US20190142642A1 - Detecting microbial infections in wounds - Google Patents

Detecting microbial infections in wounds Download PDF

Info

Publication number
US20190142642A1
US20190142642A1 US16/090,045 US201716090045A US2019142642A1 US 20190142642 A1 US20190142642 A1 US 20190142642A1 US 201716090045 A US201716090045 A US 201716090045A US 2019142642 A1 US2019142642 A1 US 2019142642A1
Authority
US
United States
Prior art keywords
wound
reagents
reagent
enzyme
indicator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/090,045
Inventor
Michael Burnet
Philip Bowler
Sarah Wroe
Jade STEVEN
Daniel Gary Metcalf
David Parsons
Lucy Ballamy
Andrea HEINZLE
Eva Sigl
Daniel Luschnig
Clemens GAMERITH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualizyme Diagnostics GmbH and Co KG
Synovo GmbH
Convatec Technologies Inc
Original Assignee
Qualizyme Diagnostics GmbH and Co KG
Synovo GmbH
Convatec Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualizyme Diagnostics GmbH and Co KG, Synovo GmbH, Convatec Technologies Inc filed Critical Qualizyme Diagnostics GmbH and Co KG
Priority to US16/090,045 priority Critical patent/US20190142642A1/en
Publication of US20190142642A1 publication Critical patent/US20190142642A1/en
Assigned to SYNOVO GMBH, QUALIZYME DIAGNOSTICS GMBH AND COKG, CONVATEC TECHNOLOGIES INC. reassignment SYNOVO GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BURNET, MICHAEL, GAMERITH, Clemens, HEINZLE, Andrea, LUSCHNIG, DANIEL, SIGL, Eva, BALLAMY, Lucy, PARSONS, DAVID, STEVEN, Jade, WROE, Sarah, BOWLER, PHILIP, METCALF, DANIEL GARY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/00051Accessories for dressings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/44Detecting, measuring or recording for evaluating the integumentary system, e.g. skin, hair or nails
    • A61B5/441Skin evaluation, e.g. for skin disorder diagnosis
    • A61B5/445Evaluating skin irritation or skin trauma, e.g. rash, eczema, wound, bed sore
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive plasters or dressings
    • A61F13/0203Adhesive plasters or dressings having a fluid handling member
    • A61F13/0213Adhesive plasters or dressings having a fluid handling member the fluid handling member being a layer of hydrocoloid, gel forming material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/38Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/56Wetness-indicators or colourants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/573Immunoassay; Biospecific binding assay; Materials therefor for enzymes or isoenzymes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00365Plasters use
    • A61F2013/00429Plasters use for conducting tests
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F2013/00361Plasters
    • A61F2013/00902Plasters containing means
    • A61F2013/0094Plasters containing means for sensing physical parameters
    • A61F2013/00965Plasters containing means for sensing physical parameters microbiological activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/84Accessories, not otherwise provided for, for absorbent pads
    • A61F2013/8473Accessories, not otherwise provided for, for absorbent pads for diagnostic purposes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase

Definitions

  • Embodiments described herein generally relate to wound healing, and in particular to compositions, apparatuses and methods for the detection and treatment of wounds.
  • Wound healing is a complex dynamic process that results in the restoration of anatomic continuity and function: an ideally healed wound is one that has returned to normal anatomic structure, function, and appearance.
  • the inflammatory phase is particularly important to the wound healing process, wherein biochemical reactions at the wound situs facilitate healing but also cause tissue breakdown due to production of excess proteases.
  • pathogens in a wound can produce toxins (e.g., Clostridium species), generate noxious metabolites like ammonia that raise pH (e.g., Proteus species), activate or produce tissue lytic enzymes like proteases, or promote tissue invasion, thereby leading to an increase in the size or seriousness of the wound. In a worst case, pathogens can leave the wound and cause sepsis.
  • toxins e.g., Clostridium species
  • generate noxious metabolites like ammonia that raise pH e.g., Proteus species
  • activate or produce tissue lytic enzymes like proteases
  • promote tissue invasion thereby leading to an increase in the size or seriousness of the wound.
  • pathogens can leave the wound and cause sepsis.
  • a variety of assessment techniques and/or tools are employed in the clinical and veterinary setting.
  • Current methods of assessing an infected wound are based primarily on assaying for a variety of parameters associated with the wound. For instance, a wound may be assessed visually, length and depth measurements may be taken, digital photography may be used where available to track the visual condition and size of a wound (Krasner et al., supra).
  • diagnosis of infection is based on measurement of secondary parameters, such as, odor, presence of local pain, heat, swelling, discharge, and redness. Many of these clinical indicators, such as inflammation and discharge have a low predictive value of infection in wounds.
  • the number(s) and type(s) of pathogenic flora at the wound situs may be determined using laboratory and/or clinical diagnostic procedures. Swabbing of a wound followed by microbiology testing in the hospital laboratory is an option for confirmation of bacterial colonization and identification of the strains associated with infection, thus allowing for the prescription of correct antibiotic course.
  • this process is time consuming and labor intensive. Delay in diagnosis of infection can delay the administration of antibiotics and may increase the risk of developing sepsis.
  • the technology disclosed herein provides for compositions and methods of detecting infected and/or chronic wounds.
  • the disclosed technology improves upon exiting assays by: increasing the sensitivity, precision and specificity of detection of infected wounds; providing for the ability of qualitative and quantitative measurements; and, increasing the speed of detection of infected wounds in situ and in real-time.
  • the assays and methods described herein are partly based on the use of specific reagents that detect biomarkers and/or probes which are present in infected or chronic wounds.
  • the detection process may involve use of reagents that are specific to the markers present in infected wounds but not non-infected or non-chronic wounds and the detection step may involve qualitative or quantitative measurements of the signal(s) that are generated when the probe is acted upon by the marker.
  • the probes comprise modified enzyme substrates that are specific to the enzyme, which generate signals that may be optionally amplified. This greatly improves efficiency and specificity of detection.
  • a plurality of detection probes, each specific for one or more targets, e.g., enzymes that are specific to the wounds, may be employed.
  • the experimental results disclosed herein confirm that the novel probes and the assay techniques based thereon are capable of detecting and characterizing various types of wounds.
  • the reagents of the disclosed technology may be used together with therapeutic molecules such as antibiotics, antifungal agents, etc. to monitor and evaluate treatment and management of chronic wounds.
  • Embodiments described herein are based, in part, on the discovery that cells of the immune system, including enzymes generated thereby, may serve as markers in the early diagnosis of wounds. These cells, e.g., neutrophils, are recruited at the wound situs to combat infection, do so by engulfing bacteria (and other pathogens) and/or neutralizing them with enzymes.
  • Some enzymes are specific towards proteins (e.g., elastase, cathepsin G), others are specific towards cell wall components (e.g., lysozyme) and yet others mediate protein denaturation (e.g., NADPH oxidase, xanthine oxidase, myeloperoxidase (MPO) and other peroxidases).
  • proteins e.g., elastase, cathepsin G
  • cell wall components e.g., lysozyme
  • mediate protein denaturation e.g., NADPH oxidase, xanthine oxidase, myeloperoxidase (MPO) and other peroxidases.
  • MPO myeloperoxidase
  • neutrophils are generally only short-lived and when they lyse in the area of the infection, they release the contents of their lysosomes including the enzymes, which can then be
  • various embodiments described herein utilize the detection of enzyme markers, which are indicative of the presence of myeloid cells, and neutrophils in particular, in a biological sample of interest, for example, wound tissue. Increased level or activity of such enzymes in the wound fluid, therefore, corresponds to a heightened bacterial challenge and a manifestation of disturbed host/bacteria equilibrium in favor of the invasive bacteria.
  • a wound dressing comprising a wound contacting layer, a reagent layer comprising one or more testing regions, wherein the reagent layer is in fluid communication with the wound contacting layer, and an outer layer that overlays the reagent layer.
  • the wound contacting layer comprises gel-forming polymers.
  • each of the one or more testing regions comprises one or more of each of: back-flow trap, reagent pad, filter pad, indicator trap, and absorbent area, wherein one or more viewing windows are located either above the reagent pad or the indicator trap.
  • the reagent pad is in fluid communication with the filter pad; the filter pad is in fluid communication with the indicator trap; and the indicator trap is in fluid communication with the absorbent area.
  • one or more testing regions comprises one or more reagents selected from the group consisting of enzyme-reactive indicators, reagents that are sources of peroxide, enzymes that produce colored products, pH indicators, protein responsive reagents, and moisture-detecting reagents.
  • the enzyme-reactive indicators include protein-indicator conjugates printed, sprayed, or otherwise deposited in or on the reagent pad.
  • the protein-indicator conjugate has the structure of Formula (I): A-B, wherein A is an anchor region or moiety that helps to bind an enzyme-reactive region to the reagent pad, and B is the enzyme-reactive region.
  • the enzyme-reactive region comprises a peptide and/or an indicator region.
  • the wound dressing comprises an indicator region that after having been cleaved by the target enzyme in a sample is further transformed into a colored species by accessory enzymes selected from a lipase, esterase, hexosaminidase, peroxidase, oxidase, galactosidase, glycosidase, glucosidase, and laccase, or a combination of two or more thereof.
  • the enzyme-reactive indicators interact with elastase, lysozyme, cathepsin G, myeloperoxidase, or any combination thereof.
  • the enzyme-reactive indicators comprise a moiety capable of producing a visible color or a detectable electronic change upon interaction of the enzyme-labile or enzyme-reactive region with one or more enzymes, wherein the moiety is selected from the group consisting of a peroxidase substrate, arylamine, an amino phenol, a neutral dye, a charged dye, a nanoparticle, a colloidal gold particle, or an analog thereof.
  • the anchor region can be attached to the reagent pad covalently, non-covalently, or ionically.
  • pH-sensitive reagents produce a visible color comprise bromothymol blue, phenol red, bromophenol red, chlorophenol red, thymol blue, bromocresol green, bromocresol purple; nitrazine yellow; or other sulfophthalein dyes.
  • the wound dressing also comprises one or more lines of wicking stitching or wicking tufting throughout all layers of the wound dressing except the outer layer, wherein the wicking stitching or wicking tufting provides fluid communication between the reagent layer and the wound contacting layer.
  • Fibers that are wettable and exhibit capillary action may be used for wicking stitching or wicking tufting to form fluid communication between a sample or a wound and the reagents.
  • the wicking fibers are solid or hollow. Examples of wicking fibers include, but are not limited to, cotton, rayon, viscose, wool, silk, polyester, polyamide, CMC, and polypropylene.
  • the wound dressing comprises one or more testing regions, comprising a leach-back trap in fluid communication with the reagent pad and one or more lines of wicking stitching or wicking tufting crossing through one or more testing regions only at the leach-back trap.
  • a foam layer is added between the wound contacting layer and the reagent layer.
  • One or more perforations can be added in the wound contacting layer or in the foam layer and the wound contacting layer.
  • each of the one or more testing regions further comprises a leach-back trap in fluid communication with the reagent pad and one or more perforations aligned with the leach-back trap.
  • the testing regions comprise a multichannel testing region, wherein each channel within the multichannel testing region is separated from an adjacent channel by one or more impermeable separators or borders.
  • Such multichannel testing regions can comprise 1 to 10 testing regions, preferably 3, 4, or 5 testing regions, wherein the testing regions are arranged in a linear or a radial configuration.
  • Arrays of multichannel testing regions can be combined to cover a broader area of a wound or wound dressing.
  • the outer layer of the wound dressing comprises one or more windows that permit visualization of a signal from the reagent layer, wherein the signal is a color change.
  • Such wound dressing or device provides a method of detecting the level of one or more enzymes in a mammalian wound, comprising contacting the mammalian wound with the wound dressing; observing one or more signals in the reagent layer, wherein the signal is a color change; and comparing the signal to a reference or control to determine the level of an enzyme.
  • the wound dressing can be used to detect the presence of one or more enzymes and/or pH in a mammalian wound, comprising contacting the mammalian wound with the wound dressing and observing one or more signals in the reagent layer, wherein the signal is a color change.
  • the wound dressing can be used to treat an infection in a wound of a mammal or to determine when such treatment is necessary, comprising contacting the wound with a wound dressing described herein, observing one or more signals in the reagent layer, wherein the signal is a color change and indicates the presence of an infection, and administering a medical treatment to the mammal.
  • a device for detecting an infection in a wound comprises a wound contacting layer, a reaction layer comprising one or more reagents that can indicate the presence of one or more analytes associated with an infection, wherein the reagents are affixed to a solid phase and produce a detectable signal in a reporter area, a cover on top of the reaction layer, wherein the cover comprises one or more windows or clear areas to allow visualization of the detectable signal, such as a color change, and fluid communication between the wound contacting layer and the reaction layer.
  • Reagents include enzyme-reactive indicators that interact with one or more enzymes selected from the group consisting of lysozyme, MPO, cathepsin G, elastase, catalase, lipase, esterase, and any combination thereof, at least one indicator for pH or a change in pH, wherein the indicators may be printed, sprayed, or deposited on a solid phase or support material, including paper, viscose, regenerated cellulose, glass fiber, or similar materials.
  • enzymes selected from the group consisting of lysozyme, MPO, cathepsin G, elastase, catalase, lipase, esterase, and any combination thereof, at least one indicator for pH or a change in pH, wherein the indicators may be printed, sprayed, or deposited on a solid phase or support material, including paper, viscose, regenerated cellulose, glass fiber, or similar materials.
  • the enzyme-reactive indicators comprise a moiety capable of producing a visible color or a detectable electronic change upon interaction of the enzyme-labile or enzyme-reactive region with one or more enzymes, wherein the moiety is selected from the group consisting of a peroxidase substrate, arylamine, an amino phenol, a neutral dye, a charged dye, a nanoparticle, a colloidal gold particle, and an analog thereof.
  • the device comprises wicking stitching or wicking tufting of an absorbent material to form fluid communication between the wound contacting layer and the reaction layer.
  • a device for detection of infection associated enzymes that is provided as an independent entity and can be placed into any dressing or bandage system, comprising a sample inlet in fluid communication with reagent cells, wherein reagent cells comprise indicators for sample delivery and/or pH change, which can be one and the same, and one or more indicators for biomarkers of an infection, including lysozyme, MPO, cathepsin G, elastase, catalase, lipase, esterase, and any combination thereof.
  • the fluid communication comprises at least one indicator channel, lane, or arm, such as one to ten indicator channels, or one, two, three, four, five, six, seven, eight, nine, or ten separate indicator channels, wherein the indicators are printed, sprayed, or deposited in a reaction area or field on a carrier material or solid phase and arranged in a radial configuration to form a disk, and wherein the reaction areas or fields are separated by impermeable separators or lanes.
  • the carrier material may comprise a non-woven material.
  • the disk comprises reagents printed, sprayed, or deposited on the top surface of the disk with a trap material and a substrate material on the bottom surface, wherein the substrate can be digested by one or more enzymes in the sample to release one or more products that migrate towards the trap.
  • one or more products are colored or produce a color change capable of being visualized on the top surface of the disk.
  • a diagnostic disk for detecting an infection in a wound comprises a reaction layer comprising one or more reagents that interact with an enzyme indicative of an infection, wherein the reagents are affixed to a solid phase; each reagent is sprayed, printed, or deposited in a reagent area separated by impermeable separators; each lane comprises a reporter area wherein a color change can be observed; and a cover comprising a window for visualizing the color change in the reported area.
  • the diagnostic disk may further comprise at least one reagent that produces a color change in response to a change in pH.
  • each lane contains a different indicator/reagent
  • the reagents include indicators as described above, namely, reagents that interact with lysozyme, MPO, cathepsin G, elastase, catalase, lipase, or esterase.
  • the diagnostic disk comprises a solid phase material selected from the group consisting of paper, viscose, regenerated cellulose, glass fiber, and similar material.
  • the disk is attached to a non-woven carrier in a wound dressing, wherein means for such attachment include, but are not limited to, a continuous adhesive, ring or annular adhesive, welding with UV printed border, and welding with a polyethylene component or the non-woven carrier.
  • the reagents described herein may be applied to form a lateral flow or dipstick device for detecting an infection in a wound, comprising one or more reagent disks arranged in a linear configuration, wherein each reagent disk is impregnated with a reagent that interacts with an enzyme to produce a color change or a similar detectable signal, wherein one of the disks produces a color change based on pH, and wherein the disks are affixed to a solid phase comprising paper, viscose, regenerated cellulose, glass fiber, or similar materials.
  • Reagents include enzyme-reactive indicators that produce a color signal in the presence of lysozyme, MPO, cathepsin G, elastase, catalase, lipase, or esterase.
  • each disk is separated by an impermeable border or lane.
  • a standalone device for detecting an infection in a wound or a sample comprises a housing, comprising: a sampling component for collecting the sample; a sample preparation chamber in fluid communication with a reaction chamber, wherein the sample preparation chamber receives the sample; the reaction chamber comprising one or more reaction cells containing reagents that interact with one or more enzymes in the sample to indicate the presence of an infection and/or pH of the sample; and a window or a clear area for visualizing a detectable signal, wherein the signal is a color change or an electronic output.
  • One or more reagents interact with an enzyme selected from the group consisting of lysozyme, MPO, cathepsin G, elastase, catalase, lipase, and esterase to produce a detectable signal, wherein the signal is a color change.
  • an enzyme selected from the group consisting of lysozyme, MPO, cathepsin G, elastase, catalase, lipase, and esterase to produce a detectable signal, wherein the signal is a color change.
  • One or more regents produce a color change in response to a change in pH, a basic pH, or an acidic pH.
  • the reagents perform the reactions in a primarily liquid medium, wherein the reagents may be provided in tablet form for use in the reaction cells.
  • the reagents may be printed, sprayed, or deposited in separate reagent fields on a support material to form a panel of tests, such as a testing strip, for use in the reaction chamber.
  • Support materials include paper, viscose, regenerated cellulose, and glass fiber.
  • Reagent fields can be arrayed in a line along a plastic or paper carrier strip, which is capable of absorbing the sample in the reaction chamber, allowing the sample to interact with the reagents in the reaction chamber.
  • the sampling component comprises a swab device, or a hook or needle device adapted to removing a sampling thread from a wound dressing to sample the wound fluid without disturbing the dressing.
  • a kit for detecting an infection in a sample comprises a sampling component for collecting the sample; a test device comprising a housing surrounding a tube to define an opening in the housing for receiving the sampling component, the housing comprising: a diluent chamber that holds a liquid diluent; a reaction well in liquid communication with the tube or the sample, the reaction well holding one or more reagents that interacts with one or more analytes to produce a color change or similar detectable signal; a viewing window or reporter area wherein the color change or similar detectable signal can be observed; and wherein the liquid diluent flows from the sample component into the reaction well to mix the sample with the reagents in the reaction well.
  • the reagents comprise one or more enzyme-reactive indicators and/or pH indicator, as described above.
  • the sample may be obtained from a wound, a wound dressing, or a surgical site.
  • the sampling component is a swab device or a hook or needle device.
  • the reagents can be provided in tablet form, which are dissolved upon contacting the liquid diluent and the sample.
  • the reagents can also be deposited in separate fields on a testing strip to form a panel of tests, which can be applied in the reaction wells.
  • the reagents are provided in liquid form for use in the reaction wells.
  • the number of reaction wells is based upon the number of analytes to be analyzed, ranging from one to ten, including indicators that produce a detectable signal in response to pH or the presence of one of the following enzymes: lysozyme, MPO, cathepsin G, elastase, catalase, lipase, and esterase.
  • the reaction wells can be arranged in various configurations, including a linear or a radial configuration.
  • a wound dressing comprising: a wound contacting layer; a reagent layer comprising one or more testing regions, wherein the reagent layer is in fluid communication with the wound contacting layer; and an outer layer that overlays the reagent layer.
  • a wound dressing wherein each of the one or more testing regions comprises one or more of each of a back-flow trap, a reagent pad, a filter pad, an indicator trap, and an absorbent area, and wherein one or more viewing windows are located either above the reagent pad or the indicator trap.
  • a method of detecting the level of one or more enzymes in a mammalian wound comprising: contacting the mammalian wound with a wound dressing; observing one or more signals in the reagent layer, wherein the signal is a color change, a fluorescent signal, a luminescent signal, or an electrical change; and comparing the signal to a reference or a control to determine the level of an enzyme.
  • a method of detecting the presence of one or more enzymes in a mammalian wound comprising: contacting the mammalian wound with a wound dressing; and observing one or more signals in the reagent layer, wherein the signal is a color change, a fluorescent signal, a luminescent signal, or an electrical change.
  • a method of detecting an infection in a mammalian wound comprising: contacting the wound with a wound dressing; and, observing one or more signals in the reagent layer, wherein the signal is a color change, a fluorescent signal, a luminescent signal, or an electrical change.
  • a device for detecting an infection in a wound comprising: a wound contacting layer; a reaction layer comprising one or more reagents that can indicate the presence of one or more analytes associated with an infection, wherein the reagents are affixed to a solid phase and produce a detectable signal in a reporter area; a cover on top of the reaction layer, wherein the cover comprises one or more windows or clear areas to allow visualization of the detectable signal; and, fluid communication between the wound contacting layer and the reaction layer.
  • a wound dressing wherein the reagent pad is in fluid communication with the filter pad; the filter pad is in fluid communication with the indicator trap; and the indicator trap is in fluid communication with the absorbent area.
  • a diagnostic disk for detecting an infection in a wound comprising: a reaction layer comprising one or more reagents that interact with a target enzyme indicative of an infection, wherein the reagents are affixed to a solid phase; each reagent is sprayed, printed, or deposited in a reagent area in a lane separated from adjacent lanes by impermeable separators; each lane comprises a reporter area wherein a color, color change, or other detectable signal is observed; and a cover comprising a window for visualizing the signal in the reporter area.
  • a device for detecting an infection in a wound or a sample comprising a housing, wherein the housing comprises: a sampling component for collecting the sample; a sample preparation chamber in fluid communication with a reaction chamber, wherein the sample preparation chamber receives the sample; the reaction chamber comprising one or more reaction cells containing reagents that interact with one or more enzymes in the sample to indicate the presence of an infection and/or pH of the sample; and a window or a clear area for visualizing a detectable signal, wherein the signal is a color change.
  • a kit for detecting an infection in a sample comprising: a sampling component for collecting the sample; a test device comprising a housing surrounding a tube to define an opening in the housing for receiving the sampling component, the housing comprising: a diluent chamber that holds a liquid diluent; a reaction well in liquid communication with the tube, wherein the reaction well holds one or more reagents that interact with one or more analytes to produce a color change or a detectable signal; a viewing window or reporter area wherein the color change or detectable signal can be observed; and wherein the liquid diluent flows from the sample component into the reaction well to mix the sample with the reagents in the reaction well.
  • FIG. 1 Examples of engineered three-dimensional fabric structures, such as corrugations.
  • FIG. 2 Example of a dressing with AQUACEL showing different layers of a dressing and stitching that draws fluid from a wound to the reaction layer of the dressing.
  • FIG. 3 Schematic of reaction cells showing different components of a reaction cell with stitching ( 21 ) in (A) and cut access ( 27 ) in (B).
  • each reaction cell can be a different reporter or dye system.
  • FIG. 4 Movement of indicators in reaction cells upon exposure to fluid, which flows from cut access and reagents ( 22 ) toward absorbent or evaporation area ( 25 ). Over time, the reaction products diffuse and migrate toward an absorbent or evaporation area. Movement of indicators arranged in a radial manner is shown in (B). In some embodiments, each lane or reaction cell can be a different reporter or color system. Multiple reaction cells can be used as shown in (C). Multiple reaction cells can be used in arrays or combinations to provide indicator function over an area. Leach back traps may be used to prevent backflow.
  • FIG. 5 Indicators can be arranged in a circular or radial manner to form indicator disks (A).
  • each lane or reaction cell ( 45 - 48 ) can be a different reporter or color system, such as bromothymol blue, phenol red, bromophenol red, chlorophenol red, thymol blue, bromocresol green, bromocresol purple; nitrazine yellow; or other sulfophthalein dyes.
  • (B) shows views of a radial indicator disk from above and from below.
  • FIG. 6 Dressing printed for MPO detection.
  • a wound contact material is sprayed or printed with amylase, starch, and glucose oxidase, followed by printing of a substrate for MPO printed in the centers of each sprayed area.
  • FIG. 7 In-place color development of MPO and elastase substrates on testing strips are shown. These test strips represent prototypes of visualization methods for detecting the presence of MPO and elastase in a sample, wherein color (e.g., blue) increases in intensity with greater substrate concentration.
  • color e.g., blue
  • FIG. 8 Examples of substrates, including MPO substrate (Fast Blue derivative), elastase substrate, and oxidation of indoxyl to blue colored indigo are shown.
  • FIG. 9 In-place color development of different indicators in radial arrangement.
  • (A) and (B) represent prototypes of indicators for detecting certain analytes, including pH change, MPO, lysozyme, and elastase.
  • pH change can be reported as a color change from yellow to green; MPO reported as an appearance of a blue color; lysozyme reported as an appearance of pink or red color; elastase reported as an appearance of green or blue color; and liquid control reported as an appearance of a blue or purple color.
  • FIG. 10 Schematics of a radial indicator insert or disk.
  • FIG. 11 Schematics of a radial indicator insert or disk with a window for detection.
  • FIG. 12 Schematics of another embodiment of a radial indicator insert or disk with a window for detection.
  • FIG. 13 Transport of Remazol Brilliant Blue, showing migration of indicators to reporter area after liquid transport.
  • FIG. 14 Example of a pH indicator.
  • the color can change from green to blue with increase in pH.
  • FIG. 15 Schematic of a lysozyme test strip. Fluid flow causing stained peptidoglycan particles to move upwards to trap layer.
  • FIG. 16 Examples of indicator substrates and reactions.
  • FIG. 17 Example of indicator disk freely placed in a dressing.
  • FIG. 18 Embodiments of diagnostic disks in non-woven layer in dressing.
  • FIG. 19 Embodiments of diagnostic disks in non-woven layer in dressing.
  • FIG. 20 Example of manufacturing diagnostic disks in sheets.
  • FIG. 21 Embodiments of printed and applied paper disks.
  • each disk can be a different reporter or color system.
  • FIG. 22 Methods of attaching or applying diagnostic disks to non-woven layer in dressing.
  • FIG. 23 Dipstick devices with indicator inserts or disks arranged in different arrays and combinations are shown.
  • each insert, disk, or lane can be a different reporter or color system.
  • FIG. 24 Sampling thread and use in dressing.
  • Sampling thread can be incorporated in a wound dressing or at a surgical site, wherein the thread can be pulled out without disturbing the dressing to test for the presence of microbial infection or condition of the surgical site or wound in a diagnostic device.
  • FIG. 25 Assembly for manufacturing indicator inserts.
  • FIG. 26 Cross section of a standalone device kit
  • FIG. 27 Sampling tip inserted in the housing of standalone device kit
  • FIG. 28 A plan view of the standalone device kit
  • FIG. 29 Another view of the standalone device kit
  • FIG. 30 A plan view of the standalone device kit with housing slid apart
  • FIG. 31 Diluent chamber, tube and reaction chamber in standalone device kit
  • FIG. 32 Distribution of test solution to each reaction chamber in standalone device kit
  • FIG. 33 Diagnostic swab device with housing, wherein reaction with indicator disks or inserts can be observed from a viewing window in the housing.
  • FIG. 34 Thread hook diagnostic device, suitable for pulling out a sampling thread from a dressing for analysis.
  • FIG. 35 Swab diagnostic device, wherein a swab is used to obtain a sample for testing with a diagnostic device, further comprising a diluent chamber, gas outlet, and a plunger.
  • FIG. 36 Diluent chamber for sample preparation.
  • a diluent chamber comprising a diluent is adapted for use with a swab device, a thread hook device, and similar sample preparation devices, comprising a resealable top and a seal or film at the bottom, wherein breaking the seal or film ( 402 ) allows the sample to mix with the diluent solution, which flows out of the diluent chamber and into a testing device comprising reaction chambers or wells.
  • FIG. 37 Embodiment of diagnostic device with sampling chamber and reaction wells.
  • a diagnostic device with reaction chambers ( 502 ) adapted to being connected to sampling chamber or diluent chamber ( 202 ) for receiving a sample from a sample preparation device ( 300 ), such as the swab device.
  • FIG. 38 Embodiment of diagnostic device or transfer system, wherein the sample chamber or diluent chamber uses a Luer-lock connector to attach to reaction chambers for testing a sample fluid.
  • the plunger or piston comprises a gas outlet, hook for holding a sample, and membrane that lets out gas as the plunger is depressed into the diluent chamber.
  • FIG. 39 Further embodiments of an analytic or diagnostic system, wherein reaction chambers are arranged in a radial arrangement.
  • wound dressings able to detect infection in one or more body fluids before such infection is otherwise apparent.
  • the wound dressing reacts with wound exudate or wound fluid to detect infection in a wound through a visible or otherwise detectable change in the dressing.
  • wound exudate or wound fluid is drawn up through the wound dressing to a reagent layer for assessment of possible infection without the need to remove the dressing.
  • wound exudate or wound fluid reacts with the reagent layer to give rise to a color or other visible or observable marker. In some embodiments, the color is easily distinguishable from those colors that are common in wounds or body fluids.
  • the reaction between the wound exudate or wound fluid and the reagent layer of the wound dressing occurs at ambient temperature and within a period of time short enough to allow timely response, such as a decision to make a dressing change after cleaning the wound and examining the test result and/or to administer antiseptics or local or systemic antibiotics.
  • the color or other visible or observable marker and/or the location of the color or other visible or observable marker indicates one or more areas of the wound that deserve closer attention and/or antisepsis.
  • the color change function is embedded in parts of the dressing that are only visible on dressing change.
  • the reagent layer that gives rise to a color change or other visible or observable marker is a standalone device, disk, or insert, capable of application with any wound dressing, at a surgical or wound site, or by itself as a dipstick-type of device.
  • indicator reagents are applied in a “swab sample preparation device” or a stand-alone device into which wound fluids are injected.
  • indicator reagents are printed directly on support materials, such as the various layers within a wound dressing.
  • a wound dressing comprises a wound contacting layer; a reagent layer comprising one or more testing regions or indicator reagents; and an outer layer that overlays the reagent layer.
  • the wound dressing may comprise one or more testing regions, which further comprise one or more of a back-flow trap, reagent pad, a filter pad, an indicator trap, and an absorbent area, wherein the viewing window is located either above the reagent pad or the indicator trap and the reagent pad is in fluid communication with a filter pad; the filter pad is in fluid communication with the indicator trap; and the indicator trap is in fluid communication with the absorbent area.
  • testing regions comprise one or more components selected from the group consisting of enzyme-reactive indicators, reagents that are sources of peroxide, enzymes that are able to transform color reactions, pH indicators, protein responsive reagents, and moisture-detecting reagents.
  • Enzyme-reactive indicators may comprise protein-indicator conjugates.
  • protein-indicator conjugates are deposited in or on the reagent pad.
  • protein-indicator conjugate has the structure of Formula (I): A-B, wherein: A is an anchor region for attachment to the testing region; and B is an enzyme-reactive region.
  • the enzyme-reactive region comprises a peptide or an indicator region.
  • the anchor region may be covalently or non-covalently attached to the reagent pad.
  • the wound dressing comprises one or more lines of wicking stitching or wicking tufting throughout all layers of the wound dressing except the outer layer.
  • One or more testing regions further comprises a leach-back trap in fluid communication with the reagent pad, the one or more lines of wicking stitching or wicking tufting crossing through each of the one or more testing regions only at the leach-back trap.
  • the wound dressing comprises a foam layer between the wound contacting layer and the reagent layer.
  • the wound dressing further comprises one or more perforations of the wound contacting layer.
  • enzyme-labile or enzyme-reactive regions contained therein may interact with target enzymes including elastase, lysozyme, cathepsin G, and myeloperoxidase.
  • the enzyme-labile or enzyme-reactive region comprises a moiety capable of producing a visible color or detectable electronic change upon interaction of the enzyme-labile or enzyme-reactive region with one or more target enzymes, the moiety being selected from a peroxidase substrate, arylamine, an amino phenol, an indoxyl, a neutral dye, a charged dye, a nanoparticle, and a colloidal gold particle, and an analog thereof.
  • the target enzyme after the target enzyme has cleaved the indicator from the substrate it is further reacted by an accessory enzyme selected from a lipase, esterase, hexosaminidase, peroxidase, oxidase, glycosidase, glucuronidase, glucosidase, and laccase, or a combination of one or more thereof.
  • an accessory enzyme selected from a lipase, esterase, hexosaminidase, peroxidase, oxidase, glycosidase, glucuronidase, glucosidase, and laccase, or a combination of one or more thereof.
  • Applications of the reactive regions may include a device for detection of infection associated enzymes, on a solid phase such as paper, viscose, regenerated cellulose, glass fiber, mixtures of same or similar material, or arrayed in a line along a plastic or paper carrier strip.
  • a solid phase such as paper, viscose, regenerated cellulose, glass fiber, mixtures of same or similar material, or arrayed in a line along a plastic or paper carrier strip.
  • reagent or indicator inserts or disks for detection of infection associated with certain enzymes may be provided as an independent entity and placed into any dressing system comprising a sample inlet, diffusion channels toward different areas containing reagents, an indicator for sample delivery and or an indicator of pH which may be one in the same, and one or more indicators for the following markers selected from lysozyme, MPO, cathepsin G, elastase, catalase, lipase, esterase.
  • the enzyme labile region is labile to a protease and the polymer binding domains are selected from cellulose binding domains or are hydrophobic binding domains.
  • the enzyme labile region is labile to cathepsin or elastase.
  • the chemical entity is selected from a small molecule entity, a modified oligomer, and a modified polymer.
  • a chemical entity for the detection of infection in a wound comprising an indicator region comprising a pH-sensitive moiety that presents a visible color change.
  • the chemical entity further comprises an anchor region wherein the anchor region enables binding of the chemical entity to a support material.
  • the pH-sensitive moiety that presents a visible color change at alkaline pH In some embodiments, the pH-sensitive moiety that presents a visible color change at neutral pH. In some embodiments, the pH-sensitive moiety that presents a visible color change at acidic pH.
  • the pH of a wound can influence many factors of wound healing, such as angiogenesis, protease activity, oxygen release, and bacterial toxicity.
  • Chronic non-healing wounds may have an elevated alkaline environment. As the wound progresses towards healing, the pH of the wound moves to neutral and then becomes acidic. Monitoring of the pH of the wound may provide a method to assess the condition of the wound (e.g., infection or no infection) and aid in determining a wound's response to treatment.
  • the chemical entity for the detection of infection in a wound comprises an indicator region comprising a pH-sensitive moiety that presents a visible color change.
  • the chemical entity further comprises an anchor region wherein the anchor region enables binding of the chemical entity to a support material.
  • the pH-sensitive moiety presents a visible color change at alkaline pH.
  • the pH-sensitive moiety is bromothymol blue, phenol red, bromophenol red, chlorophenol red, thymol blue, bromocresol green, bromocresol purple; nitrazine yellow; or other sulfophthalein dyes.
  • reagents printed on dressing or solid support materials dipstick devices with indicator disks arranged in various arrays, and devices with separate sample preparation chamber that transfer a sample of a bodily fluid or wound fluid to a standalone diagnostic device that uses reagent pills, solutions, or disks in reaction chambers for detecting biomarkers associated with microbial detection.
  • indicator reagents are printed, sprayed, or overlayed on support materials, such as dressing, wound dressing, bandage, filter paper, and test strips.
  • innate receptor systems either to injury, toxins, or to the bacterial cell wall. All of these recognition events result in the recruitment of innate immune cells. These cells are stimulated by pathogens like bacteria to activate bacterial killing systems that are normally present in polymorphonuclear leukoctyes (PMNs) and are mainly enzymatic in character.
  • PMNs polymorphonuclear leukoctyes
  • the cells engulf bacteria and lyse them with enzymes that hydrolyze proteins (e.g., protease, elastase, cathepsin G) and cell walls (lysozyme), or mediate protein denaturation (NADPH oxidase, xanthine oxidase, myeloperoxidase (MPO)).
  • proteins e.g., protease, elastase, cathepsin G
  • lysozyme mediate protein denaturation
  • NADPH oxidase e.g., xanthine oxidase, myeloperoxidase (MPO)
  • the pH of a wound can influence many factors of wound healing, such as angiogenesis, protease activity, oxygen release, and bacterial toxicity.
  • Chronic non-healing wounds, and those that are infected or at risk of infection typically have an elevated alkaline environment.
  • the pH of the wound moves to neutral and then becomes acidic.
  • Monitoring of the pH of the wound may provide a method to assess the condition of the wound (e.g., infection or no infection) and aid in determining a wound's response to treatment.
  • a typical lateral flow device utilizes the concept of lateral liquid flow in order to transport a given sample to the test.
  • the benefits of lateral flow tests include rapid results, long-term stability and low cost to manufacture. These features make lateral flow tests well-suited for applications involving drug testing in urine, in particular with rapid point of care testing in hospitals and doctor's offices being an advantage.
  • a test strip can be dipped directly in the sample which is taken in a liquid form. The sample travels up the lateral flow strip and binds to available antibodies, which causes a reaction that can be visually detected on the strip. Applying this technology to samples other than urine or blood has however been problematic.
  • markers for infection in wounds have advantages in that treatment of infection can be commenced before the infection becomes established and other signs of infection become apparent, for example, discharge from the wound, redness, pain and unpleasant odor.
  • a difficulty in testing for markers in wound fluid is that wound fluid differs greatly in its consistency and quantity. For instance it can be scant but viscous making the use of a lateral flow test difficult.
  • kits for collecting and testing a sample of fluid taken from a wound that is easy to operate and not limited by the type or quantity of exudate from the wound.
  • One embodiment of the standalone device kit described herein mitigates the above problems in a kit which comprises a sampling component and a test device where the test device does not rely on a lateral flow strip to move the sample through the device and achieve a diagnosis.
  • the wound dressing comprises a wound contacting layer; a reagent layer comprising one or more testing regions; and an outer layer that overlays the reagent layer.
  • the wound dressing further comprises a protective cushioning layer (for example a foam or a nonwoven layer) between the wound contacting layer and the reagent layer.
  • the wound dressing further comprises one or more lines of wicking stitching or wicking tufting throughout all layers of the wound dressing except the outer layer.
  • the wound dressing comprises perforation through the wound contacting layer, the protective cushioning layer, or a combination of both. In some embodiments, such perforation allows for wound fluid transfer from the wound to the reagent layer.
  • the wound contacting layer of the wound dressing absorbs wound exudate and/or wound fluid.
  • the wound contacting layer comprises gel-forming polymers or hydrofiber.
  • Gel-forming polymers include, but are not limited to cellulose, carboxymethylcellulose (CMC), carboxyethylcellulose, oxidized cellulose (or a derivative thereof), cellulose ethyl sulfonate, other chemically modified cellulose, pectin, alginate, chitosan, modified chitosan, hyaluronic acid, polysaccharide, or gum-derived polymer, or any combination thereof.
  • the wound contacting layer may comprise polyvinylpyrrolidone, polyvinyl alcohols, polyvinyl ethers, polyurethanes, polyacrylates, polyacrylamides, collagen, gelatin or mixtures thereof.
  • the wound contacting layer comprises fibers of gel-forming polymers.
  • the wound contacting layer comprises a nonwoven layer of gel-forming fibers.
  • the wound contacting layer further comprises non-gel-forming polymers.
  • the wound contacting layer comprises cellulose (for example, Lyocell), modified cellulose (for example, viscose or rayon), Polyester, silk, wool, Nylon, Polypropylene, Elastane or mixtures thereof.
  • the thickness of the wound contact layer is from 0.1 to 10 mm, in a preferred embodiment it is from 0.1 to 5 mm and in a still more preferred embodiment it is from 0.3 to 3.5 mm.
  • the protective cushioning layer provides mechanical protection of the wound and also assists in the management of excess exudate by acting as a large surface area for evaporation.
  • the protective cushioning layer may also serve as the material that accepts fluid exiting reagent layer or device and may add functionality by pulling or directing fluid through the reagent layer or device.
  • Suitable materials include foams, (non-gelling) fiber fleeces, (non-gelling) nonwoven fabrics, and engineered three-dimensional fabric structures, such as corrugations. Examples of engineered three-dimensional fabric structures are shown at FIG. 1 .
  • materials used for the protective cushioning layer possess mechanical cushioning properties that are unaffected or are minimally affected by contact with wound exudate.
  • the protective cushioning layer comprises plastics based on olefins or olefin derived polymers, such as polyethylene, polypropylene, nylon, polyurethane, polystyrene and polyvinyl chloride. In some embodiments, these materials may further comprise agents such as surfactants or absorbents that improve their wettability.
  • hydrophilic polyurethane foam is 2.5 mm (+/ ⁇ 0.5 mm) thick, with a density of 90 kg/m 3 to 150 kg/m 3 , absorption of ⁇ 12 g/g.
  • the transfer of wound fluid to the reagent layer is optimized by fiber tufts from the wound contact layer to the reagent layer.
  • gel forming polymers from the wound contact layer can be used as the transport mechanism of fluid from the wound to reagent layer.
  • the increased hydrophilic nature of gel forming polymers in comparison to materials within alternate layers of the dressing allows enhanced wicking action to the reagent layer.
  • yarns can be used to provide capillary action of fluid from the wound contact layer to the reagent layer. This can be achieved using stitching of one or more layers of the dressing or using tufting of yarn through one or more dressing layers.
  • the wicking stitching and/or wicking tufting is selected from various fibers that are wettable and exhibit capillary action. Such fibers include, but are not limited to, cotton, rayon, viscose, wool, silk, polyester, polyamide, and CMC fibers, solid and hollow fibers.
  • the wicking stitching comprises cotton, polyester, polyamide, polypropylene, or a combination thereof.
  • using increased number of plies or multifilament yarn, increased linear density of yarn, and/or decreased linear density of fiber may enhance capillary action of yarn.
  • the wicking stitching comprises cotton.
  • the wicking stitching comprises polyester.
  • the wicking stitching comprises polyamide. In some embodiments, the wicking tufting comprises CMC fibers. In some embodiments, the wicking occurs across all areas of the dressing layers. In some embodiments, the wicking is concentrated immediately beneath or adjacent to the reagent layer to provide focused, enhanced wicking action and/or reaction with the reagent layer.
  • stitching of yarn through hydrofiber and/or foam layer using hydrophilic yarn provides wicking capacity.
  • the wound fluid can be wicked up by yarns in a more direct route to the printed substrate or reaction layer.
  • Increase in yarn linear density may allow more of a decrease in wicking time and/or amount of fluid required.
  • needling of hydrofiber-foam laminate in wound dressing creates tufts of hydrofiber on the foam side of the dressing.
  • Variable parameters of needling include punch density and penetration depth, such as 10-100 punches/cm 2 at 1-10 mm penetration, 20-90 punches/cm 2 at 2-9 mm penetration, 30-80 punches/cm 2 at 3-8 mm penetration, 40-80 punches/cm 2 at 4-8 mm penetration, 50-80 punches/cm 2 at 5-8 mm penetration, 60-80 punches/cm 2 at 6-8 mm penetration, 70 punches/cm 2 at 6 mm penetration.
  • Channels of hydrofiber are created through the foam, leading to vertical wicking of fluid.
  • Hydrofiber tufts may enable quicker fluid and enzyme transfer.
  • Type of needles used for tufting include felting (crown), felting (regular), and fork.
  • use of felting needles allowed gelling fiber tufts to be created through the foam layer without causing a detrimental effect on the foam or gelling fiber.
  • Penetration depth may be 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm or 12 mm, or at least 6 mm, or less than 7 mm, less than 8 mm, less than 9 mm or less than 10 mm.
  • penetration depth is 6 mm, which enabled an 18% decrease in vertical wicking time at 70 p/cm 2 punch density. As punch density increases, more hydrofiber tufts are created on the foam layer. Enhanced fluid transfer was seen in all punch densities at 6 mm penetration depth.
  • stitching of yarn through hydrofiber and/or foam layer using hydrophilic yarn provides wicking capacity.
  • Stitches may be about 1 mm, about 2 mm, about 3 mm, about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm, about 10 mm, about 11 mm, about 12 mm, about 13 mm, about 14 mm, about 15 mm, at least about 5 mm, less than about 6 mm, less than about 7 mm, less than about 8 mm, less than about 9 mm or less than about 10 mm.
  • the wound fluid can be wicked up by yarns in a more direct route to the printed substrate or reaction layer.
  • Increase in yarn linear density allows more of a decrease in wicking time and/or amount of fluid required.
  • Short stitches (less than 3.5 mm) do not reduce wicking time/volume required to wick through the foam layer. Stiches may be 5 mm to allow a reduction in wicking time by about 45%.
  • hydrofiber-foam laminate material with combined thickness of 4.3 mm was tested for stitching with two types of yarn: high wicking polyester (continuous filament) and standard polyester thread. Three stitch lengths were tested, including 2.5 mm, 3.5 mm, and 5.0 mm. Incorporating stiches enhances fluid transfer, while increasing stitch lengths reduced vertical wicking time.
  • the wicking action of the various layers of the dressing is adequate as it is with the factory porosity and no further treatment.
  • the wicking action can be enhanced by fine needling to create channels that have capillary action.
  • the needling can occur across all areas of the dressing layers to provide generally enhanced capillary action.
  • the needling is concentrated immediately beneath or adjacent to the common entrance to the reagent layer to provide focused, enhanced capillary action.
  • the perforation occurs through all layers of the dressing.
  • the perforation occurs in the one or more layers between the wound contact layer and the reagent layer.
  • capillary action can be enhanced by increasing the punch density of the needling to produce higher number of perforations per unit area.
  • Perforations allow direct fluid transfer through hydrofiber and/or foam layers to the printed substrate layer.
  • the larger the hole the more fluid may be transferred, reducing the wicking time/volume required for the fluid to interact with the printed substrate layer.
  • Perforations may be formed using a hypodermic needle.
  • the vertical wicking time can be reduced by about 28%. In some embodiments, the vertical wicking time is reduced by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45% or about 50%.
  • the wound contact layer or the layer supporting it contains a material that reacts to wound exudates to indicate potential infection, or a reactive layer.
  • a reactive layer may comprise one or more dyes and/or the reagents necessary to support these reactions.
  • these dyes comprise amino acids, peptides, or proteins conjugated to dyes with strong ionic functions, strong contrasting colors, or the ability to form colors, such as indoxyl/indigo.
  • addressing includes a layer within the dressing printed with an immobile trapping material to which said dyes bind. This layer is optionally in the outer part of the dressing or at various levels within the dressing such that it may be observed without dressing change, or at dressing change.
  • the reactive layer is comprised of an MPO substrate, glucose oxidase and an energy source, such as glucose or starch, and gamma-amylase.
  • the dressing contains particles comprised of chitosan or a derivative that releases dyes on hydrolysis by lysozyme. These dyes may be highly charged or otherwise functional to allow their accumulation at sites of signal interpretation.
  • the reactive layer comprises compounds such as p-aminophenol, ABTS (2,2inophenol, ABTS (strate.
  • acid) diammonium salt 3,3′-diaminobenzidine, 3,4 diaminobenzoic acid, DCPIP, N,N-dimethyl-p-phenylenediamine, o-dianisidine, p-phenylenediamine, 4-chloro-1-naphthol, o-phenylenediamine N-(4-aminobutyl)-N-ethylisoluminol, 3-amino-9-ethylcarbazole, 4-aminophthalhydrazide, 5-aminosalicylic acid, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), indoxyl, indigo, Fast Blue RR, 4-chloro-7-nitrobenzofurazan.
  • the reactive layer comprises an arylamine. In some embodiments, the reactive layer comprises an amino phenol. In some embodiments, the reactive layer comprises an amino phenol an aminophenol ether. In some embodiments, the reactive layer comprises an indoxyl. In some embodiments, the reactive layer comprises an a neutral dye.
  • the reactive layer comprises a charged dye, e.g., a dye selected from remazole brilliant blue, toluidine blue, reactive black 5, remazol brilliant blue, reactive violet 5, and reactive orange 16, or a hydrolytic or ammonolytic derivatives thereof, toluidine blue, reactive black 5, or ahydrolytic or ammonolytic derivatives thereof; reactive violet 5, or hydrolytic or ammonolytic derivatives thereof; reactive orange 16, or hydrolytic or ammonolytic derivatives thereof; a dichlorotriazine-based reactive dye such as reactive blue 4, reactive red 120, reactive blue 2, reactive green 19 and reactive brown 10. In some embodiments, the dichlorotriazine-based reactive dye appears black.
  • a charged dye e.g., a dye selected from remazole brilliant blue, toluidine blue, reactive black 5, remazol brilliant blue, reactive violet 5, and reactive orange 16, or a hydrolytic or ammonolytic derivatives thereof, toluidine blue, reactive black 5, or ahydrolytic or ammono
  • the reactive layer comprises compounds such as a reactive dye containing a sulfonylethyl-hydrogensulphate-reactive-group.
  • the reactive dye is reactive black 5, remazol brilliant blue, reactive violet 5 or reactive orange 16.
  • the reactive dye is reactive black 5.
  • the reactive dye is remazol brilliant blue.
  • the reactive dye is reactive violet 5.
  • the reactive dye is reactive orange 16.
  • the reactive dye is reactive black 5, remazol brilliant blue, or reactive violet 5.
  • the reactive dye is reactive black 5 or remazol brilliant blue.
  • the reactive layer comprises a nanoparticle. In some embodiments, the reactive layer comprises a colloidal gold particle. In some embodiments, the reactive layer comprises a charged dye, an indole derivative, or a luminol derivative. Especially, the reactive layer comprises a dye containing a sulfonylethyl-hydrogensulphate-reactive-group, e.g., reactive black 5, remazol brilliant blue, reactive violet 5 or reactive orange 16, or a combination thereof, or a dye containing a dichlortriazine reactive-group, e.g., reactive blue 4, reactive red 120, reactive blue 2, reactive green 19 and reactive brown 10, or a combination thereof.
  • a sulfonylethyl-hydrogensulphate-reactive-group e.g., reactive black 5, remazol brilliant blue, reactive violet 5 or reactive orange 16, or a combination thereof
  • a dye containing a dichlortriazine reactive-group e.g., reactive blue 4, reactive red 120,
  • FIG. 3 shows two embodiments of a reaction cell, comprising indicator units or testing regions.
  • stitching ( 21 ) using wicking fibers helps to draw wound or bodily fluid from a wound toward a reagent pad ( 22 ), then through testing regions ( 23 and 24 ) and toward absorbent or evaporation area ( 25 ).
  • a perforation or cut access ( 27 ) is made, such as in the reagent pad ( 22 ) to allow the flow of wound fluid from the wound to the reagent pad via capillary action.
  • the reagent pad ( 22 ) may comprise reagents that react with microbial biomarkers in the wound fluid, such as substrates that react with MPO ( 29 ), elastase ( 30 ), and lysozyme ( 31 ) in the wound fluid.
  • one or more testing regions may comprise a sulfonic acid filter pad ( 23 ) and a quaternary amine trap ( 24 ).
  • one or more testing regions comprise a leach-back trap ( 28 ) and an amine back flow trap or filter ( 29 ).
  • Some embodiments contain pH indicators ( 32 ) and protein indicators ( 33 ) that allow a user to detect a visible signal resulting from reactions between microbial biomarkers in the wound fluid and the reagents in the reagent pad ( 22 ).
  • Absorbent or evaporation area ( 25 ) helps to draw the flow of the fluid from the reagent pad ( 22 ) toward ( 25 ).
  • impermeable separators ( 26 ) keep adjacent testing regions separate.
  • the indicator trap catches reaction products between the wound fluid and the one or more components selected from the group consisting of enzyme-reactive indicators, reagents that are sources of peroxide, enzymes that are able to transform color reactions, pH indicators, and moisture-detecting reagents.
  • the indicator trap comprises a positively charged or negatively charged trap for reaction products.
  • the positively charged trap comprises a quaternary amine polymer, a mixture of secondary and tertiary amines, other amine-containing polymers, or a combination thereof.
  • the positively charged trap comprises polyDADMAC, or an analog thereof.
  • the negatively charged trap comprises polymers or reagents containing carboxy, sulfate, sulfonate, or other acidic chemical groups. In some embodiments, the negatively charged trap comprises styrene sulfonate. In some embodiments, the indicator trap comprises a total protein indicator which is eluted by wound fluid to indicate overall flow and capacity of the testing region. In some embodiments, the control region contains a substrate for a ubiquitous enzyme such as esterase or carbonic anhydrase, or an indicator for a ubiquitous metabolite like lactate, glucose, ammonia or lipid. In some embodiments, one or more testing regions comprise a sulfonic acid filter pad and a quaternary amine trap.
  • one or more testing regions comprise a leach-back trap, a sulfonic acid filter pad and a quaternary amine trap. In some embodiments, each of the one or testing regions is used to evaluate the presence of one or more analytes and one or more positive or negative control indicators. In further embodiments, the one or more analytes is associated with enzyme activity.
  • the enzyme is selected from one or more of the group consisting of elastase, lysozyme, cathepsin G, myeloperoxidase, and leukocyte peroxidase. In some embodiments, the enzyme is elastase. In some embodiments, the enzyme is lysozyme. In some embodiments, the enzyme is cathepsin G. In some embodiments, the enzyme is myeloperoxidase. In some embodiments, the enzyme is leukocyte peroxidase.
  • the wound dressing comprises a reagent layer comprising one or more testing regions.
  • the reagent layer comprises a support material.
  • the support material comprises a woven or non-woven material that is capable of being wet by a wound fluid and which displays capillary action.
  • the capillary action is uniform in the plane of the material.
  • the test regions are arranged in a circle so that diffusion occurs radially when a liquid is applied.
  • Support material includes, but is not limited to, paper, cellulose, cellulose derivatives, viscose, polyamide, polyester, polyacrylate, and other similar polymers that are useful as fibers, and any combination thereof.
  • the support material is cellulose-based, such as refined papers, or non-woven material containing bonded cellulose fibers.
  • the support material is polyamide.
  • the support material is polyester.
  • the support material is polyacrylate.
  • the role of the solid support is to adhere substrates and provide a field in which analyte enzymes can travel to and interact with the detector.
  • cellulose content aids adherence of the enzyme substrates, and a significant cellulose or cellulose like content is preferred.
  • each of the one or more testing regions is printed on or in the support material.
  • each of the one or more testing regions comprises an inlet for wound fluid, an area for the wound fluid to react with reagents (e.g., a reagent pad), an area to observe each product of one or more reactions, and an area for the accumulation of excess wound fluid (e.g., an absorbent area), which is then evaporated from an area sufficiently large as to not block due to accumulated solutes.
  • the evaporation zone helps to drive pull-through of more wound fluid.
  • FIG. 4 shows multiple embodiments of the movement of indicators in various reaction cells.
  • wound fluid flows from the reagent pad ( 22 ) to absorbent or evaporation area ( 25 ), as shown in the right panel of FIG. 4(A) .
  • the embodiment of (B) of FIG. 4 shows an embodiment of reaction cells wherein indicators are arranged in a radial arrangement, and wherein fluid flows outward from the center upon encountering the reagent pad.
  • the embodiments of (C) of FIG. 4 illustrates how multiple reaction cells can be used to cover a broader area, with trap leach-back ( 41 ) preventing backflow.
  • each reagent cell or lane of reagent pad ( 22 ) may be a different reporter or color system, such as bromothymol blue, phenol red, bromophenol red, chlorophenol red, thymol blue, bromocresol green, bromocresol purple; nitrazine yellow; or other sulfophthalein dyes.
  • reagents interact with analytes in the wound fluid and migrate or diffuse toward the absorbent or evaporation area ( 25 ).
  • each of the one or more testing regions comprises a reagent pad or a reagent cell ( 22 ), a filter pad ( 23 ), an indicator trap ( 24 ), and an absorbent/evaporation area ( 25 ).
  • each of the one or more testing regions comprises a reagent pad that is also under a viewing window and an absorbent/evaporation area.
  • each of the one or more testing regions comprises a leach-back trap which is a trap field that contains an absorbent that absorbs the reagents and prevents their back flow to the dressing below.
  • an outer layer overlays the reagent layer in order to modulate evaporation of wound fluid, the outer layer containing one or more windows to visualize the underlying indicator trap and/or reagent pad from one or more testing regions.
  • each of the one or more testing regions detects at least one biomarker. In some embodiments, each of the one or more testing regions comprises one or more impermeable separators, wherein each of the one or more testing regions detects more than one biomarker. In some embodiments, the one or more impermeable separators are printed strips of hydrophobic non-permeable material. In some embodiments, the one or more impermeable separators are arranged in parallel lanes. In some embodiments, the one or more impermeable separators are arranged in a radial pattern. In some embodiments, each of the one or more testing regions detects two biomarkers. In some embodiments, each of the one or more testing regions detects three biomarkers.
  • each of the one or more testing regions detects four biomarkers. In some embodiments, each of the one or more testing regions detects five biomarkers. In some embodiments, each of the one or more testing regions detects six biomarkers. In some embodiments, each of the one or more testing regions detects seven biomarkers. In some embodiments, each of the one or more testing regions detects eight biomarkers. In some embodiments, each of the one or more testing regions detects nine biomarkers. In some embodiments, each of the one or more testing regions detects ten biomarkers. In some embodiment, each of the one or more testing regions detects one or more biomarkers.
  • FIG. 5 shows a radial arrangement of indicators or a radial indicator patch.
  • testing regions or reagents may be arranged in a circular or radial orientation.
  • the indicator includes reagents ( 22 ), a quaternary amine trap ( 24 ), and an absorbent or evaporation area ( 25 ).
  • a hole or cut access ( 27 ) in the middle of the indicator helps to draw fluid from a wound into the indicator. The fluid typically will flow from the access ( 27 ) outward to the evaporation area ( 25 ).
  • reagents ( 22 ) are exposed to wound fluid and react to microbial biomarkers, the resulting products migrate to amine trap ( 24 ), allowing detection by a user.
  • the indicator may also have impermeable separators or lanes ( 26 ). As shown in (B) of FIG. 5 , a top or “above” view is provided and a bottom or “below” view is provided for a radial indicator patch.
  • substrates may be printed as dots to allow for greater freedom of printing. Moisture impermeable film with adhesive on both sides allows the radial indicator patch to attach to foam or other support material.
  • each reaction cell or lane ( 45 - 48 ) can be a different reporter or color system, allowing analysis of multiple analytes on one indicator patch.
  • each of the one or more testing regions comprises one or more components selected from the group consisting of enzyme-reactive indicators, reagents that are sources of peroxide, enzymes that are able to transform color reactions, pH indicators, total protein-detecting reagents, and moisture-detecting reagents.
  • the reagents that are sources of peroxide are selected from peroxy acids, sodium percarbonate, and peroxide-generating oxidases, such as glucose oxidase or lactate oxidase.
  • the enzymes that are able to assist the transformation of color reactions are selected from peroxidases and laccases.
  • one or more components are immobilized within the one or more testing regions.
  • one or more components are mobilized by wound fluid within the one or more testing regions. In some embodiments, one or more components bind to the one or more testing regions due to interaction with wound fluid. In further embodiments, each of the one or more testing regions further comprises one or more of the group consisting of buffers, binders, and solubility enhancers. In some embodiments, one or more buffers, binders, and/or solubility enhancers improves printing or stability.
  • each of the one or more testing regions comprises an enzyme-reactive indicator, further comprising an enzyme-labile or enzyme-reactive moiety, an immobilizing moiety that holds the reactive indicator in place, and a moiety that gives rise to a visible change upon interaction of the reactive indicator with a target enzyme.
  • each moiety is distinctly different from the other.
  • one moiety incorporates another moiety either partially or entirely.
  • the reagent pad comprises one or more enzyme-reactive indicators.
  • the enzyme-reactive indicator is a protein-indicator conjugate such as a protease substrate comprising both protein and dye materials.
  • the protein-indicator conjugate is a protein with a binding function to a solid phase, such as a cellulose binding domain conjugated with a protease recognition site and dyes that are released upon proteolysis.
  • the pH indicator is nitrazine yellow, bromocresol purple or bromothymol blue or an analog thereof.
  • the filter pad removes unwanted components of wound fluid, such as fibrinogen, albumins or globulins, and cellular components or non-cellular debris, i.e., dressing components, medicaments, metabolites, microbes, microbial debris, microbial metabolites, etc.
  • the leach-back trap prevents backflow of reagents in the reagent pad or reagent cell from entering the inlet for wound fluid in the testing region.
  • the filter pad and/or leach-back trap comprises a quaternary amine polymer, a mixture of secondary and tertiary amines, other amine-containing polymers, or a combination thereof.
  • the filter pad and/or leach-back trap comprises a quaternary amine polymer. In some embodiments, the filter pad and/or leach-back trap comprises a mixture of secondary and tertiary amines. In some embodiments, the quaternary amine polymer is polydiallyldimethylammonium chloride (polyDADMAC or polyDDA). In some embodiments, the mixture of secondary and tertiary amines is polyethylenimine (PEI).
  • the filter pad and/or leach-back trap is held in place by cross-linking with bifunctional reagents, such as epichlorhydrin, diglycidylethers, di-epoxides or arylazideisothiocyanates.
  • bifunctional reagents such as epichlorhydrin, diglycidylethers, di-epoxides or arylazideisothiocyanates.
  • such reagents when mixed with a reactive amine-containing polymer link different polymer chains and trap the longer polyDADMAC chains within a matrix.
  • the trap is composed of choline acrylate derivatives polymerized in situ using a radical initiator such as benzphenone.
  • the filter pad and/or leach-back trap comprises polymers or reagents containing carboxy, sulfate, sulfonate, or other acidic chemical groups. In some embodiments, the filter pad and/or leach-back trap comprises styrene sulfonate.
  • the indicator trap catches reaction products between the wound fluid and the one or more components selected from the group consisting of enzyme-reactive indicators, reagents that are sources of peroxide, enzymes that are able to transform color reactions, pH indicators, and moisture-detecting reagents.
  • the indicator trap comprises a positively charged or negatively charged trap for reaction products.
  • the positively charged trap comprises a quaternary amine polymer, a mixture of secondary and tertiary amines, other amine-containing polymers, or a combination thereof.
  • the positively charged trap comprises polyDADMAC, or an analog thereof.
  • the negatively charged trap comprises polymers or reagents containing carboxy, sulfate, sulfonate, or other acidic chemical groups. In some embodiments, the negatively charged trap comprises styrene sulfonate. In some embodiments, styrene sulfonate is diluted to 0.02 to 0.8% in water and printed in this form to the support material. In yet other embodiments, styrene sulfonate is diluted to between about 0.01% to 2.0%, about 0.01% to 1.5%, about 0.01% to 1%, about 0.05% to 1%, about 0.1% to 1% or about 0.5% to 1%.
  • the indicator trap comprises a total protein indicator which is eluted by wound fluid to indicate overall flow and capacity of the testing region. This region is distinct from the moisture indicator.
  • a blue polysulfonate dye such as Evans or Trypan blue, is weakly bound to a tertiary amine trap. On arrival of protein, the dye is displaced and re-trapped as a Protein complex on a quaternary amine trap.
  • Coomassie Blue G250 is weakly bound to a Styrene sulfonate field and is displaced by protein to be re-trapped on a quaternary amine trap.
  • the dye undergoes a mild color change from the sulfonic acid environment to the amine environment increasing the effect.
  • the visualization field is pre-printed with the Ponceau S complex of the quaternary amine trap such that it is red indicating non-function. The conversion of the trap to the Blue form indicates the progress of protein elution.
  • Brilliant Black or a similar dark tetra sulfonate is printed into a reagent pad as a free reagent without any polymer complexing. Being water soluble, it is readily mobilized by the wound fluid and migrates to the window where it is avidly trapped by a quaternary amine trap. The high polysulfonation increases the avidity for the amine and resists further elution by proteins. Under conditions of high secretion, the eventual removal of the dye from the trap may also serve to indicate exhaustion of the device or a need to change it.
  • one or more testing regions comprise a sulfonic acid filter pad and a quaternary amine trap. In some embodiments, one or more testing regions comprise a leach-back trap, a sulfonic acid filter pad and a quaternary amine trap.
  • each of the one or testing regions is used to evaluate the presence of one or more analytes and one or more positive or negative control indicators.
  • the one or more analytes is associated with enzyme activity.
  • the enzyme is selected from one or more of the group consisting of elastase, lysozyme, cathepsin G, myeloperoxidase, and leukocyte peroxidase.
  • the enzyme is elastase.
  • the enzyme is lysozyme.
  • the enzyme is cathepsin G.
  • the enzyme is myeloperoxidase.
  • the enzyme is leukocyte peroxidase.
  • a positive result (e.g., indication of infection) from the one or more testing regions is in the form of a visible change.
  • the visible change is a color.
  • the color is selected from dark blue, dark green, and black. It is clear to those skilled in the art that the signal effect of the color change depends on context and practical consideration of interfering colors from the wound itself. Thus, red is a useful signal to indicate a problem, or to indicate stop or not ready, but it is readily confused with colors associated with wound fluids. Thus, colors that are not likely to emerge from a wound offer potentially less source of error.
  • the visible change is fluorescent, luminescent, or mediated by physical means such as electrical, refraction, gas evolution or polymer state change.
  • Some fluorescent systems have the drawback that they require a source of light and potentially a darkened room or chamber for viewing, however, other fluorescent systems do not have such drawbacks.
  • Conventional colors are visible under normal treatment conditions. Given that a color may be diluted or covered by fluids such as blood, there remains an embodiment in which a dual indicator is used in which a fluorescent indicator is mixed with a conventional color indicator. Thus, if a field is covered by blood, the result may be optionally interrogated with a black-light to determine whether a signal is present.
  • the outer layer comprises a polymer that is not easily penetrated by wound fluid.
  • polymers include, but are not limited to, a polyolefin, a polypropylene, a polyethylene, polyurethane, polyamides, ethylene-vinyl alcohol (EVOH), acrylonitrile (PAN), polyvinyl choride (PVC), polyvinylidene chloride (PVDC), polyacrylates (e.g., (1-methyl-1,2-ethandiyl)bis[oxy(methyl-2,1-ethandiyl) diacrylate) or other similar hydrophobic impermeable polymers that, in some embodiments, are laid down as films by printing, spraying or film blowing.
  • the outer layer is water vapor permeable. In some embodiments, the outer layer prevents moisture loss in specific areas (e.g., where a visible change indicating infection is observed) and promotes moisture loss in other specific areas (e.g., where excess wound fluid accumulates).
  • the reaction layer is protected by two layers: a top layer and a bottom layer.
  • the bottom layer typically has an opening that allows fluid sample inflow.
  • the top layer generally prevents premature evaporation of the sample and may force it to migrate through the device to the evaporation zone.
  • the top layer may also contain one or more windows that allow the response of the reagents to be seen or detected.
  • the disclosure herein provides a device comprising a sampling component and a test device comprising:
  • reaction well in liquid communication with the tube, the reaction well holding a reagent capable of indicating the presence of the analyte within the test liquid;
  • the device operates by driving the diluent over the sample and into a reaction well, and a test solution is made by the flow of the diluent over the sample.
  • a test solution is made by the flow of the diluent over the sample.
  • the moving of the diluent past the sample and to the reaction well means that the kit can be used with a minimum number of steps, for instance taking the sample, inserting the sampling component into the housing and activating the moving or driving mechanism. This procedure minimizes user error and thus minimizes false-negative results and misdiagnoses.
  • the diluent is forced through the device in a one-step or multi-step process.
  • the diluent in a one-step process, the diluent is forced through the device which creates a test liquid, which is forced into the reaction well.
  • the diluent could first be forced through the device to a mixing chamber where a test liquid is prepared. That liquid could then be forced from the mixing chamber to the reaction well in a further step.
  • the means of mixing and loading the sample may be achieved in a separate step to its analysis.
  • a sample swab is first inserted into a recipient fluid container, and then a coaxial plunger is pushed over the swab to eject diluted sample into the analysis device.
  • gas is removed, such as by using Goretex membranes which are gas and vapor permeable but not permeable to liquid water. Said membranes can be used to degas both the sample as it is injected and to vent the fluid chambers where the assay takes place.
  • the diluted sample is distributed to each analysis chamber equally through microchannels.
  • back pressure ensures that each chamber is only filled once.
  • the loss of liquid sample from the assembly is prevented by an absorbent between the last outlet and the exterior of the device.
  • kits for detecting an analyte or biological marker or target in a sample comprising:
  • a sampling component comprising a sampling tip for collecting the sample
  • a test device comprising: a housing surrounding a tube to define an opening in the housing to receive the sampling component, the housing also having disposed within it: a sealed diluent chamber connected to the tube and holding a liquid diluent for removing the sample from the sampling tip to form a test liquid; a reaction well in liquid communication with the tube, the reaction well holding a reagent capable of indicating the presence of the analyte within the test liquid; and a forcing mechanism capable of moving the diluent through the device from the chamber, over the sample tip and into the reaction well.
  • the sealed diluent chamber may contain a specified volume of diluent so that an expected volume of test solution reaches the reaction well or wells.
  • the pathway between the diluent chamber and the reaction well is preferably vented at the reaction well end so that trapped air does not affect the flow of test solution through the device or prevent the test solution from reaching the reaction well or prevent the test liquid from correctly filling the reaction well.
  • the housing preferably has two parts which are capable of moving with respect to each other while remaining connected to one another.
  • the action of moving the parts may provide the forcing mechanism by which diluent is moved through the device.
  • the diluent may be driven through the device by compression of the diluent chamber which forces the diluent past the sample tip and to the reaction well or wells emptying the compression chamber.
  • the compression of the diluent chamber can occur when the parts of the housing are moved with respect to one another such as by sliding one part past another.
  • the diluent can be pulled through the device again for example by moving parts of the housing with respect to one another.
  • the sampling component preferably comprises a handle and a sampling tip, the handle preferably comprising a seal which engages with the opening in the housing to seal the tube when the sampling component is fully inserted in the tube.
  • the seal prevents escape of the sample and diluent from the device reducing the chance of cross contamination from the wound fluid.
  • the seal and tube engage to lock the sampling component in the device and prevent removal of the sampling component once it has been used. This further reduces the chance of cross-contamination from the sampling component.
  • the sampling component preferably activates release of the diluent from the diluent chamber.
  • the housing may comprise a locking mechanism which locks the housing in position once the driving mechanism has been activated and prevents reuse of the device. In this way it is immediately apparent that the device has been used and cannot be used again. This minimizes false results from, for instance, a device that has been mistakenly activated in transit or from reuse of a device whose reagents have been spent.
  • the seal is a ball valve or can be a film or membrane seal or a duck bill valve or other non-return valve known in the art which is activated when the sampling component is inserted in the device.
  • the sampling component preferably bursts, punctures or displaces the seal on the diluent chamber.
  • the tube is the same or similar size to the sampling tip of the sampling component so that the act of inserting the sampling tip into the tube causes it to be scraped along the walls of the tube aiding the dispersion of the sample in the diluent once it is released from the diluent chamber and is flushed through the device.
  • the diluent can be flushed along the whole length of the tube or only part thereof.
  • the sizing of the sampling tip to match the tube also forces the diluent to be flushed through the tip when the diluent is driven from the diluent chamber.
  • the tube is wider at its mouth to aid insertion.
  • the diluent chamber is shaped like a bellows to assist in the compression of the chamber
  • the chamber can be a combination of a plunger and tube similar to that found in a syringe, or sample preparation device, or can be a filled flexible sachet which is compressed by hand by the user or a balloon which contracts when the seal is released.
  • provided herein are methods to diagnose and indicate need for treatment of chronic wounds using a wound dressing described herein.
  • the methods and devices disclosed herein detect biological markers or targets from body fluid.
  • the body fluid is blood, plasma, serum, cerebrospinal fluid, sputum, urine or wound exudate.
  • the body fluid is wound exudate.
  • provided herein are methods to diagnose chronic wounds using a wound dressing described herein.
  • provided herein are methods to indicate need for treatment of chronic wounds using a wound dressing described herein.
  • provided herein are methods to indicate need for treatment of surgical or acute wounds using a wound dressing described herein.
  • provided herein are methods of detecting biomarkers of infection in wounds using a wound dressing described herein.
  • biomarkers of infection are leukocyte enzymes.
  • alkaline pH in the wound indicates infection in the wound.
  • provided herein are methods of detecting protease activity in wounds using a wound dressing described herein.
  • provided herein are methods of monitoring the condition of a wound or surgical site and its healing process or status.
  • FIG. 2 One example of a construction of a wound dressing incorporating the device is shown in FIG. 2 .
  • the wound contact layer in this example is carboxymethylcellulose marketed as “AQUACEL”, and the AQUACEL is backed by a polyurethane foam.
  • AQUACEL carboxymethylcellulose
  • the AQUACEL is backed by a polyurethane foam.
  • In the infection-indicating area of the device is an impermeable area beneath the reagent layer. Connecting to this area is a material such as a polyester thread, methylcellulose fibers, or a similar wicking, hydrophilic, capillary or similar material, or capillary channels.
  • This fluid connection brings wound exudate or fluid into contact with the reagent layer, where it may react with and mobilize indicator reagents into visible products that are either visible in place or trapped in window visible from the outside of the dressing.
  • This example also demonstrates the use of AQUACEL.
  • a wound dressing in cross-section in FIG. 2 .
  • the wound contact layer ( 4 ) comprises carboxymethylcellulose, marketed as AQUACEL.
  • the wound contact layer ( 4 ) is backed by a polyurethane foam ( 3 ).
  • the infection-indicating area of the dressing is an impermeable area beneath the reagent layer ( 2 ) and above the polyurethane foam ( 3 ). Accordingly, in this embodiment the infection-indicating area is provided between the reagent layer ( 2 ) and the polyurethane foam ( 3 ).
  • a fluid connection ( 1 ) component Connecting to the infection-indicating area is a fluid connection ( 1 ) component, such as a material such as a polyester thread, methylcellulose fibers, or a similar wicking, hydrophilic, capillary or similar material, or capillary channels ( 1 ).
  • This fluid connection component ( 1 ) brings wound fluid into contact with the reagent layer ( 2 ), where it may react with and mobilize indicator reagents into visible products that are either visible in place or trapped in window ( 6 ) visible from the outside of the dressing as shown in the top view of the wound dressing shwon in (C) of FIG. 2 .
  • views (A) and (B) of FIG. 2 show side views of the wound dressing ( 7 ). View (B) of FIG.
  • FIG. 2 shows the flow of wound fluid ( 5 ) from the wound contacting layer ( 4 ) at the bottom upward via capillary channels ( 1 ), which may be formed by stitching using wicking fibers.
  • the wound fluid reacts with reagents in reagent layer ( 2 ), which may contain windows ( 6 ), allowing users to observe a visible signal resulting from reactions between wound fluid and reagents in the wound dressing.
  • View (C) of FIG. 2 shows a top view of a wound dressing ( 7 ), wherein an opaque film on top of the reagent layer ( 2 ) contains windows or clear areas ( 6 ) that allow the observation of indicators or changes associated with reagent interaction with an analyte.
  • a visible signal may be a color change indicative of a microbial infection in the wound.
  • Example 2 A Dressing Material Printed with a Patterned Reactive Ink to Report MPO Activity
  • a dressing wound contact layer has an upper and lower surface in which the lower surface is the wound contact layer.
  • Reagents can be sprayed or printed on a wound dressing material.
  • FIG. 6 One embodiment of such dressing is shown in FIG. 6 , wherein (A) depicts a view of the surface of the wound dressing material and illustrates the topside of wound contact material; (B) represents the wound material sprayed with amylase, starch, and glucose oxidase; and (C) represents substrate-printed in the centers of the sprayed area.
  • the first layer is the substrate which is printed on the upper surface of the wound dressing material, such as at a concentration of 30 mg/mL in ethanol/heptane using a line width of 0.8 mm and a print density of 1 ⁇ L/cm.
  • the fast blue substrate is printed a grid of circles each 3 mm in diameter ( FIG. 6 ).
  • the next layer is a spray application of a solution of gamma-amylase and glucose oxidase immobilized on hydoxypropyl cellulose.
  • the material may be sprayed in a water buffer solution such that approximately 3 ⁇ g of glucose oxidase is deposited per cm2, in parallel, 0.5 ⁇ g/cm2 of gamma amylase is applied as the conjugate.
  • a starch suspension may be sprayed at a density of 150 ⁇ g per cm2.
  • the wound contact layer is preferably bonded to an upper protecting layer. The same printing regime can be printed on the upper side an upper protecting layer. When exposed to artificial wound fluid containing enzymes, the grid becomes blue colored over time.
  • Example 3 An Absorbent Material Printed with a Patterned Reactive Ink to Report Elastase Activity
  • a dressing has an absorbent and protective layer which has an upper and lower surface in which the lower surface contacts the wound contact layer.
  • a grid pattern is printed with 1 cm grid spacing.
  • the print is performed with a solution of the AAPV-indoxyl ester 30 mg/mL in heptane/butanol using a line width of 1 mm and a print density of 1.3 ⁇ L/cm.
  • FIG. 7 illustrates embodiments of in-place color development of MPO and elastase substrates.
  • the visualization methods are preferably either a color change of an immobile enzyme substrate, directly printed in the window of the reporter area, or of the appearance of an immobilization of the substrate caused by hydrophobic properties of the substance and non-covalent chemical interactions with the carrier material.
  • the amount of applied substrate and possible impregnation mixtures for color improvement were tested in this example as described below
  • Circles (diameter 5 mm) were punched out of carrier material, in this case filter paper. Circles were impregnated with different mixtures of buffers (see specific reagents: Artificial wound fluid 2% bovine serum albumin in phosphate buffered saline containing potassium chloride, urea pH 7.2). See FIG. 8 for examples of substrates in a water solution followed by a drying step. After drying, varying amounts of substrate, usually in an organic solution, were pipetted on the test circles.
  • test liquid buffer or artificial wound fluid 2% albumin
  • test liquid buffer or artificial wound fluid 2% albumin
  • Disks were incubated either in open air or in a closed system. Color development was evaluated visually at various times after initiation. All observations were at room temperature to simulate the condition expected outside the dressing.
  • prototypes were prepared in lab scale to test the interaction of the different enzyme substrates/their color development.
  • Prototypes were designed and assembled as described in FIGS. 7 and 9 .
  • FIGS. 7 and 9 show embodiments of in-place color development of different indicators.
  • FIGS. 10, 11, and 12 Embodiments of diagnostic inserts or disks are shown in FIGS. 10, 11, and 12 .
  • FIG. 10(A) shows the top view of a diagnostic insert, comprising a reporter area ( 60 ), reaction area ( 61 ), and evaporation area ( 62 ).
  • FIG. 10(B) shows the bottom layer, comprising an impermeable layer of plastic film, either white or transparent, with a diameter of about 40 mm. The hole in the middle allows for liquid transport and has a diameter of about 4 mm. The bottom layer is covered with adhesive and in the same shape underneath for an exact fixation on a dressing.
  • FIG. 10(A) shows the top view of a diagnostic insert, comprising a reporter area ( 60 ), reaction area ( 61 ), and evaporation area ( 62 ).
  • FIG. 10(B) shows the bottom layer, comprising an impermeable layer of plastic film, either white or transparent, with a diameter of about 40 mm. The hole in the middle allows for liquid transport
  • FIG. 10 shows embodiments of the reaction material comprising an adhesive layer (C) and a reaction layer (D), wherein each arm has a different substrate/indicator and/or pH system.
  • FIG. 10(E) shows the cover, which comprises an impermeable white plastic foil with a diameter of 20 mm.
  • the outer ring may have an insider diameter of 25 mm and an outer diameter of 31 mm.
  • the top layer may be covered with adhesive underneath for an exact fixation on the reaction material.
  • the reporter area is designed as a window surrounded by an off-white layer to achieve a maximum contrast to the color signals.
  • the evaporation area ensures a continuous liquid transport through the diagnostic material, necessary for the enzyme reaction and color development in the reporter area.
  • Bottom layer as liquid barrier between the dressing and the diagnostic material. Liquid will preferably pass only through the hole in the middle of the layer which leads to a directed radial distribution into the arms of the reaction material (diagnostic material).
  • Diagnostic material was designed with four or five radial “arms” depending on the favored number of enzyme-substrates and controls to be included.
  • the reaction material is fixed on the bottom layer with medical adhesive.
  • the reaction arms are printed or coated with the less permeable bottom layer in place of the adhesive (one material can serve both purposes).
  • the device insert comprises at least one arm or fewer than ten arms.
  • the number of arms may depend on the number of analytes to be determined in a sample and control(s), as applicable.
  • the device insert comprises one, two, three, four, five, six, seven, eight, nine, or ten arms.
  • the reaction material is prepared with impregnation mixtures and substrates in accordance to the optimized conditions described above before assembling the detection material.
  • the cover has several functions. Firstly, it preferably maintains the reaction zone moist by preferably preventing premature drying. Fluids should pass through the reaction area into the reporter area where there is a transparent window that allows color changes to be seen.
  • the second function is preferably to avoid a stop of liquid flow and to cover the chemistry area so that colored reagents are not seen before they are transported to the window.
  • the cover is water impermeable and includes the windows for signal visualization.
  • the detection material is preferably fixed with a medical adhesive to the foam backing layer of a hydrofiber dressing.
  • Trapping mixture Volume of 1.5 ⁇ L per 10 mm2, thickener Methylcellulose (Methocel A4C) max. 1.25%. Drying at room temperature for at least 1 h.
  • FIG. 13 shows visualization of dye in reporter area (D) after exposure of reaction area (C) to artificial wound fluid.
  • the direction of the fluid flow was from reaction area (C) to reported area (D), further comprising amino trap.
  • the experiment was done in triplicates.
  • the MPO substrate in this example is a Fast Blue derivative.
  • the substrate is soluble in 50° C. ethanol. After pipetting of 1.5 ⁇ L of a saturated solution at the reporter area followed by a drying step (20 min, room temperature) the substrate cannot be mobilized by artificial wound fluid 2% albumin.
  • the slightly beige MPO substrate is converted by MPO under development to a deep blue to black color in the reporter area.
  • the MPO reaction is H 2 O 2 dependent, a glucose/glucose oxidase based H 2 O 2 generating system is printed in the reaction area.
  • Test circles contain 1.5 MPO substrate as described above, 10 ⁇ g glucose and 1 ⁇ L of 0.1% glucose oxidase (1 ⁇ g) in water. After drying of the test circles 5 ⁇ L test liquid (artificial wound fluid 2% albumin, pH 7, without/with MPO) were applied. The picture of FIG. 7 was taken after 2 min incubation time.
  • Elastase substrate The elastase substrate consists of an Fmoc protected AAPV enzyme recognition motif (amino-acid sequence AAPV) esterified to an Indoxyl moiety. It is soluble in organic solvents, but completely insoluble in aqueous solution. After enzyme cleavage, Indoxyl is released and immediately oxidized to immobile blue Indigo dye ( FIG. 8 ), visible in the reporter area.
  • AAPV amino-acid sequence
  • elastase-substrate (10 mg/mL in acetone) was pipetted on the circles 2 times in 2.5 ⁇ L steps until a final amount of 50 ⁇ g per test circle (20 mm2) was applied ( FIG. 7 ).
  • an elastase assay was performed by addition of 10 ⁇ L test liquid (artificial wound fluid 2% albumin, pH 7, with/without elastase). Color development was observed and documented after 15 min incubation at room temperature.
  • the pH indicator is a preparation of bromothymol blue in chitosan, containing glutaraldehyde.
  • the mixture is pipetted in the reporter area, after drying leading to a dark yellow and immobile indicator system.
  • the color changes from slightly green (pH 7) to a dark green (pH 8) within 30 minutes of liquid flow (artificial wound fluid 2% albumin). See FIG. 14 for an example of a pH indicator.
  • Immobilized bromothymol blue derived pH indicator after running with approximately 300 ⁇ L artificial wound fluid 2% albumin with different pH values. pH indicator was applied in amounts of 1.5 ⁇ L per 10 mm2 in three pipetting steps of 0.5 ⁇ L.
  • FIG. 9 shows a prototype with the reporter areas for lysozyme, elastase and MPO detection, a pH indicator and the liquid control. On the left the diagnostic material is shown, on the right a magnification of the reporter areas.
  • FIG. 9 (A) shows an example for a prototype with the reporter areas before liquid application.
  • FIG. 9 displays the diagnostic area after liquid application (negative control, artificial wound fluid 0.5% albumin without enzymes).
  • FIG. 9 shows a prototype with the reporter areas for lysozyme, elastase and MPO detection, a pH indicator and the liquid control. On the left the diagnostic material is shown, on the right a magnification of the reporter areas. Color signals for the liquid flow control are visible, so it is believed that the method of visualization by trapping and accumulation works.
  • the order of reaction is generally MPO, then elastase, then lysozyme. Color change of the pH indicator as well as the color development of the MPO and elastase substrates is visible in the reporter area. The in-place color change was established for these reactions and functionality was demonstrated.
  • the inserts can be made in many forms including radial designs ( FIG. 10-12 ), linear designs and single spot approaches. These vary in which layers and patterns are formed. It is generally the goal to make the insert as small and non-occlusive as possible.
  • One means to reduce occlusiveness is to reduce the area of film layers.
  • the only occlusive layers are the lanes themselves.
  • the round bottom layer is replaced by only the adhesive.
  • the advantage of the round bottom layer is that tended to support a broader area of the dressing being sampled into the device.
  • the reduced bottom layer has the advantage of permitting more vapor transfer.
  • a strip of a wicking substance like filter paper is printed with both dyed peptidoglycan ( FIG. 15(D) , a) and a trap material (quaternary amine fixed with cross-linked PEI) ( FIG. 15(D) , b).
  • Wound fluid is applied to the base and allowed to wick up the carrier to point C where it evaporates. Lysozyme, if present, degrades the dyed peptidoglycan and transports anionic fragments to the trap ( FIG. 15(D) , b) where they form a line.
  • a lysozyme test strip ( 50 ) comprises a Whatman filter 1001/85 that is cut into 0.5 cm ⁇ 4 cm pieces having fixation areas ( 51 ), evaporation area ( 52 ), 3% crosslinked, amino trap ( 53 ), substrate area ( 54 ), and a stitching area ( 21 ) for wicking fluid from a wound.
  • Side view (B) shows a wound dressing comprising a test strip ( 50 ), base layer ( 55 ), and stitching ( 21 ).
  • Top view (C) shows the test strip ( 50 ) adhered to wound dressing ( 56 ).
  • a testing strip comprises a Whatman filter 1001/85 that is cut into 0.5 cm ⁇ 4 cm pieces. 2 ⁇ l of the quaternary amine trapping solution is pipetted onto the cellulose filter 1.5 cm beneath the upper end of the stripe. 2 ⁇ l of a substrate formulation containing 4 mg dyed peptidoglycan in 240 ⁇ l 0.5% PEG6000 solution in H 2 O are pipetted 1 cm above the lower end of the stripe. The modified strip is incubated at 90° C. for 30 minutes. The test strip is then ready to use. Alternatively other dyed lysozyme substrates (e.g. dyed chitosan derivatives) can be incorporated into the testing system.
  • the testing strip comprises a substrate spot, a quaternary amino trap, and a cellulose matrix.
  • integration of the lysozyme responsive testing strip into a dressing for the online detection of early stage wound infections is possible.
  • Liquid transport system from the bottom side of the dressing to the test strip is performed via a polypropylene yarn stitched through the layers of the dressing and the first water impermeable adhesive layer. While the stitching helps the process, it is not essential and the same results are obtained without stitching, albeit more slowly.
  • the testing strip is embedded in between of two water impermeable adhesive layers. An evaporating area is included in the upper region of the strip. The detection unit releases the coupled dye in region ‘a’ which is then trapped in area ‘b’ of the testing stripe and gives a clear visible signal upon lysozyme activity.
  • Material selection for the test strip Different cellulose based materials can be used as solid matrix for the test stripe. Non-wovens containing a defined amount of cellulose can alternatively be used. Schematic representation of the Lysozyme test strip. Attachment of the detection system to the dressing ( FIG. 15 ). Base layer contains liquid transfer system to the detection unit. Upper view of the combined base layer and detection unit.
  • FIG. 16 shows examples of indicator reactions include a substrate with at least two domains A and B, or A and C, connected by a cleavage site (X), which is recognized by enzymes in wound fluid, such as elastase (E or E2).
  • peptidoglycan anchor (S) is attached to an enzyme substrate, requiring digestion or breakdown of the peptidoglycan anchor (S) by lysozyme (E1) before the cleavage site (X) on the substrate can be accessed by an enzyme in the wound fluid.
  • Products (P) of the reactions are colored, giving rise to a color change detectable by a user.
  • elastase (E) upon exposure to elastase (E) in the wound fluid, the substrate is cleaved at cleavage site X, releasing MPO substrate (B), which can react with MPO in the wound fluid and oxidize the substrate (B) to form a colored product (P).
  • lysozyme (E1) breaks down peptidoglycan anchor (S) to expose cleavage site (X).
  • elastase (E2) in the wound fluid elastase cleaves the substrate at cleavage site (X) and releases indole (C), which may be converted to indigo in the present of oxygen, giving rise to a color change.
  • MPO substrate (B) may be used instead of indole (C) to yield a colored product (P).
  • FIGS. 10-12 show schematics of indicator inserts or disks.
  • FIG. 10(A) shows the top view of a diagnostic insert, comprising a reporter area ( 60 ), reaction area ( 61 ), and evaporation area ( 62 ).
  • FIG. 10(B) shows the bottom layer, comprising an impermeable layer of plastic film, preferably either white or transparent, with a diameter of about 40 mm. The hole in the middle allows for liquid transport and has a diameter of about 4 mm. The bottom layer is covered with adhesive in the same shape underneath for an exact fixation on a dressing.
  • FIG. 10(A) shows the top view of a diagnostic insert, comprising a reporter area ( 60 ), reaction area ( 61 ), and evaporation area ( 62 ).
  • FIG. 10(B) shows the bottom layer, comprising an impermeable layer of plastic film, preferably either white or transparent, with a diameter of about 40 mm. The hole in the middle allows for liquid transport and has a diameter of about 4 mm.
  • FIG. 10 shows the reaction material comprising an adhesive layer (C) and a reaction layer (D) wherein each arm may be a different substrate and/or pH system and where the arms in each layer overlap to allow exact fixation.
  • Indicator disks can have any number or indicator arms, such as 4 or 5 arms of indicators arranged radially as in FIG. 10 . In some embodiments, the indicator disks comprise 1 to 10 arms, or preferably 4 or 5 arms.
  • FIG. 10(E) shows the cover, which preferably comprises an impermeable white plastic foil with a diameter of 20 mm. The outer ring may have an insider diameter of 25 mm and an outer diameter of 31 mm. The top layer may be covered with adhesive underneath for an exact fixation on the reaction material.
  • (A) shows the bottom layer, comprising a double sided and hydrophobic film ( 65 ) with a diameter of 40 mm. A hole cut in the middle has a diameter of about 5-6 mm.
  • Reference ( 66 ) shows the hydrophobic lanes on non-woven or paper, either full sheet or cut out, placed on the adhesive film.
  • Reference ( 67 ) shows traps printed on non-woven or paper which is adhered to the bottom layer with a back-flow trap ( 68 ).
  • the reaction layer comprises arms, each may have a different indicator and color system as shown in ( 70 ).
  • An evaporation cover ( 71 ) may be printed, sprayed, or overlaid film.
  • Reference ( 72 ) shows the indicator disk affixed to a dressing, wherein outer dressing has a window (shown as dashed line) for viewing the indicator change.
  • bottom layer (A) preferably comprises a white or transparent impermeable plastic film ( 73 ) of diameter 40 mm.
  • a hole in the middle of bottom layer, comprising a diameter of 4 mm allows for wound fluid transport.
  • the bottom layer may be covered with adhesive in the same shape ( 73 ) as the reaction material ( 77 ) underneath for an exact fixation on wound dressing, double-sided adhesive and hydrophobic.
  • the reaction layer ( 77 ) is placed on top of adhesive layer ( 73 ), at the bottom.
  • Each arm of the reaction layer may be 13 mm or 15 mm in length from the center, and about 5 mm wide.
  • Cut access in the center of the disk may also comprise a back-flow trap ( 75 ) to ensure fluid flows from the center outward to evaporation area in the periphery of the insert.
  • Reference ( 74 ) shows hydrophobic lanes on non-woven or paper, fill sheet or cut out, placed on adhesive.
  • Reference ( 76 ) shows traps printed on non-woven or paper with back-flow trap ( 75 ) in the middle.
  • reaction material ( 77 ) comprises brilliant black print, pH indicator, MPO substrate, elastase-peptide-indoxyl, and lysozyme-peptidoglycan indicator, and any combination thereof on arms of the indicator disk. Such substrates may be printed on the reaction material or solid support material.
  • Evaporation cover may be printed, sprayed, or overlaid as a film over ( 78 ), shown as gray box in ( 78 ).
  • the reaction material may be covered by a transparent or translucent film, with a window ( 79 , dash-line box) to allow detection of the reaction.
  • a cover as shown in FIG. 10(E) comprises a middle cover of impermeable white plastic film with a diameter of 20 mm, an outer ring with an inside diameter of 25 mm and an outer diameter of 31 mm, and a top layer covered with adhesive in the same shape underneath for an exact fixation on the reaction material.
  • one embodiment comprises an impermeable white plastic foil with an outer diameter of 31 mm, inner diagnostic circle ( 60 , reporter area) with diameter of 25 mm, and the substrate cover ( 61 ) with diameter of 20 mm in embodiments using a substrate cover.
  • Evaporation area ( 62 ) is located at the periphery of the indictor insert. A small evaporation area, such as 2 ⁇ 5 mm may be too small for a 7-day run, but is sufficient for a smaller run, such as a one-day run. Visible signal resulting from reactions can be detected in diagnostic area ( 60 ) or window reporter area ( FIG. 11 or FIG. 12 ). Such reporter areas can be surrounded by an off-white layer to achieve maximum contrast to color signals.
  • the diagnostic reaction can be performed on a solid phase in which liquid sample diffuses in the vicinity of dyes that are absorbed onto the solid phase. Enzymes carried in the sample can transform the dyes through contact in the pores of the solid phase material. The changes are visible as color changes. Due to the low volumes in use and the high concentration of dye, the color change can be a sensitive indicator.
  • indicator disks are prepared by impregnating a filter paper with the reagents and then punching disks prior to adhering them to a carrier to form a “stick” with a reactive dye coated on to it. This stick can be brought into contact with the sample and a color change observed.
  • more than one indicator disk type is placed onto the stick carrier such that multiple enzymes or parameters can be detected in one test.
  • Parameters that may be determined include pH, lysozyme, elastase, Cathepsin G, MPO, catalase and lipases.
  • Such a stick should also contain a positive control to indicate adequate sample wetting, and or sample application including, in addition to wetting, also the presence of protein.
  • the indicator disks are aligned in a line on a thin “stick” and the sample is applied to them in sequence using a swab, gauze, or by pressing the stick into or onto a sample, for example a used dressing.
  • the indicator disks are aligned next to each other on a broad support and their edges on one side are cut such that the stick can be pressed with the cut edge to the sample source (i.e. a used dressing or diluted wound fluid, or the edge of a cleaning swab or gauze) such that liquid is taken up into each of the disks at the front of the broad stick (“Fork” format).
  • sample source i.e. a used dressing or diluted wound fluid, or the edge of a cleaning swab or gauze
  • the indicator disks are placed inside a carrier box such that the sample swab can be inserted into the box and then sealed inside by closing the box. After closure, the sample swab can be moved and in the process, contacts each sample disk in turn to wet them appropriately such that the resulting reaction can be observed through windows appropriately placed above each indicator disk.
  • a carrier box such that the sample swab can be inserted into the box and then sealed inside by closing the box. After closure, the sample swab can be moved and in the process, contacts each sample disk in turn to wet them appropriately such that the resulting reaction can be observed through windows appropriately placed above each indicator disk.
  • Indicator disks are preferably prepared with reagents that are capable of color change.
  • reagents may be selected from compounds such as p-aminophenol, ABTS (2,2inophenol, ABTS (strate. In some embodiments, acid) diammonium salt), 3,3′-diaminobenzidine, 3,4 diaminobenzoic acid, DCPIP, N,N-dimethyl-p-phenylenediamine, o-dianisidine, p-phenylenediamine, 4-chloro-1-naphthol, o-phenylenediamine N-(4-aminobutyl)-N-ethylisoluminol, 3-amino-9-ethylcarbazole, 4-aminophthalhydrazide, 5-aminosalicylic acid, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), indoxyl, indigo, Fast
  • the reactive layer comprises an arylamine. In some embodiments, the reactive layer comprises an amino phenol. In some embodiments, the reactive layer comprises an amino phenol an aminophenol ether. In some embodiments, the reactive layer comprises an indoxyl. In some embodiments, the reactive layer comprises an a neutral dye.
  • the reactive layer comprises a charged dye, e.g., a dye selected from remazole brilliant blue, toluidine blue, reactive black 5, remazol brilliant blue, reactive violet 5, and reactive orange 16, or a hydrolytic or ammonolytic derivatives thereof, toluidine blue, reactive black 5, or ahydrolytic or ammonolytic derivatives thereof; reactive violet 5, or hydrolytic or ammonolytic derivatives thereof; reactive orange 16, or hydrolytic or ammonolytic derivatives thereof; a dichlorotriazine-based reactive dye such as reactive blue 4, reactive red 120, reactive blue 2, reactive green 19 and reactive brown 10. In some embodiments, the dichlorotriazine-based reactive dye appears black.
  • a charged dye e.g., a dye selected from remazole brilliant blue, toluidine blue, reactive black 5, remazol brilliant blue, reactive violet 5, and reactive orange 16, or a hydrolytic or ammonolytic derivatives thereof, toluidine blue, reactive black 5, or ahydrolytic or ammono
  • the reactive layer comprises compounds such as a reactive dye containing a sulfonylethyl-hydrogensulphate-reactive-group.
  • the reactive dye is reactive black 5, remazol brilliant blue, reactive violet 5 or reactive orange 16, particularly reactive black 5.
  • the reactive dye is remazol brilliant blue, reactive violet 5, reactive orange 16, reactive black 5, or remazol brilliant blue.
  • the reactive layer comprises a dye containing a sulfonylethyl-hydrogensulphate-reactive-group, e.g., reactive black 5, remazol brilliant blue, reactive violet 5 or reactive orange 16, or a combination thereof; or a dye containing a dichlortriazine reactive-group, e.g., reactive blue 4, reactive red 120, reactive blue 2, reactive green 19 and reactive brown 10, or a combination thereof.
  • a dye containing a sulfonylethyl-hydrogensulphate-reactive-group e.g., reactive black 5, remazol brilliant blue, reactive violet 5 or reactive orange 16, or a combination thereof
  • a dye containing a dichlortriazine reactive-group e.g., reactive blue 4, reactive red 120, reactive blue 2, reactive green 19 and reactive brown 10, or a combination thereof.
  • indicator disks are preferably prepared with reagents that are capable of physical change, e.g., nanoparticle, colloidal gold particle or a luminol derivative.
  • MPO is detected using an analog of Fast Blue, or a di-amino phenol as a color generating agent
  • Elastase is detected using a peptide derived indicator including a napthol phenol, indoxyl or a nitro-phenol
  • Lysozyme is detected using an oligo saccharide conjugated to a dye or color generator, or an oligosaccharide particle containing a charged dye in particular said oligosaccharide may be selected from peptidoglycan or chitosan derivatives.
  • Protease such as human neutrophil elastase or HNE
  • a peptide substrate comprising a core sequence Alanine-Alanine-Proline-Valine (AAPV) which is conjugated to one or more of the aforementioned dyes.
  • AAPV Alanine-Alanine-Proline-Valine
  • the reagents to detect these analytes are subject to cleavage to yield a compound that is trapped on an immobile portion.
  • Example 7 Use of an Indicator Dressing in the Context of a Wound Therapy
  • a dressing containing an indicator disk as described above is prepared in which the printed disks are inserted between the absorbative outer layer of the dressing and the outer membrane or film such that the reacted areas are visible.
  • the dressing is applied to a wound, be it chronic or surgical, such that sites of secretion in the wound (deeper sites, sutures) are located under or as near as possible to centers of the disks. See FIG. 17 .
  • the dressing will begin to absorb secretions.
  • the first observation of wound status can be made after the “flow control” has turned blue. This is an indicator of the fact that sufficient liquid has entered the dressing to saturate the reagent pads.
  • biomarker indicators If, at this stage one or more of the biomarker indicators has already reacted, this would be an indicator of the fact that a degree of inflammation or potential infection was present in the wound at dressing change.
  • One biomarker reacting, with or without an indication of pH above neutral is likely sufficient to justify detailed wound hygiene steps at the next change.
  • Two biomarkers responding with or without a pH above neutral is likely an indication that in an ideal situation, the wound would be immediately re-dressed and anti-microbial approaches initiated.
  • Three biomarkers responding, with or without pH would likely be an indicator that in an ideal situation the dressing should be immediately changed and anti-microbial hygiene, wound dressings and laboratory microbiology should be initiated.
  • the indicators can respond immediately after dressing change, after 1-2 days and after 2-5 days. Due to the dynamics of flow, the reagents are intended to respond within 2-6 h of exposure to a threshold of enzyme activity, for example 0.5 U/mL elastase, however, long exposure to low enzyme levels, i.e. 5 days, may also ultimately engender a signal.
  • a threshold of enzyme activity for example 0.5 U/mL elastase
  • long exposure to low enzyme levels i.e. 5 days
  • the user can distinguish a low level of activity from an acute sign in that the reporter area very slowly accumulates signal, i.e. very faint at 3 or 4 days and only slightly more developed after 4 or 5 days. This would be indicative of a wound deserving of close observation and hygiene but not necessarily one in acute infection.
  • Experience with the particular patient would also inform the therapist. If the same pattern was apparent over multiple dressing changes it would suggest a stable situation but that any change in the degree of reaction should be taken as an indication of a potential change
  • the position of those that react is an indicator of where in the wound potential problems arise.
  • the absence of clear signals after 5 days would be an indication that no thresholds have been crossed in that period and that current therapy may be adequate.
  • Weak signals that develop slowly may indicate that hygiene could be improved.
  • Moderate signals that appear gradually after 5 days may be the first signs that an infection is developing and should result in more elaborate therapy.
  • Strong signals that develop over 5 days would be correspondingly more emphatic indications that therapy need be improved, for example, by instituting silver dressings.
  • the rapid onset of a clear signal is, in turn, the indicator of an acute issue that merits immediate attention.
  • reaction cells can be applied to a wound dressing in some embodiments for detection of microbial infection over an area.
  • Amine back flow trap or filter or leach-back trap ( 41 ) may be used to separate testing regions.
  • Example 8 Dressing Inserts that may be Applied to Any Dressing
  • indicator insert may be freely placed at a site of likely secretion or placed anywhere in a wound dressing or a surgical dressing.
  • Diagnostic disks can be incorporated into a dressing during its manufacture. These inserts may be placed between the outer absorbent and the outer film and equally spaced, and glued in place during manufacture. However, the fixed spacing may not be appropriate to a particular wound.
  • the reporter disks are prepared as independent materials that can be put on any absorbent dressing below the outer film.
  • the inserts are prepared as stand-alone disks, cut and sealed in sterile outer envelope.
  • Therapists using dressings, see reference ( 92 ) in FIG. 17 without reporters may still insert these reporters ( 90 ) into such dressings in so far as these are modular and require the therapist to assemble the dressing from: wound contact material, absorbent, and outer film or cover.
  • the reporter disk can fulfill its function in many ways, including so long as it is in fluid contact with the wound fluids ( 91 ) and otherwise under an appropriate outer dressing.
  • An adhesive transparent outer disk is one means of fixing and holding the reporter disk.
  • the disk itself may have an adhesive bottom coat.
  • non-woven layer in a dressing carries or contains diagnostic disks ( 705 ), wherein the dressing further comprises a film cover layer ( 701 ), non-woven carrier of indicators ( 702 ), polyurethane foam ( 703 ), and cellulose contact layer ( 704 ).
  • the dressing further comprises a film cover layer ( 701 ), non-woven carrier of indicators ( 702 ), polyurethane foam ( 703 ), and cellulose contact layer ( 704 ).
  • FIG. 18(A) shows a side view of the wound dressing with embedded diagnostic disks, wherein quaternary amine coating (shown as dashed line) on foam surface acts as trap for preventing return of diagnostic substances and that wound fluid flows upward to diagnostic disks.
  • the side view representation (A) shows an example disk for detecting MPO, wherein ( 720 ) is a paper disk impregnated with the MPO substrate through dipping or spray coating.
  • Reference ( 721 ) is the paper or non-woven material that acts as a carrier.
  • Reference ( 722 ) shows an adhesive layer.
  • Reference ( 723 ) represents a disk containing glucose oxidase and/or starch and an amylase, such as gamma amylase.
  • FIG. 19(D) shows the wound fluid mobilizes starch into glucose, which in turn is oxidized by glucose oxidase to yield H 2 O 2 .
  • FIG. 19(B) shows the side view of a disk for detecting lysozyme, wherein particles of chitosan or peptidoglycan are embedded in the paper disk on its lower side using a water permeable adhesive layer that also serves to adhere the disk to the foam layer below. Enzyme activity dissolves the particles and releases dye that is trapped and is detectable in the top layer.
  • the paper disk ( 730 ) is a trap impregnated top layer. In the presence of wound fluid, as shown by the upward arrow in FIG.
  • the paper/non-woven disk acts as a carrier ( 721 ) so that the wound fluid moves to the top layer, via stained peptidoglycan particles ( 731 ) in the process.
  • Reference ( 722 ) shows an adhesive layer.
  • Reference ( 732 ) shows an adhesive ring or thermal weld that secures the disk to the non-woven carrier layer ( 721 ).
  • the dashed line in FIG. 19(C) represents quaternary amine coating on foam surface under the diagnostic strips that acts as a trap for preventing return of diagnostic substances.
  • FIG. 19(E) shows stained peptidoglycan particles slowly being dissolved by wound fluid and the dye that is released is then captured in the trap material while excess wound fluid flows to the sides, as indicated by the arrows.
  • the paper disk is impregnated with trap material in the top layer.
  • FIG. 20 the scaling up of the production of the disk constructs is described.
  • the disks are punched from a sheet comprised of sealing film, the adhesive, the paper or non-woven carrier, which is protected by the top cover sheet.
  • FIG. 21 shows different embodiments of paper disks.
  • FIG. 21(A) shows the different layers involved in such embodiments, namely, film cover on top, a non-woven carrier, a polyurethane foam, and a cellulose contact layer.
  • FIGS. 21(B) to 21(E) show different variants of such analytic system with indicator disks.
  • FIG. 21(B) shows non-woven carrier of indicators with diagnostic disks attached, including pH indicator on paper, paper disk printed with starch, amylase, and glucose oxidase, and trap impregnated paper disks.
  • FIG. 21(C) shows partly printed non-woven and applied paper disks, including trap printed and UV border or trap border ( 910 ).
  • 21(D) shows partly printed non-woven and gradient ( 911 ) application of indicator disks.
  • the gradient is formed by printing concentric rings of substrate at different concentration, or with a different pH mediator. Fully transformed, different substrate concentrations lead to different color intensity.
  • using polymeric buffers in each ring can modulate the degree of reaction requiring more activity to yield the same color. Suitable buffers include polycarbonates and polysulfonates.
  • the number of concentric rings of color provides an indication of overall activity and thus with reference to a color chart can assist in assessing the degree of severity.
  • FIG. 21(E) shows one embodiment of the diagnostic disks with printed indicators ( 912 ) and reagents applied on adhered paper disks. In these embodiments, the non-woven functions as a carrier of indicators.
  • FIG. 22 shows different ways diagnostic disks ( 800 ) may be attached to a dressing.
  • FIG. 22(A) shows continuous adhesive that allows wound fluid to penetrate through the adhesive.
  • FIG. 22(B) shows ring or annular adhesive that allows wound fluid to penetrate via the hole in the middle of the adhesive layer.
  • FIG. 22(C) shows welding with UV printed border.
  • FIG. 22(D) shows welding with polyethylene component of non-woven.
  • Certain reagents have adequate affinity for paper or similar solid phases and remain substrates for the biomarker enzymes of interest. Where these substrates exhibit color change, the activity of the enzymes can be observed by simply contacting the fluid containing the markers with the impregnated paper. Capillarity ensures the distribution of the fluid to the substrate.
  • Each impregnated disk can be separately added to a combined “dipstick” which allows all disks to be used in a test ( FIG. 23 ).
  • One format is the linear array of disks, although the layout may be easily varied.
  • FIG. 23 shows indicator inserts or disks ( 820 ) specific for various enzymes or microbial biomarkers and controls may be placed in various combinations or arrangements to form various dipstick devices.
  • Each impregnated disk ( 820 ) can be separately added to a combined dipstick that allows all indicator disks to be used in a test.
  • One format is the linear array of disks, although the layout may be easily varied.
  • Indicator disks may be separated by lanes or borders ( 821 ).
  • Fluid control a 5 mm disk of double sided adhesive is punched, and 50 ⁇ g of a micronized Fast green powder is placed on the adhesive in the center. A paper disk is placed over the adhesive disk concentrically, such that the powdered dye is covered by the paper. The resulting disk is then placed in the first position on the carrier stick via the other side of the adhesive.
  • Filter paper is soaked in a mixture containing bromothymol blue, chitosan and glutaraldehyde in ethanol as reported above. The filter paper is dipped in the mixture, allowed to drip dry, and is then dried on glass at 54° C. 5 mm disks are then punched and the disks are attached to the carrier with adhesive.
  • MPO indicator 5 mm paper disks are impregnated sequentially with 1.5 ⁇ L of the MPO fast blue substrate as described above for the Dressing indicator. Once dried, one half of the disk is impregnated with 10 ⁇ g of glucose and the other half of the disk is impregnated with 1 ⁇ g of glucose oxidase in buffer (PBS).
  • PBS glucose oxidase
  • Lysozyme indicator Filter paper is lightly sprayed (1.5 ⁇ L per cm2) with a trap solution containing 3% W/V quaternary amine trap and allowed to dry with the top surface identified. A 5 mm disk of double sided adhesive is punched, and 40 ⁇ g of a Brilliant Black stained Peptidoglycan is placed on the adhesive in the center and allowed to dry. A paper disk is placed over the adhesive disk concentrically, such that the PG-dye deposit is covered by the paper. The resulting disk is then placed in the fifth position on the carrier stick via the other side of the adhesive. The resulting dipstick can have the sample applied to it by means of swab, or gauze.
  • a dipstick is prepared essentially as for the above example with the exception that the reagent disks are oriented to the base of a thicker carrying card or stick. The ends of the reagent disks are trimmed at the last stage of production such that they are flush with the bottom edge of the device. This allows them to be pressed onto a surface to be sampled. The sample then diffuses into the cut end of the disks to react. This format is potentially more convenient for sampling surfaces like used dressings.
  • a sealable container or enclosure may be used for accommodating a plurality of disks, such as 6 disks, in which a wet swab can be placed and then closed such that it can apply the sample to the paper disks but not contaminate any further objects.
  • a sealable container or enclosure may be used for accommodating a plurality of disks, such as 6 disks, in which a wet swab can be placed and then closed such that it can apply the sample to the paper disks but not contaminate any further objects.
  • the key elements of the design are: the well for wetting the swab; its closed sealable form; the sealing rings around the stem of the swab; the pressure fins that push the swab to the disks while also making it a one-way movement; the window to the disks; the space for reference colors on the case, the possibility to re-open in a microbiology lab.
  • the dressing is intended for the treatment of surgical wounds and contains distinct linear regions intended to be placed over the line of sutures. These linear regions contain particularly high concentrations of reporter dye such that even in the earliest phases of infection, the signal will be apparent.
  • the dressing contains a removable components such as a thread, or similar absorbent that can be withdrawn and tested without removing the dressing ( FIG. 24 ). Said removable component is placed in such a way as to be located at or near the edges of the surgical wound.
  • the surgical site dressing is essentially transparent in the linear region both to allow observation of the sutures, and the reporter dye.
  • the transparent area is covered by an opaque film that may be easily peeled back to examine the wound.
  • the covering and absorbent material contains a trapping material such as a polymeric cation or anion that is capable of binding and concentrating the dyes that are released.
  • sampling threads ( 100 ) are built in or added to dressing for a wound or at a surgical site ( 92 ).
  • AQUACEL ( 4 ) is used in some embodiments of the dressing ( 92 ).
  • Sampling threads absorb wound fluid or fluid at surgical site (D).
  • a thread may be pulled out or extracted (E) from dressing without having to remove or disturb dressing using an instrument or device ( 101 ) such as a tweezer, hook, or thread hook device.
  • the thread can then be dissolved in a buffer for use in a diagnostic device ( 102 ) using one or more indicator regents or indicator disks described herein.
  • a wound dressing comprises built in sampling threads.
  • the sampling threads absorb wound fluids and may be removed without disturbing the wound dressing for detection of analytes in the wound fluid.
  • the sample threads may be diluted in buffer to dissolve markers for diagnosing the status of the surgical site or wound.
  • a thread hook device may be used to remove a thread from a wound dressing.
  • the reporter inserts are manufactured by the sequential placement of various materials on a solid carrier.
  • This carrier can be a cellulose, viscose, polyethylene, polyamide or other suitable polymer or mixture of these components.
  • FIG. 25 shows indicator inserts may be manufactured or printed in sheets or reels.
  • FIG. 25 also shows the order of printing, printing of lanes, order on which reagents are laid down, and placement of reagents for printing disks in sheets or reels, comprising adhesive or backing film as in FIG. 25(A) , applying a non-woven material as in FIG. 25(B) , and printing reagents and lanes on non-woven material as in FIG. 25(C) .
  • Completed or assembled inserts, as show in FIG. 25(D) can be separated or cut before sticking to a dressing or similar support materials.
  • the material is prepared in a reel to reel format.
  • the solid carrier is first printed with guide lanes that penetrate the film to full thickness.
  • a bottom film that sits under the polymer and does not penetrate it is printed, this includes a hole in the center through which sample fluid enters.
  • trap material is printed, at half density around the entrance site (back-flow trap) and at full density in the trapping sites for the flow control and the lysozyme substrate.
  • the flow control ink is applied to the first position of the radial arms of the disk, 10 to 50 ⁇ g of Brilliant black in 1% methylcellulose is typical.
  • the pH reporter as described above is printed in position 2.
  • the MPO area is printed sequentially with substrate, glucose and glucose oxidase as noted above.
  • the elastase substrate is applied in sequential prints to reach the appropriate load.
  • the lysozyme substrate is printed to position 5 in the reagent level (as distinct from the trap level).
  • a film is printed on the top of the construct but without penetration of the solid carrier. This film occludes only the radial arms from center to the end of the reporter window.
  • the resulting reel contains a continuous pattern of evenly spaced reporter fields. These continuous printed fields can be directly rolled into a dressing sandwich between absorbent and outer film, or, they may be punch cut and packaged for separate use.
  • FIG. 20 shows another embodiment of manufacturing paper disks.
  • FIG. 20(A) shows a side view of a continuous sheet, comprising a cover film on top, paper in the middle, and backing film at the bottom.
  • Adhesive/particle matrix ( 901 ) may be applied between the cover film/backing film and the paper layer ( 900 ).
  • FIG. 20(B) shows a top view of cut sheets prepared for application to non-woven carrier by removal of inter disk material prior to placement on non-woven carrier.
  • reagents it is desirable to place reagents in devices in such a way as that they are stable, but readily soluble for access to injected enzymes.
  • One approach is to dry reagents on disks of paper and include the disks in the devices.
  • Disks are prepared using either a continuous paper or similar material or textile which is dipped, sprayed or printed, or using pre-cut disks that are dipped or mixed in a reagent and subsequently dried. See FIGS. 20, 25 .
  • the densities of the reagents per 20 mm2 are:
  • MPO substrate alkyl-fast blue 0.6 ⁇ g
  • paper is first impregnated with impregnation mixture (0.25% (w/w) Nonidet, 2% (w/w) decanol in 0.05 M borate buffer pH 8).
  • the paper so printed can be punched to yield disks containing the reagents.
  • the reagents may be pressed into water soluble “pellets” which are then included in the wells of the devices.
  • the pellets can contain a range of materials in addition to those used on paper.
  • a liquid based diagnostic device uses pre-formulated reagents to generate a colour in response to enzyme activity in a sample.
  • the sample may contain all or only some of the liquid required.
  • the device preferably contains water or buffer suitable to dilute or render the sample homogeneous.
  • the resulting mixture is distributed to wells which each contain a different reagent set.
  • the reagents are a mixture of buffer salts, energy source, substrate and associated chromophores if not contained in the substrate. These reagents are ideally delivered in a discreet entity like a tablet or similar that can be placed in the wells.
  • a Perkin Elmer electro-hydraulic tablet press is used to form the tablets as follows:
  • the pressing time per tablet is approximately 10 sec.
  • the diameter of the filled part of the pressing tool is 5 mm
  • Tablets are: 20 mg, 5 mm diameter, 1 mm deep
  • a vacuum is first applied for about 15 sec.
  • the applied vacuum is maintained until the removal of the pressing tools.
  • the pressing pressure is adjusted to 2 t.
  • Example 16 Standalone Device and Kit for Liquid Based Assay
  • the test device comprises a housing surrounding a tube to define an opening in the housing to receive the sampling component, the housing having within it a sealed diluent chamber which is connected to an opposite end of the tube and holding a liquid diluent for removing the sample from the sampling tip to form a test liquid.
  • the tube is in liquid communication with a reaction well which holds a reagent capable of indicating the presence of the analyte.
  • a driving mechanism drives the diluent from the chamber past the sampling tip, into the tube and finally to the reaction well.
  • the kit for detecting an analyte in a sample comprises: (i) a sampling component comprising a sampling tip for collecting the sample and (ii) a test device, further comprising: a housing surrounding a tube to define an opening in the housing to receive the sampling component, the housing also having disposed within it: a sealed diluent chamber connected to the tube and holding a liquid diluent for removing the sample from the sampling tip to form a test liquid; a reaction well in liquid communication with the tube, the reaction well holding a reagent capable of indicating the presence of the analyte within the test liquid; and a driving mechanism capable of driving the diluent through the device from the chamber, over the sample tip and into the reaction well.
  • the kit operates by driving the diluent over the sample and into a reaction well, a test solution is made by the flow of the diluent over the sample. It is not necessary to first mix the sample with the diluent to make a test solution and then move that solution via a lateral flow strip to the reaction well.
  • the driving of the diluent past the sample and to the reaction well means that the kit can be used with a minimum number of steps, for instance taking the sample, inserting the sampling component into the housing and activating the driving mechanism. This simple procedure minimizes user error and thus minimizes false negative results and misdiagnoses.
  • the sealed diluent chamber may contain a specified volume of diluent so that an expected volume of test solution reaches the reaction well or wells.
  • the pathway between the diluent chamber and the reaction well is vented so that trapped air does not affect the flow of test solution through the device or prevent the test solution from reaching the reaction well.
  • the housing preferably has two parts which are capable of moving with respect to each other while remaining connected to one another.
  • the action of moving the parts may provide the driving mechanism by which diluent is moved through the device.
  • the diluent can be driven through the device by compression of the diluent chamber which forces the diluent past the sample tip and to the reaction well or wells.
  • the compression of the diluent chamber can occur when the parts of the housing are moved with respect to one another such as by sliding one part past another.
  • the housing comprises a locking mechanism which locks the housing in position once the driving mechanism has been activated and prevents reuse of the device. In this way it is immediately apparent that the device has been used and cannot be used again. This minimizes false results from, for instance, a device that has been mistakenly activated in transit or from reuse of a device whose reagents have been spent.
  • the sampling component preferably comprises a handle and a sampling tip, the handle preferably comprising a seal which engages with the opening in the housing to seal the tube when the sampling component is fully inserted in the tube.
  • the seal generally prevents escape of the sample and diluent from the device reducing the chance of cross contamination from the wound fluid.
  • the seal and tube engage to lock the sampling component in the device and prevent removal of the sampling component once it has been used. This further reduces the chance of cross contamination from the sampling component.
  • the seal is a ball valve or can be a film or membrane seal or a duck bill valve or other non-return valve known in the art which is activated when the sampling component is inserted in the device.
  • the sampling component preferably bursts, punctures or displaces the seal on the diluent chamber when it is inserted in the device.
  • the tube is the same or similar size to the sampling tip of the sampling component so that the act of inserting the sampling tip into the tube causes it to be scraped along the walls of the tube aiding the dispersion of the sample in the diluent once it is released from the diluent chamber and is flushed through the device.
  • the sizing of the sampling tip to match the tube also forces the diluent to be flushed through the tip when the diluent is driven from the diluent chamber.
  • the diluent chamber is shaped like a bellows to assist in the compression of the chamber.
  • the chamber can be a combination of a plunger and tube similar to that found in a syringe or can be a filled flexible sachet which is compressed by hand by the user or a balloon which contracts when the seal is released.
  • the kit comprises a sampling component for collecting a sample and a test device.
  • the test device comprises a housing surrounding a tube to define an opening the housing to receive the sampling component, the housing having within it a sealed diluent chamber which is connected to an opposite end of the tube and holding a liquid diluent for removing the sample from the sampling tip to form a test liquid.
  • the tube is in liquid communication with a reaction well which holds a reagent capable of indicating the presence of an analyte.
  • a driving mechanism drives the diluent from the chamber past the sampling tip, into the tube and finally to the reaction well.
  • FIG. 26 shows a cross section of a standalone device kit for detecting an analyte in a sample.
  • the sampling component ( 2 ) comprises a handle ( 4 ) and a sampling tip ( 6 ) in the process of being inserted into the housing through one end of a tube ( 10 ).
  • the sampling component ( 2 ) has a sealing means ( 12 ) which forms a seal with the open end of the tube ( 10 ) while the sampling tip ( 6 ) depresses the ball valve ( 14 ) to open the diluent chamber ( 16 ).
  • FIG. 27 shows a sampling tip fully inserted in the housing to seal the component to the device.
  • FIG. 28 shows a plan view of the standalone device kit with the sampling component in place and shows three viewing windows ( 20 ) to the left of the housing which coincide with three reaction chambers ( 18 ) which contain a reagent capable of indicating the presence of an analyte.
  • the reaction chambers may contain reagents capable of detecting different analytes from for instance a wound fluid.
  • the window on the right of the housing when viewed from above is a control window which indicates that the test has taken place.
  • Housing ( 8 ) is in two main parts which are slidably connected to each other. In FIG.
  • a user of the device can slide a lower part of the housing ( 24 ) away from the upper part of the housing ( 26 ) and in so doing cause a lever ( 28 ) to compress the diluent chamber ( 16 ) and drive the diluent out of the chamber, through the sampling tip ( 6 ) and up tube ( 10 ) to manifold ( 30 ).
  • the arrows (A) in FIG. 29 indicate the movement of the diluent through the device to form a test solution.
  • Diluent chamber, tube and reaction chamber in the standalone device kit are shown in FIG.
  • FIG. 32 shows distribution of test solution to each reaction chamber in a standalone device kit.
  • Test solution flows to each reaction chamber ( 18 ) from a central node ( 32 ).
  • the node ( 32 ) may also contain a non-return valve to prevent test solution from flowing back into the device and causing cross contamination.
  • the sampling component comprises a handle and a sampling tip in the process of being inserted into the housing through one end of a tube.
  • the sampling component has a sealing means which forms a seal with the open end of the tube while the sampling tip depresses the ball valve to open the diluent chamber.
  • the sampling tip when fully inserted in the housing to seal the component to the device, allows the housing to be opened, releasing the diluent and allowing the forcing means to operate.
  • the device also comprises three viewing windows in the housing that correspond to three reaction chambers which contain a reagent capable of indicating the presence of an analyte.
  • the reaction chambers may contain reagents capable of detecting different analytes from for instance a wound fluid.
  • Some embodiments include a control window which indicates that the test has taken place and that the sample was sufficient to make the test viable.
  • the user of the device can slide a lower part of the housing away from the upper part of the housing and, in so doing, cause a lever to compress the diluent chamber and drive the diluent out of the chamber, through the sampling tip and up tube to manifold. If the device is not activated, that is if the seal on the diluent chamber has not been broken, it is not possible for the housing to open.
  • the opening of the housing causes the viewing windows to be positioned over the reaction wells and enable the result to be viewed by the user. This provides a safety measure as it ensures that proper operation of the device in order to obtain a reliable result.
  • the test solution flows to each reaction chamber from a central node.
  • the node comprises a non-return valve and filter to prevent test solution from flowing back into the device and between reaction chambers, which can cause cross contamination.
  • the pathway for the flow of diluent through the device is preferably provided with vents at the reaction chamber end.
  • FIG. 33 shows a diagnostic swab device with housing.
  • the swab device comprises a resealable housing ( 80 ), further comprising locator and locking pins ( 82 ), a viewing window ( 81 ) for observing visible signals from reagent disks placed in disk holders ( 83 ), and a groove ( 85 ) for placing the swab.
  • Side view of FIG. 33(C) shows the housing ( 80 ).
  • a user touches a sample with the swab, places the swab in the housing ( 80 ) in groove ( 85 ), pull on the stem of the swab as shown by the arrow in (D) so that the sample on the swab slides on the strip ( 86 ) and transfers the sample to reagent or indicator disks ( 83 ).
  • the results may be viewed through viewing window ( 81 ).
  • the swab may also be kept in the housing ( 80 ) for analysis later.
  • FIG. 34 shows one embodiment of a thread hook sample preparation device ( 200 ), comprising a needle-like tip and a handle or plunger ( 201 ), wherein the tip further comprises a hook for extracting a thread from a dressing without disturbing the dressing as shown in FIG. 34(A) .
  • thread hook device ( 200 ) may be inserted into a sample preparation chamber or diluent chamber ( 202 ) containing a diluent for dissolving or diluting microbial biomarkers or wound fluid from the thread FIGS. 34(B) and 34(C) .
  • the plunger ( 201 ) of the thread hook device may be depressed downward in the sample preparation chamber ( 202 ) so that the tip of the needle breaks a seal as shown in FIG. 34(D) at the bottom of the sample preparation chamber ( 203 ) in order to release the sample solution into a device for analysis of wound fluid or surgical site.
  • FIG. 35 shows one embodiment of a swab sample preparation device ( 300 ), comprising a swab ( 302 ) with a handle or plunger ( 301 ) may be used to touch a sample for testing.
  • the swab device ( 300 ) after sampling a bodily fluid or wound fluid, is placed inside a sample preparation chamber ( 202 ) containing a buffer for dissolving or diluting the wound fluid or bodily fluid as seen in FIG. 35(A) .
  • the swab device is agitated or mixed inside the sample preparation chamber to further release the fluid sample into the sample preparation chamber as shown in FIG. 35(B) .
  • the plunger ( 301 ) of the needle is depressed downward as shown in FIG.
  • 35(C) to break the seal ( 203 ) at the bottom of the sample preparation chamber, allowing the sample fluid to flow into a reaction chamber containing reagents or indicator inserts or disks for detecting microbial infection in the sample taken by the swab.
  • gas is removed using Goretex membranes ( 204 ) which are gas and vapor permeable, but not permeable to liquid water. Said membranes can be used to degas both the sample as it is injected and to vent the fluid chambers where the assay takes place.
  • FIG. 36 shows a sample preparation chamber adapted to indicator testing.
  • Sample preparation chamber ( 202 ) is adapted for dissolving or diluting a sample for testing further and comprises a resealable top ( 401 ) and a breakable seal ( 402 ) at the bottom of the chamber ( 203 ), where the sample preparation chamber connects to a reaction chamber or diagnostic device.
  • a swab device or a thread hook device is plunged downward or depressed downward in the chamber, it causes the seal ( 402 ) at the bottom to break, releasing sample fluid into a diagnostic device connected to the chamber.
  • a diagnostic device ( 500 ) or analysis system is adapted to connecting to the sample preparation chamber ( 202 ) at one end, allowing sample fluid to flow from the sample tip ( 300 ) upon breaking the seal ( 203 ) at the chamber connector, which allows the sample fluid to flow from the sample preparation chamber ( 202 ) into reaction chambers ( 502 ) for analysis.
  • Absorbent material ( 501 ) positioned after the reaction chambers ( 502 ) helps to draw the sample fluid from the sample preparation chamber ( 202 ) into the reaction chambers ( 502 ).
  • Reaction chambers may contain reagents, reagent tablets, reagent disks, or indicator inserts, as described herein.
  • liquid phase tests may be conducted using a variety of means but ultimately rely on the formation of a visible signal in a low volume of liquid (e.g. 100 ⁇ L).
  • the methods differ in terms of how one acquires, dilutes and introduces the sample.
  • the sample may be a swab, piece of gauze or contaminated thread from a dressing.
  • the swab ( FIG. 35 ) is placed in a plunger configuration and then the plunger forms a handle with which the swab can be mixed with an extraction buffer or a diluent in a sample preparation chamber.
  • the plunger then allows the removal of fluid by sealing against the stem of the swab and the sides of the chamber simultaneously; a goretex insert in the plunger allows gas removal as the plunger descends.
  • the sample is a thread or piece of gauze
  • the swab is replaced by a hook, however, the principle is the same as the stem of the hook is placed within the plunger.
  • the sample preparation chamber contains buffer which is mixed with the sample on the swab/hook.
  • the chamber is sealed at the Luer-Lock style connector and this seal is broken either when the Luer is placed in a receptacle, or when the swab or hook is pushed through the bottom of the chamber ( FIG. 35 ).
  • the assay device entrance includes a standard female Luer with a Luer lock like surround to ensure good sealing.
  • the modified chamber engages irreversibly with the female Luer lock and on depression of the plunger, the fluid is transferred gas free into the device via a fluid distribution network.
  • Each chamber in the device contains a reagent tablet (see previous example for the reagents).
  • Each chamber is vented via a goretex patch sonic welded over the chamber.
  • fluid flow preferably stops.
  • the vented gas passes by a filter before reaching the atmosphere.
  • the arrival of fluid dissolves the reagent pills and allows the reaction to start.
  • the degree of reaction over a given time is determined by comparison to a chart of colors. The result is largely binary, clear color or not.
  • the more markers associated with color the more likely the potential infection.
  • wound fluids from uninfected wounds do not cause color change.
  • Those from infected wounds cause at least one marker to change color and more often all three markers within 5 minutes.
  • FIG. 38 shows one embodiment of a diagnostic device or a transfer system, comprising a chamber or vessel ( 601 ) containing a buffer, such as saline, a resealable top ( 600 ), a plunger or similar device ( 602 ) with a gas outlet and a hook or sample tip at one end for transferring sample into the a sample preparation chamber or a diluent chamber ( 601 ), and at least one reaction chamber ( 606 ) capable of analyzing a sample fluid from the chamber ( 601 ).
  • a buffer such as saline
  • a resealable top 600
  • a plunger or similar device 602
  • 602 with a gas outlet and a hook or sample tip at one end for transferring sample into the a sample preparation chamber or a diluent chamber ( 601 )
  • at least one reaction chamber ( 606 ) capable of analyzing a sample fluid from the chamber ( 601 ).
  • the plunger or piston ( 602 ) containing a sample at the end is inserted into the sample preparation chamber ( 601 ), or a sample is placed in the diluent chamber ( 601 ), so that the sample may be diluted or dissolved in the buffer in the chamber ( 601 ).
  • the assembly of a plunger ( 602 ) inserted in a diluent chamber ( 601 ) is shown in ( 607 ).
  • the chamber ( 601 ) may further comprise a Luer-Lock or slip tip ( 605 ) for connecting to a reaction chamber ( 604 ) or an analysis system.
  • a Luer-Lock or slip tip 605
  • the plunger ( 602 ) can further comprise membrane that pushes water and lets out gas, thus degassing the sample fluid as one depresses the plunger into the chamber.
  • reaction chambers may be filled in parallel, and the last chamber contains an aerosol filter and a pressure exit to atmosphere. Pressure, equalization, reaction chamber filling and aerosol filtering can be achieved through membrane exits.
  • reaction chambers contain reagent tablets or reagent disks. Top membranes can be welded in place using ultrasound. Lenses that enlarge the view of the reaction chambers are used in some embodiments.
  • the connection to the reaction chamber or transfer system ( 604 ) includes a rough filter and a penetrator for breaking the buffer seal on connection at 605 . Reaction chambers can be closed at the top and bottom by clipping on.
  • FIG. 39 shows another embodiment of an analysis system ( 604 ).
  • Reaction chambers ( 606 ) can be arranged in a radial manner instead of in a linear arrangement.
  • a fan- or radial-shaped analysis system ( 604 ) is adapted to use with a sample preparation chamber ( 601 ) with a plunger ( 602 ) system for driving a sample solution into reaction wells or chambers.
  • Different views of such analysis system ( 604 ) are shown in (B).
  • ( 608 ) shows a top view of a series of reaction chambers arranged in a radial arrangement.
  • the reaction chamber unit ( 610 ) may be removable from housing ( 609 ). This removable feature facilitates a user in refilling, inserting, or exchanging reagents in individual reaction chambers within the reaction unit ( 610 ).
  • the reagents used are water soluble and are formulated as tablets using excipients such as PEG, maltose and sorbitol as carriers.
  • the tablets are formulated with the appropriate amounts of buffer salts in the bulk mixture to result in optimal pH upon dissolution.
  • buffer salts for supply of hydrogen peroxide, sodium percarbonate is used.
  • a soluble Fast Blue derivative i.e the product of reaction with succinic anhydrice, is used, alternatively, guacol, diamino phenol or similar may be used.
  • AAPV nitrophenol amide is employed, alternatively, AAPV-indoxyl with a diazonium salt enhancer.
  • the substrate is a labelled peptidoglycan particle, however, the well contains a positively charged membrane at the viewing interface. This membrane is derived on one half with the trap, and the contrast between the two sides in the main indicator of reaction indicates the degree of reaction.
  • sampling threads ( 100 ) are built in or added to dressing for a wound or at a surgical site ( 92 ).
  • AQUACEL ( 4 ) is used in some embodiments of the dressing ( 92 ).
  • Sampling threads absorb wound fluid or fluid at surgical site (D).
  • a thread may be pulled out or extracted as shown in FIG. 24(E) from dressing without having to remove or disturb dressing using an instrument ( 101 ) such as a tweezer, hook, or thread hook device.
  • the thread can then be dissolved in a buffer for use in a diagnostic device ( 102 ) using one or more indicator regents or indicator disks described herein.
  • a wound dressing comprises built in sampling threads.
  • the sampling threads absorb wound fluids and may be removed without disturbing the wound dressing for detection of analytes in the wound fluid.
  • the sample threads may be diluted in buffer to dissolve markers for diagnosing the status of the surgical site or wound.
  • a thread hook device may be used to remove a thread from a wound dressing.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Materials Engineering (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Dermatology (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Dispersion Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Virology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Materials For Medical Uses (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

Provided herein are microbial infection indicator devices, including dressing with indicators, standalone indicator inserts or disks that can be freely placed at a wound site or dressing, and applications thereof for displaying a visible or detectable signal to a user upon detection of an analyte or biomarker indicative of an infection, such as a color change.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of United States Provisional Application No. 62/315,565, filed Mar. 30, 2016, the disclosure in which is incorporated herein by reference in its entirety and made a part hereof.
  • TECHNICAL FIELD
  • Embodiments described herein generally relate to wound healing, and in particular to compositions, apparatuses and methods for the detection and treatment of wounds.
  • BACKGROUND
  • In mammals, dermal injury triggers an organized complex cascade of cellular and biochemical events that result in a healed wound. Wound healing is a complex dynamic process that results in the restoration of anatomic continuity and function: an ideally healed wound is one that has returned to normal anatomic structure, function, and appearance. A typical wound heals via a model consisting of four stages—‘exudative’ phase, proliferative phase, reparative phase and epithelial maturation (Hatz et al., Wound Healing and Wound Management, Springer-Verlag, Munich, 1994) or hemostatic, inflammatory, proliferative and remodeling phase (Nwomeh et al., Clin. Plast. Surg. 1998, 25, 341). The inflammatory phase is particularly important to the wound healing process, wherein biochemical reactions at the wound situs facilitate healing but also cause tissue breakdown due to production of excess proteases.
  • Infection of the wound results in either a slower, or an arrested healing process. For example, pathogens in a wound can produce toxins (e.g., Clostridium species), generate noxious metabolites like ammonia that raise pH (e.g., Proteus species), activate or produce tissue lytic enzymes like proteases, or promote tissue invasion, thereby leading to an increase in the size or seriousness of the wound. In a worst case, pathogens can leave the wound and cause sepsis.
  • In order to keep the chronicity of wounds in check, a variety of assessment techniques and/or tools are employed in the clinical and veterinary setting. Current methods of assessing an infected wound are based primarily on assaying for a variety of parameters associated with the wound. For instance, a wound may be assessed visually, length and depth measurements may be taken, digital photography may be used where available to track the visual condition and size of a wound (Krasner et al., supra). In clinical practice, diagnosis of infection is based on measurement of secondary parameters, such as, odor, presence of local pain, heat, swelling, discharge, and redness. Many of these clinical indicators, such as inflammation and discharge have a low predictive value of infection in wounds. In other instances, the number(s) and type(s) of pathogenic flora at the wound situs may be determined using laboratory and/or clinical diagnostic procedures. Swabbing of a wound followed by microbiology testing in the hospital laboratory is an option for confirmation of bacterial colonization and identification of the strains associated with infection, thus allowing for the prescription of correct antibiotic course. However, this process is time consuming and labor intensive. Delay in diagnosis of infection can delay the administration of antibiotics and may increase the risk of developing sepsis.
  • One of the biggest drawbacks associated with existing clinical diagnostics is a lag associated with the onset of infection and the timing of detection. For instance, positive identification of infection using swabbing procedures often depends on attainment of a “critical mass” of microorganisms at the wound site and so early detection cannot be made until a detectable level is reached. Also, the swabs may be contaminated with the flora of the surrounding tissue, thereby complicating the diagnostic procedure. Other drawbacks include, e.g., sampling errors, delays in transport of the swabs, errors in analytical procedures, and/or errors in reporting. See, the review by Bowler et al., Clin Microbiol Rev. 14(2): 244-269, 2001.
  • There is therefore an imminent but unmet need for diagnostic reagents and methods that enable early diagnosis of clinical infection, preferably, which permit clinical diagnosis prior to manifestation of clinical symptoms of infection. There is also a need for compositions and methods that would assist in predicting clinical infection of a wound prior to the manifestation of clinical symptoms. Such a prognostic aid would allow early intervention with suitable treatment (e.g., antimicrobial treatment) before the wound is exacerbated and surgery or other drastic intervention is required to prevent further infection. Additionally, if clinicians could respond to wound infection as early as possible, the infection could also be treated with minimal antibiotic usage. This would reduce the need for hospitalization and would reduce the risk of secondary infections, e.g., as a result of contact with other diseased subjects.
  • SUMMARY
  • The technology disclosed herein provides for compositions and methods of detecting infected and/or chronic wounds. The disclosed technology improves upon exiting assays by: increasing the sensitivity, precision and specificity of detection of infected wounds; providing for the ability of qualitative and quantitative measurements; and, increasing the speed of detection of infected wounds in situ and in real-time. The assays and methods described herein are partly based on the use of specific reagents that detect biomarkers and/or probes which are present in infected or chronic wounds. The detection process may involve use of reagents that are specific to the markers present in infected wounds but not non-infected or non-chronic wounds and the detection step may involve qualitative or quantitative measurements of the signal(s) that are generated when the probe is acted upon by the marker. In embodiments wherein the detection method involves detection of enzymes present in wounds, the probes comprise modified enzyme substrates that are specific to the enzyme, which generate signals that may be optionally amplified. This greatly improves efficiency and specificity of detection. Moreover, a plurality of detection probes, each specific for one or more targets, e.g., enzymes that are specific to the wounds, may be employed. This greatly helps to maximize both efficiency and accuracy of diagnostic assays while minimizing the incidence of false positives (e.g., due non-specific interactions and/or target redundancy). Furthermore, the experimental results disclosed herein confirm that the novel probes and the assay techniques based thereon are capable of detecting and characterizing various types of wounds. Finally, the reagents of the disclosed technology may be used together with therapeutic molecules such as antibiotics, antifungal agents, etc. to monitor and evaluate treatment and management of chronic wounds.
  • Embodiments described herein are based, in part, on the discovery that cells of the immune system, including enzymes generated thereby, may serve as markers in the early diagnosis of wounds. These cells, e.g., neutrophils, are recruited at the wound situs to combat infection, do so by engulfing bacteria (and other pathogens) and/or neutralizing them with enzymes. Some enzymes are specific towards proteins (e.g., elastase, cathepsin G), others are specific towards cell wall components (e.g., lysozyme) and yet others mediate protein denaturation (e.g., NADPH oxidase, xanthine oxidase, myeloperoxidase (MPO) and other peroxidases). These cells, e.g., neutrophils, are generally only short-lived and when they lyse in the area of the infection, they release the contents of their lysosomes including the enzymes, which can then be detected to provide a reliable measurement of the status of the wound.
  • Accordingly, various embodiments described herein utilize the detection of enzyme markers, which are indicative of the presence of myeloid cells, and neutrophils in particular, in a biological sample of interest, for example, wound tissue. Increased level or activity of such enzymes in the wound fluid, therefore, corresponds to a heightened bacterial challenge and a manifestation of disturbed host/bacteria equilibrium in favor of the invasive bacteria.
  • Provided herein are embodiments of a wound dressing, devices, and methods for detecting an infection in a wound or a sample. One embodiment is a wound dressing comprising a wound contacting layer, a reagent layer comprising one or more testing regions, wherein the reagent layer is in fluid communication with the wound contacting layer, and an outer layer that overlays the reagent layer. In some embodiments, the wound contacting layer comprises gel-forming polymers. In further embodiments, each of the one or more testing regions comprises one or more of each of: back-flow trap, reagent pad, filter pad, indicator trap, and absorbent area, wherein one or more viewing windows are located either above the reagent pad or the indicator trap. In further embodiments, the reagent pad is in fluid communication with the filter pad; the filter pad is in fluid communication with the indicator trap; and the indicator trap is in fluid communication with the absorbent area.
  • In other embodiments, one or more testing regions comprises one or more reagents selected from the group consisting of enzyme-reactive indicators, reagents that are sources of peroxide, enzymes that produce colored products, pH indicators, protein responsive reagents, and moisture-detecting reagents. The enzyme-reactive indicators include protein-indicator conjugates printed, sprayed, or otherwise deposited in or on the reagent pad. In some embodiments, the protein-indicator conjugate has the structure of Formula (I): A-B, wherein A is an anchor region or moiety that helps to bind an enzyme-reactive region to the reagent pad, and B is the enzyme-reactive region.
  • In some embodiments, the enzyme-reactive region comprises a peptide and/or an indicator region. In further embodiments, the wound dressing comprises an indicator region that after having been cleaved by the target enzyme in a sample is further transformed into a colored species by accessory enzymes selected from a lipase, esterase, hexosaminidase, peroxidase, oxidase, galactosidase, glycosidase, glucosidase, and laccase, or a combination of two or more thereof. In some embodiments, the enzyme-reactive indicators interact with elastase, lysozyme, cathepsin G, myeloperoxidase, or any combination thereof. In further embodiments, the enzyme-reactive indicators comprise a moiety capable of producing a visible color or a detectable electronic change upon interaction of the enzyme-labile or enzyme-reactive region with one or more enzymes, wherein the moiety is selected from the group consisting of a peroxidase substrate, arylamine, an amino phenol, a neutral dye, a charged dye, a nanoparticle, a colloidal gold particle, or an analog thereof. The anchor region can be attached to the reagent pad covalently, non-covalently, or ionically. In some embodiments, pH-sensitive reagents produce a visible color comprise bromothymol blue, phenol red, bromophenol red, chlorophenol red, thymol blue, bromocresol green, bromocresol purple; nitrazine yellow; or other sulfophthalein dyes.
  • In some embodiments, the wound dressing also comprises one or more lines of wicking stitching or wicking tufting throughout all layers of the wound dressing except the outer layer, wherein the wicking stitching or wicking tufting provides fluid communication between the reagent layer and the wound contacting layer. Fibers that are wettable and exhibit capillary action may be used for wicking stitching or wicking tufting to form fluid communication between a sample or a wound and the reagents. In some embodiments, the wicking fibers are solid or hollow. Examples of wicking fibers include, but are not limited to, cotton, rayon, viscose, wool, silk, polyester, polyamide, CMC, and polypropylene.
  • In further embodiments, the wound dressing comprises one or more testing regions, comprising a leach-back trap in fluid communication with the reagent pad and one or more lines of wicking stitching or wicking tufting crossing through one or more testing regions only at the leach-back trap. In some embodiments, a foam layer is added between the wound contacting layer and the reagent layer. One or more perforations can be added in the wound contacting layer or in the foam layer and the wound contacting layer. In further embodiments, each of the one or more testing regions further comprises a leach-back trap in fluid communication with the reagent pad and one or more perforations aligned with the leach-back trap.
  • In some embodiments, the testing regions comprise a multichannel testing region, wherein each channel within the multichannel testing region is separated from an adjacent channel by one or more impermeable separators or borders. Such multichannel testing regions can comprise 1 to 10 testing regions, preferably 3, 4, or 5 testing regions, wherein the testing regions are arranged in a linear or a radial configuration. Arrays of multichannel testing regions can be combined to cover a broader area of a wound or wound dressing. In further embodiments, the outer layer of the wound dressing comprises one or more windows that permit visualization of a signal from the reagent layer, wherein the signal is a color change.
  • Such wound dressing or device provides a method of detecting the level of one or more enzymes in a mammalian wound, comprising contacting the mammalian wound with the wound dressing; observing one or more signals in the reagent layer, wherein the signal is a color change; and comparing the signal to a reference or control to determine the level of an enzyme. In another embodiment, the wound dressing can be used to detect the presence of one or more enzymes and/or pH in a mammalian wound, comprising contacting the mammalian wound with the wound dressing and observing one or more signals in the reagent layer, wherein the signal is a color change. In another embodiment, the wound dressing can be used to treat an infection in a wound of a mammal or to determine when such treatment is necessary, comprising contacting the wound with a wound dressing described herein, observing one or more signals in the reagent layer, wherein the signal is a color change and indicates the presence of an infection, and administering a medical treatment to the mammal.
  • In some embodiments, a device for detecting an infection in a wound comprises a wound contacting layer, a reaction layer comprising one or more reagents that can indicate the presence of one or more analytes associated with an infection, wherein the reagents are affixed to a solid phase and produce a detectable signal in a reporter area, a cover on top of the reaction layer, wherein the cover comprises one or more windows or clear areas to allow visualization of the detectable signal, such as a color change, and fluid communication between the wound contacting layer and the reaction layer. Reagents include enzyme-reactive indicators that interact with one or more enzymes selected from the group consisting of lysozyme, MPO, cathepsin G, elastase, catalase, lipase, esterase, and any combination thereof, at least one indicator for pH or a change in pH, wherein the indicators may be printed, sprayed, or deposited on a solid phase or support material, including paper, viscose, regenerated cellulose, glass fiber, or similar materials. In further embodiments, the enzyme-reactive indicators comprise a moiety capable of producing a visible color or a detectable electronic change upon interaction of the enzyme-labile or enzyme-reactive region with one or more enzymes, wherein the moiety is selected from the group consisting of a peroxidase substrate, arylamine, an amino phenol, a neutral dye, a charged dye, a nanoparticle, a colloidal gold particle, and an analog thereof. In further embodiments, the device comprises wicking stitching or wicking tufting of an absorbent material to form fluid communication between the wound contacting layer and the reaction layer.
  • A device for detection of infection associated enzymes that is provided as an independent entity and can be placed into any dressing or bandage system, comprising a sample inlet in fluid communication with reagent cells, wherein reagent cells comprise indicators for sample delivery and/or pH change, which can be one and the same, and one or more indicators for biomarkers of an infection, including lysozyme, MPO, cathepsin G, elastase, catalase, lipase, esterase, and any combination thereof. The fluid communication comprises at least one indicator channel, lane, or arm, such as one to ten indicator channels, or one, two, three, four, five, six, seven, eight, nine, or ten separate indicator channels, wherein the indicators are printed, sprayed, or deposited in a reaction area or field on a carrier material or solid phase and arranged in a radial configuration to form a disk, and wherein the reaction areas or fields are separated by impermeable separators or lanes. The carrier material may comprise a non-woven material. In some embodiments, the disk comprises reagents printed, sprayed, or deposited on the top surface of the disk with a trap material and a substrate material on the bottom surface, wherein the substrate can be digested by one or more enzymes in the sample to release one or more products that migrate towards the trap. In further embodiments, one or more products are colored or produce a color change capable of being visualized on the top surface of the disk.
  • In additional embodiments, a diagnostic disk for detecting an infection in a wound comprises a reaction layer comprising one or more reagents that interact with an enzyme indicative of an infection, wherein the reagents are affixed to a solid phase; each reagent is sprayed, printed, or deposited in a reagent area separated by impermeable separators; each lane comprises a reporter area wherein a color change can be observed; and a cover comprising a window for visualizing the color change in the reported area. The diagnostic disk may further comprise at least one reagent that produces a color change in response to a change in pH. Multiple lanes in the diagnostic disk, wherein each lane contains a different indicator/reagent, can be arranged in a linear or radial configuration about a cut access, perforation, or wicking material that allows fluid communication between a sample or wound contact material and the reagents in the reaction layer. The reagents include indicators as described above, namely, reagents that interact with lysozyme, MPO, cathepsin G, elastase, catalase, lipase, or esterase. In some embodiments, the diagnostic disk comprises a solid phase material selected from the group consisting of paper, viscose, regenerated cellulose, glass fiber, and similar material. In further embodiments, the disk is attached to a non-woven carrier in a wound dressing, wherein means for such attachment include, but are not limited to, a continuous adhesive, ring or annular adhesive, welding with UV printed border, and welding with a polyethylene component or the non-woven carrier.
  • In further embodiments, the reagents describes herein may be applied to form a lateral flow or dipstick device for detecting an infection in a wound, comprising one or more reagent disks arranged in a linear configuration, wherein each reagent disk is impregnated with a reagent that interacts with an enzyme to produce a color change or a similar detectable signal, wherein one of the disks produces a color change based on pH, and wherein the disks are affixed to a solid phase comprising paper, viscose, regenerated cellulose, glass fiber, or similar materials. Reagents include enzyme-reactive indicators that produce a color signal in the presence of lysozyme, MPO, cathepsin G, elastase, catalase, lipase, or esterase. In one embodiment, each disk is separated by an impermeable border or lane.
  • In a further embodiment, a standalone device for detecting an infection in a wound or a sample comprises a housing, comprising: a sampling component for collecting the sample; a sample preparation chamber in fluid communication with a reaction chamber, wherein the sample preparation chamber receives the sample; the reaction chamber comprising one or more reaction cells containing reagents that interact with one or more enzymes in the sample to indicate the presence of an infection and/or pH of the sample; and a window or a clear area for visualizing a detectable signal, wherein the signal is a color change or an electronic output. One or more reagents interact with an enzyme selected from the group consisting of lysozyme, MPO, cathepsin G, elastase, catalase, lipase, and esterase to produce a detectable signal, wherein the signal is a color change. One or more regents produce a color change in response to a change in pH, a basic pH, or an acidic pH. In further embodiments, the reagents perform the reactions in a primarily liquid medium, wherein the reagents may be provided in tablet form for use in the reaction cells. In some embodiments, the reagents may be printed, sprayed, or deposited in separate reagent fields on a support material to form a panel of tests, such as a testing strip, for use in the reaction chamber. Support materials include paper, viscose, regenerated cellulose, and glass fiber. Reagent fields can be arrayed in a line along a plastic or paper carrier strip, which is capable of absorbing the sample in the reaction chamber, allowing the sample to interact with the reagents in the reaction chamber. In some embodiments, the sampling component comprises a swab device, or a hook or needle device adapted to removing a sampling thread from a wound dressing to sample the wound fluid without disturbing the dressing.
  • In further embodiments, a kit for detecting an infection in a sample comprises a sampling component for collecting the sample; a test device comprising a housing surrounding a tube to define an opening in the housing for receiving the sampling component, the housing comprising: a diluent chamber that holds a liquid diluent; a reaction well in liquid communication with the tube or the sample, the reaction well holding one or more reagents that interacts with one or more analytes to produce a color change or similar detectable signal; a viewing window or reporter area wherein the color change or similar detectable signal can be observed; and wherein the liquid diluent flows from the sample component into the reaction well to mix the sample with the reagents in the reaction well. The reagents comprise one or more enzyme-reactive indicators and/or pH indicator, as described above. The sample may be obtained from a wound, a wound dressing, or a surgical site. In some embodiments, the sampling component is a swab device or a hook or needle device. The reagents can be provided in tablet form, which are dissolved upon contacting the liquid diluent and the sample. The reagents can also be deposited in separate fields on a testing strip to form a panel of tests, which can be applied in the reaction wells.
  • In another embodiment, the reagents are provided in liquid form for use in the reaction wells. The number of reaction wells is based upon the number of analytes to be analyzed, ranging from one to ten, including indicators that produce a detectable signal in response to pH or the presence of one of the following enzymes: lysozyme, MPO, cathepsin G, elastase, catalase, lipase, and esterase. The reaction wells can be arranged in various configurations, including a linear or a radial configuration.
  • In another embodiment, a wound dressing is disclosed comprising: a wound contacting layer; a reagent layer comprising one or more testing regions, wherein the reagent layer is in fluid communication with the wound contacting layer; and an outer layer that overlays the reagent layer.
  • In another embodiment, a wound dressing is disclosed wherein each of the one or more testing regions comprises one or more of each of a back-flow trap, a reagent pad, a filter pad, an indicator trap, and an absorbent area, and wherein one or more viewing windows are located either above the reagent pad or the indicator trap.
  • In another embodiment, a method of detecting the level of one or more enzymes in a mammalian wound is disclosed, the method comprising: contacting the mammalian wound with a wound dressing; observing one or more signals in the reagent layer, wherein the signal is a color change, a fluorescent signal, a luminescent signal, or an electrical change; and comparing the signal to a reference or a control to determine the level of an enzyme.
  • In another embodiment, a method of detecting the presence of one or more enzymes in a mammalian wound is disclosed, the method comprising: contacting the mammalian wound with a wound dressing; and observing one or more signals in the reagent layer, wherein the signal is a color change, a fluorescent signal, a luminescent signal, or an electrical change.
  • In another embodiment, a method of detecting an infection in a mammalian wound is disclosed, the method comprising: contacting the wound with a wound dressing; and, observing one or more signals in the reagent layer, wherein the signal is a color change, a fluorescent signal, a luminescent signal, or an electrical change.
  • In another embodiment, a device for detecting an infection in a wound is disclosed, comprising: a wound contacting layer; a reaction layer comprising one or more reagents that can indicate the presence of one or more analytes associated with an infection, wherein the reagents are affixed to a solid phase and produce a detectable signal in a reporter area; a cover on top of the reaction layer, wherein the cover comprises one or more windows or clear areas to allow visualization of the detectable signal; and, fluid communication between the wound contacting layer and the reaction layer.
  • In another embodiment, a wound dressing is disclosed wherein the reagent pad is in fluid communication with the filter pad; the filter pad is in fluid communication with the indicator trap; and the indicator trap is in fluid communication with the absorbent area.
  • In another embodiment, a diagnostic disk for detecting an infection in a wound is disclosed, comprising: a reaction layer comprising one or more reagents that interact with a target enzyme indicative of an infection, wherein the reagents are affixed to a solid phase; each reagent is sprayed, printed, or deposited in a reagent area in a lane separated from adjacent lanes by impermeable separators; each lane comprises a reporter area wherein a color, color change, or other detectable signal is observed; and a cover comprising a window for visualizing the signal in the reporter area.
  • In another embodiment, a lateral flow or dipstick device for detecting an infection in a wound is disclosed, comprising: one or more reagent disks arranged in a linear configuration, wherein each reagent disk is impregnated with a reagent that interacts with an enzyme to produce a color change and/or is pH-sensitive, comprising bromothymol blue, phenol red, bromophenol red, chlorophenol red, thymol blue, bromocresol green, bromocresol purple; nitrazine yellow; or other sulfophthalein dyes, and wherein the disks are affixed to a solid phase.
  • In another embodiment, a device for detecting an infection in a wound or a sample is disclosed, comprising a housing, wherein the housing comprises: a sampling component for collecting the sample; a sample preparation chamber in fluid communication with a reaction chamber, wherein the sample preparation chamber receives the sample; the reaction chamber comprising one or more reaction cells containing reagents that interact with one or more enzymes in the sample to indicate the presence of an infection and/or pH of the sample; and a window or a clear area for visualizing a detectable signal, wherein the signal is a color change.
  • In another embodiment, a kit for detecting an infection in a sample is disclosed, comprising: a sampling component for collecting the sample; a test device comprising a housing surrounding a tube to define an opening in the housing for receiving the sampling component, the housing comprising: a diluent chamber that holds a liquid diluent; a reaction well in liquid communication with the tube, wherein the reaction well holds one or more reagents that interact with one or more analytes to produce a color change or a detectable signal; a viewing window or reporter area wherein the color change or detectable signal can be observed; and wherein the liquid diluent flows from the sample component into the reaction well to mix the sample with the reagents in the reaction well.
  • It is understood that other embodiments and configurations of the subject technology will become readily apparent to those skilled in the art from the following detailed description, wherein various configurations of the subject technology are shown and described by way of example or illustration. As will be realized, the subject technology is capable of other and different configurations and its several details are capable of modification in various other respects, all without departing from the scope of the subject technology. Accordingly, the figures and detailed description are to be regarded as illustrative in nature and not as restrictive.
  • INCORPORATION BY REFERENCE
  • All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
  • BRIEF DESCRIPTION OF THE FIGURES
  • To understand the present disclosure, it will now be described by way of example, with reference to the accompanying figures in which embodiments and examples of the disclosures are illustrated and, together with the descriptions below, serve to explain the principles of the disclosure.
  • FIG. 1: Examples of engineered three-dimensional fabric structures, such as corrugations.
  • FIG. 2: Example of a dressing with AQUACEL showing different layers of a dressing and stitching that draws fluid from a wound to the reaction layer of the dressing.
  • FIG. 3: Schematic of reaction cells showing different components of a reaction cell with stitching (21) in (A) and cut access (27) in (B). In some embodiments, each reaction cell can be a different reporter or dye system.
  • FIG. 4: Movement of indicators in reaction cells upon exposure to fluid, which flows from cut access and reagents (22) toward absorbent or evaporation area (25). Over time, the reaction products diffuse and migrate toward an absorbent or evaporation area. Movement of indicators arranged in a radial manner is shown in (B). In some embodiments, each lane or reaction cell can be a different reporter or color system. Multiple reaction cells can be used as shown in (C). Multiple reaction cells can be used in arrays or combinations to provide indicator function over an area. Leach back traps may be used to prevent backflow.
  • FIG. 5: Indicators can be arranged in a circular or radial manner to form indicator disks (A). In some embodiments, each lane or reaction cell (45-48) can be a different reporter or color system, such as bromothymol blue, phenol red, bromophenol red, chlorophenol red, thymol blue, bromocresol green, bromocresol purple; nitrazine yellow; or other sulfophthalein dyes. (B) shows views of a radial indicator disk from above and from below.
  • FIG. 6: Dressing printed for MPO detection. In one embodiment, a wound contact material is sprayed or printed with amylase, starch, and glucose oxidase, followed by printing of a substrate for MPO printed in the centers of each sprayed area.
  • FIG. 7: In-place color development of MPO and elastase substrates on testing strips are shown. These test strips represent prototypes of visualization methods for detecting the presence of MPO and elastase in a sample, wherein color (e.g., blue) increases in intensity with greater substrate concentration.
  • FIG. 8: Examples of substrates, including MPO substrate (Fast Blue derivative), elastase substrate, and oxidation of indoxyl to blue colored indigo are shown.
  • FIG. 9: In-place color development of different indicators in radial arrangement. (A) and (B) represent prototypes of indicators for detecting certain analytes, including pH change, MPO, lysozyme, and elastase. In one embodiment, pH change can be reported as a color change from yellow to green; MPO reported as an appearance of a blue color; lysozyme reported as an appearance of pink or red color; elastase reported as an appearance of green or blue color; and liquid control reported as an appearance of a blue or purple color.
  • FIG. 10: Schematics of a radial indicator insert or disk.
  • FIG. 11: Schematics of a radial indicator insert or disk with a window for detection.
  • FIG. 12: Schematics of another embodiment of a radial indicator insert or disk with a window for detection.
  • FIG. 13: Transport of Remazol Brilliant Blue, showing migration of indicators to reporter area after liquid transport.
  • FIG. 14: Example of a pH indicator. In one embodiment, the color can change from green to blue with increase in pH.
  • FIG. 15: Schematic of a lysozyme test strip. Fluid flow causing stained peptidoglycan particles to move upwards to trap layer.
  • FIG. 16: Examples of indicator substrates and reactions.
  • FIG. 17: Example of indicator disk freely placed in a dressing.
  • FIG. 18: Embodiments of diagnostic disks in non-woven layer in dressing.
  • FIG. 19: Embodiments of diagnostic disks in non-woven layer in dressing.
  • FIG. 20: Example of manufacturing diagnostic disks in sheets.
  • FIG. 21: Embodiments of printed and applied paper disks. In some embodiments, each disk can be a different reporter or color system.
  • FIG. 22: Methods of attaching or applying diagnostic disks to non-woven layer in dressing.
  • FIG. 23: Dipstick devices with indicator inserts or disks arranged in different arrays and combinations are shown. In some embodiments, each insert, disk, or lane can be a different reporter or color system.
  • FIG. 24: Sampling thread and use in dressing. Sampling thread can be incorporated in a wound dressing or at a surgical site, wherein the thread can be pulled out without disturbing the dressing to test for the presence of microbial infection or condition of the surgical site or wound in a diagnostic device.
  • FIG. 25: Assembly for manufacturing indicator inserts.
  • FIG. 26: Cross section of a standalone device kit
  • FIG. 27: Sampling tip inserted in the housing of standalone device kit
  • FIG. 28: A plan view of the standalone device kit
  • FIG. 29: Another view of the standalone device kit
  • FIG. 30: A plan view of the standalone device kit with housing slid apart
  • FIG. 31: Diluent chamber, tube and reaction chamber in standalone device kit
  • FIG. 32: Distribution of test solution to each reaction chamber in standalone device kit
  • FIG. 33: Diagnostic swab device with housing, wherein reaction with indicator disks or inserts can be observed from a viewing window in the housing.
  • FIG. 34: Thread hook diagnostic device, suitable for pulling out a sampling thread from a dressing for analysis.
  • FIG. 35: Swab diagnostic device, wherein a swab is used to obtain a sample for testing with a diagnostic device, further comprising a diluent chamber, gas outlet, and a plunger.
  • FIG. 36: Diluent chamber for sample preparation. A diluent chamber comprising a diluent is adapted for use with a swab device, a thread hook device, and similar sample preparation devices, comprising a resealable top and a seal or film at the bottom, wherein breaking the seal or film (402) allows the sample to mix with the diluent solution, which flows out of the diluent chamber and into a testing device comprising reaction chambers or wells.
  • FIG. 37: Embodiment of diagnostic device with sampling chamber and reaction wells. One embodiment of a diagnostic device with reaction chambers (502) adapted to being connected to sampling chamber or diluent chamber (202) for receiving a sample from a sample preparation device (300), such as the swab device.
  • FIG. 38: Embodiment of diagnostic device or transfer system, wherein the sample chamber or diluent chamber uses a Luer-lock connector to attach to reaction chambers for testing a sample fluid. In one embodiment, the plunger or piston comprises a gas outlet, hook for holding a sample, and membrane that lets out gas as the plunger is depressed into the diluent chamber.
  • FIG. 39: Further embodiments of an analytic or diagnostic system, wherein reaction chambers are arranged in a radial arrangement.
  • DETAILED DESCRIPTION
  • Various aspects of the disclosed technology will be described more fully hereinafter. Such aspects may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art.
  • Throughout this disclosure, various patents, patent applications and publications are referenced. The disclosures of these patents, patent applications and publications in their entireties are incorporated into this disclosure by reference in order to more fully describe the state of the art as known to those skilled therein as of the date of this disclosure. This disclosure will govern in the instance that there is any inconsistency between the patents, patent applications and publications cited and this disclosure.
  • Provided herein are means to detect infections in wounds. In some embodiments these are wound dressings able to detect infection in one or more body fluids before such infection is otherwise apparent. In some embodiments, the wound dressing reacts with wound exudate or wound fluid to detect infection in a wound through a visible or otherwise detectable change in the dressing. In some embodiments, wound exudate or wound fluid is drawn up through the wound dressing to a reagent layer for assessment of possible infection without the need to remove the dressing. In some embodiments, wound exudate or wound fluid reacts with the reagent layer to give rise to a color or other visible or observable marker. In some embodiments, the color is easily distinguishable from those colors that are common in wounds or body fluids. In some embodiments, the reaction between the wound exudate or wound fluid and the reagent layer of the wound dressing occurs at ambient temperature and within a period of time short enough to allow timely response, such as a decision to make a dressing change after cleaning the wound and examining the test result and/or to administer antiseptics or local or systemic antibiotics. In some embodiments, the color or other visible or observable marker and/or the location of the color or other visible or observable marker indicates one or more areas of the wound that deserve closer attention and/or antisepsis. In some embodiments, the color change function is embedded in parts of the dressing that are only visible on dressing change. In further embodiments, the reagent layer that gives rise to a color change or other visible or observable marker is a standalone device, disk, or insert, capable of application with any wound dressing, at a surgical or wound site, or by itself as a dipstick-type of device. In further embodiments, indicator reagents are applied in a “swab sample preparation device” or a stand-alone device into which wound fluids are injected. In some embodiments, indicator reagents are printed directly on support materials, such as the various layers within a wound dressing.
  • In some embodiments disclosed herein, a wound dressing comprises a wound contacting layer; a reagent layer comprising one or more testing regions or indicator reagents; and an outer layer that overlays the reagent layer. The wound dressing may comprise one or more testing regions, which further comprise one or more of a back-flow trap, reagent pad, a filter pad, an indicator trap, and an absorbent area, wherein the viewing window is located either above the reagent pad or the indicator trap and the reagent pad is in fluid communication with a filter pad; the filter pad is in fluid communication with the indicator trap; and the indicator trap is in fluid communication with the absorbent area.
  • In some embodiments, testing regions comprise one or more components selected from the group consisting of enzyme-reactive indicators, reagents that are sources of peroxide, enzymes that are able to transform color reactions, pH indicators, protein responsive reagents, and moisture-detecting reagents. Enzyme-reactive indicators may comprise protein-indicator conjugates.
  • In some embodiments, protein-indicator conjugates are deposited in or on the reagent pad. In some embodiments, protein-indicator conjugate has the structure of Formula (I): A-B, wherein: A is an anchor region for attachment to the testing region; and B is an enzyme-reactive region. In further embodiments, the enzyme-reactive region comprises a peptide or an indicator region. The anchor region may be covalently or non-covalently attached to the reagent pad.
  • In further embodiments, the wound dressing comprises one or more lines of wicking stitching or wicking tufting throughout all layers of the wound dressing except the outer layer. One or more testing regions further comprises a leach-back trap in fluid communication with the reagent pad, the one or more lines of wicking stitching or wicking tufting crossing through each of the one or more testing regions only at the leach-back trap. In further embodiments, the wound dressing comprises a foam layer between the wound contacting layer and the reagent layer. In some embodiments, the wound dressing further comprises one or more perforations of the wound contacting layer.
  • In some embodiments, enzyme-labile or enzyme-reactive regions contained therein may interact with target enzymes including elastase, lysozyme, cathepsin G, and myeloperoxidase. In further embodiments, the enzyme-labile or enzyme-reactive region comprises a moiety capable of producing a visible color or detectable electronic change upon interaction of the enzyme-labile or enzyme-reactive region with one or more target enzymes, the moiety being selected from a peroxidase substrate, arylamine, an amino phenol, an indoxyl, a neutral dye, a charged dye, a nanoparticle, and a colloidal gold particle, and an analog thereof. In some embodiments, after the target enzyme has cleaved the indicator from the substrate it is further reacted by an accessory enzyme selected from a lipase, esterase, hexosaminidase, peroxidase, oxidase, glycosidase, glucuronidase, glucosidase, and laccase, or a combination of one or more thereof.
  • Applications of the reactive regions may include a device for detection of infection associated enzymes, on a solid phase such as paper, viscose, regenerated cellulose, glass fiber, mixtures of same or similar material, or arrayed in a line along a plastic or paper carrier strip.
  • In some embodiments, reagent or indicator inserts or disks for detection of infection associated with certain enzymes may be provided as an independent entity and placed into any dressing system comprising a sample inlet, diffusion channels toward different areas containing reagents, an indicator for sample delivery and or an indicator of pH which may be one in the same, and one or more indicators for the following markers selected from lysozyme, MPO, cathepsin G, elastase, catalase, lipase, esterase.
  • In some embodiments, the enzyme labile region is labile to a protease and the polymer binding domains are selected from cellulose binding domains or are hydrophobic binding domains.
  • In some embodiments, the enzyme labile region is labile to cathepsin or elastase.
  • In some embodiments, the chemical entity is selected from a small molecule entity, a modified oligomer, and a modified polymer.
  • In another aspect, provided herein is a chemical entity for the detection of infection in a wound, the chemical entity comprising an indicator region comprising a pH-sensitive moiety that presents a visible color change.
  • In some embodiments, the chemical entity further comprises an anchor region wherein the anchor region enables binding of the chemical entity to a support material.
  • In some embodiments, the pH-sensitive moiety that presents a visible color change at alkaline pH. In some embodiments, the pH-sensitive moiety that presents a visible color change at neutral pH. In some embodiments, the pH-sensitive moiety that presents a visible color change at acidic pH.
  • In some instances, the pH of a wound can influence many factors of wound healing, such as angiogenesis, protease activity, oxygen release, and bacterial toxicity. Chronic non-healing wounds may have an elevated alkaline environment. As the wound progresses towards healing, the pH of the wound moves to neutral and then becomes acidic. Monitoring of the pH of the wound may provide a method to assess the condition of the wound (e.g., infection or no infection) and aid in determining a wound's response to treatment.
  • Accordingly, in some aspect of the disclosed technology, the chemical entity for the detection of infection in a wound comprises an indicator region comprising a pH-sensitive moiety that presents a visible color change. In some embodiments, the chemical entity further comprises an anchor region wherein the anchor region enables binding of the chemical entity to a support material. In some embodiments, the pH-sensitive moiety presents a visible color change at alkaline pH. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=7.2-9.5. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=7.2-9.0. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=7.2-8.5. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=7.2-8.0. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=7.5-8.5. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=7.5-9.0. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=8.0-9.0. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, or 9.5, or increments thereof.
  • In some embodiments, the pH-sensitive moiety presents a visible color change at neutral pH. In some embodiments, the pH-sensitive moiety presents a visible color change at pH =6.9, 7.0, or 7.1, or increments thereof.
  • In some embodiments, the pH-sensitive moiety presents a visible color change at acidic pH. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=4.5-6.8. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=4.5-6.5. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=5.0-6.8. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=5.4-6.8. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=5.4-6.5. In some embodiments, the pH-sensitive moiety presents a visible color change at pH=4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, or 6.9, or increments thereof.
  • In some embodiments, the pH-sensitive moiety is bromothymol blue, phenol red, bromophenol red, chlorophenol red, thymol blue, bromocresol green, bromocresol purple; nitrazine yellow; or other sulfophthalein dyes.
  • Other embodiments include reagents printed on dressing or solid support materials, dipstick devices with indicator disks arranged in various arrays, and devices with separate sample preparation chamber that transfer a sample of a bodily fluid or wound fluid to a standalone diagnostic device that uses reagent pills, solutions, or disks in reaction chambers for detecting biomarkers associated with microbial detection. In further embodiments, indicator reagents are printed, sprayed, or overlayed on support materials, such as dressing, wound dressing, bandage, filter paper, and test strips.
  • Generally, when a pathogen encounters the human body interior, cells react through innate receptor systems, either to injury, toxins, or to the bacterial cell wall. All of these recognition events result in the recruitment of innate immune cells. These cells are stimulated by pathogens like bacteria to activate bacterial killing systems that are normally present in polymorphonuclear leukoctyes (PMNs) and are mainly enzymatic in character. The cells engulf bacteria and lyse them with enzymes that hydrolyze proteins (e.g., protease, elastase, cathepsin G) and cell walls (lysozyme), or mediate protein denaturation (NADPH oxidase, xanthine oxidase, myeloperoxidase (MPO)). These PMNs are generally only short lived and will themselves lyse in the area of the infection. When they lyse, they release the contents of their lysosomes including the enzymes.
  • These enzymes are, therefore, biomarkers for the presence of myeloid cells, and PMNs in particular. A rising level of these enzymes in the wound fluid, therefore, corresponds to a heightened bacterial challenge and one that is not being adequately met by the innate defense. The association of these enzyme levels with clinical infection has been validated using a clinical trial approach (Blokhuis-Arkes et al., 2015).
  • In addition, the pH of a wound can influence many factors of wound healing, such as angiogenesis, protease activity, oxygen release, and bacterial toxicity. Chronic non-healing wounds, and those that are infected or at risk of infection, typically have an elevated alkaline environment. As the wound progresses towards healing, the pH of the wound moves to neutral and then becomes acidic. Monitoring of the pH of the wound may provide a method to assess the condition of the wound (e.g., infection or no infection) and aid in determining a wound's response to treatment.
  • A typical lateral flow device utilizes the concept of lateral liquid flow in order to transport a given sample to the test. The benefits of lateral flow tests include rapid results, long-term stability and low cost to manufacture. These features make lateral flow tests well-suited for applications involving drug testing in urine, in particular with rapid point of care testing in hospitals and doctor's offices being an advantage. A test strip can be dipped directly in the sample which is taken in a liquid form. The sample travels up the lateral flow strip and binds to available antibodies, which causes a reaction that can be visually detected on the strip. Applying this technology to samples other than urine or blood has however been problematic.
  • Early detection of markers for infection in wounds has advantages in that treatment of infection can be commenced before the infection becomes established and other signs of infection become apparent, for example, discharge from the wound, redness, pain and unpleasant odor. A difficulty in testing for markers in wound fluid is that wound fluid differs greatly in its consistency and quantity. For instance it can be scant but viscous making the use of a lateral flow test difficult.
  • Thus it would be desirable to have a single kit for collecting and testing a sample of fluid taken from a wound that is easy to operate and not limited by the type or quantity of exudate from the wound. One embodiment of the standalone device kit described herein mitigates the above problems in a kit which comprises a sampling component and a test device where the test device does not rely on a lateral flow strip to move the sample through the device and achieve a diagnosis.
  • Wound Dressing
  • In some embodiments, the wound dressing comprises a wound contacting layer; a reagent layer comprising one or more testing regions; and an outer layer that overlays the reagent layer. In some embodiments, the wound dressing further comprises a protective cushioning layer (for example a foam or a nonwoven layer) between the wound contacting layer and the reagent layer. In some embodiments, the wound dressing further comprises one or more lines of wicking stitching or wicking tufting throughout all layers of the wound dressing except the outer layer. In some embodiments, the wound dressing comprises perforation through the wound contacting layer, the protective cushioning layer, or a combination of both. In some embodiments, such perforation allows for wound fluid transfer from the wound to the reagent layer.
  • Wound Contacting Layer
  • When in use, the wound contacting layer of the wound dressing absorbs wound exudate and/or wound fluid. In some embodiments, the wound contacting layer comprises gel-forming polymers or hydrofiber. Gel-forming polymers include, but are not limited to cellulose, carboxymethylcellulose (CMC), carboxyethylcellulose, oxidized cellulose (or a derivative thereof), cellulose ethyl sulfonate, other chemically modified cellulose, pectin, alginate, chitosan, modified chitosan, hyaluronic acid, polysaccharide, or gum-derived polymer, or any combination thereof. In some embodiments, the wound contacting layer may comprise polyvinylpyrrolidone, polyvinyl alcohols, polyvinyl ethers, polyurethanes, polyacrylates, polyacrylamides, collagen, gelatin or mixtures thereof. In some embodiments, the wound contacting layer comprises fibers of gel-forming polymers. In some embodiments, the wound contacting layer comprises a nonwoven layer of gel-forming fibers.
  • In some embodiments, the wound contacting layer further comprises non-gel-forming polymers. In some embodiments, the wound contacting layer comprises cellulose (for example, Lyocell), modified cellulose (for example, viscose or rayon), Polyester, silk, wool, Nylon, Polypropylene, Elastane or mixtures thereof.
  • In one embodiment, the thickness of the wound contact layer is from 0.1 to 10 mm, in a preferred embodiment it is from 0.1 to 5 mm and in a still more preferred embodiment it is from 0.3 to 3.5 mm.
  • Protective Cushioning Layer
  • In some embodiments, the protective cushioning layer provides mechanical protection of the wound and also assists in the management of excess exudate by acting as a large surface area for evaporation. In some embodiments, the protective cushioning layer may also serve as the material that accepts fluid exiting reagent layer or device and may add functionality by pulling or directing fluid through the reagent layer or device. Suitable materials include foams, (non-gelling) fiber fleeces, (non-gelling) nonwoven fabrics, and engineered three-dimensional fabric structures, such as corrugations. Examples of engineered three-dimensional fabric structures are shown at FIG. 1. Preferably, materials used for the protective cushioning layer possess mechanical cushioning properties that are unaffected or are minimally affected by contact with wound exudate. In some embodiments, the protective cushioning layer comprises plastics based on olefins or olefin derived polymers, such as polyethylene, polypropylene, nylon, polyurethane, polystyrene and polyvinyl chloride. In some embodiments, these materials may further comprise agents such as surfactants or absorbents that improve their wettability.
  • In some embodiments, hydrophilic polyurethane foam is 2.5 mm (+/−0.5 mm) thick, with a density of 90 kg/m3 to 150 kg/m3, absorption of ≥12 g/g.
  • Wicking Stitching and/or Wicking Tufting
  • In some embodiments, the transfer of wound fluid to the reagent layer is optimized by fiber tufts from the wound contact layer to the reagent layer. In some embodiments, gel forming polymers from the wound contact layer can be used as the transport mechanism of fluid from the wound to reagent layer. In some embodiments, the increased hydrophilic nature of gel forming polymers in comparison to materials within alternate layers of the dressing allows enhanced wicking action to the reagent layer.
  • In some embodiments, yarns can be used to provide capillary action of fluid from the wound contact layer to the reagent layer. This can be achieved using stitching of one or more layers of the dressing or using tufting of yarn through one or more dressing layers.
  • In some embodiments, the wicking stitching and/or wicking tufting is selected from various fibers that are wettable and exhibit capillary action. Such fibers include, but are not limited to, cotton, rayon, viscose, wool, silk, polyester, polyamide, and CMC fibers, solid and hollow fibers. In some embodiments, the wicking stitching comprises cotton, polyester, polyamide, polypropylene, or a combination thereof. In some embodiments, using increased number of plies or multifilament yarn, increased linear density of yarn, and/or decreased linear density of fiber may enhance capillary action of yarn. In some embodiments, the wicking stitching comprises cotton. In some embodiments, the wicking stitching comprises polyester. In some embodiments, the wicking stitching comprises polyamide. In some embodiments, the wicking tufting comprises CMC fibers. In some embodiments, the wicking occurs across all areas of the dressing layers. In some embodiments, the wicking is concentrated immediately beneath or adjacent to the reagent layer to provide focused, enhanced wicking action and/or reaction with the reagent layer.
  • In some embodiments, stitching of yarn through hydrofiber and/or foam layer using hydrophilic yarn provides wicking capacity. The wound fluid can be wicked up by yarns in a more direct route to the printed substrate or reaction layer. Increase in yarn linear density may allow more of a decrease in wicking time and/or amount of fluid required.
  • In some embodiments, needling of hydrofiber-foam laminate in wound dressing creates tufts of hydrofiber on the foam side of the dressing. Variable parameters of needling include punch density and penetration depth, such as 10-100 punches/cm2 at 1-10 mm penetration, 20-90 punches/cm2 at 2-9 mm penetration, 30-80 punches/cm2 at 3-8 mm penetration, 40-80 punches/cm2 at 4-8 mm penetration, 50-80 punches/cm2 at 5-8 mm penetration, 60-80 punches/cm2 at 6-8 mm penetration, 70 punches/cm2 at 6 mm penetration. Channels of hydrofiber are created through the foam, leading to vertical wicking of fluid. Hydrofiber tufts may enable quicker fluid and enzyme transfer. Type of needles used for tufting include felting (crown), felting (regular), and fork. In some embodiments, use of felting needles allowed gelling fiber tufts to be created through the foam layer without causing a detrimental effect on the foam or gelling fiber. Penetration depth may be 1 mm, 2 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, 10 mm, 11 mm or 12 mm, or at least 6 mm, or less than 7 mm, less than 8 mm, less than 9 mm or less than 10 mm. Preferably, penetration depth is 6 mm, which enabled an 18% decrease in vertical wicking time at 70 p/cm2 punch density. As punch density increases, more hydrofiber tufts are created on the foam layer. Enhanced fluid transfer was seen in all punch densities at 6 mm penetration depth.
  • In some embodiments, stitching of yarn through hydrofiber and/or foam layer using hydrophilic yarn provides wicking capacity. Stitches may be about 1 mm, about 2 mm, about 3 mm, about 4 mm, about 5 mm, about 6 mm, about 7 mm, about 8 mm, about 9 mm, about 10 mm, about 11 mm, about 12 mm, about 13 mm, about 14 mm, about 15 mm, at least about 5 mm, less than about 6 mm, less than about 7 mm, less than about 8 mm, less than about 9 mm or less than about 10 mm. The wound fluid can be wicked up by yarns in a more direct route to the printed substrate or reaction layer. Increase in yarn linear density allows more of a decrease in wicking time and/or amount of fluid required. Short stitches (less than 3.5 mm) do not reduce wicking time/volume required to wick through the foam layer. Stiches may be 5 mm to allow a reduction in wicking time by about 45%. In some embodiments, hydrofiber-foam laminate material with combined thickness of 4.3 mm was tested for stitching with two types of yarn: high wicking polyester (continuous filament) and standard polyester thread. Three stitch lengths were tested, including 2.5 mm, 3.5 mm, and 5.0 mm. Incorporating stiches enhances fluid transfer, while increasing stitch lengths reduced vertical wicking time.
  • Perforation
  • In some embodiments, the wicking action of the various layers of the dressing, such as the gel-forming wound contacting layer and the foam, is adequate as it is with the factory porosity and no further treatment. In other embodiments, the wicking action can be enhanced by fine needling to create channels that have capillary action. In some embodiments, the needling can occur across all areas of the dressing layers to provide generally enhanced capillary action. In some embodiments, the needling is concentrated immediately beneath or adjacent to the common entrance to the reagent layer to provide focused, enhanced capillary action. In some embodiments, the perforation occurs through all layers of the dressing. In further embodiments, the perforation occurs in the one or more layers between the wound contact layer and the reagent layer. In some embodiments, capillary action can be enhanced by increasing the punch density of the needling to produce higher number of perforations per unit area.
  • Perforations allow direct fluid transfer through hydrofiber and/or foam layers to the printed substrate layer. The larger the hole, the more fluid may be transferred, reducing the wicking time/volume required for the fluid to interact with the printed substrate layer. However, if the hole is too large, fluid handling capacity of the dressing may be affected. Gelling fibers swell upon hydration and may obstruct the perforation channel of the gelling fabric. Perforations may be formed using a hypodermic needle. At a higher density, the vertical wicking time can be reduced by about 28%. In some embodiments, the vertical wicking time is reduced by about 10%, about 15%, about 20%, about 25%, about 30%, about 35%, about 40%, about 45% or about 50%.
  • Reactive or Reagent Layer
  • In some embodiments, the wound contact layer, or the layer supporting it contains a material that reacts to wound exudates to indicate potential infection, or a reactive layer. A reactive layer may comprise one or more dyes and/or the reagents necessary to support these reactions. In one embodiment, these dyes comprise amino acids, peptides, or proteins conjugated to dyes with strong ionic functions, strong contrasting colors, or the ability to form colors, such as indoxyl/indigo. In a preferred embodiment, addressing includes a layer within the dressing printed with an immobile trapping material to which said dyes bind. This layer is optionally in the outer part of the dressing or at various levels within the dressing such that it may be observed without dressing change, or at dressing change.
  • In another preferred embodiment, the reactive layer is comprised of an MPO substrate, glucose oxidase and an energy source, such as glucose or starch, and gamma-amylase. In another embodiment, the dressing contains particles comprised of chitosan or a derivative that releases dyes on hydrolysis by lysozyme. These dyes may be highly charged or otherwise functional to allow their accumulation at sites of signal interpretation. In yet other embodiments, the reactive layer comprises compounds such as p-aminophenol, ABTS (2,2inophenol, ABTS (strate. In some embodiments, acid) diammonium salt), 3,3′-diaminobenzidine, 3,4 diaminobenzoic acid, DCPIP, N,N-dimethyl-p-phenylenediamine, o-dianisidine, p-phenylenediamine, 4-chloro-1-naphthol, o-phenylenediamine N-(4-aminobutyl)-N-ethylisoluminol, 3-amino-9-ethylcarbazole, 4-aminophthalhydrazide, 5-aminosalicylic acid, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), indoxyl, indigo, Fast Blue RR, 4-chloro-7-nitrobenzofurazan. In some embodiments, the reactive layer comprises an arylamine. In some embodiments, the reactive layer comprises an amino phenol. In some embodiments, the reactive layer comprises an amino phenol an aminophenol ether. In some embodiments, the reactive layer comprises an indoxyl. In some embodiments, the reactive layer comprises an a neutral dye. In some embodiments, the reactive layer comprises a charged dye, e.g., a dye selected from remazole brilliant blue, toluidine blue, reactive black 5, remazol brilliant blue, reactive violet 5, and reactive orange 16, or a hydrolytic or ammonolytic derivatives thereof, toluidine blue, reactive black 5, or ahydrolytic or ammonolytic derivatives thereof; reactive violet 5, or hydrolytic or ammonolytic derivatives thereof; reactive orange 16, or hydrolytic or ammonolytic derivatives thereof; a dichlorotriazine-based reactive dye such as reactive blue 4, reactive red 120, reactive blue 2, reactive green 19 and reactive brown 10. In some embodiments, the dichlorotriazine-based reactive dye appears black.
  • In particular embodiments, the reactive layer comprises compounds such as a reactive dye containing a sulfonylethyl-hydrogensulphate-reactive-group. In some embodiments, the reactive dye is reactive black 5, remazol brilliant blue, reactive violet 5 or reactive orange 16. In some embodiments, the reactive dye is reactive black 5. In some embodiments, the reactive dye is remazol brilliant blue. In some embodiments, the reactive dye is reactive violet 5. In some embodiments, the reactive dye is reactive orange 16. In some embodiments, the reactive dye is reactive black 5, remazol brilliant blue, or reactive violet 5. In some embodiments, the reactive dye is reactive black 5 or remazol brilliant blue.
  • In some embodiments, the reactive layer comprises a nanoparticle. In some embodiments, the reactive layer comprises a colloidal gold particle. In some embodiments, the reactive layer comprises a charged dye, an indole derivative, or a luminol derivative. Especially, the reactive layer comprises a dye containing a sulfonylethyl-hydrogensulphate-reactive-group, e.g., reactive black 5, remazol brilliant blue, reactive violet 5 or reactive orange 16, or a combination thereof, or a dye containing a dichlortriazine reactive-group, e.g., reactive blue 4, reactive red 120, reactive blue 2, reactive green 19 and reactive brown 10, or a combination thereof.
  • FIG. 3 shows two embodiments of a reaction cell, comprising indicator units or testing regions. In (A) of FIG. 3, stitching (21) using wicking fibers helps to draw wound or bodily fluid from a wound toward a reagent pad (22), then through testing regions (23 and 24) and toward absorbent or evaporation area (25). In (B) of FIG. 3, a perforation or cut access (27) is made, such as in the reagent pad (22) to allow the flow of wound fluid from the wound to the reagent pad via capillary action. The reagent pad (22) may comprise reagents that react with microbial biomarkers in the wound fluid, such as substrates that react with MPO (29), elastase (30), and lysozyme (31) in the wound fluid. In some embodiments, one or more testing regions may comprise a sulfonic acid filter pad (23) and a quaternary amine trap (24). In some embodiments, one or more testing regions comprise a leach-back trap (28) and an amine back flow trap or filter (29). Some embodiments contain pH indicators (32) and protein indicators (33) that allow a user to detect a visible signal resulting from reactions between microbial biomarkers in the wound fluid and the reagents in the reagent pad (22). Absorbent or evaporation area (25) helps to draw the flow of the fluid from the reagent pad (22) toward (25). In a preferred embodiment, impermeable separators (26) keep adjacent testing regions separate.
  • In some embodiments, the indicator trap catches reaction products between the wound fluid and the one or more components selected from the group consisting of enzyme-reactive indicators, reagents that are sources of peroxide, enzymes that are able to transform color reactions, pH indicators, and moisture-detecting reagents. In some embodiments, the indicator trap comprises a positively charged or negatively charged trap for reaction products. In some embodiments, the positively charged trap comprises a quaternary amine polymer, a mixture of secondary and tertiary amines, other amine-containing polymers, or a combination thereof. In some embodiments, the positively charged trap comprises polyDADMAC, or an analog thereof. In some embodiments, the negatively charged trap comprises polymers or reagents containing carboxy, sulfate, sulfonate, or other acidic chemical groups. In some embodiments, the negatively charged trap comprises styrene sulfonate. In some embodiments, the indicator trap comprises a total protein indicator which is eluted by wound fluid to indicate overall flow and capacity of the testing region. In some embodiments, the control region contains a substrate for a ubiquitous enzyme such as esterase or carbonic anhydrase, or an indicator for a ubiquitous metabolite like lactate, glucose, ammonia or lipid. In some embodiments, one or more testing regions comprise a sulfonic acid filter pad and a quaternary amine trap. In some embodiments, one or more testing regions comprise a leach-back trap, a sulfonic acid filter pad and a quaternary amine trap. In some embodiments, each of the one or testing regions is used to evaluate the presence of one or more analytes and one or more positive or negative control indicators. In further embodiments, the one or more analytes is associated with enzyme activity. In some embodiments, the enzyme is selected from one or more of the group consisting of elastase, lysozyme, cathepsin G, myeloperoxidase, and leukocyte peroxidase. In some embodiments, the enzyme is elastase. In some embodiments, the enzyme is lysozyme. In some embodiments, the enzyme is cathepsin G. In some embodiments, the enzyme is myeloperoxidase. In some embodiments, the enzyme is leukocyte peroxidase.
  • In some embodiments, the wound dressing comprises a reagent layer comprising one or more testing regions. In some embodiments, the reagent layer comprises a support material. In some embodiments, the support material comprises a woven or non-woven material that is capable of being wet by a wound fluid and which displays capillary action. In a preferred embodiment, the capillary action is uniform in the plane of the material. In a preferred embodiment, the test regions are arranged in a circle so that diffusion occurs radially when a liquid is applied. Support material includes, but is not limited to, paper, cellulose, cellulose derivatives, viscose, polyamide, polyester, polyacrylate, and other similar polymers that are useful as fibers, and any combination thereof. In some embodiments, the support material is cellulose-based, such as refined papers, or non-woven material containing bonded cellulose fibers. In some embodiments, the support material is polyamide. In some embodiments, the support material is polyester. In some embodiments, the support material is polyacrylate. In some embodiments, the role of the solid support is to adhere substrates and provide a field in which analyte enzymes can travel to and interact with the detector. In some embodiments, cellulose content aids adherence of the enzyme substrates, and a significant cellulose or cellulose like content is preferred.
  • In some embodiments, each of the one or more testing regions is printed on or in the support material. In some embodiments, each of the one or more testing regions comprises an inlet for wound fluid, an area for the wound fluid to react with reagents (e.g., a reagent pad), an area to observe each product of one or more reactions, and an area for the accumulation of excess wound fluid (e.g., an absorbent area), which is then evaporated from an area sufficiently large as to not block due to accumulated solutes. In some embodiments, the evaporation zone helps to drive pull-through of more wound fluid.
  • FIG. 4 shows multiple embodiments of the movement of indicators in various reaction cells. When testing regions in the embodiment of (A) of FIG. 4 are exposed to wound fluid, wound fluid flows from the reagent pad (22) to absorbent or evaporation area (25), as shown in the right panel of FIG. 4(A). The embodiment of (B) of FIG. 4 shows an embodiment of reaction cells wherein indicators are arranged in a radial arrangement, and wherein fluid flows outward from the center upon encountering the reagent pad. The embodiments of (C) of FIG. 4 illustrates how multiple reaction cells can be used to cover a broader area, with trap leach-back (41) preventing backflow. In some embodiments, each reagent cell or lane of reagent pad (22) may be a different reporter or color system, such as bromothymol blue, phenol red, bromophenol red, chlorophenol red, thymol blue, bromocresol green, bromocresol purple; nitrazine yellow; or other sulfophthalein dyes. In the presence of wound fluid, in one embodiment reagents interact with analytes in the wound fluid and migrate or diffuse toward the absorbent or evaporation area (25).
  • In some embodiments, reagents are used that require trapping of the reaction product, and, to this end, each of the one or more testing regions comprises a reagent pad or a reagent cell (22), a filter pad (23), an indicator trap (24), and an absorbent/evaporation area (25). In embodiments comprising a color change reagent, each of the one or more testing regions comprises a reagent pad that is also under a viewing window and an absorbent/evaporation area. In some further embodiments, each of the one or more testing regions comprises a leach-back trap which is a trap field that contains an absorbent that absorbs the reagents and prevents their back flow to the dressing below. In some embodiments, an outer layer overlays the reagent layer in order to modulate evaporation of wound fluid, the outer layer containing one or more windows to visualize the underlying indicator trap and/or reagent pad from one or more testing regions.
  • In some embodiments, each of the one or more testing regions detects at least one biomarker. In some embodiments, each of the one or more testing regions comprises one or more impermeable separators, wherein each of the one or more testing regions detects more than one biomarker. In some embodiments, the one or more impermeable separators are printed strips of hydrophobic non-permeable material. In some embodiments, the one or more impermeable separators are arranged in parallel lanes. In some embodiments, the one or more impermeable separators are arranged in a radial pattern. In some embodiments, each of the one or more testing regions detects two biomarkers. In some embodiments, each of the one or more testing regions detects three biomarkers. In some embodiments, each of the one or more testing regions detects four biomarkers. In some embodiments, each of the one or more testing regions detects five biomarkers. In some embodiments, each of the one or more testing regions detects six biomarkers. In some embodiments, each of the one or more testing regions detects seven biomarkers. In some embodiments, each of the one or more testing regions detects eight biomarkers. In some embodiments, each of the one or more testing regions detects nine biomarkers. In some embodiments, each of the one or more testing regions detects ten biomarkers. In some embodiment, each of the one or more testing regions detects one or more biomarkers.
  • FIG. 5 shows a radial arrangement of indicators or a radial indicator patch. As shown in (A) of FIG. 5, testing regions or reagents may be arranged in a circular or radial orientation. The indicator includes reagents (22), a quaternary amine trap (24), and an absorbent or evaporation area (25). A hole or cut access (27) in the middle of the indicator helps to draw fluid from a wound into the indicator. The fluid typically will flow from the access (27) outward to the evaporation area (25). When reagents (22) are exposed to wound fluid and react to microbial biomarkers, the resulting products migrate to amine trap (24), allowing detection by a user. The indicator may also have impermeable separators or lanes (26). As shown in (B) of FIG. 5, a top or “above” view is provided and a bottom or “below” view is provided for a radial indicator patch. In one embodiment, substrates may be printed as dots to allow for greater freedom of printing. Moisture impermeable film with adhesive on both sides allows the radial indicator patch to attach to foam or other support material. In some embodiments, each reaction cell or lane (45-48) can be a different reporter or color system, allowing analysis of multiple analytes on one indicator patch.
  • In some embodiments, each of the one or more testing regions comprises one or more components selected from the group consisting of enzyme-reactive indicators, reagents that are sources of peroxide, enzymes that are able to transform color reactions, pH indicators, total protein-detecting reagents, and moisture-detecting reagents. In some embodiments, the reagents that are sources of peroxide are selected from peroxy acids, sodium percarbonate, and peroxide-generating oxidases, such as glucose oxidase or lactate oxidase. In some embodiments, the enzymes that are able to assist the transformation of color reactions are selected from peroxidases and laccases. In some embodiments, one or more components are immobilized within the one or more testing regions. In some embodiments, one or more components are mobilized by wound fluid within the one or more testing regions. In some embodiments, one or more components bind to the one or more testing regions due to interaction with wound fluid. In further embodiments, each of the one or more testing regions further comprises one or more of the group consisting of buffers, binders, and solubility enhancers. In some embodiments, one or more buffers, binders, and/or solubility enhancers improves printing or stability.
  • In some embodiments, each of the one or more testing regions comprises an enzyme-reactive indicator, further comprising an enzyme-labile or enzyme-reactive moiety, an immobilizing moiety that holds the reactive indicator in place, and a moiety that gives rise to a visible change upon interaction of the reactive indicator with a target enzyme. In some embodiments, each moiety is distinctly different from the other. In some embodiments, one moiety incorporates another moiety either partially or entirely. In some embodiments, the reagent pad comprises one or more enzyme-reactive indicators.
  • In some embodiments, the enzyme-reactive indicator is a protein-indicator conjugate such as a protease substrate comprising both protein and dye materials. In a preferred embodiment, the protein-indicator conjugate is a protein with a binding function to a solid phase, such as a cellulose binding domain conjugated with a protease recognition site and dyes that are released upon proteolysis.
  • In some embodiments, the pH indicator presents a visible color change at alkaline pH. In some embodiments, the pH indicator presents a visible color change at pH=7.2-9.5. In some embodiments, the pH indicator presents a visible color change at pH=7.2-9.0. In some embodiments, the pH indicator presents a visible color change at pH=7.2-8.5. In some embodiments, the pH indicator presents a visible color change at pH=7.2-8.0. In some embodiments, the pH indicator presents a visible color change at pH=7.5-8.5. In some embodiments, the pH indicator presents a visible color change at pH=7.5-9.0. In some embodiments, the pH indicator presents a visible color change at pH=8.0-9.0. In some embodiments, the pH indicator presents a visible color change at pH=7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8.0, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9.0, 9.1, 9.2, 9.3, 9.4, or 9.5, or increments thereof.
  • In some embodiments, the pH indicator presents a visible color change at neutral pH. In some embodiments, the pH indicator presents a visible color change at pH=6.9, 7.0, or 7.1, or increments thereof.
  • In some embodiments, the pH indicator presents a visible color change at acidic pH. In some embodiments, the pH indicator presents a visible color change at pH=4.5-6.8. In some embodiments, the pH indicator presents a visible color change at pH=4.5-6.5. In some embodiments, the pH indicator presents a visible color change at pH=5.0-6.8. In some embodiments, the pH indicator presents a visible color change at pH=5.4-6.8. In some embodiments, the pH indicator presents a visible color change at pH=5.4-6.5. In some embodiments, the pH indicator presents a visible color change at pH=4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, or 6.9, or increments thereof.
  • In some embodiments, the pH indicator is nitrazine yellow, bromocresol purple or bromothymol blue or an analog thereof.
  • In some embodiments, the filter pad removes unwanted components of wound fluid, such as fibrinogen, albumins or globulins, and cellular components or non-cellular debris, i.e., dressing components, medicaments, metabolites, microbes, microbial debris, microbial metabolites, etc. In some embodiments, the leach-back trap prevents backflow of reagents in the reagent pad or reagent cell from entering the inlet for wound fluid in the testing region. In some embodiments, the filter pad and/or leach-back trap comprises a quaternary amine polymer, a mixture of secondary and tertiary amines, other amine-containing polymers, or a combination thereof. In some embodiments, the filter pad and/or leach-back trap comprises a quaternary amine polymer. In some embodiments, the filter pad and/or leach-back trap comprises a mixture of secondary and tertiary amines. In some embodiments, the quaternary amine polymer is polydiallyldimethylammonium chloride (polyDADMAC or polyDDA). In some embodiments, the mixture of secondary and tertiary amines is polyethylenimine (PEI). In some embodiments, the filter pad and/or leach-back trap is held in place by cross-linking with bifunctional reagents, such as epichlorhydrin, diglycidylethers, di-epoxides or arylazideisothiocyanates. In some embodiments, such reagents when mixed with a reactive amine-containing polymer link different polymer chains and trap the longer polyDADMAC chains within a matrix. In some embodiments, the trap is composed of choline acrylate derivatives polymerized in situ using a radical initiator such as benzphenone. In some embodiments, the filter pad and/or leach-back trap comprises polymers or reagents containing carboxy, sulfate, sulfonate, or other acidic chemical groups. In some embodiments, the filter pad and/or leach-back trap comprises styrene sulfonate.
  • In some embodiments, the indicator trap catches reaction products between the wound fluid and the one or more components selected from the group consisting of enzyme-reactive indicators, reagents that are sources of peroxide, enzymes that are able to transform color reactions, pH indicators, and moisture-detecting reagents. In some embodiments, the indicator trap comprises a positively charged or negatively charged trap for reaction products. In some embodiments, the positively charged trap comprises a quaternary amine polymer, a mixture of secondary and tertiary amines, other amine-containing polymers, or a combination thereof. In some embodiments, the positively charged trap comprises polyDADMAC, or an analog thereof. In some embodiments, the negatively charged trap comprises polymers or reagents containing carboxy, sulfate, sulfonate, or other acidic chemical groups. In some embodiments, the negatively charged trap comprises styrene sulfonate. In some embodiments, styrene sulfonate is diluted to 0.02 to 0.8% in water and printed in this form to the support material. In yet other embodiments, styrene sulfonate is diluted to between about 0.01% to 2.0%, about 0.01% to 1.5%, about 0.01% to 1%, about 0.05% to 1%, about 0.1% to 1% or about 0.5% to 1%.
  • In some embodiments, the indicator trap comprises a total protein indicator which is eluted by wound fluid to indicate overall flow and capacity of the testing region. This region is distinct from the moisture indicator. In one embodiment, a blue polysulfonate dye, such as Evans or Trypan blue, is weakly bound to a tertiary amine trap. On arrival of protein, the dye is displaced and re-trapped as a Protein complex on a quaternary amine trap. In another embodiment, Coomassie Blue G250 is weakly bound to a Styrene sulfonate field and is displaced by protein to be re-trapped on a quaternary amine trap. The dye undergoes a mild color change from the sulfonic acid environment to the amine environment increasing the effect. In another embodiment, the visualization field is pre-printed with the Ponceau S complex of the quaternary amine trap such that it is red indicating non-function. The conversion of the trap to the Blue form indicates the progress of protein elution.
  • In an embodiment of an indicator of the arrival of fluid in the system, Brilliant Black or a similar dark tetra sulfonate is printed into a reagent pad as a free reagent without any polymer complexing. Being water soluble, it is readily mobilized by the wound fluid and migrates to the window where it is avidly trapped by a quaternary amine trap. The high polysulfonation increases the avidity for the amine and resists further elution by proteins. Under conditions of high secretion, the eventual removal of the dye from the trap may also serve to indicate exhaustion of the device or a need to change it.
  • In some embodiments, one or more testing regions comprise a sulfonic acid filter pad and a quaternary amine trap. In some embodiments, one or more testing regions comprise a leach-back trap, a sulfonic acid filter pad and a quaternary amine trap.
  • In some embodiments, each of the one or testing regions is used to evaluate the presence of one or more analytes and one or more positive or negative control indicators. In some embodiments, the one or more analytes is associated with enzyme activity. In some embodiments, the enzyme is selected from one or more of the group consisting of elastase, lysozyme, cathepsin G, myeloperoxidase, and leukocyte peroxidase. In some embodiments, the enzyme is elastase. In some embodiments, the enzyme is lysozyme. In some embodiments, the enzyme is cathepsin G. In some embodiments, the enzyme is myeloperoxidase. In some embodiments, the enzyme is leukocyte peroxidase.
  • In some embodiments, a positive result (e.g., indication of infection) from the one or more testing regions is in the form of a visible change. In some embodiments, the visible change is a color. In some embodiments, the color is selected from dark blue, dark green, and black. It is clear to those skilled in the art that the signal effect of the color change depends on context and practical consideration of interfering colors from the wound itself. Thus, red is a useful signal to indicate a problem, or to indicate stop or not ready, but it is readily confused with colors associated with wound fluids. Thus, colors that are not likely to emerge from a wound offer potentially less source of error. In some embodiments, the visible change is fluorescent, luminescent, or mediated by physical means such as electrical, refraction, gas evolution or polymer state change. Some fluorescent systems have the drawback that they require a source of light and potentially a darkened room or chamber for viewing, however, other fluorescent systems do not have such drawbacks. Conventional colors are visible under normal treatment conditions. Given that a color may be diluted or covered by fluids such as blood, there remains an embodiment in which a dual indicator is used in which a fluorescent indicator is mixed with a conventional color indicator. Thus, if a field is covered by blood, the result may be optionally interrogated with a black-light to determine whether a signal is present.
  • Outer Layer
  • In some embodiments, the outer layer comprises a polymer that is not easily penetrated by wound fluid. Such polymers include, but are not limited to, a polyolefin, a polypropylene, a polyethylene, polyurethane, polyamides, ethylene-vinyl alcohol (EVOH), acrylonitrile (PAN), polyvinyl choride (PVC), polyvinylidene chloride (PVDC), polyacrylates (e.g., (1-methyl-1,2-ethandiyl)bis[oxy(methyl-2,1-ethandiyl) diacrylate) or other similar hydrophobic impermeable polymers that, in some embodiments, are laid down as films by printing, spraying or film blowing. In some embodiments, the outer layer is water vapor permeable. In some embodiments, the outer layer prevents moisture loss in specific areas (e.g., where a visible change indicating infection is observed) and promotes moisture loss in other specific areas (e.g., where excess wound fluid accumulates).
  • In some embodiments, the reaction layer is protected by two layers: a top layer and a bottom layer. The bottom layer typically has an opening that allows fluid sample inflow. The top layer generally prevents premature evaporation of the sample and may force it to migrate through the device to the evaporation zone. The top layer may also contain one or more windows that allow the response of the reagents to be seen or detected.
  • Devices
  • In yet other embodiments, the disclosure herein provides a device comprising a sampling component and a test device comprising:
  • (a) a housing surrounding a tube to define an opening in the housing to receive the sampling component, the housing also having disposed within it:
  • (b) a sealed diluent chamber connected to the tube and holding a liquid diluent for removing the sample from the sampling tip to form a liquid test sample;
  • (c) a reaction well in liquid communication with the tube, the reaction well holding a reagent capable of indicating the presence of the analyte within the test liquid; and
  • (d) a forcing mechanism capable of moving the diluent through the device from the chamber, over the sample tip and into the reaction well.
  • In some embodiments, the device operates by driving the diluent over the sample and into a reaction well, and a test solution is made by the flow of the diluent over the sample. Preferably, it is not necessary to first mix the sample with the diluent to make a test solution and then move that solution via a lateral flow strip to the reaction well. The moving of the diluent past the sample and to the reaction well means that the kit can be used with a minimum number of steps, for instance taking the sample, inserting the sampling component into the housing and activating the moving or driving mechanism. This procedure minimizes user error and thus minimizes false-negative results and misdiagnoses.
  • In some embodiments, the diluent is forced through the device in a one-step or multi-step process. For instance, in a one-step process, the diluent is forced through the device which creates a test liquid, which is forced into the reaction well. In a multi-step process, such as a two-step process, the diluent could first be forced through the device to a mixing chamber where a test liquid is prepared. That liquid could then be forced from the mixing chamber to the reaction well in a further step.
  • In another embodiment, the means of mixing and loading the sample may be achieved in a separate step to its analysis. In one embodiment, a sample swab is first inserted into a recipient fluid container, and then a coaxial plunger is pushed over the swab to eject diluted sample into the analysis device. In a preferred embodiment, gas is removed, such as by using Goretex membranes which are gas and vapor permeable but not permeable to liquid water. Said membranes can be used to degas both the sample as it is injected and to vent the fluid chambers where the assay takes place.
  • In one embodiment, preferably the diluted sample is distributed to each analysis chamber equally through microchannels. However, when each exit from a chamber contains a Goretex membrane, back pressure ensures that each chamber is only filled once. In a more preferred embodiment, the loss of liquid sample from the assembly is prevented by an absorbent between the last outlet and the exterior of the device.
  • In still other embodiments, the disclosure herein provides a kit for detecting an analyte or biological marker or target in a sample comprising:
  • (i) a sampling component comprising a sampling tip for collecting the sample and
  • (ii) a test device comprising: a housing surrounding a tube to define an opening in the housing to receive the sampling component, the housing also having disposed within it: a sealed diluent chamber connected to the tube and holding a liquid diluent for removing the sample from the sampling tip to form a test liquid; a reaction well in liquid communication with the tube, the reaction well holding a reagent capable of indicating the presence of the analyte within the test liquid; and a forcing mechanism capable of moving the diluent through the device from the chamber, over the sample tip and into the reaction well.
  • The sealed diluent chamber may contain a specified volume of diluent so that an expected volume of test solution reaches the reaction well or wells. In addition the pathway between the diluent chamber and the reaction well is preferably vented at the reaction well end so that trapped air does not affect the flow of test solution through the device or prevent the test solution from reaching the reaction well or prevent the test liquid from correctly filling the reaction well.
  • The housing preferably has two parts which are capable of moving with respect to each other while remaining connected to one another. The action of moving the parts may provide the forcing mechanism by which diluent is moved through the device. The diluent may be driven through the device by compression of the diluent chamber which forces the diluent past the sample tip and to the reaction well or wells emptying the compression chamber. The compression of the diluent chamber can occur when the parts of the housing are moved with respect to one another such as by sliding one part past another. Alternatively the diluent can be pulled through the device again for example by moving parts of the housing with respect to one another.
  • The sampling component preferably comprises a handle and a sampling tip, the handle preferably comprising a seal which engages with the opening in the housing to seal the tube when the sampling component is fully inserted in the tube. The seal prevents escape of the sample and diluent from the device reducing the chance of cross contamination from the wound fluid. Preferably the seal and tube engage to lock the sampling component in the device and prevent removal of the sampling component once it has been used. This further reduces the chance of cross-contamination from the sampling component. The sampling component preferably activates release of the diluent from the diluent chamber.
  • The housing may comprise a locking mechanism which locks the housing in position once the driving mechanism has been activated and prevents reuse of the device. In this way it is immediately apparent that the device has been used and cannot be used again. This minimizes false results from, for instance, a device that has been mistakenly activated in transit or from reuse of a device whose reagents have been spent.
  • Preferably insertion of the sampling component in the device releases the seal on the diluent chamber. Preferably the seal is a ball valve or can be a film or membrane seal or a duck bill valve or other non-return valve known in the art which is activated when the sampling component is inserted in the device. The sampling component preferably bursts, punctures or displaces the seal on the diluent chamber.
  • Preferably the tube is the same or similar size to the sampling tip of the sampling component so that the act of inserting the sampling tip into the tube causes it to be scraped along the walls of the tube aiding the dispersion of the sample in the diluent once it is released from the diluent chamber and is flushed through the device. The diluent can be flushed along the whole length of the tube or only part thereof. The sizing of the sampling tip to match the tube also forces the diluent to be flushed through the tip when the diluent is driven from the diluent chamber. Preferably the tube is wider at its mouth to aid insertion.
  • Preferably the diluent chamber is shaped like a bellows to assist in the compression of the chamber alternatively the chamber can be a combination of a plunger and tube similar to that found in a syringe, or sample preparation device, or can be a filled flexible sachet which is compressed by hand by the user or a balloon which contracts when the seal is released.
  • Methods of Use
  • In one aspect, provided herein are methods to diagnose and indicate need for treatment of chronic wounds using a wound dressing described herein.
  • In some embodiments, the methods and devices disclosed herein detect biological markers or targets from body fluid. In some embodiments, the body fluid is blood, plasma, serum, cerebrospinal fluid, sputum, urine or wound exudate. In preferred embodiments, the body fluid is wound exudate.
  • In another aspect, provided herein are methods to diagnose chronic wounds using a wound dressing described herein.
  • In another aspect, provided herein are methods to indicate need for treatment of chronic wounds using a wound dressing described herein.
  • In another aspect, provided herein are methods to indicate need for treatment of surgical or acute wounds using a wound dressing described herein.
  • In another aspect, provided herein are methods of detecting biomarkers of infection in wounds using a wound dressing described herein.
  • In another aspect, provided herein are methods of detecting the pH and/or the presence of biomarkers of infection in wounds using a wound dressing described herein. In some embodiments, the biomarkers of infection are leukocyte enzymes. In some embodiments, alkaline pH in the wound indicates infection in the wound.
  • In another aspect, provided herein are methods of detecting protease activity in wounds using a wound dressing described herein.
  • In another aspect, provided herein are methods of monitoring the condition of a wound or surgical site and its healing process or status.
  • EXAMPLES Example 1: Wound Dressing
  • One example of a construction of a wound dressing incorporating the device is shown in FIG. 2. The wound contact layer in this example is carboxymethylcellulose marketed as “AQUACEL”, and the AQUACEL is backed by a polyurethane foam. In the infection-indicating area of the device is an impermeable area beneath the reagent layer. Connecting to this area is a material such as a polyester thread, methylcellulose fibers, or a similar wicking, hydrophilic, capillary or similar material, or capillary channels. This fluid connection brings wound exudate or fluid into contact with the reagent layer, where it may react with and mobilize indicator reagents into visible products that are either visible in place or trapped in window visible from the outside of the dressing. This example also demonstrates the use of AQUACEL.
  • In one embodiment of a wound dressing is shown in cross-section in FIG. 2. In that wound dressing the wound contact layer (4) comprises carboxymethylcellulose, marketed as AQUACEL. In FIG. 2, the wound contact layer (4) is backed by a polyurethane foam (3). In the infection-indicating area of the dressing is an impermeable area beneath the reagent layer (2) and above the polyurethane foam (3). Accordingly, in this embodiment the infection-indicating area is provided between the reagent layer (2) and the polyurethane foam (3). Connecting to the infection-indicating area is a fluid connection (1) component, such as a material such as a polyester thread, methylcellulose fibers, or a similar wicking, hydrophilic, capillary or similar material, or capillary channels (1). This fluid connection component (1) brings wound fluid into contact with the reagent layer (2), where it may react with and mobilize indicator reagents into visible products that are either visible in place or trapped in window (6) visible from the outside of the dressing as shown in the top view of the wound dressing shwon in (C) of FIG. 2. As explained above, views (A) and (B) of FIG. 2 show side views of the wound dressing (7). View (B) of FIG. 2 shows the flow of wound fluid (5) from the wound contacting layer (4) at the bottom upward via capillary channels (1), which may be formed by stitching using wicking fibers. The wound fluid reacts with reagents in reagent layer (2), which may contain windows (6), allowing users to observe a visible signal resulting from reactions between wound fluid and reagents in the wound dressing. View (C) of FIG. 2 shows a top view of a wound dressing (7), wherein an opaque film on top of the reagent layer (2) contains windows or clear areas (6) that allow the observation of indicators or changes associated with reagent interaction with an analyte. In some embodiments, a visible signal may be a color change indicative of a microbial infection in the wound.
  • Example 2: A Dressing Material Printed with a Patterned Reactive Ink to Report MPO Activity
  • A dressing wound contact layer has an upper and lower surface in which the lower surface is the wound contact layer. Reagents can be sprayed or printed on a wound dressing material. One embodiment of such dressing is shown in FIG. 6, wherein (A) depicts a view of the surface of the wound dressing material and illustrates the topside of wound contact material; (B) represents the wound material sprayed with amylase, starch, and glucose oxidase; and (C) represents substrate-printed in the centers of the sprayed area.
  • In alternate embodiments, onto the upper surface are printed multiple layers, such as three layers, to report MPO activity. In one embodiment the first layer is the substrate which is printed on the upper surface of the wound dressing material, such as at a concentration of 30 mg/mL in ethanol/heptane using a line width of 0.8 mm and a print density of 1 μL/cm. Alternatively, the fast blue substrate is printed a grid of circles each 3 mm in diameter (FIG. 6). In one embodiment the next layer is a spray application of a solution of gamma-amylase and glucose oxidase immobilized on hydoxypropyl cellulose. The material may be sprayed in a water buffer solution such that approximately 3 μg of glucose oxidase is deposited per cm2, in parallel, 0.5 μg/cm2 of gamma amylase is applied as the conjugate. Once dried, a starch suspension may be sprayed at a density of 150 μg per cm2. Once printed, the wound contact layer is preferably bonded to an upper protecting layer. The same printing regime can be printed on the upper side an upper protecting layer. When exposed to artificial wound fluid containing enzymes, the grid becomes blue colored over time.
  • Example 3: An Absorbent Material Printed with a Patterned Reactive Ink to Report Elastase Activity
  • In this example a dressing has an absorbent and protective layer which has an upper and lower surface in which the lower surface contacts the wound contact layer. Onto the upper surface a grid pattern is printed with 1 cm grid spacing. In one embodiment, as shown in FIG. 8, the print is performed with a solution of the AAPV-indoxyl ester 30 mg/mL in heptane/butanol using a line width of 1 mm and a print density of 1.3 μL/cm. FIG. 7 illustrates embodiments of in-place color development of MPO and elastase substrates.
  • Example 4: A Multi-Biomarker Device Insert
  • The visualization methods are preferably either a color change of an immobile enzyme substrate, directly printed in the window of the reporter area, or of the appearance of an immobilization of the substrate caused by hydrophobic properties of the substance and non-covalent chemical interactions with the carrier material. The amount of applied substrate and possible impregnation mixtures for color improvement were tested in this example as described below
  • Optimization of the reporter area and color signal: Circles (diameter 5 mm) were punched out of carrier material, in this case filter paper. Circles were impregnated with different mixtures of buffers (see specific reagents: Artificial wound fluid 2% bovine serum albumin in phosphate buffered saline containing potassium chloride, urea pH 7.2). See FIG. 8 for examples of substrates in a water solution followed by a drying step. After drying, varying amounts of substrate, usually in an organic solution, were pipetted on the test circles.
  • The reactivity to wound fluid was tested as follows: 10 μL test liquid (buffer or artificial wound fluid 2% albumin) with or without enzyme were pipetted on the dried test disks. Disks were incubated either in open air or in a closed system. Color development was evaluated visually at various times after initiation. All observations were at room temperature to simulate the condition expected outside the dressing.
  • After optimization of the two visualization methods, prototypes were prepared in lab scale to test the interaction of the different enzyme substrates/their color development. Prototypes were designed and assembled as described in FIGS. 7 and 9.
  • FIGS. 7 and 9 show embodiments of in-place color development of different indicators. FIG. 9 shows a prototype with the reporter areas for lysozyme, elastase and MPO detection, a pH indicator and the liquid control was constructed. On the left portion in (A) the diagnostic material is shown. On the right portion in (A) a magnification of the reporter area is shown. (B) shows the diagnostic area after liquid application (artificial wound fluid 0.5% albumin, 1 U/mL elastase, 10 μg/mL MPO, 30000 U/mL lysozyme). The experiment was run over 2 h with a flow rate of 100 μL/min for the first 10 min, followed by 10 μL/min. The experiment was repeated in n=10.
  • Embodiments of diagnostic inserts or disks are shown in FIGS. 10, 11, and 12. FIG. 10(A) shows the top view of a diagnostic insert, comprising a reporter area (60), reaction area (61), and evaporation area (62). FIG. 10(B) shows the bottom layer, comprising an impermeable layer of plastic film, either white or transparent, with a diameter of about 40 mm. The hole in the middle allows for liquid transport and has a diameter of about 4 mm. The bottom layer is covered with adhesive and in the same shape underneath for an exact fixation on a dressing. FIG. 10 shows embodiments of the reaction material comprising an adhesive layer (C) and a reaction layer (D), wherein each arm has a different substrate/indicator and/or pH system. FIG. 10(E) shows the cover, which comprises an impermeable white plastic foil with a diameter of 20 mm. The outer ring may have an insider diameter of 25 mm and an outer diameter of 31 mm. The top layer may be covered with adhesive underneath for an exact fixation on the reaction material.
  • Top view of the assembled completed diagnostic insert. See FIG. 10(A). The reporter area is designed as a window surrounded by an off-white layer to achieve a maximum contrast to the color signals. In this embodiment, there are five radial arms, each of which contains a different reporter and color system. In one embodiment, three are for enzymes and two are for controls.
  • The evaporation area ensures a continuous liquid transport through the diagnostic material, necessary for the enzyme reaction and color development in the reporter area.
  • Bottom layer as liquid barrier between the dressing and the diagnostic material. Liquid will preferably pass only through the hole in the middle of the layer which leads to a directed radial distribution into the arms of the reaction material (diagnostic material).
  • Diagnostic material was designed with four or five radial “arms” depending on the favored number of enzyme-substrates and controls to be included. The reaction material is fixed on the bottom layer with medical adhesive. Alternatively, the reaction arms are printed or coated with the less permeable bottom layer in place of the adhesive (one material can serve both purposes).
  • In some embodiments, the device insert comprises at least one arm or fewer than ten arms. The number of arms may depend on the number of analytes to be determined in a sample and control(s), as applicable. In further embodiments, the device insert comprises one, two, three, four, five, six, seven, eight, nine, or ten arms.
  • The reaction material is prepared with impregnation mixtures and substrates in accordance to the optimized conditions described above before assembling the detection material.
  • As shown in FIG. 10(E), the cover has several functions. Firstly, it preferably maintains the reaction zone moist by preferably preventing premature drying. Fluids should pass through the reaction area into the reporter area where there is a transparent window that allows color changes to be seen. The second function is preferably to avoid a stop of liquid flow and to cover the chemistry area so that colored reagents are not seen before they are transported to the window. The cover is water impermeable and includes the windows for signal visualization.
  • The detection material is preferably fixed with a medical adhesive to the foam backing layer of a hydrofiber dressing.
  • Optimization of the first visualization method (accumulation and trapping) established the following conditions:
  • Trapping mixture: Volume of 1.5 μL per 10 mm2, thickener Methylcellulose (Methocel A4C) max. 1.25%. Drying at room temperature for at least 1 h.
  • Transport of Remazol Brilliant Blue (FIG. 13) and visualization in the trap coated reporter area containing the amino-trap (triplicates), test liquid was artificial wound fluid 2% albumin. This visualization method was used for the Lysozyme-substrate (results obtained by QZY); released and trapped dye after enzyme cleavage: Remazol Brilliant Black) and the liquid control (dye: Brilliant Black BN).
  • FIG. 13 shows visualization of dye in reporter area (D) after exposure of reaction area (C) to artificial wound fluid. The direction of the fluid flow was from reaction area (C) to reported area (D), further comprising amino trap. The experiment was done in triplicates.
  • Optimization of the second visualization method (in-place color change) led to clearly colored signals for the MPO-substrate, the elastase substrate and a pH Indicator.
  • MPO-substrate: The MPO substrate in this example is a Fast Blue derivative. The substrate is soluble in 50° C. ethanol. After pipetting of 1.5 μL of a saturated solution at the reporter area followed by a drying step (20 min, room temperature) the substrate cannot be mobilized by artificial wound fluid 2% albumin. The slightly beige MPO substrate is converted by MPO under development to a deep blue to black color in the reporter area. As the MPO reaction is H2O2 dependent, a glucose/glucose oxidase based H2O2 generating system is printed in the reaction area.
  • Optimized conditions led to the results shown in FIG. 7. Test circles contain 1.5 MPO substrate as described above, 10 μg glucose and 1 μL of 0.1% glucose oxidase (1 μg) in water. After drying of the test circles 5 μL test liquid (artificial wound fluid 2% albumin, pH 7, without/with MPO) were applied. The picture of FIG. 7 was taken after 2 min incubation time.
  • Elastase substrate: The elastase substrate consists of an Fmoc protected AAPV enzyme recognition motif (amino-acid sequence AAPV) esterified to an Indoxyl moiety. It is soluble in organic solvents, but completely insoluble in aqueous solution. After enzyme cleavage, Indoxyl is released and immediately oxidized to immobile blue Indigo dye (FIG. 8), visible in the reporter area.
  • Optimized conditions led to the result shown in FIG. 7. In a first step, the test circles were impregnated with a impregnation mixture (0.25% (w/w) Nonidet, 2% (w/w) decanol in 0.05 M borate buffer pH 8). Therefor the two-phase solution was mixed until formation of an opalescent dispersion. This dispersion was transferred in a glass container. The test circles were washed in the impregnation mixture for 1-2 min. Thereafter the filter papers were placed on a glass plate and dried for 1-2 h at 54° C.
  • In the next step elastase-substrate (10 mg/mL in acetone) was pipetted on the circles 2 times in 2.5 μL steps until a final amount of 50 μg per test circle (20 mm2) was applied (FIG. 7). After drying at room temperature an elastase assay was performed by addition of 10 μL test liquid (artificial wound fluid 2% albumin, pH 7, with/without elastase). Color development was observed and documented after 15 min incubation at room temperature.
  • The pH indicator is a preparation of bromothymol blue in chitosan, containing glutaraldehyde. The mixture is pipetted in the reporter area, after drying leading to a dark yellow and immobile indicator system. The color changes from slightly green (pH 7) to a dark green (pH 8) within 30 minutes of liquid flow (artificial wound fluid 2% albumin). See FIG. 14 for an example of a pH indicator.
  • Immobilized bromothymol blue derived pH indicator after running with approximately 300 μL artificial wound fluid 2% albumin with different pH values. pH indicator was applied in amounts of 1.5 μL per 10 mm2 in three pipetting steps of 0.5 μL.
  • Production and functionality of the reporter area in prototypes. In the reporter areas of the arms of the diagnostic material for Lysozyme detection and the liquid control, 1.5 μL of the trapping mixture were printed. In the reporter areas for Elastase and MPO detection as well as for the pH indicator, the substrates were applied (FIG. 7, 9).
  • FIG. 9 shows a prototype with the reporter areas for lysozyme, elastase and MPO detection, a pH indicator and the liquid control. On the left the diagnostic material is shown, on the right a magnification of the reporter areas. FIG. 9 (A) shows an example for a prototype with the reporter areas before liquid application.
  • FIG. 9 displays the diagnostic area after liquid application (negative control, artificial wound fluid 0.5% albumin without enzymes). FIG. 9(C) shows the diagnostic area after liquid application (artificial wound fluid 0.5% albumin, 1 U/mL elastase, 10 μg/mL MPO, 30000 U/mL lysozyme). The experiment was run over 2 h with a flow rate of 100 μL/min for the first 10 min, followed by 10 μL/min. The experiment was repeated in n=10.
  • FIG. 9 shows a prototype with the reporter areas for lysozyme, elastase and MPO detection, a pH indicator and the liquid control. On the left the diagnostic material is shown, on the right a magnification of the reporter areas. Color signals for the liquid flow control are visible, so it is believed that the method of visualization by trapping and accumulation works. The order of reaction is generally MPO, then elastase, then lysozyme. Color change of the pH indicator as well as the color development of the MPO and elastase substrates is visible in the reporter area. The in-place color change was established for these reactions and functionality was demonstrated.
  • The inserts can be made in many forms including radial designs (FIG. 10-12), linear designs and single spot approaches. These vary in which layers and patterns are formed. It is generally the goal to make the insert as small and non-occlusive as possible.
  • One means to reduce occlusiveness is to reduce the area of film layers. In the embodiments shown in FIG. 10-12, the only occlusive layers are the lanes themselves. In this version, the round bottom layer is replaced by only the adhesive. The advantage of the round bottom layer is that tended to support a broader area of the dressing being sampled into the device. The reduced bottom layer has the advantage of permitting more vapor transfer.
  • Example 4: Lysozyme Responsive Testing Strip
  • In one embodiment of a means to detect lysozyme activity, a strip of a wicking substance like filter paper is printed with both dyed peptidoglycan (FIG. 15(D), a) and a trap material (quaternary amine fixed with cross-linked PEI) (FIG. 15(D), b). Wound fluid is applied to the base and allowed to wick up the carrier to point C where it evaporates. Lysozyme, if present, degrades the dyed peptidoglycan and transports anionic fragments to the trap (FIG. 15(D), b) where they form a line.
  • In FIG. 15, one embodiment of a lysozyme test strip (50) comprises a Whatman filter 1001/85 that is cut into 0.5 cm×4 cm pieces having fixation areas (51), evaporation area (52), 3% crosslinked, amino trap (53), substrate area (54), and a stitching area (21) for wicking fluid from a wound. Side view (B) shows a wound dressing comprising a test strip (50), base layer (55), and stitching (21). Top view (C) shows the test strip (50) adhered to wound dressing (56).
  • Integration of dyed peptidoglycan into a lysozyme responsive testing strip (FIG. 15). In some embodiments, a testing strip comprises a Whatman filter 1001/85 that is cut into 0.5 cm×4 cm pieces. 2 μl of the quaternary amine trapping solution is pipetted onto the cellulose filter 1.5 cm beneath the upper end of the stripe. 2 μl of a substrate formulation containing 4 mg dyed peptidoglycan in 240 μl 0.5% PEG6000 solution in H2O are pipetted 1 cm above the lower end of the stripe. The modified strip is incubated at 90° C. for 30 minutes. The test strip is then ready to use. Alternatively other dyed lysozyme substrates (e.g. dyed chitosan derivatives) can be incorporated into the testing system. In some embodiments, the testing strip comprises a substrate spot, a quaternary amino trap, and a cellulose matrix.
  • In some embodiments, integration of the lysozyme responsive testing strip into a dressing for the online detection of early stage wound infections.
  • Liquid transport system from the bottom side of the dressing to the test strip is performed via a polypropylene yarn stitched through the layers of the dressing and the first water impermeable adhesive layer. While the stitching helps the process, it is not essential and the same results are obtained without stitching, albeit more slowly. The testing strip is embedded in between of two water impermeable adhesive layers. An evaporating area is included in the upper region of the strip. The detection unit releases the coupled dye in region ‘a’ which is then trapped in area ‘b’ of the testing stripe and gives a clear visible signal upon lysozyme activity.
  • Material selection for the test strip: Different cellulose based materials can be used as solid matrix for the test stripe. Non-wovens containing a defined amount of cellulose can alternatively be used. Schematic representation of the Lysozyme test strip. Attachment of the detection system to the dressing (FIG. 15). Base layer contains liquid transfer system to the detection unit. Upper view of the combined base layer and detection unit.
  • Example 5: Indicator Reactions
  • FIG. 16 shows examples of indicator reactions include a substrate with at least two domains A and B, or A and C, connected by a cleavage site (X), which is recognized by enzymes in wound fluid, such as elastase (E or E2). In some embodiments, peptidoglycan anchor (S) is attached to an enzyme substrate, requiring digestion or breakdown of the peptidoglycan anchor (S) by lysozyme (E1) before the cleavage site (X) on the substrate can be accessed by an enzyme in the wound fluid. Products (P) of the reactions are colored, giving rise to a color change detectable by a user. In example I, upon exposure to elastase (E) in the wound fluid, the substrate is cleaved at cleavage site X, releasing MPO substrate (B), which can react with MPO in the wound fluid and oxidize the substrate (B) to form a colored product (P). In example II, lysozyme (E1) breaks down peptidoglycan anchor (S) to expose cleavage site (X). Upon exposure to elastase (E2) in the wound fluid, elastase cleaves the substrate at cleavage site (X) and releases indole (C), which may be converted to indigo in the present of oxygen, giving rise to a color change. In example III, MPO substrate (B) may be used instead of indole (C) to yield a colored product (P).
  • Example 6: Indicator Disk
  • FIGS. 10-12 show schematics of indicator inserts or disks. FIG. 10(A) shows the top view of a diagnostic insert, comprising a reporter area (60), reaction area (61), and evaporation area (62). FIG. 10(B) shows the bottom layer, comprising an impermeable layer of plastic film, preferably either white or transparent, with a diameter of about 40 mm. The hole in the middle allows for liquid transport and has a diameter of about 4 mm. The bottom layer is covered with adhesive in the same shape underneath for an exact fixation on a dressing. FIG. 10 shows the reaction material comprising an adhesive layer (C) and a reaction layer (D) wherein each arm may be a different substrate and/or pH system and where the arms in each layer overlap to allow exact fixation. Indicator disks can have any number or indicator arms, such as 4 or 5 arms of indicators arranged radially as in FIG. 10. In some embodiments, the indicator disks comprise 1 to 10 arms, or preferably 4 or 5 arms. FIG. 10(E) shows the cover, which preferably comprises an impermeable white plastic foil with a diameter of 20 mm. The outer ring may have an insider diameter of 25 mm and an outer diameter of 31 mm. The top layer may be covered with adhesive underneath for an exact fixation on the reaction material.
  • In the embodiment shown in FIG. 11, (A) shows the bottom layer, comprising a double sided and hydrophobic film (65) with a diameter of 40 mm. A hole cut in the middle has a diameter of about 5-6 mm. Reference (66) shows the hydrophobic lanes on non-woven or paper, either full sheet or cut out, placed on the adhesive film. Reference (67) shows traps printed on non-woven or paper which is adhered to the bottom layer with a back-flow trap (68). In (B), the reaction layer comprises arms, each may have a different indicator and color system as shown in (70). An evaporation cover (71) may be printed, sprayed, or overlaid film. Reference (72) shows the indicator disk affixed to a dressing, wherein outer dressing has a window (shown as dashed line) for viewing the indicator change.
  • In another embodiment of the indicator disk, as shown in FIG. 12, bottom layer (A) preferably comprises a white or transparent impermeable plastic film (73) of diameter 40 mm. A hole in the middle of bottom layer, comprising a diameter of 4 mm allows for wound fluid transport. The bottom layer may be covered with adhesive in the same shape (73) as the reaction material (77) underneath for an exact fixation on wound dressing, double-sided adhesive and hydrophobic. The reaction layer (77) is placed on top of adhesive layer (73), at the bottom. Each arm of the reaction layer may be 13 mm or 15 mm in length from the center, and about 5 mm wide. Cut access in the center of the disk may also comprise a back-flow trap (75) to ensure fluid flows from the center outward to evaporation area in the periphery of the insert. Reference (74) shows hydrophobic lanes on non-woven or paper, fill sheet or cut out, placed on adhesive. Reference (76) shows traps printed on non-woven or paper with back-flow trap (75) in the middle. In some embodiments, reaction material (77) comprises brilliant black print, pH indicator, MPO substrate, elastase-peptide-indoxyl, and lysozyme-peptidoglycan indicator, and any combination thereof on arms of the indicator disk. Such substrates may be printed on the reaction material or solid support material. Evaporation cover may be printed, sprayed, or overlaid as a film over (78), shown as gray box in (78). The reaction material may be covered by a transparent or translucent film, with a window (79, dash-line box) to allow detection of the reaction.
  • In some embodiments, a cover as shown in FIG. 10(E), comprises a middle cover of impermeable white plastic film with a diameter of 20 mm, an outer ring with an inside diameter of 25 mm and an outer diameter of 31 mm, and a top layer covered with adhesive in the same shape underneath for an exact fixation on the reaction material.
  • As shown in FIG. 10(A), one embodiment comprises an impermeable white plastic foil with an outer diameter of 31 mm, inner diagnostic circle (60, reporter area) with diameter of 25 mm, and the substrate cover (61) with diameter of 20 mm in embodiments using a substrate cover. Evaporation area (62) is located at the periphery of the indictor insert. A small evaporation area, such as 2×5 mm may be too small for a 7-day run, but is sufficient for a smaller run, such as a one-day run. Visible signal resulting from reactions can be detected in diagnostic area (60) or window reporter area (FIG. 11 or FIG. 12). Such reporter areas can be surrounded by an off-white layer to achieve maximum contrast to color signals.
  • In another embodiment, the diagnostic reaction can be performed on a solid phase in which liquid sample diffuses in the vicinity of dyes that are absorbed onto the solid phase. Enzymes carried in the sample can transform the dyes through contact in the pores of the solid phase material. The changes are visible as color changes. Due to the low volumes in use and the high concentration of dye, the color change can be a sensitive indicator.
  • In a preferred embodiment indicator disks are prepared by impregnating a filter paper with the reagents and then punching disks prior to adhering them to a carrier to form a “stick” with a reactive dye coated on to it. This stick can be brought into contact with the sample and a color change observed.
  • In a more preferred embodiment, more than one indicator disk type is placed onto the stick carrier such that multiple enzymes or parameters can be detected in one test. Parameters that may be determined include pH, lysozyme, elastase, Cathepsin G, MPO, catalase and lipases. Such a stick should also contain a positive control to indicate adequate sample wetting, and or sample application including, in addition to wetting, also the presence of protein.
  • In one preferred embodiment the indicator disks are aligned in a line on a thin “stick” and the sample is applied to them in sequence using a swab, gauze, or by pressing the stick into or onto a sample, for example a used dressing.
  • In another embodiment, the indicator disks are aligned next to each other on a broad support and their edges on one side are cut such that the stick can be pressed with the cut edge to the sample source (i.e. a used dressing or diluted wound fluid, or the edge of a cleaning swab or gauze) such that liquid is taken up into each of the disks at the front of the broad stick (“Fork” format).
  • In another preferred embodiment the indicator disks are placed inside a carrier box such that the sample swab can be inserted into the box and then sealed inside by closing the box. After closure, the sample swab can be moved and in the process, contacts each sample disk in turn to wet them appropriately such that the resulting reaction can be observed through windows appropriately placed above each indicator disk. Such an arrangement can preserve the swab for later microbiological examination and simplify the handling of materials at or during a dressing change.
  • Indicator disks are preferably prepared with reagents that are capable of color change. Such reagents may be selected from compounds such as p-aminophenol, ABTS (2,2inophenol, ABTS (strate. In some embodiments, acid) diammonium salt), 3,3′-diaminobenzidine, 3,4 diaminobenzoic acid, DCPIP, N,N-dimethyl-p-phenylenediamine, o-dianisidine, p-phenylenediamine, 4-chloro-1-naphthol, o-phenylenediamine N-(4-aminobutyl)-N-ethylisoluminol, 3-amino-9-ethylcarbazole, 4-aminophthalhydrazide, 5-aminosalicylic acid, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), indoxyl, indigo, Fast Blue RR, 4-chloro-7-nitrobenzofurazan. In some embodiments, the reactive layer comprises an arylamine. In some embodiments, the reactive layer comprises an amino phenol. In some embodiments, the reactive layer comprises an amino phenol an aminophenol ether. In some embodiments, the reactive layer comprises an indoxyl. In some embodiments, the reactive layer comprises an a neutral dye. In some embodiments, the reactive layer comprises a charged dye, e.g., a dye selected from remazole brilliant blue, toluidine blue, reactive black 5, remazol brilliant blue, reactive violet 5, and reactive orange 16, or a hydrolytic or ammonolytic derivatives thereof, toluidine blue, reactive black 5, or ahydrolytic or ammonolytic derivatives thereof; reactive violet 5, or hydrolytic or ammonolytic derivatives thereof; reactive orange 16, or hydrolytic or ammonolytic derivatives thereof; a dichlorotriazine-based reactive dye such as reactive blue 4, reactive red 120, reactive blue 2, reactive green 19 and reactive brown 10. In some embodiments, the dichlorotriazine-based reactive dye appears black. In particular embodiments, the reactive layer comprises compounds such as a reactive dye containing a sulfonylethyl-hydrogensulphate-reactive-group. In some embodiments, the reactive dye is reactive black 5, remazol brilliant blue, reactive violet 5 or reactive orange 16, particularly reactive black 5. In some embodiments, the reactive dye is remazol brilliant blue, reactive violet 5, reactive orange 16, reactive black 5, or remazol brilliant blue. Especially, the reactive layer comprises a dye containing a sulfonylethyl-hydrogensulphate-reactive-group, e.g., reactive black 5, remazol brilliant blue, reactive violet 5 or reactive orange 16, or a combination thereof; or a dye containing a dichlortriazine reactive-group, e.g., reactive blue 4, reactive red 120, reactive blue 2, reactive green 19 and reactive brown 10, or a combination thereof.
  • In other embodiments, indicator disks are preferably prepared with reagents that are capable of physical change, e.g., nanoparticle, colloidal gold particle or a luminol derivative.
  • In a preferred embodiment, MPO is detected using an analog of Fast Blue, or a di-amino phenol as a color generating agent; Elastase is detected using a peptide derived indicator including a napthol phenol, indoxyl or a nitro-phenol; Lysozyme is detected using an oligo saccharide conjugated to a dye or color generator, or an oligosaccharide particle containing a charged dye in particular said oligosaccharide may be selected from peptidoglycan or chitosan derivatives. Purely as a representative example, lysozyme may be detected by visualizing reactive black 5, remazol brilliant blue, reactive violet 5 or reactive orange 16, reactive blue 4, reactive red 120, reactive blue 2, reactive green 19 and reactive brown 10, or a combination thereof bonded to a substrate such as chitosan, N-acetyl chitosan; oligo-β-D-1,4-glucosamine; acetyl-D-glucopyranoside; N-acetylglucosamine (GlcNAc); glucosamine dimer (GlcNAc)2; acetyl-chitosan; chitobiose octaacetate; a chitooligomer comprising the structure (GlcNAc)n wherein n=4, 5, or 6; a chitooligosaccharide; 2-acetamido-2-deoxy-D-glucopyranoside; 2-deoxy-3,4,6-tri-O-acetyl-D-glucopyranoside; or a combination thereof. Protease such as human neutrophil elastase or HNE) may be detected by using a peptide substrate comprising a core sequence Alanine-Alanine-Proline-Valine (AAPV) which is conjugated to one or more of the aforementioned dyes.
  • In another embodiment, the reagents to detect these analytes are subject to cleavage to yield a compound that is trapped on an immobile portion.
  • Example 7. Use of an Indicator Dressing in the Context of a Wound Therapy
  • A dressing containing an indicator disk as described above is prepared in which the printed disks are inserted between the absorbative outer layer of the dressing and the outer membrane or film such that the reacted areas are visible. The dressing is applied to a wound, be it chronic or surgical, such that sites of secretion in the wound (deeper sites, sutures) are located under or as near as possible to centers of the disks. See FIG. 17. Following dressing application, the dressing will begin to absorb secretions. In one embodiment, the first observation of wound status can be made after the “flow control” has turned blue. This is an indicator of the fact that sufficient liquid has entered the dressing to saturate the reagent pads. If, at this stage one or more of the biomarker indicators has already reacted, this would be an indicator of the fact that a degree of inflammation or potential infection was present in the wound at dressing change. One biomarker reacting, with or without an indication of pH above neutral, is likely sufficient to justify detailed wound hygiene steps at the next change. Two biomarkers responding with or without a pH above neutral is likely an indication that in an ideal situation, the wound would be immediately re-dressed and anti-microbial approaches initiated. Three biomarkers responding, with or without pH would likely be an indicator that in an ideal situation the dressing should be immediately changed and anti-microbial hygiene, wound dressings and laboratory microbiology should be initiated.
  • In a broad sense the indicators can respond immediately after dressing change, after 1-2 days and after 2-5 days. Due to the dynamics of flow, the reagents are intended to respond within 2-6 h of exposure to a threshold of enzyme activity, for example 0.5 U/mL elastase, however, long exposure to low enzyme levels, i.e. 5 days, may also ultimately engender a signal. Thus, the user can distinguish a low level of activity from an acute sign in that the reporter area very slowly accumulates signal, i.e. very faint at 3 or 4 days and only slightly more developed after 4 or 5 days. This would be indicative of a wound deserving of close observation and hygiene but not necessarily one in acute infection. Experience with the particular patient would also inform the therapist. If the same pattern was apparent over multiple dressing changes it would suggest a stable situation but that any change in the degree of reaction should be taken as an indication of a potential change in wound status.
  • In contrast, a situation in which a strong signal suddenly appears is potentially indicative of the onset of an acute infection. Given that the indicator can change within 1-2 hours once a threshold is crossed suggests that any sudden developments reflect the current situation of the wound.
  • Where multiple infection indicator disks are placed within the wound dressing, the position of those that react is an indicator of where in the wound potential problems arise. Thus, the absence of clear signals after 5 days would be an indication that no thresholds have been crossed in that period and that current therapy may be adequate. Weak signals that develop slowly may indicate that hygiene could be improved. Moderate signals that appear gradually after 5 days may be the first signs that an infection is developing and should result in more elaborate therapy. Strong signals that develop over 5 days would be correspondingly more emphatic indications that therapy need be improved, for example, by instituting silver dressings. The rapid onset of a clear signal is, in turn, the indicator of an acute issue that merits immediate attention.
  • As shown in FIG. 4(C), multiple reaction cells can be applied to a wound dressing in some embodiments for detection of microbial infection over an area. Amine back flow trap or filter or leach-back trap (41) may be used to separate testing regions.
  • Example 8. Dressing Inserts that may be Applied to Any Dressing
  • In some embodiments, indicator insert may be freely placed at a site of likely secretion or placed anywhere in a wound dressing or a surgical dressing.
  • Diagnostic disks, as described above, can be incorporated into a dressing during its manufacture. These inserts may be placed between the outer absorbent and the outer film and equally spaced, and glued in place during manufacture. However, the fixed spacing may not be appropriate to a particular wound. In this example, the reporter disks are prepared as independent materials that can be put on any absorbent dressing below the outer film. For example, the inserts are prepared as stand-alone disks, cut and sealed in sterile outer envelope. Therapists using dressings, see reference (92) in FIG. 17, without reporters may still insert these reporters (90) into such dressings in so far as these are modular and require the therapist to assemble the dressing from: wound contact material, absorbent, and outer film or cover. The reporter disk can fulfill its function in many ways, including so long as it is in fluid contact with the wound fluids (91) and otherwise under an appropriate outer dressing. An adhesive transparent outer disk is one means of fixing and holding the reporter disk. Similarly, the disk itself may have an adhesive bottom coat.
  • In another embodiment of diagnostic inserts, shown in FIG. 18, non-woven layer in a dressing carries or contains diagnostic disks (705), wherein the dressing further comprises a film cover layer (701), non-woven carrier of indicators (702), polyurethane foam (703), and cellulose contact layer (704). As demonstrated by the arrow in FIG. 18(A), wound fluid flows upward to diagnostic disks (705) embedded in such dressing. FIG. 18(B) shows a side view of the wound dressing with embedded diagnostic disks, wherein quaternary amine coating (shown as dashed line) on foam surface acts as trap for preventing return of diagnostic substances and that wound fluid flows upward to diagnostic disks.
  • In a further embodiment of diagnostic disks in wound dressing, as shown in FIG. 19(A), the side view representation (A) shows an example disk for detecting MPO, wherein (720) is a paper disk impregnated with the MPO substrate through dipping or spray coating. Reference (721) is the paper or non-woven material that acts as a carrier. Reference (722) shows an adhesive layer. Reference (723) represents a disk containing glucose oxidase and/or starch and an amylase, such as gamma amylase. FIG. 19(D) shows the wound fluid mobilizes starch into glucose, which in turn is oxidized by glucose oxidase to yield H2O2. This is used by MPO in the wound fluid to convert the substrate to the detectable blue form. FIG. 19(B) shows the side view of a disk for detecting lysozyme, wherein particles of chitosan or peptidoglycan are embedded in the paper disk on its lower side using a water permeable adhesive layer that also serves to adhere the disk to the foam layer below. Enzyme activity dissolves the particles and releases dye that is trapped and is detectable in the top layer. In FIG. 19(B), the paper disk (730) is a trap impregnated top layer. In the presence of wound fluid, as shown by the upward arrow in FIG. 19(C), the paper/non-woven disk acts as a carrier (721) so that the wound fluid moves to the top layer, via stained peptidoglycan particles (731) in the process. Reference (722) shows an adhesive layer. Reference (732) shows an adhesive ring or thermal weld that secures the disk to the non-woven carrier layer (721). The dashed line in FIG. 19(C) represents quaternary amine coating on foam surface under the diagnostic strips that acts as a trap for preventing return of diagnostic substances. FIG. 19(E) shows stained peptidoglycan particles slowly being dissolved by wound fluid and the dye that is released is then captured in the trap material while excess wound fluid flows to the sides, as indicated by the arrows. In FIG. 19(E), the paper disk is impregnated with trap material in the top layer.
  • In FIG. 20, the scaling up of the production of the disk constructs is described. In the continuous process, the disks are punched from a sheet comprised of sealing film, the adhesive, the paper or non-woven carrier, which is protected by the top cover sheet.
  • FIG. 21 shows different embodiments of paper disks. FIG. 21(A) shows the different layers involved in such embodiments, namely, film cover on top, a non-woven carrier, a polyurethane foam, and a cellulose contact layer. FIGS. 21(B) to 21(E) show different variants of such analytic system with indicator disks. FIG. 21(B) shows non-woven carrier of indicators with diagnostic disks attached, including pH indicator on paper, paper disk printed with starch, amylase, and glucose oxidase, and trap impregnated paper disks. FIG. 21(C) shows partly printed non-woven and applied paper disks, including trap printed and UV border or trap border (910). FIG. 21(D) shows partly printed non-woven and gradient (911) application of indicator disks. The gradient is formed by printing concentric rings of substrate at different concentration, or with a different pH mediator. Fully transformed, different substrate concentrations lead to different color intensity. Alternatively, using polymeric buffers in each ring can modulate the degree of reaction requiring more activity to yield the same color. Suitable buffers include polycarbonates and polysulfonates. The number of concentric rings of color provides an indication of overall activity and thus with reference to a color chart can assist in assessing the degree of severity. FIG. 21(E) shows one embodiment of the diagnostic disks with printed indicators (912) and reagents applied on adhered paper disks. In these embodiments, the non-woven functions as a carrier of indicators.
  • FIG. 22 shows different ways diagnostic disks (800) may be attached to a dressing. For example, FIG. 22(A) shows continuous adhesive that allows wound fluid to penetrate through the adhesive. FIG. 22(B) shows ring or annular adhesive that allows wound fluid to penetrate via the hole in the middle of the adhesive layer. FIG. 22(C) shows welding with UV printed border. FIG. 22(D) shows welding with polyethylene component of non-woven.
  • Example 9: Dipstick—Traffic Light Format
  • Certain reagents have adequate affinity for paper or similar solid phases and remain substrates for the biomarker enzymes of interest. Where these substrates exhibit color change, the activity of the enzymes can be observed by simply contacting the fluid containing the markers with the impregnated paper. Capillarity ensures the distribution of the fluid to the substrate. Each impregnated disk can be separately added to a combined “dipstick” which allows all disks to be used in a test (FIG. 23). One format is the linear array of disks, although the layout may be easily varied.
  • FIG. 23 shows indicator inserts or disks (820) specific for various enzymes or microbial biomarkers and controls may be placed in various combinations or arrangements to form various dipstick devices. Each impregnated disk (820) can be separately added to a combined dipstick that allows all indicator disks to be used in a test. One format is the linear array of disks, although the layout may be easily varied. Indicator disks may be separated by lanes or borders (821).
  • In this example, the following disks are prepared:
  • 1. Fluid control: a 5 mm disk of double sided adhesive is punched, and 50 μg of a micronized Fast green powder is placed on the adhesive in the center. A paper disk is placed over the adhesive disk concentrically, such that the powdered dye is covered by the paper. The resulting disk is then placed in the first position on the carrier stick via the other side of the adhesive.
  • 2. pH control. Filter paper is soaked in a mixture containing bromothymol blue, chitosan and glutaraldehyde in ethanol as reported above. The filter paper is dipped in the mixture, allowed to drip dry, and is then dried on glass at 54° C. 5 mm disks are then punched and the disks are attached to the carrier with adhesive.
  • 3. MPO indicator. 5 mm paper disks are impregnated sequentially with 1.5 μL of the MPO fast blue substrate as described above for the Dressing indicator. Once dried, one half of the disk is impregnated with 10 μg of glucose and the other half of the disk is impregnated with 1 μg of glucose oxidase in buffer (PBS).
  • 4. Elastase indicator. Filter paper was impregnated with a mixture (0.25% (w/w) Nonidet, 2% (w/w) decanol in 0.05 M borate buffer pH 8) and dried for 1-2 h at 54° C. 5 mm paper disks are punched from the buffer treated paper and impregnated sequentially with 2 times 2.5 μL of the AAPV indoxyl substrate (10 μg/μL in acetone) as described above for the Dressing indicator.
  • 5. Lysozyme indicator. Filter paper is lightly sprayed (1.5 μL per cm2) with a trap solution containing 3% W/V quaternary amine trap and allowed to dry with the top surface identified. A 5 mm disk of double sided adhesive is punched, and 40 μg of a Brilliant Black stained Peptidoglycan is placed on the adhesive in the center and allowed to dry. A paper disk is placed over the adhesive disk concentrically, such that the PG-dye deposit is covered by the paper. The resulting disk is then placed in the fifth position on the carrier stick via the other side of the adhesive. The resulting dipstick can have the sample applied to it by means of swab, or gauze.
  • Example 10: Dipstick—“Fork” Format
  • In one embodiment a dipstick is prepared essentially as for the above example with the exception that the reagent disks are oriented to the base of a thicker carrying card or stick. The ends of the reagent disks are trimmed at the last stage of production such that they are flush with the bottom edge of the device. This allows them to be pressed onto a surface to be sampled. The sample then diffuses into the cut end of the disks to react. This format is potentially more convenient for sampling surfaces like used dressings.
  • Example 11: Dipstick—Box Format
  • In certain instances, suspected infection, or the risk of contamination between patients through consumables and their disposal demands a more secure system. In one embodiment, where sampling is done via a swab, retention of the swab for subsequent bacteriological evaluation may be desirable. Similarly, it may be desirable to retain the result and display it to a colleague after a dressing change. In this context, a means to retain the result without risk of contamination is desirable. To this end, in one embodiment, a sealable container or enclosure may be used for accommodating a plurality of disks, such as 6 disks, in which a wet swab can be placed and then closed such that it can apply the sample to the paper disks but not contaminate any further objects. One such design is illustrated along with its working principle (FIG. 23). The key elements of the design are: the well for wetting the swab; its closed sealable form; the sealing rings around the stem of the swab; the pressure fins that push the swab to the disks while also making it a one-way movement; the window to the disks; the space for reference colors on the case, the possibility to re-open in a microbiology lab.
  • Example 12: Surgical Site Detection
  • In another embodiment, the dressing is intended for the treatment of surgical wounds and contains distinct linear regions intended to be placed over the line of sutures. These linear regions contain particularly high concentrations of reporter dye such that even in the earliest phases of infection, the signal will be apparent. In another embodiment, the dressing contains a removable components such as a thread, or similar absorbent that can be withdrawn and tested without removing the dressing (FIG. 24). Said removable component is placed in such a way as to be located at or near the edges of the surgical wound. In another embodiment, the surgical site dressing is essentially transparent in the linear region both to allow observation of the sutures, and the reporter dye. In a preferred embodiment, the transparent area is covered by an opaque film that may be easily peeled back to examine the wound. In another embodiment the covering and absorbent material contains a trapping material such as a polymeric cation or anion that is capable of binding and concentrating the dyes that are released.
  • For example, in FIG. 24, sampling threads (100) are built in or added to dressing for a wound or at a surgical site (92). AQUACEL (4) is used in some embodiments of the dressing (92). Sampling threads absorb wound fluid or fluid at surgical site (D). A thread may be pulled out or extracted (E) from dressing without having to remove or disturb dressing using an instrument or device (101) such as a tweezer, hook, or thread hook device. The thread can then be dissolved in a buffer for use in a diagnostic device (102) using one or more indicator regents or indicator disks described herein.
  • In some embodiments, a wound dressing comprises built in sampling threads. In some embodiments, the sampling threads absorb wound fluids and may be removed without disturbing the wound dressing for detection of analytes in the wound fluid.
  • In some embodiments, the sample threads may be diluted in buffer to dissolve markers for diagnosing the status of the surgical site or wound.
  • In some embodiments, a thread hook device may be used to remove a thread from a wound dressing.
  • Example 13: Manufacture of Dressing Inserts
  • The reporter inserts are manufactured by the sequential placement of various materials on a solid carrier. This carrier can be a cellulose, viscose, polyethylene, polyamide or other suitable polymer or mixture of these components.
  • FIG. 25 shows indicator inserts may be manufactured or printed in sheets or reels. FIG. 25 also shows the order of printing, printing of lanes, order on which reagents are laid down, and placement of reagents for printing disks in sheets or reels, comprising adhesive or backing film as in FIG. 25(A), applying a non-woven material as in FIG. 25(B), and printing reagents and lanes on non-woven material as in FIG. 25(C). Completed or assembled inserts, as show in FIG. 25(D) can be separated or cut before sticking to a dressing or similar support materials.
  • In one embodiment the material is prepared in a reel to reel format. The solid carrier is first printed with guide lanes that penetrate the film to full thickness. Next, a bottom film that sits under the polymer and does not penetrate it is printed, this includes a hole in the center through which sample fluid enters. Next trap material is printed, at half density around the entrance site (back-flow trap) and at full density in the trapping sites for the flow control and the lysozyme substrate. Next the flow control ink is applied to the first position of the radial arms of the disk, 10 to 50 μg of Brilliant black in 1% methylcellulose is typical. Next the pH reporter, as described above is printed in position 2. Next, the MPO area is printed sequentially with substrate, glucose and glucose oxidase as noted above. Next the elastase substrate is applied in sequential prints to reach the appropriate load. Next the lysozyme substrate is printed to position 5 in the reagent level (as distinct from the trap level). Finally a film is printed on the top of the construct but without penetration of the solid carrier. This film occludes only the radial arms from center to the end of the reporter window.
  • The resulting reel contains a continuous pattern of evenly spaced reporter fields. These continuous printed fields can be directly rolled into a dressing sandwich between absorbent and outer film, or, they may be punch cut and packaged for separate use.
  • FIG. 20 shows another embodiment of manufacturing paper disks. FIG. 20(A) shows a side view of a continuous sheet, comprising a cover film on top, paper in the middle, and backing film at the bottom. Adhesive/particle matrix (901) may be applied between the cover film/backing film and the paper layer (900). FIG. 20(B) shows a top view of cut sheets prepared for application to non-woven carrier by removal of inter disk material prior to placement on non-woven carrier.
  • Example 14: Manufacture of Reagents for Liquid Based Devices
  • In certain embodiments, it is desirable to place reagents in devices in such a way as that they are stable, but readily soluble for access to injected enzymes. One approach is to dry reagents on disks of paper and include the disks in the devices.
  • Disks are prepared using either a continuous paper or similar material or textile which is dipped, sprayed or printed, or using pre-cut disks that are dipped or mixed in a reagent and subsequently dried. See FIGS. 20, 25.
  • The densities of the reagents per 20 mm2 are:
  • MPO substrate (alkyl-fast blue) 0.6 μg
  • Glucose 10 μg, glucose oxidase 1 μg
  • For elastase, paper is first impregnated with impregnation mixture (0.25% (w/w) Nonidet, 2% (w/w) decanol in 0.05 M borate buffer pH 8).
  • Thereafter the paper is sprayed with a solution of elastase substrate corresponding to 2.5 μg per mm2.
  • The paper so printed can be punched to yield disks containing the reagents.
  • These disks can then be incorporated into the devices.
  • Example 15: Manufacture of Reagents for Liquid Based Devices
  • Alternatively, the reagents may be pressed into water soluble “pellets” which are then included in the wells of the devices. The pellets can contain a range of materials in addition to those used on paper.
  • A liquid based diagnostic device uses pre-formulated reagents to generate a colour in response to enzyme activity in a sample. The sample may contain all or only some of the liquid required. Where the sample is to be diluted, the device preferably contains water or buffer suitable to dilute or render the sample homogeneous. The resulting mixture is distributed to wells which each contain a different reagent set. The reagents are a mixture of buffer salts, energy source, substrate and associated chromophores if not contained in the substrate. These reagents are ideally delivered in a discreet entity like a tablet or similar that can be placed in the wells. Here we describe the preparation of tablets for enzymatic assays for elastase, lysozyme, MPO and protein standard as internal standard. The tablets dissolve after addition of wound fluid and release assay components to start the enzyme reactions that lead to colour changes where positive.
  • A Perkin Elmer electro-hydraulic tablet press is used to form the tablets as follows:
  • The pressing time per tablet is approximately 10 sec.
  • The diameter of the filled part of the pressing tool is 5 mm
  • Tablets are: 20 mg, 5 mm diameter, 1 mm deep
  • A vacuum is first applied for about 15 sec.
  • The applied vacuum is maintained until the removal of the pressing tools.
  • The pressing pressure is adjusted to 2 t.
  • TABLE 1
    List of tablet reagents for use in liquid-based diagnostic devices.
    Amount in
    20 mg
    Component (mg)
    MPO Tablet
    Na2CO3 0.38
    NaHCO3 0.54
    Guajacol (CH3O)C6H4OH = Substrate 1.53
    Alternatively diaminophenol
    Sodium percarbonat × 1.5 H2O2 (Na2CO3•1.5 H2O2) 0.02
    Maltose Monohydrate (C12H22O11•H2O) 17.53
    Elastase Tablet
    Sodium Acetate (C2H3NaO2) 1.64
    Sodium chloride (NaCl) 5.84
    N-Methoxysuccinyl-Ala-Ala-Pro-Val-p-nitroanilide 0.24
    (C27H38N6O9) = Substrate
    Maltose Monohydrate (C12H22O11•H2O) 12.28
    Lysozyme Tablet
    Potassium hydrogenphosphate (K2HPO4) 7.32
    Potassium dihydrogenphosphate (KH2PO4) 1.09
    Peptidoglycan (von Micrococcus lysodeicticus) as a 0.20
    film or dyed with reactive black as gross particles = Substrate
    Maltose Monohydrate (C12H22O11•H2O) (Filler) 11.39
    Internal Standard Tablet
    Citric acid (HOC(COOH)(CH2COOH)2 8.56
    Sodium hydrogenphosphat (Na2HPO4) 1.54
    Bromophenol blue (C19H10Br4O5S) 0.06
    Maltose Monohydrate (C12H22O11•H2O) 9.84
  • Example 16: Standalone Device and Kit for Liquid Based Assay
  • Stand-alone devices and kit for detecting and measuring wound infection using the compositions and device are described herein. These devices and kits preferably comprise a sampling component for collecting a sample and a test device. In some embodiments, the test device comprises a housing surrounding a tube to define an opening in the housing to receive the sampling component, the housing having within it a sealed diluent chamber which is connected to an opposite end of the tube and holding a liquid diluent for removing the sample from the sampling tip to form a test liquid. The tube is in liquid communication with a reaction well which holds a reagent capable of indicating the presence of the analyte. A driving mechanism drives the diluent from the chamber past the sampling tip, into the tube and finally to the reaction well.
  • In some embodiments, the kit for detecting an analyte in a sample comprises: (i) a sampling component comprising a sampling tip for collecting the sample and (ii) a test device, further comprising: a housing surrounding a tube to define an opening in the housing to receive the sampling component, the housing also having disposed within it: a sealed diluent chamber connected to the tube and holding a liquid diluent for removing the sample from the sampling tip to form a test liquid; a reaction well in liquid communication with the tube, the reaction well holding a reagent capable of indicating the presence of the analyte within the test liquid; and a driving mechanism capable of driving the diluent through the device from the chamber, over the sample tip and into the reaction well.
  • The kit operates by driving the diluent over the sample and into a reaction well, a test solution is made by the flow of the diluent over the sample. It is not necessary to first mix the sample with the diluent to make a test solution and then move that solution via a lateral flow strip to the reaction well. The driving of the diluent past the sample and to the reaction well means that the kit can be used with a minimum number of steps, for instance taking the sample, inserting the sampling component into the housing and activating the driving mechanism. This simple procedure minimizes user error and thus minimizes false negative results and misdiagnoses.
  • The sealed diluent chamber may contain a specified volume of diluent so that an expected volume of test solution reaches the reaction well or wells. In addition the pathway between the diluent chamber and the reaction well is vented so that trapped air does not affect the flow of test solution through the device or prevent the test solution from reaching the reaction well.
  • The housing preferably has two parts which are capable of moving with respect to each other while remaining connected to one another. The action of moving the parts may provide the driving mechanism by which diluent is moved through the device. The diluent can be driven through the device by compression of the diluent chamber which forces the diluent past the sample tip and to the reaction well or wells. The compression of the diluent chamber can occur when the parts of the housing are moved with respect to one another such as by sliding one part past another.
  • In some embodiments, the housing comprises a locking mechanism which locks the housing in position once the driving mechanism has been activated and prevents reuse of the device. In this way it is immediately apparent that the device has been used and cannot be used again. This minimizes false results from, for instance, a device that has been mistakenly activated in transit or from reuse of a device whose reagents have been spent.
  • In some embodiments, the sampling component preferably comprises a handle and a sampling tip, the handle preferably comprising a seal which engages with the opening in the housing to seal the tube when the sampling component is fully inserted in the tube. The seal generally prevents escape of the sample and diluent from the device reducing the chance of cross contamination from the wound fluid. Preferably the seal and tube engage to lock the sampling component in the device and prevent removal of the sampling component once it has been used. This further reduces the chance of cross contamination from the sampling component.
  • Preferably insertion of the sampling component in the device releases the seal on the diluent chamber. Preferably the seal is a ball valve or can be a film or membrane seal or a duck bill valve or other non-return valve known in the art which is activated when the sampling component is inserted in the device. The sampling component preferably bursts, punctures or displaces the seal on the diluent chamber when it is inserted in the device.
  • Preferably the tube is the same or similar size to the sampling tip of the sampling component so that the act of inserting the sampling tip into the tube causes it to be scraped along the walls of the tube aiding the dispersion of the sample in the diluent once it is released from the diluent chamber and is flushed through the device. The sizing of the sampling tip to match the tube also forces the diluent to be flushed through the tip when the diluent is driven from the diluent chamber. Preferably the diluent chamber is shaped like a bellows to assist in the compression of the chamber. Alternatively the chamber can be a combination of a plunger and tube similar to that found in a syringe or can be a filled flexible sachet which is compressed by hand by the user or a balloon which contracts when the seal is released.
  • In some embodiments, the kit comprises a sampling component for collecting a sample and a test device. The test device comprises a housing surrounding a tube to define an opening the housing to receive the sampling component, the housing having within it a sealed diluent chamber which is connected to an opposite end of the tube and holding a liquid diluent for removing the sample from the sampling tip to form a test liquid. The tube is in liquid communication with a reaction well which holds a reagent capable of indicating the presence of an analyte.
  • A driving mechanism drives the diluent from the chamber past the sampling tip, into the tube and finally to the reaction well.
  • FIG. 26 shows a cross section of a standalone device kit for detecting an analyte in a sample. The sampling component (2) comprises a handle (4) and a sampling tip (6) in the process of being inserted into the housing through one end of a tube (10). The sampling component (2) has a sealing means (12) which forms a seal with the open end of the tube (10) while the sampling tip (6) depresses the ball valve (14) to open the diluent chamber (16). FIG. 27 shows a sampling tip fully inserted in the housing to seal the component to the device. FIG. 28 shows a plan view of the standalone device kit with the sampling component in place and shows three viewing windows (20) to the left of the housing which coincide with three reaction chambers (18) which contain a reagent capable of indicating the presence of an analyte. The reaction chambers may contain reagents capable of detecting different analytes from for instance a wound fluid. The window on the right of the housing when viewed from above is a control window which indicates that the test has taken place. Housing (8) is in two main parts which are slidably connected to each other. In FIG. 29, a user of the device can slide a lower part of the housing (24) away from the upper part of the housing (26) and in so doing cause a lever (28) to compress the diluent chamber (16) and drive the diluent out of the chamber, through the sampling tip (6) and up tube (10) to manifold (30). A plan view (FIG. 30) of the standalone device kit with housing slid apart, which results in windows (20) and control window (22) indicating that a test has taken place. The arrows (A) in FIG. 29 indicate the movement of the diluent through the device to form a test solution. Diluent chamber, tube and reaction chamber in the standalone device kit are shown in FIG. 31, with the housing removed for clarity. FIG. 32 shows distribution of test solution to each reaction chamber in a standalone device kit. Test solution flows to each reaction chamber (18) from a central node (32). The node (32) may also contain a non-return valve to prevent test solution from flowing back into the device and causing cross contamination.
  • The sampling component comprises a handle and a sampling tip in the process of being inserted into the housing through one end of a tube. The sampling component has a sealing means which forms a seal with the open end of the tube while the sampling tip depresses the ball valve to open the diluent chamber. The sampling tip, when fully inserted in the housing to seal the component to the device, allows the housing to be opened, releasing the diluent and allowing the forcing means to operate.
  • The device also comprises three viewing windows in the housing that correspond to three reaction chambers which contain a reagent capable of indicating the presence of an analyte. The reaction chambers may contain reagents capable of detecting different analytes from for instance a wound fluid. Some embodiments include a control window which indicates that the test has taken place and that the sample was sufficient to make the test viable.
  • The user of the device can slide a lower part of the housing away from the upper part of the housing and, in so doing, cause a lever to compress the diluent chamber and drive the diluent out of the chamber, through the sampling tip and up tube to manifold. If the device is not activated, that is if the seal on the diluent chamber has not been broken, it is not possible for the housing to open. The opening of the housing causes the viewing windows to be positioned over the reaction wells and enable the result to be viewed by the user. This provides a safety measure as it ensures that proper operation of the device in order to obtain a reliable result.
  • Once activated, the test solution flows to each reaction chamber from a central node. In some embodiments, the node comprises a non-return valve and filter to prevent test solution from flowing back into the device and between reaction chambers, which can cause cross contamination. The pathway for the flow of diluent through the device is preferably provided with vents at the reaction chamber end.
  • Example 17. Devices with Separate Sample Preparation Chamber
  • FIG. 33 shows a diagnostic swab device with housing. In one embodiment the swab device comprises a resealable housing (80), further comprising locator and locking pins (82), a viewing window (81) for observing visible signals from reagent disks placed in disk holders (83), and a groove (85) for placing the swab. Side view of FIG. 33(C) shows the housing (80). To use, a user touches a sample with the swab, places the swab in the housing (80) in groove (85), pull on the stem of the swab as shown by the arrow in (D) so that the sample on the swab slides on the strip (86) and transfers the sample to reagent or indicator disks (83). The results may be viewed through viewing window (81). The swab may also be kept in the housing (80) for analysis later.
  • FIG. 34 shows one embodiment of a thread hook sample preparation device (200), comprising a needle-like tip and a handle or plunger (201), wherein the tip further comprises a hook for extracting a thread from a dressing without disturbing the dressing as shown in FIG. 34(A). Upon extracting a thread from the dressing, thread hook device (200) may be inserted into a sample preparation chamber or diluent chamber (202) containing a diluent for dissolving or diluting microbial biomarkers or wound fluid from the thread FIGS. 34(B) and 34(C). The plunger (201) of the thread hook device may be depressed downward in the sample preparation chamber (202) so that the tip of the needle breaks a seal as shown in FIG. 34(D) at the bottom of the sample preparation chamber (203) in order to release the sample solution into a device for analysis of wound fluid or surgical site.
  • FIG. 35 shows one embodiment of a swab sample preparation device (300), comprising a swab (302) with a handle or plunger (301) may be used to touch a sample for testing. The swab device (300), after sampling a bodily fluid or wound fluid, is placed inside a sample preparation chamber (202) containing a buffer for dissolving or diluting the wound fluid or bodily fluid as seen in FIG. 35(A). The swab device is agitated or mixed inside the sample preparation chamber to further release the fluid sample into the sample preparation chamber as shown in FIG. 35(B). The plunger (301) of the needle is depressed downward as shown in FIG. 35(C) to break the seal (203) at the bottom of the sample preparation chamber, allowing the sample fluid to flow into a reaction chamber containing reagents or indicator inserts or disks for detecting microbial infection in the sample taken by the swab. In some embodiments as shown in FIG. 35(D), gas is removed using Goretex membranes (204) which are gas and vapor permeable, but not permeable to liquid water. Said membranes can be used to degas both the sample as it is injected and to vent the fluid chambers where the assay takes place.
  • FIG. 36 shows a sample preparation chamber adapted to indicator testing. Sample preparation chamber (202) is adapted for dissolving or diluting a sample for testing further and comprises a resealable top (401) and a breakable seal (402) at the bottom of the chamber (203), where the sample preparation chamber connects to a reaction chamber or diagnostic device. When a swab device or a thread hook device is plunged downward or depressed downward in the chamber, it causes the seal (402) at the bottom to break, releasing sample fluid into a diagnostic device connected to the chamber.
  • In a further embodiment, FIG. 37, a diagnostic device (500) or analysis system is adapted to connecting to the sample preparation chamber (202) at one end, allowing sample fluid to flow from the sample tip (300) upon breaking the seal (203) at the chamber connector, which allows the sample fluid to flow from the sample preparation chamber (202) into reaction chambers (502) for analysis. Absorbent material (501) positioned after the reaction chambers (502) helps to draw the sample fluid from the sample preparation chamber (202) into the reaction chambers (502). Reaction chambers may contain reagents, reagent tablets, reagent disks, or indicator inserts, as described herein.
  • In so far as liquid phase tests are desired, they may be conducted using a variety of means but ultimately rely on the formation of a visible signal in a low volume of liquid (e.g. 100 μL). The methods differ in terms of how one acquires, dilutes and introduces the sample. In this example, we introduce the sample using an adapted syringe-like configuration. The sample may be a swab, piece of gauze or contaminated thread from a dressing. The swab (FIG. 35) is placed in a plunger configuration and then the plunger forms a handle with which the swab can be mixed with an extraction buffer or a diluent in a sample preparation chamber. The plunger then allows the removal of fluid by sealing against the stem of the swab and the sides of the chamber simultaneously; a goretex insert in the plunger allows gas removal as the plunger descends. Where the sample is a thread or piece of gauze, the swab is replaced by a hook, however, the principle is the same as the stem of the hook is placed within the plunger.
  • The sample preparation chamber contains buffer which is mixed with the sample on the swab/hook. The chamber is sealed at the Luer-Lock style connector and this seal is broken either when the Luer is placed in a receptacle, or when the swab or hook is pushed through the bottom of the chamber (FIG. 35). The assay device entrance includes a standard female Luer with a Luer lock like surround to ensure good sealing. The modified chamber engages irreversibly with the female Luer lock and on depression of the plunger, the fluid is transferred gas free into the device via a fluid distribution network. Each chamber in the device contains a reagent tablet (see previous example for the reagents). Each chamber is vented via a goretex patch sonic welded over the chamber. As soon as the chamber is filled (from bottom to top), fluid flow preferably stops. The vented gas passes by a filter before reaching the atmosphere. The arrival of fluid dissolves the reagent pills and allows the reaction to start. The degree of reaction over a given time is determined by comparison to a chart of colors. The result is largely binary, clear color or not. The more markers associated with color, the more likely the potential infection. Thus, wound fluids from uninfected wounds do not cause color change. Those from infected wounds cause at least one marker to change color and more often all three markers within 5 minutes.
  • FIG. 38 shows one embodiment of a diagnostic device or a transfer system, comprising a chamber or vessel (601) containing a buffer, such as saline, a resealable top (600), a plunger or similar device (602) with a gas outlet and a hook or sample tip at one end for transferring sample into the a sample preparation chamber or a diluent chamber (601), and at least one reaction chamber (606) capable of analyzing a sample fluid from the chamber (601). To conduct such analysis, the plunger or piston (602) containing a sample at the end is inserted into the sample preparation chamber (601), or a sample is placed in the diluent chamber (601), so that the sample may be diluted or dissolved in the buffer in the chamber (601). The assembly of a plunger (602) inserted in a diluent chamber (601) is shown in (607).
  • The chamber (601) may further comprise a Luer-Lock or slip tip (605) for connecting to a reaction chamber (604) or an analysis system. After connecting plunger unit (601, 602) to reaction chamber (604), one may depress the plunger (602) downward to break a seal at the end of the chamber (601), releasing sample fluid from the sample preparation chamber into reaction chambers (604), wherein individual reaction chamber (606) may have a different reporter or color system for detecting an analyte. The plunger (602) can further comprise membrane that pushes water and lets out gas, thus degassing the sample fluid as one depresses the plunger into the chamber. The reaction chambers may be filled in parallel, and the last chamber contains an aerosol filter and a pressure exit to atmosphere. Pressure, equalization, reaction chamber filling and aerosol filtering can be achieved through membrane exits. In some embodiments, reaction chambers contain reagent tablets or reagent disks. Top membranes can be welded in place using ultrasound. Lenses that enlarge the view of the reaction chambers are used in some embodiments. The connection to the reaction chamber or transfer system (604) includes a rough filter and a penetrator for breaking the buffer seal on connection at 605. Reaction chambers can be closed at the top and bottom by clipping on.
  • The conformation of the reaction vessels can be flexibly organized. One example is shown in FIG. 39, which shows another embodiment of an analysis system (604). Reaction chambers (606) can be arranged in a radial manner instead of in a linear arrangement. A fan- or radial-shaped analysis system (604) is adapted to use with a sample preparation chamber (601) with a plunger (602) system for driving a sample solution into reaction wells or chambers. Different views of such analysis system (604) are shown in (B). (608) shows a top view of a series of reaction chambers arranged in a radial arrangement. In some embodiments, the reaction chamber unit (610) may be removable from housing (609). This removable feature facilitates a user in refilling, inserting, or exchanging reagents in individual reaction chambers within the reaction unit (610).
  • In this example, the reagents used are water soluble and are formulated as tablets using excipients such as PEG, maltose and sorbitol as carriers. The tablets are formulated with the appropriate amounts of buffer salts in the bulk mixture to result in optimal pH upon dissolution. For supply of hydrogen peroxide, sodium percarbonate is used. As an MPO substrate, a soluble Fast Blue derivative, i.e the product of reaction with succinic anhydrice, is used, alternatively, guacol, diamino phenol or similar may be used. For Elastase, AAPV nitrophenol amide is employed, alternatively, AAPV-indoxyl with a diazonium salt enhancer. For Lysozyme, the substrate is a labelled peptidoglycan particle, however, the well contains a positively charged membrane at the viewing interface. This membrane is derived on one half with the trap, and the contrast between the two sides in the main indicator of reaction indicates the degree of reaction.
  • In some embodiments, such as FIG. 24, sampling threads (100) are built in or added to dressing for a wound or at a surgical site (92). AQUACEL (4) is used in some embodiments of the dressing (92). Sampling threads absorb wound fluid or fluid at surgical site (D). A thread may be pulled out or extracted as shown in FIG. 24(E) from dressing without having to remove or disturb dressing using an instrument (101) such as a tweezer, hook, or thread hook device. The thread can then be dissolved in a buffer for use in a diagnostic device (102) using one or more indicator regents or indicator disks described herein.
  • In some embodiments, a wound dressing comprises built in sampling threads. In some embodiments, the sampling threads absorb wound fluids and may be removed without disturbing the wound dressing for detection of analytes in the wound fluid.
  • In some embodiments, the sample threads may be diluted in buffer to dissolve markers for diagnosing the status of the surgical site or wound.
  • In some embodiments, a thread hook device may be used to remove a thread from a wound dressing.
  • While preferred embodiments of the disclosed technology have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the disclosed technology. It should be understood that various alternatives to the embodiments of the disclosed technology described herein may be employed in practicing the disclosed technology. It is intended that the following claims define the scope of the disclosed technology and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims (92)

What is claimed is:
1. A wound dressing comprising
a) a wound contacting layer;
b) a reagent layer comprising one or more testing regions, wherein the reagent layer is in fluid communication with the wound contacting layer; and
c) an outer layer that overlays the reagent layer.
2. The wound dressing of claim 1, wherein the wound contacting layer comprises gel-forming polymers.
3. The wound dressing of claim 1, wherein each of the one or more testing regions comprises one or more of each of a back-flow trap, a reagent pad, a filter pad, an indicator trap, and an absorbent area, and wherein one or more viewing windows are located either above the reagent pad or the indicator trap.
4. The wound dressing of claim 3, wherein:
a) the reagent pad is in fluid communication with the filter pad;
b) the filter pad is in fluid communication with the indicator trap; and
c) the indicator trap is in fluid communication with the absorbent area.
5. The wound dressing of claim 1, wherein each of the one or more testing regions comprises one or more reagents selected from the group consisting of enzyme-reactive indicators, reagents that are sources of peroxide, enzymes that produce colored products, pH indicators, protein responsive reagents, and moisture-detecting reagents.
6. The wound dressing of claim 5, wherein enzyme-reactive indicators are protein-indicator conjugates.
7. The wound dressing of claim 6, wherein the protein-indicator conjugates are deposited in or on the reagent pad.
8. The wound dressing of claim 6, wherein the protein-indicator conjugate has the structure of Formula (I):

A-B   Formula (I)
wherein:
A is an anchor region or moiety that helps to bind an enzyme-reactive region to the reagent pad; and
B is the enzyme-reactive region.
9. The wound dressing of claim 8, wherein the enzyme-reactive region comprises a peptide.
10. The wound dressing of claim 8, wherein the enzyme-reactive region comprises an indicator region having an enzyme-reaction indicator.
11. The wound dressing of claim 8, wherein B further comprises an indicator region.
12. The wound dressing of claim 11, wherein the indicator region, after having been cleaved by the target enzyme is transformed into a colored species by accessory enzymes selected from the group consisting of lipase, esterase, hexosaminidase, peroxidase, oxidase, glycosidase, glucosidase, laccase, and a combination of two or more thereof.
13. The wound dressing of claim 10, wherein the enzyme-reactive indicators interact with one or more enzymes selected from the group consisting of elastase, lysozyme, cathepsin G, myeloperoxidase, and any combination thereof.
14. The wound dressing of claim 10, wherein the enzyme-reactive indicators comprise a moiety capable of producing a visible color or a detectable electronic change upon interaction of the enzyme-labile or enzyme-reactive region with one or more enzymes, wherein the moiety is selected from the group consisting of a peroxidase substrate, arylamine, an amino phenol, a neutral dye, a charged dye, a nanoparticle, a colloidal gold particle, and an analog thereof.
15. The wound dressing of claim 8, wherein the anchor region is covalently attached to the reagent pad.
16. The wound dressing of claim 8, wherein the anchor region is non-covalently attached to the reagent pad.
17. The wound dressing of claim 16, wherein the anchor region is ionically attached to the reagent pad.
18. The wound dressing of claim 1, further comprising one or more lines of wicking stitching or wicking tufting throughout all layers of the wound dressing except the outer layer, and wherein the wicking stitching or wicking tufting provides fluid communication between the reagent layer and the wound contacting layer.
19. The wound dressing of claim 18, wherein one or more lines of wicking stitching or wicking tufting comprise fibers that are wettable and exhibit capillary action.
20. The wound dressing of claim 19, wherein the fibers comprise cotton, rayon, viscose, wool, silk, polyester, polyamide, CMC, polypropylene, or any combination thereof.
21. The wound dressing of claim 1, wherein one or more testing regions comprise a leach-back trap in fluid communication with a reagent pad and one or more lines of wicking stitching or wicking tufting crossing through one or more testing regions only at the leach-back trap.
22. The wound dressing of claim 1, further comprising a foam layer between the wound contacting layer and the reagent layer.
23. The wound dressing of claim 22, further comprising one or more perforations in the wound contacting layer.
24. The wound dressing of claim 22, further comprising one or more perforations in the foam layer and the wound contacting layer.
25. The wound dressing of claim 21, wherein each of the one or more testing regions further comprises a leach-back trap in fluid communication with the reagent pad and one or more perforations aligned with the leach-back trap.
26. The wound dressing of claim 1, wherein each of the one or more testing regions comprises a multichannel testing region, wherein each channel is separated from an adjacent channel by one or more impermeable separators or borders.
27. The wound dressing of claim 26, comprising a plurality of testing regions.
28. The wound dressing of claims 26, wherein the testing regions are arranged in a linear configuration.
29. The wound dressing of claim 26, wherein the testing regions are arranged in a radial configuration.
30. The wound dressing of claim 1, wherein the outer layer has one or more windows that permit visualization of a signal from the reagent layer.
31. The wound dressing of claim 30, wherein the signal is a color change.
32. The wound dressing of claim 30, wherein the signal is a fluorescent signal, a luminescent signal, or a signal mediated by physical means, such as an electrical change.
33. A method of detecting the level of one or more enzymes in a mammalian wound, the method comprising:
a) contacting the mammalian wound with a wound dressing of claim 1;
b) observing one or more signals in the reagent layer, wherein the signal is a color change, a fluorescent signal, a luminescent signal, or an electrical change; and
c) comparing the signal to a reference or a control to determine the level of an enzyme.
34. A method of detecting the presence of one or more enzymes in a mammalian wound, the method comprising:
a) contacting the mammalian wound with a wound dressing of claim 1; and
b) observing one or more signals in the reagent layer, wherein the signal is a color change, a fluorescent signal, a luminescent signal, or an electrical change.
35. A method of detecting an infection in a mammalian wound, the method comprising:
a) contacting the wound with a wound dressing of claim 1; and
b) observing one or more signals in the reagent layer, wherein the signal is a color change, a fluorescent signal, a luminescent signal, or an electrical change.
36. A method of treating an infection in a wound of a mammal, the method comprising:
a) contacting the wound with a wound dressing of claim 1;
b) observing one or more signals in the reagent layer indicative of an infection, wherein the signal is a color change, a fluorescent signal, a luminescent signal, or an electrical change; and
c) administering a medical treatment to the mammal.
37. A device for detecting an infection in a wound, comprising:
a) a wound contacting layer;
b) a reaction layer comprising one or more reagents that can indicate the presence of one or more analytes associated with an infection, wherein the reagents are affixed to a solid phase and produce a detectable signal in a reporter area;
c) a cover on top of the reaction layer, wherein the cover comprises one or more windows or clear areas to allow visualization of the detectable signal; and
d) fluid communication between the wound contacting layer and the reaction layer.
38. The device of claim 37, wherein the reagents comprise enzyme-reactive regions that interact with one or more target enzymes selected from the group consisting of lysozyme, MPO, cathepsin G, elastase, catalase, lipase, esterase, and any combination thereof.
39. The device of claim 37, wherein one or more reagents produce a visible color upon a change in the pH, at an acidic pH, or at a basic pH, and wherein the pH-sensitive reagent comprises bromothymol blue, phenol red, bromophenol red, chlorophenol red, thymol blue, bromocresol green, bromocresol purple; nitrazine yellow; or other sulfophthalein dyes.
40. The device of claim 38, wherein the enzyme-reactive regions comprise a moiety capable of producing a visible color or detectable electronic change upon interaction with one or more target enzymes, wherein the moiety is a peroxidase substrate, arylamine, an amino phenol, an indoxyl, a neutral dye, a charged dye, a nanoparticle, a colloidal gold particle, or an analog thereof.
41. The device of claim 40, wherein the reagent interacts with a target enzyme to produce a colored species or to produce an intermediate product that interacts with an accessory enzyme selected from the group consisting of a lipase, esterase, hexosaminidase, peroxidase, oxidase, glycosidase, glucosidase, and laccase.
42. The device of claim 37, wherein the fluid communication comprises wicking stitching or wicking tufting of an absorbent material that allows fluid communication between the wound contacting layer and the reaction layer.
43. The device of claim 37, wherein the reagents are printed, sprayed, or deposited on the solid phase.
44. The device of claim 37, wherein the solid phase is selected from the group consisting of paper, viscose, regenerated cellulose, glass fiber, and any combination thereof.
45. The device of claim 37, wherein the detectable signal is a color change, a fluorescent signal, a luminescent signal, or an electrical change.
46. The device of claim 37, wherein the device is a wound dressing.
47. A device for detection of infection associated enzymes that is provided as an independent entity and can be placed in any dressing system, comprising a sample inlet in fluid communication with reagent cells, wherein reagent cells comprise indicators for sample delivery and/or pH, and one or more indicators for biomarkers of an infection selected from the group consisting of lysozyme, MPO, cathepsin G, elastase, catalase, lipase, and esterase.
48. The device of claim 47, wherein the indicators comprise enzyme-reactive indicators, reagents that are sources of peroxide, enzymes that produce colored products, pH indicators, protein responsive reagents, or moisture-detecting reagents.
49. The device of claim 47, wherein the indicators are enzyme-reactive indicators or protein-indicator conjugates.
50. The device of claim 47, wherein the protein-indicator conjugates are deposited in or on the reagent pad.
51. The device of claim 47, wherein the protein-indicator conjugate has the structure of Formula (I): A-B, wherein A is an anchor region or moiety that helps to bind an enzyme-reactive region to the reagent pad; B is the enzyme-reactive region; and wherein the enzyme-reactive region comprises a peptide or an indicator region.
52. The device of claim 51, wherein the indicator region interacts with an enzyme to produce a colored species or wherein an intermediate species interacts with an accessory enzyme selected from a group consisting of a lipase, esterase, hexosaminidase, peroxidase, oxidase, glycosidase, glucosidase, and laccase to produce a colored species.
53. The device of claim 47, wherein the fluid communication comprises one to ten indicator channels separated by impermeable lanes, borders, or separators, wherein each indicator channel comprises a different reagent or control.
54. The device of claim 47, wherein the fluid communication comprises a plurality of separate indicator channels, and wherein each indicator channel comprises a different reagent or control.
55. The device of claim 47, wherein the reagents are printed, sprayed, or deposited on a solid phase in a radial configuration to form a disk.
56. The device of claim 47, wherein the reagents are printed, sprayed, or deposited on a solid phase in a linear configuration to form a testing strip or dipstick-type device.
57. The device of claim 55, wherein the disk comprises reagents printed, sprayed, or deposited on the top surface of the disk with a trap material and a substrate material on the bottom surface, wherein the substrate can be digested by one or more enzymes in the sample to release one or more products that migrate toward the trap.
58. The device of claim 57, wherein one or more products are colored or produce a color change through interaction with an accessory enzyme, and wherein the color change can be visualized on the top surface of the disk.
59. A diagnostic disk for detecting an infection in a wound, comprising:
a) a reaction layer comprising one or more reagents that interact with a target enzyme indicative of an infection, wherein the reagents are affixed to a solid phase;
b) each reagent is sprayed, printed, or deposited in a reagent area in a lane separated from adjacent lanes by impermeable separators;
c) each lane comprises a reporter area wherein a color, color change, or other detectable signal is observed; and
d) a cover comprising a window for visualizing the signal in the reporter area.
60. The diagnostic disk of claim 59, wherein one or more reagents produce a visible color upon a change in the pH, at an acidic pH, or at a basic pH, wherein the pH-sensitive reagent comprises bromothymol blue, phenol red, bromophenol red, chlorophenol red, thymol blue, bromocresol green, bromocresol purple; nitrazine yellow; or other sulfophthalein dyes.
61. The diagnostic disk of claim 59, wherein multiple lanes are arranged in a linear or radial configuration about a cut access, perforation, or wicking material that allows fluid communication between a wound contacting area to the reagents in the reaction layer.
62. The diagnostic disk of claim 59, wherein one or more reagents produce a color signal or other detectable signal upon interaction with an enzyme selected from the group consisting of lysozyme, MPO, cathepsin G, elastase, catalase, lipase, and esterase.
63. The diagnostic disk of claim 59, wherein the reagents comprise a moiety selected from the group consisting of peroxidase substrate, arylamine, an amino phenol, an indoxyl, a neutral dye, a charged dye, a nanoparticle, and a colloidal gold particle, and an analog thereof.
64. The diagnostic disk of claim 59, wherein the reagents comprise accessory enzymes that produce a colored species or color signal, and wherein the accessory enzyme is a lipase, esterase, hexosaminidase, peroxidase, oxidase, glycosidase, glucosidase, laccase, or a combination of one or more thereof.
65. The diagnostic disk of claim 59, wherein the solid phase is selected from the group consisting of paper, viscose, regenerated cellulose, glass fiber, and similar material.
66. The diagnostic disk of claim 59, wherein there are a plurality of lanes, each with a different reagent or control.
67. The diagnostic disk of claim 59, wherein the detectable signal comprises a color change, appearance or disappearance of a color, a fluorescent signal, a luminescent signal, or an electrical change or signal.
68. A lateral flow or dipstick device for detecting an infection in a wound, comprising: one or more reagent disks arranged in a linear configuration, wherein each reagent disk is impregnated with a reagent that interacts with an enzyme to produce a color change and/or is pH-sensitive, comprising bromothymol blue, phenol red, bromophenol red, chlorophenol red, thymol blue, bromocresol green, bromocresol purple; nitrazine yellow; or other sulfophthalein dyes, and wherein the disks are affixed to a solid phase.
69. The device in claim 68, wherein the reagents produce a color signal upon interaction with an enzyme selected from the group consisting of lysozyme, MPO, cathepsin G, elastase, catalase, lipase, and esterase.
70. The device in claim 68, wherein the solid phase is selected from the group consisting of paper, viscose, regenerated cellulose, glass fiber, and any combination thereof.
71. A device for detecting an infection in a wound or a sample, comprising a housing, wherein the housing comprises:
a) a sampling component for collecting the sample;
b) a sample preparation chamber in fluid communication with a reaction chamber, wherein the sample preparation chamber receives the sample;
c) the reaction chamber comprising one or more reaction cells containing reagents that interact with one or more enzymes in the sample to indicate the presence of an infection and/or pH of the sample; and
d) a window or a clear area for visualizing a detectable signal, wherein the signal is a color change.
72. The device in claim 71, wherein one or more reagents produce a color signal upon interaction with an enzyme selected from a group consisting of lysozyme, MPO, cathepsin G, elastase, catalase, lipase, and esterase.
73. The device in claim 71, wherein one of the reagents produces a color change in response to a change in pH, a basic pH, or an acidic pH.
74. The device in claim 71, wherein the reagents perform in a primarily liquid medium.
75. The device in claim 71, wherein the reagents are provided in tablet form for use in the reaction cells.
76. The device in claim 71, wherein the reagents are printed, sprayed, or deposited in separate reagent fields on a support material to form a panel of tests for use in the reaction chamber.
77. The device in 71, wherein the support material is selected from the group consisting of paper, viscose, regenerated cellulose, and glass fiber, arrayed in a line along a carrier strip.
78. The device in claim 76, wherein the reagent fields are arrayed in a line along a carrier strip capable of absorbing the sample in the reaction chamber.
79. The device in claim 71, wherein the sampling component is a swab device.
80. The device in claim 71, wherein the sampling component is a hook or needle device adapted to removing a thread from a wound dressing without disturbing the wound dressing.
81. A kit for detecting an infection in a sample, comprising:
a) a sampling component for collecting the sample;
b) a test device comprising a housing surrounding a tube to define an opening in the housing for receiving the sampling component, the housing comprising:
c) a diluent chamber that holds a liquid diluent;
d) a reaction well in liquid communication with the tube, wherein the reaction well holds one or more reagents that interact with one or more analytes to produce a color change or a detectable signal;
e) a viewing window or reporter area wherein the color change or detectable signal can be observed; and
f) wherein the liquid diluent flows from the sample component into the reaction well to mix the sample with the reagents in the reaction well.
82. The kit of claim 81, wherein the reagents comprise one or more enzyme-reactive indicators and/or pH indicator.
83. The kit of claim 81, wherein one or more reagents produce a color signal upon interaction with an enzyme selected from a group consisting of lysozyme, MPO, cathepsin G, elastase, catalase, lipase, and esterase.
84. The kit of claim 81, wherein the reagents comprise a moiety selected from the group consisting of peroxidase substrate, arylamine, an amino phenol, an indoxyl, a neutral dye, a charged dye, a nanoparticle, a colloidal gold particle, and an analog thereof.
85. The kit of claim 81, wherein the detectable signal comprises a color signal or color change, a fluorescent signal, a luminescent signal, or an electrical signal.
86. The kit of claim 81, wherein at least one reagent produces a color signal in response to a basic pH, an acidic pH, or a change in pH, wherein the pH-sensitive reagent is bromothymol blue, phenol red, bromophenol red, chlorophenol red, thymol blue, bromocresol green, bromocresol purple; nitrazine yellow; or other sulfophthalein dyes.
87. The kit of claim 81, wherein the sample is obtained from a wound, a wound dressing, or a surgical site.
88. The kit of claim 81, wherein the sampling component is a swab device or a hook or needle device.
89. The kit of claim 81, wherein the reagents are deposited in separate fields on a testing strip to form a panel of tests.
90. The kit of claim 81, wherein there are a plurality of reaction wells, wherein each reaction well comprises a different reagent or control.
91. The kit of claim 90, wherein the reaction wells are arranged in a linear configuration.
92. The kit of claim 90, wherein the reaction wells are arranged in a radial configuration.
US16/090,045 2016-03-30 2017-03-30 Detecting microbial infections in wounds Abandoned US20190142642A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/090,045 US20190142642A1 (en) 2016-03-30 2017-03-30 Detecting microbial infections in wounds

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662315565P 2016-03-30 2016-03-30
PCT/US2017/024991 WO2017173069A1 (en) 2016-03-30 2017-03-30 Detecting microbial infections in wounds
US16/090,045 US20190142642A1 (en) 2016-03-30 2017-03-30 Detecting microbial infections in wounds

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/024991 A-371-Of-International WO2017173069A1 (en) 2016-03-30 2017-03-30 Detecting microbial infections in wounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/397,462 Continuation US11723808B2 (en) 2016-03-30 2021-08-09 Detecting microbial infections in wounds

Publications (1)

Publication Number Publication Date
US20190142642A1 true US20190142642A1 (en) 2019-05-16

Family

ID=59965180

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/090,045 Abandoned US20190142642A1 (en) 2016-03-30 2017-03-30 Detecting microbial infections in wounds
US17/397,462 Active 2037-09-15 US11723808B2 (en) 2016-03-30 2021-08-09 Detecting microbial infections in wounds

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/397,462 Active 2037-09-15 US11723808B2 (en) 2016-03-30 2021-08-09 Detecting microbial infections in wounds

Country Status (20)

Country Link
US (2) US20190142642A1 (en)
EP (2) EP3936095A1 (en)
JP (1) JP7183146B2 (en)
KR (1) KR20190013725A (en)
CN (1) CN109310528B (en)
AR (1) AR108056A1 (en)
AU (1) AU2017239643B2 (en)
BR (1) BR112018070248B1 (en)
CA (1) CA3019558A1 (en)
CL (1) CL2018002778A1 (en)
CO (1) CO2018011705A2 (en)
EC (1) ECSP18081916A (en)
ES (1) ES2904480T3 (en)
IL (1) IL262004A (en)
MX (1) MX2018011801A (en)
PL (1) PL3435941T3 (en)
SG (1) SG11201808488XA (en)
TW (1) TW201800069A (en)
UY (1) UY37178A (en)
WO (1) WO2017173069A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD893514S1 (en) 2018-11-08 2020-08-18 11 Health And Technologies Limited Display screen or portion thereof with graphical user interface
US20200289098A1 (en) * 2019-03-15 2020-09-17 Orig3N, Inc. Dna collection device
US20200355675A1 (en) * 2020-07-04 2020-11-12 Soheila Salahshoor Kordestani Infection detection device and method using same
WO2020245656A1 (en) * 2019-06-03 2020-12-10 Convatec Limited Methods and devices to disrupt and contain pathogens
US10874541B2 (en) 2017-11-09 2020-12-29 11 Health And Technologies Limited Ostomy monitoring system and method
US20210153803A1 (en) * 2018-06-15 2021-05-27 Coloplast A/S Wound dressing system, monitor device and related methods
US20220031247A1 (en) * 2020-07-28 2022-02-03 Chang Gung University Apparatus of examining surface of an organism and method thereof
US11320429B1 (en) * 2021-03-05 2022-05-03 Global Diagnostic Systems, Benefit LLC Diagnostic devices with fluid reservoirs and associated methods and kits
US11793906B2 (en) 2018-04-26 2023-10-24 Boe Technology Group Co., Ltd. Base film for dressing and manufacturing method therefor, and dressing comprising the base film

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3436012T3 (en) 2016-03-30 2024-04-08 Convatec Technologies Inc. Modified wound dressings
US11740241B2 (en) 2016-03-30 2023-08-29 Synovo Gmbh Construct including an anchor, an enzyme recognition site and an indicator region for detecting microbial infection in wounds
CN109310528B (en) 2016-03-30 2021-07-20 康沃特克科技公司 Detecting microbial infection in a wound
EP3730128A4 (en) * 2017-12-20 2021-08-04 Easting Biotech Company Limited Pasting structure
KR102158607B1 (en) * 2018-08-24 2020-09-22 한국과학기술원 Smart dressing with liquid guiding pad for monitorng wound infection
US20220047771A1 (en) * 2018-09-25 2022-02-17 Systagenix Wound Management, Limited Wound dressing compositions and uses thereof
EP3643331A1 (en) * 2018-10-24 2020-04-29 Paul Hartmann AG Ph-triggered therapeutic wound dressing
EP3643328A1 (en) * 2018-10-24 2020-04-29 Paul Hartmann AG Ph-triggered diagnostic wound dressing
US11506658B2 (en) 2019-04-24 2022-11-22 Progenitec, Inc. System for analysis of body fluids and wound-associated biomolecules
WO2020250037A1 (en) * 2019-06-14 2020-12-17 Qualizyme Diagnostics GmbH & Co. KG Ph responsive materials for optical monitoring of wound status
WO2020257053A1 (en) * 2019-06-17 2020-12-24 Kci Licensing, Inc. Dressing with fluid level indication
US20210187128A1 (en) * 2019-12-24 2021-06-24 University Of Central Florida Research Foundation, Inc. Color changing silk patch for visible ros detection
CN111067862B (en) * 2019-12-25 2021-03-30 山西大学 Temperature-sensitive hydrogel with visual diagnosis and infection wound treatment functions and preparation method thereof
CN111135341B (en) * 2020-01-20 2021-10-29 浙江大学 Intelligent hydrogel dressing for early warning and controllable treatment of infected wound
WO2022096081A1 (en) * 2020-11-03 2022-05-12 Clonallon Laboratories Limited Wound dressing
GB202102163D0 (en) 2021-02-16 2021-03-31 Convatec Ltd Layered detection device
CN115845113B (en) * 2022-11-25 2024-03-19 北京理工大学 Hydrogel drug release patch and preparation method thereof

Family Cites Families (586)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4087327A (en) * 1976-04-12 1978-05-02 Monsanto Company Mammalion cell culture process
GB9718923D0 (en) * 1997-09-05 1997-11-12 T G Eakin Limited Wound dressing
ES2270824T3 (en) 1999-04-02 2007-04-16 Kci Licensing, Inc. CLOSURE SYSTEM ASSISTED BY VACUUM WITH HEATING AND COOLING PROVISION.
CN1348501A (en) * 1999-04-26 2002-05-08 宝洁公司 Feminine sanitary disposable article having a blood detection means as sensor
GB0011202D0 (en) 2000-05-09 2000-06-28 Kci Licensing Inc Abdominal wound dressing
GB0025084D0 (en) * 2000-10-13 2000-11-29 Cambridge Meditech Improvements in detection
US7700819B2 (en) 2001-02-16 2010-04-20 Kci Licensing, Inc. Biocompatible wound dressing
GB2381452B (en) 2001-11-05 2005-08-10 Johnson & Johnson Medical Ltd Wound monitoring
EP1496951B1 (en) * 2002-04-24 2006-06-14 Insense Limited Wound dressings comprising an oxidoreductase enzyme in hydrated condition
GB2393120A (en) 2002-09-18 2004-03-24 Johnson & Johnson Medical Ltd Compositions for wound treatment
GB0224986D0 (en) 2002-10-28 2002-12-04 Smith & Nephew Apparatus
EP1581268B1 (en) 2003-01-09 2011-05-04 Polyganics B.V. Biomedical foams
CN102743785A (en) 2003-08-14 2012-10-24 美利肯公司 Silver-containing wound care device, composition therefor, and method of producing
WO2005084534A1 (en) 2003-09-03 2005-09-15 Life Patch International, Inc. Personal diagnostic devices and related methods
GB0325129D0 (en) 2003-10-28 2003-12-03 Smith & Nephew Apparatus in situ
WO2005042771A2 (en) * 2003-11-03 2005-05-12 Ethicon, Inc. Colorimetric substrates, colorimetric sensors, and methods of use
US7909805B2 (en) 2004-04-05 2011-03-22 Bluesky Medical Group Incorporated Flexible reduced pressure treatment appliance
US10413644B2 (en) 2004-04-27 2019-09-17 Smith & Nephew Plc Wound treatment apparatus and method
GB0409446D0 (en) 2004-04-28 2004-06-02 Smith & Nephew Apparatus
US9162005B2 (en) 2005-04-25 2015-10-20 Arch Biosurgery, Inc. Compositions for prevention of adhesions and other barrier applications
US7749531B2 (en) * 2005-06-08 2010-07-06 Indicator Systems International Apparatus and method for detecting bacterial growth beneath a wound dressing
AU2006287461A1 (en) 2005-09-07 2007-03-15 Tyco Healthcare Group L.P. Self contained wound dressing apparatus
CN101257938A (en) 2005-09-07 2008-09-03 泰科保健集团有限合伙公司 Wound dressing with vacuum reservoir
WO2007075928A2 (en) 2005-12-22 2007-07-05 Provex Technologies, Llc. Integrated patch and assay device with visual detection means
KR101117394B1 (en) 2006-01-23 2012-03-07 케이씨아이 라이센싱 인코포레이티드 System for treating a wound using ultrasonic debridement
KR101045751B1 (en) 2006-02-06 2011-06-30 케이씨아이 라이센싱 인코포레이티드 Systems and methods for improved connection to wound dressings in conjunction with reduced pressure wound treatment systems
US8741230B2 (en) 2006-03-24 2014-06-03 Theranos, Inc. Systems and methods of sample processing and fluid control in a fluidic system
US7779625B2 (en) 2006-05-11 2010-08-24 Kalypto Medical, Inc. Device and method for wound therapy
GB2439928A (en) 2006-07-13 2008-01-16 Ethicon Inc Hydrogel wound dressings exhibiting reduced fiber losses
CN110251740A (en) 2006-10-13 2019-09-20 凯希特许有限公司 For providing the reduced pressure delivery system for the treatment of to lower severity wound
FR2916356B1 (en) 2007-05-25 2009-08-28 Urgo Soc Par Actions Simplifie NOVEL AGENT FOR RELOCATING ACTIVE INGREDIENTS IN DRESSINGS CONTAINING AT LEAST ONE FATTY BODY
US20090075891A1 (en) 2007-08-06 2009-03-19 Macphee Martin Methods and dressings for sealing internal injuries
GB2452720A (en) 2007-09-11 2009-03-18 Ethicon Inc Wound dressing with an antimicrobial absorbent layer and an apertured cover sheet
US8246590B2 (en) 2007-10-11 2012-08-21 Spiracur, Inc. Closed incision negative pressure wound therapy device and methods of use
EP2987510B1 (en) 2007-11-21 2020-10-28 T.J. Smith & Nephew Limited Suction device and dressing
GB0722820D0 (en) 2007-11-21 2008-01-02 Smith & Nephew Vacuum assisted wound dressing
CN101868203B (en) 2007-11-21 2014-10-22 史密夫及内修公开有限公司 Wound dressing
CN101932624B (en) 2007-12-12 2012-09-26 3M创新有限公司 Methods of making one article and articles
US20090234306A1 (en) 2008-03-13 2009-09-17 Tyco Healthcare Group Lp Vacuum wound therapy wound dressing with variable performance zones
US8152785B2 (en) 2008-03-13 2012-04-10 Tyco Healthcare Group Lp Vacuum port for vacuum wound therapy
GB0805162D0 (en) 2008-03-19 2008-04-23 Bristol Myers Squibb Co Antibacterial wound dressing
BRPI0906527A2 (en) 2008-04-04 2016-09-06 3Mm Innovative Properties Company apparatus for applying bandages to wounds and medical bandages
GB0808376D0 (en) 2008-05-08 2008-06-18 Bristol Myers Squibb Co Wound dressing
BRPI0912824B8 (en) 2008-05-21 2021-06-22 Topaz Morris wound healing device
ITAR20080022A1 (en) 2008-05-26 2009-11-27 Daniele Guidi DRAINAGE DEVICE, IN PARTICULAR FOR ASPIRATION IN CASE OF SUCTION THERAPIES, FISTULAS, SURGICAL WOUND DEFICIENCIES, DECUBITUS INJURIES, TRAUMAS AND SIMILAR INJURIES.
CA2725569C (en) 2008-05-30 2014-11-25 Kci Licensing, Inc. Reduced-pressure, linear wound closing bolsters and systems
US20200113741A1 (en) 2008-05-30 2020-04-16 Kci Licensing, Inc. Dressing with tissue viewing capability
US9572719B2 (en) 2008-05-30 2017-02-21 Kci Licensing, Inc. Reduced-pressure surgical wound treatment systems and methods
US8460698B2 (en) 2008-08-01 2013-06-11 Milliken & Company Composite article suitable for use as a wound dressing
CA2731427C (en) 2008-08-08 2020-01-28 Tyco Healthcare Group Lp Wound dressing of continuous fibers
GB2463523B (en) 2008-09-17 2013-05-01 Medtrade Products Ltd Wound care device
GB0904582D0 (en) 2008-09-24 2009-04-29 Lumina Adhesives Switchable adhesives
GB0817796D0 (en) 2008-09-29 2008-11-05 Convatec Inc wound dressing
ES2829956T3 (en) 2008-10-02 2021-06-02 Lrr & D Ltd Interface Layer Wound Dressing
BRPI0916062A2 (en) 2008-11-07 2019-09-24 Kci Licensing Inc reduced pressure wound treatment system for patient wound care, wound closure dressing, wound treatment method, and wound closure dressing method
KR20110087317A (en) 2008-11-14 2011-08-02 케이씨아이 라이센싱 인코포레이티드 Fluid pouch, system, and method for storing fluid from a tissue site
KR20110095356A (en) 2008-11-18 2011-08-24 케이씨아이 라이센싱 인코포레이티드 Reduced-pressure, composite manifolds
DK2358425T3 (en) 2008-11-25 2014-12-01 Spiracur Inc A device for the supply of reduced pressure on the body surfaces
WO2010080907A1 (en) 2009-01-07 2010-07-15 Spiracur Inc. Reduced pressure therapy of the sacral region
US8162907B2 (en) 2009-01-20 2012-04-24 Tyco Healthcare Group Lp Method and apparatus for bridging from a dressing in negative pressure wound therapy
GB0902368D0 (en) 2009-02-13 2009-04-01 Smith & Nephew Wound packing
US20190298578A1 (en) 2009-03-26 2019-10-03 Stephen Shulman Vented emergency wound dressings with anti-thrombogenic layers
US10792404B2 (en) 2009-04-10 2020-10-06 Kci Licensing, Inc. Methods and devices for applying closed incision negative pressure wound therapy
GB2470040A (en) 2009-05-06 2010-11-10 Systagenix Wound Man Ip Co Bv Wound dressing material comprising N-acetyl cysteine
JP6001449B2 (en) 2009-06-16 2016-10-05 スリーエム イノベイティブ プロパティズ カンパニー Flexible adhesive medical article comprising a self-supporting substrate
KR101699992B1 (en) 2009-06-16 2017-01-26 백스터 인터내셔널 인코포레이티드 Hemostatic sponge
US20100324516A1 (en) 2009-06-18 2010-12-23 Tyco Healthcare Group Lp Apparatus for Vacuum Bridging and/or Exudate Collection
US8469936B2 (en) 2009-07-15 2013-06-25 Kci Licensing, Inc. Reduced-pressure dressings, systems, and methods employing desolidifying barrier layers
US20110066123A1 (en) 2009-09-15 2011-03-17 Aidan Marcus Tout Medical dressings, systems, and methods employing sealants
BR112012010858B8 (en) 2009-11-09 2018-10-02 3M Innovative Properties Co '' Medical article and method for increasing the moisture vapor transmission rate.
EP2498988B1 (en) 2009-11-09 2019-02-27 3M Innovative Properties Company Medical articles and methods of making using miscible composition
GB0919659D0 (en) 2009-11-10 2009-12-23 Convatec Technologies Inc A component for a wound dressing
WO2011066449A1 (en) * 2009-11-24 2011-06-03 Sevident Devices for detection of analytes
WO2011087871A2 (en) 2009-12-22 2011-07-21 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
CA2786101C (en) 2010-01-20 2018-08-07 Kci Licensing, Inc. Foam wound inserts with regions of higher and lower densities, wound dressings, and methods
AT509355B1 (en) 2010-02-10 2012-04-15 Univ Graz Tech TEST ARRANGEMENT
US8791315B2 (en) 2010-02-26 2014-07-29 Smith & Nephew, Inc. Systems and methods for using negative pressure wound therapy to manage open abdominal wounds
US10709883B2 (en) 2010-03-04 2020-07-14 Donald Spector Bandage with microneedles for antimicrobial delivery and fluid absorption from a wound
US8721606B2 (en) 2010-03-11 2014-05-13 Kci Licensing, Inc. Dressings, systems, and methods for treating a tissue site
US8469935B2 (en) 2010-03-11 2013-06-25 Kci Licensing, Inc. Abdominal treatment systems, delivery devices, and methods
US8430867B2 (en) 2010-03-12 2013-04-30 Kci Licensing, Inc. Reduced-pressure dressing connection pads, systems, and methods
US8814842B2 (en) 2010-03-16 2014-08-26 Kci Licensing, Inc. Delivery-and-fluid-storage bridges for use with reduced-pressure systems
US9358158B2 (en) 2010-03-16 2016-06-07 Kci Licensing, Inc. Patterned neo-epithelialization dressings, systems, and methods
DK2552371T3 (en) 2010-03-31 2020-09-14 Pharmaplast Sae Wound care dressing, a method and a production line for producing the wound care dressing
US10695214B2 (en) 2010-03-31 2020-06-30 Teresa Hilton Protective clothing and apparel for pets and animals and method of use
US8632512B2 (en) 2010-04-09 2014-01-21 Kci Licensing, Inc. Apparatuses, methods, and compositions for the treatment and prophylaxis of chronic wounds
AU2011240749B2 (en) 2010-04-13 2016-12-08 Kci Licensing, Inc. Compositions with reactive ingredients, and wound dressings, apparatuses, and methods
US8702665B2 (en) 2010-04-16 2014-04-22 Kci Licensing, Inc. Reduced-pressure sources, systems, and methods employing a polymeric, porous, hydrophobic material
US20190381222A9 (en) 2010-04-16 2019-12-19 Kci Licensing, Inc. Reduced-Pressure Sources, Systems, And Methods Employing A Polymeric, Porous, Hydrophobic Material
GB201006986D0 (en) 2010-04-27 2010-06-09 Smith & Nephew Wound dressing
GB201008347D0 (en) 2010-05-19 2010-07-07 Smith & Nephew Wound protection
USRE48117E1 (en) 2010-05-07 2020-07-28 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
US10639404B2 (en) 2010-06-03 2020-05-05 Wound Healing Technologies, Llc Wound dressing
EP2582404B1 (en) 2010-06-17 2020-08-19 Covalon Technologies Inc. Antimicrobial silicone-based wound dressings
US9265665B2 (en) 2010-07-19 2016-02-23 Kci Licensing, Inc. Inflatable off-loading wound dressing assemblies, systems, and methods
US8795246B2 (en) 2010-08-10 2014-08-05 Spiracur Inc. Alarm system
TWI385002B (en) 2010-08-26 2013-02-11 Taiwan Textile Res Inst Wound dressing containing citrus extract and fabrication method thereof
GB201015656D0 (en) 2010-09-20 2010-10-27 Smith & Nephew Pressure control apparatus
EP2643693A2 (en) 2010-11-23 2013-10-02 KCI Licensing, Inc. Devices and methods for the diagnosis and treatment of wounds using biomarkers
MX337627B (en) 2010-11-25 2016-03-10 Smith & Nephew Composition i-ii and products and uses thereof.
WO2012074509A1 (en) * 2010-11-30 2012-06-07 Avery Dennison Corporation Sensing patch applications
US8613733B2 (en) 2010-12-15 2013-12-24 Kci Licensing, Inc. Foam dressing with integral porous film
GB2488749A (en) 2011-01-31 2012-09-12 Systagenix Wound Man Ip Co Bv Laminated silicone coated wound dressing
US9226737B2 (en) 2011-02-04 2016-01-05 University Of Massachusetts Negative pressure wound closure device
US9107990B2 (en) 2011-02-14 2015-08-18 Kci Licensing, Inc. Reduced-pressure dressings, systems, and methods for use with linear wounds
WO2012141999A1 (en) 2011-04-12 2012-10-18 Kci Licensing, Inc. Absorbent polymer dressings, systems, and methods employing evaporative devices
GB201106491D0 (en) 2011-04-15 2011-06-01 Systagenix Wound Man Ip Co Bv Patterened silicone coating
WO2012149242A1 (en) 2011-04-29 2012-11-01 Kci Licensing, Inc. Aptamer -modified polymeric materials for the binding of therapeutic factors in a wound environment
GB201108229D0 (en) 2011-05-17 2011-06-29 Smith & Nephew Tissue healing
EP2714117B2 (en) 2011-05-26 2018-10-24 KCI Licensing, Inc. Systems and methods of stimulation and activation of fluids for use with instillation therapy
CN103889476B (en) 2011-06-07 2017-04-26 史密夫及内修公开有限公司 Wound contacting members and methods
WO2012170744A2 (en) 2011-06-07 2012-12-13 Spiracur, Inc. Solutions for bridging and pressure concentration reduction at wound sites
EP3281652A1 (en) 2011-07-26 2018-02-14 KCI Licensing, Inc. Systems for treating a tissue site with reduced pressure involving a reduced-pressure interface having a multi-lumen conduit for contacting a manifold
RU2596728C2 (en) 2011-07-26 2016-09-10 Смит Энд Нефью Плс Systems and methods of monitoring system operation for low pressure therapy
GB201113515D0 (en) 2011-08-04 2011-09-21 Convatec Technologies Inc A dressing
EP2750723B1 (en) 2011-08-30 2020-06-24 Avery Dennison Corporation Silicone absorbent adhesive layer
DE102011081818A1 (en) 2011-08-30 2013-02-28 Beiersdorf Ag Active skin coatings
CA3058744A1 (en) 2011-08-31 2013-03-07 Christopher Brian Locke Inline storage pouches for use with body fluids
DE202011108806U1 (en) 2011-09-02 2012-09-03 BLüCHER GMBH Wound dressing with permeable layer
EP2567682B2 (en) 2011-09-09 2017-12-27 Paul Hartmann AG Abdominal wound dressing with application aid
US9408913B2 (en) 2011-09-12 2016-08-09 Protege Biomedical, Llc Composition and dressing for wound treatment
DK2572737T3 (en) 2011-09-26 2016-06-27 Bsn Medical Gmbh improved wound dressing
US9393354B2 (en) 2011-11-01 2016-07-19 J&M Shuler Medical, Inc. Mechanical wound therapy for sub-atmospheric wound care system
GB2504872B (en) 2011-11-01 2015-07-01 Brightwake Ltd Wound dressings, and yarn useful therein
EP3669841A1 (en) 2011-11-15 2020-06-24 KCI Licensing, Inc. Medical dressings, systems, and methods with thermally-enhanced vapor transmission
US9132040B2 (en) 2011-11-17 2015-09-15 Ethicon, Inc. Dressing device
WO2013074829A1 (en) 2011-11-18 2013-05-23 Kci Licensing, Inc. Tissue treatment systems and methods having a porous substrate with a compressed region and an expanded region
WO2013078096A1 (en) 2011-11-21 2013-05-30 Kci Licensing, Inc. Systems, devices, and methods for identifying portions of a wound filler left at a tissue site
US10940047B2 (en) 2011-12-16 2021-03-09 Kci Licensing, Inc. Sealing systems and methods employing a hybrid switchable drape
WO2013106251A1 (en) 2012-01-10 2013-07-18 Kcl Licensing, Inc. Systems and methods for delivering fluid to a wound therapy dressing
CN107522880B (en) 2012-01-25 2020-07-24 阿克伦大学 Hydrogel and preparation method thereof
GB201201751D0 (en) 2012-02-01 2012-03-14 Haemostatix Ltd Haemostatic wound dressing
CN104053420B (en) 2012-02-02 2020-07-14 凯希特许有限公司 Foam structure wound insert for directional granulation
EP2817038B2 (en) 2012-02-21 2023-06-07 KCI Licensing, Inc. A multi-orientation canister for use with a reduced pressure treatment system
US10470936B2 (en) 2012-02-29 2019-11-12 Hollister Incorporated Buffered adhesive compositions for skin-adhering medical products
JP6092243B2 (en) 2012-02-29 2017-03-08 ホリスター・インコーポレーテッドHollister Incorporated Buffer adhesive composition for skin adhesive medical products
EP2636417B1 (en) 2012-03-05 2017-04-26 Lohmann & Rauscher GmbH Wound treatment assembly and covering device for same
EP3338821B1 (en) 2012-03-12 2020-05-06 Smith & Nephew plc Dressing for reduced pressure wound therapy
US10576037B2 (en) 2012-03-14 2020-03-03 MAM Holdings of West Florida, L.L.C. Compositions comprising placental collagen for use in wound healing
WO2013142003A1 (en) * 2012-03-23 2013-09-26 Laboratory Corporation Of America Holdings Biologic machines for the detection of biomolecules
US9427505B2 (en) 2012-05-15 2016-08-30 Smith & Nephew Plc Negative pressure wound therapy apparatus
CN107280857A (en) 2012-05-22 2017-10-24 史密夫及内修公开有限公司 Wound healing device
EP3650055A1 (en) 2012-05-23 2020-05-13 Smith & Nephew plc Apparatuses and methods for negative pressure wound therapy
GB201209745D0 (en) 2012-05-31 2012-07-18 Convatec Technologies Inc Wound dressing
EP2854893B1 (en) 2012-06-03 2019-10-02 Daniel Eduard Kleiner Endoluminal vacuum therapy device
AU2013280335B2 (en) 2012-06-28 2017-06-29 Kci Licensing, Inc. Wound connection pad with RFID and integrated strain gauge pressure sensor
RU2015102055A (en) 2012-07-16 2016-09-10 Юниверсити Оф Массачусетс DEVICE FOR CLOSING THE Wound USING NEGATIVE PRESSURE
WO2014012171A1 (en) 2012-07-19 2014-01-23 Innovotech, Inc. Anti-microbial gel formulations containing a silver (i) periodate
CN104487033B (en) 2012-07-30 2018-06-15 凯希特许有限公司 Decompression absorbability for treating tissue site applies part, system and manufactures the method for applying part
DK2879636T3 (en) 2012-08-01 2017-06-19 Smith & Nephew Wound dressing
EP2882470B1 (en) 2012-08-13 2020-03-18 KCI Licensing, Inc. Intelligent therapy system with evaporation management
CN104703635B (en) 2012-08-28 2016-12-07 3M创新有限公司 Chlorhexidine gluconate compositions, resin system and goods
US20150320901A1 (en) 2012-08-31 2015-11-12 Stryker European Holdings I, Llc Hemostatic Foam
US20150202354A1 (en) 2012-09-04 2015-07-23 Integrated Healing Technolgies, LLC Wound Dressing
EP2895213B8 (en) 2012-09-12 2017-08-30 KCI Licensing, Inc. Systems for collecting exudates in reduced-pressure therapy
JP6534931B2 (en) 2012-09-20 2019-06-26 ローマン ウント ラウシェル ゲゼルシャフト ミット ベシュレンクテル ハフツング Negative pressure therapeutic device and film for manufacturing negative pressure therapeutic device
GB201216928D0 (en) 2012-09-21 2012-11-07 I2R Medical Ltd Portable medical device system
US9877875B2 (en) 2012-10-09 2018-01-30 Parasol Medical LLC Antimicrobial hydrogel formulation
US9572968B2 (en) 2012-10-11 2017-02-21 Hanuman Pelican, Inc. Compressive oxygen diffusive wound dressings
JP6183831B2 (en) 2012-10-23 2017-08-23 義之 小山 Hydrogel forming material
WO2014066684A1 (en) 2012-10-24 2014-05-01 Kci Licensing, Inc. Sulfhydryl-functionalized polymeric compositions for medical devices
US9657132B2 (en) 2012-10-24 2017-05-23 Kci Licensing, Inc. Amine-functionalized polymeric compositions for medical devices
US20150354096A1 (en) 2012-12-20 2015-12-10 Convatec Technologies Inc. Processing of chemically modified cellulosic fibres
CA2895751A1 (en) 2012-12-21 2014-06-26 3M Innovative Properties Company Medical dressing comprising a flap
AU2013371545B2 (en) 2013-01-03 2018-05-17 3M Innovative Properties Company Moisture absorbing seal
GB201309369D0 (en) 2013-05-24 2013-07-10 Smith & Nephew Moisture indicating system
WO2014113249A2 (en) 2013-01-16 2014-07-24 Kci Licensing, Inc. Ion exchange enhanced absorbent systems
US20140256925A1 (en) 2013-03-05 2014-09-11 The Penn State Research Foundation Composite materials
WO2014163733A2 (en) 2013-03-13 2014-10-09 Kci Licensing, Inc. Expandable fluid collection canister
JP6259510B2 (en) 2013-03-14 2018-01-10 ケーシーアイ ライセンシング インコーポレイテッド Multi-porous conduit
US9662429B2 (en) 2013-03-14 2017-05-30 Kci Licensing, Inc. Negative pressure therapy with dynamic profile capability
EP2968705B1 (en) 2013-03-14 2022-06-29 3M Innovative Properties Company A fluid collection canister with integrated moisture trap
US20160120706A1 (en) 2013-03-15 2016-05-05 Smith & Nephew Plc Wound dressing sealant and use thereof
BR112015021417A2 (en) 2013-03-15 2017-07-18 Smith & Nephew Inc dissolvable gel forming film for the delivery of active agents
BR112015020855A2 (en) 2013-03-15 2017-07-18 Smith & Nephew wound dressing and treatment method
EP2976095B1 (en) 2013-03-15 2020-12-23 3M Innovative Properties Company Wound healing compositions
US10492956B2 (en) 2013-03-15 2019-12-03 Kci Licensing, Inc. Topical vacuum-press surgical incisional dressings, surgical adjuncts, hybrids and composites
EP2970729B1 (en) 2013-03-15 2023-09-06 Euromed Inc. Adhesive composition
WO2014145255A1 (en) 2013-03-15 2014-09-18 Stb, Ltd. Compositions having absorbable materials, methods, and applicators for sealing injuries
LT2983641T (en) 2013-04-08 2020-04-10 Yeditepe Universitesi Polymer based hydrogel
GB2512841B (en) 2013-04-08 2020-07-15 Brightwake Ltd Absorbent wound dressings
WO2014169250A1 (en) 2013-04-11 2014-10-16 President And Fellows Of Harvard College Prefabricated alginate-drug bandages
EP2986448B1 (en) 2013-04-17 2019-12-11 Mölnlycke Health Care AB Wound pad
US10016380B2 (en) 2013-05-01 2018-07-10 Lanny Leo Johnson Antimicrobials and methods of use thereof
US9884087B1 (en) 2013-05-03 2018-02-06 Chan Soon-Shiong Nanthealth Foundation Compositions and methods of improved wound healing
AU2014266943B2 (en) 2013-05-10 2018-03-01 Smith & Nephew Plc Fluidic connector for irrigation and aspiration of wounds
AU2014268601B2 (en) 2013-05-22 2017-06-15 The Penn State Research Foundation Wound dressings and applications thereof
WO2014209620A1 (en) 2013-06-28 2014-12-31 3M Innovative Properties Company Fibrin-coated wound dressing
WO2015002888A1 (en) 2013-07-01 2015-01-08 Trustees Of Boston University Dissolvable hydrogel compositions for wound management and methods of use
US10765774B2 (en) 2013-07-09 2020-09-08 Ethicon, Inc. Hemostatic pad assembly kit and method
CN105451697B (en) 2013-08-05 2019-10-15 3M创新有限公司 Support device with the packing element for enclosing resistance
MX366611B (en) 2013-08-12 2019-07-15 Bsn Medical Gmbh Wound care article having a substantially polygonal or ellipsoid main surface and at least one recess arranged on one side.
EP3034085B1 (en) 2013-08-13 2019-10-23 Seikagaku Corporation Drug containing cationized chitosan
EP3038667B1 (en) 2013-08-26 2019-10-09 KCI Licensing, Inc. Dressing interface with moisture controlling feature and sealing function
GB2518199A (en) 2013-09-13 2015-03-18 Xiros Ltd Method of producing a swellable polymer fibre
US10342891B2 (en) 2013-09-19 2019-07-09 Medline Industries, Inc. Wound dressing containing saccharide and collagen
BR112016007156B1 (en) 2013-10-02 2022-12-13 3M Innovative Properties Company REDUCED PRESSURE SYSTEM
DK3054908T3 (en) 2013-10-10 2018-06-14 Hoffmann La Roche CARRIER SYSTEM FOR A BODY-MOUNTED OBJECT AND PROCEDURE FOR PREPARING THEREOF
SG11201603058UA (en) 2013-10-18 2016-05-30 Agency Science Tech & Res Nanoparticle-containing hydrogels
AU2014340232B2 (en) 2013-10-21 2019-07-11 Smith & Nephew Inc. Negative pressure wound closure device
GB201318842D0 (en) 2013-10-24 2013-12-11 First Water Ltd Flexible hydrogel wound dressings
US10946124B2 (en) 2013-10-28 2021-03-16 Kci Licensing, Inc. Hybrid sealing tape
EP3513773A1 (en) 2013-10-30 2019-07-24 KCI Licensing, Inc. Condensate absorbing and dissipating system
AU2014345526B2 (en) 2013-11-07 2018-03-15 Bsn Medical Gmbh Medical dressing
GB2522178B (en) 2013-11-12 2018-07-18 First Water Ltd Multilayer composition
WO2015075406A1 (en) 2013-11-19 2015-05-28 Lipopeptide Ab New treatment of chronic ulcers
WO2015089421A1 (en) 2013-12-12 2015-06-18 Innovation Technologies, Inc. Materials and methods for controlling infections
US20150182157A1 (en) 2013-12-30 2015-07-02 CardioCanary, Inc. On-Patient Autonomous Blood Sampler and Analyte Measurement Device
JP6114481B2 (en) 2013-12-31 2017-04-12 スリーエム イノベイティブ プロパティズ カンパニー Shape-compatible drape cover dressing
CA2937346A1 (en) 2014-01-24 2015-07-30 Avent, Inc. Traumatic wound dressing system with conformal cover
CA2936873A1 (en) 2014-02-11 2015-08-20 Spiracur Inc. Methods and devices for applying closed incision negative pressure wound therapy
DE102014202578A1 (en) 2014-02-12 2015-08-13 Aesculap Ag Medical product and process for its preparation
JP6947506B2 (en) 2014-02-14 2021-10-13 アトミック メディカル イノベーションズ,インコーポレイティド System for tissue healing
US10610623B2 (en) 2014-02-14 2020-04-07 Kci Licensing, Inc. Systems and methods for increasing absorbent capacity of a dressing
WO2015130471A1 (en) 2014-02-28 2015-09-03 Kci Licensing, Inc. Hybrid drape having a gel-coated perforated mesh
GB201404021D0 (en) 2014-03-05 2014-04-23 Lumina Adhesives Ab Low cytotoxity switchable adhesive compositions, medical dressings and skin coverings, and methods of treatment using same
US20150367019A1 (en) 2014-03-12 2015-12-24 Stb, Ltd. Hemostatic compositions and methods
EP3119360B1 (en) 2014-03-21 2020-08-12 Medline Industries, Inc., Wound management system and methods of using
EP3122300B1 (en) 2014-03-24 2020-03-11 Datt Life Sciences Private Limited A ready to use biodegradable and biocompatible device and a method of preparation thereof
GB2524510B (en) 2014-03-25 2020-02-19 Brightwake Ltd Wound dressing impregnated with honey
NZ726323A (en) 2014-04-30 2020-02-28 Matoke Holdings Ltd Antimicrobial compositions
WO2015168681A1 (en) 2014-05-02 2015-11-05 Kci Licensing, Inc. Fluid storage devices, systems, and methods
EP3354241B1 (en) 2014-05-09 2020-12-30 3M Innovative Properties Company Disruptive dressing for use with negative pressure and fluid instillation
CN106255480B (en) 2014-05-09 2020-01-21 凯希特许有限公司 Dressing with a shrink layer for a linear tissue site
US10398610B2 (en) 2014-05-13 2019-09-03 The Procter & Gamble Company Absorbent article with dual core
GB2526267B (en) 2014-05-14 2020-10-28 Brightwake Ltd Dressing for surgical drain
EP3854361B8 (en) 2014-06-05 2024-03-27 Solventum Intellectual Properties Company Dressing with fluid acquisition and distribution characteristics
KR101743274B1 (en) 2014-06-12 2017-06-02 주식회사 엘지화학 Super absorbent polymer
CA2952284C (en) 2014-06-18 2023-03-28 Smith & Nephew Plc Wound dressing
US10786980B2 (en) 2014-06-18 2020-09-29 Toray Industries, Inc. Laminate and production method therefor
JP6659540B2 (en) 2014-07-07 2020-03-04 株式会社村田製作所 Negative pressure closure therapy device
ES2860763T3 (en) 2014-07-09 2021-10-05 Lubrizol Advanced Mat Inc Hydrogel compositions
CN106687150A (en) 2014-07-10 2017-05-17 史密夫及内修公开有限公司 Improvements in and relating to devices
CN107075165A (en) 2014-07-24 2017-08-18 亚瑟罗凯尔公司 Many sugarwhips of elasticity and application thereof
EP3174569B1 (en) 2014-07-31 2020-01-15 Smith & Nephew, Inc Systems and methods for applying reduced pressure therapy
US20200289723A1 (en) 2014-07-31 2020-09-17 Smith & Nephew, Inc. Reduced pressure therapy apparatus construction and control
JP2017527539A (en) 2014-08-04 2017-09-21 ホスピタル サン ホアン デ デュウ System for immediate release of active agent
US10583042B2 (en) 2014-08-08 2020-03-10 Neogenix, Llc Wound care devices, apparatus, and treatment methods
US9770369B2 (en) 2014-08-08 2017-09-26 Neogenix, Llc Wound care devices, apparatus, and treatment methods
CA2955060A1 (en) 2014-08-11 2016-02-18 Kci Licensing, Inc. Protease modulating wound interface layer for use with negative pressure wound therapy
CN106999270B (en) 2014-09-09 2021-01-01 华盛顿大学 Functionalized zwitterionic and mixed charge polymers, related hydrogels, and methods of use thereof
EP2995287A1 (en) 2014-09-11 2016-03-16 Mölnlycke Health Care AB Medical dressing
EP2995324A1 (en) 2014-09-11 2016-03-16 Mölnlycke Health Care AB Medical dressing
US10709807B2 (en) 2014-10-01 2020-07-14 3M Innovative Properties Company Porous devices, kits, and methods for debridement
US10485891B2 (en) 2014-10-06 2019-11-26 Kci Licensing, Inc. Multi-function dressing structure for negative-pressure therapy
KR102514142B1 (en) 2014-10-06 2023-03-27 가트 테크놀로지스 비.브이. Tissue-adhesive porous haemostatic product
US9855364B2 (en) 2014-10-15 2018-01-02 Allison Coomber Wound dressing materials incorporating anthocyanins derived from fruit or vegetable sources
PL3011978T3 (en) 2014-10-24 2017-09-29 Sefar Ag Wound dressing material and method for producing the same
US10485893B2 (en) 2014-11-13 2019-11-26 Sarasota Medical Products, Inc. Antimicrobial hydrocolloid dressing containing sequestered peroxide and preparation thereof
EP3023083A1 (en) 2014-11-20 2016-05-25 Mölnlycke Health Care AB Wound dressings
WO2016086088A2 (en) 2014-11-25 2016-06-02 Northwestern University Wound healing through sirt1 overexpression
US20180303873A1 (en) 2014-12-04 2018-10-25 3M Innovative Properties Company Antimicrobial compositions comprising bioglass
CN107206119B (en) 2014-12-09 2021-01-29 实体科学公司 Medical device coating with biocompatible layer
TW201622668A (en) 2014-12-16 2016-07-01 準訊生醫股份有限公司 Long-term effective patch structure
EP3233492B1 (en) 2014-12-18 2021-11-10 Kindeva Drug Delivery L.P. Methods of handling adhesive laminate patches
US10617786B2 (en) 2014-12-19 2020-04-14 3M Innovative Properties Company Adhesive article comprising a poly(meth)acrylate-based primer layer and methods of making same
WO2016103032A1 (en) 2014-12-22 2016-06-30 Smith & Nephew Plc Negative pressure wound therapy apparatus and methods
US10828403B2 (en) 2014-12-29 2020-11-10 Smith & Nephew Plc Negative pressure wound therapy apparatus and methods for operating the apparatus
CN107106723B (en) 2014-12-30 2020-10-23 3M创新有限公司 Negative pressure wound dressing with absorbent adhesive sealing layer
CA2972701A1 (en) 2014-12-30 2016-07-07 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
US10660851B2 (en) 2015-01-02 2020-05-26 Rxos Medical Polyfunctional radical scavenger hydrogel formulation
KR101949455B1 (en) 2015-01-07 2019-02-18 주식회사 엘지화학 Superabsorbent Polymers with Improved Anticaking Property And Method Of Preparing The Same
GB201500430D0 (en) 2015-01-12 2015-02-25 Univ Birmingham Dressing
WO2016115448A1 (en) 2015-01-15 2016-07-21 Marshall University Research Corporation Wound coverings comprising vitamin d and related methods
GB201501334D0 (en) 2015-01-27 2015-03-11 Medtrade Products Ltd Composition for a wound dressing
GB201501333D0 (en) 2015-01-27 2015-03-11 Medtrade Products Ltd Composition for a wound dressing
GB201501330D0 (en) 2015-01-27 2015-03-11 Medtrade Products Ltd Composition for a wound dressing
US20200093756A1 (en) 2015-01-29 2020-03-26 Sanmelix Laboratories, Inc. Buckwheat honey and povidone-iodine wound-healing dressing
US10500235B2 (en) 2015-01-29 2019-12-10 San Melix Laboratories, Inc. Wound healing compositions comprising buckwheat honey and methylglyoxal and methods of use
KR101841469B1 (en) 2015-01-30 2018-03-23 (주)메디팁 Method for manufacturing wound covering material using biopolymer and wound covering material using biopolymer manufactured by the same
US10512707B2 (en) 2015-02-02 2019-12-24 University Of Southern California System for sutureless closure of scleral perforations and other ocular tissue discontinuities
US11207458B2 (en) 2015-02-02 2021-12-28 Kci Licensing, Inc. Pressure-operated switch
WO2016126444A1 (en) 2015-02-02 2016-08-11 Kci Licensing, Inc. Customizable closed tissue site dressing for improved postoperative removal
CA2975197A1 (en) 2015-02-03 2016-08-11 Matoke Holdings Limited Antimicrobial fibers and compositions
GB201501965D0 (en) 2015-02-05 2015-03-25 Lumina Adhesives Ab Polyurethane based switchable adhesives
US10485892B2 (en) 2015-03-10 2019-11-26 Covalon Technologies Inc. Method for local reduction of microbial skin flora
WO2016141450A1 (en) 2015-03-10 2016-09-15 Covalon Technologies Inc. Method for local reduction of microbial skin flora
WO2016145237A1 (en) 2015-03-11 2016-09-15 Yu Fu-Shin X Composition and methods to promote wound healing
GB201506236D0 (en) 2015-04-13 2015-05-27 Jellagen Pty Ltd Modified collagen, methods of manufacture thereof
ES2773324T3 (en) 2015-04-21 2020-07-10 Moelnlycke Health Care Ab A wound pad and a self-adhesive member comprising a wound pad
KR20170140315A (en) 2015-04-23 2017-12-20 유니버시티 오브 플로리다 리서치 파운데이션, 아이엔씨. Double layer device for improved healing
HUE049136T2 (en) 2015-04-27 2020-08-28 Smith & Nephew Reduced pressure apparatuses
EP3936163B1 (en) 2015-05-07 2024-04-03 Solventum Intellectual Properties Company A controlled release iodine structure for use with wound care
US20190298580A1 (en) 2015-05-08 2019-10-03 Kci Licensing, Inc. Low-acuity dressing with integral pump
EP3294245B1 (en) 2015-05-08 2019-09-04 KCI Licensing, Inc. Low acuity dressing with integral pump
US10471190B2 (en) 2015-05-08 2019-11-12 Kci Licensing, Inc. Wound debridement by irrigation with ultrasonically activated microbubbles
US10507259B2 (en) 2015-05-08 2019-12-17 First Quality Retail Services, Llc Flexible absorbent pad
EP3092987A1 (en) 2015-05-11 2016-11-16 3M Innovative Properties Company System for treatment of wounds using serum
EP3093031A1 (en) 2015-05-11 2016-11-16 3M Innovative Properties Company Wound care system
EP3297699B1 (en) 2015-05-18 2020-04-29 Smith & Nephew PLC Heat-assisted pumping systems for use in negative pressure wound therapy
US10076594B2 (en) 2015-05-18 2018-09-18 Smith & Nephew Plc Fluidic connector for negative pressure wound therapy
AU2016267402A1 (en) 2015-05-26 2017-11-30 Monash University Antibacterial bismuth complexes
JP6185215B2 (en) 2015-06-12 2017-08-23 Jfeミネラル株式会社 Skin wound or rough skin treatment
US11559421B2 (en) 2015-06-25 2023-01-24 Hill-Rom Services, Inc. Protective dressing with reusable phase-change material cooling insert
CN107921183B (en) 2015-06-29 2021-04-30 凯希特许有限公司 Apparatus for negative pressure treatment and irrigation
JP2018519943A (en) 2015-07-14 2018-07-26 ケーシーアイ ライセンシング インコーポレイテッド Medical dressing interface device, system, and method
EP3117806B1 (en) 2015-07-16 2020-06-10 Lohmann & Rauscher GmbH Wound treatment assembly
ES2831751T3 (en) 2015-07-24 2021-06-09 Moelnlycke Health Care Ab Absorbent Antimicrobial Wound Dressings
US10583228B2 (en) 2015-07-28 2020-03-10 J&M Shuler Medical, Inc. Sub-atmospheric wound therapy systems and methods
US10682257B2 (en) 2015-07-29 2020-06-16 Evophancie Biotech Ltd Biological fiber composite dressing
US10471122B2 (en) 2015-07-31 2019-11-12 Blue Blood Biotech Corp. Composition for use in promoting wound healing
WO2017025963A1 (en) 2015-08-10 2017-02-16 The Medical Research, Infrastructure and Health Services Fund of the Tel Aviv Medical Center Methods and pharmaceutical compositions for improving wound healing using cd24
KR101787192B1 (en) 2015-08-12 2017-10-18 주식회사 제네웰 Antimicrbacterial dressing material and method for preparing thereof
EP3135304A1 (en) 2015-08-26 2017-03-01 Mölnlycke Health Care AB Foamed silicone in wound care
WO2017040074A1 (en) 2015-08-31 2017-03-09 3M Innovative Properties Company Negative pressure wound therapy dressings comprising (meth)acrylate pressure-sensitive adhesive with enhanced adhesion to wet surfaces
CN204951332U (en) * 2015-09-12 2016-01-13 深圳市前海安测信息技术有限公司 A intelligent bandage and monitoring devices for detecting wound infection degree and healing degree
US10617608B2 (en) 2015-09-25 2020-04-14 Lotte Fine Chemical Co., Ltd. Composition for hydrogel sheet, hydrogel sheet manufactured therefrom, and method for manufacturing same
CN108137841B (en) 2015-09-30 2021-07-06 3M创新有限公司 Hydrogel compositions bonded to polymeric substrates
GB2543307B (en) 2015-10-14 2020-12-09 Selentus Science Ltd Haemostatic device
DK3367987T3 (en) 2015-10-30 2023-07-03 Aatru Medical Llc Apparatus for wound therapy
EP3373984B1 (en) 2015-11-13 2020-12-23 3M Innovative Properties Company Anti-microbial articles and methods of using same
GB2544342B (en) 2015-11-13 2020-06-03 First Water Ltd Compositions for application to wounds
US10568773B2 (en) 2015-11-18 2020-02-25 Kci Licensing, Inc. Medical drapes and methods for reducing trauma on removal
WO2017087163A1 (en) 2015-11-20 2017-05-26 Kci Licensing, Inc. Medical system with flexible fluid storage bridge
GB201520990D0 (en) 2015-11-27 2016-01-13 Edixomed Ltd Dressing system
FR3044893B1 (en) 2015-12-09 2018-05-18 Emile Droche DRESSING FOR SKIN CARE IN A WET MEDIUM
US10575991B2 (en) 2015-12-15 2020-03-03 University Of Massachusetts Negative pressure wound closure devices and methods
EP3187204B1 (en) 2015-12-30 2020-07-15 Paul Hartmann AG Methods and devices for controlling negative pressure wound therapy
CA3009878A1 (en) 2015-12-30 2017-07-06 Smith & Nephew Plc Negative pressure wound therapy apparatus
US11090196B2 (en) 2015-12-30 2021-08-17 Smith & Nephew Plc Absorbent negative pressure wound therapy dressing
US11318243B2 (en) 2016-01-06 2022-05-03 Kci Licensing, Inc. System and methods for the treatment of wounds with dressing having closed cells
JP6895991B2 (en) 2016-01-12 2021-06-30 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ Nanobiocomposite preparation for wound healing and its preparation method
DE102016000569B3 (en) 2016-01-20 2017-06-22 Lohmann & Rauscher Gmbh Method for producing a film tube
US10918770B2 (en) 2016-02-12 2021-02-16 Corning Incorporated Vacuum assisted wound closure assembly and methods of irradiating a wound using the same
FR3047901B1 (en) 2016-02-22 2018-02-23 Universite Pierre Et Marie Curie (Paris 6) BIOMATERIAL COMPOSITIONS WITH CONTROLLED RELEASE OF ACTIVE INGREDIENTS
EP3423011B1 (en) 2016-03-01 2020-07-08 KCI Licensing, Inc. Drape for use with medical therapy systems
KR101958014B1 (en) 2016-03-14 2019-03-13 주식회사 엘지화학 Preparation method of super absorbent polymer
FR3048885A1 (en) 2016-03-17 2017-09-22 Bluestar Silicones France SILICONE ADHESIVE GEL WITH SKIN
WO2017161038A1 (en) 2016-03-18 2017-09-21 Kci Usa, Inc. Antimicrobial wound dressing
KR101959547B1 (en) 2016-03-25 2019-03-18 주식회사 엘지화학 Preparation method for super absorbent polymer
CN109310528B (en) 2016-03-30 2021-07-20 康沃特克科技公司 Detecting microbial infection in a wound
US20200023102A1 (en) 2016-04-05 2020-01-23 Patrick Kenneth Powell Wound therapy system
GB201608099D0 (en) 2016-05-09 2016-06-22 Convatec Technologies Inc Negative pressure wound dressing
EP3246050A1 (en) 2016-05-17 2017-11-22 BSN medical GmbH Wound or skin patch
DK3463498T3 (en) 2016-05-31 2021-12-20 Octapharma Ag PLASMA - BASED FILMS AND PROCEDURES FOR THE PREPARATION AND USE OF THE SAME.
CN109641076A (en) 2016-06-01 2019-04-16 立美基股份有限公司 Bleeding-stopping dressing with self-assembling peptides hydrogel
CA3030151A1 (en) 2016-07-08 2018-01-11 Convatec Technologies Inc. Fluid collection apparatus
TWI673056B (en) 2016-07-22 2019-10-01 大江生醫股份有限公司 Bacterium-containing hydrogel and method of making the same
US10076552B2 (en) 2016-08-09 2018-09-18 DATT MEDIPRODUCTS LIMITED and DATT LIFE SCIENCE PVT. LTD. Multifunctional formulation comprised of natural ingredients and method of preparation/manufacturing thereof
DE102016114819A1 (en) 2016-08-10 2018-02-15 Paul Hartmann Ag Absorbent body for endoluminal negative pressure therapy
EP3496767A4 (en) 2016-08-10 2020-04-01 Argentum Medical, LLC Antimicrobial hydrogel dressings
EP3281617B1 (en) 2016-08-10 2020-09-23 Advanced Medical Solutions Limited Wound dressing
US20180056087A1 (en) 2016-08-26 2018-03-01 Adolfo Ribeiro Wearable Micro-LED Healing Bandage
US11111362B2 (en) 2016-09-26 2021-09-07 Becton, Dickinson And Company Breathable films with microbial barrier properties
IT201600096247A1 (en) 2016-09-26 2018-03-26 Emodial S R L Polyurethane-based bandage and hydrogel comprising chlorhexidine
TWI674903B (en) 2016-09-26 2019-10-21 國立陽明大學 Process for a preparation of the modified porcine plasma fibronectin for enhance wound healing
US10293080B2 (en) 2016-10-05 2019-05-21 The Arizona Board Of Regents On Behalf Of Northern Arizona University Ionic liquids that sterilize and prevent biofilm formation in skin wound healing devices
WO2018067622A1 (en) 2016-10-05 2018-04-12 3M Innovative Properties Company Fibrinogen composition, method and wound articles
GB2555584B (en) 2016-10-28 2020-05-27 Smith & Nephew Multi-layered wound dressing and method of manufacture
CN110167495B (en) 2016-11-02 2022-06-14 史密夫和内修有限公司 Wound closure device
EP3535590B1 (en) 2016-11-02 2023-05-03 Unilever IP Holdings B.V. Malodour sampling method
EP3538165B1 (en) 2016-11-11 2022-11-09 Avery Dennison Corporation Rubber-based soft gel skin adhesives
CN110072497B (en) 2016-11-11 2020-08-11 3M创新有限公司 Conformable wound dressing that can be trimmed
EP3541336B1 (en) 2016-11-18 2020-08-19 KCI Licensing, Inc. Medical system and dressing for use under compression
AU2017366855B2 (en) 2016-12-02 2021-03-11 3M Innovative Properties Company Muscle or joint support article
US10426874B2 (en) 2016-12-02 2019-10-01 Apex Medical Corp. Wound management assembly and negative pressure wound therapy system
EP3547973A1 (en) 2016-12-02 2019-10-09 3M Innovative Properties Company Muscle or joint support article with bump
WO2018104937A1 (en) 2016-12-06 2018-06-14 Sami Shamoon College Of Engineering (R.A.) Topical antimicrobial formulations containing monovalent copper ions and systems for generating monovalent copper ions
US10500104B2 (en) 2016-12-06 2019-12-10 Novomer, Inc. Biodegradable sanitary articles with higher biobased content
WO2018107130A1 (en) 2016-12-09 2018-06-14 Sanvio,Inc. Composition for treating wounds and other dermatological conditions
US11806217B2 (en) 2016-12-12 2023-11-07 Smith & Nephew Plc Wound dressing
DK3335695T3 (en) 2016-12-15 2020-04-20 Upm Kymmene Corp Process for freeze-drying hydrogel comprising nanofibrillar cellulose, freeze-dried medical hydrogel comprising nanofibrillar cellulose and hydrogel comprising nanofibrillar cellulose
EP3335740A1 (en) 2016-12-15 2018-06-20 UPM-Kymmene Corporation Medical hydrogel
DK3335696T3 (en) 2016-12-15 2020-03-16 Upm Kymmene Corp Process for drying cell-free tissue extract in a hydrogel comprising nanofibrillar cellulose and a dried hydrogel comprising nanofibrillar cellulose and cell-free tissue extract
EP3338813B1 (en) 2016-12-20 2020-01-29 BSN Medical GmbH Multi-layer wound care product with perforated release layer
US20200023104A1 (en) 2016-12-22 2020-01-23 Applied Tissue Technologies Llc Devices and methods for wound treatment
CN108884236B (en) 2016-12-22 2021-02-09 株式会社Lg化学 Method for producing superabsorbent polymers and superabsorbent polymers
EP3558188A4 (en) 2016-12-23 2020-06-17 Calgon Carbon Corporation Activated carbon composite wound dressing
DE102016125579A1 (en) 2016-12-23 2018-06-28 Paul Hartmann Ag Hydrous hydrogel composition comprising elemental silver particles
US20200114040A1 (en) 2016-12-28 2020-04-16 Kci Usa, Inc. Antimicrobial wound dressings
JP7255059B2 (en) 2016-12-29 2023-04-11 アルケア株式会社 Foams and foam compositions
WO2018129062A1 (en) 2017-01-09 2018-07-12 Kci Licensing, Inc. Wound dressing layer for improved fluid removal
TWI621453B (en) 2017-01-13 2018-04-21 廈門聖慈醫療器材有限公司 Suction disc
WO2018135813A1 (en) 2017-01-19 2018-07-26 최성현 Pad for alleviating and treating plasma protein exudation skin diseases including atopic diseases
EP3570798A1 (en) 2017-01-23 2019-11-27 Medela Holding AG Porous wound insert for use in negative pressure therapy
WO2018140363A1 (en) 2017-01-27 2018-08-02 Aziyo Biologics, Inc. Lyophilized placental composite sheet and uses thereof
PL3576701T3 (en) 2017-02-06 2023-03-20 Basf Se Fluid-absorbent article
CN110709113A (en) 2017-02-15 2020-01-17 新加坡施乐辉有限公司 Negative pressure wound therapy device and method of use thereof
EP3582816A1 (en) 2017-02-16 2019-12-25 Covestro Deutschland AG Method for producing an adhesive-free wound contact composite material
EP3585453B1 (en) 2017-02-22 2023-05-17 Cornell University Mechanical vacuum dressing for mechanically managing, protecting and suctioning small incisional wounds
CN110545765A (en) 2017-02-28 2019-12-06 T.J.史密夫及内修有限公司 Multi-dressing negative pressure wound treatment system
US20200009289A1 (en) 2017-03-03 2020-01-09 Loma Linda University Health Compositions and methods for promoting hemostasis
EP3592312B1 (en) 2017-03-08 2024-01-10 Smith & Nephew plc Negative pressure wound therapy device control in presence of fault condition
EP3592212A1 (en) 2017-03-09 2020-01-15 Smith & Nephew PLC Wound dressing, patch member and method of sensing one or more wound parameters
AU2018231771A1 (en) 2017-03-09 2019-09-26 Secretary, Department Of Biotechnology A wound dressing for combined negative pressure and fluid delivery system
US10434014B2 (en) 2017-03-21 2019-10-08 HaloStim, LLC Treatment system
EP3378450A1 (en) 2017-03-22 2018-09-26 Mölnlycke Health Care AB Method for manufacturing a wound dressing and a wound dressing
JP7150744B2 (en) 2017-03-29 2022-10-11 スリーエム イノベイティブ プロパティズ カンパニー Hydrogel composition bound to a polymer matrix
CA3058657A1 (en) 2017-04-04 2018-10-11 Anti-Plasmin Technologies, Llc Methods to enhance a non-surgical medical treatment
KR101852718B1 (en) 2017-04-04 2018-05-18 주식회사 제네웰 Kit for pain reduction of incision site after surgical operation
EP3932442A1 (en) 2017-04-04 2022-01-05 3M Innovative Properties Co. Apparatuses, systems, and methods for the treatment of a tissue site with negative pressure and oxygen
GB201800057D0 (en) 2018-01-03 2018-02-14 Smith & Nephew Inc Component Positioning And stress Relief For Sensor Enabled Wound Dressings
CN108721677B (en) 2017-04-17 2021-11-19 广西美丽肤医疗器械有限公司 Composite material
WO2018195101A1 (en) 2017-04-19 2018-10-25 Smith & Nephew, Inc. Negative pressure wound therapy canisters
DE102017003826A1 (en) 2017-04-20 2018-10-25 Lohmann & Rauscher Gmbh Wound treatment arrangement for the negative pressure therapy
WO2018201257A1 (en) 2017-05-04 2018-11-08 Klox Technologies Inc. Absorbent biophotonic devices and systems for wound healing
MY198078A (en) 2017-05-10 2023-07-31 Toray Industries Medical device
US11628092B2 (en) 2017-05-10 2023-04-18 Mölnlycke Health Care Ab Composite foam in wound treatment
EP3635733A1 (en) 2017-05-15 2020-04-15 Smith & Nephew plc Negative pressure wound therapy system using eulerian video magnification
JP7136812B2 (en) 2017-05-16 2022-09-13 スリーエム イノベイティブ プロパティズ カンパニー Absorbable Negative Pressure Dressing System for Postoperative Breast Wounds
EP3634506A4 (en) 2017-05-17 2021-03-10 UVIC Industry Partnerships Inc. Wound covering for wound monitoring and therapeutic agent delivery
EP3634340A1 (en) 2017-05-19 2020-04-15 KCI USA, Inc. Dressings for filtering wound fluids
EP3634341A1 (en) 2017-05-22 2020-04-15 KCI USA, Inc. Post-operative surgical wound dressing
WO2018217620A1 (en) 2017-05-22 2018-11-29 Kci Usa, Inc. Extensible dressings
CN110785151A (en) 2017-05-22 2020-02-11 凯希美国公司 Elastically deformable wound dressing
EP3409248B1 (en) 2017-06-01 2019-11-06 Absorbest AB Wound dressing
CN110944607A (en) 2017-06-07 2020-03-31 凯希特许有限公司 Method of manufacturing and assembling a bi-material tissue interface for negative pressure therapy
US20200085629A1 (en) 2017-06-07 2020-03-19 Kci Licensing, Inc. Composite dressings with even expansion profiles for treatment of wounds using negative-pressure treatment
AU2018282193A1 (en) 2017-06-07 2019-12-19 3M Innovative Properties Company Multi-layer wound filler for extended wear time
WO2018226627A1 (en) 2017-06-07 2018-12-13 Kci Licensing, Inc. Composite dressings for improved granulation and reduced maceration with negative-pressure treatment
US20190231943A1 (en) 2017-06-07 2019-08-01 Kci Licensing, Inc. Peel And Place Dressing For Thick Exudate And Instillation
SG11201909383PA (en) 2017-06-07 2019-11-28 Kci Licensing Inc Customizable composite dressings for improved granulation and reduced maceration negative-pressure treatment
CA3064520A1 (en) 2017-06-07 2018-12-13 Kci Usa, Inc. Wound dressing with odor absorption and increased moisture vapor transmission
CA3065529A1 (en) 2017-06-07 2018-12-13 Kci Licensing, Inc. Composite dressings for improved granulation reduced maceration with negative-pressure treatment
EP3634520A1 (en) 2017-06-07 2020-04-15 KCI Licensing, Inc. Peel and place dressing for negative -pressure treatment
US20180353334A1 (en) 2017-06-07 2018-12-13 Kci Licensing, Inc. Tissue Contact Interface
US11207217B2 (en) 2017-06-07 2021-12-28 Kci Licensing, Inc. Methods for manufacturing and assembling dual material tissue interface for negative-pressure therapy
EP3634335B1 (en) 2017-06-07 2023-05-24 3M Innovative Properties Company Composite dressings for improved granulation and reduced maceration with negative-pressure treatment
CA3065379A1 (en) 2017-06-07 2018-12-13 Kci Licensing, Inc. Systems, apparatuses, and methods for negative-pressure treatment with reduced tissue in-growth
US20210085839A1 (en) 2017-06-08 2021-03-25 Kci Licensing, Inc. Negative-pressure therapy with oxygen
US20210145648A1 (en) 2017-06-09 2021-05-20 Kci Licensing, Inc. Granulating Chronic Wound Dressing
EP3412319A1 (en) 2017-06-09 2018-12-12 Mölnlycke Health Care AB Foam in wound treatment
WO2018231825A1 (en) 2017-06-12 2018-12-20 Kci Licensing, Inc. Foamed and textured sintered polymer wound filler
CN110662516B (en) 2017-06-13 2022-02-22 史密夫及内修公开有限公司 Wound closure devices and methods of use
JP2020523052A (en) 2017-06-14 2020-08-06 スミス アンド ネフュー インコーポレイテッド Fluid removal management and control of wound closure in wound care
US11395873B2 (en) 2017-06-14 2022-07-26 Smith & Nephew, Inc. Control of wound closure and fluid removal management in wound therapy
CA3065380A1 (en) 2017-06-14 2018-12-20 T.J.Smith & Nephew, Limited Negative pressure wound therapy apparatus
WO2018236648A1 (en) 2017-06-19 2018-12-27 Kci Usa, Inc. Wound dressing with saturation indicator
US11633153B2 (en) 2017-06-23 2023-04-25 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy
US10751212B2 (en) 2017-06-26 2020-08-25 Maryam Raza Multilayer dressing device and method for preventing and treating pressure ulcers and chronic wounds
WO2019005538A1 (en) 2017-06-26 2019-01-03 Kci Usa, Inc. Absorbent wound dressing that incorporates a novel wound fluid indicating system
DE102017006025A1 (en) 2017-06-27 2018-12-27 Carl Freudenberg Kg Hydrogel-forming multicomponent fiber
US11554051B2 (en) 2017-06-30 2023-01-17 T.J. Smith And Nephew, Limited Negative pressure wound therapy apparatus
EP3648810A1 (en) 2017-07-07 2020-05-13 Smith & Nephew plc Wound therapy system and dressing for delivering oxygen to a wound
GB201711179D0 (en) 2017-07-12 2017-08-23 Smith & Nephew Wound care materials, devices and uses
GB201711183D0 (en) 2017-07-12 2017-08-23 Smith & Nephew Antimicrobial or wound care materials, devices and uses
GB201711181D0 (en) 2017-07-12 2017-08-23 Smith & Nephew Polymer foam material, device and use
FR3068975B1 (en) 2017-07-12 2020-07-17 Urgo Recherche Innovation Et Developpement COMPOSITION FOR INTERFACE DRESSING
FR3068974B1 (en) 2017-07-12 2019-08-02 Urgo Recherche Innovation Et Developpement DRESSING FOR THE CONTROLLED AND PROLONGED DELIVERY OF ASSETS
EA201992777A1 (en) 2017-07-21 2020-06-23 Спид Кеа Минерал Гмбх A NEW WOUNDING FOR HEMOSTASIS
GB201804502D0 (en) 2018-03-21 2018-05-02 Smith & Nephew Biocompatible encapsulation and component stress relief for sensor enabled negative pressure wound therapy dressings
US20210228768A1 (en) 2017-07-26 2021-07-29 Youreh Co., Ltd. Wound dressing comprising hyaluronic acid-calcium and polylysine and manufacturing method therefor
GB201712165D0 (en) 2017-07-28 2017-09-13 Smith & Nephew Wound dressing and method of manufacture
US10780201B2 (en) 2017-07-29 2020-09-22 Edward D. Lin Control apparatus and related methods for wound therapy delivery
US10729826B2 (en) 2017-07-29 2020-08-04 Edward D. Lin Wound cover apparatus and related methods of use
WO2019027933A1 (en) 2017-07-31 2019-02-07 Kci Usa, Inc. Bioresorbable dressing with structural support
EP3661570B1 (en) 2017-08-02 2022-12-28 3M Innovative Properties Company Multi-layer compartment dressing
US20200246195A1 (en) 2017-08-02 2020-08-06 Kci Licensing, Inc. Systems and methods for wound debridement
DE102017117828A1 (en) 2017-08-07 2019-02-07 Ivf Hartmann Ag Bandage, in particular compression bandage
WO2019030136A1 (en) 2017-08-07 2019-02-14 Smith & Nephew Plc Wound closure device with protective layer and method of use
EP3666300B1 (en) 2017-08-09 2023-02-15 Toray Industries, Inc. Medical device and method for manufacturing same
WO2019030384A2 (en) 2017-08-10 2019-02-14 Smith & Nephew Plc Positioning of sensors for sensor enabled wound monitoring or therapy
US20200197580A1 (en) 2017-08-22 2020-06-25 Kci Licensing, Inc. In-line wound fluid sampling systems and methods for use with negative pressure wound therapy
GB201713511D0 (en) 2017-08-23 2017-10-04 Scapa Uk Ltd Wound dressing
EP3672541A4 (en) 2017-08-23 2021-06-09 Cor Medical Ventures LLC Post-operative surgical site wound treatment and method for device removal
EP3672655B1 (en) 2017-08-24 2022-01-19 KCI USA, Inc. Biomaterial and methods of making and using said biomaterial
US11246756B2 (en) 2017-08-24 2022-02-15 The United States Of America, As Represented By The Secretary Of Agriculture Healthcare textiles
GB2565823A (en) 2017-08-24 2019-02-27 Xiros Ltd Psyllium based moisture absorbent material
US11752041B2 (en) 2017-09-05 2023-09-12 Kci Licensing, Inc. Systems and methods for mitigating premature light deactivation of light deactivated adhesive drapes using a filtering layer
WO2019050855A1 (en) 2017-09-05 2019-03-14 Kci Licensing, Inc. Systems and methods for mitigating premature light deactivation of light deactivated adhesive drapes
EP3681376A1 (en) 2017-09-10 2020-07-22 Smith & Nephew PLC Systems and methods for inspection of encapsulation and components in sensor equipped wound dressings
EP3681550B1 (en) 2017-09-13 2023-11-08 Smith & Nephew PLC Negative pressure wound treatment apparatuses
GB201718070D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
US11547789B2 (en) 2017-09-14 2023-01-10 Kci Licensing, Inc. Oxygen therapy with fluid removal
WO2019060229A1 (en) 2017-09-15 2019-03-28 Bard Access Systems, Inc. Antimicrobial dressing with liner for a medical device
US20200282114A1 (en) 2017-09-18 2020-09-10 Kci Licensing, Inc. Wound dressings and systems with remote oxygen generation for topical wound therapy and related methods
US11547611B2 (en) 2017-09-22 2023-01-10 Kci Licensing, Inc. Wound dressings and systems with high-flow therapeutic gas sources for topical wound therapy and related methods
IL254644B (en) 2017-09-24 2021-06-30 Reddress Ltd Wound dressing device, assembly and method
IL254636A0 (en) 2017-09-24 2017-11-30 Reddress Ltd Assembly and method for the preparation of a wound dressing
GB2566951A (en) 2017-09-27 2019-04-03 Brightwake Ltd Compositions for wound treatment
WO2019067264A1 (en) 2017-09-29 2019-04-04 Kci Licensing, Inc. Dressing exhibiting low tissue ingrowth and negative-pressure treatment method
JP7304868B2 (en) 2017-10-09 2023-07-07 スリーエム イノベイティブ プロパティズ カンパニー Fixed dressings with compatible margins
GB201716986D0 (en) 2017-10-16 2017-11-29 Matoke Holdings Ltd Antimicrobial compositions
CN111491666B (en) 2017-10-20 2021-09-07 水凝胶欧洲事务所 Topical composition for treating burns
AU2018355151A1 (en) 2017-10-23 2020-05-07 Solventum Intellectual Properties Company Area management of tissue sites on articulating joints
WO2019083607A1 (en) 2017-10-23 2019-05-02 Kci Licensing, Inc. High-density evaporative bridge dressing
CA3082020A1 (en) 2017-10-23 2019-05-02 Kci Licensing, Inc. Low profile distribution components for wound therapy
US11432967B2 (en) 2017-10-23 2022-09-06 Kci Licensing, Inc. Fluid bridge for simultaneous application of negative pressure to multiple tissue sites
EP3700596A1 (en) 2017-10-23 2020-09-02 KCI Licensing, Inc. Wound dressing for use with anti-bacterial material
WO2019083827A1 (en) 2017-10-24 2019-05-02 Kci Licensing, Inc. Debridement wound dressings and systems using the same
EP4268775A3 (en) 2017-10-26 2023-12-27 3M Innovative Properties Company Manifolding apparatus
EP3700479B8 (en) 2017-10-26 2023-11-22 3M Innovative Properties Company Wound dressing with welded elastic structure
CN111278942A (en) 2017-10-26 2020-06-12 3M创新有限公司 Compositions and methods and articles comprising silicone-based binders and cellulose nanocrystals
KR102566942B1 (en) 2017-10-27 2023-08-14 주식회사 엘지화학 Preparation method of super absorbent polymer
EP3700480B1 (en) 2017-10-27 2024-05-01 Solventum Intellectual Properties Company Contoured foam dressing shaped for providing negative pressure to incisions in the breast
WO2019089118A1 (en) 2017-10-30 2019-05-09 Kci Licensing, Inc. Systems, apparatuses, and methods for negative-pressure treatment with pressure delivery indication
US10463760B2 (en) 2017-10-31 2019-11-05 InMEDBio, LLC Absorbent, breathable and pathogen blocking/killing wound care dressing and fabrication thereof
GB201718014D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Dressing for negative pressure wound therapy with filter
EP3703632B1 (en) 2017-11-01 2024-04-03 Smith & Nephew plc Negative pressure wound treatment apparatuses and methods with integrated electronics
GB201718054D0 (en) 2017-11-01 2017-12-13 Smith & Nephew Sterilization of integrated negative pressure wound treatment apparatuses and sterilization methods
US11850122B2 (en) 2017-11-02 2023-12-26 3M Innovative Properties Company Wound dressing with humidity colorimeter sensor
IL255404B (en) 2017-11-02 2018-10-31 Technion Res & Dev Foundation Hipe-templated zwitterionic hydrogels, process of preparation and uses thereof
US11771599B2 (en) 2017-11-03 2023-10-03 Kci Licensing, Inc. Extended wear-time dressing
US11877910B2 (en) 2017-11-03 2024-01-23 Systagenix Wound Management, Limited Nutrient-enriched dressing
GB2568101B (en) 2017-11-06 2022-09-07 Brightwake Ltd Antimicrobial dressing
US20200261276A1 (en) 2017-11-08 2020-08-20 University Of Massachusetts Post-Operative Hybrid Dressing To Optimize Skin-Grafting Procedures In Reconstructive Surgery
WO2019094147A1 (en) 2017-11-09 2019-05-16 Kci Licensing, Inc. Multi-module dressing and therapy methods
WO2019094923A1 (en) 2017-11-13 2019-05-16 Kci Licensing, Inc. Light-responsive pressure sensitive adhesives for wound dressings
CN107899061A (en) 2017-11-13 2018-04-13 广东泰宝医疗科技股份有限公司 A kind of alginates wound repair dressing and preparation method thereof
CN111343950A (en) 2017-11-15 2020-06-26 史密夫及内修公开有限公司 Integrated wound monitoring and/or therapy dressing and system implementing sensors
WO2019113091A1 (en) 2017-12-06 2019-06-13 Kci Licensing, Inc. Wound dressing with negative pressure retaining valve
EP3720518A4 (en) 2017-12-06 2021-09-15 Cornell University Manually-operated negative pressure wound therapy (npwt) bandage with improved pump efficiency, automatic pressure indicator and automatic pressure limiter
US11338055B2 (en) 2017-12-11 2022-05-24 Animal Ethics Pty Ltd Wound dressing
EP3498242A1 (en) 2017-12-15 2019-06-19 Mölnlycke Health Care AB Medical dressing
IL256405A (en) 2017-12-19 2018-01-31 Omrix Biopharmaceuticals Ltd Wound dressing and a method for producing the same
WO2019125962A1 (en) 2017-12-20 2019-06-27 Kci Licensing, Inc. Wound dressing for the harvesting of superficial epidermal grafts
US20200337904A1 (en) 2017-12-20 2020-10-29 Systagenix Wound Management, Limited Dressing including dehydrated placental tissue for wound healing
DE102017130893A1 (en) 2017-12-21 2019-06-27 Paul Hartmann Ag pH regulating wound dressing
US20200179673A1 (en) 2018-01-08 2020-06-11 Mianshui WAN Connecting device for wound protection dressing, and wound protection dressing
US11877912B2 (en) 2018-01-09 2024-01-23 3M Innovative Properties Company Systems and methods for coupling a wearable therapy system to a dressing
KR102565968B1 (en) 2018-03-26 2023-08-09 디로얄 인더스트리즈, 인코퍼레이티드 Multi Lumen Bridge for Negative Pressure Wound Care System
US20190298882A1 (en) 2018-03-27 2019-10-03 Kevin M. Nelson Hydrogel bandage
CN111936177A (en) 2018-03-29 2020-11-13 凯希特许有限公司 Wound therapy system with wound volume estimation
WO2019191590A1 (en) 2018-03-30 2019-10-03 Kci Licensing, Inc. An absorbent dressing incorporating ph wound condition indication
GB201805584D0 (en) 2018-04-05 2018-05-23 Smith & Nephew Negative pressure wound treatment apparatuses and methods with integrated electronics
GB2572642B (en) 2018-04-06 2021-03-31 Pellis Care Ltd Treatment of diabetic foot ulcers
US11040127B2 (en) 2018-04-09 2021-06-22 Kci Licensing, Inc. Abdominal dressing with mechanism for fascial closure
WO2019199389A1 (en) 2018-04-10 2019-10-17 Kci Licensing, Inc. Bridge dressing with fluid management
BR102018007306A2 (en) 2018-04-11 2019-10-29 Maria Cristina De Paula Mesquita specific shape adhesive tape / plate making process / silicone dressing
EP3773384A1 (en) 2018-04-12 2021-02-17 KCI Licensing, Inc. Cutting template for a negative pressure wound therapy drape
WO2019199687A1 (en) 2018-04-13 2019-10-17 Kci Licensing, Inc. Method to dynamically measure apposition and patient limb movement in a negative pressure closed incision dressing
WO2019200035A1 (en) 2018-04-13 2019-10-17 Kci Licensing, Inc. Npwt system with selectively controllable airflow
WO2019199798A1 (en) 2018-04-13 2019-10-17 Kci Licensing, Inc. Compression strain and negative pressure delivery indicator for a wound dressing
WO2019199849A1 (en) 2018-04-13 2019-10-17 Kci Licensing, Inc. Dressing bolster with area pressure indicator
WO2019212825A2 (en) 2018-05-03 2019-11-07 Kci Licensing, Inc. Negative pressure wound therapy system with detection of full absorbant dressing
CN112236110A (en) 2018-05-04 2021-01-15 干燥可视有限责任公司 Liquid detection article and method of making same
MA52575A (en) 2018-05-08 2021-03-17 Fidia Farm Spa DRESSING FOR THE TREATMENT OF DAMAGED SKIN
EP3569261B1 (en) 2018-05-14 2024-04-03 Paul Hartmann AG Functional wound dressing
US10898606B2 (en) 2018-05-15 2021-01-26 Legacy Research and Development Group, LLC Self-fusing low density silicone
EP3569210B1 (en) 2018-05-15 2022-04-27 The Procter & Gamble Company Disposable absorbent articles
AU2019270795B2 (en) 2018-05-16 2024-04-04 Keith R. Berend Negative pressure wound apposition dressing system
US20190351095A1 (en) 2018-05-21 2019-11-21 Milliken & Company Wound care device having fluid transfer and adhesive properties
US20190351094A1 (en) 2018-05-21 2019-11-21 Milliken & Company Wound care device having fluid transfer and adhesive properties
FR3082123B1 (en) 2018-06-07 2020-10-16 Urgo Rech Innovation Et Developpement CELLULARIZED DRESSING AND ITS MANUFACTURING PROCESS
NL2021186B1 (en) 2018-06-26 2020-01-06 Icap Holding B V Intelligent cap for skin tissue treatment
TWI693929B (en) 2018-06-27 2020-05-21 南六企業股份有限公司 Antibacterial wound dressing
WO2020005536A1 (en) 2018-06-27 2020-01-02 Kci Licensing, Inc. Wound dressing for wound volume estimation
US11701264B2 (en) 2018-06-27 2023-07-18 Kci Licensing, Inc. Wound therapy system with wound volume estimation using geometric approximation
WO2020005577A1 (en) 2018-06-28 2020-01-02 Kci Licensing, Inc. Distributed negative pressure wound therapy system incorporating an absorbent dressing and piezo-electric pump
WO2020005419A1 (en) 2018-06-28 2020-01-02 Kci Licensing, Inc. Long-duration, deep wound filler with means to prevent granulation in-growth
US20200000642A1 (en) 2018-06-28 2020-01-02 Systagenix Wound Management, Limited Multilayer absorbent dressing construction
US11896462B2 (en) 2018-06-28 2024-02-13 3M Innovative Properties Company Highly conformable wound dressing
EP3813750B1 (en) 2018-06-28 2022-03-02 KCI Licensing, Inc. Release liner with edge protection
US20200000640A1 (en) 2018-06-29 2020-01-02 Milliken & Company Multi-Layer Wound Care Device Having Absorption and Fluid Transfer Properties
WO2020007429A1 (en) 2018-07-04 2020-01-09 Coloplast A/S Foam wound dressing comprising an antiseptic
EP3820417A1 (en) 2018-07-12 2021-05-19 KCI Licensing, Inc. Abdominal dressing with user selection of fascial closure force profile
GB201811449D0 (en) 2018-07-12 2018-08-29 Smith & Nephew Apparatuses and methods for negative pressure wound therapy
WO2020014310A1 (en) 2018-07-13 2020-01-16 Kci Licensing, Inc. Advanced wound dressing with compression and increased total fluid handling
WO2020018300A1 (en) 2018-07-16 2020-01-23 Kci Licensing, Inc. Fluid instillation apparatus for use with negative-pressure system incorporating wireless therapy monitoring
WO2020018538A1 (en) 2018-07-18 2020-01-23 Kci Licensing, Inc. Wound view dressing and customization kit
WO2020026061A1 (en) 2018-07-30 2020-02-06 3M Innovative Properties Company Antimicrobial foam articles and method of making the same
US20200038252A1 (en) 2018-07-31 2020-02-06 Joseph Spiro Tri-layered wound dressing and method therefor
EP3829506B1 (en) 2018-07-31 2023-12-20 3M Innovative Properties Company Devices and methods for preventing localized pressure points in distribution components for tissue therapy
WO2020026144A1 (en) 2018-08-01 2020-02-06 Systagenix Wound Management, Limited Dressing packaging with controlled hydration of fluid-activated dressing
JP2021531899A (en) 2018-08-01 2021-11-25 ケーシーアイ ライセンシング インコーポレイテッド Soft tissue treatment using negative pressure
EP3829667A1 (en) 2018-08-03 2021-06-09 KCI Licensing, Inc. Wound therapy system with wound volume estimation
WO2020028514A1 (en) 2018-08-03 2020-02-06 Kci Licensing, Inc. Flexible and conformable wound dressing with enhanced fluid absorption capability
US20210161725A1 (en) 2018-08-10 2021-06-03 Kci Licensing, Inc. Wound dressing system for management of fluids in a wound and methods for manufacturing same
US20200046876A1 (en) 2018-08-13 2020-02-13 Chuang Sheng Medicine Equipment Co. Ltd. Hydrogel surgical dressing product having a multi-dimensional flexible hydrophilic structure-linkage composite
US20200046567A1 (en) 2018-08-13 2020-02-13 Kci Licensing, Inc. Disruptive dressing for use with negative pressure and fluid instillation
US11938236B2 (en) 2018-08-17 2024-03-26 Seoul Viosys Co., Ltd. Medical dressing
WO2020035811A1 (en) 2018-08-17 2020-02-20 3M Innovative Properties Company Wound dressing system
WO2020040917A1 (en) 2018-08-21 2020-02-27 Kci Licensing, Inc. Dressing and system with improved total fluid handling
EP4302790A3 (en) 2018-08-21 2024-03-27 Solventum Intellectual Properties Company System for utilizing pressure decay to determine available fluid capacity in a negative pressure dressing
WO2020040960A1 (en) 2018-08-24 2020-02-27 Kci Licensing, Inc. Methods of managing moisture when using a low profile wound connection conduit
CA3110340A1 (en) 2018-08-24 2020-02-27 The United States Government As Represented By The Department Of Veterans Affairs Devices, systems, and methods for remotely monitoring and treating wounds or wound infections
AU2019331721B2 (en) 2018-08-27 2022-04-21 Advamedica Inc. Composite dressings, manufacturing methods and applications thereof
WO2020043665A1 (en) 2018-08-27 2020-03-05 Claudia Eder Antiseptic gel
US11752039B2 (en) 2018-08-28 2023-09-12 Systagenix Wound Management, Limited Dressings for reduced tissue ingrowth
US11007083B2 (en) 2018-08-28 2021-05-18 Aatru Medical, LLC Dressing
WO2020046589A1 (en) 2018-08-30 2020-03-05 Kci Licensing, Inc. Electro-mechanical pump for negative-pressure treatment
WO2020047255A1 (en) 2018-08-31 2020-03-05 Kci Licensing, Inc. Cooling dressing for improved comfort
US20210244431A1 (en) 2018-09-04 2021-08-12 Lohmann & Rauscher Gmbh Wound cleansing device
JP2021534875A (en) 2018-09-04 2021-12-16 ケーシーアイ ライセンシング インコーポレイテッド Wound therapy equipment and kit
WO2020051273A1 (en) 2018-09-05 2020-03-12 Kci Licensing, Inc. Systems and methods for scheduling and controlling wound therapy
US11471335B2 (en) 2018-09-05 2022-10-18 University Of South Carolina Gel-within-gel wound dressing
WO2020055945A1 (en) 2018-09-12 2020-03-19 Kci Licensing, Inc. Negative pressure wound therapy systems and methods to indicate total fluid handling
EP3849626A1 (en) 2018-09-12 2021-07-21 KCI Licensing, Inc. Wound therapy system with instillation therapy and dynamic pressure control
WO2020056182A1 (en) 2018-09-12 2020-03-19 Kci Licensing, Inc. Systems, apparatuses, and methods for negative-pressure treatment with reduced tissue in-growth
WO2020056014A1 (en) 2018-09-14 2020-03-19 Kci Licensing, Inc. Differential collapse wound dressings
WO2020060918A1 (en) 2018-09-17 2020-03-26 Kci Licensing, Inc. Absorbent negative pressure dressing
EP3852827B8 (en) 2018-09-17 2024-04-10 Solventum Intellectual Properties Company Negative pressure wound therapy system
CN112739294A (en) 2018-09-19 2021-04-30 帝皇工业有限公司 Pipe fitting connecting system for negative pressure wound treatment
WO2020060674A1 (en) 2018-09-20 2020-03-26 Kci Licensing, Inc. Super-absorbent, low trauma, advanced wound dressing
US20220047771A1 (en) 2018-09-25 2022-02-17 Systagenix Wound Management, Limited Wound dressing compositions and uses thereof
WO2020124038A1 (en) 2018-12-13 2020-06-18 University Of Massachusetts Negative pressure wound closure devices and methods

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11491042B2 (en) 2017-11-09 2022-11-08 11 Health And Technologies Limited Ostomy monitoring system and method
US11135084B2 (en) 2017-11-09 2021-10-05 11 Health And Technologies Limited Ostomy monitoring system and method
US11406525B2 (en) 2017-11-09 2022-08-09 11 Health And Technologies Limited Ostomy monitoring system and method
US10874541B2 (en) 2017-11-09 2020-12-29 11 Health And Technologies Limited Ostomy monitoring system and method
US11793906B2 (en) 2018-04-26 2023-10-24 Boe Technology Group Co., Ltd. Base film for dressing and manufacturing method therefor, and dressing comprising the base film
US20210153803A1 (en) * 2018-06-15 2021-05-27 Coloplast A/S Wound dressing system, monitor device and related methods
USD935477S1 (en) 2018-11-08 2021-11-09 11 Health And Technologies Limited Display screen or portion thereof with graphical user interface
USD893514S1 (en) 2018-11-08 2020-08-18 11 Health And Technologies Limited Display screen or portion thereof with graphical user interface
US20200289098A1 (en) * 2019-03-15 2020-09-17 Orig3N, Inc. Dna collection device
WO2020245656A1 (en) * 2019-06-03 2020-12-10 Convatec Limited Methods and devices to disrupt and contain pathogens
CN113939321A (en) * 2019-06-03 2022-01-14 康沃特克有限公司 Methods and devices for destroying and controlling pathogens
EP4295869A3 (en) * 2019-06-03 2024-03-20 Convatec Limited Methods and devices to disrupt and contain pathogens
US20200355675A1 (en) * 2020-07-04 2020-11-12 Soheila Salahshoor Kordestani Infection detection device and method using same
US11519904B2 (en) * 2020-07-04 2022-12-06 Soheila Salahshoor Kordestani Infection detection device and method using same
US20220031247A1 (en) * 2020-07-28 2022-02-03 Chang Gung University Apparatus of examining surface of an organism and method thereof
US11903735B2 (en) * 2020-07-28 2024-02-20 Chang Gung University Apparatus of examining surface of an organism and method thereof
US11320429B1 (en) * 2021-03-05 2022-05-03 Global Diagnostic Systems, Benefit LLC Diagnostic devices with fluid reservoirs and associated methods and kits

Also Published As

Publication number Publication date
SG11201808488XA (en) 2018-10-30
PL3435941T3 (en) 2022-05-09
BR112018070248A2 (en) 2019-01-29
AR108056A1 (en) 2018-07-11
CA3019558A1 (en) 2017-10-05
EP3435941A4 (en) 2019-09-18
CN109310528B (en) 2021-07-20
WO2017173069A1 (en) 2017-10-05
MX2018011801A (en) 2019-12-16
TW201800069A (en) 2018-01-01
IL262004A (en) 2018-10-31
CL2018002778A1 (en) 2019-05-03
JP7183146B2 (en) 2022-12-05
ES2904480T3 (en) 2022-04-05
US11723808B2 (en) 2023-08-15
CN109310528A (en) 2019-02-05
KR20190013725A (en) 2019-02-11
CO2018011705A2 (en) 2019-02-08
AU2017239643A1 (en) 2018-11-15
ECSP18081916A (en) 2019-02-28
AU2017239643B2 (en) 2021-08-12
UY37178A (en) 2017-10-31
EP3435941A1 (en) 2019-02-06
BR112018070248B1 (en) 2023-03-28
EP3936095A1 (en) 2022-01-12
US20210361490A1 (en) 2021-11-25
EP3435941B1 (en) 2021-09-01
JP2019516525A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
US11723808B2 (en) Detecting microbial infections in wounds
CA2719322C (en) Cotton thread as a low-cost multi-assay diagnostic platform
US7601546B2 (en) Diagnostic test devices
JP2010500555A (en) Test specimen for lateral flow analysis
WO2018196802A1 (en) Detection device and sample detection method capable of visually reading test results
US20190145864A1 (en) Immunochromatographic test piece and specimen adding device for extracting and measuring sugar chain antigen, and immunochromatography method using same
CN104937106A (en) Systems and methods for monitoring biological fluids
EP1419268B1 (en) Secretion-monitoring article
CN108802027B (en) Detection device
US20210190767A1 (en) Point of care devices and methods for detecting infection status of a wound
JP2008164520A (en) Detection device utilizing antigen-antibody reaction
JPS62103542A (en) Integral multilayer analysis element
US20180321202A1 (en) Methods and devices for detecting methanol poisoning using formate oxidase
WO2021130473A1 (en) Point of care devices for detecting infection status of a wound
JP3240552U (en) Fecal sample collection test device
GB2411231A (en) Diagnostic swab or biopsy punch
GB2487729A (en) Measurement of matrix metalloproteinase (MMP) and elastase in wound fluid
GB2411230A (en) Diagnostic test caps
US20130344583A1 (en) Biosensor comprising an oxidase enzyme and a hydrogen peroxide indicator means

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE

AS Assignment

Owner name: QUALIZYME DIAGNOSTICS GMBH AND COKG, AUSTRIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURNET, MICHAEL;BOWLER, PHILIP;WROE, SARAH;AND OTHERS;SIGNING DATES FROM 20160427 TO 20170302;REEL/FRAME:062889/0945

Owner name: SYNOVO GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURNET, MICHAEL;BOWLER, PHILIP;WROE, SARAH;AND OTHERS;SIGNING DATES FROM 20160427 TO 20170302;REEL/FRAME:062889/0945

Owner name: CONVATEC TECHNOLOGIES INC., NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURNET, MICHAEL;BOWLER, PHILIP;WROE, SARAH;AND OTHERS;SIGNING DATES FROM 20160427 TO 20170302;REEL/FRAME:062889/0945