US20190097244A1 - Fuel cell metal separator and power generation cell - Google Patents

Fuel cell metal separator and power generation cell Download PDF

Info

Publication number
US20190097244A1
US20190097244A1 US16/139,118 US201816139118A US2019097244A1 US 20190097244 A1 US20190097244 A1 US 20190097244A1 US 201816139118 A US201816139118 A US 201816139118A US 2019097244 A1 US2019097244 A1 US 2019097244A1
Authority
US
United States
Prior art keywords
bead
separator
reactant gas
passage
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/139,118
Other languages
English (en)
Inventor
Satoshi Oyama
Yu TOMANA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Assigned to HONDA MOTOR CO., LTD. reassignment HONDA MOTOR CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OYAMA, SATOSHI, TOMANA, YU
Publication of US20190097244A1 publication Critical patent/US20190097244A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell separator and a fuel cell stack.
  • a solid polymer electrolyte fuel cell adopts a solid polymer electrolyte membrane.
  • the solid polymer electrolyte membrane is a polymer ion exchange membrane.
  • the fuel cell includes a membrane electrode assembly (MEA) formed by providing an anode on one surface of the solid polymer electrolyte membrane, and a cathode on the other surface of the solid polymer electrolyte membrane.
  • MEA membrane electrode assembly
  • the membrane electrode assembly is sandwiched between separators (bipolar plates) to form a power generation cell (unit cell).
  • separators bipolar plates
  • a predetermined number of power generation cells are stacked together to form, e.g. an in-vehicle fuel cell stack mounted in a vehicle.
  • the bead seals in two lines in particular, in the case where the bead seals in two lines extend in parallel in a portion between the reactant gas passage and the separator outer end, in this portion, the bead seals tend to be deformed easily, and the seal surface pressure tends to be decreased relatively, in comparison with the other portions. Therefore, the seal surface pressure tends to vary in the seal surface where the bead seals are provided.
  • the present invention has been made taking such problems into account, and an object of the present invention is to provide a fuel cell metal separator and a power generation cell in which it is possible to suppress variation of the seal surface pressure in bead seals.
  • the wavy bead seal may include at least one recess facing the straight bead seal, as viewed in the separator thickness direction.
  • the wavy bead seal may be formed around the reactant gas passage, and the straight bead seal is formed around the reactant gas flow field, and extends between a plurality of the reactant gas passages.
  • the power generation cell of the present invention includes a membrane electrode assembly and the fuel cell separators including any of the above aspects provided on both sides of the membrane electrode assembly.
  • the bead seals in two lines are provided between the separator outer end and the portion of the reactant gas passage adjacent to the separator outer end.
  • One of the bead seals has a wavy shape, and the other of the bead seals has a straight shape, as viewed in the separator thickness direction. Therefore, in comparison with the structure where both of the bead seals in two lines have a straight shape, improvement in the rigidity of the bead structure is achieved in the portion adjacent to the separator outer end. In the structure, since relative decrease in the seal surface pressure adjacent to the separator outer end is suppressed, it is possible to suppress variation in the seal surface pressure.
  • FIG. 1 is an exploded perspective view showing a power generation cell according to an embodiment of the present invention
  • FIG. 2 is a cross sectional view showing main components of a power generation cell taken along a line II-II in FIG. 1 ;
  • FIG. 3 is a plan view showing a first metal separator as viewed from an oxygen-containing gas flow field
  • FIG. 4 is an enlarged view showing an area around an oxygen-containing gas supply passage of a first metal separator
  • FIG. 5 is a cross sectional view taken along a line V-V in FIG. 4 ;
  • FIG. 6 is a plan view showing a second metal separator as viewed from a fuel gas flow field
  • FIG. 7 is a graph showing the relationship between the load and the displacement amount in each of a straight bead seal and a wavy bead seal.
  • FIG. 8 is an enlarged view showing an area around an oxygen-containing gas supply passage of a first metal separator according to a modified embodiment.
  • a power generation cell 12 as a part of a unit of a fuel cell (unit cell) shown in FIG. 1 includes a resin film equipped MEA 28 , a first metal separator 30 provided on one surface of the resin film equipped MEA 28 , and a second metal separator 32 provided on the other surface of the resin film equipped MEA 28 .
  • a plurality of power generation cells 12 are stacked together in a direction indicated by the arrow A (horizontal direction) or in a direction indicated by an arrow C (gravity direction), and a tightening load (compression load) is applied to the power generation cells 12 to form a fuel cell stack 10 .
  • the fuel cell stack 10 is mounted as an in-vehicle fuel cell stack, in a fuel cell electric automobile (not shown).
  • Each of the first metal separator 30 and the second metal separator 32 is formed by press forming of a metal thin plate to have a corrugated shape in cross section.
  • the metal plate is a steel plate, a stainless steel plate, an aluminum plate, a plated steel plate, or a metal plate having an anti-corrosive surface by surface treatment.
  • the first metal separator 30 of one of the adjacent power generation cells 12 and the second metal separator 32 of the other of the adjacent power generation cells 12 are joined together by welding, brazing, crimping, etc. to form a joint separator 33 .
  • an oxygen-containing gas supply passage 34 a At one end of the power generation cell 12 in a longitudinal direction indicated by an arrow B 1 (horizontal direction), an oxygen-containing gas supply passage 34 a, a coolant supply passage 36 a, and a fuel gas discharge passage 38 b are provided.
  • the oxygen-containing gas supply passage 34 a, the coolant supply passage 36 a, and the fuel gas discharge passage 38 b extend through the power generation cell 12 in the stacking direction indicated by the arrow A.
  • the oxygen-containing gas supply passage 34 a, the coolant supply passage 36 a, and the fuel gas discharge passage 38 b are arranged in the vertical direction indicated by the arrow C.
  • An oxygen-containing gas is supplied through the oxygen-containing gas supply passage 34 a.
  • a coolant such as water is supplied through the coolant supply passage 36 a.
  • a fuel gas such as a hydrogen-containing gas is discharged through the fuel gas discharge passage 38 b.
  • a fuel gas supply passage 38 a, a coolant discharge passage 36 b, and an oxygen-containing gas discharge passage 34 b are provided.
  • the fuel gas supply passage 38 a, the coolant discharge passage 36 b, and the oxygen-containing gas discharge passage 34 b extend through the power generation cell 12 in the stacking direction.
  • the fuel gas supply passage 38 a, the coolant discharge passage 36 b, and the oxygen-containing gas discharge passage 34 b are arranged in the vertical direction.
  • the fuel gas is supplied through the fuel gas supply passage 38 a.
  • the coolant is discharged through the coolant discharge passage 36 b.
  • the oxygen-containing gas is discharged through the oxygen-containing gas discharge passage 34 b.
  • the layout of the oxygen-containing gas supply passage 34 a, the oxygen-containing gas discharge passages 34 b, the fuel gas supply passage 38 a, and the fuel gas discharge passage 38 b is not limited to the above embodiment, and may be changed depending on the required specification.
  • the resin film equipped MEA 28 includes a membrane electrode assembly 28 a, and a frame shaped resin film 46 provided in the outer portion of the membrane electrode assembly 28 a.
  • the membrane electrode assembly 28 a includes an electrolyte membrane 40 , and an anode 42 and a cathode 44 sandwiching the electrolyte membrane 40 .
  • the electrolyte membrane 40 includes a solid polymer electrolyte membrane (cation ion exchange membrane).
  • the solid polymer electrolyte membrane is a thin membrane of perfluorosulfonic acid containing water.
  • the electrolyte membrane 40 is sandwiched between the anode 42 and the cathode 44 .
  • a fluorine based electrolyte may be used as the electrolyte membrane 40 .
  • an HC (hydrocarbon) based electrolyte may be used as the electrolyte membrane 40 .
  • the cathode 44 includes a first electrode catalyst layer 44 a joined to one surface of the electrolyte membrane 40 , and a first gas diffusion layer 44 b stacked on the first electrode catalyst layer 44 a.
  • the anode 42 includes a second electrode catalyst layer 42 a stacked on the other surface of the electrolyte membrane 40 , and a second gas diffusion layer 42 b stacked on the second electrode catalyst layer 42 a.
  • the inner end surface of the resin film 46 is positioned close to, overlapped with, or contacts the outer end surface of the electrolyte membrane 40 .
  • the oxygen-containing gas supply passage 34 a, the coolant supply passage 36 a, and the fuel gas discharge passage 38 b are provided at one end of the resin film 46 in the direction indicated by the arrow B 1 .
  • the fuel gas supply passage 38 a, the coolant discharge passage 36 b, and the oxygen-containing gas discharge passage 34 b are provided.
  • the resin film 46 is made of PPS (poly phenylene sulfide), PPA (polyphthalamide), PEN (polyethylene naphthalate), PES (polyethersulfone), LCP (liquid crystal polymer), PVDF (polyvinylidene fluoride), a silicone resin, a fluororesin, m-PPE (modified poly phenylene ether), PET (polyethylene terephthalate), PBT (polybutylene terephthalate), or modified polyolefin.
  • the electrolyte membrane 40 may be configured to protrude outward without using the resin film 46 .
  • a frame shaped film may be provided on both sides of the electrolyte membrane 40 which protrudes outward.
  • an oxygen-containing gas flow field 48 is provided on a surface 30 a of the first metal separator 30 facing the resin film equipped MEA 28 (hereinafter referred to as the “surface 30 a ”).
  • the oxygen-containing gas flow field 48 extends in the direction indicated by the arrow B.
  • the oxygen-containing gas flow field 48 is connected to (in fluid communication with) the oxygen-containing gas supply passage 34 a and the oxygen-containing gas discharge passage 34 b.
  • the oxygen-containing gas flow field 48 includes straight flow grooves 48 b between a plurality of ridges 48 a extending in the direction indicated by the arrow B. Instead of the plurality of straight flow grooves 48 b, a plurality of wavy or serpentine flow grooves may be provided.
  • An inlet buffer 50 A is provided on the surface 30 a of the first metal separator 30 , between the oxygen-containing gas supply passage 34 a and the oxygen-containing gas flow field 48 .
  • the inlet buffer 50 A includes a plurality of boss arrays each including a plurality of bosses 50 a arranged in a direction indicated by an arrow C.
  • an outlet buffer 50 B is provided on the surface 30 a of the first metal separator 30 , between the oxygen-containing gas discharge passage 34 b and the oxygen-containing gas flow field 48 .
  • the outlet buffer 50 B includes a plurality of boss arrays each including a plurality of bosses 50 b.
  • boss arrays each including a plurality of bosses 67 a arranged in the direction indicated by the arrow C are provided between the boss arrays of the inlet buffer 50 A, and boss arrays each including a plurality of bosses 67 b arranged in the direction indicated by the arrow C are provided between the boss arrays of the outlet buffer 50 B.
  • the bosses 67 a, 67 b form a buffer on the coolant surface.
  • First bead structure 52 is formed on the surface 30 a of the first metal separator 30 by press forming.
  • the first bead structure 52 is expanded toward the resin film equipped
  • resin material 56 is fixed to protruding front surfaces of the first bead structure 52 by printing, coating, etc.
  • polyester fiber is used as the resin material 56 .
  • the resin material 56 may be provided on the part of the resin film 46 .
  • the resin material 56 is not essential.
  • the resin material 56 may be dispensed with.
  • the first bead structure 52 includes a plurality of bead seals 53 (hereinafter referred to as the “passage beads 53 ”) provided around a plurality of fluid passages (oxygen-containing gas supply passage 34 a, etc.), and a bead seal 54 (hereinafter referred to as the “outer bead 54 ”) provided around the oxygen-containing gas flow field 48 , the inlet buffer 50 A, and the outlet buffer 50 B.
  • passage beads 53 provided around a plurality of fluid passages (oxygen-containing gas supply passage 34 a, etc.)
  • a bead seal 54 hereinafter referred to as the “outer bead 54 ”
  • the plurality of passage beads 53 protrude from the surface 30 a of the first metal separator 30 toward the resin film equipped MEA 28 .
  • the passage beads 53 are provided around the oxygen-containing gas supply passage 34 a, the oxygen-containing gas discharge passage 34 b, the fuel gas supply passage 38 a, the fuel gas discharge passage 38 b, the coolant supply passage 36 a, and the coolant discharge passage 36 b, respectively.
  • the passage bead formed around the oxygen-containing gas supply passage 34 a will be referred to as a “passage bead 53 a ”, and the passage bead formed around the oxygen-containing gas discharge passage 34 b will be referred to as a “passage bead 53 b ”.
  • the passage bead formed around the fuel gas supply passage 38 a will be referred to as a “passage bead 53 c ”
  • the passage bead formed around the fuel gas discharge passage 38 b will be referred to as a “passage bead 53 d ”.
  • the first metal separator 30 has bridge sections 80 , 82 connecting the inside of the passage beads 53 a, 53 b (fluid passages 34 a, 34 b ) and the outside (oxygen-containing gas flow field 48 ) of the passage beads 53 a, 53 b.
  • the bridge section 80 is provided on a side part of the passage bead 53 a formed around the oxygen-containing gas supply passage 34 a, adjacent to the oxygen-containing gas flow field 48 .
  • the bridge section 82 is provided on a side part of the passage bead 53 b formed around the oxygen-containing gas discharge passage 34 b, adjacent to the oxygen-containing gas flow field 48 .
  • the passage bead 53 a and the passage bead 53 b have the same structure. Further, the bridge section 80 adjacent to the oxygen-containing gas supply passage 34 a and the bridge section 82 adjacent to the oxygen-containing gas discharge passage 34 b have the same structure. Therefore, hereinafter, the structure of the passage bead 53 a and the bridge section 80 will be described in detail as a representative example, and the detailed description about the structure of the passage bead 53 b and the bridge section 82 will be omitted.
  • the passage bead 53 a has a wavy shape as viewed in the separator thickness direction. Specifically, the passage bead 53 a has a wavy shape over the entire periphery of the oxygen-containing gas supply passage 34 a as viewed in the separator thickness direction.
  • the first separator 30 has a recess 53 f on the back of the ridge shaped passage bead 53 a.
  • the recess 53 f forms an internal space 53 g of the passage bead 53 a.
  • the recess 53 f of the first metal separator 30 faces a recess 63 f (internal space 63 g ) on the back of a passage bead 63 described later, of the second metal separator 32 .
  • side walls 53 w of the passage bead 53 are inclined with respect to the separator thickness direction (stacking direction indicated by the arrow A). Therefore, the passage bead 53 has a trapezoidal shape in cross section taken along the separator thickness direction.
  • the side walls 53 w of the passage bead 53 may be in parallel to the separator thickness direction. That is, the passage bead 53 may have a rectangular shape in cross section taken along the separator thickness direction.
  • the bridge section 80 includes a plurality of inner tunnels 86 A provided at intervals inside the passage bead 53 a, and a plurality of outer tunnels 86 B provided at intervals outside the passage bead 53 a.
  • the inner tunnels 86 A and the outer tunnels 86 B are formed by press forming, to protrude from the surface 30 a of the first metal separator 30 toward the resin film equipped MEA 28 (see FIG. 1 ).
  • the internal spaces formed by recesses on the back of the inner tunnels 86 A are connected to the internal space 53 g ( FIG. 5 ) formed by a recess on the back of the passage bead 53 a.
  • An end of the inner tunnel 86 A opposite to a portion of the inner tunnel 86 A connected to the passage bead 53 a is opened in the oxygen-containing gas supply passage 34 a.
  • the internal spaces of the outer tunnels 86 B (formed by recesses on the back of the outer tunnels 86 B) are connected to the internal space 53 g of the passage bead 53 a.
  • a hole 83 is formed at an end of the outer tunnel 86 B opposite to a portion of the outer tunnel 86 B connected to the passage bead 53 a.
  • the plurality of inner tunnels 86 A and the plurality of outer tunnels 86 B are provided alternately (in a zigzag pattern) along the passage bead 53 a.
  • the plurality of inner tunnels 86 A and the plurality of outer tunnels 86 B may be provided to face each other through the passage bead 53 a.
  • the outer bead 54 extends along opposite long sides of the first metal separator 30 .
  • the outer bead 54 is curved, and extends between the oxygen-containing gas supply passage 34 a, the coolant supply passage 36 a, and the fuel gas discharge passage 38 b arranged along the short side of the first metal separator 30 .
  • the outer bead 54 is curved, and extends between the fuel gas supply passage 38 a, the coolant discharge passage 36 b, and the oxygen-containing gas discharge passage 34 b arranged along the short side of the first metal separator 30 .
  • the passage beads 53 a to 53 d are provided in an area surrounded by the outer bead 54 .
  • the outer bead 54 is formed in a wavy shape, except straight portions described later, as viewed in the separator thickness direction.
  • bead seals in two lines are formed by the passage bead 53 a and the outer bead 54 , between a separator outer end 30 e (short side of the rectangular first metal separator 30 in FIG. 4 ) and the oxygen-containing gas supply passage 34 a (portion of the oxygen-containing gas supply passage 34 a adjacent to the separator outer end 30 e ).
  • One of the bead seals in two lines has a wavy shape, and the other of the bead seals in two lines has a straight shape as viewed in the separator thickness direction.
  • the passage bead 53 a has a wavy shape
  • the outer bead 54 has a straight shape, between the separator outer end 30 e and the oxygen-containing gas supply passage 34 a. That is, the outer bead 54 includes a straight portion 54 s between the separator outer end 30 e and the oxygen-containing gas supply passage 34 a. The straight portion 54 s extends in parallel with the separator outer end 30 e as the short side of the first metal separator 30 .
  • the wavy passage bead 53 a has at least one recess 55 (a plurality of recesses 55 in the embodiment of the present invention) facing the straight portion 54 s of the outer bead 54 , between the separator outer end 30 e and the oxygen-containing gas supply passage 34 a, as viewed in the separator thickness direction.
  • at least one recess 55 at least one protrusion facing the straight portion 54 s may be provided.
  • the passage bead 53 a may be formed in a straight shape, and the outer bead 54 may be formed in a wavy shape between the separator outer end 30 e and the oxygen-containing gas supply passage 34 a.
  • the outer bead 54 has a trapezoidal shape in cross section taken along the separator thickness direction.
  • the outer bead 54 may have a rectangular shape in cross section taken along the separator thickness direction.
  • the passage bead 53 and the outer bead 54 have the same shape in cross section.
  • bead seals in two lines are formed by the passage bead 53 and the outer bead 54 , between the separator outer end 30 e and each of the fluid passages.
  • the second metal separator 32 has a fuel gas flow field 58 on its surface 32 a facing the resin film equipped MEA 28 (hereinafter referred to as the “surface 32 a ”).
  • the fuel gas flow field 58 extends in the direction indicated by the arrow B.
  • the fuel gas flow field 58 is connected to (in fluid communication with) the fuel gas supply passage 38 a and the fuel gas discharge passage 38 b.
  • the fuel gas flow field 58 includes straight flow grooves 58 b between a plurality of ridges 58 a extending in the direction indicated by the arrow B. Instead of the straight flow grooves 58 b, wavy or serpentine flow grooves may be provided.
  • An inlet buffer 60 A is provided on the surface 32 a of the second metal separator 32 , between the fuel gas supply passage 38 a and the fuel gas flow field 58 .
  • the inlet buffer 60 A includes a plurality of boss arrays each including a plurality of bosses 60 a arranged in the direction indicated by the arrow C.
  • an outlet buffer 60 B including a plurality of boss arrays is provided on the surface 32 a of the second metal separator 32 , between the fuel gas discharge passage 38 b and the fuel gas flow field 58 .
  • Each of the boss arrays includes a plurality of bosses 60 b.
  • boss arrays each including a plurality of bosses 69 a arranged in the direction indicated by the arrow C are provided between the boss arrays of the inlet buffer 60 A, and boss arrays each including a plurality of bosses 69 b arranged in the direction indicated by the arrow C are provided between the boss arrays of the outlet buffer 60 B.
  • the bosses 69 a, 69 b form a buffer on the coolant surface.
  • Second bead structure 62 is formed on the surface 32 a of the second metal separator 32 .
  • the second bead structure 62 is formed by press forming, and expanded toward the resin film equipped MEA 28 .
  • resin material 56 is fixed to protruding front surfaces of the second bead structure 62 by printing, coating, etc.
  • polyester fiber is used as the resin material 56 .
  • the resin material 56 may be provided on the part of the resin film 46 .
  • the resin material 56 is not essential.
  • the resin material 56 may be dispensed with.
  • the second bead structure 62 includes a plurality of bead seals 63 (hereinafter referred to as the “passage beads 63 ”) provided around the plurality of fluid passages (fluid passage 38 a, etc.), respectively, and a bead seal 64 (hereinafter referred to as the “outer bead 64 ”) provided around the fuel gas flow field 58 , the inlet buffer 60 A and the outlet buffer 60 B.
  • the plurality of bead seals 63 protrude from the surface 32 a of the second metal separator 32 , and are provided around the oxygen-containing gas supply passage 34 a, the oxygen-containing gas discharge passage 34 b, the fuel gas supply passage 38 a, the fuel gas discharge passage 38 b, the coolant supply passage 36 a, and the coolant discharge passage 36 b, respectively.
  • the second metal separator 32 has bridge sections 90 , 92 connecting the inside of passage beads 63 a, 63 b (fluid passages 38 a, 38 b ) around the fuel gas supply passage 38 a and the fuel gas discharge passage 38 b and the outside (fuel gas flow field 58 ) of the passage beads 63 a, 63 b.
  • the bridge section 90 is provided on a side part of the passage bead 63 a formed around the fuel gas supply passage 38 a, adjacent to the fuel gas flow field 58 .
  • the bridge section 92 (including some elements at intervals) is provided on a side part of the passage bead 63 b formed around the fuel gas discharge passage 38 b, adjacent to the fuel gas flow field 58 .
  • the bridge sections 90 , 92 provided in the second metal separator 32 and the bridge sections 80 , 82 ( FIG. 3 ) provided in the first metal separator 30 have the same structure.
  • the passage beads 63 a to 63 d have the same structure and the layout as the above described passage beads 53 a to 53 d of the first metal separator 30 ( FIG. 3 ).
  • the outer bead 64 has the same structure as the above described outer bead 54 ( FIG. 3 ) of the first metal separator 30 .
  • the bead seals (passage bead 63 and outer bead 64 ) are formed in two lines between an outer end 32 e of the second metal separator 32 and the portion of each fluid passage adjacent to the outer end 32 e, and one of the bead seals has a wavy shape and the other of the bead seals has a straight shape, as viewed in the separator thickness direction.
  • a coolant flow field 66 is formed between the surface 30 b of the first metal separator 30 and the surface 32 b of the second metal separator 32 that are joined together.
  • the coolant flow field 66 is connected to (in fluid communication with) the coolant supply passage 36 a and the coolant discharge passage 36 b.
  • the coolant flow field 66 is formed by stacking together a back surface of the first metal separator 30 (the shape on the back side of the oxygen-containing gas flow field 48 ) and a back surface of the second metal separator 32 (the shape on the back side of the fuel gas flow field 58 ).
  • the laser welding line 33 a is formed around the oxygen-containing gas supply passage 34 a and the bridge section 80 .
  • the laser welding line 33 b is formed around the fuel gas discharge passage 38 b and the bridge section 92 .
  • the laser welding line 33 c is formed around the fuel gas supply passage 38 a and the bridge section 90 .
  • the laser welding line 33 d is formed around the oxygen-containing gas discharge passage 34 b and the bridge section 82 .
  • the laser welding line 33 e is formed around the oxygen-containing gas flow field 48 , the fuel gas flow field 58 , the coolant flow field 66 , the oxygen-containing gas supply passage 34 a, the oxygen-containing gas discharge passage 34 b, the fuel gas supply passage 38 a, the fuel gas discharge passage 38 b, the coolant supply passage 36 a, and the coolant discharge passage 36 b, along the outer end of the joint separator 33 .
  • the first metal separator 30 and the second metal separator 32 may be joined together by brazing, instead of welding.
  • an oxygen-containing gas such as air is supplied to the oxygen-containing gas supply passage 34 a.
  • a fuel gas such as a hydrogen-containing gas is supplied to the fuel gas supply passage 38 a.
  • Coolant such as pure water, ethylene glycol, oil is supplied to the coolant supply passage 36 a.
  • the oxygen-containing gas flows from the oxygen-containing gas supply passage 34 a to the oxygen-containing gas flow field 48 of the first metal separator 30 through the bridge section 80 (see FIG. 3 ). Then, the oxygen-containing gas flows along the oxygen-containing gas flow field 48 in the direction indicated by the arrow B, and the oxygen-containing gas is supplied to the cathode 44 of the membrane electrode assembly 28 a.
  • the fuel gas flows from the fuel gas supply passage 38 a into the fuel gas flow field 58 of the second metal separator 32 through the bridge section 90 .
  • the fuel gas flows along the fuel gas flow field 58 in the direction indicated by the arrow B, and the fuel gas is supplied to the anode 42 of the membrane electrode assembly 28 a.
  • the oxygen-containing gas supplied to the cathode 44 and the fuel gas supplied to the anode 42 are partially consumed in electrochemical reactions in the first electrode catalyst layer 44 a and the second electrode catalyst layer 42 a to generate electricity.
  • the oxygen-containing gas supplied to the cathode 44 flows from the oxygen-containing gas flow field 48 through the bridge section 82 to the oxygen-containing gas discharge passage 34 b, and the oxygen-containing gas is discharged along the oxygen-containing gas discharge passage 34 b in the direction indicated by the arrow A.
  • the fuel gas supplied to the anode 42 is partially consumed at the anode 42
  • the fuel gas flows from the fuel gas flow field 58 through the bridge section 92 to the fuel gas discharge passage 38 b, and the fuel gas is discharged along the fuel gas discharge passage 38 b in the direction indicated by the arrow A.
  • the coolant supplied to the coolant supply passage 36 a flows into the coolant flow field 66 between the first metal separator 30 and the second metal separator 32 , and then, the coolant flows in the direction indicated by the arrow B. After the coolant cools the membrane electrode assembly 28 a, the coolant is discharged from the coolant discharge passage 36 b.
  • the power generation cell 12 according to the embodiment of the present invention offers the following advantages.
  • the bead seals provided between the separator outer end 30 e and the reactant gas passages tend to have low rigidity.
  • the bead seals (passage bead 53 a and outer bead 54 ) in two lines are provided between the separator outer end 30 e and the portion of the reactant gas passage (oxygen-containing gas supply passage 34 a, etc.) adjacent to the separator outer end 30 e, and one of the bead seals has a wavy shape and the other of the bead seals has a straight shape as viewed in the separator thickness direction. Therefore, in comparison with the structure where both of the bead seals in two lines have a straight shape, improvement in the rigidity of the first bead structure 52 adjacent to the separator outer end 30 e is achieved.
  • the rigidity of the wavy bead seal against the load in the separator thickness direction (stacking direction) is high. Therefore, as shown in FIG. 7 , in comparison with the straight bead seal, the displacement amount (deformation amount) relative to the load is small. Therefore, in the first metal separator 30 shown in FIG. 4 , the bead seals in two lines provided between the separator outer end 30 e and the reactant gas passages (oxygen-containing gas supply passage 34 a, etc.) include the wavy bead seal (passage bead 53 a ). Thus, the amount of deformation caused by application of the load in the stacking direction is suppressed. Thus, since the relative decrease in the seal surface pressure adjacent to the separator outer end 30 e is suppressed, it is possible to suppress variation in the seal surface pressure.
  • the wavy bead seal (passage bead 53 a ) includes at least one recess 55 facing the straight bead seal (outer bead 54 ) between the separator outer end 30 e and the reactant gas passage (oxygen-containing gas supply passage 34 a, etc.), as viewed in the separator thickness direction.
  • the bead seal (passage bead 53 a ) adjacent to the reactant gas passage has a wavy shape.
  • the available space adjacent to the separator outer end 30 e is limited significantly, and it is not easy to provide the bead seal having a wavy shape adjacent to the separator outer end 30 e.
  • the available space adjacent to the reactant gas passage is not limited significantly, and in the structure, it is possible to provide the bead seal having a wavy shape adjacent to the reactant gas passage easily.
  • the reactant gas passage e.g., oxygen-containing gas supply passage 34 am
  • the oxygen-containing gas supply passage 34 am has a hexagonal shape where a side 34 s 1 adjacent to the separator outer end 30 e (short side of the rectangular first metal separator 30 M) is shorter than a side 34 s 2 adjacent to the oxygen-containing gas flow field 48 (see FIG. 3 ).
  • the side 34 s 1 is in parallel with the separator outer end 30 e which is the short side of the first metal separator 30 M.
  • One of the bead seals in two lines provided between the separator outer end 30 e and the oxygen-containing gas supply passage 34 am has a wavy shape
  • the other of the bead seals includes a straight portion.
  • the passage bead 53 m has a wavy shape between the separator outer end 30 e and the oxygen-containing gas supply passage 34 am
  • a portion of the outer bead 54 m facing the separator outer end 30 e has a straight shape.
  • the outer bead 54 m includes a straight portion 54 ms between the separator outer end 30 e and the oxygen-containing gas supply passage 34 am.
  • the straight portion 54 ms extends in parallel with the separator outer end 30 e which is the short side of the first metal separator 30 M.
  • the wavy passage bead 53 m includes at least one recess 55 between the separator outer end 30 e and the oxygen-containing gas supply passage 34 am, as viewed in the separator thickness direction.
  • the recess 55 faces the straight portion 54 ms of the outer bead 54 m.
  • a plurality of recesses 55 facing a straight portion 54 s may be provided.
  • at least one protrusion may be provided.
  • the passage bead 53 m may have a straight shape, and the outer bead 54 m may have a wavy shape, between the separator outer end 30 e and the oxygen-containing gas supply passage 34 am.
  • the oxygen-containing gas discharge passage, the fuel gas supply passage, and the fuel gas discharge passage are provided in the first metal separator 30 M.
  • These fluid passages also may have a hexagonal shape as in the case of the oxygen-containing gas supply passage 34 am.
  • the passage beads 53 m around the fluid passages and the outer bead 54 m may be formed in the same manner as the passage bead 53 m around the oxygen-containing gas supply passage 34 am and the outer bead 54 m.
  • the second metal separator may adopt the same structure as the first metal separator 30 M.
  • the bead structure between the reactant gas passage and the separator outer end is not limited to the bead seals in two lines, as long as the bead seals are arranged in at least two lines.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
US16/139,118 2017-09-25 2018-09-24 Fuel cell metal separator and power generation cell Abandoned US20190097244A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017183115A JP6496377B1 (ja) 2017-09-25 2017-09-25 燃料電池用金属セパレータ及び発電セル
JP2017-183115 2017-09-25

Publications (1)

Publication Number Publication Date
US20190097244A1 true US20190097244A1 (en) 2019-03-28

Family

ID=65807961

Family Applications (1)

Application Number Title Priority Date Filing Date
US16/139,118 Abandoned US20190097244A1 (en) 2017-09-25 2018-09-24 Fuel cell metal separator and power generation cell

Country Status (3)

Country Link
US (1) US20190097244A1 (zh)
JP (1) JP6496377B1 (zh)
CN (1) CN109560302B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394422A (zh) * 2020-03-12 2021-09-14 本田技研工业株式会社 燃料电池用金属隔板以及发电单电池
DE102020205269A1 (de) 2020-04-27 2021-10-28 Robert Bosch Gesellschaft mit beschränkter Haftung Bipolarplatte mit Dichtungsgeometrie und Brennstoffzellenstapel
WO2023272477A1 (en) * 2021-06-29 2023-01-05 Interplex (Suzhou) Precision Engineering Ltd. Fuel, oxidant or coolant inlet/outlet structure of a stackable fuel cell bipolar plate
US11557769B2 (en) * 2020-03-27 2023-01-17 Honda Motor Co., Ltd. Separator and method of producing separator
DE202021106233U1 (de) 2021-11-15 2023-02-16 Reinz-Dichtungs-Gmbh Separatorplatte mit einer Sickendurchführung
US11936077B2 (en) 2020-08-03 2024-03-19 Honda Motor Co., Ltd. Separator member and fuel cell

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7103994B2 (ja) * 2019-05-21 2022-07-20 本田技研工業株式会社 燃料電池用セパレータ部材及び燃料電池スタック
JP7033107B2 (ja) * 2019-07-09 2022-03-09 本田技研工業株式会社 燃料電池スタック
JPWO2021054291A1 (zh) * 2019-09-20 2021-03-25
JP7264802B2 (ja) * 2019-12-23 2023-04-25 Nok株式会社 セパレータの製造方法
JP7309596B2 (ja) * 2019-12-23 2023-07-18 Nok株式会社 燃料電池用接合セパレータ
CN112002922A (zh) * 2020-08-28 2020-11-27 浙江海晫新能源科技有限公司 一种燃料电池电堆的密封结构
JP7174798B2 (ja) * 2021-03-25 2022-11-17 本田技研工業株式会社 燃料電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170229714A1 (en) * 2016-02-04 2017-08-10 GM Global Technology Operations LLC Embossed metal seal design with improved contact pressure uniformity under conditions of misalignment
US20170324099A1 (en) * 2014-10-18 2017-11-09 Reinz-Dichtungs-Gmbh Separator plate and electrochemical system
US10355289B2 (en) * 2017-02-06 2019-07-16 GM Global Technology Operations LLC Plate structure for a fuel cell
US10388969B2 (en) * 2016-10-20 2019-08-20 GM Global Technology Operations LLC Bipolar plate for a fuel cell, and a method manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10248531B4 (de) * 2002-10-14 2005-10-20 Reinz Dichtungs Gmbh & Co Kg Brennstoffzellensystem sowie Verfahren zur Herstellung einer in dem Brennstoffzellensystem enthaltenen Bipolarplatte
US8227145B2 (en) * 2008-03-18 2012-07-24 GM Global Technology Operations LLC Interlockable bead seal
DE202014004456U1 (de) * 2014-05-23 2015-05-28 Reinz-Dichtungs-Gmbh Metallische Bipolarplatte mit rückfedernder Dichtungsanordnung und elektrochemisches System
JP6337243B2 (ja) * 2014-08-27 2018-06-06 トヨタ車体株式会社 燃料電池のセパレータ
US11011758B2 (en) * 2017-02-02 2021-05-18 Hond Motor Co., Ltd. Fuel cell and metallic separator with varied bead seal width and angle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170324099A1 (en) * 2014-10-18 2017-11-09 Reinz-Dichtungs-Gmbh Separator plate and electrochemical system
US20170229714A1 (en) * 2016-02-04 2017-08-10 GM Global Technology Operations LLC Embossed metal seal design with improved contact pressure uniformity under conditions of misalignment
US10388969B2 (en) * 2016-10-20 2019-08-20 GM Global Technology Operations LLC Bipolar plate for a fuel cell, and a method manufacturing the same
US10355289B2 (en) * 2017-02-06 2019-07-16 GM Global Technology Operations LLC Plate structure for a fuel cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394422A (zh) * 2020-03-12 2021-09-14 本田技研工业株式会社 燃料电池用金属隔板以及发电单电池
US11557769B2 (en) * 2020-03-27 2023-01-17 Honda Motor Co., Ltd. Separator and method of producing separator
DE102020205269A1 (de) 2020-04-27 2021-10-28 Robert Bosch Gesellschaft mit beschränkter Haftung Bipolarplatte mit Dichtungsgeometrie und Brennstoffzellenstapel
US11936077B2 (en) 2020-08-03 2024-03-19 Honda Motor Co., Ltd. Separator member and fuel cell
WO2023272477A1 (en) * 2021-06-29 2023-01-05 Interplex (Suzhou) Precision Engineering Ltd. Fuel, oxidant or coolant inlet/outlet structure of a stackable fuel cell bipolar plate
DE202021106233U1 (de) 2021-11-15 2023-02-16 Reinz-Dichtungs-Gmbh Separatorplatte mit einer Sickendurchführung

Also Published As

Publication number Publication date
JP6496377B1 (ja) 2019-04-03
CN109560302B (zh) 2020-09-11
CN109560302A (zh) 2019-04-02
JP2019061754A (ja) 2019-04-18

Similar Documents

Publication Publication Date Title
US20190097244A1 (en) Fuel cell metal separator and power generation cell
US10763521B2 (en) Fuel cell separator and fuel cell stack
US10886556B2 (en) Power generation cell
US10811700B2 (en) Fuel cell separator and power generation cell
US10573905B2 (en) Power generation cell
US11329297B2 (en) Fuel cell metal separator and power generation cell
US11011758B2 (en) Fuel cell and metallic separator with varied bead seal width and angle
US20180040907A1 (en) Fuel cell stack
US10910658B2 (en) Fuel cell metal separator, method of producing the fuel cell metal separator, and power generation cell
US11189848B2 (en) Fuel cell metal separator and fuel cell
CN109980240B (zh) 发电单电池
US11031610B2 (en) Fuel cell stack
US10741861B2 (en) Power generating cell
US10784524B2 (en) Power generation cell with reduced pressure loss between reactant gas passage and reactant gas flow field
US11101472B2 (en) Power generation cell
US11063269B2 (en) Power generation cell
US20200014041A1 (en) Fuel cell separator member and fuel cell stack
US20200020958A1 (en) Fuel cell separator and fuel cell stack
US10833338B2 (en) Seal structure
US20190393514A1 (en) Fuel cell separator and fuel cell stack
US11437631B2 (en) Fuel cell separator and power generation cell
US10615430B2 (en) Joint separator for fuel cell, and fuel cell stack
US20190044162A1 (en) Power generation cell
US20200274173A1 (en) Fuel cell metal separator and fuel cell
US10923740B2 (en) Fuel cell separator, fuel cell joint separator, and power generation cell

Legal Events

Date Code Title Description
AS Assignment

Owner name: HONDA MOTOR CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OYAMA, SATOSHI;TOMANA, YU;REEL/FRAME:046946/0508

Effective date: 20180810

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION