lumi-Aggregometer (model 540 VS, Chronolog, Havertown, Pa.). In some experiments, blood was collected 2 hours after administering a single dose of CAL-130 (10 mg kg ⁇ 1 ) or vehicle control and ADP-induced aggregation evaluated.
- CAL-130 (10 ⁇ M) was evaluated for its ability to prevent tagged kinases from interacting with immobilized “bait” ligand (Karaman et al., 2008). Results are reported as “% of control binding”, where lower numbers indicate stronger interactions with the tagged kinase. Values of >35% are considered “no hits”. PI3K ⁇ had the lowest percentage of control binding at 0.2% followed by PI3K ⁇ at 3.2% (See Table 1 below). These values indicate a high probability of a potent interaction. 353 kinases were assessed in the screen (Table 2).
- mice deficient in p110 ⁇ resulted in a significant reduction in thymus size compared with either age-matched WT littermate controls (FIG. 1 Ai-ii) or singly deficient animals ( FIG. 7 ). Consequently, total cell counts in p110 ⁇ ⁇ / ⁇ thymi were significantly reduced compared with WT control (approximately 27-fold) or p110 ⁇ -deficient (approximately 10-fold) animals. No defect in thymus size or total cell count, however, was observed for mice deficient in p110 ⁇ .
- thymic sections from p110 ⁇ ⁇ / ⁇ mice revealed a unique phenotype, that is, a lack of corticomedullary differentiation (FIG. 1 Aiv-v). This was confirmed by the disorganized pattern of K5 + medullary epithelial cells (ECs), a finding consistent with disorders in T-cell development (FIG. 1 Aviii) (Anderson et al., 2001). Moreover, this defect in corticomedullary differentiation was corrected on the reconstitution of p110 ⁇ ⁇ / ⁇ animals with WT fetal liver cells (FLCs), as the results of thymic histologic examination were relatively normal (FIG. 1 Aix).
- FLCs fetal liver cells
- Thymus size and cellularity were also restored to those observed for p110 ⁇ ⁇ / ⁇ mice, which is consistent with previous reports that the activity of this class 1b PI3K is required for thymic growth (FIG. 1 Aiii) (Rodriguez-Borlado et al., 2003). Together, these results suggest a previously unrecognized interplay between class 1a and 1b PI3Ks in maintaining thymic organization and cellularity.
- thymocyte population(s) most affected by the absence of PI3K ⁇ and PI3K ⁇
- flow cytometry analyses were performed to detect markers associated with thymocyte differentiation. Although the total number of CD4 + and CD8 + SP and DP cells were reduced overall, the absence of catalytic subunits had the greatest effect on the number of DP cells, typically the largest population of thymocytes in WT mice ( FIG. 2A ). In contrast, DN cells were the preponderant population in p110 ⁇ ⁇ / ⁇ thymi, as occurs, for instance, in RAG2 ⁇ / ⁇ mice ( FIG. 8 ).
- TCRB selection cannot occur at the DN3 stage, resulting in thymocyte death by apoptosis.
- a percentage of the DN3 population (CD44 ⁇ CD25 + ) increased in thymi of p110 ⁇ ⁇ / ⁇ mice, these cells were still capable of differentiating to the DN4 stage (CD44 ⁇ CD25 ⁇ ) ( FIG. 2B ).
- the populations of DN3 and DN4 thymocytes developing in p110 ⁇ ⁇ / ⁇ mice appeared to be phenotypically different from those of WT mice. Specifically, there appeared to be a continuum of DN3 to DN4 cells expressing gradually lower levels of CD25 + T cells.
- fetal thymic organ cultures excludes the possibility of glucocorticoid-induced thymocyte apoptosis as the primary mechanism for the observed reduction in cell numbers in vivo (Ashwell et al., 2000).
- TCR-induced phosphorylation of the PI3K target Akt/PKB was used as an indirect measure of its activity.
- Akt/PKB TCR-induced phosphorylation of the PI3K target Akt/PKB was used as an indirect measure of its activity.
- thymocytes from p110 ⁇ ⁇ / ⁇ mice were harvested and pretreated with vehicle control or with the p1106-specific inhibitor IC87114 before TCR cross-linking.
- the results indicate that PI3K ⁇ does contribute to antigen receptor-induced activation of Akt/PKB in thymocytes because the phosphorylated form of this protein kinase was not detected in p110 ⁇ ⁇ / ⁇ cells treated with IC87114 under the assay conditions used ( FIG. 5B ).
- the abnormalities observed in T-cell numbers and TCR-signaling associated with a deficiency in p110 ⁇ and p110 ⁇ catalytic subunits was not limited to the thymus but persisted in secondary lymphoid organs.
- a defect in DP cell development appears to have a direct effect on extrathymic T-cell populations.
- the white blood cell count was similar among all genetic phenotypes tested, the total lymphocyte count was significantly reduced in p110 ⁇ ⁇ / ⁇ mice compared with WT littermates (2.9 ⁇ 1.1 K/ ⁇ L vs 6.2 ⁇ 2.1 K/ ⁇ L, respectively; FIG. 6A ). Moreover, this corresponded to a 5-fold reduction in total number of circulating TCRB + cells in the former.
- T-cell populations in peripheral lymph nodes and spleen were diminished, as determined by immunohistology ( FIGS. 6B-C ).
- TCR-induced Ca 2+ flux in mature T cells also relied on the activity of class 1 PI3Ks, mirroring the defect observed in thymocytes. For example, a greater than 45% reduction in Ca 2+ flux in CD4 + T cells from p110 ⁇ ⁇ / ⁇ animals compared with WT littermates was observed ( FIG. 6D-E ).
- Class 1 PI3Ks are essential for supporting innate and adaptive immune responses. By contrast, previous studies suggest they play a more limited role in thymocyte development and differentiation. Here, a novel defect in thymocyte development in mice that is dependent on the activities of 2 distinct subclasses of PI3Ks is disclosed. Genetic deletion of p110 ⁇ , in conjunction with its gamma counterpart, had a dramatic and unanticipated effect on thymus size, cellularity, and architecture. In particular, the combined absence of these 2 catalytic subunits resulted in a more than 4-fold reduction in the percentage and a 10- to 30-fold reduction in total numbers of cortical CD4 + CD8 + DP thymocytes compared with WT littermates.
- DP thymocytes Depletion of DP cells in p110 ⁇ ⁇ / ⁇ thymi was accompanied by a corresponding compensatory increase in percentages, but not total numbers, of DN thymocytes and a paucity in the number of mature CD4 + and CD8 + SP T cells found in blood and secondary lymphoid organs.
- the reduction in DP thymocytes is of importance as it relates to T-lymphocyte production because there may be insufficient quantities of this subset in p110 ⁇ ⁇ / ⁇ thymi to yield normal numbers of mature SP cells compared with WT animals (1.0 ⁇ 10 6 ⁇ 0.3 vs 109.6 ⁇ 10 6 ⁇ 22.6 DP cells, respectively).
- PI3K ⁇ and PI3K ⁇ are critical to the survival of DP thymocytes in vivo. Indeed, given the inherent susceptibility of DP thymocytes to programmed cell death, presumably because of the down-regulation of the anti-apoptotic Bcl-2 protein at this stage of development, this population would be particularly vulnerable to the loss of survival signals generated by class 1 PI3Ks. In this context, an anti-apoptotic role has been indicated by the immunologic consequences of constitutive PI3K signaling that occurs in the absence of the tumor-suppressor gene PTEN, a phosphatase that converts PIP3 to PIP2.
- PI3K ⁇ and PI3K ⁇ are involved in maintaining DP thymocyte survival, it is conceivable that they could participate in TCRB-selection.
- TCRB chain gene rearrangement and expression reaches completion at the DN3 stage, permitting the formation of the pre-TCR complex.
- DN3 thymocytes can activate several signaling pathways, including Ick/fyn and ZAP-70/Syk tyrosine kinases, SLP-76 and LAT linker proteins, Vav-family GEFs, and PLC ⁇ 1 phospholipase, that collectively mediate the transition of these cells to the CD4 + CD8 + DP stage (Xu et al., 1995; Collins et al., 1997; Jordan et al., 2003; Kong et al., 1998; Reynolds et al., 2002). Consequently, mice lacking structural or signaling components of the pre-TCR complex exhibit a developmental block at the DN3 stage.
- PI3K activity has been implicated in Vav and PLC ⁇ activation and Ca 2+ flux through direct (PIP3 binding to PH domains) and indirect (induction of Tec-family kinases) mechanisms (Okkenhaug et al., 2003; Okkenhaug et al., 2004).
- p110 ⁇ ⁇ / ⁇ thymocytes show impaired TCR-mediated Ca 2+ flux in vitro.
- a deficiency in p110 ⁇ and p110 ⁇ could result in the perturbation of DN to DP checkpoint through defective pre-TCR signaling.
- mice lacking both PI3K ⁇ and PI3K ⁇ can still generate DP thymocytes at rates similar to those in WT mice, as indicated by BrdU-incorporation experiments.
- the populations of DN3 and DN4 thymocytes in p110 ⁇ ⁇ / ⁇ mice were phenotypically different from those of WT mice because there appeared to be a continuum of DN3 to DN4 cells expressing gradually lower levels of CD25 + T cells in the former.
- the mechanism for this abnormality is not completely understood, the most plausible explanation is that the gradual loss of CD25 + cells simply mirrors Bcl-2 down-regulation and the subsequent necessity for class 1 PI3K-dependent survival signals.
- telomere kinases are involved in T cells, because PI3Ks and Tec kinases are intricately linked in TCR-mediated signaling. For example, Tec kinases are required for the regulation of PLC ⁇ activity and Ca 2+ signaling, an event that involves PI3K ⁇ (Okhenhaug et al., 2002).
- Tec tyrosine kinase family member in response to PI3K ⁇ activation or other class 1a isoforms, a Tec tyrosine kinase family member will become localized at the plasma membrane through interactions with PIP3, which in turn may recruit a heterotrimeric G-protein that could activate p110 ⁇ and thus enhance PIP3 production.
- T cell numbers were not limited to the thymus as they were also seen in the peripheral blood of mice deficient in PI3K activity ( FIG. 11 ).
- Total WBC counts were relatively unaffected; however, the number of circulating T cells as defined by CD3 positivity was reduced in ⁇ ko / ⁇ het and ⁇ ko / ⁇ ko mice (2.2-fold and 5.9-fold as compared to WT, respectively). No such reduction was seen in ⁇ het / ⁇ ko mice, despite a significant decrease in DP thymocytes ( FIG. 12 ). Still, the tissue organization and structure of peripheral lymph nodes and spleen did not seem to exhibit any anatomical defects in all mice except ⁇ ko / ⁇ ko animals ( FIG. 13 ).
- PI3K ⁇ appears to play a more important role in this process than that of PI3K ⁇ , because peripheral blood from ⁇ het / ⁇ ko to mice did not exhibit as significant a reduction in the number of circulating T cells as their ⁇ ko / ⁇ het counterpart. Blood and tissues from animals with 50% activity in both p110 isoforms showed no major changes as compared to WT.
- the order of genotypes displaying the least effect to most effect on T cells is as follows: WT ⁇ het / ⁇ het ⁇ het / ⁇ ko ⁇ ko / ⁇ het ⁇ ko / ⁇ ko ko .
- PI3K ⁇ or PI3K ⁇ can Support Malignant Transformation of T Cells
- T cell progenitors Deletion of the tumor suppressor gene PTEN in T cell progenitors drives the malignant transformation of these cells within the thymus of mice (Suzuki et al., 2001; Hagenbeek and Spits, 2008; Liu et al., 2010). Moreover, the resulting tumors possess similar genetic and biochemical aberrations associated with a subset of patients with T-ALL including hyperactivation of the PI3K/Akt signaling pathway (Maser et al., 2007; Guo et al., 2008).
- PI3K ⁇ and PI3K ⁇ play a role in T cell development, their contribution to tumor formation was assessed by crossing mice containing PTEN alleles floxed by the loxP Cre excision sites with Lck-cre transgenic animals (Lck/Pten fl/fl ) alone or together with those lacking p110 ⁇ (encoded by Pik3cg) and/or p110 ⁇ (encoded by Pik3cd) catalytic subunits. Consistent with previous studies, >85% of Lck/Pten fl/fl mice develop T-ALL and eventually succumb to the disease (median survival of 140 days), which was confirmed by flow cytometric analysis ( FIGS. 14A and 14B ).
- tumorigenesis in the context of a deficiency of PTEN in T cell progenitors appears to be critically dependent on PI3K ⁇ and PI3K ⁇ . This is evidenced by the marked delay in the onset of disease and increased survival of Lck/Pten fl/fl ;Pik3cg ⁇ / ⁇ ;pik3cd ⁇ / ⁇ triple mutant mice (TKO) as ⁇ 20% of animals succumb to T-ALL by 220 days.
- FIG. 15A Further evidence demonstrating that it is the unleashed activities of PI3K ⁇ and PI3K ⁇ that provide the signals necessary for the development of T-ALL is suggested by the continued reduction in thymus size and cellularity in 6 week old TKO mice ( FIG. 15A ). Although absence of PTEN should permit unrestricted activity of all four class I PI3K isoforms, it appears that PI3K ⁇ and PI3K ⁇ cannot adequately compensate for their gamma and delta counterparts as evidenced by the persistent diminution in the total number of CD4 + CD8 + double positive thymocyte population and near basal levels of phosphorylated Akt (Ser473) as compared to mice deficient in PTEN alone ( FIGS. 15A and 15B ).
- FIGS. 15C and 15D Cellular alterations associated with p110 ⁇ / ⁇ double deficiency also persisted in the peripheral blood and in secondary lymphoid organs of TKO mice and included a paucity of CD3 + T cells.
- PI3K ⁇ and PI3K ⁇ are also required for tumor maintenance and can be targeted therapeutically in T-ALL.
- This small molecule was designated CAL-130 ( FIG. 16A ).
- IC 50 values of this compound were 1.3 nM and 6.1 nM for p110 ⁇ and p110 ⁇ , respectively, as compared to 115 nM and 56 nM for p110 ⁇ and p110 ⁇ .
- this small molecule does not inhibit additional intracellular signaling pathways (i.e. p38 mitogen-activated protein kinase or insulin receptor tyrosine kinase) that are critical for general cell function and survival (Tables 1 and 2).
- additional intracellular signaling pathways i.e. p38 mitogen-activated protein kinase or insulin receptor tyrosine kinase
- CAL-130 can block the activities of both PI3K ⁇ and PI3K ⁇ in thymocytes, its ability to prevent phosphorylation of Akt (Ser473) and calcium flux in response to TCR-cross-linking were evaluated.
- the combined activities of these two class I PI3K isoforms are necessary for phosphorylation of this protein kinase in this cell population (Swat et al., 2006).
- CAL-130 was also found to have a limited ability to impair PDGF-induced activation of PI3K ⁇ as compared to the pan-PI3K/mTOR inhibitor BEZ235 ( FIG. 21B ). Similarly, platelets harvested from Pik3cd ⁇ / ⁇ ;pik3cd ⁇ / ⁇ mice 2 hours post administration of CAL-130 had no obvious defect in ADP-mediated platelet aggregation, a process known to rely predominantly on PI3K ⁇ ( FIG. 21C ) (Jackson et al., 2005).
- both CD4 single positive and CD4/CD8 double positive T-ALL responded to CAL-130, which corresponded with an increase in apoptosis detected as sub-G0 population after propidium iodide (PI) staining on days 4 through 7.
- PI propidium iodide
- T-ALL cell lines typically have multiple mutations including but not limited to Notch1 and PTEN (Palomero et al., 2007). Moreover, this particular cell line also has reduced sensitivity to conventional chemotherapies used in the treatment of T-ALL such as dexamethasone. Incubation of cultured cells with CAL-130, but not inhibitors of either PI3K ⁇ or PI3K ⁇ , prevented proliferation and promoted apoptosis within 24 hours, which persisted over 4 days of treatment ( FIGS. 18A , 18 B, and 23 A- 23 J).
- the PI3K/Akt signaling pathway can play a major role in cell cycle progression and growth of tumors by regulating the activation state of the downstream targets such as glycogen synthase kinase-3 ⁇ (GSK3 ⁇ ) and mTOR (Schmelzle and Hall, 2000; Cohen and Frame, 2001).
- GSK3 ⁇ glycogen synthase kinase-3 ⁇
- mTOR Schomelzle and Hall, 2000; Cohen and Frame, 2001.
- PI3K/Akt mediated phosphorylation suppresses the function of the former and promotes the activity of the latter.
- Tumor cell survival is largely mediated by the ability of this pathway to inactivate proapoptotic effectors such as the BH3-only pro-apoptotic protein BAD and to repress the expression of BIM, both of which participate in the mitochondria-dependent cell death pathway (Strasser et al., 2000; Duronio, 2008). Therefore, the ability of CAL-130 treatment to interfere with such events was examined. Indeed, CCRF-CEM cells exposed to increasing concentration of drug exhibited a corresponding reduction and complete abrogation of Akt (Ser473) phosphorylation at 2.5 ⁇ M ( FIG. 19A ).
- CAL-130 To assess the in vivo relevance of these observations, the ability of CAL-130 to prevent the proliferation of CCRF-CEM cells implanted subcutaneously or to prolong the survival of NOD.Cg-Prkdc scid II2rg tm1Wjl /Sz that received these cells intravenously was evaluated.
- luciferase expressing CCRF-CEM cells were injected into the flanks of immunodeficient mice and allowed to grow for 1 week before administering vehicle control or inhibitor (10 mg kg ⁇ 1 every 8 hours) for a total of 4 days. In the latter, treatment commenced 3 days post-injection of tumor cells for a total of 7 days.
- Bioimaging of subcutaneous tumors revealed a 5-fold difference in luminescence in CAL-130 treated versus vehicle control treated animals ( FIG. 19C ). This translated into an increase in median survival time for treated animals with systemic disease of 35 days versus 23 days for mice that received vehicle control alone ( FIG. 19D ).
- T-ALL sensitivity to a PI3K ⁇ / ⁇ dual inhibitor might correlate better with the degree of Akt phosphorylation rather than with PTEN expression.
- human tumors did not appear to over-express any of the four class I PIK3C isoforms ( FIG. 20D ).
- Oncogenesis is a complex and multigenic process that often involves constitutive activation of the PI3K signaling pathway. Most notably are the gain-of-function mutations frequently found in PIK3CA, the gene that encodes for the p110 ⁇ catalytic subunit, and genetic alterations that lead to the inactivation of the tumor suppressor gene Pten (Samuels et al., 2004; Zunder et al., 2008; Sulis and Parsons, 2003; Salmena et al., 2008). In the latter scenario, the possibility exists that the unregulated activity of any of the four class I PI3K isoforms could drive tumor development.
- pharmacological blockade of both p110 ⁇ / ⁇ dramatically impacted on tumor cell proliferation and survival as demonstrated in CAL-130 treatment of diseased Lck/Pten fl/fl mice, IC87114 treatment of diseased Lck/Pten fl/fl Pik3cg ⁇ / ⁇ mice as well as CAL-130 treatment of PTEN null human T-ALL primary tumors or tumor cell lines; no such effects were observed with siRNA knockdown of either p110 ⁇ or p110 ⁇ , and selective blockade of PI3K ⁇ with IC87114 was ineffective in reducing the viability of primary human T-ALL samples.
- PI3K ⁇ and PI3K ⁇ in combination with conventional chemotherapies may be of particular clinical utility in such individuals as they are more likely to fail induction chemotherapy and relapse (Gutierrez et al., 2009; Jotta et al., 2010).
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Biophysics (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Oncology (AREA)
- Virology (AREA)
- Plant Pathology (AREA)
- Hospice & Palliative Care (AREA)
- Tropical Medicine & Parasitology (AREA)
- Toxicology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
The present invention provides, inter alia, methods for treating, preventing, or ameliorating the effects of a lymphoid malignancy, such as those associated with a mutated phosphatase and tensin homolog (PTEN) gene, or T-cell acute lymphoblastic leukemia (T-ALL). These methods include administering to a subject an effective amount of a phosphoinositide 3-kinase-delta (PI3Kδ) inhibitor and a phosphoinositide 3-kinase-gamma (PI3Kγ) inhibitor. The present invention also provides pharmaceutical compositions for treating the effects of a lymphoid malignancy. This invention further provides a method for identifying a subject who may benefit from co-treatment with a PI3Kδ inhibitor and a PI3Kγ inhibitor. This method includes determining from a sample of the subject whether the subject has a mutated PTEN gene. Additionally, this invention provides methods for identifying a compound that has both PI3Kδ and PI3Kγ inhibitory activity.
Description
- The present invention claims benefit to U.S. provisional application Ser. No. 61/450,341 filed Mar. 8, 2011, the entire contents of which are incorporated by reference.
- This invention was made with government support under grant no. PR093714 from the Department of Defense. The government has certain rights in the invention.
- The present invention relates to, inter alia, methods and pharmaceutical compositions to treat, prevent, or ameliorate the effects of a lymphoid malignancy, such as T-cell acute lymphoblastic leukemia (T-ALL) or T-cell acute lymphoblastic lymphoma. Methods for identifying a subject who may benefit from co-treatment with a phosphoinositide 3-kinase-delta (PI3Kδ) inhibitor and a phosphoinositide 3-kinase-gamma (PI3Kγ) inhibitor and for identifying a compound that has both PI3Kδ and PI3Kγ inhibitory activity are also provided.
- Thymocyte development relies on a series of intracellular signaling events that regulate cell differentiation, proliferation, and survival. This process can be followed based on the presence or absence of cell surface markers such as CD4, CD8, CD25, and CD44 (Shortman et al.; 1996, Germain, 2002; Zuniga-Pflucker, 2004). Early thymocyte progenitors lack CD4 and CD8 expression and are termed double-negative (DN) cells. The DN stage is subdivided into 4 categories. The DN1 stage is characterized by surface expression of CD44 (CD25−CD44+). Maturation of this earliest thymocyte subset then proceeds from the DN2 stage (CD25+CD44+) to the DN3 stage (CD25+CD44−) and finally to the DN4 stage (CD25−CD44−). The first regulatory checkpoint in thymocyte development, termed β-selection, occurs at the DN3 stage. This involves T cell receptor β (TCRB) gene rearrangement and expression, which permits the subsequent formation of the pre-TCR complex (Dudley et al., 1994; Borowski et al., 2002). Thymocytes unable to generate a functionally rearranged TCRB gene die by apoptosis (Falk et al., 2001; Michie et al., 2002). Subsequently, signals provided by the pre-T cell receptor (pre-TCR) and local microenvironment result in the proliferation and differentiation of DN thymocytes to the CD4+CD8+ double positive (DP) stage. A small subset of these cells ultimately bear a mature TCRαβ−CD3 complex and then further differentiate into CD4+ or CD8+ single-positive (SP) T cells.
- In addition to TCRB selection, thymocyte development is also shaped by the induction or inhibition of apoptosis. Although many different molecules can regulate this process, the proto-oncogene Bcl-2 appears to have a protective effect with regard to thymocyte survival (Kroemer, 1997; Williams et al., 1998). This is supported by the observation that thymocytes in mice expressing a Bcl2 transgene are less prone to dexamethasone-induced cell death (Sentman et al., 1991; Strasser et al., 1991). Moreover, a strong correlation exists between Bcl-2 expression and sensitivity of specific thymocyte populations to apoptotic signals induced not only through stimulation of the TCR and coregulatory molecules, such as CD28, but also by cAMP and corticosteroids (McKean, 2001). For instance, most CD4+CD8+ DP thymocytes do not express Bcl-2, which may contribute to their relatively short lifespan of 3 to 4 days and to their increased sensitivity to various apoptotic stimuli, unlike their CD4+ and CD8+ SP counterparts (Gratiot-Deans et al., 1993; Linette et al., 1994; .Punt et al., 1995). Thus, diminished Bcl-2 expression in DP cells appears to be the result of specific down-regulation, rendering these cells more amenable to thymic selection.
-
Class 1 phosphoinositide 3-kinases (PI3Ks) can also provide survival signals (Yao et al., 1995; Shelton et al., 2004). Structurally, they exist as heterodimeric complexes, consisting of a p110 catalytic (classified as α, β, γ, or δ) and a p50, p55, p85, or p101 regulatory subunit (Wymann et al., 1998; Vanhaesebroeck et al., 1997). These enzymes can be further divided into 2 subclasses (1a and 1b) based on their mechanism of activation. Class 1a contains p110a, p110β, and p110δ, each of which associates with a p85 regulatory protein and is activated directly or indirectly on engagement of several cell surface receptors, including TCR (Wymann et al., 1998; Vanhaesebroeck et al., 1997; Cantley et al., 2002). In contrast, class 1b consists solely of p110γ, which associates with the p101 adaptor molecule and is stimulated by G protein-coupled receptors. In either case, both subclasses transmit signals by generating a common second messenger known as phosphatidylinositol (3,4,5) trisphosphate (PIP3), which remains tethered to the lipid bilayer of the cell membrane. This results in the recruitment of the intracellular effector molecules PDK-1 and Akt/PBK that bind PIP3 through pleckstrin homology (PH) domains. Phosphorylation of Akt/PBK by PDK-1 results in its activation, which then affects cell survival by direct targeting of the proapoptotic proteins BAD and FoxO or by indirect influence on the transcriptional response to apoptotic stimuli (Franke et al., 2003; Downward, 2004). To date, limited information exists regarding the role of PI3K in thymocyte survival. - Evidence is mounting that
class 1 PI3K may participate in thymocyte differentiation. For instance, mice lacking p110γ have reduced thymus size and cellularity and altered percentages of DN and DP thymocytes (Sasaki et al., 2000). Further characterization of this defect suggests partial impairment in pre-TCR-dependent DN-to-DP transition does not affect T-cell numbers in blood or secondary lymphoid organs (Rodriguez-Borlado et al., 2003). Moreover, no abnormalities were reported in TCR-mediated Ca2+ flux, tyrosine phosphorylation, or activation of tyrosine kinases in T cells; results that have not been confirmed in thymocytes. T-cell sensitivity to typical apoptotic stimuli, such as γ irradiation or dexamethasone, also remained unaltered, although proliferation and IL-2 secretion were impaired. In contrast to p110γ−/− mice, the catalytic inactivation of p110δ did not perturb thymus size, cellularity, or thymocyte development but did impair antigen receptor signaling and proliferation of T cells in vitro (Okkenhaug et al., 2002). Similar observations were reported for genetic deletion of the p85 regulatory subunit, which affects the activity of all class 1a PI3Ks (Suzuki et al., 1999; Fruman et al., 1999). Thus, it appears that PI3Kδ is not required for thymic development. This may be the consequence of a lack of function, given that it is not known whether p110δ is expressed in developing thymocytes, or of residual PI3K activity due to other class 1a isoforms or perhaps by p110γ. Class 1a and 1b PI3Ks work in concert to regulate specific cellular processes. In particular, a deficiency in p110γ and p110δ catalytic subunits in venular endothelium had an additive effect in terms of the ability of this cell type to recruit neutrophils in response to cytokine stimulation (Puri et al., 2005). - Constitutive activation of the PI3K/Akt signal transduction pathway is a common event in cancer, promoting the growth, proliferation, and survival of various types of tumors including T-cell acute lymphoblastic leukemia (T-ALL) (Yuan and Cantley, 2008; Zhao and Vogt, 2008; Gutierrez et al., 2009; Palomero et al., 2008; Silva et al., 2008; Larson Gedman et al., 2009). As set forth above, class I PI3Ks are heterodimeric molecules composed of a regulatory and a catalytic subunit, the latter consisting of four unique isoforms that include p110α, p110β, p110γ, and p110δ. Each is capable of regulating distinct biological functions in normal tissues and cellular compartments. However, some overlap in activity does exist, as is the case for thymocytes where the combined activities of PI3Kγ and PI3Kδ contribute to cellular processes required for the generation and function of mature T cells (Webb et al., 2005; Swat et al., 2006; Ji et al., 2007). It is not clear, what role, if any, PI3Kγ and PI3Kδ play in malignant transformation and tumor cell survival.
- Previously, it has been reported that p110a is involved in oncogenesis, because function-enhancing mutations in this catalytic subunit are found in many cancers of solid organs (Samuels et al., 2004; Zunder et al., 2008). In contrast, cancer-specific mutations have yet to be identified for the other p110 isoforms. That said, over-expression of p110β, p110γ, or p110δ in an in vitro culture system induces cellular transformation (Kang et al., 2006). Moreover, increased or preferential expression of p110γ and p110δ has been described in chronic and acute forms of myeloid leukemia, respectively (Hickey and Cotter, 2005; Sujobert et al., 2005). However, over-expression of specific PI3K isoforms has not been reported for T-ALL and mutations in PI3Kα are rare, thus suggesting that they are not a major contributor to pathogenesis (Gutierrez et al., 2009; Lo et al., 2009).
- PTEN is a nonredundant plasma-membrane phosphatase that is responsible for counteracting the potential cancer-promoting activities of class I PI3K (Sulis and Parsons, 2003; Salmena et al., 2008). It does so by limiting the levels of PIP3 generated in response to the activation of these lipid kinases. Clinically, mutations in the Pten tumor suppressor gene are common in multiple types of human cancer, resulting in unbridled PI3K/Akt signaling as well as conferring resistance to chemotherapeutic agents (Carnero et al., 2008; Huang et al., 2009). In fact, Gutierrez et al. (2009) have reported a loss of PTEN function due to mutations or deletions in approximately 40% of primary T-ALL samples, suggesting that hyperactivation of the PI3K/Akt signaling pathway is a common feature of this hematological malignancy.
- Accordingly, there is a need to determine whether these non-classical oncogenes contribute to leukemogenesis and whether it is possible to exploit tumor cell “addiction” to the activity of distinct PI3K isoforms, thus permitting the rational design of a chemotherapeutic agent to treat T-ALL. This invention is directed to meeting these and other needs.
- One embodiment of the present invention is a method for treating, preventing, or ameliorating the effects of a lymphoid malignancy. This method comprises administering to a subject in need thereof an effective amount of a phosphoinositide 3-kinase-delta (PI3Kδ) inhibitor and a phosphoinositide 3-kinase-gamma (PI3Kγ) inhibitor.
- Another embodiment of the present invention is a method for treating, preventing, or ameliorating the effects of a lymphoid malignancy associated with a mutated phosphatase and tensin homolog (PTEN) gene in a subject. This method comprises administering to the subject an effective amount of a PI3Kδ inhibitor and a PI3Kγ inhibitor.
- Yet another embodiment of the present invention is a pharmaceutical composition for treating the effects of a lymphoid malignancy. This pharmaceutical composition comprises a pharmaceutically acceptable carrier and an effective amount of a PI3Kδ inhibitor and a PI3Kγ inhibitor.
- An additional embodiment of the present invention is a method for treating a subject suffering from T-ALL. This method comprises administering to the subject an effective amount of a pharmaceutical composition comprising a PI3Kδ inhibitor and a PI3Kγ inhibitor.
- Another embodiment of the present invention is a method for lowering tumor burden in a subject suffering from T-ALL. This method comprises administering to the subject an effective amount of a pharmaceutical composition comprising a PI3Kδ inhibitor and a PI3Kγ inhibitor.
- Yet another embodiment of the present invention is a method for identifying a subject who may benefit from co-treatment with a PI3Kδ inhibitor and a PI3Kγ inhibitor. This method comprises determining from a sample of the subject whether the subject has a mutated PTEN gene, wherein the presence of the mutated PTEN gene is indicative of a subject who may benefit from co-treatment with a PI3Kδ inhibitor and a PI3Kγ inhibitor.
- An additional embodiment of the present invention is a method for identifying a compound that has both PI3Kδ and PI3Kγ inhibitory activity. This method comprises:
-
- (a) contacting a cell with the compound; and
- (b) determining whether the compound modulates an antigen receptor-induced activity in the cell;
wherein a compound that modulates the antigen receptor-induced activity has both PI3Kδ and PI3Kγ inhibitory activity.
-
FIG. 1 shows the role ofclass 1 PI3Ks in supporting thymic architecture and cellularity. Representative micrographs depicting thymus size and hematoxylin and eosin-stained sections from wildtype (WT) control (i,iv) and p110γδ−/− (ii,v) mice and from p110γδ−/− animals reconstituted with WT fetal liver cells (iii,vi). Delineation of the thymic medulla in these animals (vii-ix) was performed by immunoperoxidase detection of Keratin5+ epithelial cells counterstained with Meyer hematoxylin. Cortical and medullary regions in the thymus of p110γδ−/− mice are indistinguishable, unlike those of WT and reconstituted animals. (Objective, magnification 40×4 x/numerical aperture (“NA”) 0.16) in panels iv to vi (scale bar, 500 μm) and 200×(objective, 20×/0.7 NA) in panels vii to ix (scale bar, 100 μm). TC indicates thymic cortex; TM, thymic medulla. Data are representative of at least 3 animals for each genotype depicted. -
FIG. 2 shows the role of PI3Kδ and PI3Kγ in thymocyte development. Flow cytometry analysis of expression of various markers are shown: CD4 and CD8 on total thymocyte population (FIG. 2A ), CD25 and CD44 on DN thymocytes (FIG. 2B ), intracellular TCRB in CD25+ DN thymocytes (FIG. 2C ), and TCRB on the surfaces of DP (FIG. 2D ) and CD8+ (FIG. 2E ) thymocytes. Percentage of gated cells in a particular quadrant is indicated. Data are representative of 3 independent experiments. Total thymocyte counts are in bold (mean±SE; n=5). -
FIG. 3 shows the contribution of p110γ and p110δ activity in thymocyte development in vitro.FIG. 3A shows representative flow cytometry profiles of fetal thymic organ cultures harvested from day 14.5 WT, p110δ−/−, and p110γ−/− embryos that were treated with either vehicle control or p110δ-specific inhibitor IC87114 (10 μM) for 1 week.FIG. 3B shows the percentage reduction in DP thymocyte population after treatment with IC87114 compared with control treatment (mean±SE; n=3). -
FIG. 4 shows that DP thymocytes lacking p110γ and p110δ are prone to apoptosis.FIG. 4A shows representative flow cytometry profiles of annexin V staining of the PI− population of DP thymocytes live-gated from WT control and p110γδ−/− mice (n=3). PI staining of the live-gated population of thymocytes was performed first to identify and thus exclude necrotic cells as defined by forward- and side-scatter parameters. Gates in the CD4+ and CD8+ panels indicate the DP thymocyte population gated for analysis of annexin V staining (histogram, which was exclusive of the PI+ staining, as stated).FIG. 4B shows density plots of DP thymocytes harvested from WT control and p110γδ−/− mice after treatment with BrdU. Representative histograms depict the percentages of DP cells that stained with BrdU (n=3 for each group). -
FIG. 5 shows the evaluation for p110δ protein and activity in thymocytes.FIG. 5A shows representative immunoblots of class 1a and 1b p110 subunits expressed in thymocytes harvested from WT control and p110γδ−/− mice. Western blot of β-actin illustrates equal loading of proteins.FIG. 5B shows the detection of Akt/PKB in Western blots of total lysates from p110γ−/− thymocytes treated with vehicle control or the p110δ-specific inhibitor IC87114 (10 μM) before TCR cross-linking. (C) Ca2+ flux in CD4+-gated thymocytes in WT control, p110γ−/−, p110δ−/−, and p110γδ−/− mice in response to TCR cross-linking. Ca2+ flux in CD4+CD8+-sorted thymocytes from WT control and p110γδ−/− animals is shown for comparison (inset). Data are representative of 3 to 4 separate experiments. -
FIG. 6 shows the effect of p110δ and p110γ deletion on extrathymic T cells.FIG. 6A shows cell counts and flow cytometry analysis of surface expression of TCRB, which were performed on whole blood and isolated peripheral blood mononuclear cells (PBMCs), respectively. CD4 and CD8 expression was evaluated on total cells harvested from peripheral lymph nodes (FIG. 6B ) and spleens (FIG. 6C ) of WT control and p110γδ−/−.FIGS. 6B and 6C show histologic examination of hematoxylin and eosin-stained lymph node and splenic sections, respectively (objective magnifications each 4×). Delineation of the T-cell population by immunoperoxidase detection of CD3+ counterstained with Meyer hematoxylin was also performed (100×; scale bar, 100 μm). Ca2+ flux in CD4+-gated T cells from WT control (FIGS. 6D-E ), p110γ−/− (FIG. 6E ), p110δ−/− (FIG. 6E ), and p110γδ−/− (FIGS. 6D-E ) mice in response to TCR cross-linking. Values depicted represent the mean±SE for 3 independent experiments performed in duplicate or triplicate. *Statistical significance compared with WT control (P<0.05). -
FIG. 7 shows that absence of p110γ or p110δ alone has no apparent effect on the percentage of DP thymocytes or TCR-selection.FIG. 7A shows thymic size and architecture in four week old WT, p110γ−/−, and p110δ−/− mice. Histological examination of H&E stained thymic sections from these animals are shown. Data are representative of a minimum of three animals for each genetic background.FIGS. 7B-E show representative flow cytometric analysis of expression of CD4 and CD8 SP and DP thymocytes (FIG. 7B ), DN (FIG. 7C ), and TCRB+ DP (FIG. 7D ) and CD8+ SP subsets (FIG. 7E ). Data are representative of three independent experiments. -
FIG. 8 shows that representative flow cytometric analysis of expression of CD4 and CD8 SP and DP (FIG. 8A ) and DN (FIG. 8B ) thymocyte subsets from WT, RAG2−/−, and p110γδ−/− thymi. Data are representative of two independent experiments. -
FIG. 9 shows the effect of the genetic deletion of p110γ and p110δ on thymus size and cellularity. Top row shows the size and cell counts of thymi of different PI3K genotypes. Bottom row shows the micrographs of hematoxylin and eosin-stained thymi. (Objective, magnification 40×4×/NA). -
FIG. 10 shows the effect of genetic deletion of p110γ and p110δ on CD4/CD8 DP thymocyte population.FIG. 10A shows the thymocyte population expression of CD4 and CD8 as determined by flow cytometry. Percent expression is in bold.FIG. 10B shows the total double positive (CD4/CD8 expressing) cell count (mean±SD). Data indicates an average of 4 independent experiments. -
FIG. 11 shows the effect of genetic deletion of p110γ and p110δ on peripheral blood WBC counts. Total WBC and lymphocyte counts for each genotype (mean±SD) are shown. Data indicates an average of 3 independent experiments. -
FIG. 12 shows the effect of genetic deletion of p110γ and p110δ on CD3 cell count in peripheral blood.FIG. 12A shows a representative histogram of a CD3 population in peripheral blood.FIG. 12B shows the percent CD3 population in peripheral blood. Data indicates 4 independent experiments. -
FIG. 13 shows the effect of genetic deletion of p110γ and p110δ on size and cellularity of spleen and lymph nodes. Top row shows the micrographs of hematoxylin and eosin-stained peripheral lymph node. (Objective, magnification 40×4×/NA 0.16). Bottom row shows the micrographs of hematoxylin and eosin-stained spleen. (Objective, magnification 40×4×/NA 0.16). -
FIG. 14 shows that PI3Kγ or PI3Kδ can support leukemogenesis in the context of PTEN deficiency.FIG. 14A shows Kaplan-Meyer survival curves demonstrating the requirement for PI3Kγ and PI3Kδ activity in the development of PTEN-null T-ALL. TKO indicates Lck/Ptenfl/fl;Pik3cg−/−;pik3cd−/− triple mutant mice. All animals were followed for a period of 7 months.FIG. 14B shows representative flow cytometric profiles of peripheral blood from diseased mice lacking p110γ or p110δ in the absence of PTEN in T cell progenitors. Forward scatter (FSC) and Ki67 staining are indicators of cell size and proliferation, respectively. Thy 1.2 expression identifies T-lineage cells.FIG. 14C shows representative immunoblots depicting p110γ, p110δ, and PTEN expression as well as Akt activation state (phosphorylation of Ser473) in thymic lysates from the same animals.FIG. 14D shows a quantitative RT-PCR analysis of Pik3c (a/b/g/d) transcript levels in WT thymocytes (n=5) and tumors (n=5) harvested from Lck/Ptenfl/fl mice. Error bars represent the standard deviation (±SD). The difference in Pik3C expression levels between the WT thymocytes and tumor cells were statistically significant (*P<0.05) using a Student's test. -
FIG. 15 shows that persistence of cellular and structural defects in thymi is associated with a combined deletion of p110γ/δ and PTEN.FIG. 15A shows hematoxylin/eosin (H&E) staining and flow cytometric analyses of thymi derived from 6 week old mice lacking both p110γ and p110δ catalytic subunits in the presence or absence of PTEN. The panels are representative of data from five animals in each group.FIG. 15B shows immunoblots assessing for Akt phosphorylation (Ser473) and PTEN levels in thymocyte lysates.FIG. 15C shows the number of WBC and T cell subsets in the peripheral blood of the same animals. Data represent the mean±SD. *P>0.05 for Pik3cg−/−;pik3cd−/− versus TKO **P<0.01 for WT versus TKO.FIG. 15D shows representative micrographs of H&E-stained peripheral lymph nodes and spleen, andFIG. 15E shows representative flow cytometry plots of blood and spleen from triple mutant animals. (n=5 mice per genotype). Histological identification of T cells was by immunoperoxidase detection of CD3. Bars correspond to 200 μm in secondary lymphoid organs and to 500 μm in thymi. Data represent the mean±SD. -
FIG. 16 shows the inhibitory profile of CAL-130.FIG. 16A shows the chemical structure of CAL-130.FIGS. 16B and 16C show the effect of the inhibitor on Akt phosphorylation (Ser473) or Ca2+ flux in purified thymocytes from wild type animals in response to TCR cross-linking, respectively. Data are representative of 3 separate experiments.FIG. 16D shows plasma concentrations of CAL-130 in mice after a single oral dose (n=4).FIGS. 16E and 16F show the plasma glucose and the corresponding insulin levels, respectively, in wild type mice before and after receiving a single dose of inhibitor (10 mg kg−1). P>0.5 for glucose and P>0.2 for insulin as compared to baseline (ns=not significant; n=15 mice per time point).FIG. 16G shows the phenotypic analyses of thymi from mice treated with either CAL-130 (10 mg kg−1 every 8 hours) or vehicle control for 7 days. The panels are representative of data from five animals in each group.FIG. 16H shows total DP thymocyte count in the same animals. Results are compared to PI3Kγ/δ double knockout mice. Data represent the mean±SD. -
FIG. 17 shows that combined inhibition of p110γ and p110δ reduces tumor burden and increases survival in animals with PTEN null T-ALL.FIG. 17A shows a Kaplan-Meyer survival curve for Lck/Ptenfl/fl mice diagnosed with T-ALL and immediately treated with CAL-130 for a total of 7 days. P<0.001 for CAL-130 treated versus vehicle control. *Numbers represent the initial WBC (×106) for each animal prior to instituting therapy.FIGS. 17B and 17C show peripheral blood smears and flow cytometric profiles for diseased Lck/Ptenfl/fl and Lck/Ptenfl/fl; Pik3cg−/− mice, respectively, just before treatment (day 0) and 4 days and 7 days after initiating treatment with either CAL-130 or the PI3Kγ specific inhibitor IC87114, respectively. The panels are representative of data from four Lck/Ptenfl/fl mice and two Lck/Ptenfl/fl Pik3d−/− mice with T-ALL. An untreated wild type animal is shown for comparison.FIG. 17D shows bioluminescent images and corresponding flow cytometric profiles of Lck/PTENfl/fl/Gt(ROSA)26Sortm1(Luc)Kael/J animals with T-ALL immediately before and 4 days after treatment.FIG. 17E shows weights of thymi, liver, spleen, and kidneys harvested from Lck/Ptenfl/fl mice with T-ALL 7 days post-treatment with either CAL-130 or vehicle control (n=5, *P<0.01 for CAL-130 treated versus vehicle control). Peripheral blood counts (WBC, right axis) represent the mean±SD prior to treatment. -
FIG. 18 shows that PI3Kγ and PI3Kδ contribute to the growth and survival of PTEN null human T-ALL tumor cell lines.FIGS. 18A and 18B show the proliferation and survival, respectively, of CCRF-CEM cells cultured in the presence of CAL-130 or vehicle control. *P<0.01, **P<0.001 for CAL-130 treated (2.5 μM) versus DMSO.FIGS. 19C and 19D show the effect of the PI3Kδ specific inhibitor IC87114 (10 μM) on proliferation and survival, respectively, of CCRF-CEM cells in which p110γ expression was knocked down by shRNA transfection. * P<0.01, **P<0.001 for p110γ shRNA treated with IC87114 versus non-silencing vector treated with IC87114. Insert depicts Western blot analysis for p110 catalytic domains.FIGS. 18E and 18F show proliferation and survival, respectively, of CCRF-CEM cells cultured in the presence of dexamethasone alone.FIGS. 18G and 18H show proliferation and survival, respectively, of CCRF-CEM cells cultured in the presence of dexamethasone in combination with 2.5 μM CAL-130. **P<0.001 for dexamethasone+CAL-130 treated (2.5 μM) versus CAL-130 (2.5 μM) alone. Data represent the mean±SD of experiments performed in triplicate. -
FIG. 19 shows the effect of CAL-130 on signaling pathways downstream of PI3Kγ and PI3Kδ.FIG. 19A shows representative immunoblots of lysates obtained from CCRF-CEM cells treated for 6 hours with either CAL-130 or vehicle control and probed with the stated antibodies. The PI3Kγ specific inhibitor IC87114 (IC) is shown for comparison.FIG. 19B shows representative immunoblots demonstrating activation of the pro-apoptotic pathway in CAL-130 treated CCRF-CEM cells.FIG. 19C shows representative bioluminescence images (upper panel) and quantification of tumor mass changes (lower panel) in mice with subcutaneous CCRF-CEM xenografts that received vehicle control or CAL-130 for 4 days (n=7).FIG. 19D shows Kaplan-Meyer analysis of overall survival of mice treated with vehicle control or CAL-130 for 7 days in a systemic CCRF-CEM xenograft model (P<0.01 for CAL-130 treated versus vehicle control; n=7 per group). -
FIG. 20 shows the susceptibility of primary human T-ALL tumor cells to combined inhibition of p110γ and p110δ.FIG. 20A shows cell survival analyses of tumors cultured in the presence of increasing concentrations of CAL-130 for 72 hours. Percent viability indicates the proportion of live-gated cells in the treated populations relative to its vehicle control counterpart. Data represent the mean±SD of experiments performed in duplicate or triplicate. *P<0.01, **P<0.001 for CAL-130 treated versus DMSO control. nd=not done and ns=not significant.FIG. 20B shows representative immunoblots of four primary human T-ALL samples to assess for expression of p110 catalytic domains and PTEN as well as phosphorylation state of Akt.FIG. 20C shows the effect of CAL-130 on Akt phosphorylation on the same four representative T-ALL samples after 6 hours of treatment. Densitometry was performed on bands from immunoblots. The P-Akt signal was normalized to total Akt.FIG. 20D shows a quantitative RT-PCR analysis of PIK3C (A/B/G/D) transcript levels in human thymocytes (n=5) and primary human T-ALL tumors (n=5). Error bars represent the standard deviation (±SD). The difference in PIK3C expression levels between the thymocytes and tumor cells was not statistically significant (P>0.05) using a Student's t-test. -
FIG. 21 shows an inhibitory profile of CAL-130.FIG. 21A shows Ca2+ flux in CD4+-gated wild type versus PI3Kδko/δko thymocytes treated with vehicle control or CAL-130 prior to TCR cross-linking. Data represent the mean±SD (3 separate experiments for each genotype).FIG. 21B shows the effect of CAL-130 versus the pan-PI3K/mTor inhibitor BEZ235 on Akt phosphorylation in response to PDGF-stimulation of SW3T3 cells.FIG. 21C shows the effects of CAL-130 on ADP (25 μM)-induced aggregation of platelets harvested from pik3cg−/−;pik3cd−/− mice. CAL-130 was either directly added to purified platelets (upper panel) or given as an oral bolus to animals (lower panel) prior to harvesting platelets at a time point that yields a maximum plasma level of compound (2 hours). -
FIG. 22 shows peripheral blood smears and flow cytometric profiles for diseased Lck/Ptenfl/fl mice just before and after treatment with either CAL-130 (FIG. 22A-C ) or IC87114 (FIG. 22D ) at the indicated time points. Forward scatter (FSC) and Ki67 staining are indicators of cell size and proliferation, respectively. Apoptosis was detected by assessing the sub-G0 population after PI staining. -
FIG. 23 shows the contribution of PI3Kγ and PI3Kδ to the growth and survival of PTEN null human T-ALL tumor cell lines.FIGS. 23A-D show the proliferation of CCRF-CEM, andFIGS. 23E-H show the proliferation of MOLT-4 cells cultured in the presence of the indicated class I PI3K inhibitors. Annexin V staining of CCRF-CEM cells (FIG. 231 ) and MOLT-4 cells (FIG. 23J ) cultured in the presence of the indicated class I PI3K inhibitors at 72 hours. Data represent the mean±SD of 4 independent experiments. *P<0.004. ns=not significant.FIGS. 23K and L show siRNA knockdown of p110α in CCRF-CEM cells.FIGS. 23M and N show siRNA knockdown of p110β in CCRF-CEM cells. Cell growth and viability were determined by cell counting (FIGS. 23K and M) and Annexin V staining (FIGS. 23L and N), respectively. Inserts are immunoblots for (FIG. 23K ) p110α and (FIG. 23M ) p110β. Data are representative of four independent experiments (mean±SD). - One embodiment of the present invention is a method for treating, preventing, or ameliorating the effects of a lymphoid malignancy. This method comprises administering to a subject in need thereof an effective amount of a PI3Kδ inhibitor and a PI3Kγ inhibitor.
- As used herein, the terms “treat,” “treating,” “treatment” and grammatical variations thereof mean subjecting an individual subject to a protocol, regimen, process or remedy, in which it is desired to obtain a physiologic response or outcome in that subject, e.g., a patient. In particular, the methods and compositions of the present invention may be used to slow the development of disease symptoms or delay the onset of the disease or condition, or halt the progression of disease development. However, because every treated subject may not respond to a particular treatment protocol, regimen, process or remedy, treating does not require that the desired physiologic response or outcome be achieved in each and every subject or subject, e.g., patient, population. Accordingly, a given subject or subject, e.g., patient, population may fail to respond or respond inadequately to treatment.
- As used herein, the terms “ameliorate”, “ameliorating” and grammatical variations thereof mean to decrease the severity of the symptoms of a disease in a subject.
- As used herein, the terms “prevent”, “preventing” and grammatical variations thereof mean to administer a compound or a composition of the present invention to a subject who has not been diagnosed as having the disease or condition at the time of administration, but who could be expected to develop the disease or condition or be at increased risk for the disease or condition. Preventing also includes administration of at least one compound or a composition of the present invention to those subjects thought to be predisposed to the disease or condition due to age, familial history, genetic or chromosomal abnormalities, due to the presence of one or more biological markers for the disease or condition and/or due to environmental factors.
- As used herein, a “subject” is a mammal, preferably, a human. In addition to humans, categories of mammals within the scope of the present invention include, for example, agricultural animals, domestic animals, laboratory animals, etc. Some examples of agricultural animals include cows, pigs, horses, goats, etc. Some examples of domestic animals include dogs, cats, etc. Some examples of laboratory animals include rats, mice, rabbits, guinea pigs, etc.
- As used herein, a “lymphoid malignancy” means an abnormal growth of bodily tissue or cells in the lymphoid system. Such abnormal growth may invade and destroy nearby tissue, and may spread to other parts of the body. The term “lymphoid system” refers to all of the cells, tissue aggregates, and organs which function together to produce specific resistance to disease, including without limitation, the bone marrow, the thymus, lymphatic vessels, T-cells and their progenitor cells, as well as B-cells and their progenitor cells.
- Lymphoid malignancies may be divided into three classes, Hodgkin's lymphoma, non-Hodgkin's lymphoma (NHL), and composite Hodgkin's lymphoma and NHL. Hodgkin's lymphoma include lymphocyte-rich classical Hodgkin's lymphoma, mixed-cellularity classical Hodgkin's lymphoma, lymphocyte-depleted classical Hodgkin's lymphoma, and nodular lymphocyte predominant Hodgkin's lymphoma. NHL may be further divided into B-cell NHL, T-cell NHL, and NHL of unknown lineage. Exemplary B-cell NHL include without limitation precursor B-cell NHL (such as B lymphoblastic leukemia and B lymphoblastic lymphoma), chronic lymphocytic leukemia, small lymphocytic lymphoma, prolymphocytic leukemia, mantel-cell lymphoma, lymphoplasmacytic lymphoma, Waldenström macroglobulinemia, Burkitt lymphoma, follicular lymphoma, splenic marginal-zone lymphoma, extranodal marginal-zone lymphoma, nodal marginal-zone lymphoma, hairy-cell leukemia, diffuse large B-cell lymphoma, intravascular large B-cell lymphoma, primary effusion lymphoma, mediastinal large B-cell lymphoma, plasmacytoma, and multiple myeloma/plasma cell leukemia. T-cell NHL include precursor T-cell NHL (such as T-cell acute lymphoblastic leukemia (T-ALL) and T-cell acute lymphoblastic lymphoma), mycosis fungoides, Sézary syndrome, adult T-cell leukemia, adult T-cell lymphoma, NK/T-cell lymphoma, aggressive NK-cell leukemia, T-cell large granular lymphocytic leukemia, T-cell prolymphocytic leukemia, and peripheral T-cell lymphoma (such as angioimmunoblastic lymphoma, subcutaneous panniculitis-like T-cell lymphoma, anaplastic large-cell lymphoma, hepatoplenic T-cell lymphoma, enteropathy-type T-cell lymphoma, cutaneous T-cell lymphoma, primary cutaneous anaplastic large-cell lymphoma). Preferably, the lymphoid malignancy is T-ALL or T-cell acute lymphoblastic lymphoma. In another preferred embodiment, wherein the lymphoid malignancy is T-ALL.
- As used herein, a “PI3Kδ inhibitor” is an agent that is able to lower the activity level or the expression level of PI3Kδ. Preferably, the PI3Kδ inhibitor has few or no off-target effects; except that it is permissible, in accordance with the present invention, to also have an inhibitory effect on PI3Kγ as set forth in more detail below. The PI3Kδ inhibitor according to the present invention may be a biologic, a chemical, or combinations thereof. PI3Kδ inhibitors include, without limitation, AMG-319 (Amgen, Thousand Oaks, Calif.); PI3-delta inhibitors, Cellzome (Cellzome AG, Heidelberg, Germany); PI3-delta/gamma inhibitors, Cellzome (Cellzome AG); CHR-4432 (Chroma Therapeutics, Ltd., Abingdon, UK); XL-499 (Evotech, Hamburg, Germany); CAL-120 (Gilead Sciences, Foster City, Calif.); CAL-129 (Gilead Sciences); CAL-130 (Gilead Sciences); CAL-253 (Gilead Sciences); CAL-263 (Gilead Sciences); GS-1101 (CAL-101) (Gilead Sciences); benzimidazole series, Genentech (Roche Holdings Inc., South San Francisco, Calif.); PI3 kinase delta inhibitors, Genentech (Roche Holdings Inc.); PI3 kinase inhibitor, Roche-4 (Roche Holdings Inc.); PI3 kinase inhibitors, Roche (Roche Holdings Inc.); PI3 kinase inhibitors, Roche-5 (Roche Holdings Inc.); pictilisib (Roche Holdings Inc.); PI3 kinase delta inhibitors, Incozen (Incozen Therapeutics, Pvt. Ltd., Hydrabad, India); PI3 kinase delta inhibitors-2, Incozen (Incozen Therapeutics); PI3-delta inhibitors, Intellikine (Intellikine Inc., La Jolla, Calif.); PI3-delta/gamma inhibitors, Intellikine (Intellikine Inc.); PI3K delta/gamma inhibitors, Intellikine-1 (Intellikine Inc.); KAR-4139 (Karus Therapeutics, Chilworth, UK); KAR-4141 (Karus Therapeutics); PI3 kinase delta inhibitor, Merck KGaA (Merck & Co., Whitehouse Station, N.J.); OXY-111A (NormOxys Inc., Brighton, Mass.); PI3-alpha/delta inhibitors, Pathway Therapeutics (Pathway Therapeutics Ltd., South San Francisco, Calif.); PI3-delta inhibitors, Pathway Therapeutics-1 (Pathway Therapeutics Ltd.); PI3-delta inhibitors, Pathway Therapeutics-2 (Pathway Therapeutics Ltd.); PI3-delta/gamma inhibitors, Pathway Therapeutics (Pathway Therapeutics Ltd.); SF-1126 (Semafore Pharmaceuticals, Indianapolis, Ind.); X-339 (Xcovery, West Palm Beach, Fla.); IC87114 (Gilead Science); TG100-115 (Targegen Inc., San Diego, Calif.); and combinations thereof. Preferably, the PI3Kδ inhibitor is CAL-130. PI3Kδ inhibitor may also be a nucleic acid comprising an shRNA or an siRNA, preferably an shRNA.
- As used herein, a “biologic” means a substance which is derived from or produced by a living organism or synthesized to mimic an in vivo-derived agent or a derivative or product thereof. A biologic may be, for example, a nucleic acid, a polypeptide, or a polysaccharide. Preferably, the biologic is a nucleic acid, a protein, or a combination thereof. More preferably, the nucleic acid comprises an shRNA.
- As used herein, a “chemical” means a substance that has a definite chemical composition and characteristic properties and that is not a biologic. Non-limiting examples of chemicals include small organic compounds and small inorganic compounds.
- As used herein, a “PI3Kγ inhibitor” is an agent that is able to lower the activity level or the expression level of PI3Kγ. Preferably, the PI3Kγ inhibitor has few or no off-target effects; except that it is permissible, in accordance with the present invention, to also have an inhibitory effect on PI3Kδ as set forth in more detail above. The PI3Kγ inhibitor according to the present invention may be a biologic, a chemical, and combinations thereof. PI3Kγ inhibitors include, without limitation, PI3-delta/gamma inhibitors, Cellzome (Cellzome AG); PI3-gamma inhibitor, Cellzome (Cellzome AG); PI3-gamma inhibitor Evotec (Evotec); PI3 kinase inhibitors, Roche (Roche Holdings Inc.); pictilisib (Roche Holdings, Inc.); IPI-145 (Intellikine Inc.); PI3-delta/gamma inhibitors, Intellikine (Intellikine Inc.); PI3K delta/gamma inhibitors, Intellikine-1 (Intellikine Inc.); KIN-1 (Karus Therapeutics); PI3-delta/gamma inhibitors, Pathway Therapeutics (Pathway Therapeutics Ltd.); PI3-gamma inhibitors, Pathway Therapeutics (Pathway Therapeutics Ltd.); SC-103980 (Pfizer, New York, N.Y.); SF-1126 (Semafore Pharmaceuticals); AS-041164 (5-benzo[1,3]dioxol-5-ylmethylene-thiazolidine-2,4-dione); AS-604850 (5-(2,2-Difluoro-benzo[1,3]dioxol-5-ylmethylene)-thiazolidine-2,4-dione); TG100-115 (Targegen Inc., San Diego, Calif.); AS-605240 (5-quinoxilin-6-methylene-1,3-thiazolidine-2,4-dione); CAL-130 (Gilead Sciences); and combinations thereof. Preferably, the PI3Kγ inhibitor is CAL-130. PI3Kγ inhibitor may also be a nucleic acid comprising an shRNA or an siRNA, preferably an shRNA.
- In the present invention, a single agent that inhibits both PI3Kδ and PI3Ky, but has no or limited effect on other PI3K isoforms, is also contemplated. Non-limiting examples of such an agent having dual inhibitory function include CAL-130; TG100-115; PI3-delta/gamma inhibitors, Cellzome; PI3 Kinase inhibitors, Roche-5; pictilisib; PI3-delta/gamma inhibitors, Intellikine; PI3-delta/gamma inhibitors, Intellikine-1; PI3-delta/gamma inhibitors, Pathway Therapeutics, and SF-1126. As disclosed previously, the present invention also includes co-treatment with one or more PI3Kδ and one or more PI3Kγ inhibitors. Such co-treatment may be by co-administration of each inhibitor or administration of one inhibitor followed by another inhibitor with each such administration being temporally spaced apart to achieve a clinically effective result. Determination of such dosing regimens may be determined empirically for each subject or be based on the treating physicians' knowledge and experience.
- In one aspect of this embodiment, this method further comprises co-administering to the subject at least one chemotherapeutic agent. Such chemotherapeutic agent includes, without limitation, actinomycin, amsacrine, anthracycline, busulfan, cisplatin, cytoxan, epirubicin, hexamethylmelamineoxaliplatin, iphosphamide, mitoxantrone, taxotere, teniposide, triethylenethiophosphoramide, hydrocortisone, cortisone, methylprednisolone, prednisolone, dexamethasone, prednisone, betamethasone, triamcinolone, beclometasone, fludrocortisones, deoxycorticosterone, aldosterone, oxaliplatin, zoledronic acid, ibandronate, verapamil, podophyllotoxin, carboplatin, procarbazine, mechlorethamine, cyclophosphamide, camptothecin, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosurea, dactinomycin, daunorubicin, doxorubicin, bleomycin, plicomycin, mitomycin, etoposide (VP16), tamoxifen, transplatinum, 5-fluorouracil, vincristin, vinblastin, methotrexate, L-asparaginase, rapamycin, dibenzazepine (DBZ), uramustine, carmustine, lomustine, streptozocin, temozolomide, oxaliplatin, idarubicin, topotecan, premetrexed, 6-mercaptopurine, darcarbazine, fludarabine, 5-fluorouracil, arabinosycytosine, 5-fluorouracil, arabinosylcytosine, capecitabine, gemcitabine, decitabine, vinca alkaloids, paclitaxel (Taxol®), docetaxel (Taxotere®), ixabepilone (Ixempra®), and combinations thereof. Preferably, the chemotherapeutic agent is a glucocorticoid, such as hydrocortisone, cortisone, methylprednisolone, prednisolone, dexamethasone, prednisone, betamethasone, triamcinolone, beclometasone, fludrocortisones, deoxycorticosterone, aldosterone, and combinations thereof. In a preferred embodiment, the chemotherapeutic agent is dexamethasone.
- In the present invention, one or more PI3Kδ and/or PI3Kγ inhibitors and/or one or more chemotherapeutic agents may be co-administered to a subject in need thereof together in the same composition, simultaneously in separate compositions, or as separate compositions administered at different times, as deemed most appropriate by a physician.
- In the present invention, an “effective amount” or “therapeutically effective amount” of a PI3K inhibitor, whether a PI3Kγ inhibitor or a PI3Kδ inhibitor, is an amount of such an inhibitor that is sufficient to effect beneficial or desired results as described herein when administered to a subject. Effective dosage forms, modes of administration, and dosage amounts may be determined empirically, and making such determinations is within the skill of the art. It is understood by those skilled in the art that the dosage amount will vary with the route of administration, the rate of excretion, the duration of the treatment, the identity of any other drugs being administered, the age, size, and species of mammal, e.g., human patient, and like factors well known in the arts of medicine and veterinary medicine. In general, a suitable dose of a PI3K inhibitor according to the invention will be that amount of the PI3K inhibitor, which is the lowest dose effective to produce the desired effect with no or minimal side effects. The effective dose of a PI3Kγ inhibitor or a PI3Kδ inhibitor may be administered as two, three, four, five, six or more sub-doses, administered separately at appropriate intervals throughout the day, with the proviso that the doses of the PI3Kγ inhibitor or a PI3Kδ inhibitor simultaneously reduce or inhibit the activity or the expression levels of PI3Kγ and PI3Kδ.
- A suitable, non-limiting example of a dosage of a PI3K inhibitor according to the present invention, particularly a PI3Kγ inhibitor and/or a PI3Kδ inhibitor, is from about 1 ng/kg to about 1000 mg/kg, such as from about 1 mg/kg to about 100 mg/kg, including from about 5 mg/kg to about 50 mg/kg. Other representative dosages of a PI3K inhibitor include about 1 mg/kg, 5 mg/kg, 10 mg/kg, 15 mg/kg, 20 mg/kg, 25 mg/kg, 30 mg/kg, 35 mg/kg, 40 mg/kg, 45 mg/kg, 50 mg/kg, 60 mg/kg, 70 mg/kg, 80 mg/kg, 90 mg/kg, 100 mg/kg, 125 mg/kg, 150 mg/kg, 175 mg/kg, 200 mg/kg, 250 mg/kg, 300 mg/kg, 400 mg/kg, 500 mg/kg, 600 mg/kg, 700 mg/kg, 800 mg/kg, 900 mg/kg, or 1000 mg/kg.
- Another embodiment of the present invention is a method for treating, preventing, or ameliorating the effects of a lymphoid malignancy associated with a mutated phosphatase and tensin homolog (PTEN) gene in a subject. This method comprises administering to the subject an effective amount of a PI3Kδ inhibitor and a PI3Kγ inhibitor.
- As used herein, a “mutated phosphatase and tensin homolog (PTEN) gene” means having one or more variations in the exon or the intron sequence of PTEN. A lymphoid malignancy “associated with a mutated PTEN gene” means a lymphoid malignancy in which one or more variations in the PTEN gene sequence is found. Such lymphoid malignancies include, e.g., T-ALL, lymphoblastic lymphoma, large B-cell lymphoma, Burkitt's lymphoma, large B-cell lymphoma, and myeloma.
- The PI3Kδ inhibitor and the PI3Kγ inhibitor are as disclosed herein. Preferably, the PI3Kδ inhibitor and the PI3Kγ inhibitor are CAL-130.
- In one aspect of this embodiment, the method further comprises administering an effective amount of a chemotherapeutic agent as disclosed herein, such as a glucocorticoid. Preferably, the chemotherapeutic agent is dexamethasone.
- Yet another embodiment of the present invention is a pharmaceutical composition for treating the effects of a lymphoid malignancy. This pharmaceutical composition comprises a pharmaceutically acceptable carrier and an effective amount of a PI3Kδ inhibitor and a PI3Kγ inhibitor.
- In one aspect of this embodiment, the pharmaceutical composition is in a unit dosage form.
- In another aspect of this embodiment, the pharmaceutical composition further comprises an effective amount of a chemotherapeutic agent as disclosed herein, such as a glucocorticoid. Preferably, the chemotherapeutic agent is dexamethasone.
- An additional embodiment of the present invention is a method for treating a subject suffering from T-ALL. This method comprises administering to the subject an effective amount of a pharmaceutical composition comprising a PI3Kδ inhibitor and a PI3Kγ inhibitor.
- The PI3Kδ inhibitor and the PI3Kγ inhibitor are as disclosed herein. Preferably, the PI3Kδ inhibitor and the PI3Kγ inhibitor are CAL-130. The pharmaceutical composition of this embodiment may be a single composition containing a dual inhibitor such as, e.g., CAL-130, a single composition containing two active agents, one a PI3Kδ inhibitor and the other a PI3Kγ inhibitor, or two or more compositions each containing at least one active agent that is a PI3Kδ inhibitor or a PI3Kγ inhibitor.
- In one aspect of this embodiment, the method further comprises administering an effective amount of a chemotherapeutic agent as disclosed herein, such as a glucocorticoid. Preferably, the chemotherapeutic agent is dexamethasone.
- Another embodiment of the present invention is a method for lowering tumor burden in a subject suffering from T-ALL. This method comprises administering to the subject an effective amount of a pharmaceutical composition comprising a PI3Kδ inhibitor and a PI3Kγ inhibitor.
- As used herein, “tumor burden” means the number of tumor (whether benign or malignant) cells in the subject's body, or the size of a tumor.
- The PI3Kδ inhibitor and the PI3Kγ inhibitor are as disclosed herein. Preferably, the PI3Kδ inhibitor and the PI3Kγ inhibitor are CAL-130.
- In one aspect of this embodiment, the method further comprises administering an effective amount of a chemotherapeutic agent as disclosed herein, such as a glucocorticoid also as defined herein. Preferably, the chemotherapeutic agent is dexamethasone.
- Yet another embodiment of the present invention is a method for identifying a subject who may benefit from co-treatment with a PI3Kδ inhibitor and a PI3Kγ inhibitor. This method comprises determining from a sample of the subject whether the subject has a mutated PTEN gene, wherein the presence of the mutated PTEN gene is indicative of a subject who may benefit from co-treatment.
- In this embodiment, the sample is obtain from the subject by any conventional means. Such a sample contains DNA and may be a tissue and/or blood sample, such as a peripheral blood sample. Such a sample may also be biopsy from a tumor. Determining whether a subject has a mutated PTEN gene may be carried out using any conventional genotyping methods known in the art, or by assaying for the PTEN gene product using any conventional means, including the methods disclosed herein, including in the Examples.
- The PI3Kδ inhibitor and the PI3Kγ inhibitor are as disclosed herein. Preferably, the PI3Kδ inhibitor and the PI3Kγ inhibitor are CAL-130.
- An additional embodiment of the present invention is a method for identifying a compound that has both PI3Kδ and PI3Kγ inhibitory activity. This method comprises:
-
- (a) contacting a cell with the compound; and
- (b) determining whether the compound modulates an antigen receptor-induced activity in the cell;
wherein a compound that modulates the antigen receptor-induced activity has both PI3Kδ and PI3Kγ inhibitory activity.
- As used herein, an “antigen receptor-induced activity” means an event resulting from T-cell receptor signaling, such as, e.g., phosphorylation of AKT, GSK3β, mTOR, p70S6K, BAD proteins and calcium flux in CD4+ T cells. Assays for such activities are as disclosed herein.
- A pharmaceutical composition of the present invention may be administered in any desired and effective manner: for oral ingestion, or as an ointment or drop for local administration to the eyes, or for parenteral or other administration in any appropriate manner such as intraperitoneal, subcutaneous, topical, intradermal, inhalation, intrapulmonary, rectal, vaginal, sublingual, intramuscular, intravenous, intraarterial, intrathecal, or intralymphatic. Further, a pharmaceutical composition of the present invention may be administered in conjunction with other treatments. A pharmaceutical composition of the present invention maybe encapsulated or otherwise protected against gastric or other secretions, if desired.
- The pharmaceutical compositions of the invention are pharmaceutically acceptable and comprise one or more active ingredients in admixture with one or more pharmaceutically-acceptable carriers and, optionally, one or more other compounds, drugs, ingredients and/or materials. Regardless of the route of administration selected, the agents/compounds of the present invention are formulated into pharmaceutically-acceptable dosage forms by conventional methods known to those of skill in the art. See, e.g., Remington, The Science and Practice of Pharmacy (21st Edition, Lippincott Williams and Wilkins, Philadelphia, Pa.).
- Pharmaceutically acceptable carriers are well known in the art (see, e.g., Remington, The Science and Practice of Pharmacy (21st Edition, Lippincott Williams and Wilkins, Philadelphia, Pa.) and The National Formulary (American Pharmaceutical Association, Washington, D.C.)) and include sugars (e.g., lactose, sucrose, mannitol, and sorbitol), starches, cellulose preparations, calcium phosphates (e.g., dicalcium phosphate, tricalcium phosphate and calcium hydrogen phosphate), sodium citrate, water, aqueous solutions (e.g., saline, sodium chloride injection, Ringer's injection, dextrose injection, dextrose and sodium chloride injection, lactated Ringer's injection), alcohols (e.g., ethyl alcohol, propyl alcohol, and benzyl alcohol), polyols (e.g., glycerol, propylene glycol, and polyethylene glycol), organic esters (e.g., ethyl oleate and tryglycerides), biodegradable polymers (e.g., polylactide-polyglycolide, poly(orthoesters), and poly(anhydrides)), elastomeric matrices, liposomes, microspheres, oils (e.g., corn, germ, olive, castor, sesame, cottonseed, and groundnut), cocoa butter, waxes (e.g., suppository waxes), paraffins, silicones, talc, silicylate, etc. Each pharmaceutically acceptable carrier used in a pharmaceutical composition of the invention must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the subject. Carriers suitable for a selected dosage form and intended route of administration are well known in the art, and acceptable carriers for a chosen dosage form and method of administration can be determined using ordinary skill in the art.
- The pharmaceutical compositions of the invention may, optionally, contain additional ingredients and/or materials commonly used in such pharmaceutical compositions. These ingredients and materials are well known in the art and include (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and silicic acid; (2) binders, such as carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, hydroxypropylmethyl cellulose, sucrose and acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, sodium starch glycolate, cross-linked sodium carboxymethyl cellulose and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as cetyl alcohol and glycerol monostearate; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, and sodium lauryl sulfate; (10) suspending agents, such as ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth; (11) buffering agents; (12) excipients, such as lactose, milk sugars, polyethylene glycols, animal and vegetable fats, oils, waxes, paraffins, cocoa butter, starches, tragacanth, cellulose derivatives, polyethylene glycol, silicones, bentonites, silicic acid, talc, salicylate, zinc oxide, aluminum hydroxide, calcium silicates, and polyamide powder; (13) inert diluents, such as water or other solvents; (14) preservatives; (15) surface-active agents; (16) dispersing agents; (17) control-release or absorption-delaying agents, such as hydroxypropylmethyl cellulose, other polymer matrices, biodegradable polymers, liposomes, microspheres, aluminum monosterate, gelatin, and waxes; (18) opacifying agents; (19) adjuvants; (20) wetting agents; (21) emulsifying and suspending agents; (22), solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan; (23) propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane; (24) antioxidants; (25) agents which render the formulation isotonic with the blood of the intended recipient, such as sugars and sodium chloride; (26) thickening agents; (27) coating materials, such as lecithin; and (28) sweetening, flavoring, coloring, perfuming and preservative agents. Each such ingredient or material must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the subject. Ingredients and materials suitable for a selected dosage form and intended route of administration are well known in the art, and acceptable ingredients and materials for a chosen dosage form and method of administration may be determined using ordinary skill in the art.
- Pharmaceutical compositions suitable for oral administration may be in the form of capsules, cachets, pills, tablets, powders, granules, a solution or a suspension in an aqueous or non-aqueous liquid, an oil-in-water or water-in-oil liquid emulsion, an elixir or syrup, a pastille, a bolus, an electuary or a paste. These formulations may be prepared by methods known in the art, e.g., by means of conventional pan-coating, mixing, granulation or lyophilization processes.
- Solid dosage forms for oral administration (capsules, tablets, pills, dragees, powders, granules and the like) may be prepared, e.g., by mixing the active ingredient(s) with one or more pharmaceutically-acceptable carriers and, optionally, one or more fillers, extenders, binders, humectants, disintegrating agents, solution retarding agents, absorption accelerators, wetting agents, absorbents, lubricants, and/or coloring agents. Solid compositions of a similar type maybe employed as fillers in soft and hard-filled gelatin capsules using a suitable excipient. A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using a suitable binder, lubricant, inert diluent, preservative, disintegrant, surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine. The tablets, and other solid dosage forms, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein. They may be sterilized by, for example, filtration through a bacteria-retaining filter. These compositions may also optionally contain opacifying agents and may be of a composition such that they release the active ingredient only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner. The active ingredient can also be in microencapsulated form.
- Liquid dosage forms for oral administration include pharmaceutically-acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. The liquid dosage forms may contain suitable inert diluents commonly used in the art. Besides inert diluents, the oral compositions may also include adjuvants, such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents. Suspensions may contain suspending agents.
- Pharmaceutical compositions for rectal or vaginal administration may be presented as a suppository, which maybe prepared by mixing one or more active ingredient(s) with one or more suitable nonirritating carriers which are solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active compound. Pharmaceutical compositions which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such pharmaceutically-acceptable carriers as are known in the art to be appropriate.
- Dosage forms for the topical or transdermal administration include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches, drops and inhalants. The active agent(s)/compound(s) may be mixed under sterile conditions with a suitable pharmaceutically-acceptable carrier. The ointments, pastes, creams and gels may contain excipients. Powders and sprays may contain excipients and propellants.
- Pharmaceutical compositions suitable for parenteral administrations comprise one or more agent(s)/compound(s) in combination with one or more pharmaceutically-acceptable sterile isotonic aqueous or non-aqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain suitable antioxidants, buffers, solutes which render the formulation isotonic with the blood of the intended recipient, or suspending or thickening agents. Proper fluidity can be maintained, for example, by the use of coating materials, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants. These compositions may also contain suitable adjuvants, such as wetting agents, emulsifying agents and dispersing agents. It may also be desirable to include isotonic agents. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption.
- In some cases, in order to prolong the effect of a drug (e.g., pharmaceutical formulation), it is desirable to slow its absorption from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility.
- The rate of absorption of the active agent/drug then depends upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally-administered agent/drug may be accomplished by dissolving or suspending the active agent/drug in an oil vehicle. Injectable depot forms may be made by forming microencapsule matrices of the active ingredient in biodegradable polymers. Depending on the ratio of the active ingredient to polymer, and the nature of the particular polymer employed, the rate of active ingredient release can be controlled. Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions which are compatible with body tissue. The injectable materials can be sterilized for example, by filtration through a bacterial-retaining filter.
- The formulations may be presented in unit-dose or multi-dose sealed containers, for example, ampules and vials, and may be stored in a lyophilized condition requiring only the addition of the sterile liquid carrier, for example water for injection, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the type described above.
- The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
- For recitation of numeric ranges herein, each intervening number there between with the same degree of precision is explicitly contemplated. For example, for the range of 6-9, the
numbers - Nucleic Acid
- “Nucleic acid” or “oligonucleotide” or “polynucleotide” used herein mean at least two nucleotides covalently linked together. Many variants of a nucleic acid may be used for the same purpose as a given nucleic acid. Thus, a nucleic acid also encompasses substantially identical nucleic acids and complements thereof.
- Nucleic acids may be single stranded or double stranded, or may contain portions of both double stranded and single stranded sequences. The nucleic acid may be DNA, both genomic and cDNA, RNA, or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and combinations of bases including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine and isoguanine. Nucleic acids may be synthesized as a single stranded molecule or expressed in a cell (in vitro or in vivo) using a synthetic gene. Nucleic acids may be obtained by chemical synthesis methods or by recombinant methods.
- The nucleic acid may also be a RNA such as a mRNA, tRNA, short hairpin RNA (shRNA), short interfering RNA (sRNA), double-stranded RNA (dsRNA), transcriptional gene silencing RNA (ptgsRNA), Piwi-interacting RNA, pri-miRNA, pre-miRNA, micro-RNA (miRNA), or anti-miRNA, as described, e.g., in U.S. patent application Ser. Nos. 11/429,720, 11/384,049, 11/418,870, and 11/429,720 and Published International Application Nos. WO 2005/116250 and WO 2006/126040.
- siRNA gene-targeting may be carried out by transient siRNA transfer into cells, achieved by such classic methods as lipid-mediated transfection (such as encapsulation in liposome, complexing with cationic lipids, cholesterol, and/or condensing polymers, electroporation, or microinjection). siRNA gene-targeting may also be carried out by administration of siRNA conjugated with antibodies or siRNA complexed with a fusion protein comprising a cell-penetrating peptide conjugated to a double-stranded (ds) RNA-binding domain (DRBD) that binds to the siRNA (see, e.g., U.S. Patent Application Publication No. 2009/0093026).
- An shRNA molecule has two sequence regions that are reversely complementary to one another and can form a double strand with one another in an intramolecular manner. shRNA gene-targeting may be carried out by using a vector introduced into cells, such as viral vectors (lentiviral vectors, adenoviral vectors, or adeno-associated viral vectors for example). The design and synthesis of siRNA and shRNA molecules are known in the art, and may be commercially purchased from, e.g., Gene Link (Hawthorne, N.Y.), Invitrogen Corp. (Carlsbad, Calif.), Thermo Fisher Scientific, and Dharmacon Products (Lafayette, Colo.).
- The nucleic acid may also be an aptamer, an intramer, or a spiegelmer. The term “aptamer” refers to a nucleic acid or oligonucleotide molecule that binds to a specific molecular target. Aptamers are derived from an in vitro evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by EXponential Enrichment), disclosed in U.S. Pat. No. 5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries. Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules. The nucleotide components of an aptamer may have modified sugar groups (e.g., the 2′-OH group of a ribonucleotide may be replaced by 2′-F or 2′—NH2), which may improve a desired property, e.g., resistance to nucleases or longer lifetime in blood. Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system. Aptamers may be specifically cross-linked to their cognate ligands, e.g., by photo-activation of a cross-linker (Brody, E. N. and L. Gold (2000) J. Biotechnol. 74:5-13).
- The term “intramer” refers to an aptamer which is expressed in vivo. For example, a vaccinia virus-based RNA expression system has been used to express specific RNA aptamers at high levels in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl. Acad. Sci. USA 96:3606-3610).
- The term “spiegelmer” refers to an aptamer which includes L-DNA, L-RNA, or other left-handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right-handed nucleotides.
- A nucleic acid will generally contain phosphodiester bonds, although nucleic acid analogs may be included that may have at least one different linkage, e.g., phosphoramidate, phosphorothioate, phosphorodithioate, or O-methylphosphoroamidite linkages and peptide nucleic acid backbones and linkages. Other analog nucleic acids include those with positive backbones; non-ionic backbones, and non-ribose backbones, including those disclosed in U.S. Pat. Nos. 5,235,033 and 5,034,506. Nucleic acids containing one or more non-naturally occurring or modified nucleotides are also included within the definition of nucleic acid. The modified nucleotide analog may be located for example at the 5′-end and/or the 3′-end of the nucleic acid molecule. Representative examples of nucleotide analogs may be selected from sugar- or backbone-modified ribonucleotides. It should be noted, however, that also nucleobase-modified ribonucleotides, i.e. ribonucleotides, containing a non-naturally occurring nucleobase instead of a naturally occurring nucleobase such as uridines or cytidines modified at the 5-position, e.g. 5-(2-amino)propyl uridine, 5-bromo uridine; adenosines and guanosines modified at the 8-position, e.g. 8-bromo guanosine; deaza nucleotides, e.g. 7-deaza-adenosine; O- and N-alkylated nucleotides, e.g. N6-methyl adenosine are suitable. The 2′-OH-group may be replaced by a group selected from H, OR, R, halo, SH, SR, NH2, NHR, NR2 or CN, wherein R is C1-C6 alkyl, alkenyl or alkynyl and halo is F, Cl, Br or I. Modified nucleotides also include nucleotides conjugated with cholesterol through, e.g., a hydroxyprolinol linkage as disclosed in Krutzfeldt et al., Nature (Oct. 30, 2005), Soutschek et al., Nature 432:173-178 (2004), and U.S. Patent Application Publication No. 20050107325. Modified nucleotides and nucleic acids may also include locked nucleic acids (LNA), as disclosed in U.S. Patent Application Publication No. 20020115080. Additional modified nucleotides and nucleic acids are disclosed in U.S. Patent Application Publication No. 20050182005. Modifications of the ribose-phosphate backbone may be done for a variety of reasons, e.g., to increase the stability and half-life of such molecules in physiological environments, to enhance diffusion across cell membranes, or as probes on a biochip. Mixtures of naturally occurring nucleic acids and analogs may be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.
- Peptide, Polypeptide, Protein
- The terms “peptide,” “polypeptide,” and “protein” are used interchangeably herein. In the present invention, these terms mean a linked sequence of amino acids, which may be natural, synthetic, or a modification, or combination of natural and synthetic. The term includes antibodies, antibody mimetics, domain antibodies, lipocalins, targeted proteases, and polypeptide mimetics. The term also includes vaccines containing a peptide or peptide fragment intended to raise antibodies against the peptide or peptide fragment.
- Polysaccharides
- The term “polysaccharides” means polymeric carbohydrate structures, formed of repeating units (either mono- or di-saccharides) joined together by glycosidic bonds. The units of mono- or di-saccharides may be the same or different. Non-limiting examples of polysaccharides include starch, glycogen, cellulose, and chitin.
- Small Organic or Inorganic Molecules
- The phrase “small organic” or “small inorganic” molecule includes any chemical or other moiety, other than polysaccharides, polypeptides, and nucleic acids, that can act to affect biological processes. Small molecules can include any number of therapeutic agents presently known and used, or can be synthesized in a library of such molecules for the purpose of screening for biological function(s). Small molecules are distinguished from macromolecules by size. The small molecules of this invention usually have a molecular weight less than about 5,000 daltons (Da), preferably less than about 2,500 Da, more preferably less than 1,000 Da, most preferably less than about 500 Da.
- As used herein, the term “organic compound” refers to any carbon-based compound other than biologics such as nucleic acids, polypeptides, and polysaccharides. In addition to carbon, organic compounds may contain calcium, chlorine, fluorine, copper, hydrogen, iron, potassium, nitrogen, oxygen, sulfur and other elements. An organic compound may be in an aromatic or aliphatic form. Non-limiting examples of organic compounds include acetones, alcohols, anilines, carbohydrates, mono-saccharides, di-saccharides, amino acids, nucleosides, nucleotides, lipids, retinoids, steroids, proteoglycans, ketones, aldehydes, saturated, unsaturated and polyunsaturated fats, oils and waxes, alkenes, esters, ethers, thiols, sulfides, cyclic compounds, heterocyclic compounds, imidizoles, and phenols. An organic compound as used herein also includes nitrated organic compounds and halogenated (e.g., chlorinated) organic compounds. Collections of small molecules, and small molecules identified according to the invention are characterized by techniques such as accelerator mass spectrometry (AMS; see Turteltaub et al., Curr Pharm Des 2000 6:991-1007, Bioanalytical applications of accelerator mass spectrometry for pharmaceutical research; and Enjalbal et al., Mass Spectrom Rev 2000 19:139-61, Mass spectrometry in combinatorial chemistry.)
- Preferred small molecules are relatively easier and less expensively manufactured, formulated or otherwise prepared. Preferred small molecules are stable under a variety of storage conditions. Preferred small molecules may be placed in tight association with macromolecules to form molecules that are biologically active and that have improved pharmaceutical properties. Improved pharmaceutical properties include changes in circulation time, distribution, metabolism, modification, excretion, secretion, elimination, and stability that are favorable to the desired biological activity. Improved pharmaceutical properties include changes in the toxicological and efficacy characteristics of the chemical entity.
- The following examples are provided to further illustrate the methods and compositions of the present invention. These examples are illustrative only and are not intended to limit the scope of the invention in any way.
- All mice were kept in a specific pathogen-free facility at Columbia University Medical Center. All mice studies and breeding were carried out under the approval of the Institutional Animal Care and Use Committee of Columbia University.
- Mice (p110δ−/− and p110γ−/−) on a mixed B6/129 background were described previously (Sasaki et al., 2000; Clayton et al., 2002). Animals were bred to generate a deficiency in both p110 catalytic subunits, the p110γδ−/− mice. Other names for the mouse include p110γδko and Pik3cg−/−; Pik3cd−/−, because p110γ is encoded by Pik3cg and p110δ is encoded by Pik3cd.
- NOD.Cg-Prkdcscid II2rgtm1Wjl/Sz mice for xenograft experiments and Gt(ROSA)26Sortm1(Luc)Kael/J for bioimaging studies were obtained from The Jackson Laboratory (Bar Harbor, Me.). Mice deficient for PTEN in the T cell lineage were generated by crossing Lck-cre with floxed Pten (Hennet et al., 1995; Trotman et al., 2003). P110γ−/− and p110δ−/− mice were intercrossed with Lckcre/Ptenfl/fl animals to generate mice homozygous mutant for either p110γ or p110δ and Pten or homozygous mutant for p110γ, 110δ, and Pten.
- For subcutaneous xenograft experiments, luminescent CCRF-CEM (CEM-luc) cells were generated by lentiviral infection with FUW-luc and selection with neomycin. Luciferase expression was verified with the Dual-Luciferase Reporter Assay kit (Promega Corp., Madison, Wis.). 2.5×106 CEM-luc cells embedded in Matrigel (BD Biosciences, San Jose, Calif.) were injected into the flank of NOD.Cg-Prkdcscid II2rgtm1Wjl/Sz mice. After 1 week, mice were treated by oral gavage with vehicle (0.5% methyl cellulose, 0.1% Tween-80), or CAL-130 (10 mg kg−1) (Gilead Sciences, Foster City, Calif.) every 8 hours daily for 4 days and then tumors imaged as follows: mice anesthetized by isoflurane inhalation were injected intraperitoneally with D-luciferin (50 mg kg−1, Xenogen, Calipers Life Sciences, Hopkinton, Mass.). Photonic emission was imaged with the In Vivo Imaging System (IVIS, Xenogen). Tumor bioluminescence was quantified by integrating the photonic flux (photons per second) through a region encircling each tumor using the LIVING IMAGES software package (Xenogen). Administration of D-luciferin and detection of tumor bioluminescence in Lck/Ptenfl/fl/Gt(ROSA)26Sortm1(Luc)Kael/J mice was performed in a similar manner.
- For intravenous xenograft transplantation, 5×106 CCRF-CEM cells were injected intravenously in fourteen NOD.Cg-Prkdcscid II2rgtm1Wjl/Sz mice. After 3 days, mice were segregated into two treatment groups that received either CAL-130 or vehicle by oral gavage as described above for 7 days. Mice in both groups were then followed until moribund (and euthanized).
- Cell counts were measured on a Hemavet 850FS system (CDC Technologies, Oxford, Conn.), and standard procedures were followed for staining cells with the following antibody conjugates for flow cytometry (BD Biosciences, San Jose, Calif.) (Cella et al., 2004): phycoerythrin (PE) anti-CD4 (clone H129.19), fluorescein (FITC), PE, cytochrome c (CyC), or biotin anti-CD8α, FITC CD3ε, CyC anti-B220, and Thy 1.2. Biotinylated antibodies were detected with either streptavidin-PE or streptavidin-CyC. Subsets of DN thymocytes were analyzed based on expression of CD25 and CD44 after gating out cells that stained with a cocktail of biotinylated antibodies to CD4, CD8, B220, Mac-1, and Gr-1 followed by streptavidin Cy-Chrome.
- For intracellular staining of TCRB, cells were first labeled with PE-CD4 and Cy-Chrome-CD8α, then were fixed and permeabilized in 1% saponin, and finally were stained with FITC-labeled anti-Cβ-specific antibody. For identifying apoptotic thymocytes, cell suspensions in DMEM and 10% fetal calf serum (FCS; 2×106/mL) were first labeled with PE-CD4 or PE-Cy5 CD8a, washed, and incubated with annexin V-FITC (BD Biosciences) according to the manufacturer's recommendations. A viable lymphocyte gate was first established based on forward and side scatter parameters, and dead cells were excluded by the detection of propidium iodide (PI) uptake in the absence of CD4 or CD8 labeling.
- For studies evaluating spontaneous apoptosis, purified thymocytes were resuspended in DMEM, 10% FCS, and 2 mM glutamine (25×105 cells/mL), and 200 μL was placed in 96-well plates (5% CO2, 37° C.). Cells were harvested at 24 hours to determine the extent of apoptosis, as described. All samples were analyzed on a FACS Calibur flow cytometer (BD Biosciences) using CellQuest or FlowJo software. Data are displayed as histograms or dot blots with logarithmic scale. Each plot represents analysis of 2×105 or more events collected as list mode files.
- For cell surface staining in mouse whole blood, following incubation with appropriate antibodies, blood was processed using the BD Bioscience BD FACS Lysing Solution according to the manufacturer's instructions. For intracellular staining of Ki67, immediately after RBC lysis with the BD FACS Lysing solution cells were permeabilized without washing with 0.025% Tween-20 in lysing solution for an additional 15 minutes, washed, and then incubated with Ki67 antibodies.
- Thymic tissue, peripheral blood, spleens, and lymph nodes from the mice displaying the following combinations of PI3K genetic deletion were used: WT (full activity of both PI3Kγ and PI3Kδ), γhet/δhet (50% reduction in activity of both PI3Kγ and PI3Kδ), γko/δhet (full reduction of PI3Kγ activity and 50% reduction of PI3Kδ activity), γhet/δko (50% reduction of PI3Kγ activity and full reduction of PI3Kδ activity) and γko/δko to (full reduction of PI3Kγ and PI3Kδ activity). Analyses included tissue histology of thymi, spleens, and lymph nodes to determine structure and organization of cells, cell counts to determine differences of WBC numbers in tissues and blood for each genotype, and flow cytometry to evaluate differences in total thymocyte populations (CD3+ and subsets CD4+/CD8+).
- CCRF-CEM, CEM/C1, and MOLT-4 cells were obtained from ATCC and grown in RPMI-1640 medium containing 10% FBS and antibiotics.
- Antibodies to Akt (catalog #9272), phospho-Akt (S473, clone 193H12), phosphomTOR (S2448, catalog #2971S), mTOR (catalog #2972), phospho-GSK3αβ (S21/9, catalog #9331S), GSK-3β (clone 27C10), phospho-p70S6K (Thr389, catalog #9205S) and p70S6K (catalog #9202) and β-actin (catalog #4967S) were from Cell Signaling Technology (Danvers, Mass.). Antibodies to class I PI3K subunits were as follows: p110α (catalog #4255) from Cell Signaling Technology; p110β (clone Y384) from Millipore and mouse p110β from Santa Cruz Biotechnology (Santa Cruz, Calif.) (catalog #sc-602); p110γ (clone H1) from Jena Biosciences (Jena, Germany); p110δ (clone H-219) from Santa Cruz Biotechnology. Antibodies to PTEN (clone 6H2.1) were from Cascade Bioscience (Winchester, Mass.). For flow cytometry, antibodies were obtained from BD Biosciences: CD3ε-Alexa 488 (clone 145-2C11), CD4-APC (clone RM4-5), CD8-PerCP-Cy5.5 (clone 53-6.7), CD90.2-APC (Thy-1.2, clone 53-2.1), Ki67-FITC (clone B56), and Annexin V-APC. Antibodies to Bim, phospho-Bad, Bad, and BcIXL were from Cell Signaling Technology (pro-apoptotic sampler kit #9942S).
- The shRNA construct for p110γ (MISSION® shRNA Plasmid DNA; clone ID: NM—002649.2-4744s1c1; TRC number: TRCN0000196870). siRNA constructs for p110α (ON-TARGET plus SMARTpool #L-003018-00) and p110β (ON-TARGET plus SMARTpool # L-003019-00) were obtained from Dharmacon (Thermo Scientific, Waltham, Mass.).
- Cryopreserved samples were provided by collaborating institutions in the US (Department of Pediatrics, Columbia Presbyterian Hospital and Departments of Medicine and Pathology, Vanderbilt University), The Netherlands (Erasmus MC-Sophia Children's Hospital), and Italy (Hemato-Oncology Laboratory, Department of Pediatrics, University of Padua). All samples were collected with informed consent and under the supervision of the Medical Ethics Committee of the Erasmus Medical Center, the Columbia University Medical Center Institutional Review Board, the Vanderbilt University Medical Center Institutional Review Board, and the Acute Lymphoblastic Leukemia Strategic Scientific Committee.
- Cell proliferation of CCRF-CEM cells or shRNA transfected CCRF-CEM cells, in the presence or absence of appropriate drug, was followed by cell counting of samples in triplicate using a hemocytometer and trypan blue. For apoptosis determinations of untransfected or shRNA transfected CCRF-CEMs, cells were stained with APC-conjugated Annexin-V (BD Biosciences) in Annexin Binding Buffer (Miltyeni Biotec) and analyzed by flow cytometry. For primary T-ALL samples, cell viability was assessed using the BD Cell Viability kit (BD Biosciences) coupled with the use of fluorescent counting beads as previously described (Armstrong et al., 2009). For this, cells were plated with MS5-DL1 stroma cells, and after 72 hours following drug treatment cells were harvested and stained with an APC-conjugated anti-human CD45 followed by a staining with the above kit according to the manufacturer's instructions.
- Timed pregnant wild-type (WT) littermates were killed on day 14.5 after coitus, and single-cell suspensions of fetal livers were prepared (Puri et al., 2005). Briefly, 1.5×106 cells in PBS were injected intravenously (tail vein) into lethally irradiated 6-week-old p110γδ−/− mice (950 rads [9.5 Gy] single dose, 6 hours before injection). At 6 to 8 weeks after transplantation, complete blood cell counts were taken to confirm engraftment before using mice in experiments.
- Thymi, spleens, and lymph nodes harvested from 4-week-old mice were either formalin-fixed and paraffin embedded or snap frozen at −80° C. in liquid nitrogen. Hematoxylin-eosin staining was applied on fixed material for morphologic analysis. Immunohistochemistry was performed according to an indirect immunoperoxidase technique using the following primary antibodies: B220 (Valter Occhiena, Milan, Italy; 1:10), CD3 (Valter Occhiena; 1:10), CD4-biotinylated (Southern Biotechnology, Birmingham, Ala.; 1:200), CD8 (Valter Occhiena; 1:10), cytokeratin 5 (anti-K5, rabbit polyclonal; Covance, Princeton, N.J.; 1:50), and cytokeratin 8 (anti-K8; Progen Biotechnik, Heidelberg, Germany; 1:20). Specimens were visualized using an Olympus BX60 optical microscope, and images were acquired with a DP70 digital camera (Olympus). Image analysis was performed using analySIS (Soft Imaging System, Münster, Germany).
- CAL-130 is a derivative of IC87114 (Gilead Sciences, Foster City, Calif.), the synthesis of which has been previously described (Sadhu et al., 2003 and Sadhu et al., U.S. Pat. Nos. 6,518,277 and 6,667,300, which are incorporated by reference as if recited in full herein). IC50 values for CAL-130 inhibition of PI3K isoforms were determined in ex-vivo P13 kinase assays using recombinant PI3K. A 10-point kinase inhibitory profile was determined with ATP at a concentration consistent with the Km for each enzyme (Puri et al., 2004).
- Thymocytes or lymphocytes were preloaded with Fluo-4 AM (Molecular Probes, Eugene, Oreg.) at 5 μg/mL for 30 minutes at 37° C., labeled with anti-CD4-APC conjugate (BD Biosciences) to permit gating on this T-cell subset during analysis, and finally washed and resuspended (2×106/mL) in DMEM and 10% FCS. After a baseline was established at quiescence, Ca2+ flux was induced by the addition in tandem of anti-CD3e (hamster antimouse antibody; BD Biosciences) and the anti-hamster IgG polyclonal antibody (Jackson ImmunoResearch, West Grove, Pa.) for cross-linking. The resultant flux in Ca2+ was measured for 5 minutes by flow cytometry, and total flux was established by the addition of ionomycin (0.5 μg/mL). Drug inhibition of Ca2+ flux was measured after 30 minute pre-incubation with CAL-130 at room temperature of dye loaded cells. Percentage overall change in Ca2+ flux is reported as (Ca2+ fluxpeak−Ca2+ fluxbaseline/Ca2+fluxionomycin−Ca2+ fluxbaseline)×100.
- Protein extracts from thymus homogenates (30 μg protein per lane) were electrophoresed in polyacrylamide gels (Invitrogen Life Technologies, Carlsbad, Calif.), transferred to a PVDF membrane (Immobilon-P; Millipore, Billerica, Mass.) and incubated overnight (4° C.) with antibodies to p110α, p110β, p110γ, p110δ, or p85α (Santa Cruz Biotechnology, Santa Cruz, Calif.) and then with horseradish peroxidase-conjugated secondary antibodies. Bound antibody was detected by chemiluminescence according to the manufacturer's instructions (Amersham Biosciences, Piscataway, N.J.). Membranes were stripped and reblotted with anti-actin antibody (Sigma-Aldrich, St Louis, Mo.) to verify equal loading of protein.
- Cell lysates (from cell lines or thymocytes) were prepared on ice in M-PER Mammalian Protein Extraction reagent (Pierce) containing a cocktail of protease and phosphatase inhibitors (Swat et al., 2006). Equal amounts of total protein from lysates were subjected to SDS-PAGE, transferred to PVDF membrane (Immobilon-P, Millipore), and membranes probed by overnight incubation with appropriate primary antibodies. Bound antibodies were visualized with HRP-conjugated secondary antibodies and ECL chemistry (SuperPico West, Pierce).
- To assess the requirement for p110δ in TCR-induced phosphorylation of Akt/PBK, single-cell suspensions of thymocytes (1×108/mL) from PI3Kγ-deficient animals were incubated with the p110δ-specific inhibitor IC87114 (10 μM) or with vehicle control (DMSO) for 30 minutes before TCR cross-linking, as described for the Ca2+ flux assay. Aliquots (100 μL) were collected at 0, 10, 30, and 60 minutes after TCR cross-linking, briefly centrifuged to pellet, and subsequently lysed with ice-cold M-Per (Pierce, Rockford, Ill.) (according to the manufacturer's recommendations) that contained a cocktail of phosphatase and protease inhibitors (Puri et al., 2005). Lysates were clarified by centrifugation (12,000 g for 15 minutes at 4° C.), and total and phosphorylated Akt/PBK were determined by Western blot analysis.
- BrdU incorporation analyses were performed using a BrdU labeling kit (BD Biosciences). In brief, mice received intraperitoneal injections with 150 μL BrdU solution (10 mg/mL), and BrdU incorporation was analyzed 20 hours after injection. Thymocyte suspensions were first surface stained with anti-CD4-PE and anti-CD8-CyC antibodies, fixed, and permeabilized in BD Cytofix/Cytoperm buffer, then washed and refixed. To expose incorporated BrdU, cells were treated with DNase solution, washed, stained with anti-BrdU-FITC antibodies, and analyzed by flow cytometry.
- Thymus lobes were obtained from mouse embryos, with embryonic day 0 (E0) considered the day of vaginal plug detection. Fetal thymus organ cultures were used to compare the effects of pharmacologic blockade of p110δ activity on thymocyte development in WT, p110δ−/−, and p110γ−/− mice. Briefly, 3 to 4 intact thymi were placed on bare filter inserts (transwell, 3-μm pore size; Corning Costar, Cambridge, Mass.) and then were inserted into wells containing DMEM, 10% FCS supplemented with either p110δ-specific inhibitor IC87114 (10 μM) or vehicle control (DMSO), and incubated for 1 week at 37° C. in 5% CO2. Thymocyte differentiation was evaluated by flow cytometry.
- Statistical analyses were performed using Student's t-test (GraphPad Prizm software). Kaplan-Meier survival curves were analyzed using a logrank test (GraphPad Prism software). Values were considered significant at P<0.5.
- Formalin-fixed paraffin-embedded 5 μm tissue sections were stained with Hematoxylin & Eosin for histopathological diagnosis. For immunohistochemistry, anti-Ki67 (rabbit monoclonal, Abcam) and anti-CD3 (rabbit polyclonal, Dako) staining were performed on similar tissue sections after antigen retrieval by microwave heating in citrate buffer (pH 6.0). After epitope recovery, slides were incubated with antibody (anti-Ki67 1:50, anti-CD3 1:50) overnight at room temperature before antigen detection with diaminobenzidine (DAB) using a Ventana automated staining platform (Ventana).
- shRNA and siRNA Knockdown.
- CCRF-CEMs were transfected using the Amaxa Human T cell Nucleofector kit (Lonza, Basel, Switzerland) according to the manufacturer's optimized protocol kit for this cell line.
- For shRNA knockdown of p110γ, CCRF-CEM (2×106 cells) were transfected with 2 μg of purified plasmid DNA, and clones were selected by high dilution in puromycin used at a concentration pre-determined by a killing curve. Expression of p110γ and p110δ were determined by Western blotting.
- For siRNA knockdown of p110α or p110β, CCRF-CEM (2×106 cells) were transfected with 300 nM of siRNA construct. After a brief recovery period, cells were diluted to between 1-2×105 per ml and grown for further 48 hours for cell counting, flow cytometry and Western blotting.
- For CAL-130 level determinations, animals received a single oral dose (10 mg kg−1 or 20 mg kg−1) of inhibitor. Plasma was collected at 0, 2, 4, 8, and 12 hours and subjected to high-performance liquid chromatography-MS/MS (
sensitivity 1 ng/mL). The concentration of CAL-130 in plasma was determined using a standard curve (analyte peak area versus concentration) generated with calibration standard pools. Values represent the mean (±SD) for four animals per group. - Plasma glucose and insulin levels were determined following a single oral dose of CAL-130 (10 mg kg−1). Blood was collected into K2EDTA tubes by cardiac puncture at baseline and 0, 2, 4, and 8 hours post-dose, and plasma samples frozen at −80° C. until analysis. The insulin and glucose levels were determined by using an Ultra Sensitive Mouse Insulin ELISA Kit (Crystall Chem. Inc.) or WaveSense Presto Blood Glucose Monitoring System (Agamatrix Inc., Boston, Mass.), respectively.
- RNA from cells was isolated using the Qiagen RNeasy Mini Kit (cat#74104) according to the manufacturer's protocol. The isolated total RNA was reverse transcribed using a high capacity cDNA synthesis kit (SuperScript First-Stand Synthesis System, Invitrogen part number 11904-018) according to the manufacturer's protocol. Predesigned labeled primer and probe sets for human p110 alpha (Hs00180679_m1), human p110 beta (Hs00927728_m1), human p110 delta (Hs00192399_m1), human p110 gamma (Hs00277090_m1), human GAPDH (Hs03929097_g1), mouse p110 alpha (Mm00435673_m1), mouse p110 beta (Mm00659576_m1), mouse p110 delta (Mm00435674_m1), mouse p110 gamma (Mm00445038_m1), and mouse GAPDH (Mm99999915_g1) were from Applied Biosystems.
- The PCR reactions were set up following the protocol of USB (hotStart-IT Probe qPCR system Cat#75764). Real time relative quantitative PCR was run on ABI7500 with cycling conditions of 50° C. for 2 minutes, 95° C. for 10 minutes, 40 cycles of 95° C. for 15 seconds and 60° C. for 1 minute. Data exported from the ABI7500 machine were processed and analyzed using an Excel spread sheet. Briefly, target genes were normalized to the housekeeping gene GAPDH to obtain a ΔCT value. Relative quantitative expression was calculated with equation (2̂−ΔΔCT) where the ΔΔCT is the difference between the ΔCT of tumor samples and control samples (ΔΔCT=ΔCT tumor−ΔCT control). A Student's t-test was used to determine statistical difference in expression levels with P values <0.05 considered significant.
- For the analysis of p110α-mediated signaling, SW3T3 cells were placed in serum free media (3 hours) and incubated with either CAL-130 or the Pan-PI3K/mTor inhibitor BEZ235 (Selleck Chemicals) for 1 hour prior to stimulation with PDGF (10 ng/ml; Cell Signaling) for 10 minutes at 37° C. After washing once in cold phosphate-buffered saline (PBS), the cell pellet was resuspended in lysis buffer (50 mM HEPES [N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid], pH 7.4, 150 mM NaCl, 10% glycerol, 1% Triton X-100, 1.5 mM MgCl2, 1 mM EGTA [ethylene glycol tetraacetic acid], 100 mM NaF, 1 mM phenylmethylsulfonyl fluoride, 1 mM NaVO4, 1 μg/ml leupeptin, and 1 μg/ml aprotinin) for 15 minutes on ice. Whole-cell lysates were obtained by centrifugation, and the soluble protein analyzed by Western blotting for Akt and P-Akt levels. Quantification was done using the Li-COR Odyssey imaging system.
- Cell proliferation of CEM/C1 and MOLT-4 was determined in the presence or absence of PI3Kγ inhibitor IC87114 (Gilead Sciences, Foster City, Calif.), the PI3Kδ inhibitor AS-650240 (Selleck Chemicals), the PI3Kδ/γ dual inhibitor CAL-130 (Gilead Sciences), or the Pan-PI3K/mTor inhibitor BEZ235 (Selleck Chemicals) by cell counting of samples in triplicate using a hemocytometer and trypan blue. Cells were cultured for 72 hours at 37° C. with or without inhibitors. The percentage of apoptotic cells was determined by Annexin V-FITC/7AAD staining followed by 2-color flow cytometric analysis.
- Blood was obtained from anesthetized p110δ/γ double knockout mice via cardiac puncture. Platelets were purified from PRP by centrifugation and resuspended to a final concentration of 400,000/μl in buffer (145 mM NaCl, 10 mM Hepes, 0.5 mM Na2HPO4, 5 mM KCl, 2 mM MgCl2, 1 mM CaCl2, 0.1% glucose, pH 7.4). CAL-130 (1 μM, 2.5 μM, or 5 μM final concentration) or DMSO was added to
platelet suspensions 5 minutes prior to inducing aggregation with ADP (25 μM). Mouse fibrinogen (final concentration 200 μg/ml) was also added to the platelet suspensions just prior to activation as previously described (Magallon et al., 2011). Aggregation was assessed using a Chronolog Lumi-Aggregometer (model 540 VS, Chronolog, Havertown, Pa.). In some experiments, blood was collected 2 hours after administering a single dose of CAL-130 (10 mg kg−1) or vehicle control and ADP-induced aggregation evaluated. - CAL-130 (10 μM) was evaluated for its ability to prevent tagged kinases from interacting with immobilized “bait” ligand (Karaman et al., 2008). Results are reported as “% of control binding”, where lower numbers indicate stronger interactions with the tagged kinase. Values of >35% are considered “no hits”. PI3Kδ had the lowest percentage of control binding at 0.2% followed by PI3Kγ at 3.2% (See Table 1 below). These values indicate a high probability of a potent interaction. 353 kinases were assessed in the screen (Table 2).
-
TABLE 1 P110 catalytic domain selectivity of CAL-130 as assessed by Ambit KinomeScan screening. Ambit Gene Symbol Percent of Control Binding PIK3CA 12 PIK3CG 10 PIK3CB 3.2 PIK3CD 0.2 -
TABLE 2 Ambit KinomeScan screening of 353 kinases. Percent of Ambit Gene Percent of Ambit Gene Symbol Control Binding Symbol Control Binding AAK1 100 BMPR2 100 ABL1 100 BMX 100 ABL1(E255K) 100 BRAF 100 ABL1(F317I) 100 BRAF(V600E) 100 ABL1(F317L) 100 BRK 100 ABL1(H396P) 100 BRSK1 100 ABL1(M351T) 100 BRSK2 100 ABL1(Q252H) 100 BTK 100 ABL1(T315I) 100 CAMK1 100 ABL1(Y253F) 100 CAMK1D 100 ABL2 100 CAMK1G 100 ACVR1 100 CAMK2A 100 ACVR1B 100 CAMK2B 100 ACVR2A 100 CAMK2D 100 ACVR2B 100 CAMK2G 100 ACVRL1 100 CAMK4 100 ADCK3 100 CAMKK1 100 ADCK4 100 CAMKK2 18 AKT1 100 CDC2L1 100 AKT2 100 CDC2L2 100 AKT3 100 CDK11 100 ALK 100 CDK2 100 AMPK-α1 100 CDK3 100 AMPK-α2 100 CDK5 100 ANKK1 100 CDK7 100 ARK5 100 CDK8 100 ASK1 100 CDK9 100 ASK2 100 CDKL2 100 AURKA 100 CDKL3 100 AURKB 100 CDKL5 100 AURKC 100 CHEK1 100 AXL 100 CHEK2 100 BIKE 100 CIT 100 BLK 100 CLK1 100 BMPR1A 100 CLK2 100 BMPR1B 100 CLK3 100 CLK4 100 EPHA1 100 CSF1R 100 EPHA2 100 CSK 100 EPHA3 100 CSNK1A1L 100 EPHA4 100 CSNK1D 100 EPHA5 100 CSNK1E 100 EPHA6 100 CSNK1G1 100 EPHA7 100 CSNK1G2 100 EPHA8 100 CSNK1G3 100 EPHB1 100 CSNK2A1 100 EPHB2 100 CSNK2A2 100 EPHB3 100 CTK 100 EPHB4 100 DAPK1 100 EPHB6 100 DAPK2 100 ERBB2 100 DAPK3 100 ERBB3 100 DCAMKL1 100 ERBB4 100 DCAMKL2 100 ERK1 100 DCAMKL3 100 ERK2 100 DDR1 100 ERK3 100 DDR2 100 ERK4 100 DLK 100 ERK5 100 DMPK 100 ERK8 100 DMPK2 100 ERN1 100 DRAK1 100 FAK 100 DRAK2 100 FER 100 DYRK1A 100 FES 100 DYRK1B 100 FGFR1 100 DYRK2 100 FGFR2 100 EGFR 100 FGFR3 100 EGFR(E746-A750DEL) 100 FGFR3(G697C) 100 EGFR(G719C) 100 FGFR4 100 EGFR(G719S) 100 FGR 100 EGFR(L747-E749DEL, 100 FLT1 100 A750P) EGFR(L747-S752DEL, 100 FLT3 100 P753S) EGFR(L747-T751DEL, 100 FLT3(D835H) 100 SINS) EGFR(L858R) 100 FLT3(D835Y) 100 EGFR(L858R, T790M) 100 FLT3(ITD) 100 EGFR(L861Q) 100 FLT3(K663Q) 100 EGFR(S752-I759DEL) 100 FLT3(N841I) 100 FLT4 100 KIT(V559D, V654A) 100 FRK 100 LATS1 100 FYN 100 LATS2 100 GAK 100 LCK 100 GCN2(S808G) 100 LIMK1 100 GRK1 100 LIMK2 100 GRK4 100 LKB1 100 GRK7 100 LOK 100 GSK3A 100 LTK 100 GSK3B 100 LYN 100 HCK 100 LZK 100 HIPK1 100 MAK 100 HIPK2 100 MAP3K1 100 HIPK3 100 MAP3K15 100 HIPK4 100 MAP3K2 100 HPK1 100 MAP3K3 100 HUNK 100 MAP3K4 100 ICK 100 MAP4K2 100 IGF1R 100 MAP4K3 100 IKK-α 100 MAP4K4 100 IKK-β 100 MAP4K5 100 IKK- 100 MAPKAPK2 100 INSR 100 MAPKAPK5 100 INSRR 100 MARK1 100 IRAK1 100 MARK2 100 IRAK3 100 MARK3 100 ITK 100 MARK4 100 JAK1(JH1domain) 100 MAST1 100 JAK1(JH2domain) 100 MEK1 100 JAK2(JH1domain) 100 MEK2 100 JAK3(JH1domain) 100 MEK3 100 JNK1 100 MEK4 100 JNK2 100 MEK6 100 JNK3 100 MELK 100 KIT 100 MERTK 100 KIT(D816V) 100 MET 100 KIT(L576P) 100 MET(M1250T) 100 KIT(V559D) 100 MET(Y1235D) 100 KIT(V559D, T670I) 100 MINK 100 MKNK1 100 PAK7 100 MKNK2 16 PCTK1 100 MLCK 100 PCTK2 100 MLK1 100 PCTK3 100 MLK2 100 PDGFRA 100 MLK3 100 PDGFRB 100 MRCKA 100 PDPK1 100 MRCKB 100 PFTAIRE2 100 MST1 100 PFTK1 100 MST1R 100 PHKG1 100 MST2 100 PHKG2 100 MST3 100 PI3KCA 12 MST4 100 PI3KCB 10 MUSK 100 PI3KCD 0.1 MYLK 100 PI3KCG 1.2 MYLK2 100 PIK4CB 100 MYO3A 100 PIM1 100 MYO3B 100 PIM2 100 NDR1 100 PIM3 100 NDR2 100 PIP5K1A 100 NEK1 100 PIP5K2B 100 NEK2 100 PKAC-α 100 NEK5 100 PKAC-β 100 NEK6 100 PKMYT1 100 NEK7 100 PKN1 100 NEK9 100 PKN2 100 NIM1 100 PLK1 100 NLK 100 PLK2 100 OSR1 100 PLK3 100 p38-α 100 PLK4 100 p38-β 100 PRKCD 100 p38-δ 100 PRKCE 100 p38-γ 100 PRKCH 100 PAK1 100 PRKCQ 100 PAK2 100 PRKD1 100 PAK3 100 PRKD2 100 PAK4 100 PRKD3 100 PAK5 100 PRKG1 100 PAK6 100 PRKG2 100 PRKR 100 STK35 100 PRKX 100 STK36 100 PRP4 100 STK39 100 PYK2 100 SYK 100 QSK 100 TAK1 100 RAF1 100 TAO1 100 RET 100 TAOK1 100 RET(M918T) 100 TAOK3 100 RET(V804L) 100 TBK1 100 RET(V804M) 100 TEC 100 RIOK1 100 TESK1 100 RIOK2 100 TGFBR1 100 RIOK3 100 TGFBR2 100 RIPK1 100 TIE1 100 RIPK2 100 TIE2 100 RIPK4 100 TLK1 100 ROCK1 100 TLK2 100 ROCK2 100 TNIK 100 ROS1 100 TNK1 100 RPS6KA1 100 TNK2 100 RPS6KA2 100 TNNI3K 100 RPS6KA3 100 TRKA 100 RPS6KA4 100 TRKB 100 RPS6KA5 100 TRKC 100 RPS6KA6 100 TSSK1B 100 SBK1 100 TTK 11 SgK085 100 TXK 100 SgK110 100 TYK2(JH1domain) 100 SIK 100 TYK2(JH2domain) 100 SIK2 100 TYRO3 100 SLK 100 ULK1 100 SNARK 100 ULK2 100 SRC 100 ULK3 100 SRMS 100 VEGFR2 100 SRPK1 100 WEE1 100 SRPK2 100 WEE2 100 SRPK3 100 YANK2 100 STK16 100 YANK3 100 STK33 100 YES 100 YSK1 100 ZAK 100 YSK4 100 ZAP70 100 - The absence of p110δ and p110γ catalytic subunits in 4-week-old mice resulted in a significant reduction in thymus size compared with either age-matched WT littermate controls (FIG. 1Ai-ii) or singly deficient animals (
FIG. 7 ). Consequently, total cell counts in p110γδ−/− thymi were significantly reduced compared with WT control (approximately 27-fold) or p110γ-deficient (approximately 10-fold) animals. No defect in thymus size or total cell count, however, was observed for mice deficient in p110δ. Strikingly, thymic sections from p110γδ−/− mice revealed a unique phenotype, that is, a lack of corticomedullary differentiation (FIG. 1Aiv-v). This was confirmed by the disorganized pattern of K5+ medullary epithelial cells (ECs), a finding consistent with disorders in T-cell development (FIG. 1Aviii) (Anderson et al., 2001). Moreover, this defect in corticomedullary differentiation was corrected on the reconstitution of p110γδ−/− animals with WT fetal liver cells (FLCs), as the results of thymic histologic examination were relatively normal (FIG. 1Aix). Thymus size and cellularity were also restored to those observed for p110γ−/− mice, which is consistent with previous reports that the activity of this class 1b PI3K is required for thymic growth (FIG. 1Aiii) (Rodriguez-Borlado et al., 2003). Together, these results suggest a previously unrecognized interplay between class 1a and 1b PI3Ks in maintaining thymic organization and cellularity. - To determine the thymocyte population(s) most affected by the absence of PI3Kδ and PI3Kγ, flow cytometry analyses were performed to detect markers associated with thymocyte differentiation. Although the total number of CD4+ and CD8+ SP and DP cells were reduced overall, the absence of catalytic subunits had the greatest effect on the number of DP cells, typically the largest population of thymocytes in WT mice (
FIG. 2A ). In contrast, DN cells were the preponderant population in p110γδ−/− thymi, as occurs, for instance, in RAG2−/− mice (FIG. 8 ). In the latter, TCRB selection cannot occur at the DN3 stage, resulting in thymocyte death by apoptosis. Although a percentage of the DN3 population (CD44− CD25+) increased in thymi of p110γδ−/− mice, these cells were still capable of differentiating to the DN4 stage (CD44−CD25−) (FIG. 2B ). The populations of DN3 and DN4 thymocytes developing in p110γδ−/− mice, however, appeared to be phenotypically different from those of WT mice. Specifically, there appeared to be a continuum of DN3 to DN4 cells expressing gradually lower levels of CD25+ T cells. Although there was some variation in the percentages of DN1 cells (1.07%-8.82%), a modest but reproducible increase in the percentages (but not the total numbers) of immature CD8+ SP thymocytes bearing low-level surface TCRB was observed (FIG. 2D ). These cells are the direct precursors of DP thymocytes. Importantly, the proportion of DN3 cells in p110γδ−/− thymi that expressed TCRB protein was comparable to that of WT controls, as demonstrated by intracellular staining (FIG. 2C ). Thus, unlike RAG-deficient mice, the depletion of DP cells lacking p110 catalytic subunits does not appear to have resulted from a failure to undergo TCRB selection. The few remaining DP cells, however, still were capable of differentiating into TCRBhigh SP T cells, suggesting that positive selection may be intact (FIG. 2D-E ). In contrast, the reconstitution of lethally irradiated p110γδ−/− mice with WT FLC restored the proportions of DN, DP, and SP populations to those observed for WT littermates, suggesting that the combined activities of PI3Kδ and PI3Kγ in cells other than thymocytes are not critical for their overall development. Of note, this dramatic alteration in DP and DN thymocyte populations was not observed in p110δ- or p110γ-deficient animals (FIG. 7 ). - To confirm the in vivo observations and thus demonstrate that a deficiency in PI3Kδ contributed to the reduction in the DP thymocyte population, day 14.5 fetal thymi were harvested from WT, p110δ−/−, and p110γ−/− mice and were cultured in the presence of either p110δ-selective inhibitor IC87114 or vehicle control. Blockade of p110δ activity, in combination with genetic deletion of its gamma counterpart, resulted in a 69.2%±2.7% (mean±SE) reduction in the population of CD4+CD8+ DP thymocytes (
FIG. 3A-B ). Identical treatment of thymic cultures derived from p110δ−/− or WT control mice yielded a 10% or lower decrease in DP cells. Thus, blockade of p110δ function in p110γ−/− mice in lieu of its genetic deletion resulted in a similar alteration in the proportion of DP cells, as observed in p110γδ−/− animals (FIG. 2B ). Surprisingly, no significant alterations in the percentages of DN or DP populations were detected in p110γ−/− fetal thymi, suggesting that this class 1b PI3K does not have a major effect on thymocyte development under in vitro culture conditions. Moreover, the use of fetal thymic organ cultures excludes the possibility of glucocorticoid-induced thymocyte apoptosis as the primary mechanism for the observed reduction in cell numbers in vivo (Ashwell et al., 2000). - It is conceivable that the observed reduction in the DP thymocyte population in p110γδ−/− mice may result from either an increase in cell death or an overall decrease in the generation of this subset of cells. To determine whether this reduced cellularity might have reflected the former, this population of cells was evaluated for evidence of enhanced apoptosis. Flow cytometry analysis of PI-negative DP thymocytes revealed a 42%±6.1% increase in annexin V staining compared with WT littermates (
FIG. 4A ). Moreover, DP thymocytes from p110γδ−/− mice showed decreased survival in in vitro cultures compared with WT or DP cells lacking p110γ or p110δ alone (data not shown). On the other hand, in vivo labeling of thymocytes with BrdU revealed no differences in the rate of generation of p110γδ−/− orWT DP 20 hours after the BrdU pulse (25.4±5.7 vs 23.3±0.2, respectively), indicating that PI3Kγ and PI3Kδ activity is not essential for the generation of DP thymocytes (FIG. 4B ) (Penit et al., 1995). Rather, these results suggest that one major function ofclass 1 PI3Ks is to protect DP thymocytes from enhanced cell death, which, in turn, has a direct effect on thymic cellularity. - Western blot analysis revealed the presence of a p110δ catalytic subunit and other class 1a and class 1b isoforms in thymocytes harvested from WT control mice (
FIG. 5A ). Importantly, the expression pattern of p110α and p110β remained unchanged in thymocytes harvested from p110γδ−/− mice, with the exception of a small reduction in levels of the p85α regulatory subunit. The latter, however, is consistent with that previously reported for B cells obtained from mice lacking p110δ alone (Clayton et al., 2002). To demonstrate that p110δ is functional in thymocytes, TCR-induced phosphorylation of the PI3K target Akt/PKB was used as an indirect measure of its activity. To isolate PI3Kδ activity, thymocytes from p110γ−/− mice were harvested and pretreated with vehicle control or with the p1106-specific inhibitor IC87114 before TCR cross-linking. The results indicate that PI3Kδ does contribute to antigen receptor-induced activation of Akt/PKB in thymocytes because the phosphorylated form of this protein kinase was not detected in p110γ−/− cells treated with IC87114 under the assay conditions used (FIG. 5B ). Optimal TCR-induced Ca2+ flux required the activity of bothclass 1 PI3K isoforms (FIG. 5C ). Given that the proportion of cells capable of responding to TCR cross-linking in doubly-deficient thymi was different from that of its WT counterpart because of a larger proportion of DN cells in the former, Ca2+ flux in DP cells sorted from p110γδ−/− mice was also evaluated. Results indicate the persistence of this attenuated response, implicating both PI3Kδ and PI3Kγ as important mediators of antigen receptor signals in DP thymocytes (FIG. 5C , inset). - The abnormalities observed in T-cell numbers and TCR-signaling associated with a deficiency in p110γ and p110δ catalytic subunits was not limited to the thymus but persisted in secondary lymphoid organs. In particular, a defect in DP cell development appears to have a direct effect on extrathymic T-cell populations. Although the white blood cell count was similar among all genetic phenotypes tested, the total lymphocyte count was significantly reduced in p110γδ−/− mice compared with WT littermates (2.9±1.1 K/μL vs 6.2±2.1 K/μL, respectively;
FIG. 6A ). Moreover, this corresponded to a 5-fold reduction in total number of circulating TCRB+ cells in the former. Similarly, T-cell populations in peripheral lymph nodes and spleen were diminished, as determined by immunohistology (FIGS. 6B-C ). No such dramatic reduction of T cells was observed in secondary lymphoid organs in p110γ- or p110δ-deficient mice (data not shown). TCR-induced Ca2+ flux in mature T cells also relied on the activity ofclass 1 PI3Ks, mirroring the defect observed in thymocytes. For example, a greater than 45% reduction in Ca2+ flux in CD4+ T cells from p110γδ−/− animals compared with WT littermates was observed (FIG. 6D-E ). No defect was observed for p110γ-deficient cells, results consistent with those of a previous study (Sasaki et al., 2000). Moreover, only a modest reduction (approximately 15%) was noted for CD4+ T cells from p110δ−/− mice. These results suggest that PI3Kγ and PI3Kδ must work in concert to ensure effective signaling through this antigen receptor in mature T cells. -
Class 1 PI3Ks are essential for supporting innate and adaptive immune responses. By contrast, previous studies suggest they play a more limited role in thymocyte development and differentiation. Here, a novel defect in thymocyte development in mice that is dependent on the activities of 2 distinct subclasses of PI3Ks is disclosed. Genetic deletion of p110δ, in conjunction with its gamma counterpart, had a dramatic and unanticipated effect on thymus size, cellularity, and architecture. In particular, the combined absence of these 2 catalytic subunits resulted in a more than 4-fold reduction in the percentage and a 10- to 30-fold reduction in total numbers of cortical CD4+CD8+ DP thymocytes compared with WT littermates. Depletion of DP cells in p110γδ−/− thymi was accompanied by a corresponding compensatory increase in percentages, but not total numbers, of DN thymocytes and a paucity in the number of mature CD4+ and CD8+ SP T cells found in blood and secondary lymphoid organs. Thus, the reduction in DP thymocytes is of importance as it relates to T-lymphocyte production because there may be insufficient quantities of this subset in p110γδ−/− thymi to yield normal numbers of mature SP cells compared with WT animals (1.0×106±0.3 vs 109.6×106±22.6 DP cells, respectively). - Mechanistically, it is believed that the combined activity of PI3Kδ and PI3Kγ is critical to the survival of DP thymocytes in vivo. Indeed, given the inherent susceptibility of DP thymocytes to programmed cell death, presumably because of the down-regulation of the anti-apoptotic Bcl-2 protein at this stage of development, this population would be particularly vulnerable to the loss of survival signals generated by
class 1 PI3Ks. In this context, an anti-apoptotic role has been indicated by the immunologic consequences of constitutive PI3K signaling that occurs in the absence of the tumor-suppressor gene PTEN, a phosphatase that converts PIP3 to PIP2. Selective deletion of PTEN in murine T cells not only results in uncontrolled proliferation of this lymphocyte subset, it leads to autoimmunity that is thought to be a consequence of impaired programmed cell death in the thymus (Penit et al., 1995). Thus, the ability to demonstrate thatclass 1 PI3Ks do indeed participate in PIP3 generation in thymocytes was central to this hypothesis (FIG. 5B ). Further evidence in support of this claim is provided by annexin V staining. A significant percentage of DP cells in p110γδ−/− thymi were annexin V-positive, a marker indicative of apoptosis, unlike that of WT and single null animals. Moreover, the ability to reproduce this in vivo abnormality in thymocyte development by exogenously blocking the activity of PI3Kδ in cultured fetal thymi harvested from E14 p110γ−/− embryos suggests an inherent defect in thymocyte signaling. Thus, a role for external factors such as a potential elevation in glucocorticoid levels in p110γδ−/− animals in this process was excluded. - Although the activity of PI3Kδ and PI3Kγ is involved in maintaining DP thymocyte survival, it is conceivable that they could participate in TCRB-selection. During normal development, TCRB chain gene rearrangement and expression reaches completion at the DN3 stage, permitting the formation of the pre-TCR complex. As a result, DN3 thymocytes can activate several signaling pathways, including Ick/fyn and ZAP-70/Syk tyrosine kinases, SLP-76 and LAT linker proteins, Vav-family GEFs, and PLCγ1 phospholipase, that collectively mediate the transition of these cells to the CD4+CD8+ DP stage (Xu et al., 1995; Collins et al., 1997; Jordan et al., 2003; Kong et al., 1998; Reynolds et al., 2002). Consequently, mice lacking structural or signaling components of the pre-TCR complex exhibit a developmental block at the DN3 stage. In this context, PI3K activity has been implicated in Vav and PLCγ activation and Ca2+ flux through direct (PIP3 binding to PH domains) and indirect (induction of Tec-family kinases) mechanisms (Okkenhaug et al., 2003; Okkenhaug et al., 2004). Indeed p110γδ−/− thymocytes show impaired TCR-mediated Ca2+ flux in vitro. Thus, a deficiency in p110δ and p110γ could result in the perturbation of DN to DP checkpoint through defective pre-TCR signaling. The data above, however, do not appear to support this mechanism because equal proportions of p110γδ−/− compared with WT DN3 thymocytes express TCRB intracellularly. Moreover, pre-TCR complex-mediated events such as proliferative expansion, loss of CD25+ expression (transition to the DN4 stage), and acquisition of CD8+ and CD4+ coreceptors (transition to DP stage) were readily visible in thymocytes from p110γδ−/− mice. Thus, the resultant phenotype is clearly distinct from that associated with known defects in TCRB selection, such as RAG deficiency (
FIG. 8 ). Importantly, animals lacking both PI3Kδ and PI3Kγ can still generate DP thymocytes at rates similar to those in WT mice, as indicated by BrdU-incorporation experiments. Despite this finding, it was noted that the populations of DN3 and DN4 thymocytes in p110γδ−/− mice were phenotypically different from those of WT mice because there appeared to be a continuum of DN3 to DN4 cells expressing gradually lower levels of CD25+ T cells in the former. Although the mechanism for this abnormality is not completely understood, the most plausible explanation is that the gradual loss of CD25+ cells simply mirrors Bcl-2 down-regulation and the subsequent necessity forclass 1 PI3K-dependent survival signals. - Although the combined activities of PI3Kδ and PI3Kγ are essential for thymocyte development, it appears that either subclass is sufficient to maintain T-cell production. This potential redundancy in function may ensure that adequate levels of PIP3 are maintained to protect cells from proapoptotic stimuli. How these 2 PI3K subclasses, which are activated through distinct pathways, are linked through receptors (such as the TCR) that promote the development and survival of immature DP thymocytes remains to be determined. That said, it has been demonstrated that ligation of an ITAM-bearing receptor on cells, such as FcγRI, can result in the activation of class 1a and class 1b PI3Ks (Melendez et al., 1998). Moreover, it was speculated that the activation of p110γ, which typically occurs through G protein-coupled receptors, may involve the Tec family of tyrosine kinases, which have the capacity to physically interact with PIP3 and heterotrimeric G-protein subunits (Lewis et al., 2001). Such a scenario may hold true for T cells, because PI3Ks and Tec kinases are intricately linked in TCR-mediated signaling. For example, Tec kinases are required for the regulation of PLCγ activity and Ca2+ signaling, an event that involves PI3Kδ (Okhenhaug et al., 2002). Thus, it is conceivable that in response to PI3Kδ activation or other class 1a isoforms, a Tec tyrosine kinase family member will become localized at the plasma membrane through interactions with PIP3, which in turn may recruit a heterotrimeric G-protein that could activate p110γ and thus enhance PIP3 production.
- As set forth above, the genetic deletion of both p110γ and p110δ resulted in a significant reduction of thymus size and cellularity (about 8-fold). This deficiency also resulted in a lack of corticomedullary differentiation as compared to WT mice, indicating abnormal T cell development. Although p110γko/δhet and p110γhet/δko mice exhibited reduced thymus size and cell counts (2.1-fold and 1.6-fold, respectively), there was no obvious defect in corticomedullary differentiation (
FIG. 9 ). - Flow cytometry was utilized to evaluate the expression of the cell surface markers CD4 and CD8 in order to track the development of thymocytes. The double-positive (DP) population, cells expressing both CD4 and CD8 in their second stage of development, was significantly reduced in mice deficient in both PI3Kγ and PI3Kδ (9-fold as compared to WT). By contrast, 50% PI3Kγ or PI3Kδ activity was sufficient to maintain the normal percentage of DP thymocyte population (
FIG. 10A ). There was, however, a significant reduction in total numbers of DP cells in p110γko/δhet and γhet/δko thymi as compared to WT (45±7 and 56±17 vs. 82±29, respectively; mean±SD) (FIG. 10B ). - The observed defects in T cell numbers were not limited to the thymus as they were also seen in the peripheral blood of mice deficient in PI3K activity (
FIG. 11 ). Total WBC counts were relatively unaffected; however, the number of circulating T cells as defined by CD3 positivity was reduced in γko/δhet and γko/δko mice (2.2-fold and 5.9-fold as compared to WT, respectively). No such reduction was seen in γhet/δko mice, despite a significant decrease in DP thymocytes (FIG. 12 ). Still, the tissue organization and structure of peripheral lymph nodes and spleen did not seem to exhibit any anatomical defects in all mice except γko/δko animals (FIG. 13 ). - Thus, a partial reduction in both PI3Kγ and PI3Kδ activity can have a profound effect on T cell development, although not to the extent of complete absence in activity. In particular, PI3Kγ appears to play a more important role in this process than that of PI3Kδ, because peripheral blood from γhet/δko to mice did not exhibit as significant a reduction in the number of circulating T cells as their γko/δhet counterpart. Blood and tissues from animals with 50% activity in both p110 isoforms showed no major changes as compared to WT. Therefore, the order of genotypes displaying the least effect to most effect on T cells is as follows: WT<γhet/δhet<γhet/δko<γko/δhet<γko/δko. Based on these findings, it can be concluded that a drug that inhibits 50% of p110γ and 100% of p110δ would result in the least consequential impact on the immune system. Determining the exact amount of PI3K activity necessary to maintain the immune system could culminate in safer and more effective treatment of inflammatory diseases and blood cancers.
- Deletion of the tumor suppressor gene PTEN in T cell progenitors drives the malignant transformation of these cells within the thymus of mice (Suzuki et al., 2001; Hagenbeek and Spits, 2008; Liu et al., 2010). Moreover, the resulting tumors possess similar genetic and biochemical aberrations associated with a subset of patients with T-ALL including hyperactivation of the PI3K/Akt signaling pathway (Maser et al., 2007; Guo et al., 2008). Because PI3Kγ and PI3Kδ play a role in T cell development, their contribution to tumor formation was assessed by crossing mice containing PTEN alleles floxed by the loxP Cre excision sites with Lck-cre transgenic animals (Lck/Ptenfl/fl) alone or together with those lacking p110γ (encoded by Pik3cg) and/or p110δ (encoded by Pik3cd) catalytic subunits. Consistent with previous studies, >85% of Lck/Ptenfl/fl mice develop T-ALL and eventually succumb to the disease (median survival of 140 days), which was confirmed by flow cytometric analysis (
FIGS. 14A and 14B ). In contrast to PTEN null tumors of solid organs that have been reported to rely on PI3Kβ activity (Jia et al., 2008; Wee et al., 2008), tumorigenesis in the context of a deficiency of PTEN in T cell progenitors appears to be critically dependent on PI3Kγ and PI3Kδ. This is evidenced by the marked delay in the onset of disease and increased survival of Lck/Ptenfl/fl;Pik3cg−/−;pik3cd−/− triple mutant mice (TKO) as <20% of animals succumb to T-ALL by 220 days. - However, the activity of either isoform alone was sufficient to promote tumor formation, yielding similar median survival times for Lck/Ptenfl/fl;Pik3cg−/− and Lck/Ptenfl/fl;Pik3cd−/− mice (175 days versus 178 days, respectively). Comparable percentages of these animals developed and died of T-ALL (65% versus 64%, respectively) and tumors had evidence of activation of the PI3K/Akt signaling pathway, albeit much reduced as compared to those from Lck/Ptenfl/fl animals (
FIG. 14C ). However, there was no evidence of over-expression of any Pik3c isoform in thymic tumors (FIG. 14D ). - Further evidence demonstrating that it is the unleashed activities of PI3Kγ and PI3Kδ that provide the signals necessary for the development of T-ALL is suggested by the continued reduction in thymus size and cellularity in 6 week old TKO mice (
FIG. 15A ). Although absence of PTEN should permit unrestricted activity of all four class I PI3K isoforms, it appears that PI3Kα and PI3Kβ cannot adequately compensate for their gamma and delta counterparts as evidenced by the persistent diminution in the total number of CD4+CD8+ double positive thymocyte population and near basal levels of phosphorylated Akt (Ser473) as compared to mice deficient in PTEN alone (FIGS. 15A and 15B ). Cellular alterations associated with p110γ/δ double deficiency also persisted in the peripheral blood and in secondary lymphoid organs of TKO mice and included a paucity of CD3+ T cells (FIGS. 15C and 15D ). No active tumor was found in peripheral blood or spleen of the surviving animals at about 7 months of age as determined by absence of staining for the proliferation marker Ki67 on Thy1.2 positive cells (FIG. 15E ). - In order to ascertain whether PI3Kγ and PI3Kδ are also required for tumor maintenance and can be targeted therapeutically in T-ALL, a small molecule that preferentially inhibits the function of both p110γ and p110δ catalytic domains was generated. This small molecule was designated CAL-130 (
FIG. 16A ). IC50 values of this compound were 1.3 nM and 6.1 nM for p110δ and p110γ, respectively, as compared to 115 nM and 56 nM for p110α and p110β. - Importantly, this small molecule does not inhibit additional intracellular signaling pathways (i.e. p38 mitogen-activated protein kinase or insulin receptor tyrosine kinase) that are critical for general cell function and survival (Tables 1 and 2). To demonstrate that CAL-130 can block the activities of both PI3Kδ and PI3Kγ in thymocytes, its ability to prevent phosphorylation of Akt (Ser473) and calcium flux in response to TCR-cross-linking were evaluated. As set forth above, the combined activities of these two class I PI3K isoforms are necessary for phosphorylation of this protein kinase in this cell population (Swat et al., 2006). Consistent with these results, CAL-130 treatment of thymocytes harvested from 6 week old wild type animals prevented TCR induced Akt phosphorylation and attenuated calcium flux to levels observed for their Pik3cg−/−;pik3cd−/− counterparts (
FIGS. 16B , 16C, and 21A). - To assess the in vivo efficacy of the inhibitor, its effects on thymi of 6 week old mice were determined, specifically for its ability to recapitulate the phenotype observed when both p110γ and p110δ are deficient. Animals received 10 mg kg−1 of the inhibitor orally, which was sufficient to maintain plasma concentrations of 0.33±0.18 μM at the end of 8 hours (
FIG. 16D ). Notably, this dose did not affect either plasma glucose or insulin levels in contrast to the metabolic perturbations associated with tissue specific deficiencies in p110α and p110β (FIGS. 16E and 16F ) (Jia et al., 2008; Sopasakis et al., 2010). CAL-130 was also found to have a limited ability to impair PDGF-induced activation of PI3Kα as compared to the pan-PI3K/mTOR inhibitor BEZ235 (FIG. 21B ). Similarly, platelets harvested from Pik3cd−/−;pik3cd−/− mice 2 hours post administration of CAL-130 had no obvious defect in ADP-mediated platelet aggregation, a process known to rely predominantly on PI3Kβ (FIG. 21C ) (Jackson et al., 2005). However, CAL-130 treatment (10 mg kg−1 every 8 hours) for a period of 7 days markedly affected the size, cellularity, and overall architecture of the thymus faithfully reproducing the phenotype associated with Pik3cd−/−;pik3cd−/− mice (FIG. 16G ). In particular, there was a 18-fold reduction in total thymocyte number in comparison to controls, which was primarily due to the loss of DP population (FIG. 16H ). These observations are consistent with the ability of CAL-130 to preferentially block the function of both PI3Kγ and PI3Kδ. - The clinical significance of interfering with the combined activities of PI3Kγ and PI3Kδ was determined by administering CAL-130 to Lck/Ptenfl/fl mice with established T-ALL. Candidate animals for survival studies were ill-appearing, had a WBC above 45K μl−1, evidence of blasts on peripheral smear, and a majority of circulation cells (>75%) staining double positive for Thy1.2 and Ki-67. Mice received an oral dose (10 mg kg−1) of the inhibitor every 8 hours for a period of 7 days and were then followed until moribund. Despite the limited duration of therapy, CAL-130 was highly effective in extending the median survival for treated animals to 45 days as compared 7.5 days for the control group (
FIG. 17A ). - To determine the effect of CAL-130 on disease burden, sequential blood counts and peripheral smears as well as flow cytometric analyses were performed on Lck/Ptenfl/fl mice pre- and post-administration of the inhibitor (
FIG. 17B ;FIGS. 22A-22C ). All animals showed a dramatic reduction in WBC byday 4 reflected in the loss of the highly proliferative blast population (Thy1.2/Ki-67 double positive, high FSC-H), which remained at low levels for the duration of treatment. Moreover, both CD4 single positive and CD4/CD8 double positive T-ALL responded to CAL-130, which corresponded with an increase in apoptosis detected as sub-G0 population after propidium iodide (PI) staining ondays 4 through 7. Treatment of diseased Lck/Ptenfl/fl; Pik3cg−/− mice but not their Lck/Ptenfl/fl counterparts with the PI3Kδ selective inhibitor IC87114 (10 mg kg−1 every 8 hours) produced similar results, confirming the critical reliance of PTEN null tumors on the combined activities of PI3Kγ and PI3Kδ (FIG. 17C ;FIG. 22D ). - Further evidence to support the ability of CAL-130 to reduce tumor burden was obtained by bioluminescent imaging. Ptenfl/fl mice were crossed with a strain in which a luciferase cDNA, preceded by a LoxP-stop-LoxP cassette, was introduced into the ubiquitously expressed ROSA26 locus (Safran et al., 2003). Progeny were then crossed with Lck-cre transgenics to delete Pten in T cell progenitors and induce expression of luciferase (Lck/Ptenfl/fl;Gt(ROSA)26Sortm1(Luc)Kael/J). Imaging on T-ALL tumor bearing animals was performed just prior to and after 4 days of treatment with CAL-130. Signals at
day 4 were dramatically lower in treated animals, consistent with the reduction in the WBC count and the CD4 single positive population of tumor cells (FIG. 17D ). Moreover, weights of thymi, liver, spleen, and kidneys from treated Ptenfl/fl mice were significantly less than that for animals that received vehicle control for 7 days (FIG. 17E ). - To test whether CAL-130 may have similar effects on human tumors, the response of T-ALL cell lines to the compound were first analyzed. A human T-ALL cell line, CCRF-CEM, was used. T-ALL cell lines typically have multiple mutations including but not limited to Notch1 and PTEN (Palomero et al., 2007). Moreover, this particular cell line also has reduced sensitivity to conventional chemotherapies used in the treatment of T-ALL such as dexamethasone. Incubation of cultured cells with CAL-130, but not inhibitors of either PI3Kγ or PI3Kδ, prevented proliferation and promoted apoptosis within 24 hours, which persisted over 4 days of treatment (
FIGS. 18A , 18B, and 23A-23J). To further demonstrate that the combined activities of PI3Kγ and PI3Kδ are essential for these processes, an shRNA vector that targeted the p110γ catalytic domain in CCRF-CEM cells was utilized. Western blot analysis revealed a >95% reduction in expression of p110γ with no effect on the other isoforms (FIG. 18C , insert). Subsequent incubation of these cells with the PI3Kδ specific inhibitor IC87114 prevented proliferation and promoted apoptosis as observed for non-transfected CCRF-CEM exposed to CAL-130 (FIGS. 18C and 18D ). In contrast, IC87114 had no major effect on cells containing empty vector alone; neither did siRNA knockdown of either PIK3CA or PIK3CB (FIG. 23K-23N ). These observations are consistent with the in vivo studies demonstrating that PI3Kγ and PI3Kδ are strictly required for the proliferation and survival of T-ALL lymphoblasts. Moreover, blockade of these two isoforms significantly enhanced the apoptotic properties of dexamethasone, a drug of considerable importance in the treatment of various lymphoid malignancies including T-ALL (FIG. 18E-18H ) (Beesley et al., 2009). - The PI3K/Akt signaling pathway can play a major role in cell cycle progression and growth of tumors by regulating the activation state of the downstream targets such as glycogen synthase kinase-3β (GSK3β) and mTOR (Schmelzle and Hall, 2000; Cohen and Frame, 2001). PI3K/Akt mediated phosphorylation suppresses the function of the former and promotes the activity of the latter. Tumor cell survival, on the other hand, is largely mediated by the ability of this pathway to inactivate proapoptotic effectors such as the BH3-only pro-apoptotic protein BAD and to repress the expression of BIM, both of which participate in the mitochondria-dependent cell death pathway (Strasser et al., 2000; Duronio, 2008). Therefore, the ability of CAL-130 treatment to interfere with such events was examined. Indeed, CCRF-CEM cells exposed to increasing concentration of drug exhibited a corresponding reduction and complete abrogation of Akt (Ser473) phosphorylation at 2.5 μM (
FIG. 19A ). Downstream targets of this protein kinase were also affected as evidenced by the reduction in phosphorylation of GSK38 and mTOR. Consistent with the importance of PI3K in tumor cell survival, CAL-130 treatment resulted in a reduction in phosphorylation of BAD, as well as an enhanced expression of its counterpart BIM (including the L and S isoforms) (FIG. 19B ). The latter would also explain in part the synergy between CAL-130 and dexamethasone, as BIM expression is required for glucocorticoid-induced apoptosis (Erlacher et al., 2005; Wang et al., 2003). - To assess the in vivo relevance of these observations, the ability of CAL-130 to prevent the proliferation of CCRF-CEM cells implanted subcutaneously or to prolong the survival of NOD.Cg-Prkdcscid II2rgtm1Wjl/Sz that received these cells intravenously was evaluated. In the former, luciferase expressing CCRF-CEM cells were injected into the flanks of immunodeficient mice and allowed to grow for 1 week before administering vehicle control or inhibitor (10 mg kg−1 every 8 hours) for a total of 4 days. In the latter, treatment commenced 3 days post-injection of tumor cells for a total of 7 days. Bioimaging of subcutaneous tumors revealed a 5-fold difference in luminescence in CAL-130 treated versus vehicle control treated animals (
FIG. 19C ). This translated into an increase in median survival time for treated animals with systemic disease of 35 days versus 23 days for mice that received vehicle control alone (FIG. 19D ). - As the continued passage of rapidly growing tumor lines can result in genetic alterations distinct from the cell from which it was originally derived, the effect of CAL-130 on primary T-ALL samples isolated from patients with active disease was also evaluated. Consistent with the animal studies, human tumor cells devoid of PTEN were exquisitely sensitive to dual inhibition of PI3Kγ/δ, but not single inhibition of PI3Kδ, which resulted in a reduction in tumor cell viability as well as in Akt phosphorylation in response to treatment (
FIGS. 20A-20C and data not shown). Interestingly, one primary sample that not only expressed PTEN (T-ALL 4) but also high levels of phospho-Akt, was as responsive to CAL-130 as its PTEN null counterparts. This would suggest that T-ALL sensitivity to a PI3Kγ/δ dual inhibitor might correlate better with the degree of Akt phosphorylation rather than with PTEN expression. As observed with primary mouse T-ALL, human tumors did not appear to over-express any of the four class I PIK3C isoforms (FIG. 20D ). - Oncogenesis is a complex and multigenic process that often involves constitutive activation of the PI3K signaling pathway. Most notably are the gain-of-function mutations frequently found in PIK3CA, the gene that encodes for the p110α catalytic subunit, and genetic alterations that lead to the inactivation of the tumor suppressor gene Pten (Samuels et al., 2004; Zunder et al., 2008; Sulis and Parsons, 2003; Salmena et al., 2008). In the latter scenario, the possibility exists that the unregulated activity of any of the four class I PI3K isoforms could drive tumor development. For instance, previous reports demonstrate that PI3Kβ is essential for the induction, growth, and survival of PTEN-deficient tumors of epithelial cell origin (Jia et al., 2008; Wee et al., 2008). Moreover, it has been suggested that all class I PI3K isoforms are capable of coupling to upstream signaling pathways in which they are not normally engaged, thus compensating for inhibition/genetic deletion of a particular isoform (Foukas et al., 2010). To date, no conclusive evidence exists to implicate PI3Kβ or any other class I PI3K in the genesis of hematological malignancies such as T-ALL.
- These results demonstrate that in the absence of physiological regulation, the activity of either PI3Kγ or PI3Kδ is sufficient for the malignant transformation of T cell progenitors in a living animal. This is exemplified by the similar onset of disease and percent survival of mice lacking either p110γ or p110δ, and the rare incidence of tumor development in their combined absence. Moreover, pharmacological blockade of both p110γ/δ dramatically impacted on tumor cell proliferation and survival as demonstrated in CAL-130 treatment of diseased Lck/Ptenfl/fl mice, IC87114 treatment of diseased Lck/Ptenfl/fl Pik3cg−/− mice as well as CAL-130 treatment of PTEN null human T-ALL primary tumors or tumor cell lines; no such effects were observed with siRNA knockdown of either p110α or p110β, and selective blockade of PI3Kδ with IC87114 was ineffective in reducing the viability of primary human T-ALL samples. These results would suggest that propagation of upstream signaling pathways critical for the development and/or survival of PTEN null T-ALL tumors rely on PI3Kγ and PI3Kδ and that the remaining isoforms (i.e. alpha and beta) cannot adequately compensate for their inactivity. Clearly, the same PI3K isoforms can participate in both tumorigenesis and tumor maintenance.
- It has previously been established that PTEN loss is necessary but not sufficient to cause the malignant transformation of T cell progenitors (Liu et al., 2010; Guo et al., 2011). This typically requires additional genetic events such as chromosomal translocations involving the T cell receptor α/δ locus and c-myc oncogene (Bernard et al., 1988; Finger et al., 1986), which are acquired during the transition from CD4−CD8− DN to CD4+CD8+ DP development stage. Despite the presence of these strong oncogenic signals, the combined absence of PI3Kγ and PI3Kδ significantly impaired leukemogenesis suggesting that loss of these isoforms can act as a tumorigenic bottleneck. Although it is possible that the overall reduction in CD4+CD8+ DP thymocyte numbers can partially account for the lower tumor incidence, it is unlikely because the transition from DN to DP thymocyte population in the double knockout mice is relatively normal (Swat et al., 2005). That is to say, there is no major deficiency in the number of early T cell progenitors that could undergo malignant transformation in the absence of PTEN activity. Yet, not only is tumorigenesis disrupted in TKO mice but the abnormality observed in T cell development persisted as well. This is in contrast to the severe defect in thymocyte development associated with a genetic deletion of phosphoinositide-dependent kinase 1 (PDK1) (Hinton et al., 2004), a direct downstream target of class I PI3K, which can be overcome by the loss of PTEN resulting in near normal numbers of thymocytes and peripheral T cells (Finlay et al., 2009). Similarly, PTEN deficiency can bypass a defect in either IL-7R or pre-TCR signaling, which are critical for the normal development and survival of T cells (Hagenbeek et al., 2004). In stark contrast to these studies is the inability of a PTEN deficient state to promote thymocyte proliferation and development in triple mutant Lck/Ptenfl/fl;Pik3cg−/−;pik3cd−/− mice.
- Thus, developmental and genomic events responsible for the generation as well as the malignant transformation of T cells in the context of a PTEN deficient state are critically reliant on proliferation and survival signals provided by PI3Kγ and PI3Kδ. It is interesting to note that although PTEN appears to play a key role in regulating the activities of class I PI3K, it is not the only phosphatase in T cells. SHIP1 (SH2-containing inositol-5′-phosphatase) is also capable of hydrolyzing PIP3 and has been shown to play an important role in the immunoregulatory capacity and development of specific subsets of T cells (Tarasenko et al., 2007; Collazo et al., 2009). Although deletion of SHIP1 alone in T cell progenitors is not sufficient to induce leukemogenesis, low levels of this phosphatase in conjunction with PTEN inactivation have been reported in human T-ALL tumors suggesting that inactivation of both phosphatases contribute to the hyperactivation of the PI3K/Akt signaling pathway (Lo et al., 2009). The discovery that both PI3Kγ and PI3Kδ are the engines that help drive the oncogenic process in T cell progenitors in the absence of appropriate regulation and can provide sufficient growth and survival signals necessary for tumor cell maintenance makes them attractive targets for therapy in such clinical cases. Moreover, dual inhibition of PI3Kγ and PI3Kδ in combination with conventional chemotherapies such as glucocorticoids may be of particular clinical utility in such individuals as they are more likely to fail induction chemotherapy and relapse (Gutierrez et al., 2009; Jotta et al., 2010).
- It has been suggested that a complex signaling network involving PI3K exists between leukemic and supporting cells in the tissue microenvironment that may contribute to disease progression and drug resistance (Ayala et al., 2009; Konopleva et al., 2009; Burger et al., 2009). This is exemplified by the recent observations that the PI3Kδ specific inhibitor CAL-101 reduces levels of circulating chemokines known to contribute to tissue localization of chronic lymphocytic leukemic cells (Hoellenriegel et al., 2011). Consequently, this results in a generalized lymphocytosis during treatment of patients with this hematological malignancy. In contrast, a dramatic and sustained reduction in peripheral blood T-ALL cells within hours of CAL-130 treatment of diseased Lck/Ptenfl/fl mice (data not shown) was observed. That said, it is possible that paracrine and/or autocrine signaling responsible for T-ALL survival in tissues may be disrupted by simultaneously blocking the activities of PI3Kγ and PI3Kδ. Further work will be required to establish the role of these PI3K isoforms in supporting microenvironmental interactions in T-ALL.
- In the broader perspective, the results indicate that in the absence of PTEN mediated regulation, distinct class I PI3Ks can predominate in the development and survival of tumors in a manner that is most likely to involve isoforms that normally play a critical role in the function of that particular cell type. Furthermore, it is possible to target cancer cells by exploiting their “addiction” to the activity of distinct PI3K isoforms that are not themselves classical oncogenes. More generally, by identifying PI3Kγ and PI3Kδ as key therapeutic targets, it may be possible to limit toxicities that would be associated with the administration of pan-PI3K or Akt inhibitors including perturbations in insulin signaling and glucose metabolism (Crouthamel et al., 2009).
-
- Anderson G, Jenkinson E J. Lymphostromal interactions in thymic development and function. Nat Rev Immunol. 2001; 1: 31-40. [PubMed: 11905812]
- Armstrong, F., Brunet de la Grange, P., Gerby, B., Rouyez, M. C., Calvo, J., Fontenay, M., Boissel, N., Dombret, H., Baruchel, A., Landman-Parker, J., Roméo, P. H. et al. (2009). NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity. Blood 113, 1730-1740.
- Ashwell J D, Lu F W, Vacchio M S. Glucocorticoids in T cell development and function. Annu Rev Immunol. 2000; 18: 309-345. [PubMed: 10837061]
- Ayala, F., Dewar, R., Kieran, M., and Kalluri, R. (2009). Contribution of bone microenvironment to leukemogenesis and leukemia progression.
Leukemia 23, 2233-2341. - Beesley, A. H., Firth, M. J., Ford, J., Weller, R. E., Freitas, J. R., Perera, K. U., and Kees, U. R. (2009). Glucocorticoid resistance in T-lineage acute lymphoblastic leukaemia is associated with a proliferative metabolism.
Br. J. Cancer 100, 1926-1936. - Bernard, O., Larsen, C. J., Hampe, A., Mauchauffe, M., Berger, R. and Mathieu-Mahul, D. (1988). Molecular mechanisms of a t(8;14)(q24;q11) translocation juxtaposing c-myc and TcR-alpha genes in a T-cell leukaemia: involvement of a V alpha internal heptamer.
Oncogene 2, 195-200. - Borowski C, Martin C, Gounari F, et al. On the brink of becoming a T cell. Curr Opin Immunol. 2002; 14: 200-206. [PubMed: 11869893]
- Burger, J. A., Ghia, P., Rosenwald, A., and Caligaris-Cappio, F. (2009). The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood 114, 3367-3375.
- Cantley L C. The phosphoinositide 3-kinase pathway. Science. 2002; 296: 1655-1657. [PubMed: 12040186]
- Carnero, A., Blanco-Aparicio, C., Renner, O., Link, W., and Leal, J. F. (2008). The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr. Cancer Drug Targets 8, 187-198.
- Cella M, Fujikawa K, Tassi I, et al. Differential requirements for Vav proteins in DAP10- and ITAM-mediated NK cell cytotoxicity. J Exp Med. 2004; 200: 817-823. [PMCID: PMC2211968] [PubMed: 15365099]
- Clayton E, Bardi G, Bell S E, et al. A crucial role for the p110delta subunit of phosphatidylinositol 3-kinase in B cell development and activation. J Exp Med. 2002; 196: 753-763. [PMCID: PMC2194055] [PubMed: 12235209]
- Cohen, P. and Frame, S. (2001). The renaissance of GSK3. Nat. Rev. Mol. Cell. Biol. 2, 769-776.
- Collazo, M. M., Wood, D., Paraiso, K. H., Lund, E., Engelman, R. W., Le, C. T., Stauch, D., Kotsch, K. and Kerr, W. G. (2009). SHIP limits immunoregulatory capacity in the T-cell compartment. Blood 113, 2934-2944.
- Collins T L, Deckert M, Altman A. Views on Vav. Immunol Today. 1997; 18: 221-225. [PubMed: 9153953]
- Crouthamel, M. C., Kahana, J. A., Korenchuk, S., Zhang, S. Y., Sundaresan, G., Eberwein, D. J., Brown, K. K. and Kumar, R. (2009). Mechanism and management of AKT inhibitor-induced hyperglycemia. Clin. Cancer Res. 15, 217-225.
- Downward J. PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol. 2004; 15: 177-182. [PubMed: 15209377]
- Dudley E C, Petrie H T, Shah L M, Owen M J, Hayday A C. T cell receptor beta chain gene rearrangement and selection during thymocyte development in adult mice. Immunity. 1994; 1: 83-93. [PubMed: 7534200]
- Duronio, V. (2008). The life of a cell: apoptosis regulation by the PI3K/PKB pathway. Biochem. J. 415, 333-344.
- Erlacher, M., Michalak, E. M., Kelly, P. N., Labi, V., Niederegger, H., Coultas, L., Adams, J. M., Strasser, A., and Villunger, A. (2005). BH3-only proteins Puma and Bim are rate-limiting for gamma-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo.
Blood 106, 4131-4138. - Fabian, M. A., Biggs, W. H. 3rd, Treiber, D. K., Atteridge, C. E., Azimioara, M. D., Benedetti, M. G., Carter, T. A., Ciceri, P., Edeen, P. T., and Floyd, M. (2005). A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 23, 329-336.
- Falk I, Nerz G, Haidl I, Krotkova A, Eichmann K. Immature thymocytes that fail to express TCR-beta and/or TCRgamma delta proteins die by apoptotic cell death in the CD44(−)CD25(−) (DN4) subset. Eur J. Immunol. 2001; 31: 3308-3317. [PubMed: 11745348]
- Finger, L. R., Harvey, R. C., Moore, R. C., Showe, L. C. and Croce, C. M. (1986). A common mechanism of chromosomal translocation in T- and B-cell neoplasia. Science 234, 982-985.
- Finlay, D. K., Sinclair, L. V., Feijoo, C., Waugh, C. M., Hagenbeek, T. J., Spits, H. and Cantrell, D. A. (2009). Phosphoinositide-
dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes. J. Exp. Med. 206, 2441-2454. - Foukas, L. C., Berenjeno, I. M., Gray, A., Khwaja, A. and Vanhaesebroeck, B. (2010). Activity of any class IA PI3K isoform can sustain cell proliferation and survival. Proc. Natl. Acad. Sci. USA. 107, 11381-11386.
- Franke T F, Hornik C P, Segev L, Shostak G A, Sugimoto C. PI3K/Akt and apoptosis: size matters. Oncogene. 2003; 22: 8983-8998. [PubMed: 14663477]
- Fruman D A, Snapper S B, Yballe C M, et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85alpha. Science. 1999; 283: 393-397. [PubMed: 9888855]
- Germain R N. T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol. 2002; 2: 309-322. [PubMed: 12033737]
- Gratiot-Deans J, Ding L, Turka L A, Nunez G. bcl-2 proto-oncogene expression during human T cell development: evidence for biphasic regulation. J. Immunol. 1993; 151: 83-91. [PubMed: 8326141]
- Guo, W., Lasky, J. L., Chang, C. J., Mosessian, S., Lewis, X., Xiao, Y., Yeh, J. E., Chen, J. Y., Iruela-Arispe, M. L., Varella-Garcia, M. et al. (2008). Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 453, 529-533.
- Guo, W., Schubbert, S., Chen, J. Y., Valamehr, B., Mosessian, S., Shi, H., Dang, N. H., Garcia, C., Theodoro, M. F., Varella-Garcia, M. et al. (2011). Suppression of leukemia development caused by PTEN loss. Proc. Natl. Acad. Sci. USA. 108, 1409-1414.
- Gutierrez, A., Sanda, T., Grebliunaite, R., Carracedo, A., Salmena, L., Ahn, Y., Dahlberg, S., Neuberg, D., Moreau, L. A., Winter, S. S. et al. (2009). High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 114, 647-650.
- Hagenbeek, T. J. and Spits, H. (2008). T-cell lymphomas in T-cell-specific Pten-deficient mice originate in the thymus. Leukemia 22, 608-619.
- Hagenbeek, T. J., Naspetti, M., Malergue, F., Garçon, F., Nunès, J. A., Cleutjens, K. B., Trapman, J., Krimpenfort, P. and Spits, H. (2004). The loss of PTEN allows TCR alphabeta lineage thymocytes to bypass IL-7 and Pre-TCR-mediated signaling. J. Exp. Med. 200, 883-889.
- Hennet, T., Hagen, F. K., Tabak, L. A. and Marth, J. D. (1995). T-cell-specific deletion of a polypeptide N-acetylgalactosaminyl-transferase gene by site-directed recombination. Proc. Natl.
Acad. Sci. USA 92, 12070-12074. - Hickey, F. B. and Cotter, T. G. (2005). BCR-ABL regulates phosphatidylinositol 3-kinase-p110gamma transcription and activation and is required for proliferation and drug resistance. J. Biol. Chem. 281, 2441-2450.
- Hinton, H. J., Alessi, D. R. and Cantrell, D. A. (2004). The serine kinase phosphoinositide-dependent kinase 1 (PDK1) regulates T cell development. Nat. Immunol. 5, 539-545.
- Hoellenriegel, J., Meadows, S. A., Sivina, M., Wierda, W. G., Kantarjian, H., Keating, M. J., Giese, N., O'Brien, S., Yu, A., Miller, L. L., Lannutti, B. J., Burger, J. A. (2011). The
phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 118, 3603-3612. - Huang, W. C. and Hung, M. G. (2009). Induction of Akt activity by chemotherapy confers acquired resistance. J. Formos. Med. Assoc. 108, 180-189.
- Jackson S P, Schoenwaelder S M, Goncalves I, Nesbitt W S, Yap C L, Wright C E, Kenche V, Anderson K E, Dopheide S M, Yuan Y. et al. (2005). PI 3-kinase p110beta: a new target for antithrombotic therapy. Nat. Med. 11, 507-514.
- Ji, H., Rintelen, F., Waltzinger, C., Bertschy Meier, D., Bilancio, A., Pearce, W., Hirsch, E., Wymann, M. P., Ruckle, T., Camps, M. et al. (2007). Inactivation of PI3 Kgamma and PI3 Kdelta distorts T-cell development and causes multiple organ inflammation. Blood 110, 2940-2947.
- Jia, S., Liu, Z., Zhang, S., Liu, P., Zhang, L., Lee, S. H., Zhang, J., Signoretti, S., Loda, M., Roberts, T. M. et al. (2008). Essential roles of PI(3)K-p110beta in cell growth, metabolism and tumorigenesis. Nature 454, 776-779.
- Jordan M S, Singer A L, Koretzky G A. Adaptors as central mediators of signal transduction in immune cells. Nat. Immunol. 2003; 4: 110-116. [PubMed: 12555096]
- Jotta, P. Y., Ganazza, M. A., Silva, A., Viana, M. B., da Silva, M. J., Zambaldi, L. J., Barata, J. T., Brandalise, S. R. and Yunes, J. A. (2010). Negative prognostic impact of PTEN mutation in pediatric T-cell acute lymphoblastic leukemia.
Leukemia 24, 239-242. - Kang, S., Denley, A., Vanhaesebroeck, B., and Vogt, P. K. (2006). Oncogenic transformation induced by the p110beta, -gamma, and -delta isoforms of class I phosphoinositide 3-kinase. Proc. Natl. Acad. Sci. USA. 103, 1289-1294.
- Katso, R. (2001). Cellular function of phosphoinositide 3-kinases: implications for development, homeostasis, and cancer. Ann. Rev. Cell Dev. Biol. 17, 615-675.
- Kong Y Y, Fischer K D, Bachmann M F, et al. Vav regulates peptide-specific apoptosis in thymocytes. J Exp Med. 1998; 188: 2099-2111. [PMCID: PMC2212394] [PubMed: 9841924]
- Konopleva, M., Tabe, Y., Zeng, Z., and Andreeff, M. (2009). Therapeutic targeting of microenvironmental interactions in leukemia: mechanisms and approaches. Drug Resist. Updat. 12, 103-113.
- Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat. Med. 1997; 3: 614-620. [PubMed: 9176486]
- Larson Gedman, A., Chen, Q., Kugel Desmoulin, S., Ge, Y., LaFiura, K., Haska, C. L., Cheman, C., Devidas, M., Linda, S. B., Taub, J. W. et al. (2009). The impact of NOTCH1, FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T-cell acute lymphoblastic leukemia: a report from the Children's Oncology Group.
Leukemia 23, 1417-1425. - Lewis C M, Broussard C, Czar M J, Schwartzberg P L. Tec kinases: modulators of lymphocyte signaling and development. Curr Opin Immunol. 2001; 13: 317-325. [PubMed: 11406363]
- Linette G P, Korsmeyer S J. Differentiation and cell death: lessons from the immune system. Curr Opin Cell Biol. 1994; 6: 809-815. [PubMed: 7880527]
- Liu, X., Karnell, J. L., Yin, B., Zhang, R., Zhang, J., Li, P., Choi, Y., Maltzman, J. S., Pear, W. S., Bassing, C. H. et al. (2010). Distinct roles for PTEN in prevention of T cell lymphoma and autoimmunity in mice. J. Clin. Invest. 20, 2497-2507.
- Lo, T. C., Barnhill, L. M., Kim, Y., Nakae, E. A., Yu, A. L., and Diccianni, M. B. (2009). Inactivation of SHIP1 in T-cell acute lymphoblastic leukemia due to mutation and extensive alternative splicing. Leuk. Res. 33, 1562-1566.
- Magallon, J., Chen, J. C., Rabbani, L., Dangas, G., Yang, J., Bussel, J., and Diacovo, T. (2011). Humanized mouse model of thrombosis is predictive of the clinical efficacy of antiplatelet agents.
Circulation 123, 319-326. - Maser, R. S., Choudhury, B., Campbell, P. J., Feng, B., Wong, K. K., Protopopov, A., O'Neil, J., Gutierrez, A., Ivanova, E., Perna, I. et al. (2007). Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447, 966-971.
- McKean D J, Huntoon C J, Bell M P, et al. Maturation versus death of developing double-positive thymocytes reflects competing effects on Bcl-2 expression and can be regulated by the intensity of CD28 costimulation. J. Immunol. 2001; 166: 3468-3475. [PubMed: 11207305]
- Melendez A J, Gillooly D J, Harnett M M, Allen J M. Aggregation of the human high affinity immunoglobulin G receptor (FcgammaRI) activates both tyrosine kinase and G protein-coupled phosphoinositide 3-kinase isoforms. Proc Natl Acad Sci USA. 1998; 95: 2169-2174. [PMCID: PMC19285] [PubMed: 9482857]
- Michie A M, Zuniga-Pflucker J C. Regulation of thymocyte differentiation: pre-TCR signals and beta-selection. Semin Immunol. 2002; 14: 311-323. [PubMed: 12220932]
- Okkenhaug K, Bilancio A, Emery J L, Vanhaesebroeck B. Phosphoinositide 3-kinase in T cell activation and survival. Biochem Soc Trans. 2004; 32: 332-335. [PubMed: 15046602]
- Okkenhaug K, Bilancio A, Farjot G, et al. Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science. 2002; 297: 1031-1034. [PubMed: 12130661]
- Okkenhaug K, Vanhaesebroeck B. PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol. 2003; 3: 317-330. [PubMed: 12669022]
- Palomero, T., Dominguez, M., and Ferrando, A. A. (2008). The role of the PTEN/AKT Pathway in NOTCH1-induced leukemia.
Cell Cycle 7, 965-970. - Penit C, Lucas B, Vasseur F. Cell expansion and growth arrest phases during the transition from precursor (CD4−8−) to immature (CD4+8+) thymocytes in normal and genetically modified mice. J. Immunol. 1995; 154: 5103-5113. [PubMed: 7730616]
- Punt J A, Suzuki H, Granger L G, Sharrow S O, Singer A. Lineage commitment in the thymus: only the most differentiated (TCRhibcl-2hi) subset of CD4+CD8+ thymocytes has selectively terminated CD4 or CD8 synthesis. J Exp Med. 1996; 184: 2091-2099. [PMCID: PMC2196385] [PubMed: 8976166]
- Puri K D, Doggett T A, Huang C Y, et al. The role of endothelial PI3Kγ activity in neutrophil trafficking. Blood. 2005; 106: 150-157. [PMCID: PMC1895128] [PubMed: 15769890]
- Puri, K. D., Doggett, T. A., Douangpanya, J., Hou, Y., Tino, W. T., Wilson, T., Graf, T., Clayton, E., Turner, M., Hayflick, J. S. et al. (2004). Mechanisms and implications of phosphoinositide 3-kinase δ in promoting neutrophil trafficking into inflamed tissue.
Blood 103, 3448-3456. - Reynolds L F, Smyth L A, Norton T, et al. Vav1 transduces T cell receptor signals to the activation of phospholipase C-gamma1 via phosphoinositide 3-kinase-dependent and -independent pathways. J Exp Med. 2002; 195: 1103-1114. [PMCID: PMC2193701] [PubMed: 11994416]
- Rodriguez-Borlado L, Barber D F, Hernandez C, et al. Phosphatidylinositol 3-kinase regulates the CD4/CD8 T cell differentiation ratio. J. Immunol. 2003; 170: 4475-4482. [PubMed: 12707323]
- Sadhu, C., Masinosky, B., Dick, K., Sowell, C. G., and Staunton, D. E. (2003). Essential role of Phosphoinositide 3-kinase δ in neutrophil directional movement. J. Immunol. 170, 2647-2654.
- Safran, M., Kim, W. Y., Kung, A. L., Horner, J. W., DePinho, R. A. and Kaelin, W. G. Jr. (2003). Mouse reporter strain for noninvasive bioluminescent imaging of cells that have undergone Cre-mediated recombination. Mol. Imaging. 2, 297-302.
- Sakai et al. (1998) PTEN Gene Alterations in Lymphoid Neoplasms.
Blood 92, p. 3410-3415. - Salmena, L., Carracedo, A., and Pandolfi, P. P. (2008). Tenets of PTEN tumor suppression. Cell 133, 403-414.
- Samuels, Y., Wang, Z., Bardelli, A., Silliman, N., Ptak, J., Szabo, S., Yan, H., Gazdar, A., Powell, S. M., Riggins, G. J. et al. (2004). High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554.
- Sasaki T, Me-Sasaki J, Jones R G, et al. Function of PI3 Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science. 2000; 287: 1040-1046. [PubMed: 10669416]
- Schmelzle, T. and Hall, M. N. (2000). mTor, a central controller of cell growth. Cell, 103, 253-262.
- Sentman C L, Shutter J R, Hockenbery D, Kanagawa O, Korsmeyer S J. bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell. 1991; 67: 879-888. [PubMed: 1835668]
- Shelton J G, Steelman L S, White E R, McCubrey J A. Synergy between PI3K/Akt and Raf/MEK/ERK pathways in IGF-1R mediated cell cycle progression and prevention of apoptosis in hematopoietic cells. Cell Cycle. 2004; 3: 372-379. [PubMed: 14726697]
- Shortman K, Wu L. Early T lymphocyte progenitors. Annu Rev Immunol. 1996; 14: 29-47. [PubMed: 8717506]
- Silva, A., Yunes, J. A., Cardoso, B. A., Martins, L. R., Jotta, P. Y., Abecasis, M., Nowill, A. E., Leslie, N. R., Cardoso, A. A. and Barata, J. T. (2008). PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J. Clin. Invest. 118, 3762-3774.
- Sopasakis, V. R., Liu, P., Suzuki, R., Kondo, T., Winnay, J., Tran, T. T., Asano, T., Smyth, G., Sajan, M. P., Farese, R. V. et al. (2010). Specific roles of the p110alpha isoform of phosphatidylinsositol 3-kinase in hepatic insulin signaling and metabolic regulation. Cell Metab. 11, 220-230.
- Strasser A, Harris A W, Cory S. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell. 1991; 67: 889-899. [PubMed: 1959134]
- Strasser, A., Puthalakath, H., Bouillet, P., Huang, D. C., O'Connor, L., O'Reilly, L. A., Cullen, L., Cory, S, and Adams, J. M. (2000). The role of bim, a proapoptotic BH3-only member of the Bcl-2 family in cell-death control. Ann. N.Y. Acad. Sci. 917, 541-548.
- Sujobert, P., Bardet, V., Cornillet-Lefebvre, P., Hayflick, J. S., Prie, N., Verdier, F., Vanhaesebroeck, B., Muller, O., Pesce, F., Ifrah, N. et al. (2005). Essential role for the p110delta isoform in phosphoinositide 3-kinase activation and cell proliferation in acute myeloid leukemia.
- Sulis, M. L. and Parsons, R. (2003). PTEN: from pathology to biology. Trends Cell Biol. 13, 478-483.
Blood 106, 1063-1066. - Suzuki H, Terauchi Y, Fujiwara M, et al. Xid-like immunodeficiency in mice with disruption of the p85alpha subunit of phosphoinositide 3-kinase. Science. 1999; 283: 390-392. [PubMed: 9888854]
- Suzuki, A., Yamaguchi M T, Ohteki T, Sasaki T, Kaisho T, Kimura Y, Yoshida R, Wakeham A, Higuchi T, Fukumoto M. et al. (2001). T cell-specific loss of Pten leads to defects in central and peripheral tolerance.
Immunity 14, 523-534. - Swat, W., Montgrain, V., Doggett, T. A., Douangpanya, J., Puri, K., Vermi, W., and Diacovo, T. G. (2006). Essential role of PI3 Kdelta and PI3 Kgamma in thymocyte survival.
Blood 107, 2415-2422. - Tarasenko, T., Kole, H. K., Chi, A. W., Mentink-Kane, M. M., Wynn, T. A. and Bolland, S. (2007). T cell-specific deletion of the inositol phosphatase SHIP reveals its role in regulating Th1/Th2 and cytotoxic responses. Proc. Natl.
Acad. Sci. USA 104, 11382-11387. - Trotman, L. C., Niki, M., Dotan, Z. A., Koutcher, J. A., Di Cristofano, A., Xiao, A., Khoo, A. S., Roy-Burman, P., Greenberg, N. M., Van Dyke, T. et al. (2003). Pten dose dictates cancer progression in the prostate. PLoS Biol. 1, 385-396.
- Vanhaesebroeck B, Leevers S J, Panayotou G, Waterfield M D. Phosphoinositide 3-kinases: a conserved family of signal transducers. Trends Biochem Sci. 1997; 22: 267-272. [PubMed: 9255069]
- Wang, Z., Malone, M. H., He, H., McColl, K. S., and Distelhorst, C. W. (2003). Microarray analysis uncovers the induction of the proapoptotic BH3-only protein Bim in multiple models of glucocorticoid-induced apoptosis. J. Biol. Chem. 278, 23861-23867.
- Webb, L. M., Vigorito, E., Wymann, M. P., Hirsch, E., and Turner, M. J. (2005). Cutting edge: T cell development requires the combined activities of the p110gamma and p110delta catalytic isoforms of phosphatidylinositol 3-kinase. Immunol. 175, 2783-2787.
- Wee, S., Wiederschain, D., Maira, S. M., Loo, A., Miller, C., deBeaumont, R., Stegmeier, F., Yao, Y. M. and Lengauer, C. (2008). PTEN-deficient cancers depend on PIK3CB. Proc. Natl. Acad. Sci. USA. 105, 13057-13062.
- Williams O, Norton T, Halligey M, Kioussis D, Brady H J. The action of Bax and bcl-2 on T cell selection. J Exp Med. 1998; 188: 1125-1133. [PMCID: PMC2212546] [PubMed: 9743531]
- Wymann M P, Pirola L. Structure and function of phosphoinositide 3-kinases. Biochim Biophys Acta. 1998; 1436: 127-150. [PubMed: 9838078]
- Xu H, Littman D R. The kinase-dependent function of Lck in T-cell activation requires an intact site for tyrosine autophosphorylation. Ann NY Acad. Sci. 1995; 766: 99-116. [PubMed: 7486706]
- Yao R, Cooper G M. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science. 1995; 267: 2003-2006. [PubMed: 7701324]
- Yuan, T. L. and Cantley, L. C. (2008). PI3K pathway alterations in cancer: variations on a theme. Oncogene 27, 5497-5510.
- Zhao, L. and Vogt, P. K. (2008). Class I PI3K in oncogenic cellular transformation. Oncogene 27, 5486-5496.
- Zunder, E. R., Knight, Z. A., Houseman, B. T., Apsel, B., and Shokat, K. M. (2008). Discovery of drug-resistant and drug-sensitizing mutations in the oncogenic PI3K isoform p110 alpha.
Cancer Cell 14, 180-192. - Zuniga-Pflucker J C. T-cell development made simple. Nat Rev Immunol. 2004; 4: 67-72. [PubMed: 14704769]
- All documents cited in this application are hereby incorporated by reference as if recited in full herein.
- Although illustrative embodiments of the present invention have been described herein, it should be understood that the invention is not limited to those described, and that various other changes or modifications may be made by one skilled in the art without departing from the scope or spirit of the invention.
Claims (28)
1. A method for treating, preventing, or ameliorating the effects of a lymphoid malignancy comprising administering to a subject in need thereof an effective amount of a phosphoinositide 3-kinase-delta (PI3Kδ) inhibitor and a phosphoinositide 3-kinase-gamma (PI3Kγ) inhibitor.
2. The method according to claim 1 , wherein the lymphoid malignancy is T-cell acute lymphoblastic leukemia (T-ALL) or T-cell acute lymphoblastic lymphoma.
3. The method according to claim 2 , wherein the lymphoid malignancy is T-ALL.
4. The method according to claim 1 , wherein the PI3Kδ inhibitor is selected from the group consisting of a biologic, a chemical, and combinations thereof.
5. The method according to claim 4 , wherein the PI3Kδ inhibitor is selected from the group consisting of AMG-319; PI3-delta inhibitors, Cellzome; PI3-delta/gamma inhibitors, Cellzome; CHR-4432; XL-499; CAL-120; CAL-129; CAL-130; CAL-253; CAL-263; GS-1101 (CAL-101); benzimidazole series, Genentech; PI3 kinase delta inhibitors, Genentech; PI3 kinase inhibitor, Roche-4; PI3 kinase inhibitors, Roche; PI3 kinase inhibitors, Roche-5; pictilisib; PI3 kinase delta inhibitors, Incozen; PI3 kinase delta inhibitors-2, Incozen; PI3-delta inhibitors, Intellikine; PI3-delta/gamma inhibitors, Intellikine; PI3K delta/gamma inhibitors, Intellikine-1; KAR-4139; KAR-4141; PI3 kinase delta inhibitor, Merck KGaA; OXY-111A; PI3-alpha/delta inhibitors, Pathway Therapeutics; PI3-delta inhibitors, Pathway Therapeutics-1; PI3-delta inhibitors, Pathway Therapeutics-2; PI3-delta/gamma inhibitors, Pathway Therapeutics; SF-1126; X-339; IC87114; TG100-115; and combinations thereof.
6. The method according to claim 5 , wherein the PI3Kδ inhibitor is CAL-130.
7. The method according to claim 4 , wherein the PI3Kδ inhibitor is a nucleic acid comprising an shRNA.
8. The method according to claim 1 , wherein the PI3Kγ inhibitor is selected from the group consisting of a biologic, a chemical, and combinations thereof.
9. The method according to claim 8 , wherein the PI3Kγ inhibitor is selected from the group consisting of PI3-delta/gamma inhibitors, Cellzome; PI3-gamma inhibitor, Cellzome; PI3-gamma inhibitor Evotec; PI3 kinase inhibitors, Roche; pictilisib; IPI-145; PI3-delta/gamma inhibitors, Intellikine; PI3K delta/gamma inhibitors, Intellikine-1; KIN-1; PI3-delta/gamma inhibitors, Pathway Therapeutics; PI3-gamma inhibitors, Pathway Therapeutics; SC-103980; SF-1126; AS-041164; AS-604850; TG100-115; AS-605240; CAL-130; and combinations thereof.
10. The method according to claim 9 , wherein the PI3Kγ inhibitor is CAL-130.
11. The method according to claim 8 , wherein the PI3Kγ inhibitor is a nucleic acid comprising an shRNA.
12. The method according to claim 1 , further comprising co-administering to the subject at least one chemotherapeutic agent.
13. The method according to claim 12 , wherein the chemotherapeutic agent is selected from the group consisting of actinomycin, amsacrine, anthracycline, busulfan, cisplatin, cytoxan, epirubicin, hexamethylmelamineoxaliplatin, iphosphamide, mitoxantrone, taxotere, teniposide, triethylenethiophosphoramide, hydrocortisone, cortisone, methylprednisolone, prednisolone, dexamethasone, prednisone, betamethasone, triamcinolone, beclometasone, fludrocortisones, deoxycorticosterone, aldosterone, oxaliplatin, zoledronic acid, ibandronate, verapamil, podophyllotoxin, carboplatin, procarbazine, mechlorethamine, cyclophosphamide, camptothecin, ifosfamide, melphalan, chlorambucil, bisulfan, nitrosurea, dactinomycin, daunorubicin, doxorubicin, bleomycin, plicomycin, mitomycin, etoposide (VP16), tamoxifen, transplatinum, 5-fluorouracil, vincristin, vinblastin, methotrexate, L-asparaginase, rapamycin, dibenzazepine (DBZ), uramustine, carmustine, lomustine, streptozocin, temozolomide, oxaliplatin, idarubicin, topotecan, premetrexed, 6-mercaptopurine, darcarbazine, fludarabine, 5-fluorouracil, arabinosycytosine, 5-fluorouracil, arabinosylcytosine, capecitabine, gemcitabine, decitabine, vinca alkaloids, paclitaxel (Taxol®), docetaxel (Taxotere®), ixabepilone (Ixempra®), and combinations thereof.
14. The method according to claim 12 , wherein the chemotherapeutic agent is a glucocorticoid selected from the group consisting of hydrocortisone, cortisone, methylprednisolone, prednisolone, dexamethasone, prednisone, betamethasone, triamcinolone, beclometasone, fludrocortisones, deoxycorticosterone, aldosterone, and combinations thereof.
15. The method according to claim 12 , wherein the chemotherapeutic agent is dexamethasone.
16. A method for treating, preventing, or ameliorating the effects of a lymphoid malignancy associated with a mutated phosphatase and tensin homolog (PTEN) gene in a subject comprising administering to the subject an effective amount of a phosphoinositide 3-kinase-delta (PI3Kδ) inhibitor and a phosphoinositide 3-kinase-gamma (PI3Kγ) inhibitor.
17. The method according to claim 16 , wherein the PI3Kδ inhibitor and the PI3Ky inhibitor are CAL-130.
18. A pharmaceutical composition for treating the effects of a lymphoid malignancy comprising a pharmaceutically acceptable carrier and an effective amount of a phosphoinositide 3-kinase-delta (PI3Kδ) inhibitor and a phosphoinositide 3-kinase-gamma (PI3Kγ) inhibitor.
19. The pharmaceutical composition according to claim 18 , which is in a unit dosage form.
20. The pharmaceutical composition according to claim 18 , further comprising an effective amount of dexamethasone.
21. A method for treating a subject suffering from T-cell acute lymphoblastic leukemia (T-ALL) comprising administering to the subject an effective amount of a pharmaceutical composition comprising a phosphoinositide 3-kinase-delta (PI3Kδ) inhibitor and a phosphoinositide 3-kinase-gamma (PI3Kγ) inhibitor.
22. The method according to claim 21 further comprising administering an effective amount of a glucocorticoid selected from the group consisting of hydrocortisone, cortisone, methylprednisolone, prednisolone, dexamethasone, prednisone, betamethasone, triamcinolone, beclometasone, fludrocortisones, deoxycorticosterone, aldosterone, and combinations thereof.
23. The method according to claim 22 , wherein the glucocorticoid is dexamethasone.
24. A method for lowering tumor burden in a subject suffering from T-cell acute lymphoblastic leukemia (T-ALL) comprising administering to the subject an effective amount of a pharmaceutical composition comprising a phosphoinositide 3-kinase-delta (PI3Kδ) inhibitor and a phosphoinositide 3-kinase-gamma (PI3Kγ) inhibitor.
25. The method according to claim 24 further comprising administering an effective amount of a glucocorticoid selected from the group consisting of hydrocortisone, cortisone, methylprednisolone, prednisolone, dexamethasone, prednisone, betamethasone, triamcinolone, beclometasone, fludrocortisones, deoxycorticosterone, aldosterone, and combinations thereof.
26. The method according to claim 25 , wherein the glucocorticoid is dexamethasone.
27. A method for identifying a subject who may benefit from co-treatment with a phosphoinositide 3-kinase-delta (PI3Kδ) inhibitor and a phosphoinositide 3-kinase-gamma (PI3Kγ) inhibitor comprising determining from a sample of the subject whether the subject has a mutated PTEN gene, wherein the presence of the mutated PTEN gene is indicative of a subject who may benefit from co-treatment with a PI3Kδ inhibitor and a PI3Kγ inhibitor.
28. A method for identifying a compound that has both phosphoinositide 3-kinase-delta (PI3Kδ) and phosphoinositide 3-kinase-gamma (PI3Kγ) inhibitory activity comprising:
(a) contacting a cell with the compound; and
(b) determining whether the compound modulates an antigen receptor-induced activity in the cell;
wherein a compound that modulates the antigen receptor-induced activity has both PI3Kδ and PI3Kγ inhibitory activity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/003,873 US20140213630A1 (en) | 2011-03-08 | 2012-02-29 | Methods and pharmaceutical compositions for treating lymphoid malignancy |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161450341P | 2011-03-08 | 2011-03-08 | |
PCT/US2012/027148 WO2012121953A1 (en) | 2011-03-08 | 2012-02-29 | Methods and pharmaceutical compositions for treating lymphoid malignancy |
US14/003,873 US20140213630A1 (en) | 2011-03-08 | 2012-02-29 | Methods and pharmaceutical compositions for treating lymphoid malignancy |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2012/027148 A-371-Of-International WO2012121953A1 (en) | 2011-03-08 | 2012-02-29 | Methods and pharmaceutical compositions for treating lymphoid malignancy |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/451,306 Continuation US20170246173A1 (en) | 2011-03-08 | 2017-03-06 | Methods and Pharmaceutical Compositions for Treating Lymphoid Malignancy |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140213630A1 true US20140213630A1 (en) | 2014-07-31 |
Family
ID=46798518
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/003,873 Abandoned US20140213630A1 (en) | 2011-03-08 | 2012-02-29 | Methods and pharmaceutical compositions for treating lymphoid malignancy |
US15/451,306 Abandoned US20170246173A1 (en) | 2011-03-08 | 2017-03-06 | Methods and Pharmaceutical Compositions for Treating Lymphoid Malignancy |
US16/211,361 Abandoned US20190209570A1 (en) | 2011-03-08 | 2018-12-06 | Methods and Pharmaceutical Compositions for Treating Lymphoid Malignancy |
US16/950,413 Active US11969428B2 (en) | 2011-03-08 | 2020-11-17 | Methods and pharmaceutical compositions for treating lymphoid malignancy |
US18/649,357 Pending US20240358708A1 (en) | 2011-03-08 | 2024-04-29 | Methods and pharmaceutical compositions for treating lymphoid malignancy |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/451,306 Abandoned US20170246173A1 (en) | 2011-03-08 | 2017-03-06 | Methods and Pharmaceutical Compositions for Treating Lymphoid Malignancy |
US16/211,361 Abandoned US20190209570A1 (en) | 2011-03-08 | 2018-12-06 | Methods and Pharmaceutical Compositions for Treating Lymphoid Malignancy |
US16/950,413 Active US11969428B2 (en) | 2011-03-08 | 2020-11-17 | Methods and pharmaceutical compositions for treating lymphoid malignancy |
US18/649,357 Pending US20240358708A1 (en) | 2011-03-08 | 2024-04-29 | Methods and pharmaceutical compositions for treating lymphoid malignancy |
Country Status (2)
Country | Link |
---|---|
US (5) | US20140213630A1 (en) |
WO (1) | WO2012121953A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11459306B2 (en) | 2017-07-31 | 2022-10-04 | The Trustees Of Columbia University In The City Of New York | Compounds, compositions, and methods for treating T-cell acute lymphoblastic leukemia |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NZ702041A (en) | 2008-01-04 | 2016-03-31 | Intellikine Llc | Heterocyclic containing entities, compositions and methods |
US8193182B2 (en) | 2008-01-04 | 2012-06-05 | Intellikine, Inc. | Substituted isoquinolin-1(2H)-ones, and methods of use thereof |
KR20180080358A (en) | 2011-01-10 | 2018-07-11 | 인피니티 파마슈티칼스, 인코포레이티드 | Processes for preparing isoquinolinones and solid forms of isoquinolinones |
US8828998B2 (en) | 2012-06-25 | 2014-09-09 | Infinity Pharmaceuticals, Inc. | Treatment of lupus, fibrotic conditions, and inflammatory myopathies and other disorders using PI3 kinase inhibitors |
MX386085B (en) * | 2012-11-01 | 2025-03-18 | Infinity Pharmaceuticals Inc | Treatment of cancers using pi3 kinase isoform modulators |
KR20150079745A (en) | 2012-11-08 | 2015-07-08 | 리젠 파마슈티컬스 소시에떼 아노님 | Pharmaceutical compositions containing a pde4 inhibitor and a pi3 delta or dual pi3 delta-gamma kinase inhibitor |
JP6368353B2 (en) * | 2013-04-08 | 2018-08-01 | バイエル ファーマ アクチエンゲゼルシャフト | Use of substituted 2,3-dihydroimidazo [1,2-c] quinazolines for the treatment of lymphoma |
BR112016012794A2 (en) * | 2013-12-05 | 2017-08-08 | Acerta Pharma Bv | THERAPEUTIC COMBINATION OF A PI3K INHIBITOR AND A BTK INHIBITOR |
US20150320755A1 (en) | 2014-04-16 | 2015-11-12 | Infinity Pharmaceuticals, Inc. | Combination therapies |
KR20170016489A (en) | 2014-06-27 | 2017-02-13 | 리젠 파마슈티컬스 소시에떼 아노님 | Substituted chromene derivatives as selective dual inhibitors of pi3 delta and gamma protein kinases |
SG10201912456RA (en) | 2016-06-24 | 2020-02-27 | Infinity Pharmaceuticals Inc | Combination therapies |
WO2021242859A1 (en) * | 2020-05-27 | 2021-12-02 | Duke University | Compositions and methods for sensitizing acute myeloid leukemias to chemotherapy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040023390A1 (en) * | 2002-08-05 | 2004-02-05 | Davidson Beverly L. | SiRNA-mediated gene silencing with viral vectors |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6667300B2 (en) * | 2000-04-25 | 2003-12-23 | Icos Corporation | Inhibitors of human phosphatidylinositol 3-kinase delta |
PT1939203E (en) | 2000-04-25 | 2015-02-04 | Icos Corp | Inhibitors of human phosphatidyl-inositol 3-kinase delta isoform |
JP2002009396A (en) | 2000-06-22 | 2002-01-11 | Rohm Co Ltd | Method for manufacturing semiconductor laser |
AU2004298604B2 (en) * | 2003-12-15 | 2010-09-23 | The Regents Of The University Of California | Molecular signature of the PTEN tumor suppressor |
AU2005212092B2 (en) | 2004-02-13 | 2011-01-20 | Msd K.K. | Fused-ring 4-oxopyrimidine derivative |
PT3153514T (en) * | 2004-05-13 | 2021-06-25 | Icos Corp | QUINAZOLINONES AS INHIBITORS OF HUMAN DELTA PHOSPHATIDYLINOSITOL 3-KINASE |
US20080287469A1 (en) * | 2005-02-17 | 2008-11-20 | Diacovo Thomas G | Phosphoinositide 3-Kinase Inhibitors for Inhibiting Leukocyte Accumulation |
US7517995B2 (en) * | 2006-04-06 | 2009-04-14 | Boehringer Ingelheim International Gmbh | Thiazolyl-dihydro-cyclopentapyrazole |
US8193182B2 (en) | 2008-01-04 | 2012-06-05 | Intellikine, Inc. | Substituted isoquinolin-1(2H)-ones, and methods of use thereof |
CN101550135A (en) | 2008-09-02 | 2009-10-07 | 四川大学 | The preparation method of AS-605240 and its application in the preparation of medicines for treating inflammatory diseases |
EP3427739A1 (en) | 2008-11-13 | 2019-01-16 | Gilead Calistoga LLC | Therapies for hematologic malignancies |
US9492449B2 (en) | 2008-11-13 | 2016-11-15 | Gilead Calistoga Llc | Therapies for hematologic malignancies |
MX2011009167A (en) * | 2009-03-12 | 2011-09-15 | Genentech Inc | Combinations of phosphoinositide 3-kinase inhibitor compounds and chemotherapeutic agents for the treatment of hematopoietic malignancies. |
TW201311663A (en) | 2011-08-29 | 2013-03-16 | Infinity Pharmaceuticals Inc | Heterocyclic compound and its use |
US20130143902A1 (en) | 2011-12-02 | 2013-06-06 | Gilead Calistoga Llc | Compositions and methods of treating a proliferative disease with a quinazolinone derivative |
MX386085B (en) | 2012-11-01 | 2025-03-18 | Infinity Pharmaceuticals Inc | Treatment of cancers using pi3 kinase isoform modulators |
BR112015014592A2 (en) | 2012-12-21 | 2017-07-11 | Gilead Calistoga Llc | compound, pharmaceutical composition, and method for treating a human |
WO2014128612A1 (en) | 2013-02-20 | 2014-08-28 | Novartis Ag | Quinazolin-4-one derivatives |
MA40045A (en) | 2014-06-24 | 2021-06-02 | Gilead Sciences Inc | PHOSPHATIDYLINOSITOL 3-KINASE INHIBITORS |
-
2012
- 2012-02-29 US US14/003,873 patent/US20140213630A1/en not_active Abandoned
- 2012-02-29 WO PCT/US2012/027148 patent/WO2012121953A1/en active Application Filing
-
2017
- 2017-03-06 US US15/451,306 patent/US20170246173A1/en not_active Abandoned
-
2018
- 2018-12-06 US US16/211,361 patent/US20190209570A1/en not_active Abandoned
-
2020
- 2020-11-17 US US16/950,413 patent/US11969428B2/en active Active
-
2024
- 2024-04-29 US US18/649,357 patent/US20240358708A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040023390A1 (en) * | 2002-08-05 | 2004-02-05 | Davidson Beverly L. | SiRNA-mediated gene silencing with viral vectors |
Non-Patent Citations (2)
Title |
---|
Chemical Book. IC-87114. Chemical Product Property. Downloaded at http://www.chemicalbook.com/ChemicalProductProperty_EN_CB12485097.htm on May 17, 2016. * |
Komada et al. (Cancer Research, 1991 Vol. 51:4271-4278). * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11459306B2 (en) | 2017-07-31 | 2022-10-04 | The Trustees Of Columbia University In The City Of New York | Compounds, compositions, and methods for treating T-cell acute lymphoblastic leukemia |
Also Published As
Publication number | Publication date |
---|---|
US20170246173A1 (en) | 2017-08-31 |
US20190209570A1 (en) | 2019-07-11 |
US11969428B2 (en) | 2024-04-30 |
WO2012121953A1 (en) | 2012-09-13 |
US20240358708A1 (en) | 2024-10-31 |
US20210315901A1 (en) | 2021-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11969428B2 (en) | Methods and pharmaceutical compositions for treating lymphoid malignancy | |
Aloisio et al. | PAX7 expression defines germline stem cells in the adult testis | |
US11564947B2 (en) | Methods and compositions for cellular immunotherapy | |
Subramaniam et al. | Targeting nonclassical oncogenes for therapy in T-ALL | |
Pua et al. | Autophagy is essential for mitochondrial clearance in mature T lymphocytes | |
Simhadri et al. | Male fertility defect associated with disrupted BRCA1-PALB2 interaction in mice | |
US20210052648A1 (en) | Method of producing leukocytes using ptpn2 inhibition for adoptive cell transfer | |
Schoenmakers et al. | Mutations in the selenocysteine insertion sequence–binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans | |
Brümmendorf et al. | Telomere length dynamics in normal hematopoiesis and in disease states characterized by increased stem cell turnover | |
Cho et al. | Purinergic P2Y 14 receptor modulates stress-induced hematopoietic stem/progenitor cell senescence | |
Hermo et al. | Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane | |
Morimoto et al. | Spermatogonial stem cell transplantation into nonablated mouse recipient testes | |
Ju et al. | Cells during Aging and Disease | |
EP4232032A1 (en) | Use of n-myristoyl transferase (nmt) inhibitors in the treatment of cancer, autoimmune disorders, and inflammatory disorders | |
JP2021165292A (en) | Hematopoietic tumor therapeutic agent and screening method | |
Da Silva et al. | N-acetylneuraminate pyruvate lyase controls sialylation of muscle glycoproteins essential for muscle regeneration and function | |
US12173084B2 (en) | Phosphorylated dicer antibody and methods of use thereof | |
US20220026415A1 (en) | A method for screening a therapeutic agent for cancer using binding inhibitor of cyclin-dependent kinase 1 (cdk1)-cyclin b1 and retinoic acid receptor responder 1 (rarres1) gene knockout animal model | |
Chandra et al. | Female X-chromosome mosaicism for gp91phox expression diversifies leukocyte responses during endotoxemia | |
ES2351646B1 (en) | GENETICALLY MODIFIED NON-HUMAN MAMMER, CELLS AND METHODS FOR PRODUCERS. | |
Kobayashi et al. | Canine neutrophil dysfunction caused by downregulation of β2-integrin expression without mutation | |
Ferrando | Targeting Class I PI3Ks in the Treatment of T-cell Acute Lymphoblastic Leukemia | |
Lapillonne et al. | Engraftment characterization of risk-stratified AML in NSGS mice | |
Han | Genome-wide CRISPR Screen Reveals Regulators of PI3K Inhibitor Resistance in Pancreatic Ductal Adenocarcinoma | |
Qin | Evaluation of the therapeutic potential of Akt inhibition in a translational model of histiocytic sarcoma |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: US ARMY, SECRETARY OF THE ARMY, MARYLAND Free format text: CONFIRMATORY LICENSE;ASSIGNOR:COLUMBIA UNIVERSITY NEW YORK MORNINGSIDE;REEL/FRAME:031752/0878 Effective date: 20131108 |
|
AS | Assignment |
Owner name: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DIACOVO, THOMAS;REEL/FRAME:032402/0371 Effective date: 20140307 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |