WO2022191246A1 - Polarizing plate, and method for producing same - Google Patents

Polarizing plate, and method for producing same Download PDF

Info

Publication number
WO2022191246A1
WO2022191246A1 PCT/JP2022/010354 JP2022010354W WO2022191246A1 WO 2022191246 A1 WO2022191246 A1 WO 2022191246A1 JP 2022010354 W JP2022010354 W JP 2022010354W WO 2022191246 A1 WO2022191246 A1 WO 2022191246A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
polarizing plate
transmission axis
thermoplastic resin
axis direction
Prior art date
Application number
PCT/JP2022/010354
Other languages
French (fr)
Japanese (ja)
Inventor
浩司 久門
智之 山口
智 岩田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022033311A external-priority patent/JP2022140346A/en
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202280017681.5A priority Critical patent/CN116917781A/en
Priority to KR1020237032339A priority patent/KR20230156723A/en
Publication of WO2022191246A1 publication Critical patent/WO2022191246A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/04Punching, slitting or perforating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering

Definitions

  • the present invention relates to a polarizing plate and a manufacturing method thereof.
  • Patent Document 1 discloses a polarizer having a lower concentration of boric acid at the ends of the through holes than other portions, and the polarized light, as a polarizing plate having good durability even when through holes are formed in the polarizing plate. Discloses a polarizing plate having protective films on both sides of the element.
  • the polarizing plate described in Patent Document 1 has polarizer voids formed at the ends thereof.
  • the polarizer gap means a gap between the protective films formed by the edge of the polarizer existing (or positioned) inside the edge of the protective film in the plane direction. If the polarizer gap is formed at the end of the polarizing plate, light may leak from the polarizer gap when the polarizing plate is incorporated in a display device or the like.
  • An object of the present invention is to prevent the polarizer gap from being formed in the end portion of the polarizing plate (especially the end portion in the direction parallel to the transmission axis direction of the polarizer), and after exposure to a high temperature (85 ° C.),
  • An object of the present invention is to provide a polarizing plate equipped with a polarizer that suppresses the occurrence of cracks in a heat shock test in which the polarizer is repeatedly exposed to a low temperature ( ⁇ 40° C.) by cooling, and a method for producing the polarizer.
  • the present invention provides the following polarizing plate and manufacturing method thereof.
  • a polarizing plate in which an end portion of the polarizer in a direction parallel to a polarizer transmission axis direction satisfies the following formula (I).
  • the boric acid cross-linking index is defined as Raman scattered light intensity at a wavenumber of 780 cm -1 /Raman scattered light intensity at a wavenumber of 850 cm -1 .
  • a polarizing plate having a thermoplastic resin film on at least one surface of a polarizer containing iodine and boron, The end portion of the polarizer in the direction parallel to the polarizer transmission axis direction is at the same position in the plane direction as the end portion of the thermoplastic resin film in the direction parallel to the polarizer transmission axis direction, or located outside the A polarizing plate in which an end portion of the polarizer in a direction parallel to a polarizer transmission axis direction satisfies the following formula (I).
  • boric acid cross-linking index ⁇ 0.9 (I) [The boric acid cross-linking index is defined as Raman scattered light intensity at a wavenumber of 780 cm -1 /Raman scattered light intensity at a wavenumber of 850 cm -1 . ] [9] a lamination step of obtaining a polarizing plate by laminating a thermoplastic resin film on at least one surface of a polarizer containing iodine and boron; and an edge treatment step of contacting an edge of the polarizer in a direction parallel to the polarizer transmission axis direction with a treatment liquid at 20° C. or higher for 3 to 150 seconds.
  • the polarizer gap is not formed in the end portion of the polarizing plate (especially the end portion in the direction parallel to the transmission axis direction of the polarizer), and after exposure to a high temperature (85° C.), It is possible to provide a polarizing plate having a polarizer that suppresses the occurrence of cracks in a heat shock test in which cooling causes repeated exposure to a low temperature ( ⁇ 40° C.), and a method for producing the same. Further, according to the present invention, light leakage is improved because no polarizer gap is formed.
  • FIG. 1 is a schematic cross-sectional view showing a polarizing plate according to this embodiment.
  • FIG. 2 is an explanatory diagram for explaining the polarizer that constitutes the polarizing plate according to this embodiment.
  • FIG. 3 is an explanatory view explaining the aspect of the end portion of the polarizing plate in the direction parallel to the polarizer transmission axis direction, and (a) to (e) are included in the scope of the present embodiment.
  • FIG. 11 is an explanatory diagram illustrating a mode of an end portion in a direction parallel to the polarizer transmission axis direction, and (f) is an end portion in a direction parallel to the polarizer transmission axis direction of a polarizing plate outside the scope of this embodiment; It is an explanatory view explaining a mode.
  • FIG. 4 is an explanatory diagram for explaining microscopic Raman spectroscopic analysis for the polarizing plate according to this embodiment.
  • FIG. 5 is a schematic cross-sectional view showing a polarizing plate according to another
  • this embodiment An embodiment of the present invention (hereinafter also referred to as “this embodiment”) will be described below with reference to the drawings, but the present invention is not limited to the following embodiments.
  • the scale of each component is adjusted appropriately to facilitate understanding, and the scale of each component shown in the drawings does not necessarily match the scale of the actual component.
  • similar components are provided with similar reference numerals.
  • X, Y and Z shown in FIGS. 1 and 5 mean three coordinate axes orthogonal to each other. The directions indicated by the XYZ coordinate axes in FIGS. 1 and 5 are common to each figure.
  • plane view means viewing the polarizing plate and the polarizer from the thickness direction.
  • the polarizing plate according to the present embodiment is a polarizing plate having a thermoplastic resin film on at least one surface of a polarizer containing iodine and boron, preferably a polarizing plate having a thermoplastic resin film on both sides of the polarizer. is.
  • the end portion of the polarizer in the direction parallel to the polarizer transmission axis direction is closer than the end portion of at least one of the thermoplastic resin films in the direction parallel to the polarizer transmission axis direction. They are at the same position in the plane direction, or they are located outside in the plane direction.
  • the end portion of the polarizer in the direction parallel to the polarizer transmission axis direction satisfies the following formula (I).
  • Boric acid cross-linking index ⁇ 0.9 (I) [The boric acid cross-linking index is defined as Raman scattered light intensity at a wavenumber of 780 cm -1 /Raman scattered light intensity at a wavenumber of 850 cm -1 . ].
  • FIG. 1 is a schematic cross-sectional view showing a polarizing plate according to this embodiment.
  • polarizing plate 1 has thermoplastic resin films (first thermoplastic resin film 3 and second thermoplastic resin film 4) on both sides of polarizer 2 containing iodine and boron.
  • the polarizing plate 1 is formed by laminating thermoplastic resin films (a first thermoplastic resin film 3 and a second thermoplastic resin film 4) on both sides of a polarizer 2 using an adhesive or pressure-sensitive adhesive.
  • first thermoplastic resin film” and the "second thermoplastic resin film” may be collectively referred to as protective films.
  • the term "polarizer” refers to a member that has the function of converting light such as natural light into linearly polarized light.
  • the polarizer has a transmission axis and an absorption axis.
  • the "transmission axis direction” and “absorption axis direction” of the polarizer will be described below with reference to FIG.
  • FIG. 2 is an explanatory diagram for explaining the polarizer that constitutes the polarizing plate according to this embodiment.
  • the transmission axis direction (TD direction) of the polarizer is understood as the vibration direction of transmitted light when natural light is transmitted through the polarizer.
  • the absorption axis direction (MD direction) of the polarizer is orthogonal to the transmission axis of the polarizer.
  • the polarizer may be a stretched film, the absorption axis direction of the polarizer may coincide with the stretching direction (MD direction), and the transmission axis direction of the polarizer may coincide with the width direction (TD direction).
  • the polarizing plate according to this embodiment has no polarizer gap. That is, in the polarizing plate, the end portion of the polarizer in the direction parallel to the polarizer transmission axis direction is more in the plane direction than the end portion of at least one of the thermoplastic resin films in the direction parallel to the polarizer transmission axis direction. at the same position or on the outside in the plane direction.
  • the end of the polarizer in the direction parallel to the polarizer transmission axis direction is at the same position in the plane direction as the end of at least one of the thermoplastic resin films in the direction parallel to the polarizer transmission axis direction. or located on the outer side in the plane direction” means excluding the structure of the polarizing plate as shown in FIG. 3(f).
  • the end portion 21 of the polarizer in the direction parallel to the polarizer transmission axis direction is the end portion of the thermoplastic resin film on both sides in the direction parallel to the polarizer transmission axis direction.
  • a polarizer gap portion 2a is formed because it is located on the inner side of 31 and 41 in the plane direction.
  • the end portion 21 of the polarizer in the direction parallel to the polarizer transmission axis direction is more likely than the end portions 31 and 41 of at least one of the thermoplastic resin films in the direction parallel to the polarizer transmission axis direction.
  • the structure is not particularly limited as long as it is located at the same position in the plane direction or located outside in the plane direction.
  • the end portion 10 of the polarizing plate shown in FIG. It may be located at the same position in the plane direction as the ends 31 and 41 of the film in the direction parallel to the polarizer transmission axis direction.
  • the end portion 21 of the polarizer in the direction parallel to the polarizer transmission axis direction is parallel to the polarizer transmission axis direction of one of the thermoplastic resin films.
  • the end portion 21 of the polarizer in the direction parallel to the polarizer transmission axis direction is parallel to the polarizer transmission axis direction of one of the thermoplastic resin films. , and is located outside the ends 31 and 41 of the other thermoplastic resin film in the direction parallel to the polarizer transmission axis direction in the plane direction. good too.
  • FIGS. 3(d) and 3(e) the end portion 21 of the polarizer in the direction parallel to the polarizer transmission axis direction is parallel to the polarizer transmission axis direction of one of the thermoplastic resin films. , and is located outside the ends 31 and 41 of the other thermoplastic resin film in the direction parallel to the polarizer transmission axis direction in the plane direction. good too.
  • the end 21 of the polarizer in the direction parallel to the polarizer transmission axis direction and the ends 31 and 41 of the thermoplastic resin film are When having an inclination, the ends 31 and 41 of the thermoplastic resin film represent the center position in the thickness direction of the thermoplastic resin film, and the end portion 21 of the polarizer represents the center position in the thickness direction of the polarizer as the "polarizer transmission axis. shall be expressed as "the edge in the direction parallel to the direction".
  • the term “plane direction” refers to a direction parallel to the plane of the polarizer 2 .
  • the end portion of the polarizer in the direction parallel to the polarizer transmission axis direction satisfies the following formula (I).
  • the value of the boric acid cross-linking index may be 0 or more, or may be greater than 0. Also, it is preferably greater than 0 and 0.9 or less, more preferably 0.1 or more and 0.85 or less, and even more preferably 0.15 or more and 0.80 or less.
  • the term “boric acid cross-linking index” means an index that indicates how much polyvinyl alcohol molecular chains are cross-linked with boric acid in a polarizer made of a polyvinyl alcohol-based resin film or the like.
  • the higher the value of the boric acid cross-linking degree index the more advanced the boric acid cross-linking between the polyvinyl alcohol molecular chains is in the polarizer, and the polarizer can be provided with the property that iodine escape hardly occurs.
  • the value of the boric acid cross-linking degree index is too high at the ends of the polarizer (especially the ends parallel to the transmission axis direction of the polarizer), cracks tend to occur in the polarizing plate in the heat shock test. .
  • the above formula (I) it is possible to suppress the occurrence of cracks in the polarizing plate in the heat shock test.
  • the polarizing plate according to the present embodiment has a boric acid cross-linking index (hereinafter, sometimes referred to as “boric acid cross-linking index (1)”) at the end of the polarizer in the direction parallel to the polarizer transmission axis direction. ) and a boric acid cross-linking index (hereinafter sometimes referred to as “boric acid cross-linking index (2)”) at 100 ⁇ m inward in the plane direction from the end of the polarizer in the direction parallel to the polarizer transmission axis direction.
  • Boric acid cross-linking index (1)/Boric acid cross-linking index (2) is preferably 0.95 or less.
  • the ratio of boric acid cross-linking index (1)/boric acid cross-linking index (2) is more preferably 0.90 or less, and may be 0 or more.
  • the boric acid cross-linking index can be determined by microscopic Raman spectroscopic analysis.
  • the microscopic Raman spectroscopic analysis by using a laser Raman spectrophotometer (trade name: "NRS-5100", manufactured by JASCO Corporation), the Raman scattered light intensity at the wave number of 780 cm -1 of the polarizer and the wave number of 850 cm -1 , and then dividing the Raman scattered light intensities at these wavenumbers (Raman scattered light intensity at a wavenumber of 780 cm -1 /Raman scattered light intensity at a wavenumber of 850 cm -1 ) to obtain the boric acid crosslinking degree index can be calculated.
  • FIG. 4 is an explanatory diagram for explaining microscopic Raman spectroscopic analysis for the polarizing plate according to the present embodiment.
  • the laser Raman spectrophotometer the laser light X and the absorption axis direction of the polarizer are made to enter at right angles.
  • the laser light X is polarized in the thickness direction of the polarizer.
  • the measurement position of a laser beam be the position of the thickness direction center of a polarizer.
  • the Raman scattered light intensity at a wavenumber of 780 cm -1 means the Raman scattered light intensity caused by the bonding of polyvinyl alcohol and boron
  • the Raman scattered light intensity at a wavenumber of 850 cm -1 means the Raman scattered light caused by polyvinyl alcohol. means strength.
  • the polarizing plate may be in the shape of a long strip or in the shape of a sheet.
  • the overall shape of the polarizing plate may be square or square with rounded corners in plan view.
  • a square with rounded corners refers to a shape in which one or more of the corners of the square are curved.
  • a rectangular shape means a rectangular shape or a square shape.
  • the polarizing plate has a square shape with rounded corners, one or more of the four corners of the polarizing plate may be rounded.
  • the polarizing plate may have a polygonal, circular, or elliptical overall shape in plan view.
  • the polarizing plate can also have a deformed portion in plan view.
  • the deformed portion can be formed on at least one of the outer edge portion and the in-plane portion of the polarizing plate.
  • the shape of the deformed portion may be, for example, a substantially U-shaped or substantially V-shaped convex inward from the outer edge in a plan view of the polarizing plate.
  • the deformed portion may be a through hole.
  • the present invention if at least one of the end of the portion of the polarizing plate that is not the deformed portion and the end of the deformed portion satisfies the above formula (I), the present invention It belongs to the scope of the invention. Furthermore, it is more preferable that both the edge of the portion of the polarizing plate that is not the deformed portion and the edge of the deformed portion satisfy the above formula (I).
  • the specific example of the overall shape of the polarizing plate in plan view described above is also applied as an example of the overall shape of the polarizer in the item (Polarizer) described later.
  • the polarizing plate according to this embodiment will be described in more detail through its manufacturing method. First, each component of the polarizing plate will be described.
  • Polarizers contain boric acid and iodine.
  • the polarizer is a resin film containing boric acid and iodine.
  • the resin film containing boric acid and iodine may be, for example, a resin film in which iodine is adsorbed and oriented in a uniaxially stretched polyvinyl alcohol resin film and the polyvinyl alcohol molecular chains are crosslinked with boric acid.
  • Such a polarizer can be obtained, for example, by carrying out a polarizer manufacturing process in a method for manufacturing a polarizing plate, which will be described later.
  • the thickness of the polarizer may be, for example, 3 ⁇ m or more and 30 ⁇ m or less, 5 ⁇ m or more and 25 ⁇ m or less, 15 ⁇ m or more and 25 ⁇ m or less, or 16 ⁇ m or more and 24 ⁇ m or less.
  • the thicker the polarizer the greater the contraction force of the polarizer due to temperature changes.
  • the polarizer is stored in a harsh environment such as a heat shock test, cracks tend to occur in the polarizer. It is in.
  • the polarizing plate when the polarizing plate is stored in a high-temperature environment, the polarizing plate tends to be greatly deformed. According to the present embodiment, even if the polarizer is thick and easily shrinkable, cracking of the polarizer in the heat shock test and deformation of the polarizing plate in the heat resistance test tend to be suppressed. .
  • thermoplastic resin film Since the thermoplastic resin film physically and chemically protects the polarizer, it can be a protective film for the polarizer.
  • the thermoplastic resin film is preferably made of a translucent thermoplastic resin. Resins constituting the thermoplastic resin film include, for example, linear polyolefin resins, cyclic olefin polymer resins (COP resins), cellulose ester resins, polyester resins, polycarbonate resins, (meth)acrylic resins, polystyrene. based resins, or mixtures or copolymers thereof.
  • the term “protective film” refers to a thermoplastic resin film that overlaps a polarizer directly or indirectly via a pressure-sensitive adhesive or adhesive, and after bonding the polarizing plate to a display device. is defined as the film that remains laminated to protect the polarizer.
  • the "surface protective film for polarizing plate” described later is a film placed on the outermost surface of one of the polarizing plates, and is defined as a film that is peeled off after the polarizing plate is attached to the display device. shall be
  • the first thermoplastic resin film 3 and the second thermoplastic resin film 4 may be films formed from the same type of resin, or films formed from different types of resin. may Also, the first thermoplastic resin film 3 and the second thermoplastic resin film 4 may be the same or different in thickness, retardation properties, optical properties, mechanical properties, and the like.
  • the chain polyolefin resin may be, for example, a homopolymer of chain olefin such as polyethylene resin or polypropylene resin.
  • the chain polyolefin-based resin may be a copolymer composed of two or more chain olefins.
  • the resin constituting the thermoplastic resin film is a cyclic olefin polymer-based resin (cyclic polyolefin-based resin)
  • the cyclic olefin polymer-based resin is, for example, a ring-opening (co)polymer of a cyclic olefin, or an addition polymerization of a cyclic olefin. May be coalesced.
  • the cyclic olefin polymer-based resin may be, for example, a copolymer (for example, a random copolymer) of a cyclic olefin and a chain olefin.
  • a chain olefin constituting the copolymer may be, for example, ethylene or propylene.
  • the cyclic olefin polymer-based resin may be a graft polymer modified with an unsaturated carboxylic acid or a derivative thereof, or a hydride thereof.
  • the cyclic olefin polymer-based resin may be, for example, a norbornene-based resin using norbornene-based monomers such as norbornene or polycyclic norbornene-based monomers.
  • the resin constituting the thermoplastic resin film is a cellulose ester resin
  • the cellulose ester resin is, for example, cellulose triacetate (triacetyl cellulose (TAC)), cellulose diacetate, cellulose tripropionate, or cellulose dipropionate. It's okay. Copolymers of these may also be used.
  • a cellulose ester-based resin in which a portion of hydroxyl groups is modified with other substituents may also be used.
  • a polyester-based resin other than a cellulose ester-based resin may be used as the resin that constitutes the thermoplastic resin film.
  • the polyester-based resin may be, for example, a polycondensate of a polyhydric carboxylic acid or its derivative and a polyhydric alcohol.
  • a polycarboxylic acid or derivative thereof may be a dicarboxylic acid or derivative thereof.
  • Polycarboxylic acids or derivatives thereof can be, for example, terephthalic acid, isophthalic acid, dimethyl terephthalate, or dimethyl naphthalenedicarboxylate.
  • Polyhydric alcohols may be, for example, diols.
  • Polyhydric alcohols may be, for example, ethylene glycol, propanediol, butanediol, neopentyl glycol, or cyclohexanedimethanol.
  • the polyester resin may be, for example, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polytrimethylene terephthalate, polytrimethylene naphthalate, polycyclohexanedimethylterephthalate, or polycyclohexanedimethylnaphthalate. .
  • the polycarbonate-based resin is a polymer in which polymerized units (monomers) are bonded via carbonate groups.
  • the polycarbonate-based resin may be a modified polycarbonate having a modified polymer backbone, or may be a copolymerized polycarbonate.
  • the (meth)acrylic resin is, for example, poly(meth)acrylic acid ester (e.g., polymethyl methacrylate (PMMA)); methacrylic acid Methyl-(meth)acrylic acid copolymer; Methyl methacrylate-(meth)acrylic acid ester copolymer; Methyl methacrylate-acrylic acid ester-(meth)acrylic acid copolymer; Methyl (meth)acrylate-styrene Copolymer (e.g., MS resin); copolymer of methyl methacrylate and a compound having an alicyclic hydrocarbon group (e.g., methyl methacrylate-cyclohexyl methacrylate copolymer, methyl methacrylate-(meth)acrylic acid norbornyl copolymers, etc.).
  • poly(meth)acrylic acid ester e.g., polymethyl methacrylate (PMMA)
  • Each of the first thermoplastic resin film and the second thermoplastic resin film is selected from the group consisting of lubricants, plasticizers, dispersants, heat stabilizers, ultraviolet absorbers, infrared absorbers, antistatic agents, and antioxidants. may contain at least one additive.
  • Each of the first thermoplastic resin film and the second thermoplastic resin film has a hard coat layer, an antiglare layer, an antireflection layer, a light diffusion layer, and a charging
  • a surface treatment layer (coating layer) such as an antifouling layer, an antifouling layer, and a conductive layer may be provided.
  • the thickness of the first thermoplastic resin film may be, for example, 5 ⁇ m or more and 110 ⁇ m or less, or 10 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the second thermoplastic resin film may also be, for example, 5 ⁇ m or more and 110 ⁇ m or less, or 10 ⁇ m or more and 100 ⁇ m or less.
  • the first thermoplastic resin film and the second thermoplastic resin film may have retardation values.
  • a retardation film imparted with an arbitrary retardation value can be obtained by stretching a film made of the thermoplastic resin or forming a liquid crystal layer or the like on the film.
  • the first thermoplastic resin film is preferably attached to the polarizer via an adhesive layer.
  • the second thermoplastic resin film is also preferably bonded to the polarizer via an adhesive layer.
  • the adhesive layer may contain a polyvinyl alcohol-based resin or the like.
  • the adhesive layer may contain an active energy ray-curable resin, which will be described later.
  • An active energy ray-curable resin is a resin that cures when exposed to active energy rays.
  • the active energy rays may be, for example, ultraviolet rays, visible light, electron beams, or X-rays.
  • the active energy ray-curable resin may be an ultraviolet curable resin.
  • the active energy ray-curable resin may be one type of resin, or may contain multiple types of resins.
  • the active energy ray-curable resin may contain a cationic polymerizable curable compound or a radically polymerizable curable compound.
  • the active energy ray-curable resin may contain a cationic polymerization initiator or a radical polymerization initiator for initiating the curing reaction of the curable compound.
  • the cationic polymerizable curable compound may be, for example, an epoxy compound (compound having at least one epoxy group in the molecule) or an oxetane compound (compound having at least one oxetane ring in the molecule).
  • the radically polymerizable curable compound may be, for example, a (meth)acrylic compound (compound having at least one (meth)acryloyloxy group in the molecule).
  • the radically polymerizable curable compound may be a vinyl compound having a radically polymerizable double bond.
  • the active energy ray-curable resin may contain a cationic polymerization accelerator, an ion trapping agent, an antioxidant, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow control agent, a plasticizer, and an antifoaming agent. agents, antistatic agents, leveling agents, solvents, or the like.
  • the thickness of the adhesive layer is usually 0.01-10 ⁇ m.
  • the thickness of the adhesive layer is preferably 0.1 to 8 ⁇ m, and when the adhesive layer contains a polyvinyl alcohol-based resin, the thickness of the adhesive layer is preferably 0.03 to 1 ⁇ m.
  • FIG. 5 is a schematic cross-sectional view showing a polarizing plate according to another embodiment.
  • a surface protective film for polarizing plate is further provided on the surface of the first thermoplastic resin film 3 or the second thermoplastic resin film 4 opposite to the polarizer 2. 5 may be provided.
  • the polarizing plate surface protective film 5 is usually composed of a base film and an adhesive layer laminated thereon. , the pressure-sensitive adhesive layer and the substrate film are integrated.
  • the base film is composed of, for example, polyolefin resins such as polyethylene resins and polypropylene resins, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polycarbonate resins, and thermoplastic resins such as (meth)acrylic resins. be able to.
  • the thickness of the polarizing plate surface protective film 5 may be, for example, 5 ⁇ m or more and 200 ⁇ m or less.
  • the polarizing plate surface protective film 5 is a film used for the purpose of protecting the surface of the polarizing plate from scratches and stains. removed.
  • the polarizing plate may further include an adhesive layer on the surface of the first thermoplastic resin film 3 or the second thermoplastic resin film 4 opposite to the polarizer 2 .
  • the adhesive layer is usually laminated on a thermoplastic resin film on which the polarizing plate surface protective film 5 is not laminated.
  • a release film may be laminated on the surface of the adhesive layer opposite to the thermoplastic resin film.
  • the method for producing a polarizing plate according to the present embodiment includes a lamination step of obtaining a polarizing plate by laminating a thermoplastic resin film on at least one surface (preferably both surfaces) of a polarizer containing iodine and boron; An edge treatment step is included in which the edge of the plate in the direction parallel to the transmission axis direction of the polarizer is brought into contact with a treatment liquid at 20° C. or higher for 3 to 150 seconds.
  • iodine leakage is less likely to occur at the end portion in the direction parallel to the transmission axis direction of the polarizer, curling is suppressed, and cracking is suppressed in a heat shock test.
  • a polarizing plate with a polarizer can be obtained.
  • the method for manufacturing the polarizing plate can include a polarizer manufacturing step (a step of manufacturing a polarizer containing boric acid and iodine) in the lamination step.
  • the method for manufacturing the polarizing plate may further include an end portion forming step of forming an end portion of the polarizing plate in a direction parallel to the polarizer transmission axis direction by cutting and/or punching the polarizing plate. can. That is, the end portion of the polarizing plate in the direction parallel to the polarizer transmission axis direction may be formed by cutting and/or punching the polarizing plate.
  • the edge forming step can be performed between the stacking step and the edge processing step.
  • the method for producing a polarizing plate further includes a surface protection step of laminating a surface protection film for a polarizing plate on the surface of the thermoplastic resin film opposite to the side on which the polarizer is arranged in the polarizing plate. can be done.
  • the surface protection step may be performed before the lamination step or after the lamination step.
  • the lamination step may be performed after the edge processing step. When the lamination step is performed after the edge treatment step, only the polarizer is subjected to contact with the treatment liquid at 20° C. or higher for 3 to 150 seconds in the edge treatment step.
  • One aspect of the method for manufacturing a polarizing plate according to this embodiment will be specifically described below.
  • Polarizer manufacturing process is a process of manufacturing a polarizer containing boric acid and iodine.
  • a polarizer containing boric acid and iodine can be produced, for example, by subjecting a polyvinyl alcohol-based resin film (PVA film) to stretching treatment, dyeing treatment and cross-linking treatment. Stretching treatment, dyeing treatment and cross-linking treatment can be performed by known methods.
  • PVA film polyvinyl alcohol-based resin film
  • polyvinyl alcohol-based resin saponified polyvinyl acetate-based resin
  • examples of polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate with other monomers copolymerizable therewith.
  • Other monomers copolymerizable with vinyl acetate include, for example, unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the degree of saponification of the polyvinyl alcohol resin may be in the range of 80 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more.
  • the polyvinyl alcohol-based resin may be modified polyvinyl alcohol that is partially modified, for example, the polyvinyl alcohol-based resin may be modified with olefins such as ethylene and propylene; unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid; ; modified with unsaturated carboxylic acid alkyl esters and acrylamides;
  • the average degree of polymerization of the polyvinyl alcohol resin is preferably 100-10000, more preferably 1500-8000, still more preferably 2000-5000.
  • a polarizer is made by uniaxially stretching a raw film made of a polyvinyl alcohol resin, swelling it with water (swelling process), dyeing it with a dichroic dye (dyeing process), and cross-linking it with an aqueous boric acid solution ( crosslinking step), washing with water (washing step), and finally drying (drying step).
  • the uniaxial stretching of the polyvinyl alcohol resin film may be either dry stretching in air or wet stretching in a bath, or both.
  • the polyvinyl alcohol resin film may be stretched while being immersed in a treatment bath during and/or before and/or after the dyeing step and/or the cross-linking step.
  • the final draw ratio of the polyvinyl alcohol resin film is usually about 4 to 8 times.
  • the polyvinyl alcohol resin film is swollen with water.
  • the swelling treatment can be performed by immersing the polyvinyl alcohol-based resin film in water.
  • the water temperature is, for example, 10 to 70° C.
  • the immersion time is, for example, about 10 to 600 seconds.
  • the polyvinyl alcohol-based resin film is dyed with a dichroic dye, and the dichroic dye is adsorbed on the film.
  • a polyvinyl alcohol-based resin film may be immersed in an aqueous solution containing a dichroic dye.
  • iodine or dichroic dyes are used as dichroic dyes.
  • iodine When iodine is used as a dichroic dye, a method of dyeing by immersing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide is usually adopted.
  • the content of iodine in the aqueous solution can usually be about 0.003 to 1 part by mass per 100 parts by mass of water.
  • the content of potassium iodide in the aqueous solution is usually 0.1 per 100 parts by mass of water. It is about 20 parts by mass.
  • the temperature of this aqueous solution is usually about 10 to 45° C., and the immersion time is usually about 30 to 600 seconds.
  • the cross-linking step is performed, for example, by immersing the dyed polyvinyl alcohol-based resin film in an aqueous boric acid solution.
  • the content of boric acid in the boric acid aqueous solution is usually about 1 to 15 parts by mass, preferably 2 to 10 parts by mass, per 100 parts by mass of water.
  • the boric acid aqueous solution preferably contains potassium iodide.
  • the content of potassium iodide in the boric acid aqueous solution is usually about 1 to 20 parts by mass, preferably 5 to 15 parts by mass, per 100 parts by mass of water.
  • the immersion time of the film in the aqueous boric acid solution is usually about 10 to 600 seconds, preferably 20 seconds or more, and preferably 300 seconds or less.
  • the temperature of the boric acid aqueous solution is usually 50°C or higher, preferably 50 to 70°C.
  • a polyvinyl alcohol-based resin film that has undergone a cross-linking process is usually subjected to a washing process with water.
  • the washing treatment is performed, for example, by immersing the crosslinked polyvinyl alcohol-based resin film in water.
  • the temperature of water in the cleaning treatment is usually about 5 to 40° C., and the immersion time is usually about 2 to 120 seconds.
  • a polarizer is obtained through a drying process. Drying is usually performed using a hot air dryer or a far-infrared heater. The drying temperature is usually 40-100° C., and the drying time is usually about 30-600 seconds.
  • the lamination step is a step of obtaining a polarizing plate by laminating a thermoplastic resin film on at least one side (preferably both sides) of the polarizer.
  • a polarizing plate hereinafter, a polarizing plate that has not undergone the edge treatment step is also referred to as an “untreated polarizing plate” for convenience of explanation
  • the polarizer and the thermoplastic resin film may be long strips.
  • the thermoplastic resin film can be attached to a polarizer via an adhesive layer.
  • the bonding surface of the polarizer and/or the thermoplastic resin film is may be subjected to surface treatment such as corona treatment, flame treatment, plasma treatment, ultraviolet irradiation treatment, primer coating treatment, saponification treatment and the like.
  • the surface protection step is a step of laminating a surface protection film for a polarizing plate on the surface of the polarizing plate opposite to the side on which the polarizer of the thermoplastic resin film is arranged.
  • the surface protection step may be performed before the edge forming step of forming the edge of the polarizing plate in the direction parallel to the polarizer transmission axis direction, or may be performed after the edge forming step and the edge treatment step. However, it can be preferably performed after the lamination step and before the edge formation step.
  • the polarizer of the polarizing plate is formed by cutting and/or punching the untreated polarizing plate in order to form an edge in the direction parallel to the polarizer transmission axis direction in the untreated polarizing plate. This is the step of forming the end portion in the direction parallel to the transmission axis direction.
  • This process can also adjust the dimensions of the untreated polarizing plate to dimensions that are easy to process.
  • cutting and/or punching can be performed by using a cutting blade, using a punching blade, or by irradiating laser light.
  • the laser light may be a CO2 laser.
  • the untreated polarizing plate can be cut and/or punched singly or in a state of being stacked. After cutting, the cut surface of the polarizing plate may be finished by cutting.
  • the edge treatment step is a step of bringing the edge of the polarizing plate in the direction parallel to the polarizer transmission axis direction into contact with a treatment liquid at 20° C. or higher for 3 to 150 seconds.
  • the edge of the polarizer constituting the polarizing plate in the direction parallel to the polarizer transmission axis direction can satisfy the value of the boric acid cross-linking degree index of 0.9 or less, and the heat shock can be reduced. It is possible to obtain a polarizing plate having a polarizer that suppresses the occurrence of cracks in a test.
  • the edge treatment step may be performed on one untreated polarizing plate, or may be performed in a state where a plurality of untreated polarizing plates are laminated.
  • a plurality of untreated polarizing plates are laminated.
  • the number of untreated polarizing plates to be stacked is preferably 7 or more, for example, 2000 or 1000.
  • the edge treatment When performing the edge treatment on one untreated polarizing plate, the edge treatment may be performed on the untreated polarizing plate only, or the untreated polarizing plate is attached to the substrate and these are attached. In this state, the end portion of the polarizing plate in the direction parallel to the transmission axis direction of the polarizer may be treated.
  • the treatment liquid preferably contains water. More preferably, the treatment liquid may be water, and the treatment liquid may be an aqueous boric acid solution. Further, the pH of the treatment liquid is preferably 3-9, more preferably 4-8, and even more preferably 5-7. Moreover, the treatment liquid may contain a water-soluble resin or a water-dispersible resin.
  • water-soluble resins or water-dispersible resins examples include (meth)acrylic resins; polyvinyl alcohol-based resins; polyvinyl acetal-based resins; ethylene-vinyl alcohol copolymer-based resins; polyvinylpyrrolidone-based resins; melamine-based resin; urea-based resin; polyamide-based resin; polyester-based resin; polyurethane-based resin; cellulose-based resin; Among these, hydroxyl group-containing resins such as (meth)acrylic resins; polyvinyl alcohol resins; and polyvinyl acetal resins are preferred, and polyvinyl alcohol resins are more preferred.
  • the temperature of the treatment liquid that is brought into contact with the edge of the polarizing plate in the direction parallel to the polarizer transmission axis direction is 20° C. or higher as described above.
  • the temperature of the treatment liquid is preferably 25° C. or higher and 90° C. or lower. C. to 85.degree. C., more preferably 40.degree. C. to 85.degree. C., and particularly preferably 55.degree.
  • the treatment liquid is brought into contact with the edge of the polarizing plate in the direction parallel to the transmission axis direction of the polarizer for 3 to 150 seconds as described above.
  • the duration of the treatment liquid in contact with the edge suppresses iodine removal at the edge in the direction parallel to the polarizer transmission axis direction, suppresses curling of the polarizing plate, and reduces the optical performance of the polarizer in the polarizing plate.
  • the time is preferably within 140 seconds, more preferably within 120 seconds, A time of 30 seconds or less is particularly preferred.
  • the time for which the treatment liquid is brought into contact with the edge may be 5 seconds or longer.
  • the range of the amount of iodine missing at the end may be 0 ⁇ m or more, or may be 0.1 ⁇ m or more.
  • the upper limit of the amount of iodine removed at the ends is preferably 100 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and particularly less than 19 ⁇ m. preferable.
  • the term “iodine escape amount” means the distance ( ⁇ m) of light escape from the edge of the polarizer in the direction parallel to the polarizer transmission axis direction.
  • all or part of the untreated polarizing plate is immersed in a tank containing the treatment liquid.
  • all or part of the polarizer containing iodine and boron (at least the edge of the polarizer in the direction parallel to the polarizer transmission axis direction)
  • a method of immersing in a bath containing a treatment liquid a method of spraying the treatment liquid on all or part of the polarizer (at least the end of the polarizer in the direction parallel to the polarizer transmission axis direction), and the use of the polarizer.
  • a method of contacting a portion (at least the end portion of the polarizer in the direction parallel to the transmission axis direction of the polarizer) with an article (fibrous material such as cloth, sponge, etc.) immersed in the treatment liquid may be used.
  • the polarizing plate can be washed with water after the polarizing plate is brought into contact with the treatment liquid.
  • Water washing can be performed, for example, by a method of immersing the polarizing plate in a tank containing water and/or a method of spraying water on the polarizing plate.
  • the method for manufacturing a polarizing plate according to the present embodiment may have a drying treatment step after the edge treatment step described above.
  • the drying temperature may be 20° C. or higher, 23° C. or higher, or 100° C. or lower.
  • the drying treatment step may be performed on one polarizing plate, or may be performed with a plurality of polarizing plates laminated. Further, when the edge processing step is performed while the untreated polarizing plate is bonded to the substrate, the drying treatment may be performed in the bonded state.
  • the polarizing plate described above can be used in an image display device.
  • image display devices include liquid crystal display devices and organic EL display devices.
  • the polarizing plate may be used as a polarizing plate arranged on the viewing side of the image display device, may be used as a polarizing plate arranged on the backlight side of the image display device, or may be used as a polarizing plate arranged on the viewing side and the backlight side of the image display device. It may be used for both polarizing plates on both sides.
  • the image display device is suitable as an image display device having a camera hole, for example, as an image display device used for mobile devices such as smartphones and mobile phones, personal computers and the like, televisions and the like.
  • Example 1 (Production Example 1: Polarizer production process) A long polyvinyl alcohol film (average degree of polymerization: about 2400, degree of saponification: 99.9 mol% or more, thickness: 60 ⁇ m) was continuously conveyed and kept in a swelling bath made of pure water at 20°C for a residence time of 31 seconds. (swelling step). After that, the film pulled out from the swelling bath was immersed in a 30° C. dyeing bath containing iodine with a potassium iodide/water ratio of 2/100 (mass ratio) for a residence time of 122 seconds (dyeing step). The film pulled out from the dye bath was then immersed in a 56° C.
  • crosslinking bath containing potassium iodide/boric acid/water at a ratio of 12/4.1/100 (weight ratio) for a residence time of 70 seconds, followed by It was immersed in a 40° C. crosslinking bath containing potassium chloride/boric acid/water at a ratio of 9/2.9/100 (mass ratio) for a residence time of 13 seconds (crosslinking step).
  • crosslinking step In the dyeing process and the cross-linking process, longitudinal uniaxial stretching was performed by stretching between rolls in a bath. The total draw ratio based on the raw film was 5.5 times.
  • drying step After the film pulled out from the cross-linking bath is immersed in a washing bath made of pure water at 5°C for a residence time of 3 seconds (washing step), it is introduced into a drying oven at 80°C for a residence time of 190 seconds for drying. Thus (drying step), a polarizer was obtained. The thickness of the polarizer thus obtained was 23.6 ⁇ m.
  • thermoplastic resin film As a first thermoplastic resin film, a protective film (trade name: “TG60UL”, manufactured by FUJIFILM Corporation) made of triacetyl cellulose resin and having a thickness of 60 ⁇ m was prepared. Further, a retardation film (trade name: “KC3XR-1”, manufactured by Konica Minolta, Inc.) made of triacetyl cellulose resin and having a thickness of 40 ⁇ m was prepared as a second thermoplastic resin film.
  • TG60UL manufactured by FUJIFILM Corporation
  • a retardation film trade name: “KC3XR-1”, manufactured by Konica Minolta, Inc.
  • the polarizing plate was obtained by curing the adhesive by irradiating ultraviolet rays so as to obtain cm 2 (UVB).
  • a surface protective film for polarizing plate (a film having an acrylic pressure-sensitive adhesive layer on one side of a PET substrate, product name "AY-638", manufactured by Fujimori Industry Co., Ltd.) is attached to the above polarizing plate. Laminated.
  • a polarizing plate with a surface protective film for a polarizing plate having a surface protective film for a polarizing plate/protective film/adhesive layer/polarizer/adhesive layer/retardation film was obtained.
  • a release film-attached pressure-sensitive adhesive layer having an acrylic pressure-sensitive adhesive layer (thickness of 20 ⁇ m) on the release-treated surface of the release film was prepared.
  • a first laminate was obtained by laminating the pressure-sensitive adhesive layer with a release film on the retardation film side of the polarizing plate with a surface protective film for a polarizing plate after corona-treating the surface of the phase shifter film.
  • the first laminate has a structure of surface protective film for polarizing plate/protective film/adhesive layer/polarizer/adhesive layer/retardation film/adhesive layer/release film.
  • the first laminate obtained in Production Example 2 was cut into sheets using a cutter. Then, after stacking a plurality of the sheets and polishing the outer periphery, the sheets were separated and collected to form a second laminate of 217 mm (MD direction) x 164 mm (TD direction).
  • MD direction means a direction orthogonal to the stretching direction (MD direction) of the polarizer.
  • the second laminate obtained here is called an untreated polarizing plate with a surface protective film for a polarizing plate.
  • a third laminate is formed by stacking seven second laminates obtained in Production Example 3 above, and the front and back surfaces of the third laminate are made of non-alkali glass (trade name: "Eagle") with a thickness of 0.7 mm. XG", manufactured by Corning) and fixed with a clip. Furthermore, the end portion including one side in the TD direction of the third laminate (the end portion in the direction parallel to the transmission axis direction of the polarizer) was immersed in water (pure water) at a temperature of 60° C. for 5 seconds. The immersion was performed by immersing the edge of the third laminate to a depth of 2 cm from the water surface.
  • water pure water
  • the remaining three sides of the third laminate were also immersed in water (pure water) at a temperature of 60° C. for 5 seconds in the same manner to obtain a fourth laminate.
  • the fourth laminate was dried by leaving it at room temperature for one day while holding it with non-alkali glass and fixing it with a clip.
  • the alkali-free glass and the clip were removed from the fourth laminate, seven polarizing plates were separated and collected, and a fifth laminate was obtained.
  • a laminate (fifth laminate) including the polarizing plate of Example 1 was produced.
  • the end of the manufactured fifth laminate in the direction parallel to the polarizer transmission axis direction is observed with a laser microscope, and the end of the polarizer in the direction parallel to the polarizer transmission axis direction is the thermoplastic resin film on both sides. It was confirmed that the end portion in the direction parallel to the transmission axis direction of the polarizer was at the same position in the surface direction.
  • Example 2 In the above production example 4 (end treatment step), the end including one side in the TD direction of the third laminate and the remaining three sides were immersed in water at a temperature of 80 ° C. (pure water) for 5 seconds.
  • a laminate including the polarizing plate of Example 2 (fifth laminate) was produced in the same manner as in Example 1.
  • the end of the manufactured fifth laminate in the direction parallel to the polarizer transmission axis direction is observed with a laser microscope, and the end of the polarizer in the direction parallel to the polarizer transmission axis direction is the thermoplastic resin film on both sides. It was confirmed that the end portion in the direction parallel to the transmission axis direction of the polarizer was at the same position in the surface direction.
  • Example 3 In the above Production Example 4 (end portion treatment step), the end portion including one side in the TD direction of the third laminate and the remaining three sides were immersed in water at a temperature of 50 ° C. (pure water) for 5 seconds.
  • a laminate (fifth laminate) containing the polarizing plate of Example 3 was produced in the same manner as in Example 1. The end of the manufactured fifth laminate in the direction parallel to the polarizer transmission axis direction is observed with a laser microscope, and the end of the polarizer in the direction parallel to the polarizer transmission axis direction is the thermoplastic resin film on both sides. It was confirmed that the end portion in the direction parallel to the transmission axis direction of the polarizer was at the same position in the surface direction.
  • the release film is peeled off from the fifth laminate, and a non-alkaline glass (trade name: “Eagle XG”, manufactured by Corning Incorporated) with a thickness of 0.7 mm is applied to the peeling surface of the fifth laminate using a laminator. pasted together.
  • the fifth laminate to which the alkali-free glass was bonded was autoclaved (at a temperature of 50°C and a pressure of 5 kgf/cm 2 (490.3 kPa) for 20 minutes) to obtain a polarizing plate surface.
  • a sample for HS test evaluation of the fifth laminate was obtained by peeling off the protective film and then storing for one day in an environment with a temperature of 23° C. and a relative humidity of 55%.
  • a heat shock (HS ) was tested. After the test, it was visually observed whether or not a crack occurred at the end portion of the polarizer in the direction parallel to the polarizer transmission axis direction in the HS test evaluation sample.
  • the number of HS test evaluation samples having cracks at the edges of the plurality of HS test evaluation samples subjected to the HS test was determined as the defective sample rate (%).
  • a defective sample occurrence rate (%) of 35% or less can be evaluated as good. Table 1 shows the results.
  • the pulling force of the surface protective film for polarizing plate was measured according to the following procedure. First, five test pieces of 50 mm (MD direction) ⁇ 25 mm (TD direction) were cut out from the fifth laminate. The test piece was cut so that one side of the test piece in the TD direction was the edge-treated side.
  • the separate film was peeled off from the above test piece, and a 0.7 mm-thick alkali-free glass (trade name: "Eagle XG", manufactured by Corning) was laminated to the peeled surface of the test piece using a laminator.
  • a release paper was attached to the non-alkali glass.
  • the release paper and the test piece were bonded to the non-alkali glass so that the edge of the test piece up to 1 mm inside from the edge-treated side was positioned on the release paper.
  • the area from the edge-treated side of the test piece including the above edge to the inner side of 5 mm was covered with cellophane tape (manufactured by Nichiban Co., Ltd.) with a width of 25 mm, and the long side of the test piece and the long side of the cellophane tape They were pasted so as to form a straight line, thereby preparing a sample for measuring the pulling force.
  • cellophane tape manufactured by Nichiban Co., Ltd.
  • the maximum value of the peeling force measured when the surface protective film for polarizing plate was peeled off from the protective film was regarded as the triggering force.
  • the triggering force (N/25 mm) was the average of the values obtained from five samples for measuring the triggering force.
  • a triggering force (N/25 mm) of 0.1 or more can be evaluated as good. If the lifting force is too high, it will be difficult to peel off, and if it is less than 0.1, peeling will occur in an undesired step during the manufacturing process, and the protective function for the polarizing plate cannot be achieved, which is not preferable. Table 1 shows the results.
  • the separate film was peeled off from the fifth laminate, and a 0.7 mm-thick alkali-free glass (trade name: "Eagle XG", manufactured by Corning) was attached to the peeling surface of the fifth laminate using a laminator. Matched. Subsequently, the polarizing plate surface protective film was peeled off to obtain a sample for evaluating the amount of iodine removed from the fifth laminate.
  • a mm-thick alkali-free glass trade name: "Eagle XG", manufactured by Corning
  • the sample for evaluating the amount of iodine removed is placed on a polarizing plate for inspection in a crossed Nicols state, and a light source is irradiated from the back of the sample for evaluating the amount of iodine removed, so that the polarizer transmission axis direction of each sample The presence or absence of light leakage at the end in the direction parallel to .
  • the polarizer transmission in the sample was specified, and this was determined as the iodine escape amount. It can be evaluated that the larger the distance ( ⁇ m), the larger the amount of iodine escaped, and thus the smaller the distance ( ⁇ m), the better the evaluation.
  • the amount of iodine removed was the average value of the distances obtained from the five samples for evaluating the amount of iodine removed. Table 1 shows the results.
  • the value of the iodine escape amount (426 ⁇ m) in Comparative Example 1 indicates the amount of light escape from the edge of the polarizing plate.
  • the actual amount of iodine missing in the polarizer is 176 ⁇ m.
  • the polarizing plates of Examples 1 to 3 are inhibited from cracking at the edges in the direction parallel to the transmission axis direction of the polarizer in the heat shock test. Further, the polarizing plates of Examples 1 to 3 are less prone to iodine loss and have good visibility. In addition, the polarizing plates of Examples 1 to 3 are suppressed from curling, and the surface protective film for polarizing plate has a good curling force.
  • thermoplastic resin film 1 polarizing plate, 2 polarizer, 2a polarizer void, 3 first thermoplastic resin film, 4 second thermoplastic resin film, 5 surface protective film for polarizing plate, 10 parallel to the polarizer transmission axis direction of the polarizing plate 21 end of the polarizer in the direction parallel to the polarizer transmission axis direction, 31, 41 end of the thermoplastic resin film in the direction parallel to the polarizer transmission axis direction, TD the polarizer transmission axis direction , MD: absorption axis direction of polarizer, X: laser light.

Abstract

[Problem] To provide a polarizing plate provided with a polarizer in which a polarizer gap part is not formed in an end region, and cracks are suppressed in a heat shock test. [Solution] A polarizing plate has thermoplastic resin films on both surfaces of a polarizer containing iodine and boron, wherein the ends of the polarizer in the direction parallel to the direction of the polarizer transmission axis are at the same position in the plane direction rather than the ends of at least one of the thermoplastic resin films in the direction parallel to the direction of the polarizer transmission axis or are located on the outside in the plane direction, and the ends of the polarizer in the direction parallel to the direction of the polarizer transmission axis satisfy formula (I) below. Boric acid cross-linking index ≦0.9 (I) [The boric acid cross-linking index is defined by the Raman scattered light intensity at a wavenumber of 780 cm-1/the Raman scattered light intensity at a wavenumber of 850 cm-1.]

Description

偏光板およびその製造方法Polarizing plate and manufacturing method thereof
 本発明は、偏光板およびその製造方法に関する。 The present invention relates to a polarizing plate and a manufacturing method thereof.
 下記特許文献1は、偏光板に貫通孔を形成した場合等においても良好な耐久性を有する偏光板として、貫通孔の端部のホウ酸の含有濃度が他の部位より低い偏光子と該偏光子の両面に保護フィルムを有する偏光板を開示している。 Patent Document 1 below discloses a polarizer having a lower concentration of boric acid at the ends of the through holes than other portions, and the polarized light, as a polarizing plate having good durability even when through holes are formed in the polarizing plate. Discloses a polarizing plate having protective films on both sides of the element.
特開2016-206641号公報JP 2016-206641 A
 しかしながら上記特許文献1に記載の偏光板は、その端部に偏光子空隙部が形成されてしまっていた。偏光子空隙部とは、偏光子の端部が保護フィルムの端部よりも面方向内側に存在(または位置)することにより形成される保護フィルム間の空隙部を意味する。上記偏光子空隙部が偏光板の端部に形成されると、偏光板を表示装置等に組み込んだ際に、偏光子空隙部から光漏れが生じる場合がある。 However, the polarizing plate described in Patent Document 1 has polarizer voids formed at the ends thereof. The polarizer gap means a gap between the protective films formed by the edge of the polarizer existing (or positioned) inside the edge of the protective film in the plane direction. If the polarizer gap is formed at the end of the polarizing plate, light may leak from the polarizer gap when the polarizing plate is incorporated in a display device or the like.
 本発明の目的は、偏光板の端部(中でも偏光子における透過軸方向と平行な方向の端部)領域において偏光子空隙部が形成されず、かつ高温(85℃)下に曝した後、冷却することによって低温(-40℃)下に曝す操作を繰り返すヒートショック試験においてクラックの発生が抑制される偏光子を備えた偏光板、およびその製造方法を提供することである。 An object of the present invention is to prevent the polarizer gap from being formed in the end portion of the polarizing plate (especially the end portion in the direction parallel to the transmission axis direction of the polarizer), and after exposure to a high temperature (85 ° C.), An object of the present invention is to provide a polarizing plate equipped with a polarizer that suppresses the occurrence of cracks in a heat shock test in which the polarizer is repeatedly exposed to a low temperature (−40° C.) by cooling, and a method for producing the polarizer.
 本発明は、以下の偏光板およびその製造方法を提供する。
〔1〕 ヨウ素およびホウ素を含む偏光子の両面に熱可塑性樹脂フィルムを有する偏光板であって、
 前記偏光子における偏光子透過軸方向と平行な方向の端部は、少なくとも一方の前記熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部よりも面方向において同じ位置であるか、または面方向外側に位置し、
 前記偏光子における偏光子透過軸方向と平行な方向の端部は、下記式(I)を満たす、偏光板。
ホウ酸架橋度指数≦0.9     (I)
[ホウ酸架橋度指数は、波数780cm-1におけるラマン散乱光強度/波数850cm-1におけるラマン散乱光強度で定義される。]
〔2〕 ヨウ素およびホウ素を含む偏光子の両面に、熱可塑性樹脂フィルムを積層することにより偏光板を得る積層工程と、
 前記偏光板の偏光子透過軸方向と平行な方向の端部を、20℃以上の処理液に3~150秒接触させる端部処理工程とを含む、偏光板の製造方法。
〔3〕 前記偏光板を切断および/または打ち抜き加工することにより、前記偏光板の偏光子透過軸方向と平行な方向の端部を形成する端部形成工程をさらに含む、〔2〕に記載の偏光板の製造方法。
〔4〕 前記偏光板において、前記熱可塑性樹脂フィルムの前記偏光子が配置された側とは反対側の面に偏光板用表面保護フィルムを積層する表面保護工程をさらに含む、〔2〕
または〔3〕に記載の偏光板の製造方法。
〔5〕 前記処理液は水を含む、〔2〕から〔4〕のいずれか1項に記載の偏光板の製造方法。
〔6〕 前記処理液は水である、〔2〕から〔5〕のいずれか1項に記載の偏光板の製造方法。
〔7〕 前記処理液はpH3~9である、〔2〕から〔6〕のいずれか1項に記載の偏光板の製造方法。
〔8〕 ヨウ素およびホウ素を含む偏光子の少なくとも一方の面に熱可塑性樹脂フィルムを有する偏光板であって、
 前記偏光子における偏光子透過軸方向と平行な方向の端部は、前記熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部よりも面方向において同じ位置であるか、または面方向外側に位置し、
 前記偏光子における偏光子透過軸方向と平行な方向の端部は、下記式(I)を満たす、偏光板。
ホウ酸架橋度指数≦0.9     (I)
[ホウ酸架橋度指数は、波数780cm-1におけるラマン散乱光強度/波数850cm-1におけるラマン散乱光強度で定義される。]
〔9〕 ヨウ素およびホウ素を含む偏光子の少なくとも一方の面に、熱可塑性樹脂フィルムを積層することにより偏光板を得る積層工程と、
 前記偏光板の偏光子透過軸方向と平行な方向の端部を、20℃以上の処理液に3~150秒接触させる端部処理工程とを含む、偏光板の製造方法。
The present invention provides the following polarizing plate and manufacturing method thereof.
[1] A polarizing plate having thermoplastic resin films on both sides of a polarizer containing iodine and boron,
Is the end of the polarizer in the direction parallel to the polarizer transmission axis direction the same position in the plane direction as the end of at least one of the thermoplastic resin films in the direction parallel to the polarizer transmission axis direction? or located on the outside in the plane direction,
A polarizing plate in which an end portion of the polarizer in a direction parallel to a polarizer transmission axis direction satisfies the following formula (I).
Boric acid cross-linking index ≤ 0.9 (I)
[The boric acid cross-linking index is defined as Raman scattered light intensity at a wavenumber of 780 cm -1 /Raman scattered light intensity at a wavenumber of 850 cm -1 . ]
[2] a lamination step of obtaining a polarizing plate by laminating thermoplastic resin films on both sides of a polarizer containing iodine and boron;
and an edge treatment step of contacting the edge of the polarizing plate in a direction parallel to the polarizer transmission axis direction with a treatment liquid at 20° C. or higher for 3 to 150 seconds.
[3] The method according to [2], further comprising an end portion forming step of forming an end portion of the polarizing plate in a direction parallel to the polarizer transmission axis direction by cutting and/or punching the polarizing plate. A method for manufacturing a polarizing plate.
[4] In the polarizing plate, further comprising a surface protecting step of laminating a surface protecting film for a polarizing plate on the surface of the thermoplastic resin film opposite to the side on which the polarizer is arranged, [2]
Or the manufacturing method of the polarizing plate as described in [3].
[5] The method for producing a polarizing plate according to any one of [2] to [4], wherein the treatment liquid contains water.
[6] The method for producing a polarizing plate according to any one of [2] to [5], wherein the treatment liquid is water.
[7] The method for producing a polarizing plate according to any one of [2] to [6], wherein the treatment liquid has a pH of 3 to 9.
[8] A polarizing plate having a thermoplastic resin film on at least one surface of a polarizer containing iodine and boron,
The end portion of the polarizer in the direction parallel to the polarizer transmission axis direction is at the same position in the plane direction as the end portion of the thermoplastic resin film in the direction parallel to the polarizer transmission axis direction, or located outside the
A polarizing plate in which an end portion of the polarizer in a direction parallel to a polarizer transmission axis direction satisfies the following formula (I).
Boric acid cross-linking index ≤ 0.9 (I)
[The boric acid cross-linking index is defined as Raman scattered light intensity at a wavenumber of 780 cm -1 /Raman scattered light intensity at a wavenumber of 850 cm -1 . ]
[9] a lamination step of obtaining a polarizing plate by laminating a thermoplastic resin film on at least one surface of a polarizer containing iodine and boron;
and an edge treatment step of contacting an edge of the polarizer in a direction parallel to the polarizer transmission axis direction with a treatment liquid at 20° C. or higher for 3 to 150 seconds.
 本発明によれば、偏光板の端部(中でも偏光子における透過軸方向と平行な方向の端部)領域において偏光子空隙部が形成されず、かつ高温(85℃)下に曝した後、冷却することによって低温(-40℃)下に曝す操作を繰り返すヒートショック試験においてクラックの発生が抑制される偏光子を備えた偏光板、およびその製造方法を提供することができる。また本発明によれば、偏光子空隙部が形成されないことから光漏れも改善される。 According to the present invention, the polarizer gap is not formed in the end portion of the polarizing plate (especially the end portion in the direction parallel to the transmission axis direction of the polarizer), and after exposure to a high temperature (85° C.), It is possible to provide a polarizing plate having a polarizer that suppresses the occurrence of cracks in a heat shock test in which cooling causes repeated exposure to a low temperature (−40° C.), and a method for producing the same. Further, according to the present invention, light leakage is improved because no polarizer gap is formed.
図1は、本実施形態に係る偏光板を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing a polarizing plate according to this embodiment. 図2は、本実施形態に係る偏光板を構成する偏光子を説明する説明図である。FIG. 2 is an explanatory diagram for explaining the polarizer that constitutes the polarizing plate according to this embodiment. 図3は、偏光板の偏光子透過軸方向と平行な方向の端部の態様を説明する説明図であって、(a)~(e)は、本実施形態の範囲に含まれる偏光板の偏光子透過軸方向と平行な方向の端部の態様を説明する説明図であり、(f)は、本実施形態の範囲外の偏光板の偏光子透過軸方向と平行な方向の端部の態様を説明する説明図である。FIG. 3 is an explanatory view explaining the aspect of the end portion of the polarizing plate in the direction parallel to the polarizer transmission axis direction, and (a) to (e) are included in the scope of the present embodiment. FIG. 11 is an explanatory diagram illustrating a mode of an end portion in a direction parallel to the polarizer transmission axis direction, and (f) is an end portion in a direction parallel to the polarizer transmission axis direction of a polarizing plate outside the scope of this embodiment; It is an explanatory view explaining a mode. 図4は、本実施形態に係る偏光板を対象とした顕微ラマン分光分析について説明する説明図である。FIG. 4 is an explanatory diagram for explaining microscopic Raman spectroscopic analysis for the polarizing plate according to this embodiment. 図5は、他の実施形態に係る偏光板を示す概略断面図である。FIG. 5 is a schematic cross-sectional view showing a polarizing plate according to another embodiment.
 以下、図面を参照しつつ本発明の一実施形態(以下、「本実施形態」とも記す)を説明するが、本発明は以下の実施形態に限定されるものではない。以下のすべての図面においては、各構成要素を理解し易くするために縮尺を適宜調整して示しており、図面に示される各構成要素の縮尺と実際の構成要素の縮尺とは必ずしも一致しない。図面において、同等の構成要素には同等の符号を付す。図1および図5に示すX,YおよびZは、互いに直交する3つの座標軸を意味する。図1および図5中のXYZ座標軸其々が示す方向は各図に共通する。また本明細書において「平面視」とは、偏光板および偏光子をそれぞれ厚み方向から視することを意味する。 An embodiment of the present invention (hereinafter also referred to as "this embodiment") will be described below with reference to the drawings, but the present invention is not limited to the following embodiments. In all the drawings below, the scale of each component is adjusted appropriately to facilitate understanding, and the scale of each component shown in the drawings does not necessarily match the scale of the actual component. In the drawings, similar components are provided with similar reference numerals. X, Y and Z shown in FIGS. 1 and 5 mean three coordinate axes orthogonal to each other. The directions indicated by the XYZ coordinate axes in FIGS. 1 and 5 are common to each figure. In addition, in this specification, "planar view" means viewing the polarizing plate and the polarizer from the thickness direction.
 <偏光板>
 本実施形態に係る偏光板は、ヨウ素およびホウ素を含む偏光子の少なくとも一方の面に熱可塑性樹脂フィルムを有する偏光板であって、好ましくは上記偏光子の両面に熱可塑性樹脂フィルムを有する偏光板である。本実施形態に係る偏光板において、上記偏光子における偏光子透過軸方向と平行な方向の端部は、少なくとも一方の上記熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部よりも面方向において同じ位置であるか、または面方向外側に位置する。また上記偏光子における偏光子透過軸方向と平行な方向の端部は、下記式(I)を満たす。
ホウ酸架橋度指数≦0.9     (I)
[ホウ酸架橋度指数は、波数780cm-1におけるラマン散乱光強度/波数850cm-1におけるラマン散乱光強度で定義される。]。
<Polarizing plate>
The polarizing plate according to the present embodiment is a polarizing plate having a thermoplastic resin film on at least one surface of a polarizer containing iodine and boron, preferably a polarizing plate having a thermoplastic resin film on both sides of the polarizer. is. In the polarizing plate according to the present embodiment, the end portion of the polarizer in the direction parallel to the polarizer transmission axis direction is closer than the end portion of at least one of the thermoplastic resin films in the direction parallel to the polarizer transmission axis direction. They are at the same position in the plane direction, or they are located outside in the plane direction. Further, the end portion of the polarizer in the direction parallel to the polarizer transmission axis direction satisfies the following formula (I).
Boric acid cross-linking index ≤ 0.9 (I)
[The boric acid cross-linking index is defined as Raman scattered light intensity at a wavenumber of 780 cm -1 /Raman scattered light intensity at a wavenumber of 850 cm -1 . ].
 図1は、本実施形態に係る偏光板を示す概略断面図である。図1に示すように、偏光板1は、ヨウ素およびホウ素を含む偏光子2の両面に熱可塑性樹脂フィルム(第1熱可塑性樹脂フィルム3および第2熱可塑性樹脂フィルム4)を有する。偏光板1は、偏光子2の両側に熱可塑性樹脂フィルム(第1熱可塑性樹脂フィルム3および第2熱可塑性樹脂フィルム4)が接着剤または粘着剤を用いて貼合されることにより形成される。以下、本明細書において「第1熱可塑性樹脂フィルム」および「第2熱可塑性樹脂フィルム」を総称して保護フィルムということがある。 FIG. 1 is a schematic cross-sectional view showing a polarizing plate according to this embodiment. As shown in FIG. 1, polarizing plate 1 has thermoplastic resin films (first thermoplastic resin film 3 and second thermoplastic resin film 4) on both sides of polarizer 2 containing iodine and boron. The polarizing plate 1 is formed by laminating thermoplastic resin films (a first thermoplastic resin film 3 and a second thermoplastic resin film 4) on both sides of a polarizer 2 using an adhesive or pressure-sensitive adhesive. . Hereinafter, in this specification, the "first thermoplastic resin film" and the "second thermoplastic resin film" may be collectively referred to as protective films.
 本明細書において「偏光子」とは、自然光などの光を直線偏光に変換する機能を有する部材をいう。上記偏光子は、透過軸と吸収軸とを有する。以下、偏光子の「透過軸方向」および「吸収軸方向」について図2を用いて説明する。図2は、本実施形態に係る偏光板を構成する偏光子を説明する説明図である。図2に示すように偏光子の透過軸方向(TD方向)は、偏光子に自然光を透過させたときの透過光の振動方向として理解される。一方、偏光子の吸収軸方向(MD方向)は、偏光子の上記透過軸に直交する。なお、偏光子は延伸フィルムであり得、偏光子の吸収軸方向は、その延伸方向(MD方向)と一致し得、偏光子の透過軸方向は幅方向(TD方向)と一致し得る。 As used herein, the term "polarizer" refers to a member that has the function of converting light such as natural light into linearly polarized light. The polarizer has a transmission axis and an absorption axis. The "transmission axis direction" and "absorption axis direction" of the polarizer will be described below with reference to FIG. FIG. 2 is an explanatory diagram for explaining the polarizer that constitutes the polarizing plate according to this embodiment. As shown in FIG. 2, the transmission axis direction (TD direction) of the polarizer is understood as the vibration direction of transmitted light when natural light is transmitted through the polarizer. On the other hand, the absorption axis direction (MD direction) of the polarizer is orthogonal to the transmission axis of the polarizer. In addition, the polarizer may be a stretched film, the absorption axis direction of the polarizer may coincide with the stretching direction (MD direction), and the transmission axis direction of the polarizer may coincide with the width direction (TD direction).
 本実施形態に係る偏光板は、偏光子空隙部が存在しない。すなわち上記偏光板において、上記偏光子における偏光子透過軸方向と平行な方向の端部は、少なくとも一方の上記熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部よりも面方向において同じ位置であるか、または面方向外側に位置する。本明細書において「偏光子における偏光子透過軸方向と平行な方向の端部は、少なくとも一方の上記熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部よりも面方向において同じ位置であるか、または面方向外側に位置する」とは、図3(f)に示すような偏光板の構造を除くことをいう。つまり図3(f)に示す偏光板においては、偏光子における偏光子透過軸方向と平行な方向の端部21は、両面の熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部31,41よりも面方向内側に位置するため、偏光子空隙部2aが形成されている。一方、本実施形態において偏光子における偏光子透過軸方向と平行な方向の端部21は、少なくとも一方の上記熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部31,41よりも面方向において同じ位置であるか、または面方向外側に位置する限り、特段その構造は限定されない。例えば、図3(a)に示す偏光板の偏光子透過軸方向と平行な方向の端部10において、偏光子における偏光子透過軸方向と平行な方向の端部21は、両面の熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部31,41と面方向において同じ位置にあってもよい。また、図3(b)および図3(c)に示すように、偏光子における偏光子透過軸方向と平行な方向の端部21は、一方の熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部31,41と面方向において同じ位置にあり、もう一方の熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部31,41よりも面方向外側に位置にしてもよい。さらに、図3(d)および図3(e)に示すように、偏光子における偏光子透過軸方向と平行な方向の端部21が、一方の熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部31,41よりも面方向内側に位置し、もう一方の熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部31,41よりも面方向外側に位置していてもよい。なお本明細書において、図3(d)および図3(e)に示すように、偏光子における偏光子透過軸方向と平行な方向の端部21および熱可塑性樹脂フィルムにおける端部31,41が傾斜を有する場合、熱可塑性樹脂フィルムの端部31,41は熱可塑性樹脂フィルムの厚み方向中央の位置を表し、偏光子の端部21は偏光子の厚み方向中央の位置を「偏光子透過軸方向と平行な方向の端部」として表すものとする。また本願明細書において「面方向」とは、偏光子2の面と平行な方向をいうものとする。 The polarizing plate according to this embodiment has no polarizer gap. That is, in the polarizing plate, the end portion of the polarizer in the direction parallel to the polarizer transmission axis direction is more in the plane direction than the end portion of at least one of the thermoplastic resin films in the direction parallel to the polarizer transmission axis direction. at the same position or on the outside in the plane direction. In the present specification, "the end of the polarizer in the direction parallel to the polarizer transmission axis direction is at the same position in the plane direction as the end of at least one of the thermoplastic resin films in the direction parallel to the polarizer transmission axis direction. or located on the outer side in the plane direction" means excluding the structure of the polarizing plate as shown in FIG. 3(f). That is, in the polarizing plate shown in FIG. 3( f ), the end portion 21 of the polarizer in the direction parallel to the polarizer transmission axis direction is the end portion of the thermoplastic resin film on both sides in the direction parallel to the polarizer transmission axis direction. A polarizer gap portion 2a is formed because it is located on the inner side of 31 and 41 in the plane direction. On the other hand, in the present embodiment, the end portion 21 of the polarizer in the direction parallel to the polarizer transmission axis direction is more likely than the end portions 31 and 41 of at least one of the thermoplastic resin films in the direction parallel to the polarizer transmission axis direction. The structure is not particularly limited as long as it is located at the same position in the plane direction or located outside in the plane direction. For example, in the end portion 10 of the polarizing plate shown in FIG. It may be located at the same position in the plane direction as the ends 31 and 41 of the film in the direction parallel to the polarizer transmission axis direction. Further, as shown in FIGS. 3B and 3C, the end portion 21 of the polarizer in the direction parallel to the polarizer transmission axis direction is parallel to the polarizer transmission axis direction of one of the thermoplastic resin films. Even if it is located at the same position in the plane direction as the ends 31 and 41 in the other direction, and is positioned outside the ends 31 and 41 in the direction parallel to the polarizer transmission axis direction in the other thermoplastic resin film in the plane direction. good. Furthermore, as shown in FIGS. 3(d) and 3(e), the end portion 21 of the polarizer in the direction parallel to the polarizer transmission axis direction is parallel to the polarizer transmission axis direction of one of the thermoplastic resin films. , and is located outside the ends 31 and 41 of the other thermoplastic resin film in the direction parallel to the polarizer transmission axis direction in the plane direction. good too. In this specification, as shown in FIGS. 3(d) and 3(e), the end 21 of the polarizer in the direction parallel to the polarizer transmission axis direction and the ends 31 and 41 of the thermoplastic resin film are When having an inclination, the ends 31 and 41 of the thermoplastic resin film represent the center position in the thickness direction of the thermoplastic resin film, and the end portion 21 of the polarizer represents the center position in the thickness direction of the polarizer as the "polarizer transmission axis. shall be expressed as "the edge in the direction parallel to the direction". In the specification of the present application, the term “plane direction” refers to a direction parallel to the plane of the polarizer 2 .
 本実施形態に係る偏光板は、上記偏光子における偏光子透過軸方向と平行な方向の端部が下記式(I)を満たす。
ホウ酸架橋度指数≦0.9     (I)
[ホウ酸架橋度指数=波数780cm-1におけるラマン散乱光強度/波数850cm-1におけるラマン散乱光強度]。
In the polarizing plate according to this embodiment, the end portion of the polarizer in the direction parallel to the polarizer transmission axis direction satisfies the following formula (I).
Boric acid cross-linking index ≤ 0.9 (I)
[Boric acid crosslinking index=Raman scattered light intensity at wavenumber 780 cm −1 /Raman scattered light intensity at wavenumber 850 cm −1 ].
 上記ホウ酸架橋度指数の値は、0以上であってもよく、0より大きくてもよい。また、0より大きく0.9以下であることが好ましく、0.1以上0.85以下であることがより好ましく、0.15以上0.80以下であることがさらに好ましい。本明細書において「ホウ酸架橋度指数」とは、ポリビニルアルコール系樹脂フィルムなどからなる偏光子において、ポリビニルアルコール分子鎖同士がどの程度、ホウ酸で架橋されているのかを表す指数を意味する。ホウ酸架橋度指数の値が高いほど、ポリビニルアルコール分子鎖同士のホウ酸架橋が進行した偏光子であるといえ、偏光子においてヨウ素抜けが起こりにくいという特性を備えることができる。一方、偏光子の端部(特に偏光子透過軸方向と平行な方向の端部)においてホウ酸架橋度指数の値が高すぎる場合、ヒートショック試験において偏光板にクラックが発生し易い傾向にある。上記式(I)を満たすことにより、ヒートショック試験における偏光板のクラック発生を抑制することができる。 The value of the boric acid cross-linking index may be 0 or more, or may be greater than 0. Also, it is preferably greater than 0 and 0.9 or less, more preferably 0.1 or more and 0.85 or less, and even more preferably 0.15 or more and 0.80 or less. As used herein, the term “boric acid cross-linking index” means an index that indicates how much polyvinyl alcohol molecular chains are cross-linked with boric acid in a polarizer made of a polyvinyl alcohol-based resin film or the like. It can be said that the higher the value of the boric acid cross-linking degree index, the more advanced the boric acid cross-linking between the polyvinyl alcohol molecular chains is in the polarizer, and the polarizer can be provided with the property that iodine escape hardly occurs. On the other hand, if the value of the boric acid cross-linking degree index is too high at the ends of the polarizer (especially the ends parallel to the transmission axis direction of the polarizer), cracks tend to occur in the polarizing plate in the heat shock test. . By satisfying the above formula (I), it is possible to suppress the occurrence of cracks in the polarizing plate in the heat shock test.
 また、本実施形態に係る偏光板は、偏光子における偏光子透過軸方向と平行な方向の端部でのホウ酸架橋度指数(以下、「ホウ酸架橋度指数(1)」という場合がある)と、偏光子における偏光子透過軸方向と平行な方向の端部から面方向内側に100μmでのホウ酸架橋度指数(以下、「ホウ酸架橋度指数(2)」という場合がある)との比率(ホウ酸架橋度指数(1)/ホウ酸架橋度指数(2))が0.95以下であることが好ましい。ホウ酸架橋度指数(1)/ホウ酸架橋度指数(2)は0.90以下であることがより好ましく、0以上であればよい。 In addition, the polarizing plate according to the present embodiment has a boric acid cross-linking index (hereinafter, sometimes referred to as "boric acid cross-linking index (1)") at the end of the polarizer in the direction parallel to the polarizer transmission axis direction. ) and a boric acid cross-linking index (hereinafter sometimes referred to as “boric acid cross-linking index (2)”) at 100 μm inward in the plane direction from the end of the polarizer in the direction parallel to the polarizer transmission axis direction. (Boric acid cross-linking index (1)/Boric acid cross-linking index (2)) is preferably 0.95 or less. The ratio of boric acid cross-linking index (1)/boric acid cross-linking index (2) is more preferably 0.90 or less, and may be 0 or more.
 ホウ酸架橋度指数は、顕微ラマン分光分析を行うことにより求めることができる。顕微ラマン分光分析において、レーザーラマン分光光度計(商品名:「NRS-5100」、日本分光株式会社製)を用いることにより、偏光子の波数780cm-1におけるラマン散乱光強度、および波数850cm-1におけるラマン散乱光強度をそれぞれ求め、次いでこれらの波数のラマン散乱光強度を除算(波数780cm-1におけるラマン散乱光強度/波数850cm-1におけるラマン散乱光強度)することにより、ホウ酸架橋度指数を算出することができる。 The boric acid cross-linking index can be determined by microscopic Raman spectroscopic analysis. In the microscopic Raman spectroscopic analysis, by using a laser Raman spectrophotometer (trade name: "NRS-5100", manufactured by JASCO Corporation), the Raman scattered light intensity at the wave number of 780 cm -1 of the polarizer and the wave number of 850 cm -1 , and then dividing the Raman scattered light intensities at these wavenumbers (Raman scattered light intensity at a wavenumber of 780 cm -1 /Raman scattered light intensity at a wavenumber of 850 cm -1 ) to obtain the boric acid crosslinking degree index can be calculated.
 ここで図4は、本実施形態に係る偏光板を対象とした顕微ラマン分光分析について説明する説明図である。図4に示すようにレーザーラマン分光光度計においては、レーザー光Xと偏光子の吸収軸方向とが直交するように入射させる。なお、ここでレーザー光Xは、偏光子の厚み方向に偏光している。またレーザー光の測定位置を、偏光子の厚み方向中央の位置とする。なお、ラマン分光測定の前にミクロトームを用いて偏光板の断面加工を実機することが好ましい。波数780cm-1におけるラマン散乱光強度とは、ポリビニルアルコールとホウ素との結合に起因するラマン散乱光強度を意味し、波数850cm-1におけるラマン散乱光強度とは、ポリビニルアルコールに起因するラマン散乱光強度を意味する。 Here, FIG. 4 is an explanatory diagram for explaining microscopic Raman spectroscopic analysis for the polarizing plate according to the present embodiment. As shown in FIG. 4, in the laser Raman spectrophotometer, the laser light X and the absorption axis direction of the polarizer are made to enter at right angles. Note that the laser light X is polarized in the thickness direction of the polarizer. Moreover, let the measurement position of a laser beam be the position of the thickness direction center of a polarizer. In addition, it is preferable to actually machine the cross section of the polarizing plate using a microtome before the Raman spectroscopic measurement. The Raman scattered light intensity at a wavenumber of 780 cm -1 means the Raman scattered light intensity caused by the bonding of polyvinyl alcohol and boron, and the Raman scattered light intensity at a wavenumber of 850 cm -1 means the Raman scattered light caused by polyvinyl alcohol. means strength.
 また上記の顕微ラマン分光分析に用いる各種の条件は、以下のとおりである。
励起波長  :532nm
グレーチング:600 l/mm
スリット幅 :100×1000μm
アパーチャ :φ40μm
対物レンズ :100倍。
Various conditions used for the microscopic Raman spectroscopic analysis are as follows.
Excitation wavelength: 532 nm
Grating: 600 l/mm
Slit width: 100×1000 μm
Aperture: φ40 μm
Objective lens: 100x.
 偏光板は長尺の帯状であってもよいし、枚葉状であってもよい。偏光板が枚葉状である場合、偏光板は、平面視において全体形状が方形状または角丸方形状であってよい。角丸方形状とは、方形状の角部のうち1つ以上が曲線となっている形状をいい、すなわち方形状の角部のうち1つ以上が角丸であり、方形状とは4つの角がいずれも角丸ではない形状をいうものとする。また、本明細書において、方形状とは長方形状または正方形状をいうものとする。偏光板が角丸方形状である場合、偏光板が有する4つの角のうち1つ以上が角丸となっていてもよい。偏光板は、平面視における全体形状が多角形、円形、または楕円形であってもよい。 The polarizing plate may be in the shape of a long strip or in the shape of a sheet. When the polarizing plate is sheet-shaped, the overall shape of the polarizing plate may be square or square with rounded corners in plan view. A square with rounded corners refers to a shape in which one or more of the corners of the square are curved. A shape in which none of the corners are rounded. Moreover, in this specification, a rectangular shape means a rectangular shape or a square shape. When the polarizing plate has a square shape with rounded corners, one or more of the four corners of the polarizing plate may be rounded. The polarizing plate may have a polygonal, circular, or elliptical overall shape in plan view.
 また偏光板は、平面視において異形部を有することもできる。当該異形部は、偏光板の外縁部および面内の少なくとも一方に形成することができる。偏光板の外縁部に異形部を有する場合、当該異形部の形状は、たとえば偏光板の平面視において、外縁部から内側へ凸状となる略U字形状または略V字形状であってよい。また、偏光板の面内に異形部を有する場合、当該異形部は、貫通孔であってよい。ここで偏光板の外縁部に異形部を有する場合、偏光板の異形部ではない部分における端部と、異形部における端部との少なくとも一方が上記式(I)を満していれば、本発明の範囲に属するものとなる。さらに、偏光板の異形部ではない部分における端部と、異形部における端部との両者が上記式(I)を満していることもより好ましい。なお、上述した偏光板の平面視における全体形状の具体例は、後述する(偏光子)の項目における偏光子の全体形状の例示としても適用される。 The polarizing plate can also have a deformed portion in plan view. The deformed portion can be formed on at least one of the outer edge portion and the in-plane portion of the polarizing plate. When the polarizing plate has a deformed portion on its outer edge, the shape of the deformed portion may be, for example, a substantially U-shaped or substantially V-shaped convex inward from the outer edge in a plan view of the polarizing plate. Further, when the polarizing plate has a deformed portion in its plane, the deformed portion may be a through hole. Here, in the case where the polarizing plate has a deformed portion on the outer edge, if at least one of the end of the portion of the polarizing plate that is not the deformed portion and the end of the deformed portion satisfies the above formula (I), the present invention It belongs to the scope of the invention. Furthermore, it is more preferable that both the edge of the portion of the polarizing plate that is not the deformed portion and the edge of the deformed portion satisfy the above formula (I). The specific example of the overall shape of the polarizing plate in plan view described above is also applied as an example of the overall shape of the polarizer in the item (Polarizer) described later.
 以下、本実施形態に係る偏光板について、その製造方法を通じてより詳細に説明する。まず、偏光板の各構成要件について説明する。 Hereinafter, the polarizing plate according to this embodiment will be described in more detail through its manufacturing method. First, each component of the polarizing plate will be described.
 (偏光子)
 偏光子は、ホウ酸およびヨウ素を含む。具体的には偏光子は、ホウ酸およびヨウ素を含有する樹脂フィルムである。ホウ酸およびヨウ素を含有する樹脂フィルムとしては、例えば一軸延伸されたポリビニルアルコール系樹脂フィルムにヨウ素が吸着配向され、ポリビニルアルコール分子鎖同士がホウ酸で架橋された樹脂フィルムであることができる。そのような偏光子は、たとえば後述する偏光板の製造方法において、偏光子製造工程を実行することにより得ることができる。
(Polarizer)
Polarizers contain boric acid and iodine. Specifically, the polarizer is a resin film containing boric acid and iodine. The resin film containing boric acid and iodine may be, for example, a resin film in which iodine is adsorbed and oriented in a uniaxially stretched polyvinyl alcohol resin film and the polyvinyl alcohol molecular chains are crosslinked with boric acid. Such a polarizer can be obtained, for example, by carrying out a polarizer manufacturing process in a method for manufacturing a polarizing plate, which will be described later.
 偏光子の厚みは、例えば3μm以上30μm以下であってよく、5μm以上25μm以下であってもよく、15μmより大きく25μm以下であってもよく、16μm以上24μm以下であってもよい。偏光子の厚みが厚いほど、温度変化に伴う偏光子の収縮力が大きくなり、例えばヒートショック試験のような過酷な環境下に偏光板を保管した場合、偏光子にクラックが発生しやすくなる傾向にある。また、高温環境下に偏光板を保管した場合に偏光板が大きく変形しやすくなる傾向にある。本実施形態によれば、たとえ偏光子が厚く、収縮しやすいものである場合であっても、ヒートショック試験における偏光子の割れおよび耐熱試験における偏光板の変形を抑制することができる傾向にある。 The thickness of the polarizer may be, for example, 3 μm or more and 30 μm or less, 5 μm or more and 25 μm or less, 15 μm or more and 25 μm or less, or 16 μm or more and 24 μm or less. The thicker the polarizer, the greater the contraction force of the polarizer due to temperature changes. For example, when the polarizer is stored in a harsh environment such as a heat shock test, cracks tend to occur in the polarizer. It is in. Further, when the polarizing plate is stored in a high-temperature environment, the polarizing plate tends to be greatly deformed. According to the present embodiment, even if the polarizer is thick and easily shrinkable, cracking of the polarizer in the heat shock test and deformation of the polarizing plate in the heat resistance test tend to be suppressed. .
 (熱可塑性樹脂フィルム)
 熱可塑性樹脂フィルムは、偏光子を物理的および化学的に保護することから、偏光子の保護フィルムであることができる。熱可塑性樹脂フィルムは、透光性を有する熱可塑性樹脂からなることが好ましい。熱可塑性樹脂フィルムを構成する樹脂は、例えば、鎖状ポリオレフィン系樹脂、環状オレフィンポリマー系樹脂(COP系樹脂)、セルロースエステル系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、(メタ)アクリル系樹脂、ポリスチレン系樹脂、またはこれらの混合物もしくは共重合体であってよい。
(Thermoplastic resin film)
Since the thermoplastic resin film physically and chemically protects the polarizer, it can be a protective film for the polarizer. The thermoplastic resin film is preferably made of a translucent thermoplastic resin. Resins constituting the thermoplastic resin film include, for example, linear polyolefin resins, cyclic olefin polymer resins (COP resins), cellulose ester resins, polyester resins, polycarbonate resins, (meth)acrylic resins, polystyrene. based resins, or mixtures or copolymers thereof.
 本明細書において「保護フィルム」とは、熱可塑性樹脂フィルムであって、偏光子と直接、あるいは粘着剤又は接着剤を介して間接的に重なるフィルムであり、偏光板を表示装置に貼合後も偏光子を保護するために積層された状態で残るフィルムとして定義される。一方、後述する「偏光板用表面保護フィルム」とは、偏光板のいずれか一方の最外面に配置されるフィルムであり、偏光板を表示装置に貼合した後に剥離除去されるフィルムとして定義されるものとする。 As used herein, the term “protective film” refers to a thermoplastic resin film that overlaps a polarizer directly or indirectly via a pressure-sensitive adhesive or adhesive, and after bonding the polarizing plate to a display device. is defined as the film that remains laminated to protect the polarizer. On the other hand, the "surface protective film for polarizing plate" described later is a film placed on the outermost surface of one of the polarizing plates, and is defined as a film that is peeled off after the polarizing plate is attached to the display device. shall be
 図1に示すように、第1熱可塑性樹脂フィルム3と第2熱可塑性樹脂フィルム4とは同じ種類の樹脂から形成されるフィルムであってもよく、異なる種類の樹脂から形成されるフィルムであってもよい。また第1熱可塑性樹脂フィルム3および第2熱可塑性樹脂フィルム4は、厚み、位相差特性、光学特性、機械特性等において同じであってもよいし、異なっていてもよい。 As shown in FIG. 1, the first thermoplastic resin film 3 and the second thermoplastic resin film 4 may be films formed from the same type of resin, or films formed from different types of resin. may Also, the first thermoplastic resin film 3 and the second thermoplastic resin film 4 may be the same or different in thickness, retardation properties, optical properties, mechanical properties, and the like.
 熱可塑性樹脂フィルムを構成する樹脂が鎖状ポリオレフィン系樹脂である場合、鎖状ポリオレフィン系樹脂は、例えば、ポリエチレン樹脂またはポリプロピレン樹脂のような鎖状オレフィンの単独重合体であってよい。鎖状ポリオレフィン系樹脂は、二種以上の鎖状オレフィンからなる共重合体であってもよい。 When the resin constituting the thermoplastic resin film is a chain polyolefin resin, the chain polyolefin resin may be, for example, a homopolymer of chain olefin such as polyethylene resin or polypropylene resin. The chain polyolefin-based resin may be a copolymer composed of two or more chain olefins.
 熱可塑性樹脂フィルムを構成する樹脂が環状オレフィンポリマー系樹脂(環状ポリオレフィン系樹脂)である場合、環状オレフィンポリマー系樹脂は、例えば、環状オレフィンの開環(共)重合体、または環状オレフィンの付加重合体であってよい。環状オレフィンポリマー系樹脂は、例えば、環状オレフィンと鎖状オレフィンとの共重合体(例えば、ランダム共重合体)であってよい。共重合体を構成する鎖状オレフィンは、例えば、エチレンまたはプロピレンであってよい。環状オレフィンポリマー系樹脂は、上記の重合体を不飽和カルボン酸若しくはその誘導体で変性したグラフト重合体、またはそれらの水素化物であってもよい。環状オレフィンポリマー系樹脂は、例えば、ノルボルネンまたは多環ノルボルネン系モノマー等のノルボルネン系モノマーを用いたノルボルネン系樹脂であってよい。 When the resin constituting the thermoplastic resin film is a cyclic olefin polymer-based resin (cyclic polyolefin-based resin), the cyclic olefin polymer-based resin is, for example, a ring-opening (co)polymer of a cyclic olefin, or an addition polymerization of a cyclic olefin. May be coalesced. The cyclic olefin polymer-based resin may be, for example, a copolymer (for example, a random copolymer) of a cyclic olefin and a chain olefin. A chain olefin constituting the copolymer may be, for example, ethylene or propylene. The cyclic olefin polymer-based resin may be a graft polymer modified with an unsaturated carboxylic acid or a derivative thereof, or a hydride thereof. The cyclic olefin polymer-based resin may be, for example, a norbornene-based resin using norbornene-based monomers such as norbornene or polycyclic norbornene-based monomers.
 熱可塑性樹脂フィルムを構成する樹脂がセルロースエステル系樹脂である場合、セルロースエステル系樹脂は、例えば、セルローストリアセテート(トリアセチルセルロース(TAC))、セルロースジアセテート、セルローストリプロピオネートまたはセルロースジプロピオネートであってよい。これらの共重合物を用いてもよい。水酸基の一部が他の置換基で修飾されたセルロースエステル系樹脂を用いてもよい。 When the resin constituting the thermoplastic resin film is a cellulose ester resin, the cellulose ester resin is, for example, cellulose triacetate (triacetyl cellulose (TAC)), cellulose diacetate, cellulose tripropionate, or cellulose dipropionate. It's okay. Copolymers of these may also be used. A cellulose ester-based resin in which a portion of hydroxyl groups is modified with other substituents may also be used.
 熱可塑性樹脂フィルムを構成する樹脂は、セルロースエステル系樹脂以外のポリエステル系樹脂を用いてもよい。ポリエステル系樹脂は、例えば、多価カルボン酸またはその誘導体と多価アルコールとの重縮合体であってよい。多価カルボン酸またはその誘導体は、ジカルボン酸またはその誘導体であってよい。多価カルボン酸またはその誘導体は、例えば、テレフタル酸、イソフタル酸、ジメチルテレフタレート、またはナフタレンジカルボン酸ジメチルであってよい。多価アルコールは、例えば、ジオールであってよい。多価アルコールは、例えば、エチレングリコール、プロパンジオール、ブタンジオール、ネオペンチルグリコール、またはシクロヘキサンジメタノールであってよい。 A polyester-based resin other than a cellulose ester-based resin may be used as the resin that constitutes the thermoplastic resin film. The polyester-based resin may be, for example, a polycondensate of a polyhydric carboxylic acid or its derivative and a polyhydric alcohol. A polycarboxylic acid or derivative thereof may be a dicarboxylic acid or derivative thereof. Polycarboxylic acids or derivatives thereof can be, for example, terephthalic acid, isophthalic acid, dimethyl terephthalate, or dimethyl naphthalenedicarboxylate. Polyhydric alcohols may be, for example, diols. Polyhydric alcohols may be, for example, ethylene glycol, propanediol, butanediol, neopentyl glycol, or cyclohexanedimethanol.
 ポリエステル系樹脂は、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリトリメチレンテレフタレート、ポリトリメチレンナフタレート、ポリシクロへキサンジメチルテレフタレート、またはポリシクロヘキサンジメチルナフタレートであってよい。 The polyester resin may be, for example, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polytrimethylene terephthalate, polytrimethylene naphthalate, polycyclohexanedimethylterephthalate, or polycyclohexanedimethylnaphthalate. .
 熱可塑性樹脂フィルムを構成する樹脂がポリカーボネート系樹脂である場合、ポリカーボネート系樹脂は、カルボナート基を介して重合単位(モノマー)が結合された重合体である。ポリカーボネート系樹脂は、修飾されたポリマー骨格を有する変性ポリカーボネートであってよく、共重合ポリカーボネートであってもよい。 When the resin constituting the thermoplastic resin film is a polycarbonate-based resin, the polycarbonate-based resin is a polymer in which polymerized units (monomers) are bonded via carbonate groups. The polycarbonate-based resin may be a modified polycarbonate having a modified polymer backbone, or may be a copolymerized polycarbonate.
 熱可塑性樹脂フィルムを構成する樹脂が(メタ)アクリル系樹脂である場合、(メタ)アクリル系樹脂は、例えば、ポリ(メタ)アクリル酸エステル(例えば、ポリメタクリル酸メチル(PMMA));メタクリル酸メチル-(メタ)アクリル酸共重合体;メタクリル酸メチル-(メタ)アクリル酸エステル共重合体;メタクリル酸メチル-アクリル酸エステル-(メタ)アクリル酸共重合体;(メタ)アクリル酸メチル-スチレン共重合体(例えば、MS樹脂);メタクリル酸メチルと脂環族炭化水素基を有する化合物との共重合体(例えば、メタクリル酸メチル-メタクリル酸シクロヘキシル共重合体、メタクリル酸メチル-(メタ)アクリル酸ノルボルニル共重合体等)であってよい。 When the resin constituting the thermoplastic resin film is a (meth)acrylic resin, the (meth)acrylic resin is, for example, poly(meth)acrylic acid ester (e.g., polymethyl methacrylate (PMMA)); methacrylic acid Methyl-(meth)acrylic acid copolymer; Methyl methacrylate-(meth)acrylic acid ester copolymer; Methyl methacrylate-acrylic acid ester-(meth)acrylic acid copolymer; Methyl (meth)acrylate-styrene Copolymer (e.g., MS resin); copolymer of methyl methacrylate and a compound having an alicyclic hydrocarbon group (e.g., methyl methacrylate-cyclohexyl methacrylate copolymer, methyl methacrylate-(meth)acrylic acid norbornyl copolymers, etc.).
 第1熱可塑性樹脂フィルムおよび第2熱可塑性樹脂フィルム其々は、滑剤、可塑剤、分散剤、熱安定剤、紫外線吸収剤、赤外線吸収剤、帯電防止剤、および酸化防止剤からなる群より選ばれる少なくとも一種の添加剤を含んでよい。また、第1熱可塑性樹脂フィルムおよび第2熱可塑性樹脂フィルム其々は、その外面(偏光子とは反対側の表面)に、ハードコート層、防眩層、反射防止層、光拡散層、帯電防止層、防汚層、導電層などの表面処理層(コーティング層)を備えていてもよい。 Each of the first thermoplastic resin film and the second thermoplastic resin film is selected from the group consisting of lubricants, plasticizers, dispersants, heat stabilizers, ultraviolet absorbers, infrared absorbers, antistatic agents, and antioxidants. may contain at least one additive. Each of the first thermoplastic resin film and the second thermoplastic resin film has a hard coat layer, an antiglare layer, an antireflection layer, a light diffusion layer, and a charging A surface treatment layer (coating layer) such as an antifouling layer, an antifouling layer, and a conductive layer may be provided.
 第1熱可塑性樹脂フィルムの厚みは、例えば、5μm以上110μm以下、または10μm以上100μm以下であってよい。第2熱可塑性樹脂フィルムの厚みも、例えば、5μm以上110μm以下、または10μm以上100μm以下であってよい。 The thickness of the first thermoplastic resin film may be, for example, 5 μm or more and 110 μm or less, or 10 μm or more and 100 μm or less. The thickness of the second thermoplastic resin film may also be, for example, 5 μm or more and 110 μm or less, or 10 μm or more and 100 μm or less.
 第1熱可塑性樹脂フィルムおよび第2熱可塑性樹脂フィルムは、位相差値を有していてもよい。例えば、上記熱可塑性樹脂からなるフィルムを延伸したり、該フィルム上に液晶層等を形成したりすることにより、任意の位相差値が付与された位相差フィルムが得られる。 The first thermoplastic resin film and the second thermoplastic resin film may have retardation values. For example, a retardation film imparted with an arbitrary retardation value can be obtained by stretching a film made of the thermoplastic resin or forming a liquid crystal layer or the like on the film.
 第1熱可塑性樹脂フィルムは、接着層を介して、偏光子に貼合されることが好ましい。第2熱可塑性樹脂フィルムも、接着層を介して、偏光子に貼合されることが好ましい。接着層は、ポリビニルアルコール系樹脂等を含んでよい。接着層は、後述する活性エネルギー線硬化性樹脂を含んでもよい。 The first thermoplastic resin film is preferably attached to the polarizer via an adhesive layer. The second thermoplastic resin film is also preferably bonded to the polarizer via an adhesive layer. The adhesive layer may contain a polyvinyl alcohol-based resin or the like. The adhesive layer may contain an active energy ray-curable resin, which will be described later.
 活性エネルギー線硬化性樹脂は、活性エネルギー線を照射されることにより、硬化する樹脂である。活性エネルギー線は、例えば、紫外線、可視光、電子線、またはX線であってよい。例えば、活性エネルギー線硬化性樹脂は、紫外線硬化性樹脂であってよい。 An active energy ray-curable resin is a resin that cures when exposed to active energy rays. The active energy rays may be, for example, ultraviolet rays, visible light, electron beams, or X-rays. For example, the active energy ray-curable resin may be an ultraviolet curable resin.
 活性エネルギー線硬化性樹脂は、一種の樹脂であってよく、複数種の樹脂を含んでもよい。例えば、活性エネルギー線硬化性樹脂は、カチオン重合性の硬化性化合物、またはラジカル重合性の硬化性化合物を含んでよい。活性エネルギー線硬化性樹脂は、上記硬化性化合物の硬化反応を開始させるためのカチオン重合開始剤またはラジカル重合開始剤を含んでよい。 The active energy ray-curable resin may be one type of resin, or may contain multiple types of resins. For example, the active energy ray-curable resin may contain a cationic polymerizable curable compound or a radically polymerizable curable compound. The active energy ray-curable resin may contain a cationic polymerization initiator or a radical polymerization initiator for initiating the curing reaction of the curable compound.
 カチオン重合性の硬化性化合物は、例えば、エポキシ系化合物(分子内に少なくとも一つのエポキシ基を有する化合物)、またはオキセタン系化合物(分子内に少なくとも一つのオキセタン環を有する化合物)であってよい。ラジカル重合性の硬化性化合物は、例えば、(メタ)アクリル系化合物(分子内に少なくとも一つの(メタ)アクリロイルオキシ基を有する化合物)であってよい。ラジカル重合性の硬化性化合物は、ラジカル重合性の二重結合を有するビニル系化合物であってもよい。 The cationic polymerizable curable compound may be, for example, an epoxy compound (compound having at least one epoxy group in the molecule) or an oxetane compound (compound having at least one oxetane ring in the molecule). The radically polymerizable curable compound may be, for example, a (meth)acrylic compound (compound having at least one (meth)acryloyloxy group in the molecule). The radically polymerizable curable compound may be a vinyl compound having a radically polymerizable double bond.
 活性エネルギー線硬化性樹脂は、必要に応じて、カチオン重合促進剤、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤、帯電防止剤、レベリング剤、または溶剤等を含んでよい。 If necessary, the active energy ray-curable resin may contain a cationic polymerization accelerator, an ion trapping agent, an antioxidant, a chain transfer agent, a tackifier, a thermoplastic resin, a filler, a flow control agent, a plasticizer, and an antifoaming agent. agents, antistatic agents, leveling agents, solvents, or the like.
 接着剤層の厚みは、通常0.01~10μmである。接着剤層が活性エネルギー線硬化性樹脂を含む場合、上記接着剤層の厚みは、好ましくは0.1~8μmであり、接着剤層がポリビニルアルコール系樹脂を含む場合、上記接着剤層の厚みは、好ましくは0.03~1μmである。 The thickness of the adhesive layer is usually 0.01-10 μm. When the adhesive layer contains an active energy ray-curable resin, the thickness of the adhesive layer is preferably 0.1 to 8 μm, and when the adhesive layer contains a polyvinyl alcohol-based resin, the thickness of the adhesive layer is preferably 0.03 to 1 μm.
 (偏光板用表面保護フィルム)
 図5は、他の実施形態に係る偏光板を示す概略断面図である。当該実施形態に係る偏光板は、図5に示すように、第1熱可塑性樹脂フィルム3または第2熱可塑性樹脂フィルム4の偏光子2とは反対側の表面に、さらに偏光板用表面保護フィルム5を備えていてもよい。偏光板用表面保護フィルム5は、通常、基材フィルムとその上に積層される粘着剤層とで構成され、偏光板用表面保護フィルム5の熱可塑性樹脂フィルム等への貼合および剥離除去は、上記粘着剤層と上記基材フィルムとが一体となった状態で行われる。基材フィルムは、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂などのポリオレフィン系樹脂、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系樹脂、ポリカーボネート系樹脂、(メタ)アクリル系樹脂等の熱可塑性樹脂で構成することができる。偏光板用表面保護フィルム5の厚みは、例えば、5μm以上200μm以下であってよい。偏光板用表面保護フィルム5は、偏光板の表面を傷や汚れから保護する目的で用いられるフィルムであり、例えば画像表示装置に適用される場合、その製造過程において、偏光板1から剥離され、除去される。
(Surface protective film for polarizing plate)
FIG. 5 is a schematic cross-sectional view showing a polarizing plate according to another embodiment. In the polarizing plate according to this embodiment, as shown in FIG. 5, a surface protective film for polarizing plate is further provided on the surface of the first thermoplastic resin film 3 or the second thermoplastic resin film 4 opposite to the polarizer 2. 5 may be provided. The polarizing plate surface protective film 5 is usually composed of a base film and an adhesive layer laminated thereon. , the pressure-sensitive adhesive layer and the substrate film are integrated. The base film is composed of, for example, polyolefin resins such as polyethylene resins and polypropylene resins, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polycarbonate resins, and thermoplastic resins such as (meth)acrylic resins. be able to. The thickness of the polarizing plate surface protective film 5 may be, for example, 5 μm or more and 200 μm or less. The polarizing plate surface protective film 5 is a film used for the purpose of protecting the surface of the polarizing plate from scratches and stains. removed.
 偏光板は、第1熱可塑性樹脂フィルム3または第2熱可塑性樹脂フィルム4の偏光子2とは反対側の表面に、さらに粘着層を備えていてもよい。偏光板用表面保護フィルム5を備える場合、上記粘着層は、通常、偏光板用表面保護フィルム5が積層されていない熱可塑性樹脂フィルム上に積層される。上記粘着層の保護を目的とし、上記粘着層の熱可塑性樹脂フィルムとは反対側の表面に離型フィルムが積層されていてもよい。 The polarizing plate may further include an adhesive layer on the surface of the first thermoplastic resin film 3 or the second thermoplastic resin film 4 opposite to the polarizer 2 . When the polarizing plate surface protective film 5 is provided, the adhesive layer is usually laminated on a thermoplastic resin film on which the polarizing plate surface protective film 5 is not laminated. For the purpose of protecting the adhesive layer, a release film may be laminated on the surface of the adhesive layer opposite to the thermoplastic resin film.
 <偏光板の製造方法>
 本実施形態に係る偏光板の製造方法は、ヨウ素およびホウ素を含む偏光子の少なくとも一方の面(好ましくは両面)に、熱可塑性樹脂フィルムを積層することにより偏光板を得る積層工程と、上記偏光板の偏光子透過軸方向と平行な方向の端部を、20℃以上の処理液に3~150秒接触させる端部処理工程を含む。このような特徴を備える偏光板の製造方法により、偏光子透過軸方向と平行な方向の端部においてヨウ素抜けが生じがたく、カールが抑制され、かつヒートショック試験においてクラックの発生が抑制される偏光子を備えた偏光板を得ることができる。
<Method for manufacturing polarizing plate>
The method for producing a polarizing plate according to the present embodiment includes a lamination step of obtaining a polarizing plate by laminating a thermoplastic resin film on at least one surface (preferably both surfaces) of a polarizer containing iodine and boron; An edge treatment step is included in which the edge of the plate in the direction parallel to the transmission axis direction of the polarizer is brought into contact with a treatment liquid at 20° C. or higher for 3 to 150 seconds. By the method for manufacturing a polarizing plate having such characteristics, iodine leakage is less likely to occur at the end portion in the direction parallel to the transmission axis direction of the polarizer, curling is suppressed, and cracking is suppressed in a heat shock test. A polarizing plate with a polarizer can be obtained.
 上記偏光板の製造方法は、上記積層工程において偏光子製造工程(ホウ酸とヨウ素とを含む偏光子を製造する工程)を含むことができる。上記偏光板の製造方法は、上記偏光板を切断および/または打ち抜き加工することにより、上記偏光板の偏光子透過軸方向と平行な方向の端部を形成する端部形成工程をさらに含むこともできる。すなわち偏光板の偏光子透過軸方向と平行な方向の端部は、上記偏光板を切断および/または打ち抜き加工することにより形成される場合がある。なお上記端部形成工程については、上記積層工程と上記端部処理工程との間に実施することができる。 The method for manufacturing the polarizing plate can include a polarizer manufacturing step (a step of manufacturing a polarizer containing boric acid and iodine) in the lamination step. The method for manufacturing the polarizing plate may further include an end portion forming step of forming an end portion of the polarizing plate in a direction parallel to the polarizer transmission axis direction by cutting and/or punching the polarizing plate. can. That is, the end portion of the polarizing plate in the direction parallel to the polarizer transmission axis direction may be formed by cutting and/or punching the polarizing plate. The edge forming step can be performed between the stacking step and the edge processing step.
 上記偏光板の製造方法は、上記偏光板において、上記熱可塑性樹脂フィルムの上記偏光子が配置された側とは反対側の面に偏光板用表面保護フィルムを積層する表面保護工程をさらに含むことができる。上記表面保護工程は、積層工程の前に実施してもよいし、積層工程の後に実施してもよい。また上記偏光板の製造方法は、上記端部処理工程の後に、上記積層工程を実施してもよい。端部処理工程の後に積層工程を実施する場合、上記端部処理工程において20℃以上の処理液に3~150秒接触させる対象部は、偏光子のみとなる。以下、本実施形態に係る偏光板の製造方法の一態様を具体的に説明する。 The method for producing a polarizing plate further includes a surface protection step of laminating a surface protection film for a polarizing plate on the surface of the thermoplastic resin film opposite to the side on which the polarizer is arranged in the polarizing plate. can be done. The surface protection step may be performed before the lamination step or after the lamination step. Further, in the method for manufacturing the polarizing plate, the lamination step may be performed after the edge processing step. When the lamination step is performed after the edge treatment step, only the polarizer is subjected to contact with the treatment liquid at 20° C. or higher for 3 to 150 seconds in the edge treatment step. One aspect of the method for manufacturing a polarizing plate according to this embodiment will be specifically described below.
 (積層工程)
 (1) 偏光子製造工程
 偏光子製造工程は、ホウ酸とヨウ素とを含む偏光子を製造する工程である。具体的には、ホウ酸とヨウ素とを含む偏光子は、例えばポリビニルアルコール系樹脂フィルム(PVAフィルム)に延伸処理、染色処理及び架橋処理を施すことにより製造することができる。延伸処理、染色処理及び架橋処理は公知の方法により行うことができる。
(Lamination process)
(1) Polarizer manufacturing process A polarizer manufacturing process is a process of manufacturing a polarizer containing boric acid and iodine. Specifically, a polarizer containing boric acid and iodine can be produced, for example, by subjecting a polyvinyl alcohol-based resin film (PVA film) to stretching treatment, dyeing treatment and cross-linking treatment. Stretching treatment, dyeing treatment and cross-linking treatment can be performed by known methods.
 ポリビニルアルコール系樹脂としては、ポリ酢酸ビニル系樹脂をケン化したものを用いることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体が例示される。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸、オレフィン、ビニルエーテル、不飽和スルホン酸、アンモニウム基を有するアクリルアミドなどが挙げられる。 As the polyvinyl alcohol-based resin, saponified polyvinyl acetate-based resin can be used. Examples of polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate with other monomers copolymerizable therewith. Other monomers copolymerizable with vinyl acetate include, for example, unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
 ポリビニルアルコール系樹脂のケン化度は、80モル%以上の範囲であり得るが、好ましくは90モル%以上、より好ましくは95モル%以上の範囲である。ポリビニルアルコール系樹脂は、一部が変性されている変性ポリビニルアルコールであってもよく、例えば、ポリビニルアルコール系樹脂をエチレンおよびプロピレン等のオレフィン;アクリル酸、メタクリル酸およびクロトン酸等の不飽和カルボン酸;不飽和カルボン酸のアルキルエステルおよびアクリルアミドなどで変性したものが挙げられる。ポリビニルアルコール系樹脂の平均重合度は、好ましくは100~10000であり、より好ましくは1500~8000であり、さらに好ましくは2000~5000である。 The degree of saponification of the polyvinyl alcohol resin may be in the range of 80 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more. The polyvinyl alcohol-based resin may be modified polyvinyl alcohol that is partially modified, for example, the polyvinyl alcohol-based resin may be modified with olefins such as ethylene and propylene; unsaturated carboxylic acids such as acrylic acid, methacrylic acid and crotonic acid; ; modified with unsaturated carboxylic acid alkyl esters and acrylamides; The average degree of polymerization of the polyvinyl alcohol resin is preferably 100-10000, more preferably 1500-8000, still more preferably 2000-5000.
 偏光子は、例えば、ポリビニルアルコール系樹脂から構成される原反フィルムを一軸延伸し、水で膨潤させ(膨潤工程)、二色性色素で染色し(染色工程)、ホウ酸水溶液で架橋させ(架橋工程)、水で洗浄し(洗浄工程)、最後に乾燥させる(乾燥工程)ことにより、製造することができる。 For example, a polarizer is made by uniaxially stretching a raw film made of a polyvinyl alcohol resin, swelling it with water (swelling process), dyeing it with a dichroic dye (dyeing process), and cross-linking it with an aqueous boric acid solution ( crosslinking step), washing with water (washing step), and finally drying (drying step).
 ポリビニルアルコール系樹脂フィルムの一軸延伸は、空中で延伸を行う乾式延伸、浴中で延伸を行う湿式延伸のいずれであってもよく、これらの双方を行ってもよい。湿式延伸は、例えば、上記の染色工程および/または架橋工程の間および/または前後に、ポリビニルアルコール系樹脂フィルムを処理浴中に浸漬した状態で延伸を施し得る。ポリビニルアルコール系樹脂フィルムの最終的な延伸倍率は、通常4~8倍程度である。 The uniaxial stretching of the polyvinyl alcohol resin film may be either dry stretching in air or wet stretching in a bath, or both. In the wet stretching, for example, the polyvinyl alcohol resin film may be stretched while being immersed in a treatment bath during and/or before and/or after the dyeing step and/or the cross-linking step. The final draw ratio of the polyvinyl alcohol resin film is usually about 4 to 8 times.
 膨潤工程では、ポリビニルアルコール系樹脂フィルムを水で膨潤させる。膨潤処理は、ポリビニルアルコール系樹脂フィルムを水に浸漬させることにより実施できる。水の温度は、例えば10~70℃であり、浸漬時間は、例えば10~600秒程度である。 In the swelling process, the polyvinyl alcohol resin film is swollen with water. The swelling treatment can be performed by immersing the polyvinyl alcohol-based resin film in water. The water temperature is, for example, 10 to 70° C., and the immersion time is, for example, about 10 to 600 seconds.
 染色工程では、ポリビニルアルコール系樹脂フィルムを二色性色素で染色し、フィルムに二色性色素を吸着させる。染色処理は、例えば、ポリビニルアルコール系樹脂フィルムを、二色性色素を含有する水溶液に浸漬させればよい。二色性色素としては、具体的に、ヨウ素または二色性染料が用いられる。 In the dyeing process, the polyvinyl alcohol-based resin film is dyed with a dichroic dye, and the dichroic dye is adsorbed on the film. For the dyeing treatment, for example, a polyvinyl alcohol-based resin film may be immersed in an aqueous solution containing a dichroic dye. Specifically, iodine or dichroic dyes are used as dichroic dyes.
 二色性色素としてヨウ素を用いる場合は、通常、ヨウ素およびヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。水溶液中のヨウ素の含有量は、水100質量部あたり、通常0.003~1質量部程度
であり得る。水溶液中のヨウ化カリウムの含有量は、水100質量部あたり、通常0.1
~20質量部程度である。この水溶液の温度は、通常10~45℃程度であり、浸漬時間は、通常30~600秒程度である。
When iodine is used as a dichroic dye, a method of dyeing by immersing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide is usually adopted. The content of iodine in the aqueous solution can usually be about 0.003 to 1 part by mass per 100 parts by mass of water. The content of potassium iodide in the aqueous solution is usually 0.1 per 100 parts by mass of water.
It is about 20 parts by mass. The temperature of this aqueous solution is usually about 10 to 45° C., and the immersion time is usually about 30 to 600 seconds.
 架橋工程は、例えば、染色されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液に浸漬させて行われる。ホウ酸水溶液におけるホウ酸の含有量は、水100質量部あたり、通常1~15質量部程度、好ましくは2~10質量部である。二色性色素としてヨウ素を用いる場合、このホウ酸水溶液は、ヨウ化カリウムを含有することが好ましい。ホウ酸水溶液におけるヨウ化カリウムの含有量は、水100質量部あたり、通常1~20質量部程度、好ましくは5~15質量部である。ホウ酸水溶液へのフィルムの浸漬時間は、通常10~600秒程度であり、好ましくは20秒以上であり、また好ましくは300秒以下である。ホウ酸水溶液の温度は、通常50℃以上であり、好ましくは50~70℃である。 The cross-linking step is performed, for example, by immersing the dyed polyvinyl alcohol-based resin film in an aqueous boric acid solution. The content of boric acid in the boric acid aqueous solution is usually about 1 to 15 parts by mass, preferably 2 to 10 parts by mass, per 100 parts by mass of water. When iodine is used as the dichroic dye, the boric acid aqueous solution preferably contains potassium iodide. The content of potassium iodide in the boric acid aqueous solution is usually about 1 to 20 parts by mass, preferably 5 to 15 parts by mass, per 100 parts by mass of water. The immersion time of the film in the aqueous boric acid solution is usually about 10 to 600 seconds, preferably 20 seconds or more, and preferably 300 seconds or less. The temperature of the boric acid aqueous solution is usually 50°C or higher, preferably 50 to 70°C.
 架橋工程を経たポリビニルアルコール系樹脂フィルムは、通常、水による洗浄工程に付される。洗浄処理は、例えば、架橋処理されたポリビニルアルコール系樹脂フィルムを水に浸漬させて行われる。洗浄処理における水の温度は、通常5~40℃程度であり、浸漬時間は、通常2~120秒程度である。 A polyvinyl alcohol-based resin film that has undergone a cross-linking process is usually subjected to a washing process with water. The washing treatment is performed, for example, by immersing the crosslinked polyvinyl alcohol-based resin film in water. The temperature of water in the cleaning treatment is usually about 5 to 40° C., and the immersion time is usually about 2 to 120 seconds.
 その後、乾燥工程を経て、偏光子が得られる。乾燥は、通常、熱風乾燥機や遠赤外線ヒーターを用いて行われる。乾燥温度は通常40~100℃であり、乾燥時間は通常30~600秒程度である。 After that, a polarizer is obtained through a drying process. Drying is usually performed using a hot air dryer or a far-infrared heater. The drying temperature is usually 40-100° C., and the drying time is usually about 30-600 seconds.
 (2) 積層工程
 積層工程は、上記偏光子の少なくとも一方(好ましくは両面)に、熱可塑性樹脂フィルムを積層することにより偏光板を得る工程である。具体的には、偏光子と熱可塑性樹脂フィルムとを重ねて互いに貼合することにより偏光板(以下、端部処理工程を経ていない偏光板を、説明の便宜のため「未処理偏光板」とも記す)を製造することができる。偏光子および熱可塑性樹脂フィルムは、長尺な帯状であってよい。上記熱可塑性樹脂フィルムは、接着層を介して偏光子に貼合することができる。
(2) Lamination step The lamination step is a step of obtaining a polarizing plate by laminating a thermoplastic resin film on at least one side (preferably both sides) of the polarizer. Specifically, a polarizing plate (hereinafter, a polarizing plate that has not undergone the edge treatment step is also referred to as an “untreated polarizing plate” for convenience of explanation) by stacking a polarizer and a thermoplastic resin film and bonding them to each other. described) can be manufactured. The polarizer and the thermoplastic resin film may be long strips. The thermoplastic resin film can be attached to a polarizer via an adhesive layer.
 上記積層工程においては、偏光子と熱可塑性樹脂フィルムとの接着性を向上させるために、偏光子と熱可塑性樹脂フィルムとの貼合に先立ち、偏光子および/または熱可塑性樹脂フィルムの貼合面に、コロナ処理、火炎処理、プラズマ処理、紫外線照射処理、プライマー塗布処理、ケン化処理等の表面処理を施してもよい。 In the lamination step, in order to improve the adhesiveness between the polarizer and the thermoplastic resin film, prior to laminating the polarizer and the thermoplastic resin film, the bonding surface of the polarizer and/or the thermoplastic resin film is may be subjected to surface treatment such as corona treatment, flame treatment, plasma treatment, ultraviolet irradiation treatment, primer coating treatment, saponification treatment and the like.
 (3) 表面保護工程
 表面保護工程は、上記偏光板において上記熱可塑性樹脂フィルムの偏光子が配置された側とは反対側の面に偏光板用表面保護フィルムを積層する工程である。表面保護工程は、偏光板の偏光子透過軸方向と平行な方向の端部を形成する端部形成工程の前に行ってもよいし、当該端部形成工程および端部処理工程の後に行ってもよいが、好ましくは上記積層工程の後であって、上記端部形成工程の前に行うことができる。
(3) Surface protection step The surface protection step is a step of laminating a surface protection film for a polarizing plate on the surface of the polarizing plate opposite to the side on which the polarizer of the thermoplastic resin film is arranged. The surface protection step may be performed before the edge forming step of forming the edge of the polarizing plate in the direction parallel to the polarizer transmission axis direction, or may be performed after the edge forming step and the edge treatment step. However, it can be preferably performed after the lamination step and before the edge formation step.
 (端部形成工程)
 端部形成工程は、上記未処理偏光板に偏光子透過軸方向と平行な方向の端部を形成するため、未処理偏光板を切断および/または打ち抜き加工することにより、上記偏光板の偏光子透過軸方向と平行な方向の端部を形成する工程である。本工程により未処理偏光板の寸法を、加工し易い寸法へ調整することもできる。切断および/または打ち抜き加工は、具体的には切断刃を用いたり、打ち抜き刃を用いたり、レーザー光を照射したりすることにより行うことができる。レーザー光は、COレーザーであってよい。これにより長尺状の未処理偏光板を枚葉状の未処理偏光板へ加工することができる。上記端部形成工程において未処理偏光板は、単独で、または複数枚重ねた状態で切断および/または打ち抜き加工を行うことができる。切断後は、偏光板の切断面を切削仕上げしてもよい。
(End forming step)
In the edge forming step, the polarizer of the polarizing plate is formed by cutting and/or punching the untreated polarizing plate in order to form an edge in the direction parallel to the polarizer transmission axis direction in the untreated polarizing plate. This is the step of forming the end portion in the direction parallel to the transmission axis direction. This process can also adjust the dimensions of the untreated polarizing plate to dimensions that are easy to process. Specifically, cutting and/or punching can be performed by using a cutting blade, using a punching blade, or by irradiating laser light. The laser light may be a CO2 laser. Thereby, a long untreated polarizing plate can be processed into a sheet-like untreated polarizing plate. In the edge forming step, the untreated polarizing plate can be cut and/or punched singly or in a state of being stacked. After cutting, the cut surface of the polarizing plate may be finished by cutting.
 (端部処理工程)
 端部処理工程は、上記偏光板の偏光子透過軸方向と平行な方向の端部を、20℃以上の処理液に3~150秒接触させる工程である。上記端部処理工程により、上記偏光板を構成する偏光子における偏光子透過軸方向と平行な方向の端部は、ホウ酸架橋度指数の値として0.9以下を満たすことができ、ヒートショック試験においてクラックの発生が抑制される偏光子を備えた偏光板を得ることができる。
(End processing process)
The edge treatment step is a step of bringing the edge of the polarizing plate in the direction parallel to the polarizer transmission axis direction into contact with a treatment liquid at 20° C. or higher for 3 to 150 seconds. By the edge treatment step, the edge of the polarizer constituting the polarizing plate in the direction parallel to the polarizer transmission axis direction can satisfy the value of the boric acid cross-linking degree index of 0.9 or less, and the heat shock can be reduced. It is possible to obtain a polarizing plate having a polarizer that suppresses the occurrence of cracks in a test.
 端部処理工程は、1枚の未処理偏光板に対して行ってもよく、複数枚の未処理偏光板を積層した状態で行ってもよい。複数枚で端部処理を行う場合、未処理偏光板を例えば5枚以上3000枚以下重ねて実行することができる。未処理偏光板を重ねる枚数は好ましくは7枚以上、例えば2000枚であってもよいし、1000枚であってもよい。複数枚重ねた未処理偏光板に端部処理を行う際には、重ねた偏光板の最上面と最下面および/または側面部の左右から未処理偏光板を押さえておくことが好ましい。1枚の未処理偏光板に端部処理を行う際には、未処理偏光板のみの状態で端部処理を行ってもよいし、未処理偏光板を基板に貼合し、これらを貼合した状態で偏光板の偏光子透過軸方向と平行な方向の端部を処理してもよい。 The edge treatment step may be performed on one untreated polarizing plate, or may be performed in a state where a plurality of untreated polarizing plates are laminated. When performing the edge treatment on a plurality of sheets, for example, 5 or more and 3000 or less untreated polarizing plates can be superimposed. The number of untreated polarizing plates to be stacked is preferably 7 or more, for example, 2000 or 1000. When performing edge treatment on a plurality of stacked untreated polarizing plates, it is preferable to press the untreated polarizing plates from the top and bottom surfaces of the stacked polarizing plates and/or from the left and right side portions. When performing the edge treatment on one untreated polarizing plate, the edge treatment may be performed on the untreated polarizing plate only, or the untreated polarizing plate is attached to the substrate and these are attached. In this state, the end portion of the polarizing plate in the direction parallel to the transmission axis direction of the polarizer may be treated.
 端部処理工程において、上記処理液は水を含むことが好ましい。より好ましくは、上記処理液は水であってよく、上記処理液はホウ酸水溶液であってもよい。さらに処理液はpH3~9であることが好ましく、処理液はpH4~8であることがより好ましく、処理液はpH5~7であることがさらに好ましい。また、上記処理液は水溶性樹脂又は水分散性樹脂を含んでいてもよい。水溶性樹脂又は水分散性樹脂としては、例えば、(メタ)アクリル系樹脂;ポリビニルアルコール系樹脂;ポリビニルアセタール系樹脂;エチレン-ビニルアルコール共重合体系樹脂;ポリビニルピロリドン系樹脂;ポリアミドアミン系樹脂;エポキシ系樹脂;メラミン系樹脂;ユリア系樹脂;ポリアミド系樹脂;ポリエステル系樹脂;ポリウレタン系樹脂;セルロース系樹脂;アルギン酸ナトリウム、デンプン等の多糖類等が挙げられる。これらのうち、(メタ)アクリル系樹脂;ポリビニルアルコール系樹脂;ポリビニルアセタール系樹脂等の水酸基含有樹脂が好ましく、ポリビニルアルコール系樹脂がより好ましい。 In the edge treatment step, the treatment liquid preferably contains water. More preferably, the treatment liquid may be water, and the treatment liquid may be an aqueous boric acid solution. Further, the pH of the treatment liquid is preferably 3-9, more preferably 4-8, and even more preferably 5-7. Moreover, the treatment liquid may contain a water-soluble resin or a water-dispersible resin. Examples of water-soluble resins or water-dispersible resins include (meth)acrylic resins; polyvinyl alcohol-based resins; polyvinyl acetal-based resins; ethylene-vinyl alcohol copolymer-based resins; polyvinylpyrrolidone-based resins; melamine-based resin; urea-based resin; polyamide-based resin; polyester-based resin; polyurethane-based resin; cellulose-based resin; Among these, hydroxyl group-containing resins such as (meth)acrylic resins; polyvinyl alcohol resins; and polyvinyl acetal resins are preferred, and polyvinyl alcohol resins are more preferred.
 端部処理工程において、上記偏光板の偏光子透過軸方向と平行な方向の端部に接触させる上記処理液の温度は、上述のように20℃以上である。上記処理液の温度は、ホウ酸架橋度指数を適切に制御する観点から、25℃以上90℃以下であることが好ましく、30
℃以上85℃以下であることがより好ましく、40℃以上85℃以下であることがさらに好ましく、55℃以上80℃以下であることが特に好ましい。
In the edge treatment step, the temperature of the treatment liquid that is brought into contact with the edge of the polarizing plate in the direction parallel to the polarizer transmission axis direction is 20° C. or higher as described above. From the viewpoint of appropriately controlling the boric acid cross-linking degree index, the temperature of the treatment liquid is preferably 25° C. or higher and 90° C. or lower.
C. to 85.degree. C., more preferably 40.degree. C. to 85.degree. C., and particularly preferably 55.degree.
 端部処理工程において、上記偏光板の偏光子透過軸方向と平行な方向の端部に接触させる上記処理液の時間は、上述のように3~150秒である。上記端部に接触させる処理液の時間は、偏光子透過軸方向と平行な方向の端部のヨウ素抜けを抑制し、偏光板のカールを抑制し、偏光板中の偏光子の光学性能の低下(偏光度低下、色相変化など)を抑制し、かつホウ酸架橋度指数を適切に制御する観点から、140秒以内の時間であることが好ましく、120秒以内の時間であることがより好ましく、30秒以内の時間であることが特に好ましい。上記端部に接触させる処理液の時間は、5秒以上の時間であってもよい。 In the edge treatment step, the treatment liquid is brought into contact with the edge of the polarizing plate in the direction parallel to the transmission axis direction of the polarizer for 3 to 150 seconds as described above. The duration of the treatment liquid in contact with the edge suppresses iodine removal at the edge in the direction parallel to the polarizer transmission axis direction, suppresses curling of the polarizing plate, and reduces the optical performance of the polarizer in the polarizing plate. From the viewpoint of suppressing (decrease in polarization degree, hue change, etc.) and appropriately controlling the boric acid cross-linking degree index, the time is preferably within 140 seconds, more preferably within 120 seconds, A time of 30 seconds or less is particularly preferred. The time for which the treatment liquid is brought into contact with the edge may be 5 seconds or longer.
 上記端部におけるヨウ素抜け量の範囲としては、0μm以上であってもよく、0.1μm以上であってもよい。上記端部の光学性能の低下および外観品位の観点から、上記端部におけるヨウ素抜け量の上限としては、100μm以下であることが好ましく、50μm以下が好ましく、30μm以下がより好ましく、19μm未満が特に好ましい。本明細書において「ヨウ素抜け量」とは、偏光子において偏光子透過軸方向と平行な方向の端部から光抜けしている距離(μm)を意味する。 The range of the amount of iodine missing at the end may be 0 μm or more, or may be 0.1 μm or more. From the viewpoint of deterioration in optical performance and appearance quality at the ends, the upper limit of the amount of iodine removed at the ends is preferably 100 μm or less, preferably 50 μm or less, more preferably 30 μm or less, and particularly less than 19 μm. preferable. As used herein, the term “iodine escape amount” means the distance (μm) of light escape from the edge of the polarizer in the direction parallel to the polarizer transmission axis direction.
 上記偏光板の偏光子透過軸方向と平行な方向の端部を上記処理液に接触させる方法としては、例えば未処理偏光板の全部、または一部(少なくとも偏光板の偏光子透過軸方向と平行な方向の端部)を、処理液を収容した槽に浸漬する方法、未処理偏光板の全部、または一部(少なくとも偏光板の偏光子透過軸方向と平行な方向の端部)に処理液をスプレーする方法、未処理偏光板の一部(少なくとも偏光板の偏光子透過軸方向と平行な方向の端部)に処理液を塗布する方法、未処理偏光板の一部(少なくとも偏光板の偏光子透過軸方向と平行な方向の端部)と処理液を浸漬させた物品(布等の繊維物、スポンジ等)とを接触させる方法等が挙げられる。あるいは、上記端部処理工程の後に、上記積層工程を実施する場合、ヨウ素およびホウ素を含む偏光子の全部、または一部(少なくとも偏光子における偏光子透過軸方向と平行な方向の端部)を、処理液を収容した槽に浸漬する方法、上記偏光子の全部、または一部(少なくとも偏光子における偏光子透過軸方向と平行な方向の端部)に処理液をスプレーする方法、偏光子の一部(少なくとも偏光子における偏光子透過軸方向と平行な方向の端部)と処理液を浸漬させた物品(布等の繊維物、スポンジ等)とを接触させる方法等が挙げられる。 As a method of bringing the end portion of the polarizing plate in the direction parallel to the polarizer transmission axis direction into contact with the treatment liquid, for example, all or part of the untreated polarizing plate (at least parallel to the polarizer transmission axis direction of the polarizing plate) All or part of the untreated polarizing plate (at least the end in the direction parallel to the polarizer transmission axis direction of the polarizing plate) is immersed in a tank containing the treatment liquid. A method of spraying a part of the untreated polarizing plate (at least the end of the polarizing plate in a direction parallel to the polarizer transmission axis direction), a part of the untreated polarizing plate (at least the polarizing plate and a method of contacting an article (a fibrous material such as a cloth, a sponge, etc.) in which the treatment liquid is immersed. Alternatively, when the lamination step is performed after the edge treatment step, all or part of the polarizer containing iodine and boron (at least the edge of the polarizer in the direction parallel to the polarizer transmission axis direction) , a method of immersing in a bath containing a treatment liquid, a method of spraying the treatment liquid on all or part of the polarizer (at least the end of the polarizer in the direction parallel to the polarizer transmission axis direction), and the use of the polarizer. A method of contacting a portion (at least the end portion of the polarizer in the direction parallel to the transmission axis direction of the polarizer) with an article (fibrous material such as cloth, sponge, etc.) immersed in the treatment liquid may be used.
 処理液がホウ酸水溶液である場合、偏光板を処理液に接触させた後、偏光板を水洗することができる。水洗は、例えば偏光板を、水を収容する槽に浸漬する方法、および/または偏光板に水をスプレーする方法等により行うことができる。以上の方法により、本実施形態に係る偏光板を得ることができる。 When the treatment liquid is an aqueous boric acid solution, the polarizing plate can be washed with water after the polarizing plate is brought into contact with the treatment liquid. Water washing can be performed, for example, by a method of immersing the polarizing plate in a tank containing water and/or a method of spraying water on the polarizing plate. By the above method, the polarizing plate according to this embodiment can be obtained.
 (乾燥処理工程)
 本実施形態に係る偏光板の製造方法は、上述した端部処理工程の後に、乾燥処理工程を有していてもよい。上記乾燥処理工程において乾燥温度は、20℃以上であってもよく、23℃以上であってもよく、100℃以下であってもよい。上記乾燥処理工程は、1枚の偏光板に対して行ってもよく、偏光板を複数積層した状態で行ってもよい。また、未処理偏光板を基板に貼合した状態で端部処理工程を行った場合、これらを貼合した状態で乾燥処理をしてもよい。
(Drying process)
The method for manufacturing a polarizing plate according to the present embodiment may have a drying treatment step after the edge treatment step described above. In the drying treatment step, the drying temperature may be 20° C. or higher, 23° C. or higher, or 100° C. or lower. The drying treatment step may be performed on one polarizing plate, or may be performed with a plurality of polarizing plates laminated. Further, when the edge processing step is performed while the untreated polarizing plate is bonded to the substrate, the drying treatment may be performed in the bonded state.
 <画像表示装置>
 上述の偏光板は画像表示装置に用いることができる。画像表示装置としては、例えば液晶表示装置、有機EL表示装置等が挙げられる。偏光板は、画像表示装置の視認側に配置される偏光板に用いられてもよいし、画像表示装置のバックライト側に配置される偏光板に用いられてもよいし、視認側およびバックライト側の双方の偏光板に用いられてもよい。本実施形態に係る偏光板は、色抜け箇所が目立ちにくいことから、画像表示装置の視認側に用いられた場合であっても、デザイン性が損なわれにくい。そのため、画像表示装置は、カメラホールを有する画像表示装置、例えばスマートフォンや携帯電話等のモバイル機器、およびパーソナルコンピューター等に用いられる画像表示装置、テレビ等として好適である。
<Image display device>
The polarizing plate described above can be used in an image display device. Examples of image display devices include liquid crystal display devices and organic EL display devices. The polarizing plate may be used as a polarizing plate arranged on the viewing side of the image display device, may be used as a polarizing plate arranged on the backlight side of the image display device, or may be used as a polarizing plate arranged on the viewing side and the backlight side of the image display device. It may be used for both polarizing plates on both sides. In the polarizing plate according to the present embodiment, since the color loss portion is less noticeable, the design is less likely to be impaired even when used on the viewing side of the image display device. Therefore, the image display device is suitable as an image display device having a camera hole, for example, as an image display device used for mobile devices such as smartphones and mobile phones, personal computers and the like, televisions and the like.
 以下、実施例により本発明をさらに詳細に説明する。実施例中の「%」および「部」は、特記のない限り、質量%および質量部である。 The present invention will be described in more detail below with reference to examples. Unless otherwise specified, "%" and "parts" in the examples are % by mass and parts by mass.
 <実施例1>
 (製造例1:偏光子製造工程)
 長尺のポリビニルアルコールフィルム(平均重合度:約2400、ケン化度:99.9モル%以上、厚み:60μm)を連続的に搬送し、20℃の純水からなる膨潤浴に滞留時間31秒で浸漬させた(膨潤工程)。その後、膨潤浴から引き出したフィルムを、ヨウ化カリウム/水が2/100(質量比)であるヨウ素を含む30℃の染色浴に滞留時間122秒で浸漬させた(染色工程)。次いで、染色浴から引き出したフィルムを、ヨウ化カリウム/ホウ酸/水が12/4.1/100(質量比)である56℃の架橋浴に滞留時間70秒で浸漬させ、続いて、ヨウ化カリウム/ホウ酸/水が9/2.9/100(質量比)である40℃の架橋浴に滞留時間13秒で浸漬させた(架橋工程)。染色工程および架橋工程において、浴中でのロール間延伸により縦一軸延伸を行った。原反フィルムを基準とする総延伸倍率は5.5倍とした。次に、架橋浴から引き出したフィルムを5℃の純水からなる洗浄浴に滞留時間3秒で浸漬させた後(洗浄工程)、80℃の乾燥炉に滞留時間190秒で導入し乾燥を行うことにより(乾燥工程)、偏光子を得た。以上により得られた偏光子の厚みは23.6μmであった。
<Example 1>
(Production Example 1: Polarizer production process)
A long polyvinyl alcohol film (average degree of polymerization: about 2400, degree of saponification: 99.9 mol% or more, thickness: 60 µm) was continuously conveyed and kept in a swelling bath made of pure water at 20°C for a residence time of 31 seconds. (swelling step). After that, the film pulled out from the swelling bath was immersed in a 30° C. dyeing bath containing iodine with a potassium iodide/water ratio of 2/100 (mass ratio) for a residence time of 122 seconds (dyeing step). The film pulled out from the dye bath was then immersed in a 56° C. crosslinking bath containing potassium iodide/boric acid/water at a ratio of 12/4.1/100 (weight ratio) for a residence time of 70 seconds, followed by It was immersed in a 40° C. crosslinking bath containing potassium chloride/boric acid/water at a ratio of 9/2.9/100 (mass ratio) for a residence time of 13 seconds (crosslinking step). In the dyeing process and the cross-linking process, longitudinal uniaxial stretching was performed by stretching between rolls in a bath. The total draw ratio based on the raw film was 5.5 times. Next, after the film pulled out from the cross-linking bath is immersed in a washing bath made of pure water at 5°C for a residence time of 3 seconds (washing step), it is introduced into a drying oven at 80°C for a residence time of 190 seconds for drying. Thus (drying step), a polarizer was obtained. The thickness of the polarizer thus obtained was 23.6 μm.
 (製造例2:積層工程)
 第1熱可塑性樹脂フィルムとして厚み60μmのトリアセチルセルロース系樹脂からなる保護フィルム(商品名:「TG60UL」、富士フイルム株式会社製)を準備した。さらに第2熱可塑性樹脂フィルムとして厚み40μmのトリアセチルセルロース系樹脂からなる位相差フィルム(商品名:「KC3XR-1」、コニカミノルタ株式会社製)を準備した。
(Production Example 2: Lamination process)
As a first thermoplastic resin film, a protective film (trade name: “TG60UL”, manufactured by FUJIFILM Corporation) made of triacetyl cellulose resin and having a thickness of 60 μm was prepared. Further, a retardation film (trade name: “KC3XR-1”, manufactured by Konica Minolta, Inc.) made of triacetyl cellulose resin and having a thickness of 40 μm was prepared as a second thermoplastic resin film.
 上記保護フィルムおよび位相差フィルムの片面にそれぞれコロナ処理を施し、当該コロナ処理面に、エポキシ系紫外線硬化性接着剤を、接着剤塗工装置を用いることにより塗工した。次いで塗工層面に上記製造例1で得た偏光子を重ね、続いて貼合ロールを用いて押圧および貼合することにより偏光板前駆体を得た。この偏光板前駆体に対し、位相差フィルム側からベルトコンベア付の紫外線照射装置(紫外線ランプについては、商品名:「Dバルブ」、フュージョンUVシステムズ社製を使用)を用いて積算光量が200mJ/cm(UVB)となるように紫外線を照射し、上記接着剤を硬化させて偏光板を得た。一方、偏光板の保護フィルム側に偏光板用表面保護フィルム(PET基材の片面にアクリル系粘着剤層を有するフィルム、商品名「AY-638」、藤森工業株式会社製)を上記偏光板に積層した。以上から、偏光板用表面保護フィルム/保護フィルム/接着剤層/偏光子/接着剤層/位相差フィルムを有する偏光板用表面保護フィルム付偏光板を得た。 One surface of each of the protective film and the retardation film was subjected to corona treatment, and an epoxy-based UV-curable adhesive was applied to the corona-treated surface using an adhesive coating device. Next, the polarizer obtained in Production Example 1 was superimposed on the coating layer surface, followed by pressing and bonding using a bonding roll to obtain a polarizing plate precursor. This polarizing plate precursor was irradiated with an ultraviolet irradiation device with a belt conveyor from the side of the retardation film (for ultraviolet lamps, product name: "D Bulb", manufactured by Fusion UV Systems Co., Ltd. is used), and the cumulative amount of light is 200 mJ/. The polarizing plate was obtained by curing the adhesive by irradiating ultraviolet rays so as to obtain cm 2 (UVB). On the other hand, on the protective film side of the polarizing plate, a surface protective film for polarizing plate (a film having an acrylic pressure-sensitive adhesive layer on one side of a PET substrate, product name "AY-638", manufactured by Fujimori Industry Co., Ltd.) is attached to the above polarizing plate. Laminated. As described above, a polarizing plate with a surface protective film for a polarizing plate having a surface protective film for a polarizing plate/protective film/adhesive layer/polarizer/adhesive layer/retardation film was obtained.
 次に、アクリル系粘着剤層(厚み20μm)を離形フィルムの離型処理面に有する離型フィルム付粘着剤層を準備した。当該離型フィルム付粘着剤層を、上記偏光板用表面保護フィルム付偏光板の位相差フィルム側に、位相者フィルムの表面をコロナ処理した上で積層することにより第1積層体を得た。当該第1積層体は、偏光板用表面保護フィルム/保護フィルム/接着剤層/偏光子/接着剤層/位相差フィルム/粘着剤層/離型フィルムの構造を有する。 Next, a release film-attached pressure-sensitive adhesive layer having an acrylic pressure-sensitive adhesive layer (thickness of 20 µm) on the release-treated surface of the release film was prepared. A first laminate was obtained by laminating the pressure-sensitive adhesive layer with a release film on the retardation film side of the polarizing plate with a surface protective film for a polarizing plate after corona-treating the surface of the phase shifter film. The first laminate has a structure of surface protective film for polarizing plate/protective film/adhesive layer/polarizer/adhesive layer/retardation film/adhesive layer/release film.
 (製造例3:端部形成工程)
 上記製造例2で得た第1積層体を、裁断機を用いて枚葉体とした。次いで上記枚葉体を複数重ね合わせ、かつ外周を研磨処理した後、上記枚葉体を分離回収することにより、217mm(MD方向)×164mm(TD方向)の第2積層体とした。ここでTD方向とは、偏光子の延伸方向(MD方向)と直交する方向を意味する。ここで得られた第2積層体を未処理の偏光板用表面保護フィルム付偏光板という。
(Manufacturing Example 3: Edge forming step)
The first laminate obtained in Production Example 2 was cut into sheets using a cutter. Then, after stacking a plurality of the sheets and polishing the outer periphery, the sheets were separated and collected to form a second laminate of 217 mm (MD direction) x 164 mm (TD direction). Here, the TD direction means a direction orthogonal to the stretching direction (MD direction) of the polarizer. The second laminate obtained here is called an untreated polarizing plate with a surface protective film for a polarizing plate.
 (製造例4:端部処理工程)
 上記製造例3で得た第2積層体を7枚重ねることにより第3積層体を形成し、当該第3積層体の表面および裏面を厚さ0.7mmの無アルカリガラス(商品名:「Eagle XG」、コーニング社製)で把持するとともにクリップで固定した。さらに第3積層体のTD方向の一辺を含む端部(偏光子透過軸方向と平行な方向の端部)を、温度60℃の水(純水)に5秒間浸漬した。浸漬は、上記第3積層体の端部を水面から2cmの深さまで沈めて行った。次いで、第3積層体の残余の3辺に対しても同じ要領により、温度60℃の水(純水)に5秒間浸漬することにより、第4積層体を得た。その後、上記第4積層体を無アルカリガラスで把持するとともにクリップで固定したまま、室温で1日放置することにより乾燥させた。上記第4積層体が乾燥した後、上記第4積層体から無アルカリガラスおよびクリップを取外し、7枚の偏光板を分離回収し、第5積層体を得た。以上により、実施例1の偏光板を含む積層体(第5積層体)を製造した。製造した第5積層体における偏光子透過軸方向と平行な方向の端部をレーザー顕微鏡で観察し、偏光子における偏光子透過軸方向と平行な方向の端部は、両側の熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部と面方向において同じ位置であることを確認した。
(Manufacturing Example 4: Edge processing step)
A third laminate is formed by stacking seven second laminates obtained in Production Example 3 above, and the front and back surfaces of the third laminate are made of non-alkali glass (trade name: "Eagle") with a thickness of 0.7 mm. XG", manufactured by Corning) and fixed with a clip. Furthermore, the end portion including one side in the TD direction of the third laminate (the end portion in the direction parallel to the transmission axis direction of the polarizer) was immersed in water (pure water) at a temperature of 60° C. for 5 seconds. The immersion was performed by immersing the edge of the third laminate to a depth of 2 cm from the water surface. Then, the remaining three sides of the third laminate were also immersed in water (pure water) at a temperature of 60° C. for 5 seconds in the same manner to obtain a fourth laminate. After that, the fourth laminate was dried by leaving it at room temperature for one day while holding it with non-alkali glass and fixing it with a clip. After the fourth laminate was dried, the alkali-free glass and the clip were removed from the fourth laminate, seven polarizing plates were separated and collected, and a fifth laminate was obtained. As described above, a laminate (fifth laminate) including the polarizing plate of Example 1 was produced. The end of the manufactured fifth laminate in the direction parallel to the polarizer transmission axis direction is observed with a laser microscope, and the end of the polarizer in the direction parallel to the polarizer transmission axis direction is the thermoplastic resin film on both sides. It was confirmed that the end portion in the direction parallel to the transmission axis direction of the polarizer was at the same position in the surface direction.
 <実施例2>
 上記製造例4(端部処理工程)において、第3積層体のTD方向の一辺を含む端部および残余の3辺を温度80℃(純水)の水に5秒間浸漬したこと以外、実施例1と同じ要領とすることによって実施例2の偏光板を含む積層体(第5積層体)を製造した。製造した第5積層体における偏光子透過軸方向と平行な方向の端部をレーザー顕微鏡で観察し、偏光子における偏光子透過軸方向と平行な方向の端部は、両側の熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部と面方向において同じ位置であることを確認した。
<Example 2>
In the above production example 4 (end treatment step), the end including one side in the TD direction of the third laminate and the remaining three sides were immersed in water at a temperature of 80 ° C. (pure water) for 5 seconds. A laminate including the polarizing plate of Example 2 (fifth laminate) was produced in the same manner as in Example 1. The end of the manufactured fifth laminate in the direction parallel to the polarizer transmission axis direction is observed with a laser microscope, and the end of the polarizer in the direction parallel to the polarizer transmission axis direction is the thermoplastic resin film on both sides. It was confirmed that the end portion in the direction parallel to the transmission axis direction of the polarizer was at the same position in the surface direction.
 <実施例3>
 上記製造例4(端部処理工程)において、第3積層体のTD方向の一辺を含む端部および残余の3辺を温度50℃(純水)の水に5秒間浸漬したこと以外、実施例1と同じ要領とすることによって実施例3の偏光板を含む積層体(第5積層体)を製造した。製造した第5積層体における偏光子透過軸方向と平行な方向の端部をレーザー顕微鏡で観察し、偏光子における偏光子透過軸方向と平行な方向の端部は、両側の熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部と面方向において同じ位置であることを確認した。
<Example 3>
In the above Production Example 4 (end portion treatment step), the end portion including one side in the TD direction of the third laminate and the remaining three sides were immersed in water at a temperature of 50 ° C. (pure water) for 5 seconds. A laminate (fifth laminate) containing the polarizing plate of Example 3 was produced in the same manner as in Example 1. The end of the manufactured fifth laminate in the direction parallel to the polarizer transmission axis direction is observed with a laser microscope, and the end of the polarizer in the direction parallel to the polarizer transmission axis direction is the thermoplastic resin film on both sides. It was confirmed that the end portion in the direction parallel to the transmission axis direction of the polarizer was at the same position in the surface direction.
 <比較例1>
 上記製造例4(端部処理工程)において、第3積層体のTD方向の一辺を含む端部および残余の3辺を温度80℃の水(純水)に16分間浸漬したこと以外、実施例1と同じ要領とすることによって比較例1の偏光板を含む積層体(第5積層体)を製造した。製造した第5積層体における偏光子透過軸方向と平行な方向の端部をレーザー顕微鏡で観察し、偏光板(保護フィルム)の偏光子透過軸方向と平行な方向の端部より面内内側250μmまで偏光子が存在せず、偏光子空隙部があることを確認した。
<Comparative Example 1>
In the above production example 4 (end portion treatment step), the end portion including one side in the TD direction of the third laminate and the remaining three sides were immersed in water (pure water) at a temperature of 80 ° C. for 16 minutes. A laminate including the polarizing plate of Comparative Example 1 (fifth laminate) was produced in the same manner as in Comparative Example 1. The end of the manufactured fifth laminate in the direction parallel to the polarizer transmission axis direction was observed with a laser microscope, and the in-plane inner side 250 μm from the end of the polarizer (protective film) in the direction parallel to the polarizer transmission axis direction. It was confirmed that the polarizer did not exist until the polarizer and that there was a polarizer void.
 (1) ヒートショック試験(HS試験)
 上述した各実施例および比較例の偏光板を含む第5積層体をそれぞれ複数枚準備し、当該第5積層体に対して以下の手順に従ってヒートショック試験を行った。
(1) Heat shock test (HS test)
A plurality of fifth laminates each including the polarizing plate of each of the examples and comparative examples described above were prepared, and a heat shock test was performed on the fifth laminates according to the following procedure.
 まず上記第5積層体から離形フィルムを剥離し、当該第5積層体の剥離面に厚さ0.7mmの無アルカリガラス(商品名:「Eagle XG」、コーニング社製)にラミネーターを用いて貼り合わせた。続いて、無アルカリガラスが貼合された上記第5積層体に対し、オートクレーブ処理(温度50℃、圧力5kgf/cm(490.3kPa)で、20分間加圧)を施し、偏光板用表面保護フィルムを剥離し、次いで温度23℃、相対湿度55%の環境で1日保管することにより、上記第5積層体のHS試験評価用サンプルを得た。 First, the release film is peeled off from the fifth laminate, and a non-alkaline glass (trade name: “Eagle XG”, manufactured by Corning Incorporated) with a thickness of 0.7 mm is applied to the peeling surface of the fifth laminate using a laminator. pasted together. Subsequently, the fifth laminate to which the alkali-free glass was bonded was autoclaved (at a temperature of 50°C and a pressure of 5 kgf/cm 2 (490.3 kPa) for 20 minutes) to obtain a polarizing plate surface. A sample for HS test evaluation of the fifth laminate was obtained by peeling off the protective film and then storing for one day in an environment with a temperature of 23° C. and a relative humidity of 55%.
 上記HS試験評価用サンプルを、温度85℃の乾燥条件下で1時間保持し、次いで温度-40℃の乾燥条件下で1時間保持する操作を1サイクルとし、これを50サイクル繰り返すヒートショック(HS)試験を行った。試験後、上記HS試験評価用サンプルにおける偏光子の偏光子透過軸方向と平行な方向の端部に割れが発生したか否かを目視で観察した。HS試験に供した複数枚のHS試験評価用サンプルに対する端部に割れが発生したHS試験評価用サンプルの枚数を、不良サンプル発生率(%)として求めた。不良サンプル発生率(%)は、35%以下であれば良好であると評価することができる。結果を表1に示す。 A heat shock (HS ) was tested. After the test, it was visually observed whether or not a crack occurred at the end portion of the polarizer in the direction parallel to the polarizer transmission axis direction in the HS test evaluation sample. The number of HS test evaluation samples having cracks at the edges of the plurality of HS test evaluation samples subjected to the HS test was determined as the defective sample rate (%). A defective sample occurrence rate (%) of 35% or less can be evaluated as good. Table 1 shows the results.
 (2) カール量の測定
 上述した各実施例および比較例の偏光板を含む第5積層体をそれぞれ準備し、当該第5積層体に対し、カール量を測定した。カール量は、水平な台の上に上記第5積層体の矩形の枚葉体(217mm(MD方向)×164mm(TD方向))を、セパレートフィルムが下側(台に接触する側)になるように置き、台から上記枚葉体における4つの頂点および4辺の中点の合計8点までの高さを定規でそれぞれ計測した。上記枚葉体ごとに得られた8点の値の平均値をカール量(mm)として求めた。カール量(mm)は、値が小さいほど良好であると評価することができる。結果を表1に示す。
(2) Measurement of Curl Amount A fifth laminate including the polarizing plate of each of the examples and comparative examples described above was prepared, and the amount of curl was measured for the fifth laminate. The amount of curl is such that the rectangular sheet of the fifth laminate (217 mm (MD direction) × 164 mm (TD direction)) is placed on a horizontal table, and the separate film is on the lower side (the side that contacts the table). Then, the height from the table to the four vertexes and the midpoints of the four sides of the sheet body was measured with a ruler. The curl amount (mm) was obtained by averaging the eight values obtained for each sheet. The curl amount (mm) can be evaluated to be better as the value is smaller. Table 1 shows the results.
 (3) 外観評価
 上述した各実施例および比較例の偏光板を含む第5積層体の7枚を目視で確認し、以下の基準で評価した。結果を表1に示す。
[評価基準]
good:7枚すべてで偏光板用表面保護フィルムと保護フィルム(熱可塑性樹脂フィルム)の間に、浮きや剥がれが見られない。
not good:1枚でも偏光板用表面保護フィルムと保護フィルム(熱可塑性樹脂フィルム)の間に、浮きや剥がれが見られる。
(3) Appearance Evaluation Seven sheets of the fifth laminate including the polarizing plates of each of the Examples and Comparative Examples described above were visually confirmed and evaluated according to the following criteria. Table 1 shows the results.
[Evaluation criteria]
Good: No lifting or peeling is observed between the polarizing plate surface protective film and the protective film (thermoplastic resin film) for all seven sheets.
not good: Lifting or peeling is observed between the polarizing plate surface protective film and the protective film (thermoplastic resin film), even if only one.
 (4) 偏光板用表面保護フィルムの引き起こし力測定
 以下の手順に従って偏光板用表面保護フィルムの引き起こし力を測定した。まず上記第5積層体から、50mm(MD方向)×25mm(TD方向)の試験片を5枚切り出した。上記試験片の切り出しは、上記試験片のTD方向の一辺が端部処理を施した辺となるようにして行った。
(4) Measurement of triggering force of surface protective film for polarizing plate The pulling force of the surface protective film for polarizing plate was measured according to the following procedure. First, five test pieces of 50 mm (MD direction)×25 mm (TD direction) were cut out from the fifth laminate. The test piece was cut so that one side of the test piece in the TD direction was the edge-treated side.
 次に上記試験片からセパレートフィルムを剥離し、当該試験片の剥離面に厚さ0.7mmの無アルカリガラス(商品名:「Eagle XG」、コーニング社製)にラミネーターを用いて貼り合わせた。併せて無アルカリガラスに剥離紙も張り合わせた。その際、上記試験片の端部処理を施した辺から1mm内側までの端部が剥離紙上に位置するように、剥離紙と試験片とを無アルカリガラスに貼り合わせた。さらに上記端部を含む試験片の端部処理を施した辺から5mm内側までの領域を、幅25mmのセロハンテープ(ニチバン株式会社製)で、試験片の長辺とセロハンテープの長辺とが一直線になるように貼り、もって引き起こし力測定用サンプルを作製した。 Next, the separate film was peeled off from the above test piece, and a 0.7 mm-thick alkali-free glass (trade name: "Eagle XG", manufactured by Corning) was laminated to the peeled surface of the test piece using a laminator. At the same time, a release paper was attached to the non-alkali glass. At that time, the release paper and the test piece were bonded to the non-alkali glass so that the edge of the test piece up to 1 mm inside from the edge-treated side was positioned on the release paper. Furthermore, the area from the edge-treated side of the test piece including the above edge to the inner side of 5 mm was covered with cellophane tape (manufactured by Nichiban Co., Ltd.) with a width of 25 mm, and the long side of the test piece and the long side of the cellophane tape They were pasted so as to form a straight line, thereby preparing a sample for measuring the pulling force.
 上記引き起こし力測定用サンプルに対し、オートグラフ(商品名(品番):「AGS-50NX」、株式会社島津製作所製)を用いることにより、温度23℃相対湿度55%の環境下で、剥離幅:25mm、ピール角:180°、ピール速度300mm/minで引き起こし力測定を行った。この場合において、オートグラフの一方の掴み部は無アルカリガラスを把持し、他方の掴み部は、セロハンテープを把持した。 By using an autograph (product name (product number): "AGS-50NX", manufactured by Shimadzu Corporation) on the above-mentioned sample for measuring the triggering force, under an environment of a temperature of 23 ° C. and a relative humidity of 55%, the peel width: 25 mm, a peel angle of 180°, and a peel speed of 300 mm/min were used to measure the pulling force. In this case, one grip portion of the autograph gripped the non-alkali glass, and the other grip portion gripped the cellophane tape.
 引き起こし力測定では、偏光板用表面保護フィルムを保護フィルムから剥離させる際に測定される剥離力の最大値を引き起こし力とみなした。引き起こし力(N/25mm)は、5枚の引き起こし力測定用サンプルから得られた値の平均値とした。引き起こし力(N/25mm)は、0.1以上であれば良好であると評価することができる。引き起こし力が高すぎると剥離しづらく、0.1未満であると製造工程中に所望外の工程で剥離してしまい、偏光板に対する保護機能を果たすことができずに好ましくない。結果を表1に示す。 In the measurement of the triggering force, the maximum value of the peeling force measured when the surface protective film for polarizing plate was peeled off from the protective film was regarded as the triggering force. The triggering force (N/25 mm) was the average of the values obtained from five samples for measuring the triggering force. A triggering force (N/25 mm) of 0.1 or more can be evaluated as good. If the lifting force is too high, it will be difficult to peel off, and if it is less than 0.1, peeling will occur in an undesired step during the manufacturing process, and the protective function for the polarizing plate cannot be achieved, which is not preferable. Table 1 shows the results.
 (5) ヨウ素抜け量の測定
 上述した各実施例および比較例の偏光板を含む第5積層体をそれぞれ5枚準備し、当該第5積層体に対し、以下の手順に従って偏光子における偏光子透過軸方向と平行な方向の端部のヨウ素抜け量を測定した。
(5) Measurement of iodine removal amount Five fifth laminates each including the polarizing plate of each of the examples and comparative examples described above are prepared, and the fifth laminate is subjected to the following procedure to measure the polarizer transmission through the polarizer. The amount of iodine released at the end in the direction parallel to the axial direction was measured.
 まず上記第5積層体からセパレートフィルムを剥離し、当該第5積層体の剥離面に厚さ0.7mmの無アルカリガラス(商品名:「Eagle XG」、コーニング社製)にラミネーターを用いて貼り合わせた。続いて偏光板用表面保護フィルムを剥離することにより、上記第5積層体のヨウ素抜け量評価用サンプルを得た。 First, the separate film was peeled off from the fifth laminate, and a 0.7 mm-thick alkali-free glass (trade name: "Eagle XG", manufactured by Corning) was attached to the peeling surface of the fifth laminate using a laminator. Matched. Subsequently, the polarizing plate surface protective film was peeled off to obtain a sample for evaluating the amount of iodine removed from the fifth laminate.
 次いで上記ヨウ素抜け量評価用サンプルを、検査用の偏光板上にクロスニコル状態で配置するとともに、上記ヨウ素抜け量評価用サンプルの背面から光源を照射することにより、各サンプルの偏光子透過軸方向と平行な方向の端部における光抜けの有無を確認した。さらに光抜けした上記ヨウ素抜け量評価用サンプルの端部をデジタルマイクロスコープ(商品名(品番):「VHX-1000」、キーエンス株式会社製)を用いて観察することにより、当該サンプルにおいて偏光子透過軸方向と平行な方向の端部から光抜けしている距離(μm)を特定し、これをヨウ素抜け量として求めた。上記距離(μm)が大きいほど、ヨウ素抜け量が多いと評価することができ、もって上記距離(μm)が小さいほど良好であると評価することができる。ヨウ素抜け量については、5枚の上記ヨウ素抜け量評価用サンプルから得られた上記距離の平均値とした。結果を表1に示す。表1中、比較例1のヨウ素抜け量の値(426μm)は、偏光板の端部からの光抜け量を示す。上述のように比較例1は、偏光板(保護フィルム)における偏光子透過軸方向と平行な方向の端部より面内内側250μmまで偏光子が存在しないため、偏光子中の実際のヨウ素抜け量としては176μmとなる。 Next, the sample for evaluating the amount of iodine removed is placed on a polarizing plate for inspection in a crossed Nicols state, and a light source is irradiated from the back of the sample for evaluating the amount of iodine removed, so that the polarizer transmission axis direction of each sample The presence or absence of light leakage at the end in the direction parallel to . Furthermore, by observing the end of the sample for evaluating the amount of iodine loss that has passed through with a digital microscope (trade name (product number): “VHX-1000”, manufactured by Keyence Corporation), the polarizer transmission in the sample The distance (μm) of light leakage from the end in the direction parallel to the axial direction was specified, and this was determined as the iodine escape amount. It can be evaluated that the larger the distance (μm), the larger the amount of iodine escaped, and thus the smaller the distance (μm), the better the evaluation. The amount of iodine removed was the average value of the distances obtained from the five samples for evaluating the amount of iodine removed. Table 1 shows the results. In Table 1, the value of the iodine escape amount (426 μm) in Comparative Example 1 indicates the amount of light escape from the edge of the polarizing plate. As described above, in Comparative Example 1, since there is no polarizer up to 250 μm inside the plane from the end of the polarizing plate (protective film) in the direction parallel to the polarizer transmission axis direction, the actual amount of iodine missing in the polarizer is 176 μm.
 (6) ホウ酸架橋度指数の算出
 上述した各実施例および比較例の偏光板を含む第5積層体をそれぞれ5枚準備し、当該第5積層体に対し、上述した方法に従って、偏光子における偏光子透過軸方向と平行な方向との端部でのホウ酸架橋度指数(ホウ酸架橋度指数(1))、および偏光子における偏光子透過軸方向と平行な方向の端部から面方向内側100μmでのホウ酸架橋度指数(ホウ酸架橋度指数(2))、ならびにホウ酸架橋度指数(1)とホウ酸架橋度指数(2)との比率(ホウ酸架橋度指数(1)/ホウ酸架橋度指数(2))を求めた。ホウ酸架橋度指数については、5枚の第5積層体から得られた値の平均値とした。結果を表1に示す。
(6) Calculation of boric acid cross-linking degree index Five fifth laminates each containing the polarizing plate of each of the examples and comparative examples described above were prepared, and the fifth laminate was subjected to the above-described method for the polarizer. Boric acid cross-linking degree index (boric acid cross-linking degree index (1)) at the end in the direction parallel to the polarizer transmission axis direction, and the plane direction from the end of the polarizer in the direction parallel to the polarizer transmission axis direction Boric acid cross-linking index (boric acid cross-linking index (2)) at inner 100 μm, and ratio of boric acid cross-linking index (1) to boric acid cross-linking index (2) (boric acid cross-linking index (1) / boric acid cross-linking degree index (2)) was determined. The boric acid cross-linking degree index was the average value of the values obtained from the five fifth laminates. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <考察>
 実施例1~実施例3の偏光板は、ヒートショック試験において偏光子透過軸方向と平行な方向の端部のクラックの発生が抑制されることが理解される。さらに実施例1~実施例3の偏光板は、ヨウ素抜けが生じ難く、良好な視認性を有する。また実施例1~実施例3の偏光板は、カールの発生も抑制され、偏光板用表面保護フィルムの引き起こし力も良好である。
<Discussion>
It is understood that the polarizing plates of Examples 1 to 3 are inhibited from cracking at the edges in the direction parallel to the transmission axis direction of the polarizer in the heat shock test. Further, the polarizing plates of Examples 1 to 3 are less prone to iodine loss and have good visibility. In addition, the polarizing plates of Examples 1 to 3 are suppressed from curling, and the surface protective film for polarizing plate has a good curling force.
 一方、比較例1の偏光板は、ヒートショック試験において偏光子透過軸方向と平行な方向の端部のクラックの発生が抑制されるものの、偏光子空隙部が存在した。また、ヨウ素抜けが生じ、カールの発生もしやすく、偏光板用表面保護フィルムの引き起こし力の低下も引き起こした。 On the other hand, in the polarizing plate of Comparative Example 1, cracks were suppressed at the edges in the direction parallel to the transmission axis of the polarizer in the heat shock test, but voids were present in the polarizer. In addition, iodine loss occurred, curling was likely to occur, and the curling force of the surface protective film for polarizing plate was lowered.
 1 偏光板、2 偏光子、2a 偏光子空隙部、3 第1熱可塑性樹脂フィルム、4 第2熱可塑性樹脂フィルム、5 偏光板用表面保護フィルム、10 偏光板の偏光子透過軸方向と平行な方向の端部、21 偏光子における偏光子透過軸方向と平行な方向の端部、31,41 熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部、TD 偏光子の透過軸方向、MD 偏光子の吸収軸方向、X レーザー光。 1 polarizing plate, 2 polarizer, 2a polarizer void, 3 first thermoplastic resin film, 4 second thermoplastic resin film, 5 surface protective film for polarizing plate, 10 parallel to the polarizer transmission axis direction of the polarizing plate 21 end of the polarizer in the direction parallel to the polarizer transmission axis direction, 31, 41 end of the thermoplastic resin film in the direction parallel to the polarizer transmission axis direction, TD the polarizer transmission axis direction , MD: absorption axis direction of polarizer, X: laser light.

Claims (9)

  1.  ヨウ素およびホウ素を含む偏光子の両面に熱可塑性樹脂フィルムを有する偏光板であって、
     前記偏光子における偏光子透過軸方向と平行な方向の端部は、少なくとも一方の前記熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部よりも面方向において同じ位置であるか、または面方向外側に位置し、
     前記偏光子における偏光子透過軸方向と平行な方向の端部は、下記式(I)を満たす、偏光板。
    ホウ酸架橋度指数≦0.9     (I)
    [ホウ酸架橋度指数は、波数780cm-1におけるラマン散乱光強度/波数850cm-1におけるラマン散乱光強度で定義される。]
    A polarizing plate having thermoplastic resin films on both sides of a polarizer containing iodine and boron,
    Is the end of the polarizer in the direction parallel to the polarizer transmission axis direction the same position in the plane direction as the end of at least one of the thermoplastic resin films in the direction parallel to the polarizer transmission axis direction? Or located on the outside in the plane direction,
    A polarizing plate in which an end portion of the polarizer in a direction parallel to a polarizer transmission axis direction satisfies the following formula (I).
    Boric acid cross-linking index ≤ 0.9 (I)
    [The boric acid cross-linking index is defined as Raman scattered light intensity at a wavenumber of 780 cm -1 /Raman scattered light intensity at a wavenumber of 850 cm -1 . ]
  2.  ヨウ素およびホウ素を含む偏光子の両面に、熱可塑性樹脂フィルムを積層することにより偏光板を得る積層工程と、
     前記偏光板の偏光子透過軸方向と平行な方向の端部を、20℃以上の処理液に3~150秒接触させる端部処理工程とを含む、偏光板の製造方法。
    A lamination step of obtaining a polarizing plate by laminating thermoplastic resin films on both sides of a polarizer containing iodine and boron;
    and an edge treatment step of contacting the edge of the polarizing plate in a direction parallel to the polarizer transmission axis direction with a treatment liquid at 20° C. or higher for 3 to 150 seconds.
  3.  前記偏光板を切断および/または打ち抜き加工することにより、前記偏光板の偏光子透過軸方向と平行な方向の端部を形成する端部形成工程をさらに含む、請求項2に記載の偏光板の製造方法。 3. The polarizing plate according to claim 2, further comprising an edge forming step of forming an edge in a direction parallel to the polarizer transmission axis direction of the polarizing plate by cutting and/or punching the polarizing plate. Production method.
  4.  前記偏光板において、前記熱可塑性樹脂フィルムの前記偏光子が配置された側とは反対側の面に偏光板用表面保護フィルムを積層する表面保護工程をさらに含む、請求項2または請求項3に記載の偏光板の製造方法。 4. The method according to claim 2 or 3, further comprising a surface protection step of laminating a surface protection film for a polarizing plate on the surface of the thermoplastic resin film opposite to the side on which the polarizer is arranged in the polarizing plate. A method for producing the described polarizing plate.
  5.  前記処理液は水を含む、請求項2から請求項4のいずれか1項に記載の偏光板の製造方法。 The method for manufacturing a polarizing plate according to any one of claims 2 to 4, wherein the treatment liquid contains water.
  6.  前記処理液は水である、請求項2から請求項5のいずれか1項に記載の偏光板の製造方法。 The method for manufacturing a polarizing plate according to any one of claims 2 to 5, wherein the treatment liquid is water.
  7.  前記処理液はpH3~9である、請求項2から請求項6のいずれか1項に記載の偏光板の製造方法。 The method for producing a polarizing plate according to any one of claims 2 to 6, wherein the treatment liquid has a pH of 3 to 9.
  8.  ヨウ素およびホウ素を含む偏光子の少なくとも一方の面に熱可塑性樹脂フィルムを有する偏光板であって、
     前記偏光子における偏光子透過軸方向と平行な方向の端部は、前記熱可塑性樹脂フィルムにおける偏光子透過軸方向と平行な方向の端部よりも面方向において同じ位置であるか、または面方向外側に位置し、
     前記偏光子における偏光子透過軸方向と平行な方向の端部は、下記式(I)を満たす、偏光板。
    ホウ酸架橋度指数≦0.9     (I)
    [ホウ酸架橋度指数は、波数780cm-1におけるラマン散乱光強度/波数850cm-1におけるラマン散乱光強度で定義される。]
    A polarizing plate having a thermoplastic resin film on at least one surface of the polarizer containing iodine and boron,
    The end portion of the polarizer in the direction parallel to the polarizer transmission axis direction is at the same position in the plane direction as the end portion of the thermoplastic resin film in the direction parallel to the polarizer transmission axis direction, or located outside the
    A polarizing plate in which an end portion of the polarizer in a direction parallel to a polarizer transmission axis direction satisfies the following formula (I).
    Boric acid cross-linking index ≤ 0.9 (I)
    [The boric acid cross-linking index is defined as Raman scattered light intensity at a wavenumber of 780 cm -1 /Raman scattered light intensity at a wavenumber of 850 cm -1 . ]
  9.  ヨウ素およびホウ素を含む偏光子の少なくとも一方の面に、熱可塑性樹脂フィルムを積層することにより偏光板を得る積層工程と、
     前記偏光板の偏光子透過軸方向と平行な方向の端部を、20℃以上の処理液に3~150秒接触させる端部処理工程とを含む、偏光板の製造方法。
    A lamination step of obtaining a polarizing plate by laminating a thermoplastic resin film on at least one surface of a polarizer containing iodine and boron;
    and an edge treatment step of contacting the edge of the polarizing plate in a direction parallel to the polarizer transmission axis direction with a treatment liquid at 20° C. or higher for 3 to 150 seconds.
PCT/JP2022/010354 2021-03-11 2022-03-09 Polarizing plate, and method for producing same WO2022191246A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280017681.5A CN116917781A (en) 2021-03-11 2022-03-09 Polarizing plate and method for manufacturing same
KR1020237032339A KR20230156723A (en) 2021-03-11 2022-03-09 Polarizer and its manufacturing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-039633 2021-03-11
JP2021039633 2021-03-11
JP2022-033311 2022-03-04
JP2022033311A JP2022140346A (en) 2021-03-11 2022-03-04 Polarizing plate and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2022191246A1 true WO2022191246A1 (en) 2022-09-15

Family

ID=83226843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010354 WO2022191246A1 (en) 2021-03-11 2022-03-09 Polarizing plate, and method for producing same

Country Status (3)

Country Link
KR (1) KR20230156723A (en)
TW (1) TW202243896A (en)
WO (1) WO2022191246A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052404A (en) * 2005-07-19 2007-03-01 Nitto Denko Corp Polarizing plate and image display device
JP2010102310A (en) * 2008-09-29 2010-05-06 Sumitomo Chemical Co Ltd Composite polarizing plate and liquid crystal display device using the same
JP2016206641A (en) * 2015-04-17 2016-12-08 日東電工株式会社 Polarizer, polarizing plate and production method of the polarizer
JP2017125949A (en) * 2016-01-14 2017-07-20 住友化学株式会社 High-luminance polarizing plate and liquid crystal display device using the same
JP2018091980A (en) * 2016-12-02 2018-06-14 住友化学株式会社 Polarizing film and manufacturing method of polarized laminate film
JP2021043370A (en) * 2019-09-12 2021-03-18 住友化学株式会社 Polarizer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052404A (en) * 2005-07-19 2007-03-01 Nitto Denko Corp Polarizing plate and image display device
JP2010102310A (en) * 2008-09-29 2010-05-06 Sumitomo Chemical Co Ltd Composite polarizing plate and liquid crystal display device using the same
JP2016206641A (en) * 2015-04-17 2016-12-08 日東電工株式会社 Polarizer, polarizing plate and production method of the polarizer
JP2017125949A (en) * 2016-01-14 2017-07-20 住友化学株式会社 High-luminance polarizing plate and liquid crystal display device using the same
JP2018091980A (en) * 2016-12-02 2018-06-14 住友化学株式会社 Polarizing film and manufacturing method of polarized laminate film
JP2021043370A (en) * 2019-09-12 2021-03-18 住友化学株式会社 Polarizer

Also Published As

Publication number Publication date
KR20230156723A (en) 2023-11-14
TW202243896A (en) 2022-11-16

Similar Documents

Publication Publication Date Title
KR101949112B1 (en) Polarizing plate
CN105467492B (en) Polarizing plate
KR102095144B1 (en) Polarizing film, adhesive layer-forming polarizing film, and image display device
JP6296107B2 (en) Laminated film, laminated film manufacturing method, polarizing laminated film manufacturing method, polarizing plate manufacturing method
CN113242986B (en) Polarizing plate
CN109188590B (en) Polarizing plate and display device
JP6381334B2 (en) Manufacturing method of end-face processed polarizing plate
KR101803675B1 (en) Polarizing plate and image display device
KR102587187B1 (en) Method for producing polarizing plate
TWI696853B (en) Method of producing polarizing plate
KR20160131027A (en) Method for producing polarizing plate
WO2022191246A1 (en) Polarizing plate, and method for producing same
JP7397755B2 (en) Polarizer
JP2022140346A (en) Polarizing plate and method for manufacturing the same
KR20220059947A (en) polarizer
JP7343372B2 (en) Polarizer
CN116917781A (en) Polarizing plate and method for manufacturing same
WO2021106341A1 (en) Polarizing plate
JP2020126275A (en) Polarizing plate
JP2019066502A (en) Polarizing plate and method for manufacturing the same, and display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767200

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280017681.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237032339

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22767200

Country of ref document: EP

Kind code of ref document: A1