JP2019211799A - Manufacturing method of polarizing plate - Google Patents

Manufacturing method of polarizing plate Download PDF

Info

Publication number
JP2019211799A
JP2019211799A JP2019173195A JP2019173195A JP2019211799A JP 2019211799 A JP2019211799 A JP 2019211799A JP 2019173195 A JP2019173195 A JP 2019173195A JP 2019173195 A JP2019173195 A JP 2019173195A JP 2019211799 A JP2019211799 A JP 2019211799A
Authority
JP
Japan
Prior art keywords
polarizing plate
polarizer
polarizing
axis direction
film laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019173195A
Other languages
Japanese (ja)
Inventor
勝則 高田
Katsunori Takada
勝則 高田
忍 永野
Shinobu Nagano
忍 永野
映子 末房
Eiko Suefusa
映子 末房
北村▲吉▼紹
Yoshiaki Kitamura
▲吉▼紹 北村
木村 啓介
Keisuke Kimura
啓介 木村
浩貴 倉本
Hirotaka Kuramoto
浩貴 倉本
杉野 洋一郎
Yoichiro Sugino
洋一郎 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2019173195A priority Critical patent/JP2019211799A/en
Publication of JP2019211799A publication Critical patent/JP2019211799A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

To provide a polarizing plate excellent in durability.SOLUTION: A manufacturing method of a polarizing plate of the present invention includes: preparing a polarization film laminate 10 having a polarizer 11 and protective films 21 and 22 arranged at least on one side of the polarizer 11; shrinking the polarization film laminate 10; and cutting the shrunk polarization film laminate.SELECTED DRAWING: Figure 1

Description

本発明は、偏光板の製造方法に関する。   The present invention relates to a method for producing a polarizing plate.

携帯電話、ノート型パーソナルコンピューター等の画像表示装置(例えば、液晶表示装置)には、偏光板が使用されている。近年、自動車のメータ表示部やスマートウォッチなどにも偏光板の使用が望まれており、偏光板の形状を矩形以外にすることや偏光板に貫通穴を形成することが望まれている。しかし、このような形態を採用する場合、耐久性の問題が発生しやすい。耐久性の向上を目的として、例えば、偏光子を95℃以上の温度で熱処理し、熱処理された偏光子に保護フィルムを積層して偏光板を得る方法が提案されているが(特許文献1参照)、さらなる耐久性の向上が求められている。   Polarizers are used in image display devices (for example, liquid crystal display devices) such as mobile phones and notebook personal computers. In recent years, it has been desired to use a polarizing plate for a meter display unit of an automobile, a smart watch, and the like, and it is desired that the polarizing plate has a shape other than a rectangular shape and a through hole is formed in the polarizing plate. However, when such a form is adopted, a problem of durability is likely to occur. For the purpose of improving the durability, for example, a method has been proposed in which a polarizer is heat-treated at a temperature of 95 ° C. or higher and a protective film is laminated on the heat-treated polarizer to obtain a polarizing plate (see Patent Document 1). ), Further improvement in durability is demanded.

特開平07−333425号公報Japanese Patent Application Laid-Open No. 07-333425

本発明は上記課題を解決するためになされたものであり、その主たる目的は、耐久性に優れた偏光板を提供することにある。   The present invention has been made to solve the above-mentioned problems, and a main object thereof is to provide a polarizing plate having excellent durability.

本発明の偏光板の製造方法は、偏光子と、この偏光子の少なくとも片側に配置された保護フィルムとを有する偏光フィルム積層体を準備すること、偏光フィルム積層体を収縮させること、および、収縮させた偏光フィルム積層体を切断することを含む。
1つの実施形態においては、上記偏光子の透過軸方向に、上記偏光フィルム積層体を0.2%以上収縮させる。
1つの実施形態においては、上記切断は、貫通穴、外縁が面方向内方に凸の略V字形状をなす部位、外縁が面方向内方に凸のアール状をなす部位、およびこれらの組み合わせからなる群から選択される1つを形成することを含む。
The method for producing a polarizing plate of the present invention comprises preparing a polarizing film laminate having a polarizer and a protective film disposed on at least one side of the polarizer , shrinking the polarizing film laminate , and Cutting the shrunk polarizing film laminate .
In one embodiment, the polarizing film laminate is contracted by 0.2% or more in the transmission axis direction of the polarizer.
In one embodiment, the cutting is performed through the through-hole, a portion having a substantially V shape whose outer edge is convex inward in the plane direction, a portion having an outer edge having a round shape that is convex inward in the plane direction, and a combination thereof. Forming one selected from the group consisting of:

本発明によれば、偏光子と保護フィルムとを積層して得られた偏光フィルム積層体を収縮させることにより、耐久性に優れた偏光板を得ることができる。   According to this invention, the polarizing plate excellent in durability can be obtained by shrink | contracting the polarizing film laminated body obtained by laminating | stacking a polarizer and a protective film.

本発明の1つの実施形態による偏光フィルム積層体の断面図である。It is sectional drawing of the polarizing film laminated body by one Embodiment of this invention. 本発明の1つの実施形態による偏光板の平面図である。1 is a plan view of a polarizing plate according to one embodiment of the present invention. (a)はヒートサイクル試験後の実施例1の偏光板の貫通穴周辺を示す写真であり、(b)はヒートサイクル試験後の実施例2の偏光板の貫通穴周辺を示す写真であり、(c)はヒートサイクル試験後の実施例3の偏光板の貫通穴周辺を示す写真であり、(d)はヒートサイクル試験後の比較例1の偏光板の貫通穴周辺を示す写真である。(A) is a photograph showing the periphery of the through hole of the polarizing plate of Example 1 after the heat cycle test, (b) is a photograph showing the periphery of the through hole of the polarizing plate of Example 2 after the heat cycle test, (C) is a photograph showing the periphery of the through hole of the polarizing plate of Example 3 after the heat cycle test, and (d) is a photograph showing the periphery of the through hole of the polarizing plate of Comparative Example 1 after the heat cycle test. (a)はヒートサイクル試験後の実施例1の試験用サンプルの透過軸方向に沿った偏光板端辺周辺の状態を示し、(b)は吸収軸方向に沿った偏光板端辺周辺の状態を示す。(A) shows the state around the polarizing plate edge side along the transmission axis direction of the test sample of Example 1 after the heat cycle test, and (b) shows the state around the polarizing plate edge side along the absorption axis direction. Indicates. (a)はヒートサイクル試験後の比較例1の試験用サンプルの透過軸方向に沿った偏光板端辺周辺の状態を示し、(b)は吸収軸方向に沿った偏光板端辺周辺の状態を示す。(A) shows the state around the polarizing plate edge along the transmission axis direction of the test sample of Comparative Example 1 after the heat cycle test, and (b) shows the state around the polarizing plate edge along the absorption axis direction. Indicates.

以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。   Hereinafter, although embodiment of this invention is described, this invention is not limited to these embodiment.

本発明の偏光板の製造方法は、偏光子とこの偏光子の少なくとも片側に配置された保護フィルムとを有する偏光フィルム積層体を準備すること、および、偏光フィルム積層体を収縮させることを含む。   The manufacturing method of the polarizing plate of this invention includes preparing the polarizing film laminated body which has a polarizer and the protective film arrange | positioned at least one side of this polarizer, and shrinking a polarizing film laminated body.

A.偏光フィルム積層体
図1は、本発明の1つの実施形態による偏光フィルム積層体の断面図である。偏光フィルム積層体10は、偏光子11と、偏光子11の片側に配置された第1の保護フィルム21と、偏光子11のもう片側に配置された第2の保護フィルム22とを有する。図示しないが、保護フィルム21,22は、代表的には、偏光子11の表面に、接着剤層を介して貼り合わされている。本図示例では、偏光子の両側に保護フィルムが配置されているが、片側にのみ保護フィルムが配置されていてもよい。
A. Polarizing Film Laminate FIG. 1 is a cross-sectional view of a polarizing film laminate according to one embodiment of the present invention. The polarizing film laminate 10 includes a polarizer 11, a first protective film 21 disposed on one side of the polarizer 11, and a second protective film 22 disposed on the other side of the polarizer 11. Although not shown, the protective films 21 and 22 are typically bonded to the surface of the polarizer 11 via an adhesive layer. In the illustrated example, the protective film is disposed on both sides of the polarizer, but the protective film may be disposed only on one side.

A−1.偏光子
上記偏光子は、代表的には、二色性物質を含む樹脂フィルムから構成される。二色性物質としては、例えば、ヨウ素、有機染料等が挙げられる。これらは、単独で、または、二種以上組み合わせて用いられ得る。好ましくは、ヨウ素が用いられる。
A-1. Polarizer The polarizer is typically composed of a resin film containing a dichroic substance. Examples of the dichroic substance include iodine and organic dyes. These may be used alone or in combination of two or more. Preferably, iodine is used.

上記樹脂フィルムを形成する樹脂としては、任意の適切な樹脂が用いられ得る。好ましくは、親水性樹脂(例えば、ポリビニルアルコール(PVA)系樹脂)が用いられる。PVA系樹脂としては、例えば、ポリビニルアルコール、エチレン−ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン−ビニルアルコール共重合体は、エチレン−酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%〜100モル%であり、好ましくは95.0モル%以上、さらに好ましくは99.0モル%以上、特に好ましくは99.93モル%以上である。ケン化度は、JIS K 6726−1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた偏光子が得られ得る。   Arbitrary appropriate resin may be used as resin which forms the said resin film. Preferably, a hydrophilic resin (for example, polyvinyl alcohol (PVA) resin) is used. Examples of the PVA resin include polyvinyl alcohol and ethylene-vinyl alcohol copolymer. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. An ethylene-vinyl alcohol copolymer can be obtained by saponifying an ethylene-vinyl acetate copolymer. The degree of saponification of the PVA-based resin is usually 85 to 100 mol%, preferably 95.0 mol% or more, more preferably 99.0 mol% or more, and particularly preferably 99.93 mol% or more. . The saponification degree can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a saponification degree, a polarizer having excellent durability can be obtained.

PVA系樹脂の平均重合度は、目的に応じて適切に選択され得る。平均重合度は、通常1000〜10000であり、好ましくは1200〜6000、さらに好ましくは2000〜5000である。なお、平均重合度は、JIS K 6726−1994に準じて求めることができる。   The average degree of polymerization of the PVA-based resin can be appropriately selected according to the purpose. Average polymerization degree is 1000-10000 normally, Preferably it is 1200-6000, More preferably, it is 2000-5000. The average degree of polymerization can be determined according to JIS K 6726-1994.

偏光子は、好ましくは、波長380nm〜780nmの範囲で吸収二色性を示す。偏光子の単体透過率(Ts)は、好ましくは40%以上、より好ましくは41%以上、さらに好ましくは42%以上、特に好ましくは43%以上である。なお、単体透過率の理論上の上限は50%であり、実用的な上限は46%である。また、単体透過率(Ts)は、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値であり、例えば、分光光度計(日本分光製、V7100)を用いて測定することができる。偏光子の偏光度は、好ましくは99.8%以上、より好ましくは99.9%以上、さらに好ましくは99.95%以上である。   The polarizer preferably exhibits absorption dichroism in the wavelength range of 380 nm to 780 nm. The single transmittance (Ts) of the polarizer is preferably 40% or more, more preferably 41% or more, still more preferably 42% or more, and particularly preferably 43% or more. The theoretical upper limit of the single transmittance is 50%, and the practical upper limit is 46%. In addition, the single transmittance (Ts) is a Y value measured by a 2 degree visual field (C light source) of JIS Z8701 and corrected for visibility. For example, a spectrophotometer (manufactured by JASCO Corporation, V7100) is used. Can be measured. The polarization degree of the polarizer is preferably 99.8% or more, more preferably 99.9% or more, and further preferably 99.95% or more.

偏光子の厚みは、任意の適切な値に設定され得る。厚みは、代表的には1μm〜80μmであり、好ましくは3μm〜40μmである。   The thickness of the polarizer can be set to any appropriate value. The thickness is typically 1 μm to 80 μm, preferably 3 μm to 40 μm.

偏光子は、代表的には、上記樹脂フィルムに、膨潤処理、延伸処理、上記二色性物質による染色処理、架橋処理、洗浄処理、乾燥処理等の処理を施すことにより得ることができる。各処理の回数、順序、タイミング等は、適宜設定され得る。各処理を施す際、樹脂フィルムは、基材上に形成された樹脂層であってもよい。   The polarizer can be typically obtained by subjecting the resin film to treatment such as swelling treatment, stretching treatment, dyeing treatment with the dichroic substance, crosslinking treatment, washing treatment, and drying treatment. The number, order, timing, and the like of each process can be set as appropriate. When performing each treatment, the resin film may be a resin layer formed on a substrate.

上記架橋処理は、例えば、樹脂フィルムにホウ酸溶液(例えば、ホウ酸水溶液)を接触させることにより行われる。また、延伸処理において湿式延伸方式を採用する場合、樹脂フィルムにホウ酸溶液を接触させながら延伸することが好ましい。優れた偏光特性を得る観点から、通常、3倍〜7倍に樹脂フィルムは一軸延伸される。延伸処理における延伸方向は、得られる偏光子の吸収軸方向に相当し得る。透過軸方向は、吸収軸方向に対して直交し得る。1つの実施形態においては、長尺状の樹脂フィルムをその長手方向に搬送しながらこの搬送方向(MD)に延伸する。この場合、得られる偏光子の吸収軸方向は長手方向(MD)となり、透過軸方向は幅方向(TD)となり得る。   The said crosslinking process is performed by making a boric acid solution (for example, boric acid aqueous solution) contact a resin film, for example. Moreover, when employ | adopting a wet extending | stretching system in an extending | stretching process, it is preferable to extend | stretch, making a boric acid solution contact a resin film. From the viewpoint of obtaining excellent polarization characteristics, the resin film is usually uniaxially stretched 3 to 7 times. The stretching direction in the stretching treatment can correspond to the absorption axis direction of the obtained polarizer. The transmission axis direction can be orthogonal to the absorption axis direction. In one embodiment, the long resin film is stretched in the transport direction (MD) while being transported in the longitudinal direction. In this case, the absorption axis direction of the obtained polarizer can be the longitudinal direction (MD), and the transmission axis direction can be the width direction (TD).

A−2.保護フィルム
上記保護フィルムの形成材料としては、例えば、ジアセチルセルロース、トリアセチルセルロース(TAC)等のセルロース系樹脂、(メタ)アクリル系樹脂、シクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂等が挙げられる。なお、「(メタ)アクリル系樹脂」とは、アクリル系樹脂および/またはメタクリル系樹脂をいう。
A-2. Protective film Examples of the material for forming the protective film include cellulose resins such as diacetyl cellulose and triacetyl cellulose (TAC), (meth) acrylic resins, cycloolefin resins, olefin resins such as polypropylene, and polyethylene terephthalate systems. Examples thereof include ester resins such as resins, polyamide resins, polycarbonate resins, and copolymer resins thereof. The “(meth) acrylic resin” refers to an acrylic resin and / or a methacrylic resin.

保護フィルムの厚みは、好ましくは10μm〜200μmである。保護フィルムの片側(偏光子が配置されない側)には、表面処理層が形成されていてもよい。具体的には、ハードコート処理や反射防止処理、拡散ないしアンチグレアを目的とした処理が施されていてもよい。また、保護フィルムは位相差フィルムとして機能してもよい。なお、図示例のように、偏光子の両側にそれぞれ保護フィルムが配置される場合、両者の構成(形成材料、厚み等)は、同じ構成であってもよいし、異なる構成であってもよい。   The thickness of the protective film is preferably 10 μm to 200 μm. A surface treatment layer may be formed on one side of the protective film (side where the polarizer is not disposed). Specifically, a hard coat treatment, an antireflection treatment, or treatment for diffusion or antiglare may be performed. The protective film may function as a retardation film. In addition, when a protective film is arrange | positioned at both sides of a polarizer like the example of illustration, both structure (formation material, thickness, etc.) may be the same structure, and a different structure may be sufficient as them. .

A−3.その他
保護フィルムの貼り合わせに用いられる接着剤としては、任意の適切な接着剤が採用され得る。例えば、水系接着剤、溶剤系接着剤、活性エネルギー線硬化型接着剤等が用いられる。水系接着剤としては、PVA系樹脂を含む接着剤が好ましく用いられる。
A-3. Others Any appropriate adhesive can be adopted as the adhesive used for bonding the protective film. For example, a water-based adhesive, a solvent-based adhesive, an active energy ray curable adhesive, or the like is used. As the water-based adhesive, an adhesive containing a PVA-based resin is preferably used.

B.収縮
上記偏光フィルム積層体を収縮させる。偏光フィルム積層体を収縮させることにより、耐久性に優れた偏光板を得ることができる。具体的には、収縮した偏光板は、外部環境の変化による形状変化が非常に小さく、他の部材(例えば、液晶セル等のガラス基板)に粘着剤層を介して貼り合わされた際に、隣接する粘着剤層に与える影響が非常に小さい。そのため、外部環境の変化による粘着剤層の形状変化が抑制され、各部材間の応力(例えば、低温で粘着剤層の弾性率が増大したときに生じる応力)の発生を防止することができる。その結果、偏光板にクラックが発生することなく、偏光板は極めて優れた耐久性を有し得る。
B. Shrinkage Shrink the polarizing film laminate. A polarizing plate excellent in durability can be obtained by shrinking the polarizing film laminate. Specifically, the contracted polarizing plate has a very small shape change due to a change in the external environment, and is adjacent to another member (for example, a glass substrate such as a liquid crystal cell) via an adhesive layer. The effect on the adhesive layer is very small. Therefore, the change in the shape of the pressure-sensitive adhesive layer due to a change in the external environment is suppressed, and the occurrence of stress between the members (for example, stress generated when the elastic modulus of the pressure-sensitive adhesive layer increases at a low temperature) can be prevented. As a result, the polarizing plate can have extremely excellent durability without causing cracks in the polarizing plate.

収縮方法としては、代表的には、偏光フィルム積層体を加熱する方法が挙げられる。加熱温度は、例えば50℃〜120℃、好ましくは70℃〜90℃である。このような範囲であれば、偏光フィルム積層体の光学特性(例えば、色相、透過率、偏光度)を確保しながら、効率的に収縮させることができる。加熱時間は、例えば1時間〜100時間、好ましくは2時間以上、さらに好ましくは10時間以上である。加熱は一段階で行ってもよいし、多段階で行ってもよい。また、加熱温度は、実質的に一定に保たれていてもよいし、連続的にまたは段階的に変化させてもよい。   A typical example of the shrinking method is a method of heating the polarizing film laminate. The heating temperature is, for example, 50 ° C to 120 ° C, preferably 70 ° C to 90 ° C. If it is such a range, it can be made to shrink | contract efficiently, ensuring the optical characteristic (for example, hue, transmittance | permeability, polarization degree) of a polarizing film laminated body. The heating time is, for example, 1 hour to 100 hours, preferably 2 hours or more, and more preferably 10 hours or more. Heating may be performed in one stage or in multiple stages. The heating temperature may be kept substantially constant, or may be changed continuously or stepwise.

収縮率は、例えば、偏光フィルム積層体に含まれる偏光子の透過軸方向において0.2%以上であることが好ましく、さらに好ましくは0.3%以上である。一方、透過軸方向における収縮率は、例えば0.6%以下である。このような収縮率であれば、偏光フィルム積層体を十分なレベルにまで収縮させたと判断され得る。なお、偏光フィルム積層体は、透過軸方向よりも吸収軸方向により大きく収縮し得るため、収縮の初期段階では、見かけ上、偏光フィルム積層体の透過軸方向の寸法が一旦増加する場合がある。この場合、収縮が進むと、透過軸方向の寸法も収縮開始時(加熱開始時)の寸法から減少し得る。   For example, the shrinkage rate is preferably 0.2% or more, and more preferably 0.3% or more in the transmission axis direction of the polarizer contained in the polarizing film laminate. On the other hand, the shrinkage rate in the transmission axis direction is, for example, 0.6% or less. With such a shrinkage rate, it can be determined that the polarizing film laminate was shrunk to a sufficient level. In addition, since the polarizing film laminate can contract more greatly in the absorption axis direction than in the transmission axis direction, in the initial stage of contraction, the dimension in the transmission axis direction of the polarizing film laminate may sometimes temporarily increase. In this case, as shrinkage progresses, the dimension in the transmission axis direction can also decrease from the dimension at the start of shrinkage (at the start of heating).

偏光フィルム積層体の吸収軸方向における収縮率は、好ましくは0.3%以上、さらに好ましくは0.4%以上である。一方、吸収軸方向における収縮率は、例えば1.0%以下である。なお、収縮率は、下記式により求めることができる。
収縮率(%)={1−(加熱後の寸法/加熱前の寸法))}×100
The shrinkage rate in the absorption axis direction of the polarizing film laminate is preferably 0.3% or more, more preferably 0.4% or more. On the other hand, the shrinkage rate in the absorption axis direction is, for example, 1.0% or less. In addition, a shrinkage rate can be calculated | required by a following formula.
Shrinkage rate (%) = {1- (dimension after heating / dimension before heating))} × 100

C.切断
本発明の偏光板は優れた耐久性を有することから、所望の形状に成形され得る。所望の形状への成形方法としては、代表的には、上記偏光フィルム積層体を切断(打ち抜き)する方法が挙げられる。切断は、偏光フィルム積層体の収縮前に行ってもよいし、収縮後に行ってもよい。なお、切断を収縮前に行っても収縮後に行っても、優れた耐久性が得られ得る。所望の形状への成形をより精密に行う観点では、収縮後に切断することが好ましい。
C. Cutting Since the polarizing plate of the present invention has excellent durability, it can be formed into a desired shape. A typical example of a method for forming into a desired shape is a method of cutting (punching) the polarizing film laminate. The cutting may be performed before shrinkage of the polarizing film laminate or after shrinkage. It should be noted that excellent durability can be obtained whether cutting is performed before shrinkage or after shrinkage. From the viewpoint of more precisely forming the desired shape, it is preferable to cut after shrinkage.

切断(打ち抜き)方法としては、任意の適切な方法が採用され得る。例えば、レーザー光を照射する方法、トムソン刃、ピクナル刃等の切断刃(打ち抜き型)を用いる方法が挙げられる。レーザー光照射によれば、滑らかな切断面が得られ、クラックの起点(初期クラック)の発生を抑制することができ、耐久性のさらなる向上に寄与し得る。切断刃を用いる場合であっても(初期クラックが発生していたとしても)、上記収縮により優れた耐久性が得られ得る。   Any appropriate method can be adopted as the cutting (punching) method. Examples thereof include a method of irradiating laser light and a method of using a cutting blade (punching die) such as a Thomson blade or a picnal blade. According to the laser beam irradiation, a smooth cut surface can be obtained, the generation of crack starting points (initial cracks) can be suppressed, and the durability can be further improved. Even when a cutting blade is used (even if an initial crack has occurred), excellent durability can be obtained by the above shrinkage.

上記レーザーとしては、偏光フィルム積層体(偏光板)を切断し得る限り、任意の適切なレーザーが採用され得る。好ましくは、150nm〜11μmの範囲内の波長の光を放射し得るレーザーが用いられる。具体例としては、COレーザー等の気体レーザー;YAGレーザー等の固体レーザー;半導体レーザーが挙げられる。好ましくは、COレーザーが用いられる。 Any appropriate laser can be adopted as the laser as long as the polarizing film laminate (polarizing plate) can be cut. Preferably, a laser that can emit light having a wavelength in the range of 150 nm to 11 μm is used. Specific examples include a gas laser such as a CO 2 laser; a solid laser such as a YAG laser; and a semiconductor laser. Preferably, a CO 2 laser is used.

レーザー光の照射条件は、例えば、用いるレーザーに応じて、任意の適切な条件に設定され得る。出力条件は、COレーザーを用いる場合、好ましくは10W〜1000W、さらに好ましくは100W〜400Wである。 The irradiation condition of the laser beam can be set to any appropriate condition depending on, for example, the laser to be used. The output conditions are preferably 10 W to 1000 W, more preferably 100 W to 400 W, when a CO 2 laser is used.

D.偏光板
図2は、本発明の1つの実施形態による偏光板の平面図である。偏光板100は、自動車のメータパネルに好適に用いられる。偏光板100は、第1の表示部50と第2の表示部60とが連設されて構成され、各表示部の中心付近には、各種メータ針を固定するための貫通穴51,61がそれぞれ形成されている。貫通穴の直径は、例えば0.5mm〜100mmである。表示部50,60の外縁は、メータ針の回転方向に沿った円弧状に形成されている。
D. Polarizing Plate FIG. 2 is a plan view of a polarizing plate according to one embodiment of the present invention. The polarizing plate 100 is suitably used for an automobile meter panel. The polarizing plate 100 is configured by connecting a first display unit 50 and a second display unit 60, and through holes 51 and 61 for fixing various meter needles are provided near the center of each display unit. Each is formed. The diameter of the through hole is, for example, 0.5 mm to 100 mm. The outer edges of the display units 50 and 60 are formed in an arc shape along the rotation direction of the meter needle.

図示例のように貫通穴を形成する場合、貫通穴の位置は、例えば、偏光板の用途に応じて適宜設定され得る。上記クラックは、貫通穴の周縁を起点に発生しやすく、貫通穴の位置が偏光板の外縁から離れているほどその傾向が顕著となり得る。その結果、貫通穴の位置が偏光板の外縁から離れているほど(例えば、偏光板の外縁から15mm以上)、上記収縮による耐久性向上の効果が顕著に得られ得る。なお、各表示部の境界部41,42のような外縁が面方向内方に凸のV字形状(アール状を含む)をなす部位も、貫通穴の周縁と同様、クラックの起点となりやすい。   When forming a through-hole like the example of illustration, the position of a through-hole can be suitably set according to the use of a polarizing plate, for example. The crack is likely to be generated starting from the periphery of the through hole, and the tendency of the crack becomes more prominent as the position of the through hole is away from the outer edge of the polarizing plate. As a result, as the position of the through hole is farther from the outer edge of the polarizing plate (for example, 15 mm or more from the outer edge of the polarizing plate), the effect of improving the durability due to the shrinkage can be obtained remarkably. In addition, the part where the outer edges such as the boundary parts 41 and 42 of each display part form a V-shape (including a round shape) that is convex inward in the surface direction is likely to be a starting point of a crack, similarly to the periphery of the through hole.

本発明の偏光板は、上記図示例の構成に限らず適宜変更可能である。例えば、偏光板の形状、貫通穴の有無、貫通穴の形状やサイズ、貫通穴の数や形成位置は、適宜に変更可能である。   The polarizing plate of the present invention is not limited to the configuration of the illustrated example, and can be changed as appropriate. For example, the shape of the polarizing plate, the presence / absence of the through hole, the shape and size of the through hole, the number of the through holes and the formation position can be appropriately changed.

本発明の偏光板は、例えば、粘着剤層を介して他の部材(例えば、液晶セル等のガラス基板)に貼り合わせられる。粘着剤層の厚みは、好ましくは4μm〜50μmである。粘着剤層を形成する粘着剤としては、アクリル系粘着剤が好ましく用いられる。   For example, the polarizing plate of the present invention is bonded to another member (for example, a glass substrate such as a liquid crystal cell) via an adhesive layer. The thickness of the pressure-sensitive adhesive layer is preferably 4 μm to 50 μm. An acrylic pressure-sensitive adhesive is preferably used as the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、寸法変化率は下記式により算出した値である。
寸法変化率(%)={(加熱後の寸法/加熱前の寸法))−1}×100
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these Examples. The dimensional change rate is a value calculated by the following formula.
Dimensional change rate (%) = {(dimension after heating / dimension before heating)) − 1} × 100

[実施例1]
(偏光フィルム積層体シートの作製)
偏光子として、長尺状のPVA系樹脂フィルムにヨウ素を含有させ、長手方向(MD)に一軸延伸して得られたフィルム(厚み28μm)を用いた。
上記偏光子の片側にPVA系接着剤を乾燥後の厚みが100nmとなるように塗布し、長尺状で厚み40μmのTACフィルムを互いの長手方向を揃えるように貼り合わせた。
続いて、上記偏光子のもう片側にPVA系接着剤を乾燥後の厚みが100nmとなるように塗布し、長尺状で厚み30μmのアクリルフィルムを互いの長手方向を揃えるように貼り合わせた。
こうして、TACフィルム/偏光子/アクリルフィルムの構成を有する偏光フィルム積層体シートを得た。
[Example 1]
(Preparation of polarizing film laminate sheet)
As the polarizer, a film (thickness 28 μm) obtained by containing iodine in a long PVA-based resin film and uniaxially stretching in the longitudinal direction (MD) was used.
A PVA adhesive was applied to one side of the polarizer so that the thickness after drying was 100 nm, and a long TAC film having a thickness of 40 μm was bonded so that the longitudinal directions thereof were aligned.
Subsequently, a PVA adhesive was applied to the other side of the polarizer so that the thickness after drying was 100 nm, and a long acrylic film having a thickness of 30 μm was bonded so that the longitudinal directions thereof were aligned.
Thus, a polarizing film laminate sheet having a TAC film / polarizer / acrylic film structure was obtained.

得られた偏光フィルム積層体シートを、COレーザー(波長:9.35μm、出力:150W)を用いて切断し、外縁から55mmの部位に直径2mmの貫通穴が形成された112mm×112mmのサイズの切断片を得た。
得られた切断片を85℃の雰囲気下に50時間おき、偏光板を得た。加熱前後における吸収軸方向の寸法変化率は−0.74%(収縮率は0.74%)であり、透過軸方向の寸法変化率は−0.44%(収縮率は0.44%)であった。この加熱前後の寸法変化率は、別途、偏光フィルム積層体シートから100mm×100mmのサイズに切り出した切断片を用意し(この切断片には貫通穴は形成されていない)、切断片の角の位置を測定することにより求めた。ここで、切断片の切り出しは、対向する1組の辺が偏光子の透過軸方向に対応し、対向するもう1組の辺が偏光子の吸収軸方向に対応するように行った。
The obtained polarizing film laminate sheet was cut using a CO 2 laser (wavelength: 9.35 μm, output: 150 W), and a size of 112 mm × 112 mm in which a through hole having a diameter of 2 mm was formed at a site 55 mm from the outer edge A cut piece of was obtained.
The obtained cut piece was placed in an atmosphere at 85 ° C. for 50 hours to obtain a polarizing plate. The dimensional change rate in the absorption axis direction before and after heating is -0.74% (shrinkage rate is 0.74%), and the dimensional change rate in the transmission axis direction is -0.44% (shrinkage rate is 0.44%). Met. For the dimensional change rate before and after heating, separately prepare a cut piece cut into a size of 100 mm × 100 mm from the polarizing film laminate sheet (this cut piece is not formed with a through hole), and the corner of the cut piece It was determined by measuring the position. Here, the cut pieces were cut out such that one set of opposite sides corresponded to the transmission axis direction of the polarizer and another set of opposite sides corresponded to the absorption axis direction of the polarizer.

[実施例2]
得られた切断片を85℃の雰囲気下に5時間おいたこと以外は実施例1と同様にして、偏光板を得た。実施例1と同様の方法で測定した加熱前後における吸収軸方向の寸法変化率は−0.45%(収縮率は0.45%)であり、透過軸方向の寸法変化率は−0.37%(収縮率は0.37%)であった。
[Example 2]
A polarizing plate was obtained in the same manner as in Example 1 except that the obtained cut piece was placed in an atmosphere of 85 ° C. for 5 hours. The dimensional change rate in the absorption axis direction before and after heating measured by the same method as in Example 1 was −0.45% (shrinkage rate was 0.45%), and the dimensional change rate in the transmission axis direction was −0.37. % (Shrinkage rate was 0.37%).

[実施例3]
得られた切断片を85℃の雰囲気下に2.5時間おいたこと以外は実施例1と同様にして、偏光板を得た。実施例1と同様の方法で測定した加熱前後における吸収軸方向の寸法変化率は−0.34%(収縮率は0.34%)であり、透過軸方向の寸法変化率は−0.25%(収縮率は0.25%)であった。
[Example 3]
A polarizing plate was obtained in the same manner as in Example 1 except that the obtained cut piece was placed in an atmosphere of 85 ° C. for 2.5 hours. The dimensional change rate in the absorption axis direction before and after heating measured by the same method as in Example 1 is -0.34% (shrinkage rate is 0.34%), and the dimensional change rate in the transmission axis direction is -0.25. % (Shrinkage was 0.25%).

[実施例4]
切断片のサイズを52mm×52mmとし、貫通穴を外縁から25mmの部位に形成したこと以外は実施例1と同様にして、偏光板を得た。
[Example 4]
A polarizing plate was obtained in the same manner as in Example 1 except that the size of the cut piece was 52 mm × 52 mm and the through hole was formed at a site 25 mm from the outer edge.

[比較例1]
切断片を加熱しなかったこと以外は実施例1と同様にして、偏光板を得た。
[Comparative Example 1]
A polarizing plate was obtained in the same manner as in Example 1 except that the cut piece was not heated.

[比較例2]
切断片を加熱しなかったこと以外は実施例4と同様にして、偏光板を得た。
[Comparative Example 2]
A polarizing plate was obtained in the same manner as in Example 4 except that the cut piece was not heated.

得られた偏光板の耐久性をヒートサイクル(HS)試験により評価した。具体的には、ガラス板に、得られた偏光板を、アクリル系粘着剤(厚み20μm)を用いて貼り合わせ、試験用サンプルを得た。これを、−40℃の雰囲気下に30分放置した後、85℃の雰囲気下に30分放置した。この操作を1サイクルとして、100サイクル繰り返した後、偏光板にクラックが発生しているか否かを確認した。   The durability of the obtained polarizing plate was evaluated by a heat cycle (HS) test. Specifically, the obtained polarizing plate was bonded to a glass plate using an acrylic pressure-sensitive adhesive (thickness 20 μm) to obtain a test sample. This was left for 30 minutes in an atmosphere at −40 ° C. and then left for 30 minutes in an atmosphere at 85 ° C. After repeating this operation as 100 cycles for 100 cycles, it was confirmed whether or not cracks occurred in the polarizing plate.

図3は、HS試験後の実施例1〜3および比較例1の偏光板の貫通穴周辺の光学顕微鏡(OLYMPUS製、MX61、倍率:5倍)による観察写真である。比較例1では目視ではっきりと視認できる程度のクラックが確認されるのに対し、実施例1ではクラック(マイクロクラックも含めて)の発生は認められない。実施例2,3では、目視ではっきりと視認できない程度のマイクロクラックが確認されるものの、比較例1に比べてクラックの発生は抑制されている。なお、クラックは延伸方向に沿って発生している。
実施例4では、実施例1と同様に、クラック(マイクロクラックも含めて)の発生は認められない。比較例1ではクラックは貫通穴を起点に偏光板端辺まで達しているのに対し、比較例2ではクラック長は12mmである。
FIG. 3 is an observation photograph by an optical microscope (manufactured by OLYMPUS, MX61, magnification: 5 times) around the through holes of the polarizing plates of Examples 1 to 3 and Comparative Example 1 after the HS test. In Comparative Example 1, cracks that can be clearly recognized visually are confirmed, whereas in Example 1, generation of cracks (including microcracks) is not recognized. In Examples 2 and 3, the occurrence of cracks is suppressed as compared with Comparative Example 1, although microcracks that cannot be clearly recognized visually are confirmed. In addition, the crack has generate | occur | produced along the extending direction.
In Example 4, as in Example 1, the occurrence of cracks (including microcracks) is not observed. In Comparative Example 1, the crack reaches the edge of the polarizing plate starting from the through hole, whereas in Comparative Example 2, the crack length is 12 mm.

図4は実施例1のHS試験後の試験用サンプルの偏光板端部の状態を示し、図5は比較例1のHS試験前後の試験用サンプルの偏光板端部の状態を示す。比較例1では、偏光板をガラス板に貼り合わせる際に用いる粘着剤層がむきだしになった領域が形成されている。   4 shows the state of the polarizing plate end portion of the test sample after the HS test of Example 1, and FIG. 5 shows the state of the polarizing plate end portion of the test sample before and after the HS test of Comparative Example 1. In the comparative example 1, the area | region where the adhesive layer used when bonding a polarizing plate on a glass plate was exposed was formed.

本発明の偏光板は、矩形状の画像表示装置(液晶表示装置、有機ELデバイス)に加え、例えば、自動車のメータ表示部やスマートウォッチに代表される異形の画像表示部にも好適に用いられ得る。   The polarizing plate of the present invention can be suitably used for, for example, a rectangular image display device (liquid crystal display device, organic EL device), for example, an abnormal image display unit represented by a meter display unit of an automobile or a smart watch. obtain.

10 偏光フィルム積層体
11 偏光子
21,22 保護フィルム
100 偏光板
DESCRIPTION OF SYMBOLS 10 Polarizing film laminated body 11 Polarizer 21, 22 Protective film 100 Polarizing plate

Claims (3)

偏光子と、該偏光子の少なくとも片側に配置された保護フィルムとを有する偏光フィルム積層体を準備すること
記偏光フィルム積層体を収縮させること、および
前記収縮後の偏光フィルム積層体を切断すること
を含む、偏光板の製造方法。
Preparing a polarizing film laminate having a polarizer and a protective film disposed on at least one side of the polarizer ,
Thereby contracting the pre Kihen light film laminate, and
The manufacturing method of a polarizing plate including cut | disconnecting the polarizing film laminated body after the said shrinkage | contraction .
前記偏光子の透過軸方向に、前記偏光フィルム積層体を0.2%以上収縮させる、請求項1に記載の製造方法。   The manufacturing method of Claim 1 which shrinks | contracts the said polarizing film laminated body 0.2% or more in the transmission-axis direction of the said polarizer. 前記切断が、貫通穴、外縁が面方向内方に凸の略V字形状をなす部位、外縁が面方向内方に凸のアール状をなす部位、およびこれらの組み合わせからなる群から選択される1つを形成することを含む、請求項1または2に記載の製造方法。The cutting is selected from the group consisting of a through-hole, a portion having a substantially V shape whose outer edge is convex inward in the plane direction, a portion in which the outer edge is convex inward in the plane direction, and combinations thereof. The manufacturing method of Claim 1 or 2 including forming one.
JP2019173195A 2019-09-24 2019-09-24 Manufacturing method of polarizing plate Pending JP2019211799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019173195A JP2019211799A (en) 2019-09-24 2019-09-24 Manufacturing method of polarizing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019173195A JP2019211799A (en) 2019-09-24 2019-09-24 Manufacturing method of polarizing plate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015216398A Division JP2017090522A (en) 2015-11-04 2015-11-04 Manufacturing method of polarizing plate

Publications (1)

Publication Number Publication Date
JP2019211799A true JP2019211799A (en) 2019-12-12

Family

ID=68846754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019173195A Pending JP2019211799A (en) 2019-09-24 2019-09-24 Manufacturing method of polarizing plate

Country Status (1)

Country Link
JP (1) JP2019211799A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090522A (en) * 2015-11-04 2017-05-25 日東電工株式会社 Manufacturing method of polarizing plate
WO2022024576A1 (en) * 2020-07-31 2022-02-03 日東電工株式会社 Polarizing plate and method for producing said polarizing plate
JP2022027338A (en) * 2020-07-31 2022-02-10 日東電工株式会社 Polarizing plate and manufacturing method therefor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174435A (en) * 1997-12-16 1999-07-02 Toshiba Corp Production of liquid crystal display device
JP2000155325A (en) * 1998-11-19 2000-06-06 Ricoh Co Ltd Liquid crystal display device and its manufacture
JP2004206044A (en) * 2002-10-29 2004-07-22 Fujitsu Display Technologies Corp Lighting device and liquid crystal display using the same
JP2006023573A (en) * 2004-07-08 2006-01-26 Nitto Denko Corp Manufacturing method of polarizing plate, polarizing plate, and image display apparatus using polarizing plate
JP2007114581A (en) * 2005-10-21 2007-05-10 Nitto Denko Corp Polarizing plate with adhesive retardation layer, method for producing same, optical film and image display device
JP2009037228A (en) * 2007-07-06 2009-02-19 Nitto Denko Corp Polarization plate
JP2009163085A (en) * 2008-01-09 2009-07-23 Seiko Epson Corp Electrooptical device, manufacturing method of electrooptical device and electronic equipment
JP2011253163A (en) * 2010-06-04 2011-12-15 Jsr Corp Manufacturing method for polarizing film laminated body, polarizing film laminated body and touch panel including polarizing film laminated body
JP2013185133A (en) * 2012-03-09 2013-09-19 Cheil Industries Inc Adhesive agent for polarization plate
US20140118826A1 (en) * 2012-10-30 2014-05-01 Apple Inc. Displays With Polarizer Layers for Electronic Devices
JP2014211548A (en) * 2013-04-19 2014-11-13 住友化学株式会社 Production method of polarizing laminate film having region showing no polarizance, and polarizing plate
JP2015072385A (en) * 2013-10-03 2015-04-16 住友化学株式会社 Set of polarizing plates, and front plate-integrated liquid crystal display panel
JP2017090522A (en) * 2015-11-04 2017-05-25 日東電工株式会社 Manufacturing method of polarizing plate

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11174435A (en) * 1997-12-16 1999-07-02 Toshiba Corp Production of liquid crystal display device
JP2000155325A (en) * 1998-11-19 2000-06-06 Ricoh Co Ltd Liquid crystal display device and its manufacture
JP2004206044A (en) * 2002-10-29 2004-07-22 Fujitsu Display Technologies Corp Lighting device and liquid crystal display using the same
JP2006023573A (en) * 2004-07-08 2006-01-26 Nitto Denko Corp Manufacturing method of polarizing plate, polarizing plate, and image display apparatus using polarizing plate
JP2007114581A (en) * 2005-10-21 2007-05-10 Nitto Denko Corp Polarizing plate with adhesive retardation layer, method for producing same, optical film and image display device
JP2009037228A (en) * 2007-07-06 2009-02-19 Nitto Denko Corp Polarization plate
JP2009163085A (en) * 2008-01-09 2009-07-23 Seiko Epson Corp Electrooptical device, manufacturing method of electrooptical device and electronic equipment
JP2011253163A (en) * 2010-06-04 2011-12-15 Jsr Corp Manufacturing method for polarizing film laminated body, polarizing film laminated body and touch panel including polarizing film laminated body
JP2013185133A (en) * 2012-03-09 2013-09-19 Cheil Industries Inc Adhesive agent for polarization plate
US20140118826A1 (en) * 2012-10-30 2014-05-01 Apple Inc. Displays With Polarizer Layers for Electronic Devices
JP2014211548A (en) * 2013-04-19 2014-11-13 住友化学株式会社 Production method of polarizing laminate film having region showing no polarizance, and polarizing plate
JP2015072385A (en) * 2013-10-03 2015-04-16 住友化学株式会社 Set of polarizing plates, and front plate-integrated liquid crystal display panel
JP2017090522A (en) * 2015-11-04 2017-05-25 日東電工株式会社 Manufacturing method of polarizing plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017090522A (en) * 2015-11-04 2017-05-25 日東電工株式会社 Manufacturing method of polarizing plate
WO2022024576A1 (en) * 2020-07-31 2022-02-03 日東電工株式会社 Polarizing plate and method for producing said polarizing plate
JP2022027338A (en) * 2020-07-31 2022-02-10 日東電工株式会社 Polarizing plate and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US11022735B2 (en) Method of producing polarizing plate
JP6284606B2 (en) Optical display device having polarizing film
US10914868B2 (en) Polarizing plate
US10585224B2 (en) Polarizing plate and method for producing same
JP6083924B2 (en) Optical laminate, optical laminate set and liquid crystal panel using them
JP2019211799A (en) Manufacturing method of polarizing plate
JP2016206641A (en) Polarizer, polarizing plate and production method of the polarizer
JP2014191051A (en) Laser processing method of polarizer
JP6619619B2 (en) Polarizer, polarizing plate, and method for producing polarizer
JP2014191050A (en) Laser processing method of polarizer
KR20210084455A (en) Polarizer
WO2016167059A1 (en) Polarizing plate and method for producing same
KR20170052514A (en) Polarizing plate with pressure-sensitive adhesive layer
JP2022086106A (en) Manufacturing method of polarizing plate having irregular shape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200516

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201005

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201005

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20201020

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201102

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201104

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210108

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210119

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210209

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210413

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210713

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211008

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211116

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220104

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220104