US20190113659A1 - Polarizing plate - Google Patents

Polarizing plate Download PDF

Info

Publication number
US20190113659A1
US20190113659A1 US16/216,274 US201816216274A US2019113659A1 US 20190113659 A1 US20190113659 A1 US 20190113659A1 US 201816216274 A US201816216274 A US 201816216274A US 2019113659 A1 US2019113659 A1 US 2019113659A1
Authority
US
United States
Prior art keywords
polarizing plate
polarizer
dimensional change
change ratio
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/216,274
Inventor
Katsunori Takada
Naotaka Higuchi
Kota Nakai
Shinobu Nagano
Eiko SUEFUSA
Yoshitsugu Kitamura
Keisuke Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to US16/216,274 priority Critical patent/US20190113659A1/en
Assigned to NITTO DENKO CORPORATION reassignment NITTO DENKO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIGUCHI, NAOTAKA, NAGANO, SHINOBU, NAKAI, Kota, KITAMURA, YOSHITSUGU, KIMURA, KEISUKE, SUEFUSA, EIKO, TAKADA, KATSUNORI
Publication of US20190113659A1 publication Critical patent/US20190113659A1/en
Priority to US16/676,660 priority patent/US10914868B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J131/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid, or of a haloformic acid; Adhesives based on derivatives of such polymers
    • C09J131/02Homopolymers or copolymers of esters of monocarboxylic acids
    • C09J131/04Homopolymers or copolymers of vinyl acetate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • B32B2038/0028Stretching, elongating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • B32B2038/042Punching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • B32B2038/047Perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2329/00Polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals
    • B32B2329/04Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0004Cutting, tearing or severing, e.g. bursting; Cutter details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/91Product with molecular orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • Y10T428/24322Composite web or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24777Edge feature

Definitions

  • the present invention relates to a polarizing plate.
  • a polarizing plate has been used in an image display apparatus (e.g., a liquid crystal display apparatus) of a cellular phone, a notebook personal computer, or the like.
  • an image display apparatus e.g., a liquid crystal display apparatus
  • the use of the polarizing plate in, for example, a meter display portion of an automobile or a smart watch has been desired, and hence the formation of the polarizing plate into a shape except a rectangular shape and the formation of a through-hole in the polarizing plate have been desired.
  • a problem in terms of durability is liable to occur.
  • a method involving thermally treating a polarizer at a temperature of 95° C. or more, and laminating a protective film on the thermally treated polarizer to provide a polarizing plate see Japanese Patent Application Laid-open No. Hei 7-333425).
  • a further improvement in durability has been required.
  • the present invention has been made to solve the problem, and a primary object of the present invention is to provide a polarizing plate excellent in durability.
  • the inventors have paid attention to the fact that when a polarizing plate is bonded to any other member (e.g., a glass plate) through intermediation of a pressure-sensitive adhesive layer, the polarizing plate side of the pressure-sensitive adhesive layer is deformed (shrunk) by a change in external environment, and a stress produced by the deformation is related to the durability of the polarizing plate (the occurrence of a crack), and have found that when the dimensional change ratio of the polarizing plate is controlled, the occurrence of a stress between the respective members is suppressed and hence the object can be achieved.
  • the inventors have completed the present invention.
  • a polarizing plate includes: a polarizer; and a protective film arranged on at least one side of the polarizer.
  • the polarizing plate has a dimensional change ratio of ⁇ 0.2% or more in a transmission axis direction thereof when the polarizing plate cut into a size measuring 100 mm by 100 mm is bonded to a glass plate with a pressure-sensitive adhesive and the following operation is repeated 100 times: the polarizing plate bonded to the glass plate is left to stand under an atmosphere at ⁇ 40° C. for 30 minutes and then left to stand under an atmosphere at 85° C. for 30 minutes.
  • the polarizer has a thickness of 20 ⁇ m or less.
  • the polarizing plate is subjected to a heat treatment under conditions of a temperature in a range of from 50° C. to 120° C. and a time period of 1 hour or more and 100 hours or less.
  • the polarizing plate has formed therein a through-hole.
  • the polarizing plate includes a site having an outer edge forming a substantially V-shape that is convex inward in a surface direction.
  • the polarizing plate has the dimensional change ratio of 0.1% or less.
  • the polarizing plate excellent in durability can be provided.
  • FIG. 1 is a plan view of a polarizing plate according to one embodiment of the present invention.
  • FIG. 2 is a partially enlarged sectional view of the polarizing plate illustrated in FIG. 1 .
  • FIG. 3 is a plan view of a polarizing plate according to another embodiment of the present invention.
  • FIG. 4A is a photograph for showing the periphery of a through-hole of the polarizing plate of Example 1 after a heat cycle test
  • FIG. 4B is a photograph for showing the periphery of a through-hole of the polarizing plate of Example 2 after a heat cycle test
  • FIG. 4C is a photograph for showing the periphery of a through-hole of the polarizing plate of Example 3 after a heat cycle test
  • FIG. 4D is a photograph for showing the periphery of a through-hole of the polarizing plate of Comparative Example 1 after a heat cycle test.
  • FIG. 5A is a photograph for showing the state of the periphery of an end side of the polarizing plate along the transmission axis direction of the test sample of Example 1 after the heat cycle test
  • FIG. 5B is a photograph for showing the state of the periphery of an end side of the polarizing plate along the absorption axis direction thereof.
  • FIG. 6A is a photograph for showing the state of the periphery of an end side of the polarizing plate along the transmission axis direction of the test sample of Comparative Example 1 after the heat cycle test
  • FIG. 6B is a photograph for showing the state of the periphery of an end side of the polarizing plate along the absorption axis direction thereof.
  • FIG. 1 is a plan view of a polarizing plate according to one embodiment of the present invention
  • FIG. 2 is a partially enlarged sectional view of the polarizing plate illustrated in FIG. 1
  • a polarizing plate 100 is suitably used in the meter panel of an automobile.
  • the polarizing plate 100 includes a first display portion 50 and a second display portion 60 that are continuously arranged, and through-holes 51 and 61 for fixing various meter needles are formed around the centers of the respective display portions.
  • each of the through-holes is, for example, from 0.5 mm to 100 mm.
  • the outer edge of each of the display portions 50 and 60 is formed into an arc shape along the rotational direction of a meter needle.
  • the polarizing plate 100 includes a polarizer 10 , a first protective film 21 arranged on one side of the polarizer 10 , and a second protective film 22 arranged on the other side of the polarizer 10 .
  • the protective films 21 and 22 are each typically bonded to the surface of the polarizer 10 through intermediation of an adhesive layer, though the layer is not shown.
  • the protective films are arranged on both sides of the polarizer in this illustrated example, a protective film may be arranged only on one side thereof.
  • the polarizing plate of the present invention has a dimensional change ratio in its transmission axis direction of ⁇ 0.2% or more, preferably ⁇ 0.1% or more, more preferably ⁇ 0.05% or more when the polarizing plate is cut into a size measuring 100 mm by 100 mm and the cut polarizing plate is bonded to a glass plate with a pressure-sensitive adhesive, and in the state, the following operation is repeated 100 times (change ratio of a dimension after a heat cycle test to that before the test): the polarizing plate is left to stand under an atmosphere at ⁇ 40° C. for 30 minutes and then left to stand under an atmosphere at 8.5° C. for 30 minutes. Meanwhile, the dimensional change ratio in the transmission axis direction is, for example, 0.1% or less.
  • a polarizing plate satisfying such dimensional change ratio can have excellent durability.
  • the polarizing plate satisfying such dimensional change ratio shows an extremely small change in shape due to a change in external environment, and hence when the polarizing plate is bonded to any other member (e.g., the glass substrate of a liquid crystal cell or the like) through intermediation of a pressure-sensitive adhesive layer, an influence on the adjacent pressure-sensitive adhesive layer is extremely small. Accordingly, a change in shape of the pressure-sensitive adhesive layer due to the change in external environment is suppressed, and hence the occurrence of a stress between the respective members (e.g., a stress produced when the modulus of elasticity of the pressure-sensitive adhesive layer increases at low temperature) can be prevented. As a result, a crack does not occur in the polarizing plate and hence the polarizing plate can have extremely excellent durability.
  • the dimensional change ratio in the absorption axis direction of the polarizing plate after the heat cycle test to that before the test is, for example, from ⁇ 0.6% to 0%.
  • the dimensional change ratio may be determined from the following equation.
  • the position of the through-hole may be appropriately set in accordance with, for example, the applications of the polarizing plate.
  • the crack is liable to occur by using the peripheral edge of the through-hole as a starting point, and the tendency may be more remarkable as the position of the through-hole becomes more distant from the outer edge of the polarizing plate.
  • the position of the through-hole becomes more distant from the outer edge of the polarizing plate (e.g., its distance from the outer edge of the polarizing plate is 15 mm or more)
  • a durability-improving effect exhibited by the fact that the dimensional change ratio is controlled can be more significantly obtained.
  • a site whose outer edge forms a V-shape (including an R-shape) that is convex inward in a surface direction, such as a boundary portion 41 or 42 between the respective display portions, is also liable to be the starting point of the crack.
  • the polarizing plate of the present invention is not limited to the construction of the illustrated example and may be appropriately changed.
  • the shape of the polarizing plate, the presence or absence of the through-holes, the shapes and sizes of the through-holes, and the number and formation positions of the through-holes may be appropriately changed.
  • V-shaped portions 43 and 44 that are convex inward in the surface direction are formed so as to be adjacent to each other, and a notch 45 is formed as illustrated in FIG. 3 .
  • the polarizer typically includes a resin film containing a dichromatic substance.
  • the dichromatic substance include iodine and an organic dye.
  • the substances may be used alone or in combination. Of those, iodine is preferably used.
  • a hydrophilic resin e.g., a polyvinyl alcohol (PVA)-based resin
  • PVA-based resin examples include polyvinyl alcohol and an ethylene-vinyl alcohol copolymer.
  • the polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • the ethylene-vinyl alcohol copolymer is obtained by saponifying an ethylene-vinyl acetate copolymer.
  • the saponification degree of the PVA-based resin is typically from 85 mol % to 100 mol %, preferably 95.0 mol % or more, more preferably 99.0 mol % or more, particularly preferably 99.93 mol % or more.
  • the saponification degree may be determined in conformity with JIS K 6726-1994.
  • the use of the PVA-based resin having such saponification degree can provide a polarizer excellent in durability.
  • the average polymerization degree of the PVA-based resin may be appropriately selected depending on purposes.
  • the average polymerization degree is typically from 1,000 to 10,000, preferably from 1,200 to 6,000, more preferably from 2,000 to 5,000.
  • the average polymerization degree may be determined in conformity with JIS K 6726-1994.
  • the polarizer preferably shows absorption dichroism in the wavelength range of from 380 nm to 780 nm.
  • the single axis transmittance (Ts) of the polarizer is preferably 40% or more, more preferably 41% or more, still more preferably 42% or more, particularly preferably 43% or more.
  • a theoretical upper limit for the single axis transmittance is 50%, and a practical upper limit therefor is 46%.
  • the single axis transmittance (Ts) is a Y value measured with the two-degree field of view (C light source) of JIS Z 8701 and subjected to visibility correction, and may be measured with, for example, a spectrophotometer (manufactured by JASCO Corporation, V7100).
  • the polarization degree of the polarizer is preferably 99.8% or more, more preferably 99.9% or more, still more preferably 99.95% or more.
  • the thickness of the polarizer may be set to any appropriate value.
  • the thickness is typically from 1 ⁇ m to 80 ⁇ m, preferably from 3 ⁇ m to 40 ⁇ m. In one embodiment, the thickness of the polarizer is 20 ⁇ m or less, preferably 18 ⁇ m or less, more preferably 15 ⁇ m or less. The use of the polarizer having such thickness can satisfactorily achieve the dimensional change ratio without performing a heat treatment to be described later.
  • the polarizer may be typically obtained by subjecting the resin film to treatments, such as a swelling treatment, a stretching treatment, a dyeing treatment with the dichromatic substance, a cross-linking treatment, a washing treatment, and a drying treatment.
  • treatments such as a swelling treatment, a stretching treatment, a dyeing treatment with the dichromatic substance, a cross-linking treatment, a washing treatment, and a drying treatment.
  • the number of times of each of the treatments, the order in which the treatments are performed, the timings of the treatments, and the like may be appropriately set.
  • the film When the resin film is subjected to each of the treatments, the film may be a resin layer formed on a substrate.
  • the cross-linking treatment is performed by, for example, bringing a boric acid solution (e.g., an aqueous solution of boric acid) into contact with the resin film.
  • a boric acid solution e.g., an aqueous solution of boric acid
  • the stretching is preferably performed while a boric acid solution is brought into contact with the resin film.
  • the resin film is uniaxially stretched at from 3 times to 7 times from the viewpoint that excellent polarization characteristics are obtained.
  • a stretching direction in the stretching treatment may correspond to the absorption axis direction of the polarizer to be obtained.
  • the transmission axis direction thereof may be perpendicular to the absorption axis direction.
  • the film is stretched in the conveying direction (MD).
  • the absorption axis direction of the polarizer to be obtained may be the lengthwise direction (MD)
  • the transmission axis direction thereof may be a widthwise direction (TD).
  • a cellulose-based resin such as diacetyl cellulose or triacetyl cellulose (TAC)
  • TAC triacetyl cellulose
  • a (meth)acrylic resin a cycloolefin-based resin, an olefin-based resin, such as polypropylene
  • an ester-based resin such as a polyethylene terephthalate-based resin, a polyamide-based resin, a polycarbonate-based resin, and copolymer resins thereof.
  • (meth)acrylic resin refers to an acrylic resin and/or a methacrylic resin.
  • the thickness of the protective film is preferably from 10 ⁇ m to 200 ⁇ m.
  • a surface-treated layer may be formed on one side of the protective film (side on which the polarizer is not arranged). Specifically, the side may be subjected to a hard coat treatment, an antireflection treatment, or a treatment intended for diffusion or anti-glaring.
  • the protective film may function as a retardation film.
  • the constructions (including a formation material and a thickness) of both the films may be identical to each other, or may be different from each other.
  • the protective film is typically bonded to the surface of the polarizer through intermediation of the adhesive layer.
  • Any appropriate adhesive may be adopted as an adhesive to be used in the bonding of the protective film.
  • an aqueous adhesive, a solvent-based adhesive, or an active energy ray-curable adhesive is used.
  • An adhesive containing a PVA-based resin is preferably used as the aqueous adhesive.
  • the polarizing plate of the present invention is produced by any appropriate method as long as the dimensional change ratio can be achieved.
  • the polarizing plate of the present invention is produced by a method involving: preparing a polarizing film laminate including a polarizer and a protective film arranged on at least one side of the polarizer; and shrinking the polarizing film laminate as required.
  • the polarizing film laminate is typically produced by bonding the protective film to one side, or each of both sides, of the polarizer.
  • the polarizing film laminate is shrunk as required.
  • the shrinkage of the polarizing film laminate can provide a polarizing plate that can satisfactorily achieve the dimensional change ratio irrespective of, for example, the thickness of the polarizer.
  • a method for the shrinkage is typically, for example, a method involving heating the polarizing film laminate.
  • a heating temperature is, for example, from 50° C. to 120° C., preferably from 70° C. to 90° C. When the temperature falls within such range, the polarizing film laminate can be efficiently shrunk while its optical characteristics (e.g., a hue, a transmittance, and a polarization degree) are secured.
  • a heating time is, for example, from 1 hour to 100 hours, preferably 2 hours or more, more preferably 10 hours or more.
  • the heating may be performed in one stage, or may be performed in a plurality of stages.
  • the heating temperature may be kept substantially constant, or may be changed continuously or in a stepwise manner.
  • a shrinkage ratio is preferably 0.2% or more, more preferably 0.3% or more in, for example, the transmission axis direction of the polarizer in the polarizing film laminate. Meanwhile, the shrinkage ratio in the transmission axis direction is, for example, 0.6% or less. With such shrinkage ratio, it can be judged that the polarizing film laminate is shrunk to a sufficient level.
  • the polarizing film laminate may shrink in its absorption axis direction to a larger extent than in the transmission axis direction, and hence at the initial stage of the shrinkage, a dimension in the transmission axis direction of the polarizing film laminate apparently increases for the time being in some cases. In any such case, as the shrinkage progresses, the dimension in the transmission axis direction may reduce from a dimension at the time of the initiation of the shrinkage (at the time of the initiation of the heating).
  • a shrinkage ratio in the absorption axis direction of the polarizing film laminate is preferably 0.3% or more, more preferably 0.4% or more. Meanwhile, the shrinkage ratio in the absorption axis direction is, for example, 1.0% or less.
  • the shrinkage ratio may be determined from the following equation.
  • the polarizing plate of the present invention can be formed into a desired shape because the polarizing plate has excellent durability.
  • a method of forming the polarizing plate into the desired shape is typically, for example, a method involving cutting (punching) the polarizing film laminate.
  • the cutting may be performed before the shrinkage, or may be performed after the shrinkage.
  • the cutting is preferably performed after the shrinkage from the viewpoint that the forming into the desired shape is performed more accurately.
  • any appropriate method may be adopted as a cutting (punching) method.
  • a method involving irradiating the laminate with laser light or a method involving using a cutting blade (punching die), such as a Thomson blade or a pinnacle blade, is given.
  • the laser light irradiation provides a smooth cut surface and can suppress the occurrence of the starting point of a crack (initial crack), and hence can contribute to a further improvement in durability. Even when the cutting blade is used (even when the initial crack occurs), the dimensional change ratio is controlled and hence excellent durability can be obtained.
  • any appropriate laser may be adopted as the laser as long as the polarizing film laminate (polarizing plate) can be cut.
  • a laser that can emit light having a wavelength in the range of from 150 nm to 11 ⁇ m is preferably used.
  • Specific examples thereof include a gas laser, such as a CO 2 laser, a solid laser, such as an YAG laser, and a semiconductor laser. Of those, a CO 2 laser is preferably used.
  • a condition for the laser light irradiation may be set to any appropriate condition depending on, for example, the laser to be used.
  • an output condition is preferably from 10 W to 1,000 W, more preferably from 100 W to 400 W.
  • the polarizing plate of the present invention is bonded to any other member (e.g., the glass substrate of a liquid crystal cell or the like) through intermediation of, for example, a pressure-sensitive adhesive layer.
  • the thickness of the pressure-sensitive adhesive layer is preferably from 4 ⁇ m to 50 ⁇ m.
  • An acrylic pressure-sensitive adhesive is preferably used as a pressure-sensitive adhesive forming the pressure-sensitive adhesive layer.
  • the polarizing plate of the present invention may adopt the form of a polarizing plate with a pressure-sensitive adhesive layer having the pressure-sensitive adhesive layer arranged on at least one side thereof in advance.
  • a film (thickness: 28 ⁇ m) obtained by incorporating iodine into an elongated PVA-based resin film and uniaxially stretching the film in its lengthwise direction (MD) was used as a polarizer.
  • a PVA-based adhesive was applied to one side of the polarizer so that its thickness after drying became 100 nm, and an elongated TAC film having a thickness of 40 ⁇ m was bonded to the polarizer so that their lengthwise directions were aligned with each other.
  • a PVA-based adhesive was applied to the other side of the polarizer so that its thickness after drying became 100 nm, and an elongated acrylic film having a thickness of 30 ⁇ m was bonded to the polarizer so that their lengthwise directions were aligned with each other.
  • the resultant polarizing film laminate sheet was cut with a CO 2 laser (wavelength: 9.35 ⁇ m, output: 150 W) to provide a cut piece of a size measuring 112 mm by 112 mm, the cut piece having a through-hole having a diameter of 2 mm formed in a site distant from its outer edge by 55 mm.
  • the resultant cut piece was placed under an atmosphere at 85° C. for 50 hours to provide a polarizing plate.
  • the polarizing plate had a shrinkage ratio in its absorption axis direction of 0.74% and a shrinkage ratio in its transmission axis direction of 0.44%, the shrinkage ratios each serving as a ratio of a dimension after the heating to that before the heating.
  • the shrinkage ratios each serving as a ratio of a dimension after the heating to that before the heating were each determined by: separately preparing a cut piece cut out of the polarizing film laminate sheet into a size measuring 100 mm by 100 mm (no through-hole was formed in the cut piece); and measuring the position of a corner of the cut piece.
  • the cut piece was cut out of the sheet so that a pair of sides opposite to each other corresponded to the transmission axis direction of the polarizer and another pair of sides opposite to each other corresponded to the absorption axis direction of the polarizer.
  • a polarizing plate was obtained in the same manner as in Example 1 except that the resultant cut piece was placed under an atmosphere at 85° C. for 5 hours.
  • the polarizing plate had a shrinkage ratio in its absorption axis direction of 0.45% and a shrinkage ratio in its transmission axis direction of 0.37%, the shrinkage ratios each serving as a ratio of a dimension after the heating to that before the heating, and each being measured by the same method as that of Example 1.
  • a polarizing plate was obtained in the same manner as in Example 1 except that the resultant cut piece was placed under an atmosphere at 85° C. for 2.5 hours.
  • the polarizing plate had a shrinkage ratio in its absorption axis direction of 0.34% and a shrinkage ratio in its transmission axis direction of 0.25%, the shrinkage ratios each serving as a ratio of a dimension after the heating to that before the heating, and each being measured by the same method as that of Example 1.
  • a polarizing plate was obtained in the same manner as in Example 1 except that: the size of the cut piece was set to 52 mm by 52 mm; and the through-hole was formed in a site distant from the outer edge of the cut piece by 25 mm.
  • a polarizing plate was obtained in the same manner as in Example 1 except that at the time of the production of the polarizing film laminate sheet, a polarizer having a thickness of 12 ⁇ m was used and the cut piece was not heated.
  • a polarizing plate was obtained in the same manner as in Example 1 except that at the time of the production of the polarizing film laminate sheet, a polarizer having a thickness of 18 ⁇ m was used, a TAC film having a thickness of 60 ⁇ m was used instead of the acrylic film having a thickness of 30 ⁇ m, and the cut piece was not heated.
  • a polarizing plate was obtained in the same manner as in
  • Example 1 except that the cut piece was not heated.
  • a polarizing plate was obtained in the same manner as in Example 4 except that the cut piece was not heated.
  • each of the resultant polarizing plates was bonded to a glass plate with an acrylic pressure-sensitive adhesive (thickness: 20 ⁇ m) having a difference between a storage modulus of elasticity in a high-temperature region (85° C.) and a storage modulus of elasticity in a low-temperature region ( ⁇ 40° C.) of less than 1 ⁇ 10 9 Pa, having a storage modulus of elasticity at 25° C. of 1 ⁇ 10 5 Pa or more, and having a storage modulus of elasticity at 85° C. of less than 1 ⁇ 10 6 Pa.
  • an acrylic pressure-sensitive adhesive thickness: 20 ⁇ m
  • the storage moduli of elasticity are each determined by performing measurement with a dynamic viscoelasticity-measuring apparatus (manufactured by Rheometric Scientific, “Advanced Rheometric Expansion System (ARES)”) under the condition of a frequency of 1 Hz in the range of from ⁇ 70° C. to 200° C. at a rate of temperature increase of 5° C./min to calculate a shear storage modulus.
  • a dynamic viscoelasticity-measuring apparatus manufactured by Rheometric Scientific, “Advanced Rheometric Expansion System (ARES)”
  • the resultant test sample was left to stand under an atmosphere at ⁇ 40° C. for 30 minutes and then left to stand under an atmosphere at 85° C. for 30 minutes.
  • the foregoing operation was defined as one cycle and the cycle was repeated 100 times. After the heat cycle test, whether or not a crack occurred in the polarizing plate was observed.
  • the change ratio of a dimension in the transmission axis direction of the polarizing plate after the heat cycle test to that before the test was measured.
  • the dimensional change ratio was determined by: separately preparing a cut piece cut out of the polarizing film laminate sheet (in each of Examples 1 to 4, out of the polarizing film laminate sheet heated in advance) into a size measuring 100 mm by 100 mm (no through-hole was formed in the cut piece); subjecting the cut piece to the heat cycle test; and measuring the position of a corner of the cut piece.
  • the cut piece was cut out of the sheet so that a pair of sides opposite to each other corresponded to the transmission axis direction of the polarizer and another pair of sides opposite to each other corresponded to the absorption axis direction of the polarizer.
  • FIG. 4A to FIG. 4D are photographs obtained by observing the peripheries of the through-holes of the polarizing plates of Examples 1 to 3 and Comparative Example 1 after the HS tests with an optical microscope (manufactured by Olympus Corporation, MX61, magnification: 5).
  • Comparative Example 1 a crack that can be visually recognized with the eyes in a clear manner is observed.
  • Example 1 the occurrence of a crack (including a microcrack) is not observed.
  • a microcrack that cannot be visually recognized with the eyes in a clear manner is observed, but the occurrence of a crack is suppressed as compared to Comparative Example 1.
  • the cracks each occur along a stretching direction.
  • Example 4 as in Example 1, the occurrence of a crack (including a microcrack) is not observed.
  • the crack extends from the through-hole serving as a starting point to an end side of the polarizing plate.
  • a crack length is 12 mm.
  • Example 1 In each of Examples 5 and 6, as in Example 1, the occurrence of a crack (including a microcrack) is not observed.
  • FIG. 5A and FIG. 5B are each a photograph for showing the state of an end portion of the polarizing plate of the test sample of Example 1 after the HS test
  • FIG. 6A and FIG. 6B are each a photograph for showing the state of an end portion of the polarizing plate of the test sample of Comparative Example 1 after the HS test.
  • Comparative Example 1 a region in which the pressure-sensitive adhesive layer used at the time of the bonding of the polarizing plate to the glass plate is exposed is formed.
  • the polarizing plate of the present invention can be suitably used not only in an image display apparatus (a liquid crystal display apparatus or an organic EL device) of a rectangular shape but also in, for example, an image display portion of a particular shape typified by the meter display portion of an automobile or a smart watch.
  • an image display apparatus a liquid crystal display apparatus or an organic EL device
  • an image display portion of a particular shape typified by the meter display portion of an automobile or a smart watch.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

A primary object of the present invention is to provide a polarizing plate excellent in durability. A polarizing plate (100) according to an embodiment of the present invention includes: a polarizer (10); and a protective film (21 and 22) arranged on at least one side of the polarizer (10). The polarizing plate (100) has a dimensional change ratio of −0.2% or more in a transmission axis direction thereof when the polarizing plate (100) cut into a size measuring 100 mm by 100 mm is bonded to a glass plate with a pressure-sensitive adhesive and the following operation is repeated 100 times: the polarizing plate (100) bonded to the glass plate is left to stand under an atmosphere at −40° C. for 30 minutes and then left to stand under an atmosphere at 85° C. for 30 minutes.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a Divisional of U.S. application Ser. No. 15/290,775 filed on Oct. 11, 2016, which claims priority over Japanese application No. 2015-216399 filed on Nov. 4, 2015, the entire contents of which is incorporated herein by reference.
  • BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates to a polarizing plate.
  • 2. Description of the Related Art
  • A polarizing plate has been used in an image display apparatus (e.g., a liquid crystal display apparatus) of a cellular phone, a notebook personal computer, or the like. In recent years, the use of the polarizing plate in, for example, a meter display portion of an automobile or a smart watch has been desired, and hence the formation of the polarizing plate into a shape except a rectangular shape and the formation of a through-hole in the polarizing plate have been desired. However, when any such form is adopted, a problem in terms of durability is liable to occur. With a view to improving the durability, for example, there has been proposed a method involving thermally treating a polarizer at a temperature of 95° C. or more, and laminating a protective film on the thermally treated polarizer to provide a polarizing plate (see Japanese Patent Application Laid-open No. Hei 7-333425). However, a further improvement in durability has been required.
  • SUMMARY OF THE INVENTION
  • The present invention has been made to solve the problem, and a primary object of the present invention is to provide a polarizing plate excellent in durability.
  • As a result of their extensive investigations, the inventors have paid attention to the fact that when a polarizing plate is bonded to any other member (e.g., a glass plate) through intermediation of a pressure-sensitive adhesive layer, the polarizing plate side of the pressure-sensitive adhesive layer is deformed (shrunk) by a change in external environment, and a stress produced by the deformation is related to the durability of the polarizing plate (the occurrence of a crack), and have found that when the dimensional change ratio of the polarizing plate is controlled, the occurrence of a stress between the respective members is suppressed and hence the object can be achieved. Thus, the inventors have completed the present invention.
  • A polarizing plate according to an embodiment of the present invention includes: a polarizer; and a protective film arranged on at least one side of the polarizer. The polarizing plate has a dimensional change ratio of −0.2% or more in a transmission axis direction thereof when the polarizing plate cut into a size measuring 100 mm by 100 mm is bonded to a glass plate with a pressure-sensitive adhesive and the following operation is repeated 100 times: the polarizing plate bonded to the glass plate is left to stand under an atmosphere at −40° C. for 30 minutes and then left to stand under an atmosphere at 85° C. for 30 minutes. In one embodiment of the present invention, the polarizer has a thickness of 20 μm or less. In one embodiment of the present invention, the polarizing plate is subjected to a heat treatment under conditions of a temperature in a range of from 50° C. to 120° C. and a time period of 1 hour or more and 100 hours or less. In one embodiment of the present invention, the polarizing plate has formed therein a through-hole. In one embodiment of the present invention, the polarizing plate includes a site having an outer edge forming a substantially V-shape that is convex inward in a surface direction. In one embodiment of the present invention, the polarizing plate has the dimensional change ratio of 0.1% or less.
  • According to the present invention, the polarizing plate excellent in durability can be provided.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of a polarizing plate according to one embodiment of the present invention.
  • FIG. 2 is a partially enlarged sectional view of the polarizing plate illustrated in FIG. 1.
  • FIG. 3 is a plan view of a polarizing plate according to another embodiment of the present invention.
  • FIG. 4A is a photograph for showing the periphery of a through-hole of the polarizing plate of Example 1 after a heat cycle test, FIG. 4B is a photograph for showing the periphery of a through-hole of the polarizing plate of Example 2 after a heat cycle test, FIG. 4C is a photograph for showing the periphery of a through-hole of the polarizing plate of Example 3 after a heat cycle test, and FIG. 4D is a photograph for showing the periphery of a through-hole of the polarizing plate of Comparative Example 1 after a heat cycle test.
  • FIG. 5A is a photograph for showing the state of the periphery of an end side of the polarizing plate along the transmission axis direction of the test sample of Example 1 after the heat cycle test, and FIG. 5B is a photograph for showing the state of the periphery of an end side of the polarizing plate along the absorption axis direction thereof.
  • FIG. 6A is a photograph for showing the state of the periphery of an end side of the polarizing plate along the transmission axis direction of the test sample of Comparative Example 1 after the heat cycle test, and FIG. 6B is a photograph for showing the state of the periphery of an end side of the polarizing plate along the absorption axis direction thereof.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Embodiments of the present invention are described below. However, the present invention is not limited to these embodiments.
  • A. Polarizing Plate
  • FIG. 1 is a plan view of a polarizing plate according to one embodiment of the present invention, and FIG. 2 is a partially enlarged sectional view of the polarizing plate illustrated in FIG. 1. A polarizing plate 100 is suitably used in the meter panel of an automobile. The polarizing plate 100 includes a first display portion 50 and a second display portion 60 that are continuously arranged, and through- holes 51 and 61 for fixing various meter needles are formed around the centers of the respective display portions.
  • The diameter of each of the through-holes is, for example, from 0.5 mm to 100 mm. The outer edge of each of the display portions 50 and 60 is formed into an arc shape along the rotational direction of a meter needle.
  • The polarizing plate 100 includes a polarizer 10, a first protective film 21 arranged on one side of the polarizer 10, and a second protective film 22 arranged on the other side of the polarizer 10. The protective films 21 and 22 are each typically bonded to the surface of the polarizer 10 through intermediation of an adhesive layer, though the layer is not shown. Although the protective films are arranged on both sides of the polarizer in this illustrated example, a protective film may be arranged only on one side thereof.
  • The polarizing plate of the present invention has a dimensional change ratio in its transmission axis direction of −0.2% or more, preferably −0.1% or more, more preferably −0.05% or more when the polarizing plate is cut into a size measuring 100 mm by 100 mm and the cut polarizing plate is bonded to a glass plate with a pressure-sensitive adhesive, and in the state, the following operation is repeated 100 times (change ratio of a dimension after a heat cycle test to that before the test): the polarizing plate is left to stand under an atmosphere at −40° C. for 30 minutes and then left to stand under an atmosphere at 8.5° C. for 30 minutes. Meanwhile, the dimensional change ratio in the transmission axis direction is, for example, 0.1% or less. A polarizing plate satisfying such dimensional change ratio can have excellent durability. Specifically, the polarizing plate satisfying such dimensional change ratio shows an extremely small change in shape due to a change in external environment, and hence when the polarizing plate is bonded to any other member (e.g., the glass substrate of a liquid crystal cell or the like) through intermediation of a pressure-sensitive adhesive layer, an influence on the adjacent pressure-sensitive adhesive layer is extremely small. Accordingly, a change in shape of the pressure-sensitive adhesive layer due to the change in external environment is suppressed, and hence the occurrence of a stress between the respective members (e.g., a stress produced when the modulus of elasticity of the pressure-sensitive adhesive layer increases at low temperature) can be prevented. As a result, a crack does not occur in the polarizing plate and hence the polarizing plate can have extremely excellent durability.
  • The dimensional change ratio in the absorption axis direction of the polarizing plate after the heat cycle test to that before the test is, for example, from −0.6% to 0%. The dimensional change ratio may be determined from the following equation.

  • Dimensional change ratio (%)={(dimension after heat cycle test/dimension before heat cycle test)−1}×100
  • When a through-hole is formed like the illustrated example, the position of the through-hole may be appropriately set in accordance with, for example, the applications of the polarizing plate. The crack is liable to occur by using the peripheral edge of the through-hole as a starting point, and the tendency may be more remarkable as the position of the through-hole becomes more distant from the outer edge of the polarizing plate. As a result, as the position of the through-hole becomes more distant from the outer edge of the polarizing plate (e.g., its distance from the outer edge of the polarizing plate is 15 mm or more), a durability-improving effect exhibited by the fact that the dimensional change ratio is controlled can be more significantly obtained. As in the peripheral edge of the through-hole, a site whose outer edge forms a V-shape (including an R-shape) that is convex inward in a surface direction, such as a boundary portion 41 or 42 between the respective display portions, is also liable to be the starting point of the crack.
  • The polarizing plate of the present invention is not limited to the construction of the illustrated example and may be appropriately changed. For example, the shape of the polarizing plate, the presence or absence of the through-holes, the shapes and sizes of the through-holes, and the number and formation positions of the through-holes may be appropriately changed. Specifically, there is given a mode in which V-shaped portions 43 and 44 that are convex inward in the surface direction are formed so as to be adjacent to each other, and a notch 45 is formed as illustrated in FIG. 3.
  • A-1. Polarizer
  • The polarizer typically includes a resin film containing a dichromatic substance. Examples of the dichromatic substance include iodine and an organic dye. The substances may be used alone or in combination. Of those, iodine is preferably used.
  • Any appropriate resin may be used as a resin for forming the resin film. A hydrophilic resin (e.g., a polyvinyl alcohol (PVA)-based resin) is preferably used as the resin. Examples of the PVA-based resin include polyvinyl alcohol and an ethylene-vinyl alcohol copolymer. The polyvinyl alcohol is obtained by saponifying polyvinyl acetate. The ethylene-vinyl alcohol copolymer is obtained by saponifying an ethylene-vinyl acetate copolymer. The saponification degree of the PVA-based resin is typically from 85 mol % to 100 mol %, preferably 95.0 mol % or more, more preferably 99.0 mol % or more, particularly preferably 99.93 mol % or more. The saponification degree may be determined in conformity with JIS K 6726-1994. The use of the PVA-based resin having such saponification degree can provide a polarizer excellent in durability.
  • The average polymerization degree of the PVA-based resin may be appropriately selected depending on purposes. The average polymerization degree is typically from 1,000 to 10,000, preferably from 1,200 to 6,000, more preferably from 2,000 to 5,000. The average polymerization degree may be determined in conformity with JIS K 6726-1994.
  • The polarizer preferably shows absorption dichroism in the wavelength range of from 380 nm to 780 nm. The single axis transmittance (Ts) of the polarizer is preferably 40% or more, more preferably 41% or more, still more preferably 42% or more, particularly preferably 43% or more. A theoretical upper limit for the single axis transmittance is 50%, and a practical upper limit therefor is 46%. In addition, the single axis transmittance (Ts) is a Y value measured with the two-degree field of view (C light source) of JIS Z 8701 and subjected to visibility correction, and may be measured with, for example, a spectrophotometer (manufactured by JASCO Corporation, V7100). The polarization degree of the polarizer is preferably 99.8% or more, more preferably 99.9% or more, still more preferably 99.95% or more.
  • The thickness of the polarizer may be set to any appropriate value. The thickness is typically from 1 μm to 80 μm, preferably from 3 μm to 40 μm. In one embodiment, the thickness of the polarizer is 20 μm or less, preferably 18 μm or less, more preferably 15 μm or less. The use of the polarizer having such thickness can satisfactorily achieve the dimensional change ratio without performing a heat treatment to be described later.
  • The polarizer may be typically obtained by subjecting the resin film to treatments, such as a swelling treatment, a stretching treatment, a dyeing treatment with the dichromatic substance, a cross-linking treatment, a washing treatment, and a drying treatment. The number of times of each of the treatments, the order in which the treatments are performed, the timings of the treatments, and the like may be appropriately set. When the resin film is subjected to each of the treatments, the film may be a resin layer formed on a substrate.
  • The cross-linking treatment is performed by, for example, bringing a boric acid solution (e.g., an aqueous solution of boric acid) into contact with the resin film. In addition, when a wet stretching system is adopted in the stretching treatment, the stretching is preferably performed while a boric acid solution is brought into contact with the resin film. In ordinary cases, the resin film is uniaxially stretched at from 3 times to 7 times from the viewpoint that excellent polarization characteristics are obtained. A stretching direction in the stretching treatment may correspond to the absorption axis direction of the polarizer to be obtained. The transmission axis direction thereof may be perpendicular to the absorption axis direction. In one embodiment, while an elongated resin film is conveyed in its lengthwise direction, the film is stretched in the conveying direction (MD). In this case, the absorption axis direction of the polarizer to be obtained may be the lengthwise direction (MD), and the transmission axis direction thereof may be a widthwise direction (TD).
  • A-2. Protective Film
  • As the formation materials of the protective film, there are given, for example, a cellulose-based resin, such as diacetyl cellulose or triacetyl cellulose (TAC), a (meth)acrylic resin, a cycloolefin-based resin, an olefin-based resin, such as polypropylene, an ester-based resin, such as a polyethylene terephthalate-based resin, a polyamide-based resin, a polycarbonate-based resin, and copolymer resins thereof. The term “(meth)acrylic resin” refers to an acrylic resin and/or a methacrylic resin.
  • The thickness of the protective film is preferably from 10 μm to 200 μm. A surface-treated layer may be formed on one side of the protective film (side on which the polarizer is not arranged). Specifically, the side may be subjected to a hard coat treatment, an antireflection treatment, or a treatment intended for diffusion or anti-glaring. In addition, the protective film may function as a retardation film. When the protective films are arranged on both sides of the polarizer like the illustrated example, the constructions (including a formation material and a thickness) of both the films may be identical to each other, or may be different from each other.
  • As described above, the protective film is typically bonded to the surface of the polarizer through intermediation of the adhesive layer. Any appropriate adhesive may be adopted as an adhesive to be used in the bonding of the protective film. For example, an aqueous adhesive, a solvent-based adhesive, or an active energy ray-curable adhesive is used. An adhesive containing a PVA-based resin is preferably used as the aqueous adhesive.
  • B. Method of Producing Polarizing Plate
  • The polarizing plate of the present invention is produced by any appropriate method as long as the dimensional change ratio can be achieved. In one embodiment, the polarizing plate of the present invention is produced by a method involving: preparing a polarizing film laminate including a polarizer and a protective film arranged on at least one side of the polarizer; and shrinking the polarizing film laminate as required.
  • The polarizing film laminate is typically produced by bonding the protective film to one side, or each of both sides, of the polarizer.
  • The polarizing film laminate is shrunk as required. The shrinkage of the polarizing film laminate can provide a polarizing plate that can satisfactorily achieve the dimensional change ratio irrespective of, for example, the thickness of the polarizer. A method for the shrinkage is typically, for example, a method involving heating the polarizing film laminate. A heating temperature is, for example, from 50° C. to 120° C., preferably from 70° C. to 90° C. When the temperature falls within such range, the polarizing film laminate can be efficiently shrunk while its optical characteristics (e.g., a hue, a transmittance, and a polarization degree) are secured. A heating time is, for example, from 1 hour to 100 hours, preferably 2 hours or more, more preferably 10 hours or more. The heating may be performed in one stage, or may be performed in a plurality of stages. In addition, the heating temperature may be kept substantially constant, or may be changed continuously or in a stepwise manner.
  • A shrinkage ratio is preferably 0.2% or more, more preferably 0.3% or more in, for example, the transmission axis direction of the polarizer in the polarizing film laminate. Meanwhile, the shrinkage ratio in the transmission axis direction is, for example, 0.6% or less. With such shrinkage ratio, it can be judged that the polarizing film laminate is shrunk to a sufficient level. The polarizing film laminate may shrink in its absorption axis direction to a larger extent than in the transmission axis direction, and hence at the initial stage of the shrinkage, a dimension in the transmission axis direction of the polarizing film laminate apparently increases for the time being in some cases. In any such case, as the shrinkage progresses, the dimension in the transmission axis direction may reduce from a dimension at the time of the initiation of the shrinkage (at the time of the initiation of the heating).
  • A shrinkage ratio in the absorption axis direction of the polarizing film laminate is preferably 0.3% or more, more preferably 0.4% or more. Meanwhile, the shrinkage ratio in the absorption axis direction is, for example, 1.0% or less. The shrinkage ratio may be determined from the following equation.

  • Shrinkage ratio (%)={1−(dimension after heating/dimension before heating)}×100
  • The polarizing plate of the present invention can be formed into a desired shape because the polarizing plate has excellent durability. A method of forming the polarizing plate into the desired shape is typically, for example, a method involving cutting (punching) the polarizing film laminate. When the polarizing film laminate is shrunk, the cutting may be performed before the shrinkage, or may be performed after the shrinkage. The cutting is preferably performed after the shrinkage from the viewpoint that the forming into the desired shape is performed more accurately.
  • Any appropriate method may be adopted as a cutting (punching) method. For example, a method involving irradiating the laminate with laser light or a method involving using a cutting blade (punching die), such as a Thomson blade or a pinnacle blade, is given. The laser light irradiation provides a smooth cut surface and can suppress the occurrence of the starting point of a crack (initial crack), and hence can contribute to a further improvement in durability. Even when the cutting blade is used (even when the initial crack occurs), the dimensional change ratio is controlled and hence excellent durability can be obtained.
  • Any appropriate laser may be adopted as the laser as long as the polarizing film laminate (polarizing plate) can be cut. A laser that can emit light having a wavelength in the range of from 150 nm to 11 μm is preferably used. Specific examples thereof include a gas laser, such as a CO2 laser, a solid laser, such as an YAG laser, and a semiconductor laser. Of those, a CO2 laser is preferably used.
  • A condition for the laser light irradiation may be set to any appropriate condition depending on, for example, the laser to be used. When the CO2 laser is used, an output condition is preferably from 10 W to 1,000 W, more preferably from 100 W to 400 W.
  • C. Usage
  • The polarizing plate of the present invention is bonded to any other member (e.g., the glass substrate of a liquid crystal cell or the like) through intermediation of, for example, a pressure-sensitive adhesive layer. The thickness of the pressure-sensitive adhesive layer is preferably from 4 μm to 50 μm. An acrylic pressure-sensitive adhesive is preferably used as a pressure-sensitive adhesive forming the pressure-sensitive adhesive layer. The polarizing plate of the present invention may adopt the form of a polarizing plate with a pressure-sensitive adhesive layer having the pressure-sensitive adhesive layer arranged on at least one side thereof in advance.
  • Now, the present invention is specifically described by way of Examples. However, the present invention not limited to these Examples.
  • EXAMPLE 1 (Production of Polarizing Film Laminate Sheet)
  • A film (thickness: 28 μm) obtained by incorporating iodine into an elongated PVA-based resin film and uniaxially stretching the film in its lengthwise direction (MD) was used as a polarizer.
  • A PVA-based adhesive was applied to one side of the polarizer so that its thickness after drying became 100 nm, and an elongated TAC film having a thickness of 40 μm was bonded to the polarizer so that their lengthwise directions were aligned with each other.
  • Subsequently, a PVA-based adhesive was applied to the other side of the polarizer so that its thickness after drying became 100 nm, and an elongated acrylic film having a thickness of 30 μm was bonded to the polarizer so that their lengthwise directions were aligned with each other.
  • Thus, a polarizing film laminate sheet having a construction “TAC film/polarizer/acrylic film” was obtained.
  • The resultant polarizing film laminate sheet was cut with a CO2 laser (wavelength: 9.35 μm, output: 150 W) to provide a cut piece of a size measuring 112 mm by 112 mm, the cut piece having a through-hole having a diameter of 2 mm formed in a site distant from its outer edge by 55 mm.
  • The resultant cut piece was placed under an atmosphere at 85° C. for 50 hours to provide a polarizing plate. The polarizing plate had a shrinkage ratio in its absorption axis direction of 0.74% and a shrinkage ratio in its transmission axis direction of 0.44%, the shrinkage ratios each serving as a ratio of a dimension after the heating to that before the heating. The shrinkage ratios each serving as a ratio of a dimension after the heating to that before the heating were each determined by: separately preparing a cut piece cut out of the polarizing film laminate sheet into a size measuring 100 mm by 100 mm (no through-hole was formed in the cut piece); and measuring the position of a corner of the cut piece. In this case, the cut piece was cut out of the sheet so that a pair of sides opposite to each other corresponded to the transmission axis direction of the polarizer and another pair of sides opposite to each other corresponded to the absorption axis direction of the polarizer.
  • EXAMPLE 2
  • A polarizing plate was obtained in the same manner as in Example 1 except that the resultant cut piece was placed under an atmosphere at 85° C. for 5 hours. The polarizing plate had a shrinkage ratio in its absorption axis direction of 0.45% and a shrinkage ratio in its transmission axis direction of 0.37%, the shrinkage ratios each serving as a ratio of a dimension after the heating to that before the heating, and each being measured by the same method as that of Example 1.
  • EXAMPLE 3
  • A polarizing plate was obtained in the same manner as in Example 1 except that the resultant cut piece was placed under an atmosphere at 85° C. for 2.5 hours. The polarizing plate had a shrinkage ratio in its absorption axis direction of 0.34% and a shrinkage ratio in its transmission axis direction of 0.25%, the shrinkage ratios each serving as a ratio of a dimension after the heating to that before the heating, and each being measured by the same method as that of Example 1.
  • EXAMPLE 4
  • A polarizing plate was obtained in the same manner as in Example 1 except that: the size of the cut piece was set to 52 mm by 52 mm; and the through-hole was formed in a site distant from the outer edge of the cut piece by 25 mm.
  • EXAMPLE 5
  • A polarizing plate was obtained in the same manner as in Example 1 except that at the time of the production of the polarizing film laminate sheet, a polarizer having a thickness of 12 μm was used and the cut piece was not heated.
  • EXAMPLE 6
  • A polarizing plate was obtained in the same manner as in Example 1 except that at the time of the production of the polarizing film laminate sheet, a polarizer having a thickness of 18 μm was used, a TAC film having a thickness of 60 μm was used instead of the acrylic film having a thickness of 30 μm, and the cut piece was not heated.
  • COMPARATIVE EXAMPLE 1
  • A polarizing plate was obtained in the same manner as in
  • Example 1 except that the cut piece was not heated.
  • COMPARATIVE EXAMPLE 2
  • A polarizing plate was obtained in the same manner as in Example 4 except that the cut piece was not heated.
  • The durability of each of the resultant polarizing plates was evaluated by a heat cycle (HC, heat shock (HS)) test.
  • Specifically, each of the resultant polarizing plates was bonded to a glass plate with an acrylic pressure-sensitive adhesive (thickness: 20 μm) having a difference between a storage modulus of elasticity in a high-temperature region (85° C.) and a storage modulus of elasticity in a low-temperature region (−40° C.) of less than 1×109 Pa, having a storage modulus of elasticity at 25° C. of 1×105 Pa or more, and having a storage modulus of elasticity at 85° C. of less than 1×106 Pa. Thus, a test sample was obtained. The storage moduli of elasticity are each determined by performing measurement with a dynamic viscoelasticity-measuring apparatus (manufactured by Rheometric Scientific, “Advanced Rheometric Expansion System (ARES)”) under the condition of a frequency of 1 Hz in the range of from −70° C. to 200° C. at a rate of temperature increase of 5° C./min to calculate a shear storage modulus.
  • The resultant test sample was left to stand under an atmosphere at −40° C. for 30 minutes and then left to stand under an atmosphere at 85° C. for 30 minutes. The foregoing operation was defined as one cycle and the cycle was repeated 100 times. After the heat cycle test, whether or not a crack occurred in the polarizing plate was observed.
  • In addition, the change ratio of a dimension in the transmission axis direction of the polarizing plate after the heat cycle test to that before the test was measured. The dimensional change ratio was determined by: separately preparing a cut piece cut out of the polarizing film laminate sheet (in each of Examples 1 to 4, out of the polarizing film laminate sheet heated in advance) into a size measuring 100 mm by 100 mm (no through-hole was formed in the cut piece); subjecting the cut piece to the heat cycle test; and measuring the position of a corner of the cut piece. In this case, the cut piece was cut out of the sheet so that a pair of sides opposite to each other corresponded to the transmission axis direction of the polarizer and another pair of sides opposite to each other corresponded to the absorption axis direction of the polarizer.
  • The dimensional change ratios of Examples and Comparative Examples are summarized in Table 1.
  • TABLE 1
    Dimensional change ratio (%)
    Example 1 0.007
    Example 2 −0.08
    Example 3 −0.14
    Example 4 0.007
    Example 5 −0.15
    Example 6 −0.15
    Comparative Example 1 −0.37
    Comparative Example 2 −0.37
  • FIG. 4A to FIG. 4D are photographs obtained by observing the peripheries of the through-holes of the polarizing plates of Examples 1 to 3 and Comparative Example 1 after the HS tests with an optical microscope (manufactured by Olympus Corporation, MX61, magnification: 5). In Comparative Example 1, a crack that can be visually recognized with the eyes in a clear manner is observed. In contrast, in Example 1, the occurrence of a crack (including a microcrack) is not observed. In each of Examples 2 and 3, a microcrack that cannot be visually recognized with the eyes in a clear manner is observed, but the occurrence of a crack is suppressed as compared to Comparative Example 1. The cracks each occur along a stretching direction.
  • In Example 4, as in Example 1, the occurrence of a crack (including a microcrack) is not observed. In Comparative Example 1, the crack extends from the through-hole serving as a starting point to an end side of the polarizing plate. In contrast, in Comparative Example 2, a crack length is 12 mm.
  • In each of Examples 5 and 6, as in Example 1, the occurrence of a crack (including a microcrack) is not observed.
  • FIG. 5A and FIG. 5B are each a photograph for showing the state of an end portion of the polarizing plate of the test sample of Example 1 after the HS test, and FIG. 6A and FIG. 6B are each a photograph for showing the state of an end portion of the polarizing plate of the test sample of Comparative Example 1 after the HS test. In Comparative Example 1, a region in which the pressure-sensitive adhesive layer used at the time of the bonding of the polarizing plate to the glass plate is exposed is formed.
  • The polarizing plate of the present invention can be suitably used not only in an image display apparatus (a liquid crystal display apparatus or an organic EL device) of a rectangular shape but also in, for example, an image display portion of a particular shape typified by the meter display portion of an automobile or a smart watch.

Claims (13)

What is claimed is:
1. A polarizing plate, comprising:
a polarizer; and
a protective film arranged on at least one side of the polarizer,
wherein the polarizer has a thickness of 20 μm or less,
wherein the polarizing plate has a dimensional change ratio of −0.2% or more in a transmission axis direction thereof;
wherein the dimensional change ratio is measured by cutting the polarizing plate to 100 mm by 100 mm while bonded to a glass plate with a pressure-sensitive adhesive and an operation wherein the polarizing plate bonded to the glass plate is left to stand under an atmosphere at −40° C. for 30 minutes and then left to stand under an atmosphere at 85° C. for 30 minutes, is repeated 100 times.
2. The polarizing plate according to claim 1, wherein the polarizing plate has the dimensional change ratio of 0.1% or less.
3. A polarizing plate, comprising:
a polarizer; and
a protective film arranged on at least one side of the polarizer,
wherein the polarizer has a thickness of 20 μm or less,
wherein the polarizing plate has a dimensional change ratio of −0.2% or more in a transmission axis direction thereof;
wherein the dimensional change ratio is measured by cutting the polarizing plate to 100 mm by 100 mm while bonded to a glass plate with a pressure-sensitive adhesive and an operation wherein the polarizing plate bonded to the glass plate is left to stand under an atmosphere at −40° C. for 30 minutes and then left to stand under an atmosphere at 85° C. for 30 minutes, is repeated 100 times, and
the polarizing plate has one selected from the group consisting of a through-hole formed therein, a site having an outer edge forming a substantially V-shape that is convex inward in a surface direction, and the combination of the through-hole and the site.
4. A polarizing plate, comprising:
a polarizer; and
a protective film arranged on at least one side of the polarizer,
wherein the polarizing plate has a dimensional change ratio of −0.2% or more in a transmission axis direction thereof;
wherein the dimensional change ratio is measured by cutting the polarizing plate to 100 mm by 100 mm while bonded to a glass plate with a pressure-sensitive adhesive and an operation wherein the polarizing plate bonded to the glass plate is left to stand under an atmosphere at −40° C. for 30 minutes and then left to stand under an atmosphere at 85° C. for 30 minutes, is repeated 100 times, and
the polarizing plate has one selected from the group consisting of a through-hole formed therein, a site having an outer edge forming a substantially V-shape that is convex inward in a surface direction, and the combination of the through-hole and the site.
5. The polarizing plate according to claim 1, further comprising a second protective film,
wherein the second protective film is arranged on another side of the polarizer that is opposite to the protective film.
6. The polarizing plate according to claim 1, wherein the polarizing plate has the dimensional change ratio of −0.1 to 0.1%.
7. The polarizing plate according to claim 1, wherein the polarizing plate has a dimensional change ratio of −0.6 to 0% in an absorption axis direction,
wherein the dimensional change ratio in an absorption axis direction is measured by cutting the polarizing plate to 100 mm by 100 mm while bonded to a glass plate with a pressure sensitive adhesive and an operation wherein the polarizing plate bonded to the glass plate is left to stand under an atmosphere at −40° C. for 30 minutes and then left to stand under an atmosphere at 85° C. for 30 minutes, is repeated 100 times.
8. The polarizing plate according to claim 3, further comprising a second protective film,
wherein the second protective film is arranged on another side of the polarizer that is opposite to the protective film.
9. The polarizing plate according to claim 3, wherein the polarizing plate has the dimensional change ratio of −0.1 to 0.1%.
10. The polarizing plate according to claim 3, wherein the polarizing plate has a dimensional change ratio of −0.6 to 0% in an absorption axis direction,
wherein the dimensional change ratio in an absorption axis direction is measured by cutting the polarizing plate to 100 mm by 100 mm while bonded to a glass plate with a pressure sensitive adhesive and an operation wherein the polarizing plate bonded to the glass plate is left to stand under an atmosphere at −40° C. for 30 minutes and then left to stand under an atmosphere at 85° C. for 30 minutes, is repeated 100 times.
11. The polarizing plate according to claim 4, further comprising a second protective film,
wherein the second protective film is arranged on another side of the polarizer that is opposite to the protective film.
12. The polarizing plate according to claim 4, wherein the polarizing plate has the dimensional change ratio of −0.1 to 0.1%.
13. The polarizing plate according to claim 4, wherein the polarizing plate has a dimensional change ratio of −0.6 to 0% in an absorption axis direction,
wherein the dimensional change ratio in an absorption axis direction is measured by cutting the polarizing plate to 100 mm by 100 mm while bonded to a glass plate with a pressure sensitive adhesive and an operation wherein the polarizing plate bonded to the glass plate is left to stand under an atmosphere at −40° C. for 30 minutes and then left to stand under an atmosphere at 85° C. for 30 minutes, is repeated 100 times.
US16/216,274 2015-11-04 2018-12-11 Polarizing plate Abandoned US20190113659A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/216,274 US20190113659A1 (en) 2015-11-04 2018-12-11 Polarizing plate
US16/676,660 US10914868B2 (en) 2015-11-04 2019-11-07 Polarizing plate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015216399A JP2017090523A (en) 2015-11-04 2015-11-04 Polarizing plate
JP2015-216399 2015-11-04
US15/290,775 US10241236B2 (en) 2015-11-04 2016-10-11 Polarizing plate
US16/216,274 US20190113659A1 (en) 2015-11-04 2018-12-11 Polarizing plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/290,775 Division US10241236B2 (en) 2015-11-04 2016-10-11 Polarizing plate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/676,660 Continuation US10914868B2 (en) 2015-11-04 2019-11-07 Polarizing plate

Publications (1)

Publication Number Publication Date
US20190113659A1 true US20190113659A1 (en) 2019-04-18

Family

ID=57153336

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/290,775 Expired - Fee Related US10241236B2 (en) 2015-11-04 2016-10-11 Polarizing plate
US16/216,274 Abandoned US20190113659A1 (en) 2015-11-04 2018-12-11 Polarizing plate
US16/676,660 Active US10914868B2 (en) 2015-11-04 2019-11-07 Polarizing plate

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/290,775 Expired - Fee Related US10241236B2 (en) 2015-11-04 2016-10-11 Polarizing plate

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/676,660 Active US10914868B2 (en) 2015-11-04 2019-11-07 Polarizing plate

Country Status (6)

Country Link
US (3) US10241236B2 (en)
EP (1) EP3165950A1 (en)
JP (1) JP2017090523A (en)
KR (1) KR20170052511A (en)
CN (1) CN106932849A (en)
TW (1) TWI715656B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018002600B4 (en) * 2017-05-19 2023-08-10 Kawasaki Jukogyo Kabushiki Kaisha ADAPTIVE OPTICAL DEVICE, OPTICAL SYSTEM AND OPTICAL WAVEFRONT COMPENSATION METHOD
KR102594844B1 (en) * 2018-04-10 2023-10-27 주식회사 엘지화학 Decoration element
CN115398292A (en) * 2020-03-26 2022-11-25 日东电工株式会社 Optical member, and backlight unit and image display device using same
US11138910B1 (en) * 2020-08-12 2021-10-05 Shutterfly, Llc Repositionable display panel
USD990566S1 (en) 2020-08-12 2023-06-27 Shutterfly, Llc Display panel

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236213A (en) * 2001-02-08 2002-08-23 Nitto Denko Corp Polarizing plate and liquid crystal display device which uses the same
JP2005049698A (en) * 2003-07-30 2005-02-24 Fuji Photo Film Co Ltd Polarizing plate
JP2006243132A (en) * 2005-03-01 2006-09-14 Fuji Photo Film Co Ltd Polarizing plate and liquid crystal display device
WO2007108244A1 (en) * 2006-03-17 2007-09-27 Sharp Kabushiki Kaisha Display panel, polarization plate to be adhered on such display panel and display device using such display panel and polarization plate
WO2013039225A1 (en) * 2011-09-15 2013-03-21 日東電工株式会社 Unit for image display device having adhesive layer, and image display device using said unit
JP2013160775A (en) * 2012-02-01 2013-08-19 Sumitomo Chemical Co Ltd Polarizer and optical member
US20130328051A1 (en) * 2012-06-06 2013-12-12 Jeremy C. Franklin Notched Display Layers
KR20150087062A (en) * 2014-01-21 2015-07-29 제일모직주식회사 Polarizing plate, adhesive composition for the same and display apparatus comprising the same
US20160363699A1 (en) * 2014-02-27 2016-12-15 Sumitomo Chemical Company, Limited Method for producing polarizing plate, and polarizing plate
US20160370508A1 (en) * 2015-06-18 2016-12-22 Samsung Sdi Co., Ltd. Polarizing plate, method of manufacturing the same, and optical display comprising the same

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07333425A (en) 1994-06-02 1995-12-22 Nippon Kayaku Co Ltd Production of polarizing plate
JPH09166711A (en) * 1995-12-15 1997-06-24 Konica Corp Protective film for polarizing plate and polarizing plate
JP3633712B2 (en) * 1996-03-15 2005-03-30 日本合成化学工業株式会社 Polarizer
JPH11174435A (en) * 1997-12-16 1999-07-02 Toshiba Corp Production of liquid crystal display device
KR100743421B1 (en) * 1999-12-28 2007-07-30 군제 가부시키가이샤 Polarizing plate
US20020015807A1 (en) * 2000-06-19 2002-02-07 Youichirou Sugino Polarizer, polarizing plate, and liquid crystal display using the same
US6844033B2 (en) * 2001-03-01 2005-01-18 Konica Corporation Cellulose ester film, its manufacturing method, polarizing plate, and liquid crystal display
JP2002258052A (en) * 2001-03-05 2002-09-11 Nitto Denko Corp Polarizing plate integrated with optical compensation layer and liquid crystal display using the same
US6814914B2 (en) * 2001-05-30 2004-11-09 Konica Corporation Cellulose ester film, its manufacturing method, optical retardation film, optical compensation sheet, elliptic polarizing plate, and image display
JP2002372621A (en) * 2001-06-14 2002-12-26 Nitto Denko Corp Polarizing plate and display device using the same
TWI296727B (en) * 2001-09-19 2008-05-11 Nitto Denko Corp Polarizing plate and method of manufacturing the same, and liquid crystal display using the polarizing plate
JP4635399B2 (en) * 2001-09-20 2011-02-23 コニカミノルタホールディングス株式会社 Method for producing cellulose ester film
KR100445898B1 (en) * 2002-01-30 2004-08-25 소프트픽셀(주) Spectacle for a stereograph
US6831713B2 (en) * 2002-02-08 2004-12-14 Nitto Denko Corporation Polarizing plate having all surfaces and sides covered with low moisture-permeable layers and liquid crystal display using the same
JP2004078171A (en) * 2002-06-18 2004-03-11 Nitto Denko Corp Polarizing plate with optical compensating layer and image display device using same
US20040212555A1 (en) * 2003-04-23 2004-10-28 Falco Mark A. Portable electronic device with integrated display and camera and method therefore
TWI388876B (en) * 2003-12-26 2013-03-11 Fujifilm Corp Antireflection film, polarizing plate, method for producing them, liquid crystal display element, liquid crystal display device, and image display device
KR20070006752A (en) * 2004-02-25 2007-01-11 후지 샤신 필름 가부시기가이샤 Cellulose acylate film, polarizing plate and liquid crystal display
KR20070011257A (en) * 2004-04-13 2007-01-24 닛토덴코 가부시키가이샤 Optical member, method for producing same, and image display employing same
JP4687162B2 (en) * 2004-06-07 2011-05-25 コニカミノルタオプト株式会社 Cellulose ester film and production method thereof, optical film, polarizing plate, liquid crystal display device
JP2006039211A (en) * 2004-07-27 2006-02-09 Nitto Denko Corp Laminated retardation plate, polarizer with the retardation plate, image display device, and liquid crystal display
JP2006126585A (en) * 2004-10-29 2006-05-18 Fuji Photo Film Co Ltd Polarizing plate with adhesive and liquid crystal display
JP4588428B2 (en) 2004-12-09 2010-12-01 富士フイルム株式会社 Image exposure method and apparatus
JP2006215486A (en) * 2005-02-07 2006-08-17 Nitto Denko Corp Polarizer, optical film and image display device
US7329434B2 (en) * 2005-02-23 2008-02-12 Eastman Kodak Company Polarizing layer with adherent protective layer
US7611760B2 (en) * 2005-04-22 2009-11-03 Fujifilm Corporation Cellulose acylate film, optical compensation film, polarizing plate and liquid crystal display
JP2006308936A (en) * 2005-04-28 2006-11-09 Fuji Photo Film Co Ltd Polarizing plate and liquid crystal display device
JP2006341393A (en) * 2005-06-07 2006-12-21 Fujifilm Holdings Corp Manufacturing method of cellulose acylate resin film
JP4651101B2 (en) * 2005-10-21 2011-03-16 日東電工株式会社 Adhesive polarizing plate with retardation layer, method for producing the same, optical film, and image display device
US20070231506A1 (en) * 2006-03-28 2007-10-04 Fujifilm Corporation Optical film, polarizing plate and liquid crystal display device
KR100932888B1 (en) * 2006-07-21 2009-12-21 주식회사 엘지화학 Optically compensated acrylic pressure sensitive adhesive composition, polarizing plate and liquid crystal display device comprising the same
JPWO2008153076A1 (en) * 2007-06-14 2010-08-26 積水化学工業株式会社 Optical adhesive for substrate bonding, and cured optical adhesive for substrate bonding
TWI349119B (en) * 2007-06-28 2011-09-21 Benq Materials Corp Optical film, method of forming the same and display apparatus having the same
JP2009169279A (en) * 2008-01-18 2009-07-30 Nitto Denko Corp Polarizer and image display apparatus using the same
JP5324316B2 (en) * 2008-05-27 2013-10-23 日東電工株式会社 Adhesive polarizing plate, image display device, and manufacturing method thereof
JP2009298887A (en) * 2008-06-11 2009-12-24 Sekisui Chem Co Ltd Curable composition for optical component
JP2010026484A (en) * 2008-06-20 2010-02-04 Sumitomo Chemical Co Ltd Polarizing plate for ips mode liquid crystal display device, and ips mode liquid crystal display device
JP2010243858A (en) * 2009-04-07 2010-10-28 Nitto Denko Corp Polarizing plate, liquid crystal panel, and liquid crystal display device
JP2010277018A (en) * 2009-06-01 2010-12-09 Sumitomo Chemical Co Ltd Polarizing plate excellent in durability, method of manufacturing the same, and image display device using the same
JP2011221278A (en) * 2010-04-09 2011-11-04 Sumitomo Chemical Co Ltd Polarizing laminated film, polarizing plate, and manufacturing method thereof
JP2011253163A (en) * 2010-06-04 2011-12-15 Jsr Corp Manufacturing method for polarizing film laminated body, polarizing film laminated body and touch panel including polarizing film laminated body
JP2012113124A (en) * 2010-11-25 2012-06-14 Nitto Denko Corp Optical laminate and liquid crystal display device
KR101495759B1 (en) * 2011-04-18 2015-02-26 주식회사 엘지화학 Polarizer having hole for cammera, LCD panel and display apparatus utilizing the same
JP6045161B2 (en) * 2012-03-07 2016-12-14 日東電工株式会社 Manufacturing method of polarizing plate
WO2014017541A1 (en) * 2012-07-27 2014-01-30 富士フイルム株式会社 Polarizing plate and liquid crystal display device
US9075199B2 (en) * 2012-10-30 2015-07-07 Apple Inc. Displays with polarizer layers for electronic devices
US10539717B2 (en) * 2012-12-20 2020-01-21 Samsung Sdi Co., Ltd. Polarizing plates and optical display apparatuses including the polarizing plates
JP2014211548A (en) * 2013-04-19 2014-11-13 住友化学株式会社 Production method of polarizing laminate film having region showing no polarizance, and polarizing plate
JP5932750B2 (en) * 2013-10-03 2016-06-08 住友化学株式会社 Polarizer set and front panel integrated liquid crystal display panel
JP2015099362A (en) * 2013-10-15 2015-05-28 日東電工株式会社 Optical layered body and dimming window
JP6524994B2 (en) * 2014-03-04 2019-06-05 コニカミノルタ株式会社 Method of manufacturing polarizing plate
US9329429B2 (en) * 2014-08-13 2016-05-03 Shenzhen China Star Optoelectronics Technology Co., Ltd. Polarizer and display device
US10114159B2 (en) * 2015-01-27 2018-10-30 Lg Chem, Ltd. Method for manufacturing polarizer and polarizer manufactured by the same
KR20170024816A (en) * 2015-08-26 2017-03-08 동우 화인켐 주식회사 Polarizing Plate and Liquid Crystal Display Device Comprising the Same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236213A (en) * 2001-02-08 2002-08-23 Nitto Denko Corp Polarizing plate and liquid crystal display device which uses the same
JP2005049698A (en) * 2003-07-30 2005-02-24 Fuji Photo Film Co Ltd Polarizing plate
JP2006243132A (en) * 2005-03-01 2006-09-14 Fuji Photo Film Co Ltd Polarizing plate and liquid crystal display device
WO2007108244A1 (en) * 2006-03-17 2007-09-27 Sharp Kabushiki Kaisha Display panel, polarization plate to be adhered on such display panel and display device using such display panel and polarization plate
WO2013039225A1 (en) * 2011-09-15 2013-03-21 日東電工株式会社 Unit for image display device having adhesive layer, and image display device using said unit
US20140347730A1 (en) * 2011-09-15 2014-11-27 Nitto Denko Corporation Unit for image display device having adhesive layer, and image display device using the unit
JP2013160775A (en) * 2012-02-01 2013-08-19 Sumitomo Chemical Co Ltd Polarizer and optical member
US20130328051A1 (en) * 2012-06-06 2013-12-12 Jeremy C. Franklin Notched Display Layers
KR20150087062A (en) * 2014-01-21 2015-07-29 제일모직주식회사 Polarizing plate, adhesive composition for the same and display apparatus comprising the same
US20160363699A1 (en) * 2014-02-27 2016-12-15 Sumitomo Chemical Company, Limited Method for producing polarizing plate, and polarizing plate
US20160370508A1 (en) * 2015-06-18 2016-12-22 Samsung Sdi Co., Ltd. Polarizing plate, method of manufacturing the same, and optical display comprising the same

Also Published As

Publication number Publication date
JP2017090523A (en) 2017-05-25
US10914868B2 (en) 2021-02-09
US20170123111A1 (en) 2017-05-04
US10241236B2 (en) 2019-03-26
EP3165950A1 (en) 2017-05-10
CN106932849A (en) 2017-07-07
TW201727273A (en) 2017-08-01
US20200124773A1 (en) 2020-04-23
KR20170052511A (en) 2017-05-12
TWI715656B (en) 2021-01-11

Similar Documents

Publication Publication Date Title
US10914868B2 (en) Polarizing plate
US11022735B2 (en) Method of producing polarizing plate
JP6083924B2 (en) Optical laminate, optical laminate set and liquid crystal panel using them
US20200103573A1 (en) Polarizing plate and method for producing same
TW201706640A (en) Polarizer
US10578786B2 (en) Polarizer, polarizing plate, and method of producing polarizer
JP2014191051A (en) Laser processing method of polarizer
WO2020121702A1 (en) Polariser
JP2019211799A (en) Manufacturing method of polarizing plate
TW201615383A (en) Method for producing polarizing laminating film and protect film-provided elongated film
JPWO2020203312A1 (en) A polarizing film, a polarizing plate, and a method for manufacturing the polarizing film.
CN111308600A (en) Polarizing plate
WO2022191246A1 (en) Polarizing plate, and method for producing same
JP2022086106A (en) Manufacturing method of polarizing plate having irregular shape

Legal Events

Date Code Title Description
AS Assignment

Owner name: NITTO DENKO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAKADA, KATSUNORI;HIGUCHI, NAOTAKA;NAKAI, KOTA;AND OTHERS;SIGNING DATES FROM 20160929 TO 20161003;REEL/FRAME:047745/0289

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION