US20190194955A1 - Modular curbs - Google Patents

Modular curbs Download PDF

Info

Publication number
US20190194955A1
US20190194955A1 US15/851,266 US201715851266A US2019194955A1 US 20190194955 A1 US20190194955 A1 US 20190194955A1 US 201715851266 A US201715851266 A US 201715851266A US 2019194955 A1 US2019194955 A1 US 2019194955A1
Authority
US
United States
Prior art keywords
segment
wall
floor
inches
vertical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/851,266
Inventor
Scott Myers
Jarod Fix
Dan Zech
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shield-It Systems
Original Assignee
Shield-It Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shield-It Systems filed Critical Shield-It Systems
Priority to US15/851,266 priority Critical patent/US20190194955A1/en
Priority to CA3028396A priority patent/CA3028396A1/en
Publication of US20190194955A1 publication Critical patent/US20190194955A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F19/00Other details of constructional parts for finishing work on buildings
    • E04F19/02Borders; Finishing strips, e.g. beadings; Light coves
    • E04F19/026Borders; Finishing strips, e.g. beadings; Light coves specially adapted for cushioning impacts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F19/00Other details of constructional parts for finishing work on buildings
    • E04F19/02Borders; Finishing strips, e.g. beadings; Light coves
    • E04F19/04Borders; Finishing strips, e.g. beadings; Light coves for use between floor or ceiling and wall, e.g. skirtings
    • E04F19/0459Borders; Finishing strips, e.g. beadings; Light coves for use between floor or ceiling and wall, e.g. skirtings characterised by the fixing method
    • E04F19/0477Plinths fixed by means of adhesive
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F19/00Other details of constructional parts for finishing work on buildings
    • E04F19/02Borders; Finishing strips, e.g. beadings; Light coves
    • E04F19/04Borders; Finishing strips, e.g. beadings; Light coves for use between floor or ceiling and wall, e.g. skirtings
    • E04F19/049Plinths specially adapted for joining wall coverings to floor surfaces
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G11/00Forms, shutterings, or falsework for making walls, floors, ceilings, or roofs
    • E04G11/06Forms, shutterings, or falsework for making walls, floors, ceilings, or roofs for walls, e.g. curved end panels for wall shutterings; filler elements for wall shutterings; shutterings for vertical ducts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F19/00Other details of constructional parts for finishing work on buildings
    • E04F19/02Borders; Finishing strips, e.g. beadings; Light coves
    • E04F19/04Borders; Finishing strips, e.g. beadings; Light coves for use between floor or ceiling and wall, e.g. skirtings
    • E04F2019/0404Borders; Finishing strips, e.g. beadings; Light coves for use between floor or ceiling and wall, e.g. skirtings characterised by the material
    • E04F2019/0413Borders; Finishing strips, e.g. beadings; Light coves for use between floor or ceiling and wall, e.g. skirtings characterised by the material of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F19/00Other details of constructional parts for finishing work on buildings
    • E04F19/02Borders; Finishing strips, e.g. beadings; Light coves
    • E04F19/04Borders; Finishing strips, e.g. beadings; Light coves for use between floor or ceiling and wall, e.g. skirtings
    • E04F2019/0404Borders; Finishing strips, e.g. beadings; Light coves for use between floor or ceiling and wall, e.g. skirtings characterised by the material
    • E04F2019/0422Borders; Finishing strips, e.g. beadings; Light coves for use between floor or ceiling and wall, e.g. skirtings characterised by the material of organic plastics with or without reinforcements or filling materials

Definitions

  • curbs for transitioning between wall and floor.
  • curbs are provided seal gaps between the wall and floor, protect walls against impact, are waterproof, and protect against bacteria/mold infiltration.
  • Protective guards for buildings and similar structures are well-known in the art. These protective guards include bollards, cement curbs, floor board bumpers, rubber-form structure bumpers, and layered cement wall construction. Current designs have deficiencies, such as being prone to damage when contacted by equipment and harboring sites for the growth of pathogenic microbes.
  • curbs for transitioning between wall and floor.
  • curbs are provided seal gaps between the wall and floor, protect walls against impact, are waterproof, and protect against bacteria/mold infiltration.
  • devices comprising a cross-sectional geometry comprising: a vertical engagement segment configured to contact a wall at a height above a floor and without contacting the floor; and a horizontal engagement segment configured to contact the floor at a distance from the wall and without contacting the wall; wherein, when the vertical engagement segment is placed in contact with the wall and the horizontal engagement segment is placed in contact with the floor, a cavity is formed between the device, the floor, and the wall.
  • the devices further comprise a central segment connecting the vertical engagement segment and the horizontal engagement segment.
  • the central segment, the vertical engagement segment, and the horizontal engagement segment comprise a single piece of material (e.g., FRP).
  • an internal angle between the vertical engagement segment and the central segment is 90° or less (e.g., 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, 90%, or ranges therebetween).
  • an internal angle between the horizontal engagement segment and the central segment is 90° or less (e.g., 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, 90°, or ranges therebetween).
  • the central segment comprises one or more bends or folds.
  • one or more of the central segment, the vertical engagement segment, and the horizontal engagement segment comprise a locking segment (e.g., linear or L-shaped) that extends into the cavity formed between the device, the floor, and the wall.
  • the device is composed of a polymer or polymer composite material.
  • the device is composed of ultra-high-molecular-weight polyethylene (UHMW) or fiber reinforced plastic (FRP).
  • UHMW ultra-high-molecular-weight polyethylene
  • FRP fiber reinforced plastic
  • the cross-sectional geometry extends the entire longitudinal length of the device.
  • the vertical engagement segment is 0.25 to 6 inches in length (e.g., 0.25 inches, 0.5 inches, 0.75 inches, 1 inch, 1.5 inches, 2 inches, 3 inches, 4 inches, 5 inches, 6 inches, or lengths therebetween),
  • the horizontal engagement segment is 0.25 to 3 inches in length (e.g., 0.25 inches, 0.5 inches, 0.75 inches, 1 inch, 1.5 inches, 2 inches, 3 inches, and lengths therebetween)
  • the central segment is 2 to 24 inches in length (e.g., 2 inches, 3 inches, 4 inches, 5 inches, 6 inches, 7 inches, 8 inches, 10 inches, 12 inches, 16 inches, 20 inches, 24 inches, or ranges therebetween).
  • the vertical engagement segment is configured to contact the wall at a height of 1.5 to 20 inches (e.g., 1.5 inches, 2 inches, 2.5 inches, 3 inches, 3.5 inches, 4 inches, 5 inches, 6 inches, 7 inches, 8 inches, 9 inches, 10 inches, 12 inches, 14 inches, 16 inches, 18 inches, 20 inches, or ranges therebetween) above the floor (e.g., lowest point of contact between the vertical engagement segment and the wall) and the horizontal engagement segment is configured to contact the floor at a distance of 0.5 to 4 inches (e.g., 0.5 inches, 0.75 inches, 1 inch, 1.25 inches, 1.5 inches, 1.75 inches, 2 inches, 2.5 inches, 3 inches, 3.5 inches, 4 inches, or ranges therebetween) from the wall (e.g., nearest point of contact to the wall between the horizontal engagement segment and the floor).
  • a device is 6 inches to 24 feet (e.g., 6 inches 1 foot, 2 feet, 3 feet, 4 feet, 6 feet, 8 feet, 12 feet, 16 feet, 20 feet,
  • systems comprising: a device described herein (e.g., protective cub), a wall, and a floor; wherein the vertical engagement segment is in contact with the wall at a height above a floor and without contacting the floor; wherein the horizontal engagement segment is in contact with the floor at a distance from the wall and without contacting the wall.
  • the vertical engagement segment and the horizontal engagement segment are adhered to the wall and the floor, respectively, by an adhesive or chemical weld.
  • a gap between the vertical engagement segment and the wall and/or the horizontal engagement segment and the floor is filled and/or sealed with a sealant and/or chemical weld.
  • the cavity formed between the device, the floor, and the wall is filled with a filler material.
  • the filler material is selected from cement, concrete, foam, a polymeric material, and composites thereof.
  • the cavity is filled along the entire longitudinal length of the device.
  • systems further comprise one or more anchors attached to the floor or wall and extending into the filled cavity.
  • the anchor is a pin or screw.
  • the wall comprises or is covered with a panel comprising a polymer or polymer composite material (e.g., ultra-high-molecular-weight polyethylene (UHMW) or fiber reinforced plastic (FRP)).
  • the floor comprises concrete.
  • the floor is covered with a urethane flooring material.
  • a system comprises multiple devices aligned longitudinally end-to-end.
  • FIG. 1A-B Cross-sectional geometries of exemplary curbs described herein.
  • FIG. 2A-C Cross-sectional geometries of exemplary curbs described herein.
  • FIG. 3 Perspective view of an exemplary curb described herein.
  • FIG. 4 Cross-sectional view of an exemplary protective system described herein.
  • FIG. 5 Cross-sectional view of an exemplary protective system described herein.
  • the term “and/or” includes any and all combinations of listed items, including any of the listed items individually.
  • “A, B, and/or C” encompasses A, B, C, AB, AC, BC, and ABC, each of which is to be considered separately described by the statement “A, B, and/or C.”
  • the term “comprise” and linguistic variations thereof denote the presence of recited feature(s), element(s), method step(s), etc. without the exclusion of the presence of additional feature(s), element(s), method step(s), etc.
  • the term “consisting of” and linguistic variations thereof denotes the presence of recited feature(s), element(s), method step(s), etc. and excludes any unrecited feature(s), element(s), method step(s), etc., except for ordinarily-associated impurities.
  • the phrase “consisting essentially of” denotes the recited feature(s), element(s), method step(s), etc. and any additional feature(s), element(s), method step(s), etc.
  • compositions, system, or method that do not materially affect the basic nature of the composition, system, or method.
  • Many embodiments herein are described using open “comprising” language. Such embodiments encompass multiple closed “consisting of” and/or “consisting essentially of” embodiments, which may alternatively be claimed or described using such language.
  • the term “substantially all,” “substantially complete” and similar terms refer to greater than 99%; and the terms “substantially none,” “substantially free of,” and similar terms refer to less than 1%.
  • off-vertical and “off-horizontal” may refer to devices or structures that are substantially vertical or horizontal, about vertical or horizontal, or not vertical or horizontal. Any uses of “off-vertical” and “off-horizontal” herein may be substituted with one of the aforementioned.
  • acutely oriented refers to the relationship between two segments of a device or structure that have an internal angle between them that is less than 90°.
  • the term “obtusely oriented” refers to the relationship between two segments of a device or structure that have an internal angle between them that is greater than 90°.
  • orthogonally oriented refers to the relationship between two segments of a device or structure that have an internal angle between them that is equal to 90°.
  • parallel refers to the relationship between to segments of a device or structure that have a constant distance between the segment over their length (e.g., 0° angle between the segments).
  • antiparallel refers to the relationship between two segments of a device or structure that have a constant distance between the segment over their length (e.g., 0° angle between the segments), but are oriented in opposite directions.
  • curbs for transitioning between wall and floor.
  • curbs are provided seal gaps between the wall and floor, protect walls against impact, are waterproof, and protect against bacteria/mold infiltration.
  • curbs for the protection of structural surfaces, equipment, machinery, and users thereof.
  • curbs are secured to a structural surface, such as a wall, divider, or door opening frame, as well as to a floor (or ceiling) and bridge the gap therebetween.
  • the curbs provide a transition between a vertical structural surface (e.g., wall, wall panel, etc.) and a horizontal floor surface.
  • the curb prevents collection and/or invasion of water, mold/bacteria, etc. at the intersection (or a gap) between the vertical structural surface and the horizontal floor surface.
  • the curb is impregnated or back-filled with a filler material (e.g., concrete, cement, foam, etc.).
  • the curb is sealed to the floor (e.g., with silicone, with glue, with sealant, with a chemical weld, etc.).
  • the curb is sealed to a vertical structure (e.g., wall, door frame, wall liner, panel, etc.) by any suitable material (e.g., with silicone, with glue, with sealant, with a chemical weld, etc.).
  • the filler e.g., behind and/or within the curb
  • the floor and/or vertical structure e.g., wall, door frame, wall liner, panel, etc.
  • any suitable material e.g., with silicone, with glue, with sealant, with a chemical weld, etc.
  • the filler (e.g., behind and/or within the curb) is anchored to the floor and/or vertical structure (e.g., wall, door frame, wall liner, panel, etc.) by a mechanical anchoring element (e.g., screw, pin, etc.).
  • a mechanical anchoring element e.g., screw, pin, etc.
  • gaps between the curb and the floor are sealed/filled/closed by a sealant or chemical weld.
  • gaps between the curb and the vertical structure e.g., wall, door frame, wall liner, panel, etc.
  • a curb is a structural component configured to sit at the intersection of a vertical structure (e.g., wall, door frame, wall liner, panel, etc.) and the floor.
  • a curb comprises a head 10 , a face 20 , and a foot 30 ( FIG. 1 ).
  • FIGS. 1 and 2 depict cross-sectional views of exemplary curbs within the scope herein.
  • FIG. 3 shows a perspective view of an exemplary curb.
  • the cross-sectional geometry (See, e.g., FIG. 2A-C ) extends the length of the curb ( FIG. 3 ).
  • a curb is up to 24 feet (or more) in length (e.g., 1 inch, 2 inches, 4 inches, 6 inches, 9 inches, 1 foot, 2 feet, 3 feet, 4 feet, 6 feet, 8 feet, 10 feet, 12 feet, 16 feet, 20 feet, 24 feet, or more, or ranges therebetween).
  • multiple curbs are assembled end-to-end to cover a length of wall/floor.
  • multiple curbs are adhered to one another (e.g., end-to-end) using a sealant, adhesive, or chemical weld.
  • the end of a curb is configured (e.g., tapered) to facilitate end-to-end engagement with an adjacent curb.
  • the head 10 comprises a vertical engagement segment 12 , angled segment 15 , and head joint 18 ( FIG. 2 ).
  • the head joint 18 is a fixed angle.
  • the head 10 comprises a vertical engagement segment 12 which is a vertical portion at the rear of the curb, and serves as a point of contact between the curb 1 and the vertical structure (e.g., wall, door frame, wall liner, panel, etc.).
  • the head 10 comprises an angled segment 15 which oriented to angle downward at between 15° and 75° (e.g., 15°, 20°, 25° 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, or ranges therebetween) from vertical.
  • the head 10 comprises a head joint 18 that acts as a transition between the vertical engagement segment 12 and the angled segment 15 .
  • the vertical engagement segment 12 and the angled segment 15 are acutely oriented to one another.
  • the head joint 18 is the top of the curb 1 .
  • the head joint is a bend in the curb 1 between the vertical engagement segment 12 and the angled segment 15 .
  • the head joint 18 is a 105° to 165° (e.g., 105°, 110°, 115° 120°, 125°, 130°, 135°, 140°, 145°, 150°, 155°, 160°, or ranges therebetween) bend (e.g., outer angle) in the curb 1 .
  • the head joint, and other transitions between segment may be rounded or sharp.
  • a curb comprises a face 20 that extends from the head 10 to the foot 30 .
  • the face may be vertical or slope outward from the vertical (e.g., 0-30° (e.g., 0°, 1°, 2°, 3°, 4°, 5°, 10°, 15°, 20°, 25° 30°, or ranges therebetween).
  • the face 20 and the vertical engagement segment 12 are antiparallel.
  • the angled segment 15 provides a transition between the head 10 and the face 20 of the curb 1 .
  • the foot 30 is the bottommost portion of the curb 1 and comprises a floor engagement segment 32 and a bottom locking segment 34 ( FIG. 2 ).
  • the floor engagement segment 32 and the face 20 are orthogonally oriented.
  • the floor engagement segment 32 sits at the bottom of the face 20 , and is perpendicular to the vertical structure (e.g., wall, door frame, wall liner, panel, etc.).
  • the bottom locking segment 34 extends upward from the floor engagement segment 32 and facilitates holding he curb within the filler material.
  • the bottom locking segment 34 and the face 20 are antiparallel.
  • the foot 30 comprises a floor engagement segment 32 , a bottom locking segment 34 , angled segment 35 , and an internal locking segment 37 .
  • the angled segment 35 sits at the bottom of the face 20 and slopes outward from the vertical 10-45° (e.g., 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, or ranges therebetween).
  • the internal locking segment extends into the interior of the curb and facilitates holding he curb within the filler material.
  • an internal locking segment 37 may reside anywhere along the interior of the face 20 or angled segment 35 .
  • a curb 1 may comprise multiple (e., 2, 3, 4, 5, 6, 7, 8, or more or ranges therebetween) angled segments 35 to secure the curb against the filler material.
  • the floor engagement segment 32 sits at the bottom of the angled segment 35 and is perpendicular to the vertical structure (e.g., wall, door frame, wall liner, panel, etc.).
  • the angled segment 35 and the face 20 are obtusely oriented.
  • the angled segment 35 and the floor engagement segment 32 are acutely oriented.
  • the bottom locking segment 34 extends upward from the floor engagement segment 32 and facilitates holding he curb within the filler material.
  • the foot 30 comprises a floor engagement segment 32 , a bottom locking segment 34 , and angled segment 35 .
  • the angled segment 35 sits at the bottom of the face 20 and slopes outward from the vertical 10-45° (e.g., 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, or ranges therebetween).
  • the floor engagement segment 32 sits at the bottom of the angled segment 35 and is perpendicular to the vertical structure (e.g., wall, door frame, wall liner, panel, etc.).
  • the bottom locking segment 34 extends upward from the floor engagement segment 32 and facilitates holding he curb within the filler material.
  • the curbs described herein find use in providing a protective transition (e.g., protection from impact, from water damage, from bacteria/mold, etc.) between a vertical structure (e.g., wall, door frame, wall panel, etc.) and the floor.
  • a protective transition e.g., protection from impact, from water damage, from bacteria/mold, etc.
  • a vertical structure e.g., wall, door frame, wall panel, etc.
  • exemplary systems are depicted in FIGS. 4 and 5 ; however, such exemplary systems are not limiting on the scope of embodiments herein.
  • the vertical structures depicted in FIGS. 4 and 5 are walls comprising an interior material (e.g., insulation) and surface material (e.g., FRP panel); while such systems are within the scope herein, embodiments herein are not so limited.
  • the curbs herein also find use with other structures (e.g., vertical, substantially vertical, about vertical, not vertical, etc.). Additionally, the particular curb configurations depicted in FIGS. 4 and 5 (as well as the other figures) are not limiting. Other curb configurations (e.g., multiple internal locking segments, etc.) are within the scope herein. Further, the embodiments depicted in FIGS. 4 and 5 comprise a particular scheme for attaching the curb to the wall and floor and for sealing gaps; other schemes utilizing different combinations of adhesives, sealants, chemical welds, etc. are within the scope herein. FIGS. 4 and 5 provide illustrative examples that inform but do not limit embodiments with the scope herein.
  • FIG. 4 depicts an exemplary embodiment in which a curb provides a protective transition between a floor and wall that meet directly at a perpendicular angle.
  • the vertical engagement segment of the curb sits against the wall surface and the floor engagement segment sits against the floor.
  • an adhesive or other sealant e.g., caulking compound, silicone, glue, etc.
  • the void between the curb and the wall/floor is filled with a filler material that is suitable for the particular application (e.g., cement, concrete, foam, insulation, etc.).
  • the filler is adhered to the wall and/or floor by an adhesive or other sealant (e.g., caulking compound, silicone, glue, etc.).
  • FIG. 5 depicts an exemplary embodiment in which a curb provides a protective transition between a wall and a floor with a flooring surface (e.g., urethane flooring) applied to a subfloor (e.g., concrete floor).
  • a flooring surface e.g., urethane flooring
  • subfloor e.g., concrete floor
  • the edge of the floor is sloped or curved to rise up and meet the edge of the curb.
  • the engagement point, or gap (if one exists) between the curb and the flooring may be sealed with an adhesive or other sealant (e.g., caulking compound, silicone, glue, etc.) or with a chemical weld.
  • the engagement point between the filler and the flooring may be sealed with an adhesive or other sealant (e.g., caulking compound, silicone, glue, etc.) or with a chemical weld.
  • the vertical engagement segment of the curb sits against the wall surface and the floor engagement segment sits against the top of the flooring and the filler.
  • an adhesive or other sealant e.g., caulking compound, silicone, glue, etc.
  • the void between the curb and the wall/floor is filled with a filler material that is suitable for the particular application (e.g., cement, concrete, foam, insulation, etc.).
  • the filler is adhered to the wall and/or floor by an adhesive or other sealant (e.g., caulking compound, silicone, glue, etc.).
  • a gap between the curb and the wall and/or floor is filled and/or sealed with a chemical weld (See, e.g., U.S. Pub No. 2016/0222263; U.S. Pub No. 2002/0114914, U.S. Pat. No. 5,810,956; each of which is herein incorporated by reference in its entirety; for examples of chemical welds and materials and methods suitable for making such welds; other technologies of chemical welding are understood in the art).
  • the top gap between the curb and the wall is chemically welded.
  • the bottom gap between the curb and the floor is chemically welded.
  • an anchor stabilizes the filler material (and the associated curb) to the floor (as depicted in FIGS. 4 and 5 ). In other embodiments, an anchor (e.g., screw, pin, etc.) stabilizes the filler material (and the associated curb) to the wall.
  • a system comprises a single anchor. In some embodiments, a system comprises multiple (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 18, 20, 22, 24, or more or ranges therebetween) anchors along the length of a curb (e.g., one per cross-sectional segment). In some embodiments, a system comprises multiple wall anchors.
  • the protective curbs herein are secured to structural surfaces (e.g., horizontal surface (e.g., floor, flooring, etc.), vertical surface (e.g., wall, wall panel, door frame, etc.)) by the compositions and methods described herein.
  • the void or cavity formed behind the curb is filled with a filler material (e.g., concrete, cement, insulation, foam, etc.).
  • the void behind the curb is filled after securing the curb to the structural surfaces.
  • all or a portion of the void behind the curb is filled with filler material (e.g., concrete, cement, insulation, foam, etc.) prior to placement of the curb.
  • the curbs described herein transversely extend the length of the structural surface.
  • one or more sections of curbs terminate at a desired distance for adequate protection.
  • a curb is configured along a door frame, ramp, or hallway and terminates at the end thereof.
  • the termination point of a curb is sharp, abrupt, gradual, sloped, or rounded.
  • a curb is configured to fit to an inside (e.g., 90°) or outside (e.g., 270°) corner of a wall.
  • one or more curbs transversely extend a wall length (e.g., 2 feet, 4 feet, 6 feet, 8 feet, 10 feet, 15 feet, 20 feet, 25 feet, 30 feet, 40 feet, 50 feet, 60 feet, 70 feet, 80 feet, 90 feet, 100 feet, or more, or ranges therebetween).
  • a wall length e.g., 2 feet, 4 feet, 6 feet, 8 feet, 10 feet, 15 feet, 20 feet, 25 feet, 30 feet, 40 feet, 50 feet, 60 feet, 70 feet, 80 feet, 90 feet, 100 feet, or more, or ranges therebetween.
  • the curbs are placed against the floor, although curbs may alternatively be configured for placement at the junction of any two structural surfaces.
  • Curbs may be placed near the floor, on the middle of a structural surface, at the junction between a wall and the ceiling, or any other position along a structural surface.
  • the structural surface may be an internal or external wall, a wall to wall corner, a door, a door frame, or like structure requiring impact protection.
  • the structural surface can be made of cement, wood, glass, ceramics, metals, stone or aggregate concrete.
  • the curb is secured to the structural surface by one or more attachment members (e.g., pins, screws, etc.) or substances (e.g., chemical welds, sealants, glues, caulk, silicone, etc.).
  • a curb comprises a plurality of protrusions extending into the cavity therein that facilitate tight interaction between the curb and the filler material.
  • a curb may comprise grooves that receive the filler material and facilitate interaction.
  • protrusions and/or grooves form dovetails or ball shaped.
  • a curb may be of any suitable size/dimensions to facilitate protection of the transition point between structural surfaces.
  • a curb is between 2 inches and 24 inches in height (e.g., 2 inches, 3 inches, 4 inches, 5 inches, 6 inches, 7 inches, 8 inches, 9 inches 10 inches, 11 inches, 12 inches, 13 inches, 14 inches, 15 inches, 16 inches, 17 inches, 18 inches, 19 inches, 20 inches, 21 inches, 22 inches, 23 inches, 24 inches, or ranges therebetween (e.g., 8-16 inches).
  • a curb is between 0.5 inches and 10 inches in depth (e.g., 0.5 inches, 0.75 inches, 1 inch, 1.25 inches, 1.5 inches, 1.75 inches, 2 inches, 2.25 inches, 2.5 inches, 2.75 inches, 3 inches, 3.5 inches, 4 inches, 4.5 inches, 5 inches, 5.5 inches, 6 inches, 7 inches, 8 inches, 9 inches, 10 inches, or ranges therebetween (e.g., 1-4 inches).
  • a curb is between 0.5 feet and 24 feet in length (e.g., 6 inches, 12 inches, 2 feet, 3 feet, 4 feet, 5 feet 6 feet, 7 feet, 8 feet, 9 feet 10 feet, 11 feet, 12 feet, 13 feet, 14 feet, 15 feet, 16 feet, 17 feet, 18 feet, 19 feet, 20 feet, 21 feet, 22 feet, 23 feet, 24 feet, or ranges therebetween (e.g., 2-12 feet).
  • the various segments of the curbs herein are of any suitable dimensions (e.g., lengths, widths, angles, etc.) to produce the protective curbs described herein.
  • the face angled head segment, and/or angled foot segments may be, independently, between 1 inch and 24 inches in length (e.g., 1 inch, 2 inches, 3 inches, 4 inches, 5 inches, 6 inches, 7 inches, 8 inches, 9 inches 10 inches, 11 inches, 12 inches, 13 inches, 14 inches, 15 inches, 16 inches, 17 inches, 18 inches, 19 inches, 20 inches, 21 inches, 22 inches, 23 inches, 24 inches, or ranges therebetween).
  • transition angles between segments may be of any suitable angle to provide the proper dimensions for a particular application.
  • combination of the curb, the filler material, and the seals/welds creates a barrier between the structural surface and an outside object.
  • the outside object may be equipment, machinery, or vehicles operated by an individual such as forklifts, tractors, trucks, haulers, and the like.
  • curbs are provided that are composed of a damage resistant material (e.g., impact resistant, abrasion resistant, low coefficient of friction, etc.), such as a polymer, metal, alloy, combinations thereof, etc.
  • a damage resistant material e.g., impact resistant, abrasion resistant, low coefficient of friction, etc.
  • one or more elements of the curb systems described herein comprise and/or are manufactured from a composite material, such as, a polymer matrix (e.g., vinylester, polyester, etc.), epoxy, phenol formaldehyde, polyester thermosetting plastic (e.g., PEEK, PEKK, PPS), etc., reinforced with fibers, such as carbon, aramid, glass, Kevlar, boron, basalt, Hybor, quartz, asbestos, etc.
  • the composite materials comprise additional components, such as, metal, metal foil (e.g., TiGr), or fiber metal laminate.
  • the composite materials are generally are “cured” into a stronger form through an endothermic chemical reaction, which requires the addition of energy, for example, by way of heating or irradiation.
  • composite materials used in various embodiments of this herein include graphite fiber reinforced epoxy, fiber reinforced plastic (FRP), glass-fiber reinforced plastic (GRP), carbon-fiber reinforced plastic (CRP), metal matrix composites (MMC), and reinforced carbon-carbon (carbon fiber in a graphite matrix).
  • one or more elements of the curb systems described herein comprise and/or are manufactured from a fiber reinforced plastic (FRP).
  • FRPs are a category of composite plastics that use elongated fibrous materials to alter and/or enhance characteristics of the plastic, such as mechanical characteristics (e.g., strength, elasticity, rigidity, etc.).
  • FRP manufacturing typically involves two distinct processes: (1) the fibrous material is manufactured and formed, and (2) the fibrous material is bonded with the polymer matrix during molding.
  • the fibers may be manufactured in two- or three-dimensional orientations (e.g., aligned along a plane x- and y-directions, fibers incorporated in the x-, y- and z-directions).
  • Fiber preforms may be manufactured in sheets, continuous mats, or as continuous filaments for spray applications.
  • the four major ways to manufacture the fiber preform is through the textile processing techniques of weaving, knitting, braiding and stitching.
  • a rigid structure is usually used to establish the shape of FRP components.
  • parts are laid up on a flat surface referred to as a “caul plate”” or on a cylindrical structure referred to as a “mandrel.”
  • the molding process of FRP begins by placing a fiber preform on or in a mold.
  • the fiber preform may be dry fiber, or fiber that already contains a measured amount of resin (“prepreg”).
  • Dry fibers are “wetted” with resin either by hand or the resin is injected into a closed mold. The part is then cured, leaving the matrix and fibers in the shape created by the mold. Heat and/or pressure are sometimes used to cure the resin and improve the quality of the final part.
  • Different methods of forming include bladder molding, compression molding, autoclave and vacuum bag, mandrel wrapping, chopper gun, filament winding, pultrusion, and resin transfer molding.
  • any suitable materials sand methods for the production of one or more elements of the curb systems described herein (e.g., curb, wall panel, etc.) out of FRP materials find use in embodiments herein.
  • one or more elements of the curb systems described herein comprise and/or are manufactured from a polymer material.
  • suitable nondegradable materials include polymeric materials, for example, polyolefins such as polyethylene (e.g., ultra-high molecular weight polyethylene (UHMWPE or UHMW)) and polypropylene including atactic, isotactic, syndiotactic, and blends thereof; polyethylene glycols; polyethylene glycol (PEG) coated polyethylene terephthalate (PET), polyethylene oxides; polyisobutylene and ethylene-alpha olefin copolymers; fluorinated polyolefins such as fluoroethylenes, fluoropropylenes, fluoroPEGSs, and polytetrafluoroethylene; polyamides such as nylon, Nylon 6, Nylon 6,6, Nylon 6,10, Nylon 11, Nylon 12, and polycaprolactam;
  • polyethylene e.g., ultra-high molecular weight polyethylene (UH
  • one or more elements of the curb systems described herein comprise and/or are manufactured from ultra-high-molecular-weight polyethylene (UHMW), or high-modulus polyethylene as is it also known, which is a subset of thermoplastic polyethylene.
  • UHMW ultra-high-molecular-weight polyethylene
  • high-modulus polyethylene as is it also known, which is a subset of thermoplastic polyethylene.
  • UHMW is well-known in the art of plastics by having high impact strength and abrasion resistance (Stein, H. L., Ultra High Molecular Weight Polyethylene , Engineered Material Handbook, Vol. 2, 167-171 (1998); herein incorporated by reference in its entirety).
  • UHMW is 15 times more resistant to abrasion than carbon steel and its coefficient of friction is significantly lower than that of nylon and acetyl.
  • UHMW has superior abrasion resistance than Teflon.
  • the combination of high impact strength, coefficient of friction, and abrasion resistance of UHMW makes well-suited for applications where lower molecular weight grades fail.
  • UHMW has been used in medical devices, cables, wire, and fibers for personal armor, cut-resistant gloves, bow strings, fishing line, climbing gear, and industrial webbing.
  • UHMW is both FDA and USDA approved for use in food processing and medical applications.
  • UHMW cannot be transformed and molded by conventional plastic processing techniques such as injection molding, blow molding or thermoforming. Rod tubing and profiles of UHMW are typically created by compression molding or ram extrusion processing.
  • UHMW powder is gravity fed into a chamber and a hydraulic ram pushes the powder from this chamber into a die.
  • the die is the shape of the desired plastic, a certain diameter rod, a certain tube, or a profile shape. Heaters are employed on the outside of the die to heat the plastic and make it form into the shape of the die.
  • the hydraulic ram moves back and forth continuously feeding the powder into the die. As the material comes out of the die, it travels the length of the conveyor after which it is cut to length.
  • Ram extrusion does not shear the material that is being manufactured as does single screw extrusion which employs a rotating screw to move the material. It moves the material by hydraulically pushing it through the die which is the desired shape of the end product.
  • curbs herein are shaped/formed by any suitable technique, such as ram extrusion, compression molding, gel spinning, sintering, 3D printing, etc.
  • the curb may be formed into a profile configured for particular structural surfaces (e.g., vertical/horizontal, off-vertical/horizontal, vertical/off-horizontal, off-vertical/off-horizontal, corner, ramp, doorway, un-even surface, etc.).
  • any embodiments described herein for the junctions of orthogonal structures e.g., vertical wall meeting a horizontal floor
  • curb systems herein comprise the filler material.
  • filler is any suitable material to fill the void between the curb and the structural surfaces, such as, for example, concrete, a concrete-filler mixture, a cement-filler mixture, a concrete-polymer mixture, industrial foams, polymers, insulation, plastics, and the like.
  • the filler material fills the cavity behind the curb, prevents damage to the curb, seals the area behind the curb, prevents infestation, prevents bacterial/mold growth, prevents water invasion, and/or structurally reinforces the structural surfaces and/or curb.
  • the interior and/or surface of walls, panels, doors, floors, etc. may comprise similar materials to the fillers above.
  • the curb systems herein interact with floor/flooring materials (e.g., are adhered to).
  • Suitable floor/flooring materials include, but are not limited to: ceramic (e.g., tile), wood, concrete, cement, glass, natural or synthetic stone, urethane, sheet vinyl, vinyl composite, rubber, laminate, linoleum, polyaspartics, epoxies, etc.
  • curb systems are tailored (e.g., appropriate adhesives/sealants/chemical welds are selected) to the floor/flooring material present.
  • adhesives, glues, and/or sealants are provided in the systems herein to adhere two or more components together (e.g., curb to floor, curb to wall, filler to wall, filler to floor, etc.). In some embodiments, adhesives, glues, and/or sealants are provided in the systems herein to seal a gap between to components.
  • Exemplary adhesives, glues, and/or sealants that find use in some embodiments herein include, but are not limited to: epoxies, silicone-based, cyanoacrylates, urethanes adhesives, acrylic adhesives, rubber cements, pressure sensitive adhesives, heat sensitive adhesives, thermosetting structural adhesives, UV-curing adhesives, acrylic, foam, latex sealants, polysulfide sealants, polyurethane sealants, etc.
  • the type of adhesives, glues, and/or sealants is selected based on the materials to be adhered/sealed and/or the desired characteristics of the adhesion/seal (e.g., strength, durability, lifetime, waterproof, bacteria/mold resistance, etc.).
  • a chemical weld is provided in the systems herein to adhere two or more components together (e.g., curb to floor, curb to wall, filler to wall, filler to floor, etc. and/or to seal a gap between to components.
  • a chemical weld is a more permanent method for bonding two materials.
  • Chemical welding involves the application of one or more materials (e.g., solvents, reactants, components, etc.) on a surface or between two surfaces; a chemical reaction within the applied materials and/or between the applied materials and the surfaces results in chemical bonding of the surfaces (e.g., to each other, to the weld materials, etc.).
  • Exemplary chemical components of chemical weld systems that may find use in embodiments herein include, but are not limited to: an aromatic polyisocyanate such as 1,3-phenylenediisocyanate, 4,4′-diphenyldiisocyanate, 1,4-phenylenediisocyanate, 4,4′-diphenylmethanediisocyanate, 2,4-tolylenediisocyanate, 2,6-tolylenediisocyanate, 4,4′-toluidinediisocyanate, 2,4,6-triisocyanatetoluene, 1,3,5-triisocyanatebenzene, dianisidine diisocyanate, 4,4′-diphenyletherdiisocyanate, 4,4′,4′′-triphenylmethanetriisocyanate or xylene diisocyanate; an aromatic polyisocyanate such as tri-methylene diisocyanate, tetra-methylene diisocyanate, he
  • Chemical welding agents that find use in embodiments herein may be others known in the field. Exemplary chemical weld systems are described, for example, in U.S. Pub No. 2016/0222263; U.S. Pub No. 2002/0114914, and U.S. Pat. No. 5,810,956; each of which is herein incorporated by reference in its entirety.
  • one or more components of the curb systems herein comprise or exhibit antimicrobial (e.g., anti-mold, antibacterial) and/or antiseptic characteristics.
  • one or more materials of the curb systems herein comprise, are coated in, and/or are impregnated with an antimicrobial (e.g., anti-mold, antibacterial) and/or antiseptic agent. Suitable agents for rendering such materials antimicrobial (e.g., anti-mold, antibacterial) and/or antiseptic are understood in the field.
  • one or more components of the curb systems herein comprise or exhibit waterproof and/or water resistant characteristics.
  • one or more materials of the curb systems herein comprise, are coated in, and/or are impregnated with a waterproof and/or water resistance agent. Suitable agents for rendering such materials waterproof and/or water resistant are understood in the field.
  • the curbs and systems described herein find use in a variety of fields and facilities, including, but not limited to the meat processing industry, the fruit and vegetable industry, catering facilities, slaughter houses, the confectionary industry, retail shops, the fish processing industry, supermarkets, restaurants, the bakery industry, walk-in freezers, pharmaceutical manufacturing facilities, the dairy industry, logistics, hospitals, the beverage industry, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Road Paving Structures (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

Provided herein are protective mold devices for the protection of structural surfaces, equipment, machinery, and users thereof. In particular, mold devices for securing to a structural surface (e.g., wall, divider, door opening frame, etc.) are provided that form a cavity between the structural surface and the mold for impregnation with a filler material.

Description

    FIELD
  • Provided herein are modular curbs for transitioning between wall and floor. In particular, curbs are provided seal gaps between the wall and floor, protect walls against impact, are waterproof, and protect against bacteria/mold infiltration.
  • BACKGROUND
  • Protective guards for buildings and similar structures are well-known in the art. These protective guards include bollards, cement curbs, floor board bumpers, rubber-form structure bumpers, and layered cement wall construction. Current designs have deficiencies, such as being prone to damage when contacted by equipment and harboring sites for the growth of pathogenic microbes.
  • SUMMARY
  • Provided herein are modular curbs for transitioning between wall and floor. In particular, curbs are provided seal gaps between the wall and floor, protect walls against impact, are waterproof, and protect against bacteria/mold infiltration.
  • In some embodiments, provided herein are devices (e.g., protective curbs) comprising a cross-sectional geometry comprising: a vertical engagement segment configured to contact a wall at a height above a floor and without contacting the floor; and a horizontal engagement segment configured to contact the floor at a distance from the wall and without contacting the wall; wherein, when the vertical engagement segment is placed in contact with the wall and the horizontal engagement segment is placed in contact with the floor, a cavity is formed between the device, the floor, and the wall. In some embodiments, the devices further comprise a central segment connecting the vertical engagement segment and the horizontal engagement segment. In some embodiments, the central segment, the vertical engagement segment, and the horizontal engagement segment comprise a single piece of material (e.g., FRP). In some embodiments, an internal angle between the vertical engagement segment and the central segment is 90° or less (e.g., 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, 90%, or ranges therebetween). In some embodiments, an internal angle between the horizontal engagement segment and the central segment is 90° or less (e.g., 15°, 20°, 25°, 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, 80°, 85°, 90°, or ranges therebetween). In some embodiments, the central segment comprises one or more bends or folds. In some embodiments, one or more of the central segment, the vertical engagement segment, and the horizontal engagement segment comprise a locking segment (e.g., linear or L-shaped) that extends into the cavity formed between the device, the floor, and the wall. In some embodiments, the device is composed of a polymer or polymer composite material. In some embodiments, the device is composed of ultra-high-molecular-weight polyethylene (UHMW) or fiber reinforced plastic (FRP). In some embodiments, the cross-sectional geometry extends the entire longitudinal length of the device. In some embodiments, the vertical engagement segment is 0.25 to 6 inches in length (e.g., 0.25 inches, 0.5 inches, 0.75 inches, 1 inch, 1.5 inches, 2 inches, 3 inches, 4 inches, 5 inches, 6 inches, or lengths therebetween), the horizontal engagement segment is 0.25 to 3 inches in length (e.g., 0.25 inches, 0.5 inches, 0.75 inches, 1 inch, 1.5 inches, 2 inches, 3 inches, and lengths therebetween), and the central segment is 2 to 24 inches in length (e.g., 2 inches, 3 inches, 4 inches, 5 inches, 6 inches, 7 inches, 8 inches, 10 inches, 12 inches, 16 inches, 20 inches, 24 inches, or ranges therebetween). In some embodiments, the vertical engagement segment is configured to contact the wall at a height of 1.5 to 20 inches (e.g., 1.5 inches, 2 inches, 2.5 inches, 3 inches, 3.5 inches, 4 inches, 5 inches, 6 inches, 7 inches, 8 inches, 9 inches, 10 inches, 12 inches, 14 inches, 16 inches, 18 inches, 20 inches, or ranges therebetween) above the floor (e.g., lowest point of contact between the vertical engagement segment and the wall) and the horizontal engagement segment is configured to contact the floor at a distance of 0.5 to 4 inches (e.g., 0.5 inches, 0.75 inches, 1 inch, 1.25 inches, 1.5 inches, 1.75 inches, 2 inches, 2.5 inches, 3 inches, 3.5 inches, 4 inches, or ranges therebetween) from the wall (e.g., nearest point of contact to the wall between the horizontal engagement segment and the floor). In some embodiments, a device is 6 inches to 24 feet (e.g., 6 inches 1 foot, 2 feet, 3 feet, 4 feet, 6 feet, 8 feet, 12 feet, 16 feet, 20 feet, 24 feet, or ranges therebetween) in length longitudinally.
  • In some embodiments, provided herein are systems (e.g., protective systems) comprising: a device described herein (e.g., protective cub), a wall, and a floor; wherein the vertical engagement segment is in contact with the wall at a height above a floor and without contacting the floor; wherein the horizontal engagement segment is in contact with the floor at a distance from the wall and without contacting the wall. In some embodiments, the vertical engagement segment and the horizontal engagement segment are adhered to the wall and the floor, respectively, by an adhesive or chemical weld. In some embodiments, a gap between the vertical engagement segment and the wall and/or the horizontal engagement segment and the floor is filled and/or sealed with a sealant and/or chemical weld. In some embodiments, the cavity formed between the device, the floor, and the wall is filled with a filler material. In some embodiments, the filler material is selected from cement, concrete, foam, a polymeric material, and composites thereof. In some embodiments, the cavity is filled along the entire longitudinal length of the device. In some embodiments, systems further comprise one or more anchors attached to the floor or wall and extending into the filled cavity. In some embodiments, the anchor is a pin or screw. In some embodiments, the wall comprises or is covered with a panel comprising a polymer or polymer composite material (e.g., ultra-high-molecular-weight polyethylene (UHMW) or fiber reinforced plastic (FRP)). In some embodiments, the floor comprises concrete. In some embodiments, the floor is covered with a urethane flooring material. In some embodiments, a system comprises multiple devices aligned longitudinally end-to-end.
  • In some embodiments, provided herein are methods of installing a system described herein and/or preventing water damage, bacteria/mold growth, and/or damage from impact comprising: (a) placing a device of one of claims 1-15 at the junction of a wall and a floor such that: (i) the vertical engagement segment contacts the wall at a height above the floor and without contacting the floor, (ii) the horizontal engagement segment contacts the floor at a distance from the wall and without contacting the wall, and (iii) a cavity is formed between the device, the floor, and the wall; (b) adhering the vertical engagement segment to the wall and the horizontal engagement segment to the floor with an adhesive or chemical weld; (c) sealing a gap between the vertical engagement segment and the wall and/or the horizontal engagement segment and the floor with a sealant and/or chemical weld; and (d) filling the cavity with a filler material.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A-B. Cross-sectional geometries of exemplary curbs described herein.
  • FIG. 2A-C. Cross-sectional geometries of exemplary curbs described herein.
  • FIG. 3. Perspective view of an exemplary curb described herein.
  • FIG. 4. Cross-sectional view of an exemplary protective system described herein.
  • FIG. 5. Cross-sectional view of an exemplary protective system described herein.
  • DEFINITIONS
  • Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments described herein, some preferred methods, compositions, devices, and materials are described herein. However, before the present materials and methods are described, it is to be understood that this invention is not limited to the particular molecules, compositions, methodologies or protocols herein described, as these may vary in accordance with routine experimentation and optimization. It is also to be understood that the terminology used in the description is for the purpose of describing the particular versions or embodiments only, and is not intended to limit the scope of the embodiments described herein.
  • Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. However, in case of conflict, the present specification, including definitions, will control. Accordingly, in the context of the embodiments described herein, the following definitions apply.
  • As used herein and in the appended claims, the singular forms “a”, “an” and “the” include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to “a curb” is a reference to one or more curbs and equivalents thereof known to those skilled in the art, and so forth.
  • As used herein, the term “and/or” includes any and all combinations of listed items, including any of the listed items individually. For example, “A, B, and/or C” encompasses A, B, C, AB, AC, BC, and ABC, each of which is to be considered separately described by the statement “A, B, and/or C.”
  • As used herein, the term “comprise” and linguistic variations thereof denote the presence of recited feature(s), element(s), method step(s), etc. without the exclusion of the presence of additional feature(s), element(s), method step(s), etc. Conversely, the term “consisting of” and linguistic variations thereof, denotes the presence of recited feature(s), element(s), method step(s), etc. and excludes any unrecited feature(s), element(s), method step(s), etc., except for ordinarily-associated impurities. The phrase “consisting essentially of” denotes the recited feature(s), element(s), method step(s), etc. and any additional feature(s), element(s), method step(s), etc. that do not materially affect the basic nature of the composition, system, or method. Many embodiments herein are described using open “comprising” language. Such embodiments encompass multiple closed “consisting of” and/or “consisting essentially of” embodiments, which may alternatively be claimed or described using such language.
  • As used herein, the term “substantially all,” “substantially complete” and similar terms refer to greater than 99%; and the terms “substantially none,” “substantially free of,” and similar terms refer to less than 1%.
  • The term “about” allows for a degree of variability in a value or range. As used herein, the term “about: refers to values within 10% of the recited value or range (e.g., about 50 is the equivalent of 45-55).
  • As used herein, the terms “off-vertical” and “off-horizontal” may refer to devices or structures that are substantially vertical or horizontal, about vertical or horizontal, or not vertical or horizontal. Any uses of “off-vertical” and “off-horizontal” herein may be substituted with one of the aforementioned.
  • As used herein, the term “acutely oriented” refers to the relationship between two segments of a device or structure that have an internal angle between them that is less than 90°.
  • As used herein, the term “obtusely oriented” refers to the relationship between two segments of a device or structure that have an internal angle between them that is greater than 90°.
  • As used herein, the term “orthogonally oriented” refers to the relationship between two segments of a device or structure that have an internal angle between them that is equal to 90°.
  • As used herein, the term “parallel” refers to the relationship between to segments of a device or structure that have a constant distance between the segment over their length (e.g., 0° angle between the segments).
  • As used herein, the term “antiparallel” refers to the relationship between two segments of a device or structure that have a constant distance between the segment over their length (e.g., 0° angle between the segments), but are oriented in opposite directions.
  • DETAILED DESCRIPTION
  • Provided herein are modular curbs for transitioning between wall and floor. In particular, curbs are provided seal gaps between the wall and floor, protect walls against impact, are waterproof, and protect against bacteria/mold infiltration.
  • Provided herein are curbs for the protection of structural surfaces, equipment, machinery, and users thereof. In some embodiments, curbs are secured to a structural surface, such as a wall, divider, or door opening frame, as well as to a floor (or ceiling) and bridge the gap therebetween. In some embodiments, the curbs provide a transition between a vertical structural surface (e.g., wall, wall panel, etc.) and a horizontal floor surface. In some embodiments, the curb prevents collection and/or invasion of water, mold/bacteria, etc. at the intersection (or a gap) between the vertical structural surface and the horizontal floor surface. In some embodiments, the curb is impregnated or back-filled with a filler material (e.g., concrete, cement, foam, etc.). In some embodiments, the curb is sealed to the floor (e.g., with silicone, with glue, with sealant, with a chemical weld, etc.). In some embodiments, the curb is sealed to a vertical structure (e.g., wall, door frame, wall liner, panel, etc.) by any suitable material (e.g., with silicone, with glue, with sealant, with a chemical weld, etc.). In some embodiments, the filler (e.g., behind and/or within the curb) is sealed to the floor and/or vertical structure (e.g., wall, door frame, wall liner, panel, etc.) by any suitable material (e.g., with silicone, with glue, with sealant, with a chemical weld, etc.). In some embodiments, the filler (e.g., behind and/or within the curb) is anchored to the floor and/or vertical structure (e.g., wall, door frame, wall liner, panel, etc.) by a mechanical anchoring element (e.g., screw, pin, etc.). In some embodiments, gaps between the curb and the floor are sealed/filled/closed by a sealant or chemical weld. In some embodiments, gaps between the curb and the vertical structure (e.g., wall, door frame, wall liner, panel, etc.) are sealed/filled/closed by a sealant or chemical weld.
  • In some embodiments, a curb is a structural component configured to sit at the intersection of a vertical structure (e.g., wall, door frame, wall liner, panel, etc.) and the floor. In some embodiments, a curb comprises a head 10, a face 20, and a foot 30 (FIG. 1).
  • In some embodiments, FIGS. 1 and 2 depict cross-sectional views of exemplary curbs within the scope herein. In some embodiments, FIG. 3 shows a perspective view of an exemplary curb. In some embodiments, the cross-sectional geometry (See, e.g., FIG. 2A-C) extends the length of the curb (FIG. 3). In some embodiments, a curb is up to 24 feet (or more) in length (e.g., 1 inch, 2 inches, 4 inches, 6 inches, 9 inches, 1 foot, 2 feet, 3 feet, 4 feet, 6 feet, 8 feet, 10 feet, 12 feet, 16 feet, 20 feet, 24 feet, or more, or ranges therebetween). In some embodiments, multiple curbs (e.g., 2, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, or more, or ranges therebetween) are assembled end-to-end to cover a length of wall/floor. In some embodiments, multiple curbs are adhered to one another (e.g., end-to-end) using a sealant, adhesive, or chemical weld. In some embodiments, the end of a curb is configured (e.g., tapered) to facilitate end-to-end engagement with an adjacent curb.
  • In some embodiments, the head 10 comprises a vertical engagement segment 12, angled segment 15, and head joint 18 (FIG. 2). In some embodiments, the head joint 18 is a fixed angle. In some embodiments, the head 10 comprises a vertical engagement segment 12 which is a vertical portion at the rear of the curb, and serves as a point of contact between the curb 1 and the vertical structure (e.g., wall, door frame, wall liner, panel, etc.). In some embodiments, the head 10 comprises an angled segment 15 which oriented to angle downward at between 15° and 75° (e.g., 15°, 20°, 25° 30°, 35°, 40°, 45°, 50°, 55°, 60°, 65°, 70°, 75°, or ranges therebetween) from vertical. In some embodiments, the head 10 comprises a head joint 18 that acts as a transition between the vertical engagement segment 12 and the angled segment 15. In some embodiments, the vertical engagement segment 12 and the angled segment 15 are acutely oriented to one another. In some embodiments, the head joint 18 is the top of the curb 1. In some embodiments, the head joint is a bend in the curb 1 between the vertical engagement segment 12 and the angled segment 15. In some embodiments, the head joint 18 is a 105° to 165° (e.g., 105°, 110°, 115° 120°, 125°, 130°, 135°, 140°, 145°, 150°, 155°, 160°, or ranges therebetween) bend (e.g., outer angle) in the curb 1. In some embodiments, the head joint, and other transitions between segment may be rounded or sharp.
  • In some embodiments, a curb comprises a face 20 that extends from the head 10 to the foot 30. The face may be vertical or slope outward from the vertical (e.g., 0-30° (e.g., 0°, 1°, 2°, 3°, 4°, 5°, 10°, 15°, 20°, 25° 30°, or ranges therebetween). In some embodiments, the face 20 and the vertical engagement segment 12 are antiparallel. In some embodiments, the angled segment 15 provides a transition between the head 10 and the face 20 of the curb 1.
  • In some embodiments, the foot 30 is the bottommost portion of the curb 1 and comprises a floor engagement segment 32 and a bottom locking segment 34 (FIG. 2). In some embodiments, the floor engagement segment 32 and the face 20 are orthogonally oriented.
  • In some embodiments (See FIG. 2A), the floor engagement segment 32 sits at the bottom of the face 20, and is perpendicular to the vertical structure (e.g., wall, door frame, wall liner, panel, etc.). In some embodiments, the bottom locking segment 34 extends upward from the floor engagement segment 32 and facilitates holding he curb within the filler material. In some embodiments, the bottom locking segment 34 and the face 20 are antiparallel.
  • In some embodiments (FIG. 2B), the foot 30 comprises a floor engagement segment 32, a bottom locking segment 34, angled segment 35, and an internal locking segment 37. In some embodiments, the angled segment 35 sits at the bottom of the face 20 and slopes outward from the vertical 10-45° (e.g., 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, or ranges therebetween). In some embodiments, the internal locking segment extends into the interior of the curb and facilitates holding he curb within the filler material. In some embodiments, an internal locking segment 37 may reside anywhere along the interior of the face 20 or angled segment 35. In some embodiments, a curb 1 may comprise multiple (e., 2, 3, 4, 5, 6, 7, 8, or more or ranges therebetween) angled segments 35 to secure the curb against the filler material. In some embodiments, the floor engagement segment 32 sits at the bottom of the angled segment 35 and is perpendicular to the vertical structure (e.g., wall, door frame, wall liner, panel, etc.). In some embodiments, the angled segment 35 and the face 20 are obtusely oriented. In some embodiments, the angled segment 35 and the floor engagement segment 32 are acutely oriented. In some embodiments, the bottom locking segment 34 extends upward from the floor engagement segment 32 and facilitates holding he curb within the filler material.
  • In some embodiments (FIG. 2C), the foot 30 comprises a floor engagement segment 32, a bottom locking segment 34, and angled segment 35. In some embodiments, the angled segment 35 sits at the bottom of the face 20 and slopes outward from the vertical 10-45° (e.g., 10°, 15°, 20°, 25°, 30°, 35°, 40°, 45°, or ranges therebetween). In some embodiments, the floor engagement segment 32 sits at the bottom of the angled segment 35 and is perpendicular to the vertical structure (e.g., wall, door frame, wall liner, panel, etc.). In some embodiments, the bottom locking segment 34 extends upward from the floor engagement segment 32 and facilitates holding he curb within the filler material.
  • The curbs described herein find use in providing a protective transition (e.g., protection from impact, from water damage, from bacteria/mold, etc.) between a vertical structure (e.g., wall, door frame, wall panel, etc.) and the floor. In some embodiments, provided herein are systems comprising the curbs described herein, a vertical structure, and a floor. Exemplary systems are depicted in FIGS. 4 and 5; however, such exemplary systems are not limiting on the scope of embodiments herein. For example, the vertical structures depicted in FIGS. 4 and 5 are walls comprising an interior material (e.g., insulation) and surface material (e.g., FRP panel); while such systems are within the scope herein, embodiments herein are not so limited. As described throughout, the curbs herein also find use with other structures (e.g., vertical, substantially vertical, about vertical, not vertical, etc.). Additionally, the particular curb configurations depicted in FIGS. 4 and 5 (as well as the other figures) are not limiting. Other curb configurations (e.g., multiple internal locking segments, etc.) are within the scope herein. Further, the embodiments depicted in FIGS. 4 and 5 comprise a particular scheme for attaching the curb to the wall and floor and for sealing gaps; other schemes utilizing different combinations of adhesives, sealants, chemical welds, etc. are within the scope herein. FIGS. 4 and 5 provide illustrative examples that inform but do not limit embodiments with the scope herein.
  • FIG. 4 depicts an exemplary embodiment in which a curb provides a protective transition between a floor and wall that meet directly at a perpendicular angle. The vertical engagement segment of the curb sits against the wall surface and the floor engagement segment sits against the floor. At each point of contact between the curb and the wall or floor, an adhesive or other sealant (e.g., caulking compound, silicone, glue, etc.) adheres the curb to the wall/floor and provides a water proof and/or water resistant seal. In some embodiments, the void between the curb and the wall/floor is filled with a filler material that is suitable for the particular application (e.g., cement, concrete, foam, insulation, etc.). In some embodiments, the filler is adhered to the wall and/or floor by an adhesive or other sealant (e.g., caulking compound, silicone, glue, etc.).
  • FIG. 5 depicts an exemplary embodiment in which a curb provides a protective transition between a wall and a floor with a flooring surface (e.g., urethane flooring) applied to a subfloor (e.g., concrete floor). In some embodiments, such as the one depicted in FIG. 5, the edge of the floor is sloped or curved to rise up and meet the edge of the curb. In such embodiments, the engagement point, or gap (if one exists), between the curb and the flooring may be sealed with an adhesive or other sealant (e.g., caulking compound, silicone, glue, etc.) or with a chemical weld. In some embodiments, the engagement point between the filler and the flooring may be sealed with an adhesive or other sealant (e.g., caulking compound, silicone, glue, etc.) or with a chemical weld.
  • In the embodiment depicted in FIG. 5, the vertical engagement segment of the curb sits against the wall surface and the floor engagement segment sits against the top of the flooring and the filler. At each point of contact between the curb and the wall or floor, an adhesive or other sealant (e.g., caulking compound, silicone, glue, etc.) adheres the curb to the wall/floor and provides a water proof and/or water resistant seal. In some embodiments, the void between the curb and the wall/floor is filled with a filler material that is suitable for the particular application (e.g., cement, concrete, foam, insulation, etc.). In some embodiments, the filler is adhered to the wall and/or floor by an adhesive or other sealant (e.g., caulking compound, silicone, glue, etc.).
  • In some embodiments, a gap between the curb and the wall and/or floor is filled and/or sealed with a chemical weld (See, e.g., U.S. Pub No. 2016/0222263; U.S. Pub No. 2002/0114914, U.S. Pat. No. 5,810,956; each of which is herein incorporated by reference in its entirety; for examples of chemical welds and materials and methods suitable for making such welds; other technologies of chemical welding are understood in the art). In some embodiments, the top gap between the curb and the wall is chemically welded. In some embodiments, the bottom gap between the curb and the floor is chemically welded.
  • In some embodiments, an anchor (e.g., screw, pin, etc.) stabilizes the filler material (and the associated curb) to the floor (as depicted in FIGS. 4 and 5). In other embodiments, an anchor (e.g., screw, pin, etc.) stabilizes the filler material (and the associated curb) to the wall. In some embodiments, a system comprises a single anchor. In some embodiments, a system comprises multiple (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 16, 18, 20, 22, 24, or more or ranges therebetween) anchors along the length of a curb (e.g., one per cross-sectional segment). In some embodiments, a system comprises multiple wall anchors.
  • In some embodiments, the protective curbs herein are secured to structural surfaces (e.g., horizontal surface (e.g., floor, flooring, etc.), vertical surface (e.g., wall, wall panel, door frame, etc.)) by the compositions and methods described herein. In some embodiments, the void or cavity formed behind the curb is filled with a filler material (e.g., concrete, cement, insulation, foam, etc.). In some embodiments, the void behind the curb is filled after securing the curb to the structural surfaces. In other embodiments, all or a portion of the void behind the curb is filled with filler material (e.g., concrete, cement, insulation, foam, etc.) prior to placement of the curb.
  • In one embodiment, the curbs described herein transversely extend the length of the structural surface. Alternatively, in some embodiments one or more sections of curbs terminate at a desired distance for adequate protection. For example, a curb is configured along a door frame, ramp, or hallway and terminates at the end thereof. In some embodiments, the termination point of a curb is sharp, abrupt, gradual, sloped, or rounded. In some embodiments, a curb is configured to fit to an inside (e.g., 90°) or outside (e.g., 270°) corner of a wall. In some embodiment, one or more curbs (e.g., linked (e.g., sealed, welded, etc.) end to end) transversely extend a wall length (e.g., 2 feet, 4 feet, 6 feet, 8 feet, 10 feet, 15 feet, 20 feet, 25 feet, 30 feet, 40 feet, 50 feet, 60 feet, 70 feet, 80 feet, 90 feet, 100 feet, or more, or ranges therebetween). Other lengths and distances are contemplated beyond those disclosed herein in order to accommodate various wall and door way sizes and configurations. In many embodiments herein, the curbs are placed against the floor, although curbs may alternatively be configured for placement at the junction of any two structural surfaces. Curbs may be placed near the floor, on the middle of a structural surface, at the junction between a wall and the ceiling, or any other position along a structural surface. The structural surface may be an internal or external wall, a wall to wall corner, a door, a door frame, or like structure requiring impact protection. The structural surface can be made of cement, wood, glass, ceramics, metals, stone or aggregate concrete. In some embodiments, the curb is secured to the structural surface by one or more attachment members (e.g., pins, screws, etc.) or substances (e.g., chemical welds, sealants, glues, caulk, silicone, etc.).
  • In some embodiments, a curb comprises a plurality of protrusions extending into the cavity therein that facilitate tight interaction between the curb and the filler material. Alternatively, a curb may comprise grooves that receive the filler material and facilitate interaction. In some embodiments, protrusions and/or grooves form dovetails or ball shaped.
  • The dimensions of the curbs may be of any suitable size/dimensions to facilitate protection of the transition point between structural surfaces. In some embodiments, a curb is between 2 inches and 24 inches in height (e.g., 2 inches, 3 inches, 4 inches, 5 inches, 6 inches, 7 inches, 8 inches, 9 inches 10 inches, 11 inches, 12 inches, 13 inches, 14 inches, 15 inches, 16 inches, 17 inches, 18 inches, 19 inches, 20 inches, 21 inches, 22 inches, 23 inches, 24 inches, or ranges therebetween (e.g., 8-16 inches). In some embodiments, a curb is between 0.5 inches and 10 inches in depth (e.g., 0.5 inches, 0.75 inches, 1 inch, 1.25 inches, 1.5 inches, 1.75 inches, 2 inches, 2.25 inches, 2.5 inches, 2.75 inches, 3 inches, 3.5 inches, 4 inches, 4.5 inches, 5 inches, 5.5 inches, 6 inches, 7 inches, 8 inches, 9 inches, 10 inches, or ranges therebetween (e.g., 1-4 inches). In some embodiments, a curb is between 0.5 feet and 24 feet in length (e.g., 6 inches, 12 inches, 2 feet, 3 feet, 4 feet, 5 feet 6 feet, 7 feet, 8 feet, 9 feet 10 feet, 11 feet, 12 feet, 13 feet, 14 feet, 15 feet, 16 feet, 17 feet, 18 feet, 19 feet, 20 feet, 21 feet, 22 feet, 23 feet, 24 feet, or ranges therebetween (e.g., 2-12 feet). In some embodiments, the various segments of the curbs herein are of any suitable dimensions (e.g., lengths, widths, angles, etc.) to produce the protective curbs described herein. For example, the face angled head segment, and/or angled foot segments may be, independently, between 1 inch and 24 inches in length (e.g., 1 inch, 2 inches, 3 inches, 4 inches, 5 inches, 6 inches, 7 inches, 8 inches, 9 inches 10 inches, 11 inches, 12 inches, 13 inches, 14 inches, 15 inches, 16 inches, 17 inches, 18 inches, 19 inches, 20 inches, 21 inches, 22 inches, 23 inches, 24 inches, or ranges therebetween). In some embodiments, the vertical engagement segments, locking segments, floor engagement segments, etc. may be, independently, between 0.25 inches and 8 inches in length (e.g., 0.25 inches, 0.5 inches, 0.75 inches, 1 inch, 2 inches, 3 inches, 4 inches, 5 inches, 6 inches, 7 inches, 8 inches, or ranges therebetween). As described herein, the transition angles between segments may be of any suitable angle to provide the proper dimensions for a particular application.
  • In some embodiments, combination of the curb, the filler material, and the seals/welds creates a barrier between the structural surface and an outside object. The outside object may be equipment, machinery, or vehicles operated by an individual such as forklifts, tractors, trucks, haulers, and the like.
  • In some embodiments, curbs are provided that are composed of a damage resistant material (e.g., impact resistant, abrasion resistant, low coefficient of friction, etc.), such as a polymer, metal, alloy, combinations thereof, etc.
  • In some embodiments, one or more elements of the curb systems described herein (e.g., curb, wall panel, etc.) comprise and/or are manufactured from a composite material, such as, a polymer matrix (e.g., vinylester, polyester, etc.), epoxy, phenol formaldehyde, polyester thermosetting plastic (e.g., PEEK, PEKK, PPS), etc., reinforced with fibers, such as carbon, aramid, glass, Kevlar, boron, basalt, Hybor, quartz, asbestos, etc. In some embodiments, the composite materials comprise additional components, such as, metal, metal foil (e.g., TiGr), or fiber metal laminate. In some embodiments, the composite materials are generally are “cured” into a stronger form through an endothermic chemical reaction, which requires the addition of energy, for example, by way of heating or irradiation. Examples of composite materials used in various embodiments of this herein include graphite fiber reinforced epoxy, fiber reinforced plastic (FRP), glass-fiber reinforced plastic (GRP), carbon-fiber reinforced plastic (CRP), metal matrix composites (MMC), and reinforced carbon-carbon (carbon fiber in a graphite matrix).
  • In some embodiments, one or more elements of the curb systems described herein (e.g., curb, wall panel, etc.) comprise and/or are manufactured from a fiber reinforced plastic (FRP). FRPs are a category of composite plastics that use elongated fibrous materials to alter and/or enhance characteristics of the plastic, such as mechanical characteristics (e.g., strength, elasticity, rigidity, etc.). FRP manufacturing typically involves two distinct processes: (1) the fibrous material is manufactured and formed, and (2) the fibrous material is bonded with the polymer matrix during molding. The fibers may be manufactured in two- or three-dimensional orientations (e.g., aligned along a plane x- and y-directions, fibers incorporated in the x-, y- and z-directions). Fiber preforms may be manufactured in sheets, continuous mats, or as continuous filaments for spray applications. The four major ways to manufacture the fiber preform is through the textile processing techniques of weaving, knitting, braiding and stitching. A rigid structure is usually used to establish the shape of FRP components. In some embodiments, parts are laid up on a flat surface referred to as a “caul plate”” or on a cylindrical structure referred to as a “mandrel.” However, most fiber-reinforced plastic parts are created with a mold or “tool.” In some embodiments, the molding process of FRP begins by placing a fiber preform on or in a mold. The fiber preform may be dry fiber, or fiber that already contains a measured amount of resin (“prepreg”). Dry fibers are “wetted” with resin either by hand or the resin is injected into a closed mold. The part is then cured, leaving the matrix and fibers in the shape created by the mold. Heat and/or pressure are sometimes used to cure the resin and improve the quality of the final part. Different methods of forming include bladder molding, compression molding, autoclave and vacuum bag, mandrel wrapping, chopper gun, filament winding, pultrusion, and resin transfer molding. In some embodiments, any suitable materials sand methods for the production of one or more elements of the curb systems described herein (e.g., curb, wall panel, etc.) out of FRP materials find use in embodiments herein.
  • In some embodiments, one or more elements of the curb systems described herein (e.g., curb, wall panel, etc.) comprise and/or are manufactured from a polymer material. Some non-limiting examples of suitable nondegradable materials include polymeric materials, for example, polyolefins such as polyethylene (e.g., ultra-high molecular weight polyethylene (UHMWPE or UHMW)) and polypropylene including atactic, isotactic, syndiotactic, and blends thereof; polyethylene glycols; polyethylene glycol (PEG) coated polyethylene terephthalate (PET), polyethylene oxides; polyisobutylene and ethylene-alpha olefin copolymers; fluorinated polyolefins such as fluoroethylenes, fluoropropylenes, fluoroPEGSs, and polytetrafluoroethylene; polyamides such as nylon, Nylon 6, Nylon 6,6, Nylon 6,10, Nylon 11, Nylon 12, and polycaprolactam; polyimines; polyesters such as polyethylene terephthalate, polyethylene naphthalate, polytrimethylene terephthalate, and polybutylene terephthalate; polyethers; polybutester; polytetramethylene ether glycol; 1,4-butanediol; polyurethanes; acrylic polymers; methacrylics; vinyl halide polymers such as polyvinyl chloride; polyvinyl alcohols; polyvinyl ethers such as polyvinyl methyl ether; polyvinylidene halides such as polyvinylidene fluoride and polyvinylidene chloride; polychlorofluoroethylene; polyacrylonitrile; polyaryletherketones; polyvinyl ketones; polyvinyl aromatics such as polystyrene; polyvinyl esters such as polyvinyl acetate; etheylene-methyl methacrylate copolymers; acrylonitrile-styrene copolymers; ABS resins; ethylene-vinyl acetate copolymers; alkyd resins; polycarbonates; polyoxymethylenes; polyphosphazine; epoxy resins; aramids; rayon; rayon-triacetate; spandex; silicones; and copolymers and combinations thereof.
  • In some embodiments, one or more elements of the curb systems described herein (e.g., curb, wall panel, etc.) comprise and/or are manufactured from ultra-high-molecular-weight polyethylene (UHMW), or high-modulus polyethylene as is it also known, which is a subset of thermoplastic polyethylene. UHMW is well-known in the art of plastics by having high impact strength and abrasion resistance (Stein, H. L., Ultra High Molecular Weight Polyethylene, Engineered Material Handbook, Vol. 2, 167-171 (1998); herein incorporated by reference in its entirety). UHMW is 15 times more resistant to abrasion than carbon steel and its coefficient of friction is significantly lower than that of nylon and acetyl. UHMW has superior abrasion resistance than Teflon. The combination of high impact strength, coefficient of friction, and abrasion resistance of UHMW makes well-suited for applications where lower molecular weight grades fail. UHMW has been used in medical devices, cables, wire, and fibers for personal armor, cut-resistant gloves, bow strings, fishing line, climbing gear, and industrial webbing. UHMW is both FDA and USDA approved for use in food processing and medical applications. UHMW cannot be transformed and molded by conventional plastic processing techniques such as injection molding, blow molding or thermoforming. Rod tubing and profiles of UHMW are typically created by compression molding or ram extrusion processing. During ram extrusion, UHMW powder is gravity fed into a chamber and a hydraulic ram pushes the powder from this chamber into a die. The die is the shape of the desired plastic, a certain diameter rod, a certain tube, or a profile shape. Heaters are employed on the outside of the die to heat the plastic and make it form into the shape of the die. The hydraulic ram moves back and forth continuously feeding the powder into the die. As the material comes out of the die, it travels the length of the conveyor after which it is cut to length. Ram extrusion does not shear the material that is being manufactured as does single screw extrusion which employs a rotating screw to move the material. It moves the material by hydraulically pushing it through the die which is the desired shape of the end product.
  • In some embodiments, curbs herein are shaped/formed by any suitable technique, such as ram extrusion, compression molding, gel spinning, sintering, 3D printing, etc. The curb may be formed into a profile configured for particular structural surfaces (e.g., vertical/horizontal, off-vertical/horizontal, vertical/off-horizontal, off-vertical/off-horizontal, corner, ramp, doorway, un-even surface, etc.). In some embodiments, any embodiments described herein for the junctions of orthogonal structures (e.g., vertical wall meeting a horizontal floor) will also find use in non-orthogonal junctions.
  • In some embodiments, curb systems herein comprise the filler material. In some embodiments, filler is any suitable material to fill the void between the curb and the structural surfaces, such as, for example, concrete, a concrete-filler mixture, a cement-filler mixture, a concrete-polymer mixture, industrial foams, polymers, insulation, plastics, and the like. In some embodiments, the filler material fills the cavity behind the curb, prevents damage to the curb, seals the area behind the curb, prevents infestation, prevents bacterial/mold growth, prevents water invasion, and/or structurally reinforces the structural surfaces and/or curb. Similarly, the interior and/or surface of walls, panels, doors, floors, etc. may comprise similar materials to the fillers above.
  • In some embodiments, the curb systems herein interact with floor/flooring materials (e.g., are adhered to). Suitable floor/flooring materials include, but are not limited to: ceramic (e.g., tile), wood, concrete, cement, glass, natural or synthetic stone, urethane, sheet vinyl, vinyl composite, rubber, laminate, linoleum, polyaspartics, epoxies, etc. In some embodiments, curb systems are tailored (e.g., appropriate adhesives/sealants/chemical welds are selected) to the floor/flooring material present.
  • In some embodiments, adhesives, glues, and/or sealants are provided in the systems herein to adhere two or more components together (e.g., curb to floor, curb to wall, filler to wall, filler to floor, etc.). In some embodiments, adhesives, glues, and/or sealants are provided in the systems herein to seal a gap between to components. Exemplary adhesives, glues, and/or sealants that find use in some embodiments herein include, but are not limited to: epoxies, silicone-based, cyanoacrylates, urethanes adhesives, acrylic adhesives, rubber cements, pressure sensitive adhesives, heat sensitive adhesives, thermosetting structural adhesives, UV-curing adhesives, acrylic, foam, latex sealants, polysulfide sealants, polyurethane sealants, etc. In some embodiments, the type of adhesives, glues, and/or sealants is selected based on the materials to be adhered/sealed and/or the desired characteristics of the adhesion/seal (e.g., strength, durability, lifetime, waterproof, bacteria/mold resistance, etc.).
  • In some embodiments, a chemical weld is provided in the systems herein to adhere two or more components together (e.g., curb to floor, curb to wall, filler to wall, filler to floor, etc. and/or to seal a gap between to components. Compared to glues and sealants, a chemical weld is a more permanent method for bonding two materials. Chemical welding involves the application of one or more materials (e.g., solvents, reactants, components, etc.) on a surface or between two surfaces; a chemical reaction within the applied materials and/or between the applied materials and the surfaces results in chemical bonding of the surfaces (e.g., to each other, to the weld materials, etc.). Exemplary chemical components of chemical weld systems that may find use in embodiments herein include, but are not limited to: an aromatic polyisocyanate such as 1,3-phenylenediisocyanate, 4,4′-diphenyldiisocyanate, 1,4-phenylenediisocyanate, 4,4′-diphenylmethanediisocyanate, 2,4-tolylenediisocyanate, 2,6-tolylenediisocyanate, 4,4′-toluidinediisocyanate, 2,4,6-triisocyanatetoluene, 1,3,5-triisocyanatebenzene, dianisidine diisocyanate, 4,4′-diphenyletherdiisocyanate, 4,4′,4″-triphenylmethanetriisocyanate or xylene diisocyanate; an aromatic polyisocyanate such as tri-methylene diisocyanate, tetra-methylene diisocyanate, hexa-methylene diisocyanate, penta-methylene diisocyanate 1,2-propylenediisocyanate, 2,3-butylenediisocyanate, 1,3-butalenediisocyanate, dodeca-methylene diisocyanate or 2,4,4-trimethylhexamethylenediisocyanate; an aliphatic polyisocyanate such as omega,omega-diisocyanate-1,3-dimethylbenzene, omega,omega-diisocyanate-1,4-dimethylbenzene, omega,omega-diisocyanate-1,4-diethylbenzene, 1,4-tetramethylxylylenediisocyanate, 1,3-tetramethylxylenediisocyanate; an alicyclic polyisocyanate such as 3-isocyanatemethyl-3,5,5-trimethylcyclohexylisocyanate, 1,3-cyclopentanediisocyanate, 1,3-cyclohexanediisocyanate, 1,4-cyclohexanediisocyanate, methyl-2,4-cyclohexanediisocyanate, methyl-2,6-cyclohexanediisocyanate, 4,4′-methylenebis(cyclohexylisocyanate) or 1,4-bis(isocyanatomethyl)cyclohexane; an aromatic dicarboxylic acid such as sigma-phthalic acid, isophthalic acid, terephthalic acid, 1,4-dimethylterephthalic acid, 1,3-dimethylisophthalic acid, 5-sulfo-1,3-dimethylisophthalic acid, 4,4-bidphenyldicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, norbornene dicarboxylic acid, diphenylmethane-4,4′-dicarboxylic acid or phenylindandicarboxylic acid; an aromatic dicarboxylic acid anhydride such as phthalic anhydride, 1,8-naphthalenedicarboxylic acid anhydride or 2,3-naphthalenedicarboxylic acid anhydride; an alicyclic dicarboxylic acid such as hexahydrophthalic acid; an alicyclic dicarboxylic acid anhydride such as hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride or 1,2-cyclohexanedicarboxylic acid anhydride; an aliphatic dicarboxylic acid such as oxalic acid, malonic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, suberic acid, maleic acid, chloromaleic acid, fumaric acid, dodecanoic acid, pimellic acid, citraconic acid, glutaric acid or itaconic acid; an epoxy group such as ethyleneglycoldiglycidylether, triglycidylether, trimethylolpropanetriglycidylether, N,N,N′,N′-tetraglycidylethylenediamine, or glycerin diglycidylether; an acid anhydride group such as pyromellitic anhydride, benzophenonetetracarboxylic acid dianhydride, biphenyltetracarboxylic acid dianhydride, oxydiphthalic acid dianhydride, diphenyl sulfone tetracarboxylic acid dianhydride, diphenyl sulfide tetracarboxylic acid dianhydride, butanetetracarboxylic acid dianhydride, perylene tetracarboxylic acid dianhydride, or naphthalenetetracarboxylic acid dianhydride; an aziridinyl group such as N,N′-toluene-2,4-bis(1-aziridinecarboxide), N,N′-diphenylmethane-4,4′-bis(1-aziridinecarboxide), triethylenemelamine, or tri-1-aziridinylphosphineoxide; an aliphatic diamine such as ethylenediamine or hexamethylenediamine; an alicyclic diamine such as 4,4′-diamino-3,3′-dimethyldicyclohexylmethane, 4,4′-diamino-3,3′-dimethyldicyclohexyl, diaminocyclohexane or isophoronediamine; or an aromatic diamine such as xylenediamine. Chemical welding agents that find use in embodiments herein may be others known in the field. Exemplary chemical weld systems are described, for example, in U.S. Pub No. 2016/0222263; U.S. Pub No. 2002/0114914, and U.S. Pat. No. 5,810,956; each of which is herein incorporated by reference in its entirety.
  • In some embodiments, one or more components of the curb systems herein comprise or exhibit antimicrobial (e.g., anti-mold, antibacterial) and/or antiseptic characteristics. In some embodiments, one or more materials of the curb systems herein comprise, are coated in, and/or are impregnated with an antimicrobial (e.g., anti-mold, antibacterial) and/or antiseptic agent. Suitable agents for rendering such materials antimicrobial (e.g., anti-mold, antibacterial) and/or antiseptic are understood in the field.
  • In some embodiments, one or more components of the curb systems herein comprise or exhibit waterproof and/or water resistant characteristics. In some embodiments, one or more materials of the curb systems herein comprise, are coated in, and/or are impregnated with a waterproof and/or water resistance agent. Suitable agents for rendering such materials waterproof and/or water resistant are understood in the field.
  • In some embodiments, the curbs and systems described herein find use in a variety of fields and facilities, including, but not limited to the meat processing industry, the fruit and vegetable industry, catering facilities, slaughter houses, the confectionary industry, retail shops, the fish processing industry, supermarkets, restaurants, the bakery industry, walk-in freezers, pharmaceutical manufacturing facilities, the dairy industry, logistics, hospitals, the beverage industry, etc.
  • Any publications or patents mentioned in the present application are herein incorporated by reference. Various modification and variation of the described methods, compositions, and system described herein will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention that are obvious to those skilled in the relevant fields are intended to be within the scope of the following claims.

Claims (30)

1. A device comprising a cross-sectional geometry comprising:
a vertical engagement segment comprising a vertical surface configured to contact a wall at a height above a floor and without contacting the floor;
an angled segment connected to a top end of the vertical engagement segment;
a horizontal engagement segment comprising a horizontal surface configured to contact the floor at a distance from the wall and without contacting the wall; and
a central segment connected to a bottom of the angled segment and one end of the horizontal engagement segment;
wherein, when the vertical surface of the vertical engagement segment is placed in contact with the wall and the horizontal surface of the horizontal engagement segment is placed in contact with the floor, the angled segment extends down from the top end of the vertical segment and away from the wall, and a cavity is formed between the device, the floor, and the wall.
2. (canceled)
3. The device of claim 1, wherein the central segment, the angled segment, the vertical engagement segment, and the horizontal engagement segment comprise a single piece of material.
4. (canceled)
5. The device of claim 1, wherein the internal angle between the vertical engagement segment and the central segment is 60° or less.
6. The device of claim 1, wherein an internal angle between the horizontal engagement segment and the central segment is 90° or less.
7. (canceled)
8. The device of claim 1, wherein the central segment comprises one or more bends or folds.
9. The device of claim 1, wherein one or more of the central segment, the angled segment, the vertical engagement segment, and the horizontal engagement segment comprise a locking segment that extends into the cavity formed between the device, the floor, and the wall.
10. (canceled)
11. The device of claim 1, wherein the device is composed of ultra-high-molecular-weight polyethylene (UHMW) or fiber reinforced plastic (FRP).
12. The device of claim 1, wherein the cross-sectional geometry extends the entire longitudinal length of the device.
13. (canceled)
14. The device of claim 1, wherein the vertical engagement segment is 1 to 3 inches in length, the horizontal engagement segment is 1 to 3 inches in length, and the central segment is 5 to 15 inches in length.
15. (canceled)
16. A system comprising: the device of claim 1, a wall, and a floor; wherein the vertical engagement segment is in contact with the wall at a height above a floor and without contacting the floor; wherein the horizontal engagement segment is in contact with the floor at a distance from the wall and without contacting the wall.
17. The system of claim 16, wherein the vertical engagement segment and the horizontal engagement segment are adhered to the wall and the floor, respectively, by an adhesive or chemical weld.
18. (canceled)
19. The system of claim 16, wherein the cavity formed between the device, the floor, and the wall is filled with a filler material.
20. (canceled)
21. The system of claim 19, wherein the cavity is filled along the entire longitudinal length of the device.
22. The system of claim 19, further comprising one or more anchors attached to the floor or wall and extending into the filled cavity.
23. (canceled)
24. The system of claim 16, wherein the wall comprises or is covered with a panel comprising a polymer or polymer composite material.
25. The system of claim 24, wherein the wall comprises or is covered with a panel comprising ultra-high-molecular-weight polyethylene (UHMW) or fiber reinforced plastic (FRP).
26. The system of claim 16 wherein the floor comprises concrete.
27. The system of claim 16 wherein the floor is covered with a urethane flooring material.
28. The system of claim 16 comprising multiple devices aligned longitudinally end-to-end.
29. (canceled)
30. The device of claim 1, wherein the central segment comprises a vertical segment and a bottom angled segment.
US15/851,266 2017-12-21 2017-12-21 Modular curbs Abandoned US20190194955A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/851,266 US20190194955A1 (en) 2017-12-21 2017-12-21 Modular curbs
CA3028396A CA3028396A1 (en) 2017-12-21 2018-12-21 Modular curbs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/851,266 US20190194955A1 (en) 2017-12-21 2017-12-21 Modular curbs

Publications (1)

Publication Number Publication Date
US20190194955A1 true US20190194955A1 (en) 2019-06-27

Family

ID=66948263

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/851,266 Abandoned US20190194955A1 (en) 2017-12-21 2017-12-21 Modular curbs

Country Status (2)

Country Link
US (1) US20190194955A1 (en)
CA (1) CA3028396A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110644729A (en) * 2019-07-03 2020-01-03 江苏多力精密机械有限公司 Building wall enhancement mode is filled moulding
JP7081863B1 (en) * 2021-12-02 2022-06-07 株式会社エービーシー商会 Partition wall structure and partition wall installation method

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1488090A (en) * 1922-03-02 1924-03-25 Charles Woodward Conduit baseboard
US2132400A (en) * 1936-12-05 1938-10-11 Curren Fabrihome Corp Electrical wiring system for buildings
US3062342A (en) * 1960-01-18 1962-11-06 Byron H Becker Combination baseboard and anchoring device for a floor covering
US3262083A (en) * 1965-10-08 1966-07-19 Johnson Plastic Corp Apparatus for electrical raceway and decorative moulding
US4196552A (en) * 1978-10-10 1980-04-08 Construction Specialties, Inc. Crash rail
US5024614A (en) * 1988-09-26 1991-06-18 Amp Incorporated Surface accessible wiring system and assembly
US5224610A (en) * 1991-08-01 1993-07-06 Veazey Robert M Three dimensional wall mounted striping system
US6625950B1 (en) * 1998-12-01 2003-09-30 Construction Specialties, Inc. Wall protection assemblies
US6786016B1 (en) * 2003-05-30 2004-09-07 Weldon B. Wood Baseboard and insect capturing assembly
US6837020B1 (en) * 2000-11-16 2005-01-04 Alsco Metals Corporation Architectural trim product and method of mounting
US6865849B1 (en) * 2002-01-24 2005-03-15 Crane Plastics Company Llc Top course molding
US20050262798A1 (en) * 2004-05-17 2005-12-01 Todd Pringle Window and door trim system
US20050284055A1 (en) * 2004-06-23 2005-12-29 Michel Piche Protective baseboard
US7089707B2 (en) * 2000-05-31 2006-08-15 Vent Rite Valve Corporation Radiator with cover and mounting board and method of installation
US7815392B2 (en) * 2008-11-09 2010-10-19 Keith Thomas Kwasny Curb system apparatus and method therefor
US20110179733A1 (en) * 2008-10-04 2011-07-28 Picken Heath D System and method for removably connecting trim to a wall or ceiling or both

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1488090A (en) * 1922-03-02 1924-03-25 Charles Woodward Conduit baseboard
US2132400A (en) * 1936-12-05 1938-10-11 Curren Fabrihome Corp Electrical wiring system for buildings
US3062342A (en) * 1960-01-18 1962-11-06 Byron H Becker Combination baseboard and anchoring device for a floor covering
US3262083A (en) * 1965-10-08 1966-07-19 Johnson Plastic Corp Apparatus for electrical raceway and decorative moulding
US4196552A (en) * 1978-10-10 1980-04-08 Construction Specialties, Inc. Crash rail
US5024614A (en) * 1988-09-26 1991-06-18 Amp Incorporated Surface accessible wiring system and assembly
US5224610A (en) * 1991-08-01 1993-07-06 Veazey Robert M Three dimensional wall mounted striping system
US6625950B1 (en) * 1998-12-01 2003-09-30 Construction Specialties, Inc. Wall protection assemblies
US7089707B2 (en) * 2000-05-31 2006-08-15 Vent Rite Valve Corporation Radiator with cover and mounting board and method of installation
US6837020B1 (en) * 2000-11-16 2005-01-04 Alsco Metals Corporation Architectural trim product and method of mounting
US6865849B1 (en) * 2002-01-24 2005-03-15 Crane Plastics Company Llc Top course molding
US6786016B1 (en) * 2003-05-30 2004-09-07 Weldon B. Wood Baseboard and insect capturing assembly
US20050262798A1 (en) * 2004-05-17 2005-12-01 Todd Pringle Window and door trim system
US20050284055A1 (en) * 2004-06-23 2005-12-29 Michel Piche Protective baseboard
US7404272B2 (en) * 2004-06-23 2008-07-29 Piche Michel Protective baseboard
US20110179733A1 (en) * 2008-10-04 2011-07-28 Picken Heath D System and method for removably connecting trim to a wall or ceiling or both
US7815392B2 (en) * 2008-11-09 2010-10-19 Keith Thomas Kwasny Curb system apparatus and method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110644729A (en) * 2019-07-03 2020-01-03 江苏多力精密机械有限公司 Building wall enhancement mode is filled moulding
JP7081863B1 (en) * 2021-12-02 2022-06-07 株式会社エービーシー商会 Partition wall structure and partition wall installation method

Also Published As

Publication number Publication date
CA3028396A1 (en) 2019-06-21

Similar Documents

Publication Publication Date Title
US20190194955A1 (en) Modular curbs
CA1324867C (en) Pultrusion/extrusion method and related articles
US5776582A (en) Load-bearing structures with interlockable edges
US20040009338A1 (en) Plastic rail system and other building products reinforced with polymer matrix composites
US20230279624A1 (en) Composite structural panel and method of fabrication
US11867344B2 (en) Composite insulation system
CA2615394A1 (en) Flexible brush seal
CA2549683C (en) Coated mining bolt
CN110281454A (en) Carrier and method with local fiber insertion piece
US20160159054A1 (en) Continuous fiber reinforced resin composite material and molded article thereof
NL2005845C2 (en) Structural material and method of manufacturing thereof.
US10344524B2 (en) Door frame
US10208177B2 (en) Fiber reinforced cellular PVC
EP2461960A1 (en) Manufacture and use of a reinforced profile
US20220250335A1 (en) Lightweight thermoplastic composite products and methods of making same
US20160362530A1 (en) Fiber reinforced material
CN114056715A (en) Reinforced tray structure suitable for wet and cold environment and manufacturing method thereof
US20200164602A1 (en) Induction Heating of Composite Parts
US20220259859A1 (en) Composite structure joining system and method and related structures
WO2019006449A1 (en) Pultruded telescoping arm device
KR20200045888A (en) Double extrusion pipe for construction
KR20200045885A (en) Extrusion pipe for construction
LV13401B (en) Technique for manufacturing of one-piece panels by means of polymer extrusion technology

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION