US20190110653A1 - Vacuum cleaner - Google Patents

Vacuum cleaner Download PDF

Info

Publication number
US20190110653A1
US20190110653A1 US16/157,838 US201816157838A US2019110653A1 US 20190110653 A1 US20190110653 A1 US 20190110653A1 US 201816157838 A US201816157838 A US 201816157838A US 2019110653 A1 US2019110653 A1 US 2019110653A1
Authority
US
United States
Prior art keywords
housing
printed circuit
circuit board
vacuum cleaner
pcb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/157,838
Inventor
Alexander Edward HUGHES
Ian Jeffrey STEPHENSON
Glyn Geoffrey REES-JONES
David Michael Charles POOLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dyson Technology Ltd
Original Assignee
Dyson Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dyson Technology Ltd filed Critical Dyson Technology Ltd
Assigned to DYSON TECHNOLOGY LIMITED reassignment DYSON TECHNOLOGY LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUGHES, ALEXANDER EDWARD, POOLE, DAVID MICHAEL CHARLES, REES-JONES, GLYN GEOFFREY, STEPHENSON, IAN JEFFREY
Publication of US20190110653A1 publication Critical patent/US20190110653A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2842Suction motors or blowers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L5/00Structural features of suction cleaners
    • A47L5/12Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum
    • A47L5/22Structural features of suction cleaners with power-driven air-pumps or air-compressors, e.g. driven by motor vehicle engine vacuum with rotary fans
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/102Dust separators
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2889Safety or protection devices or systems, e.g. for prevention of motor over-heating or for protection of the user
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20154Heat dissipaters coupled to components
    • H05K7/20163Heat dissipaters coupled to components the components being isolated from air flow, e.g. hollow heat sinks, wind tunnels or funnels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor

Definitions

  • the present invention relates to a vacuum cleaner, and in particular to a vacuum cleaner having a printed circuit board.
  • PCBs are widely used for electronic control in vacuum cleaners. There is a desire for PCBs to be as small as possible, yet reducing the size of a PCB may have associated disadvantages, such as, for example, a temperature increase during operation of the PCB.
  • a vacuum cleaner comprising a main body, a motor-driven fan unit, a printed circuit board for controlling the motor-driven fan unit, and a housing encasing a portion of the printed circuit board, wherein a heat sink of the printed circuit board extends through the housing from an interior of the housing to an exterior of the housing, and the printed circuit board is disposed within the main body such that the heat sink is located in an air-flow path through the main body.
  • the vacuum cleaner according to the first aspect of the present invention may be advantageous principally as the vacuum cleaner comprises a printed circuit board for controlling the motor-driven fan unit, and a housing encasing a portion of the printed circuit board, wherein a heat sink of the printed circuit board extends through the housing from an interior of the housing to an exterior of the housing, and the printed circuit board is disposed within the main body such that the heat sink is located in an air-flow path through the main body.
  • the portion of the circuit board encased by the housing may be of a lower pollution degree than, for example, a portion of the printed circuit board not encased by a housing, as the housing may protect the encased portion of the printed circuit board from ingress of dust and debris and the like, as well as moisture.
  • the encased portion of the printed circuit board may be of a lower pollution degree than a non-encased portion of a printed circuit board
  • components mounted to the surface of the printed circuit board encased by the housing may be placed closer together than would typically be permissible for a higher pollution degree environment. This may enable a reduction in size of the printed circuit board, which may allow for more efficient packaging of the printed circuit board within the vacuum cleaner.
  • the temperature inside the housing may rise to unacceptable levels in use, particularly where, for example, components mounted to a surface of the printed circuit board encased by the housing are placed closer together than would typically be the case.
  • the provision of a heat sink extending from an interior of the housing to an exterior of the housing, and the printed circuit board being disposed within the main body such that the heat sink is located in an air-flow path through the main body may enable excess heat to be removed from the interior of the housing, thereby ensuring acceptable temperature levels within the housing in use.
  • the housing may protect the components mounted therein from any dust or debris within the airflow.
  • This may, for example, enable the printed circuit board to be exposed to a flow of untreated ambient air from an exterior of a vacuum cleaner to an interior of the vacuum cleaner, which may be beneficial as the untreated ambient air may have a lower temperature than, for example, air which has been worked on by a dirt separator and/or motor of the vacuum cleaner, and hence may have an enhanced cooling effect.
  • PCBs are commonly known as PCBs, and the term PCB will be widely recognised by a person skilled in the art.
  • Only a portion of the PCB may be encased by the housing, for example such that at least a portion of the PCB is not encased by the housing. This may be beneficial as the greater the area of the PCB that is encased by the housing, the larger the heat sink needed to regulate temperature within the housing.
  • By only encasing a portion of the PCB with the housing it may be possible to maintain a low size of heat sink whilst still providing appropriate protection for certain components of the PCB, for example for surface mounted components of the PCB.
  • the housing may extend from a surface of the PCB.
  • a surface of the PCB and the housing may together define an enclosure, for example with the surface of the PCB being exposed to the interior of the enclosure.
  • the housing may be mounted to a surface of the PCB, for example a surface of the PCB on which components are mounted.
  • the housing may be mounted to a surface of the PCB at a region spaced from the perimeter of the PCB. This may be beneficial over, for example mounting the housing to the perimeter/edge of the PCB as this may remove the need for the housing to extend about the entirety of the perimeter/edge of the PCB and/or may provide for a simpler mounting of the housing, as this may remove the need to shape the housing to account for input terminals and the like.
  • the housing may comprise a seal located at an interface between the housing and the PCB, for example such that the portion of the PCB encased by the housing is hermetically sealed. This may be beneficial as sealing the interface between the housing and the PCB may enable the region of the PCB in the interior of the housing to be a different pollution degree to the region of the PCB external to the housing.
  • the portion of the PCB encased by the housing may comprise surface mounted components of the PCB. This may be beneficial as the surface mounted components may require smaller, if any, lead connections, and hence the structure of the housing to accommodate such connections may be relatively simple. Furthermore, surface mounted components may be located closer together than non-surface mounted components, and may therefore enable the use of a smaller housing and/or a smaller PCB.
  • the portion of the PCB encased by the housing may comprise a different pollution degree, for example a lower pollution degree, to a portion of the PCB not encased by the housing. This may provide for a reduced total size of the PCB relative to a PCB without a housing and/or having a single pollution degree.
  • the portion of the PCB encased by the housing may comprise a region of pollution degree 2 or 1.
  • the vacuum cleaner may comprise a dirt separator, a first air inlet, a second air inlet, a first air flow path between the first air inlet and the dirt separator, and a second air flow path between the second air inlet and the motor-driven fan unit, and the PCB may be located in the second air flow path.
  • This may be beneficial as air from the second air flow path may be cooler than air from the first air flow path, for example, air which has been worked on by the dirt separator in use, and so may provide enhanced cooling of the interior of the housing via interaction with the heat sink.
  • the second air flow path may comprise an air flow path for untreated air.
  • the second air inlet may be spaced apart from the first air inlet, and may, for example, be spaced apart from a surface to be cleaned in use.
  • the second air inlet may be formed in the main body.
  • the first air inlet may comprise a dirty air inlet, for example a dirty air inlet formed upstream of the dirt separator, and the dirty air inlet may be located in a region of a surface to be cleaned in use.
  • the second air flow path may be at least partially generated by the motor-driven fan unit.
  • the motor-driven fan unit may create a negative pressure within the main body which draws air from the exterior of the main body to the interior of the main body, for example via the second air inlet.
  • the motor-driven fan unit may comprise at least one bleed, and, for example, the at least one bleed may be located pre- the motor of the motor driven fan unit.
  • a printed circuit board for controlling a motor-driven fan unit, the printed circuit board comprising a housing encasing a portion of the printed circuit board, and a heat sink extending through the housing from an interior of the housing to an exterior of the housing.
  • FIG. 1 is a side view of a disassembled vacuum cleaner according to a first aspect of the present invention
  • FIG. 2 is a top plan view of a main body of the vacuum cleaner of FIG. 1 ;
  • FIG. 3 is top plan view of the main body of FIG. 2 with an uppermost surface of the main body removed;
  • FIG. 4 is a rotated view of the main body of FIG. 3 ;
  • FIG. 5 is a perspective view of a printed circuit board (PCB) used in the vacuum cleaner of FIG. 1 ;
  • PCB printed circuit board
  • FIG. 6 is a first perspective view of the PCB of FIG. 5 with its housing removed;
  • FIG. 7 is a second perspective view of the PCB of FIG. 5 with its housing removed.
  • FIG. 1 A vacuum cleaner according to a first aspect of the present invention, generally designated 10 , is shown in FIG. 1 .
  • the vacuum cleaner 10 comprises a main body 12 , a separating apparatus 14 , a flexible hose 16 , a wand assembly 18 , and a cleaner head 20 .
  • the main body 12 is shown in isolation in FIGS. 2 to 4 .
  • a motor-driven fan unit 114 for generating airflow through the separating apparatus 14 in use
  • a cable rewind unit (not shown) for retracting and storing an electrical cable within the main body 12
  • appropriate control electronics 118 for controlling the cylinder vacuum cleaner 10 .
  • the motor-driven fan unit 114 and cable rewind unit are conventional, and will not be described here in any detail.
  • the motor-driven fan unit 114 is housed in a motor bucket 115 .
  • the motor bucket 115 is connected to the main body 12 so that the motor-driven fan unit 114 does not rotate as the cylinder vacuum cleaner 10 is manoeuvred over a floor surface to be cleaned in use.
  • the motor bucket 115 has a plurality of bleeds 117 , and the plurality of bleeds 117 are located pre- the motor of the motor-driven fan unit 114 . In use, the plurality of bleeds 117 generate a negative pressure within the main body 12 , which acts to draw ambient air from the exterior of the main body 12 to the interior of the main body 12 , via vents 123 and/or a cable inlet 125 .
  • the control electronics 118 comprise a PCB 122 according to the second aspect of the present invention, which is shown in FIGS. 5 to 7 .
  • the PCB 122 comprises a substrate 124 , a plurality of components 126 mounted to the substrate 124 , a housing 128 , and a heat sink 130 .
  • the housing 128 comprises a seal 132 , and is mounted to the surface of the substrate 124 such that surface-mounted components 126 of the PCB 122 are sealed within the housing 128 .
  • the heat sink 130 extends from the interior of the housing 128 to the exterior of the housing 128 , and comprises a heat conductive metal plate.
  • the region of the PCB 122 within the housing 128 is protected from moisture and dust, for example conductive dust.
  • the region of the PCB 122 within the housing 128 can be a different pollution degree to the remainder of the PCB 122 , and in the presently preferred embodiment the interior of the housing 128 is of pollution degree 2, whilst the remainder of the PCB 122 external of the housing 128 is of pollution degree 3.
  • the surface-mounted components 126 within the housing 128 can be placed closer together than, for example, if they were located exterior of the housing 128 in a region of pollution degree 3. This may enable the overall size of the PCB 122 to be reduced.
  • the heat sink 130 extends outwardly from the housing 128 , and acts to regulate the temperature within the housing 128 by transferring heat from the interior of the housing 128 to the exterior of the housing 128 in use.
  • the heat sink 130 extends outwardly from the housing 128 of the PCB 122 , and is positioned within the interior of the main body 12 such that at least a portion of airflow from the vents 123 and/or the cable inlet 125 toward the plurality of bleeds 117 in the motor bucket 115 passes over the heat sink 130 in use.
  • An example airflow is shown by arrow A in FIG. 4 .
  • the combination of the heat sink 130 and the cooling airflow acts to maintain the temperature within the housing 128 at acceptable levels during use.

Abstract

A vacuum cleaner has a main body, a motor-driven fan unit, a printed circuit board for controlling the motor-driven fan unit and a housing encasing a portion of the printed circuit board. A heat sink of the printed circuit board extends through the housing from an interior of the housing to an exterior of the housing. The printed circuit board is disposed within the main body such that the heat sink is located in an air-flow path through the main body.

Description

    REFERENCE TO RELATED APPLICATION
  • This application claims the priority of United Kingdom Application No. 1716979.8, filed Oct. 16, 2017, the entire contents of which are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to a vacuum cleaner, and in particular to a vacuum cleaner having a printed circuit board.
  • BACKGROUND OF THE INVENTION
  • Printed circuit boards, commonly known as PCBs, are widely used for electronic control in vacuum cleaners. There is a desire for PCBs to be as small as possible, yet reducing the size of a PCB may have associated disadvantages, such as, for example, a temperature increase during operation of the PCB.
  • SUMMARY OF THE INVENTION
  • According to a first aspect of the present invention there is provided a vacuum cleaner comprising a main body, a motor-driven fan unit, a printed circuit board for controlling the motor-driven fan unit, and a housing encasing a portion of the printed circuit board, wherein a heat sink of the printed circuit board extends through the housing from an interior of the housing to an exterior of the housing, and the printed circuit board is disposed within the main body such that the heat sink is located in an air-flow path through the main body.
  • The vacuum cleaner according to the first aspect of the present invention may be advantageous principally as the vacuum cleaner comprises a printed circuit board for controlling the motor-driven fan unit, and a housing encasing a portion of the printed circuit board, wherein a heat sink of the printed circuit board extends through the housing from an interior of the housing to an exterior of the housing, and the printed circuit board is disposed within the main body such that the heat sink is located in an air-flow path through the main body.
  • In particular, as a portion of the printed circuit board is encased by the housing, the portion of the circuit board encased by the housing may be of a lower pollution degree than, for example, a portion of the printed circuit board not encased by a housing, as the housing may protect the encased portion of the printed circuit board from ingress of dust and debris and the like, as well as moisture.
  • As the encased portion of the printed circuit board may be of a lower pollution degree than a non-encased portion of a printed circuit board, components mounted to the surface of the printed circuit board encased by the housing may be placed closer together than would typically be permissible for a higher pollution degree environment. This may enable a reduction in size of the printed circuit board, which may allow for more efficient packaging of the printed circuit board within the vacuum cleaner.
  • However, as a portion of the printed circuit board is encased by the housing, the temperature inside the housing may rise to unacceptable levels in use, particularly where, for example, components mounted to a surface of the printed circuit board encased by the housing are placed closer together than would typically be the case. The provision of a heat sink extending from an interior of the housing to an exterior of the housing, and the printed circuit board being disposed within the main body such that the heat sink is located in an air-flow path through the main body, may enable excess heat to be removed from the interior of the housing, thereby ensuring acceptable temperature levels within the housing in use.
  • Furthermore, as a portion of the printed circuit board is encased by the housing, it may be possible to place the printed circuit board in an untreated air flow path through the vacuum cleaner in use, for example an air flow path containing nominal amounts of dust or debris or the like, as the housing may protect the components mounted therein from any dust or debris within the airflow. This may, for example, enable the printed circuit board to be exposed to a flow of untreated ambient air from an exterior of a vacuum cleaner to an interior of the vacuum cleaner, which may be beneficial as the untreated ambient air may have a lower temperature than, for example, air which has been worked on by a dirt separator and/or motor of the vacuum cleaner, and hence may have an enhanced cooling effect.
  • Printed circuit boards are commonly known as PCBs, and the term PCB will be widely recognised by a person skilled in the art.
  • Only a portion of the PCB may be encased by the housing, for example such that at least a portion of the PCB is not encased by the housing. This may be beneficial as the greater the area of the PCB that is encased by the housing, the larger the heat sink needed to regulate temperature within the housing. By only encasing a portion of the PCB with the housing, it may be possible to maintain a low size of heat sink whilst still providing appropriate protection for certain components of the PCB, for example for surface mounted components of the PCB.
  • The housing may extend from a surface of the PCB. A surface of the PCB and the housing may together define an enclosure, for example with the surface of the PCB being exposed to the interior of the enclosure. The housing may be mounted to a surface of the PCB, for example a surface of the PCB on which components are mounted. The housing may be mounted to a surface of the PCB at a region spaced from the perimeter of the PCB. This may be beneficial over, for example mounting the housing to the perimeter/edge of the PCB as this may remove the need for the housing to extend about the entirety of the perimeter/edge of the PCB and/or may provide for a simpler mounting of the housing, as this may remove the need to shape the housing to account for input terminals and the like.
  • The housing may comprise a seal located at an interface between the housing and the PCB, for example such that the portion of the PCB encased by the housing is hermetically sealed. This may be beneficial as sealing the interface between the housing and the PCB may enable the region of the PCB in the interior of the housing to be a different pollution degree to the region of the PCB external to the housing.
  • The portion of the PCB encased by the housing may comprise surface mounted components of the PCB. This may be beneficial as the surface mounted components may require smaller, if any, lead connections, and hence the structure of the housing to accommodate such connections may be relatively simple. Furthermore, surface mounted components may be located closer together than non-surface mounted components, and may therefore enable the use of a smaller housing and/or a smaller PCB.
  • The portion of the PCB encased by the housing may comprise a different pollution degree, for example a lower pollution degree, to a portion of the PCB not encased by the housing. This may provide for a reduced total size of the PCB relative to a PCB without a housing and/or having a single pollution degree. The portion of the PCB encased by the housing may comprise a region of pollution degree 2 or 1.
  • The vacuum cleaner may comprise a dirt separator, a first air inlet, a second air inlet, a first air flow path between the first air inlet and the dirt separator, and a second air flow path between the second air inlet and the motor-driven fan unit, and the PCB may be located in the second air flow path. This may be beneficial as air from the second air flow path may be cooler than air from the first air flow path, for example, air which has been worked on by the dirt separator in use, and so may provide enhanced cooling of the interior of the housing via interaction with the heat sink. The second air flow path may comprise an air flow path for untreated air. The second air inlet may be spaced apart from the first air inlet, and may, for example, be spaced apart from a surface to be cleaned in use. The second air inlet may be formed in the main body. The first air inlet may comprise a dirty air inlet, for example a dirty air inlet formed upstream of the dirt separator, and the dirty air inlet may be located in a region of a surface to be cleaned in use.
  • The second air flow path may be at least partially generated by the motor-driven fan unit. The motor-driven fan unit may create a negative pressure within the main body which draws air from the exterior of the main body to the interior of the main body, for example via the second air inlet. The motor-driven fan unit may comprise at least one bleed, and, for example, the at least one bleed may be located pre- the motor of the motor driven fan unit.
  • According to a second aspect of the present invention there is provided a printed circuit board for controlling a motor-driven fan unit, the printed circuit board comprising a housing encasing a portion of the printed circuit board, and a heat sink extending through the housing from an interior of the housing to an exterior of the housing.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In order to better understand the present invention, and to show more clearly how the invention may be put into effect, the invention will now be described, by way of example, with reference to the following drawings:
  • FIG. 1 is a side view of a disassembled vacuum cleaner according to a first aspect of the present invention;
  • FIG. 2 is a top plan view of a main body of the vacuum cleaner of FIG. 1;
  • FIG. 3 is top plan view of the main body of FIG. 2 with an uppermost surface of the main body removed;
  • FIG. 4 is a rotated view of the main body of FIG. 3;
  • FIG. 5 is a perspective view of a printed circuit board (PCB) used in the vacuum cleaner of FIG. 1;
  • FIG. 6 is a first perspective view of the PCB of FIG. 5 with its housing removed; and
  • FIG. 7 is a second perspective view of the PCB of FIG. 5 with its housing removed.
  • DETAILED DESCRIPTION OF THE INVENTION
  • A vacuum cleaner according to a first aspect of the present invention, generally designated 10, is shown in FIG. 1.
  • The vacuum cleaner 10 comprises a main body 12, a separating apparatus 14, a flexible hose 16, a wand assembly 18, and a cleaner head 20. The main body 12 is shown in isolation in FIGS. 2 to 4.
  • Mounted within the main body 12 are a motor-driven fan unit 114 for generating airflow through the separating apparatus 14 in use, a cable rewind unit (not shown) for retracting and storing an electrical cable within the main body 12, and appropriate control electronics 118 for controlling the cylinder vacuum cleaner 10.
  • The motor-driven fan unit 114 and cable rewind unit are conventional, and will not be described here in any detail.
  • The motor-driven fan unit 114 is housed in a motor bucket 115. The motor bucket 115 is connected to the main body 12 so that the motor-driven fan unit 114 does not rotate as the cylinder vacuum cleaner 10 is manoeuvred over a floor surface to be cleaned in use.
  • The motor bucket 115 has a plurality of bleeds 117, and the plurality of bleeds 117 are located pre- the motor of the motor-driven fan unit 114. In use, the plurality of bleeds 117 generate a negative pressure within the main body 12, which acts to draw ambient air from the exterior of the main body 12 to the interior of the main body 12, via vents 123 and/or a cable inlet 125.
  • The control electronics 118 comprise a PCB 122 according to the second aspect of the present invention, which is shown in FIGS. 5 to 7.
  • The PCB 122 comprises a substrate 124, a plurality of components 126 mounted to the substrate 124, a housing 128, and a heat sink 130.
  • The housing 128 comprises a seal 132, and is mounted to the surface of the substrate 124 such that surface-mounted components 126 of the PCB 122 are sealed within the housing 128. The heat sink 130 extends from the interior of the housing 128 to the exterior of the housing 128, and comprises a heat conductive metal plate.
  • As the housing 128 seals with the surface of the substrate 124, the region of the PCB 122 within the housing 128 is protected from moisture and dust, for example conductive dust. Thus the region of the PCB 122 within the housing 128 can be a different pollution degree to the remainder of the PCB 122, and in the presently preferred embodiment the interior of the housing 128 is of pollution degree 2, whilst the remainder of the PCB 122 external of the housing 128 is of pollution degree 3.
  • As the interior of the housing 128 is of pollution degree 2, the surface-mounted components 126 within the housing 128 can be placed closer together than, for example, if they were located exterior of the housing 128 in a region of pollution degree 3. This may enable the overall size of the PCB 122 to be reduced.
  • However, as the surface-mounted components 126 are enclosed within the housing 128, and as the distance between the surface-mounted components 126 is reduced, the temperature within the housing 128 can reach excessive levels during use. The heat sink 130 extends outwardly from the housing 128, and acts to regulate the temperature within the housing 128 by transferring heat from the interior of the housing 128 to the exterior of the housing 128 in use.
  • The heat sink 130 extends outwardly from the housing 128 of the PCB 122, and is positioned within the interior of the main body 12 such that at least a portion of airflow from the vents 123 and/or the cable inlet 125 toward the plurality of bleeds 117 in the motor bucket 115 passes over the heat sink 130 in use. An example airflow is shown by arrow A in FIG. 4. The combination of the heat sink 130 and the cooling airflow acts to maintain the temperature within the housing 128 at acceptable levels during use.

Claims (7)

1. A vacuum cleaner comprising a main body, a motor-driven fan unit, a printed circuit board for controlling the motor-driven fan unit, and a housing encasing a portion of the printed circuit board, wherein a heat sink of the printed circuit board extends through the housing from an interior of the housing to an exterior of the housing, and the printed circuit board is disposed within the main body such that the heat sink is located in an air-flow path through the main body.
2. The vacuum cleaner of claim 1, wherein only a portion of the printed circuit board is encased by the housing.
3. The vacuum cleaner of claim 1, wherein the housing is mounted to a surface of the printed circuit board at a region spaced from the perimeter of the printed circuit board.
4. The vacuum cleaner of claim 1, wherein the housing comprises a seal located at an interface between the housing and the printed circuit board.
5. The vacuum cleaner of claim 1, wherein the portion of the printed circuit board encased by the housing comprises surface mounted components of the printed circuit board.
6. The vacuum cleaner of claim 1, wherein the portion of the printed circuit board encased by the housing comprises a lower pollution degree than a portion of the printed circuit board not encased by the housing.
7. The vacuum cleaner of claim 1, wherein the vacuum cleaner comprises a dirt separator, a first air inlet, a second air inlet, a first air flow path between the first air inlet and the dirt separator, and a second air flow path between the second air inlet and the motor-driven fan unit, and the printed circuit board is located in the second air flow path.
US16/157,838 2017-10-16 2018-10-11 Vacuum cleaner Abandoned US20190110653A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1716979.8 2017-10-16
GB1716979.8A GB2567631A (en) 2017-10-16 2017-10-16 A vacuum cleaner

Publications (1)

Publication Number Publication Date
US20190110653A1 true US20190110653A1 (en) 2019-04-18

Family

ID=60419113

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/157,838 Abandoned US20190110653A1 (en) 2017-10-16 2018-10-11 Vacuum cleaner

Country Status (5)

Country Link
US (1) US20190110653A1 (en)
JP (1) JP2019072488A (en)
CN (1) CN109662647A (en)
GB (1) GB2567631A (en)
WO (1) WO2019077298A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023051234A1 (en) * 2021-09-28 2023-04-06 苏州简单有为科技有限公司 Surface-cleaning apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2453660A (en) * 1944-07-28 1948-11-09 Talon Inc Slider for slide fasteners
US20160037984A1 (en) * 2014-08-11 2016-02-11 Samsung Electronics Co., Ltd. Vacuum cleaner

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2547630B2 (en) * 1988-12-19 1996-10-23 三洋電機株式会社 Electric vacuum cleaner
JPH0370534A (en) * 1989-08-11 1991-03-26 Sanyo Electric Co Ltd Vacuum cleaner
JPH0428317A (en) * 1990-05-23 1992-01-30 Tokyo Electric Co Ltd Vacuum cleaner
JPH04105630A (en) * 1990-08-27 1992-04-07 Sanyo Electric Co Ltd Vacuum cleaner
SE9503753D0 (en) * 1995-10-25 1995-10-25 Electrolux Ab Device for a vacuum cleaner
JP2002224003A (en) * 2001-01-31 2002-08-13 Toshiba Tec Corp Vacuum cleaner
CN100358456C (en) * 2003-09-27 2008-01-02 乐金电子(天津)电器有限公司 Heat radiation structure of vacuum cleaner
KR100671891B1 (en) * 2005-02-23 2007-01-24 주식회사 대우일렉트로닉스 Parts chiller of vacuum cleaner
US20090094783A1 (en) * 2007-10-11 2009-04-16 Dudderar Raymond P Fiberglass cloth tape laminated fiberboard barrier
KR101457434B1 (en) * 2008-01-02 2014-11-06 삼성전자주식회사 A cleaner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2453660A (en) * 1944-07-28 1948-11-09 Talon Inc Slider for slide fasteners
US20160037984A1 (en) * 2014-08-11 2016-02-11 Samsung Electronics Co., Ltd. Vacuum cleaner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023051234A1 (en) * 2021-09-28 2023-04-06 苏州简单有为科技有限公司 Surface-cleaning apparatus

Also Published As

Publication number Publication date
CN109662647A (en) 2019-04-23
GB2567631A (en) 2019-04-24
WO2019077298A1 (en) 2019-04-25
JP2019072488A (en) 2019-05-16
GB201716979D0 (en) 2017-11-29

Similar Documents

Publication Publication Date Title
US8854816B2 (en) Water-proof cover for an inverter unit
JP6944251B2 (en) control panel
JP2006173609A (en) Electronic system for reducing electromagnetic interference and method for configuring it
US20080062636A1 (en) Hard disk drive case
US20120099276A1 (en) Waterproof module and electrical equipment cabinet employing same
US6542368B2 (en) Heat sink and power source unit employing the same
US20190110653A1 (en) Vacuum cleaner
JP2000232288A (en) Power conversion device
JP2003204183A (en) Duct and rack
US6600660B2 (en) Plug-in unit storage rack-type apparatus
US9992562B1 (en) Loudspeaker having passive heat dissipation assembly
US9379831B2 (en) Acoustic controller
GB2472381A (en) Passive / natural ventilation of an electrical enclosure
JP2508358B2 (en) Electric equipment storage device
JPS6034839B2 (en) Cooling structure for electrical equipment
JP2006292323A (en) Air conditioner
JP2012190876A (en) Control board
JPWO2021193879A5 (en)
US8295045B2 (en) Case and electronic device having the same
CN218788869U (en) Heat dissipation device and interaction panel
JP2007017509A (en) Mounting structure for display device
JP2006100419A (en) Printed circuit board unit
JP6902638B2 (en) Harmonic suppressor and air conditioner using it
JP5641645B2 (en) Welding power source
JP2010016248A (en) Device for cooling electronic device

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: DYSON TECHNOLOGY LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUGHES, ALEXANDER EDWARD;STEPHENSON, IAN JEFFREY;REES-JONES, GLYN GEOFFREY;AND OTHERS;SIGNING DATES FROM 20190107 TO 20190327;REEL/FRAME:048784/0199

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION