US20190170453A1 - Heat exchanger low pressure loss manifold - Google Patents

Heat exchanger low pressure loss manifold Download PDF

Info

Publication number
US20190170453A1
US20190170453A1 US16/185,136 US201816185136A US2019170453A1 US 20190170453 A1 US20190170453 A1 US 20190170453A1 US 201816185136 A US201816185136 A US 201816185136A US 2019170453 A1 US2019170453 A1 US 2019170453A1
Authority
US
United States
Prior art keywords
inlet
outlet
recited
heat exchanger
passages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/185,136
Other languages
English (en)
Inventor
Michael G. McCaffrey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Priority to US16/185,136 priority Critical patent/US20190170453A1/en
Publication of US20190170453A1 publication Critical patent/US20190170453A1/en
Assigned to RAYTHEON TECHNOLOGIES CORPORATION reassignment RAYTHEON TECHNOLOGIES CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: UNITED TECHNOLOGIES CORPORATION
Assigned to RAYTHEON TECHNOLOGIES CORPORATION reassignment RAYTHEON TECHNOLOGIES CORPORATION CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874. TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF ADDRESS. Assignors: UNITED TECHNOLOGIES CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0263Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by varying the geometry or cross-section of header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • F28F9/0268Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/029Other particular headers or end plates with increasing or decreasing cross-section, e.g. having conical shape

Definitions

  • a heat exchanger includes inlet structures that distribute flow from a circular conduit into one or many smaller flow passages.
  • High initial total pressure with the inlet manifold is desired to be maintained, with minimal loss, through the heat exchanger and out the exit manifold.
  • Flow Velocity within the relative large spaces provided by the manifold are relatively low compared to airflow velocities desired within the smaller flow passages where thermal transfer occurs.
  • Higher airflow velocities through the flow passages increase thermal transfer efficiencies.
  • Pressure losses between the conduit, manifold and the smaller flow passages can be substantial and reduce airflow velocity and thereby thermal transfer efficiencies.
  • the airflow expands into the larger space that generates further pressure losses.
  • the combined pressure losses at the inlet and the outlet reduce thermal efficiencies and require structurally larger heat exchangers to accommodate increased demands.
  • Turbine engine manufactures utilize heat exchangers throughout the engine to cool and condition airflow for cooling and other operational needs.
  • Turbine engine improvements have enabled increases in operational temperatures and pressures. The increases in temperatures and pressures improve engine efficiency but also increase demands on all engine components including heat exchangers.
  • Turbine engine manufacturers continue to seek further improvements to engine performance including improvements to thermal, transfer and propulsive efficiencies.
  • a heat exchanger in thermal contact with a cooling flow.
  • the plurality of flow passages include a first end and a second end.
  • An inlet manifold is at the first end of the plurality of flow passages.
  • the inlet manifold includes a plurality of independent splitter passages that communicate airflow to the first end of the plurality of flow passages.
  • An exhaust manifold is at the second end of the plurality of flow passages.
  • each of the plurality of splitter passages include a flow area between an inlet of the inlet manifold and an outlet of the inlet manifold into the first end of the plurality of passages that are the same.
  • a ratio between an area of the inlet and an area of the outlet of each of the plurality of splitter passages is between 1.5 and 5.
  • the inlet includes a circular shape in cross-section and is divided into passage inlets of equal area that correspond with each of the plurality of splitter passages.
  • each of the passage inlets are pie-shaped in cross-section.
  • each of the passage inlets are circular shaped in cross-section.
  • the outlet includes a rectangular shape in cross-section and is divided into passage outlets of equal area that correspond with the plurality of splitter passages.
  • each of the passage outlets is in communication with more than one of the plurality of flow passages.
  • each of the plurality of splitter passages includes a smooth curved passage without interruption between the inlet and the outlet.
  • the exhaust manifold includes an inlet portion at the second end of the plurality of flow passages and an outlet portion.
  • the exhaust manifold includes a plurality of exhaust passages defining separate flow passages between the inlet portion and the outlet portion.
  • the inlet portion is divided into a plurality of rectangular inlets corresponding with the second end of the plurality of flow passages.
  • each of the outlet portions includes a plurality of outlets having one of a pie-shaped cross-section and curvilinear shaped cross-section.
  • a method of forming a manifold for a heat exchanger includes creating a plurality of core sections that define a passageway between an inlet and an outlet. Each of the plurality of core sections define a common inlet area and outlet area for the passageway.
  • a mold cavity is defined to receive the core sections that defines an outer shape of the manifold.
  • the plurality of core sections is molded within the mold cavity to encase the core sections within a casting material. The core sections are removed from the casting material.
  • each of the core sections defines an area ratio between the inlet and the outlet of between 1.5 and 5.
  • the core sections define the inlet as one of a pie-shaped and a curvilinear shape in cross-section.
  • each of the core sections define a smooth curved passage without interruption between the inlet and the outlet.
  • the plurality of core sections together define a circular inlet in cross-section.
  • the core defines a substantially rectangular outlet in cross-section.
  • FIG. 1 is a schematic view of an example heat exchanger embodiment.
  • FIG. 2 is a perspective view of an example plate of the example heat exchanger.
  • FIG. 3 is a perspective view of an example intake manifold embodiment.
  • FIG. 4 is a schematic cross section of a passage of the example intake manifold.
  • FIG. 5 is a schematic view of an outlet for the example intake manifold.
  • FIG. 6 is a schematic view of an inlet passage for the example intake manifold.
  • FIG. 7 is a schematic view of an example exhaust manifold.
  • FIG. 8 is a cross-sectional view of an inlet for the example heat exchanger.
  • FIG. 9 is a cross-sectional view of an example outlet for the example heat exchanger.
  • FIG. 10 is a cross-sectional view of another embodiment of an example inlet for the heat exchanger.
  • FIG. 11 is a cross-sectional view of yet another example embodiment of an intake for the example intake manifold.
  • FIG. 12 is perspective view of another example intake manifold embodiment.
  • FIG. 13 is a perspective view of an outlet for the example intake manifold of FIG. 12 .
  • FIG. 14 is a schematic view of a method of creating and casting an example intake manifold according to the disclosed embodiments.
  • a disclosed heat exchanger 10 includes an intake manifold 12 and an exhaust manifold 14 .
  • the intake manifold 12 is disposed on a first end 32 of a plurality of plates 16 with a limited number identified in FIG. 1 .
  • the exhaust manifold 14 is disposed on a second end 34 of the plurality of plates 16 .
  • the intake manifold 12 defines an inlet 26 that communicates a first flow 22 to the first end 32 of the plates 16 .
  • Each of the plates 16 includes a first flow passage 18 between the first end 32 and the second end 34 .
  • the plates 16 also define a second flow path 20 for cooling airflow.
  • the second flow path 20 is comprised of a plurality of fins 30 that extend upward from an outer surface of each of the plates 16 .
  • Airflow 22 through the first flow passage 18 is placed in thermal contact with the cooling airflow 24 through the second flow path 20 .
  • the disclosed example plate 16 comprises a single unitary part that provides for thermal communication between the inlet flow 22 and the cooling airflow 24 . It should be understood that it is within the contemplation of this disclosure that other plate configurations or other heat exchanger configurations could be utilized, benefit from this disclosure, and are within the contemplation of this disclosure.
  • the airflow 22 is of a hotter temperature and flows through the first flow passage 18 defined by the plate 16 . Cooled flow 36 exits through the exhaust manifold outlet 28 .
  • Both the intake manifold 12 and the exhaust manifold 14 includes a plurality of separate splitter passages 38 defined within a housing 52 between an inlet that receives flow and an outlet that distributes a flow to the plurality of flow passages 18 .
  • the exhaust manifold receives airflow from the first flow passage 18 defined within the plates 16 and transitions that flow into the circular outlet 28 .
  • the inlet flow 22 flows through a substantially circular inlet and is divided evenly to provide a smooth uniform flow path to each of the first flow passages 18 . It should be understood that although the intake manifold 12 is described by way of example in this disclosure, that the same features are also applicable to the exhaust manifold 14 .
  • the example intake manifold 12 includes the inlet 26 and an outlet 40 .
  • the outlet 40 distributes airflow to a plurality of first ends 32 of a corresponding plurality of the plates 16 .
  • the splitter passages 38 define a flow path between the inlet 26 and the outlet 40 .
  • the splitter passages 38 include smooth curved walls 50 reduce disruptions that may create turbulence and inefficient airflows.
  • Each of the splitter passages 38 include smooth walls 50 along the curved passage without interruption between the inlet 26 and outlet 40 . It should be understood, that surface treatments and/or surface features 55 may be added to the smooth walls 50 , to assist the turning of the flow, within the passage 38 .
  • the smooth walls 50 may include surface features 55 that assist in turning of flow within the passage 38 .
  • the surface features 55 may include vortex generating structures such as dimples and local areas of increased roughness relative to the smooth walls 50 .
  • the surface features 55 can be utilized in regions of where flow might separate from the walls 50 and cause aerodynamic disturbances that reduce flowrate.
  • the inlet 26 is divided into a plurality of inlet portions 42 that include a cross sectional area 46 .
  • the outlet 40 is divided into a plurality of outlet portions 44 that include an area 48 .
  • a ratio between the inlet area 46 and the outlet area 48 is within a range between 1.5 and 5.
  • Each of the inlet portions 42 are of an equal area and disposed within the cross section of the inlet 26 .
  • the disclosed exhaust manifold 14 is substantially the same as the intake manifold 12 except reversed such that airflow exiting through second ends 34 of the plurality of plates 16 enters a rectangular inlet portion 30 and exits through the circular outlet 28 .
  • the exhaust manifold 14 includes exhaust passages 56 that like passages 38 are of an equal flow area from the inlet portion 30 to the outlet 28 .
  • the inlet portion 30 is divided into a plurality of rectangular inlets 54 .
  • the outlet 28 is divided into a plurality of outlet portions 58 having a pie-shaped cross-section.
  • the outlet portions 58 may also be of other curvilinear shapes in cross-section corresponding to each of the exhaust passages 56 .
  • the example inlet 26 is a circular shape in cross section and is subdivided into six separate inlet portions 42 .
  • Each of the inlet portions 42 are of a substantially equal area and communicate independently with a corresponding passage 38 .
  • each of the inlet portions 42 are substantially pie shaped in cross section and subdivide the circular cross section 26 of the inlet into six separate inlet portions 42 that communicate with different corresponding splitter passages 38 .
  • the example outlet 40 includes a plurality of outlet portions 44 that are substantially rectangular.
  • the rectangular orientation and cross sectional shape matches the inlet shape for the plate 16 .
  • other shapes of the outlet openings 44 could be utilized to correspond with shapes of the inlets to each of the plates 16 .
  • each of the outlet portions 44 correspond with in at least one or several of the flow passages 18 .
  • FIG. 10 another example inlet 25 is shown and includes a plurality of inlet portions 41 .
  • the inlet 25 includes a circular cross section and includes a plurality of subdivided inlet portions 41 .
  • Each of the inlet portions 41 is a curvilinear shape that includes an irregularly curved shape. The different curvilinear shapes are provided to fit within the circular cross section of the inlet 25 .
  • example inlet portions 41 are schematically shown, other regular and irregularly shaped inlet portions 41 could be utilizes and are within the contemplation of this disclosure.
  • the inlet portions 41 are substantially identical in area while not identical in shape and provide smoothed shape to transition into each corresponding splitter passages 38 .
  • another example inlet 27 is and is substantially circular and divided into rectangular inlet portions 43 .
  • Each of the rectangular inlet portions 43 correspond with one of the corresponding splitter passages 38 .
  • FIGS. 12 and 13 another example intake manifold 60 is shown and includes an inlet 62 that is subdivided into different inlet portions 66 .
  • the manifold 60 includes a housing 68 that defines a plurality of separate passages 74 that extend from the inlet 62 to the outlet 64 .
  • the passages 74 define a single unitary smoothly curved passage that reduces pressure losses.
  • the inlet 62 includes separate inlet portions 66 and the outlet 64 includes separate outlet portions 72 .
  • the example housing 68 including the inlet 62 and the outlet 64 is a single unitary structure without seams or joints between different portions.
  • the outlet 64 includes flanges 70 .
  • the flanges 70 are attached to the intake manifold 60 and enable securement to the plates 16 or to supporting structures utilized to support the heat exchanger 60 in operation.
  • the flanges 70 are shown as a separate feature from the housing 68 , but also may be an integrally formed as a portion of the housing 68 .
  • a method of creating one of the disclosed manifolds 12 , 14 and 60 includes a casting operation where a core assembly 76 is utilized to define each of the individual flow splitter passages 38 ( FIG. 4 ).
  • the core assembly 76 includes a plurality of passage defining structures 78 a - e .
  • Each of the passage defining structures 78 a - e includes an inlet portion 80 a - e and an outlet portion 82 a - e.
  • the core assembly 76 is inserted into a mold 84 that defines a cavity 86 .
  • the cavity 86 defines outer surface features of a completed intake manifold.
  • a casting material 88 is injected into the mold 84 and filled around the core assembly 76 to define the completed part.
  • the cast part is then removed from the mold 84 .
  • the core assembly 76 is than removed according to known procedure and processes to provide a completed intake manifold 90 . Additional finishing steps may be required to finalize the intake manifold 90 such as for example, polishing, machining, coating and other finishing processes as are known. Additionally, flange 70 may be added if not part of the cast manifold 90 .
  • the example disclosed manifolds includes features to limit pressure losses and improve thermal transfer efficiencies. Moreover, each of the manifold includes features that enable airflow velocities to be increased to improve thermal transfer efficiencies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
US16/185,136 2017-12-01 2018-11-09 Heat exchanger low pressure loss manifold Abandoned US20190170453A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/185,136 US20190170453A1 (en) 2017-12-01 2018-11-09 Heat exchanger low pressure loss manifold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762593413P 2017-12-01 2017-12-01
US16/185,136 US20190170453A1 (en) 2017-12-01 2018-11-09 Heat exchanger low pressure loss manifold

Publications (1)

Publication Number Publication Date
US20190170453A1 true US20190170453A1 (en) 2019-06-06

Family

ID=64572250

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/185,136 Abandoned US20190170453A1 (en) 2017-12-01 2018-11-09 Heat exchanger low pressure loss manifold

Country Status (2)

Country Link
US (1) US20190170453A1 (de)
EP (1) EP3492858B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10545001B2 (en) * 2016-01-21 2020-01-28 Hamilton Sundstrand Corporation Heat exchanger with adjacent inlets and outlets
EP3992565B1 (de) * 2020-10-28 2024-03-13 B/E Aerospace, Inc. Verteiler eines wärmetauschers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US673767A (en) * 1900-04-10 1901-05-07 Mary J Eycleshymer Steam-radiator.
US5894649A (en) * 1997-08-28 1999-04-20 Transpro, Inc. Heat exchanger assembly utilizing grommets and integral cast tanks
JP2005077012A (ja) * 2003-09-01 2005-03-24 Nissan Motor Co Ltd ラジエータ
DE102008006474A1 (de) * 2008-01-29 2009-07-30 Modine Manufacturing Co., Racine Wärmetauscher
JP2011133198A (ja) * 2009-12-25 2011-07-07 Tokyo Radiator Mfg Co Ltd 車両用インタークーラ
US20170146305A1 (en) * 2015-11-24 2017-05-25 Hamilton Sundstrand Corporation Header for heat exchanger
US20170211896A1 (en) * 2016-01-21 2017-07-27 Hamilton Sundstrand Corporation Heat exchanger with center manifold

Also Published As

Publication number Publication date
EP3492858B1 (de) 2022-02-16
EP3492858A1 (de) 2019-06-05

Similar Documents

Publication Publication Date Title
EP3499170B1 (de) Wärmetauschereinlauf
US8727714B2 (en) Method of forming a multi-panel outer wall of a component for use in a gas turbine engine
US20190170445A1 (en) High temperature plate fin heat exchanger
US7621719B2 (en) Multiple cooling schemes for turbine blade outer air seal
EP3199761B1 (de) Gekühlte wand eines turbinenbauteils und verfahren zur kühlung dieser wand
US8870537B2 (en) Near-wall serpentine cooled turbine airfoil
US20190310030A1 (en) Heat augmentation features in a cast heat exchanger
US6416275B1 (en) Recessed impingement insert metering plate for gas turbine nozzles
US10962306B2 (en) Shaped leading edge of cast plate fin heat exchanger
US5813827A (en) Apparatus for cooling a gas turbine airfoil
US5577884A (en) Structure for a stationary cooled turbine vane
US11079181B2 (en) Cast plate heat exchanger with tapered walls
US20190170453A1 (en) Heat exchanger low pressure loss manifold
US8002521B2 (en) Flow machine
US20050042096A1 (en) Thermally loaded component
US20190277580A1 (en) Segmented fins for a cast heat exchanger
US11209224B2 (en) Mixing between flow channels of cast plate heat exchanger
AU2019339973B2 (en) Stator assembly, motor having same and wind power generator set
JP2001521599A (ja) タービン翼、その用途ならびにタービン翼の冷却方法
US8402764B1 (en) Transition duct with spiral cooling channels
US11187088B2 (en) Turbomachine vane, including deflectors in an inner cooling cavity
CA2258206C (en) Configuration of cooling channels for cooling the trailing edge of gas turbine vanes
KR100528628B1 (ko) 가스터빈베인의트레일링에지를냉각시키기위한냉각채널의구조

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:054062/0001

Effective date: 20200403

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: RAYTHEON TECHNOLOGIES CORPORATION, CONNECTICUT

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874. TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF ADDRESS;ASSIGNOR:UNITED TECHNOLOGIES CORPORATION;REEL/FRAME:055659/0001

Effective date: 20200403

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION