US20190073991A1 - Networked sound masking system - Google Patents

Networked sound masking system Download PDF

Info

Publication number
US20190073991A1
US20190073991A1 US16/181,120 US201816181120A US2019073991A1 US 20190073991 A1 US20190073991 A1 US 20190073991A1 US 201816181120 A US201816181120 A US 201816181120A US 2019073991 A1 US2019073991 A1 US 2019073991A1
Authority
US
United States
Prior art keywords
sound masking
control unit
units
sound
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/181,120
Inventor
Klaus Moeller
Niklas Moeller
Mircea Rusu
Carl Derla
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
777388 Ontario Ltd
Original Assignee
777388 Ontario Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 777388 Ontario Ltd filed Critical 777388 Ontario Ltd
Priority to US16/181,120 priority Critical patent/US20190073991A1/en
Assigned to 777388 ONTARIO LIMITED reassignment 777388 ONTARIO LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DERLA, CARL, MOELLER, KLAUS, MOELLER, NIKLAS, RUSU, MIRCEA
Publication of US20190073991A1 publication Critical patent/US20190073991A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/1752Masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/80Jamming or countermeasure characterized by its function
    • H04K3/82Jamming or countermeasure characterized by its function related to preventing surveillance, interception or detection
    • H04K3/825Jamming or countermeasure characterized by its function related to preventing surveillance, interception or detection by jamming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M11/00Telephonic communication systems specially adapted for combination with other electrical systems
    • H04M11/02Telephonic communication systems specially adapted for combination with other electrical systems with bell or annunciator systems
    • H04M11/027Annunciator systems for hospitals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R27/00Public address systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/002Damping circuit arrangements for transducers, e.g. motional feedback circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0247Electrical details of casings, e.g. terminals, passages for cables or wiring
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3014Adaptive noise equalizers [ANE], i.e. where part of the unwanted sound is retained
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3035Models, e.g. of the acoustic system
    • G10K2210/30351Identification of the environment for applying appropriate model characteristics
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3049Random noise used, e.g. in model identification
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K2203/00Jamming of communication; Countermeasures
    • H04K2203/10Jamming or countermeasure used for a particular application
    • H04K2203/12Jamming or countermeasure used for a particular application for acoustic communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K2203/00Jamming of communication; Countermeasures
    • H04K2203/30Jamming or countermeasure characterized by the infrastructure components
    • H04K2203/34Jamming or countermeasure characterized by the infrastructure components involving multiple cooperating jammers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/42Jamming having variable characteristics characterized by the control of the jamming frequency or wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/43Jamming having variable characteristics characterized by the control of the jamming power, signal-to-noise ratio or geographic coverage area
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/40Jamming having variable characteristics
    • H04K3/45Jamming having variable characteristics characterized by including monitoring of the target or target signal, e.g. in reactive jammers or follower jammers for example by means of an alternation of jamming phases and monitoring phases, called "look-through mode"

Definitions

  • the present invention relates to sound masking, and more particularly to a networked and remote controllable sound masking system.
  • Sound masking systems are widely used in offices and similar workplaces where an insufficient level of background sound results in diminished speech privacy. Such environments suffer from a high level of noise distractions, and lower comfort levels from an acoustic perspective. Sound masking systems operate on the principle of masking which involves generating a background sound in a given area. The background sound has the effect of limiting the ability to hear two sounds of similar sound pressure level and frequency simultaneously. By generating and distributing the background noise in the given area, the sound masking system masks or covers the propagation of other sounds in the area and thereby increases speech privacy, reduces the intrusion of unwanted noise, and improves the general acoustic comfort level in the area or space.
  • Sound masking systems are of two main types: centrally deployed systems and independent self-contained systems.
  • a central noise generating source supplies a series of loudspeakers installed throughout the physical area or space to be covered.
  • the independent self-contained system comprises a number of individual self-contained sound masking units which are installed in the physical space.
  • the sound masking units operate independently of each other, but may include a number of satellite speakers which extend the range of each self-contained, i.e. master, sound masking unit.
  • Most sound masking systems include the capability for broadcast announcements and music over the loudspeakers contained in the sound masking units.
  • the primary goal of sound masking systems is to provide an unobtrusive, effective masking sound that is adjustable for maximum consistency, and offers the ability to meet the requirements of the occupants.
  • the masking output is preferably sufficient to accommodate the existing acoustic requirements of the workplace environment and adjustable to handle changes to the acoustic characteristics of environment which occur over time. Similar demands are placed on the system for the public address and music functions.
  • the preferred sound masking system would produce an output with a frequency and volume level that is controllable to produce the desired acoustic response for workplace zones ranging in size from the smallest to larger spaces.
  • Centralized systems are characterized by achieving uniformity of output, but not uniformity of acoustic response for the space.
  • the frequency spectrum of the sound masking output can only be adjusted at a centrally located equalizer, and as a result the sound masking output has the same frequency spectrum for all of the loudspeakers.
  • volume adjustments may be made for very large physical spaces, i.e. zones, by adjusting the amplifier output; for relatively smaller zones, volume adjustments are made by changing wiring connections or controls on the speaker enclosure, or by adjusting a hardwired zone volume control.
  • a further disadvantage is that many of the adjustments for a centralized sound masking system require an installer or technician to re-enter the ceiling space or to rewire the speakers in the system.
  • the independent self-contained system has a number of important advantages over the centralized arrangement.
  • the independent self-contained system is more effective in terms of sound generation, volume adjustment, and frequency adjustment which, in turn, improves the performance of such systems as compared to centralized systems.
  • the independent self-contained system provides a defined non-frequency specific output range for the masking output spectrum, and adjustments can be made at each master sound masking unit.
  • the volume controls for an independent self-contained system also provide more flexibility than in the centralized system, and provide for finer adjustments in smaller zones, in addition to centralized volume controls for large zone or global adjustment.
  • the present invention provides a networked sound masking system with individually controllable and programmable sound masking units.
  • the present invention provides a sound masking system for controlling the ambient noise level in a physical environment
  • the sound masking system comprises: (a) a communication network spanning at least a portion of the physical environment; (b) a plurality of sound masking units, some of the sound masking units include a sound masking component for generating a sound masking output signal and some of the sound masking units include a communication interface for coupling the sound masking units to the communication network for receiving control signals over the communication network; (c) a control unit having a communication interface for coupling to the communication network for transmitting control signals over the communication network to the sound masking units, and the control signals include signals for controlling the operation of at least some of the sound masking units.
  • the present invention provides a sound masking system for shaping the ambient noise level in a physical environment
  • the sound masking system comprises: (a) a communication network spanning at least a portion of the physical environment; (b) a plurality of sound masking units, some of the sound masking units include a sound masking circuit for generating a sound masking output signal for shaping the ambient noise level in the vicinity of each of the sound masking units, a programmable controller and at least one digital component for controlling operation of the sound masking circuit, and a communication interface for coupling the sound masking units to the communication network, and the programmable controller being coupled to the communication network for receiving control signals from the communication network for altering the operation of the sound masking circuit; (c) a control unit, the control unit having a communication interface for coupling the control unit to the communication network for transmitting control signals over the communication network to the sound masking units, and the control signals include signals for controlling the operation of at least some of the sound masking units; (d) wherein the sound masking circuit comprises a
  • the present invention provides in a networked sound masking system for controlling ambient noise level in a physical environment, the networked sound masking system having a communication network for coupling a plurality of sound masking units, the sound masking units span the physical environment, the sound masking units include a sound masking component for generating a sound masking output signal and include a communication interface to the communication network for receiving control signals over the communication network, and a control unit having a communication interface for coupling the control unit to the communication network for transmitting control signals to the sound masking units, and the control signals include signals for selectively controlling the operation of the sound masking units, a remote control unit for generating adjustment signals for the control unit for adjusting characteristics of the sound masking signal output produced by the sound masking units, the remote control unit comprises: (a) a remote communication interface for transmitting the adjustment signals to the control unit, and the control unit has an external communication interface compatible with the remote communication interface; (b) an input component for receiving sound level readings for the physical environment; (c) a
  • FIG. 1 shows in block diagram form a networked sound masking system according to the present invention
  • FIG. 2 shows a sound masking unit in block diagram form for the networked sound masking system of FIG. 1 ;
  • FIG. 3 shows in block diagram form a control unit for the networked sound masking system of FIG. 1 ;
  • FIG. 4 shows the control unit of FIG. 3 in more detail, and in particular the functional modules for the control unit;
  • FIG. 5 shows in flowchart form a main functional processing method for the control unit of FIG. 3 ;
  • FIG. 6 shows in flowchart form the processing steps for the display/setup function in the control unit for the networked sound masking system according to the present invention
  • FIG. 7 shows in flowchart form the processing steps for the timer function in the control unit for the networked sound masking system
  • FIG. 8 shows in flowchart form the processing steps for the gain/contour/paging/band setting functions in the control unit for the networked sound masking system
  • FIG. 9 shows in flowchart form the processing steps for the equalizer function in the control unit for the networked sound masking system
  • FIG. 10 shows in flowchart form the steps for setting the timer function for the control unit
  • FIG. 11 shows in flowchart form the processing steps for a diagnostics function in the control unit for the networked sound masking system
  • FIG. 12( a ) shows in flowchart form the steps for a system configuration function in the control unit for the networked sound masking system
  • FIG. 12( b ) shows in flowchart form the steps for configuring addresses for the sound masking units according to an aspect of the present invention
  • FIG. 13 shows in flowchart form the processing steps for the timer function for the control unit
  • FIG. 14 shows in flowchart form functions for controlling the sound masking units in the networked sound masking system according to the present invention
  • FIG. 15 shows in flowchart form functions implemented for the remote control unit in the networked sound masking system according to the present invention
  • FIG. 16 shows in flowchart form the processing steps for an equalization function in the networked sound masking system according to the present invention.
  • FIG. 17 shows in graphical form a Prescribed Spectrum Contour table for the LD sound masking signal.
  • FIG. 1 shows in block diagram form a networked sound masking system according to the present invention and indicated by reference 10 .
  • the networked sound masking system 10 comprises a control unit 12 , and a network 13 comprising a plurality of master sound masking units 14 , indicated individually by 14 a, 14 b, 14 c, . . . 14 n, and one or more satellite sound masking units 16 , indicated individually by 16 a, 16 b, 16 c, 16 d, . . . 16 m .
  • the physical connections for the network 13 between the master sound masking units 14 may comprise 5, 4 or 3 conductors. In a 5 conductor arrangement, two conductors carry power, two conductors provide a communication channel, and one conductor provides for paging.
  • the master sound masking unit 14 and the satellite sound masking units 16 provide the sound masking functionality, i.e. sound masking and signal generation and amplification.
  • Each sound masking group i.e. master sound masking unit 14 together with the associated satellite sound masking units 16 , is configured for a particular physical spaces, e.g. office, room, zone in a open office, etc.
  • the master sound masking units 14 are configured to generate a specific sound masking signal at a specified output level for performing the sound masking in the physical space.
  • the sound masking signal is generated according to programmable spectrum, equalizer, and volume settings.
  • the satellite sound masking units 16 are connected to their associated master unit 14 and comprise a speaker which reproduces the sound masking signal generated by the master unit 14 .
  • the satellite units 16 provide a cost-effective way to expand the coverage of the master sound masking unit 14 in a building space.
  • the control unit 12 as will be described in more detail couples to the network 13 and provides the capability to adjust the functional aspects of the master sound masking units 14 and the satellite sound masking units 16 .
  • the sound masking functions include masking signal spectrum, masking signal output volume, and paging volume.
  • the control unit 12 also provides diagnostic functions and timer control functions.
  • the control unit 12 may also include testing functions, such as a test function which compares existing sound measurements to the desired sound parameters for the space and calculates the adjustments to be made.
  • the control unit 12 configures the network 13 by assigning identities or addresses to each of the master units 14 .
  • the addressing of the individual master units 14 enables the control unit 12 to direct commands and/or status requests to individual master sound masking units 14 (and the associated satellite sound masking units 16 ), or to groups of master sound masking units 14 , or to the entire network 13 as a whole.
  • the control unit 12 is then used to set/adjust the masking signal spectrum, the masking signal volume, and/or the paging volume for the selected (i.e. addressed) master and satellite sound masking units 14 and 16 .
  • the master sound LD masking units 14 may include a digital equalizer for providing greater programming flexibility over the spectrum for the sound masking signal generated by the selected master and satellite sound masking units 14 and 16 .
  • the system 10 may include a remote control unit 18 .
  • the remote control unit 18 works in conjunction with the control unit 12 to display and/or change the current adjustment settings (i.e. spectrum adjustment settings, equalizer settings, masking signal volume level, and paging volume) for the master units 14 .
  • the remote control unit 18 can accept as input sound measurements taken by a sound level meter, or another configuration the remote control unit 14 allows a user to measurements of the acoustical environment for the building space.
  • the remote control unit 18 communicates with the control unit 12 through a communication interface 20 , for example a radio signal channel, indicated by reference 19 .
  • control unit 12 may also include another communication interface 58 .
  • the communication interface 58 provides the capability to access the control unit 12 via a remote location, e.g. an offsite location.
  • the communication interface 58 may comprise a telephone communication, radio communication, computer network (e.g. a Local Area Network (LAN) or a Wide Area Network (WAN)), or a connection through the Internet or World Wide Web (WWW). This provides greater flexibility in configuring, adjusting and maintaining the sound masking system 10 from a remote or off-site location.
  • LAN Local Area Network
  • WAN Wide Area Network
  • WWW World Wide Web
  • FIG. 2 shows the master sound masking unit 14 in greater detail.
  • the master unit 14 comprises a random noise generator stage 30 , a filter stage 32 , an equalizer stage 34 , and an audio power amplifier stage 36 .
  • the operation of the stages 30 , 32 , 34 , 36 is controlled by a microcontroller 38 .
  • the master sound masking unit 14 includes a communication interface 40 .
  • the communication interface 40 couples the master unit 14 to the network 13 and provides the capability to communicate with the control unit 12 and other master sound masking units 14 b, 14 c in the network 13 .
  • the master unit 14 includes a local power supply 42 for powering the circuitry.
  • the audio power amplifier stage 36 drives a speaker 44 which emits the sound masking signal.
  • the random noise generator stage 30 is the signal source for generating the sound masking signal.
  • the random noise generator 30 may comprise a multi-stage shift register and an Exclusive-OR gate network as described in U.S. Pat. No. 4 , 914 , 706 which issued to the assignee in common with the subject application.
  • the random noise generator module 30 may be implemented in firmware executed in the microcontroller 38 .
  • the random noise generator 30 may also be implemented as an operational amplifier which couples and amplifies the noise produced by a voltage regulator circuit, such as a Zener diode.
  • the filter stage 32 is coupled to the output of the random noise generator 30 .
  • the filter stage 32 comprises two filters connected to the respective outputs of the last two stages of the shift register (not shown) in the random noise generator 30 as described in U.S. Pat. No. 4,914,706.
  • Each of the filters comprises a resistive-capacitive ladder network, with one of the filters having a higher cut-off frequency than the other filter. Using this arrangement, each of the filters derives a different output signal from the random noise generator 30 with each of the output signals having a different spectral shape within the defined audio frequency range.
  • the filter stage 32 is coupled to the microcontroller 38 through a digital control device 33 .
  • the digital control device 33 comprises a potential divider which is connected between the output ends of the filters in the filter stage and under the control of the microcontroller 38 the output contour of the filter stage 32 is programmable.
  • the digital control device 33 is preferably implemented using a digital potentiometer, such as the device available from XICOR Corp., and has a continuously adjustable tap with at least 32 tap positions. The tap positions are selectable by the microcontroller 38 , and by changing the tap positions the spectral shape of the noise signal output from the random noise generator 30 is controllable.
  • the equalizer stage 34 comprises an one-third linguistic equalizer which is used for adjusting the sound spectrum of the noise signal output to the desired contour.
  • the equalizer comprises 18 adjustable bandpass filter cells for the 1/3 Octave band and 7 adjustable bandpass filter cells for the 1/1 linguistic band, and an adder for summing the outputs.
  • Each filter cell is implemented using an operational amplifier or OP Amp, fixed resistors and capacitors as will be within understanding of one skilled in the art.
  • each of the filter cells is coupled to the microcontroller 38 through a digital control device 35 , such as a digital potentiometer to provide for the independent adjustment of the cell about a fixed center frequency under the control of the microcontroller 38 .
  • the 1/3 Octave Band frequencies comprise 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, 4000, 5000, 6300 and 8000 Hertz (Hz).
  • the 1/1 Octave Band frequencies comprise 125, 250, 500, 1000, 2000, 4000, and 8000 Hz.
  • Each filter cell is preset to the prescribed contour, e.g. 48 dB ⁇ V.sub.f1 ⁇ 57 dB and 24 step ⁇ DigiPot.sub.1 ⁇ 30 step.
  • the output from the equalizer stage 34 is a sound masking signal with a controllable contour which is fed to the amplifier power stage 36 .
  • the audio power stage 36 provides a controllable output level for the contoured sound masking signal.
  • the contoured sound masked signal is amplified by the audio power stage 36 and output to the speaker 44 which emits a sound masking sound into the physical space.
  • the audio power stage 36 also provides an adjustable amplification level for the providing paging announcements, background music or other broadcasts over the speaker.
  • the output level of the audio power stage 36 is also controllable by the microcontroller 38 through a digital control device 37 .
  • the digital control device 37 comprises a digital potentiometer having at least 32 step settings.
  • the communication interface 40 comprises a first serial interface 46 , a second serial interface 48 , and a switching logic stage 50 .
  • the communication interface 40 couples the microcontroller 38 to the network 13 and allows the unit 14 to receive and transmit status requests and control commands.
  • the switching logic stage 50 connects the microcontroller 38 to the first and second serial interfaces 46 and 48 .
  • the first serial interface 46 allows the microcontroller 38 to communicate with an upstream device, for example, the master sound masking unit 14 a or the control unit 12 .
  • the second serial interface 48 allows the microcontroller 38 to communicate with a downstream device, for example, the master sound masking unit 14 c.
  • the microcontroller 38 monitors the serially encoded messages and acts upon messages which are addressed to the specified master sound masking unit 14 .
  • Each of the master sound masking units 14 is assigned an address according to a self-addressing mechanism as will be described in more detail below.
  • the satellite sound masking units 16 are associated with respective master sound masking units 14 .
  • the satellite sound masking units 16 each include a speaker, and are coupled to one of the master sound masking units 14 .
  • the satellite sound masking units 16 act as slaves or satellites to the master sound masking unit 14 and reproduce the sound masking signal output generated by the associated master sound masking unit 14 .
  • the control unit 12 comprises a processor unit (i.e. a microprocessor) 42 , a program memory 44 , a data memory 46 , a display module 48 , a keypad 50 , a real-time clock module 52 , a parameter memory 54 , a serial communication interface 56 , and the communication interface 58 .
  • the control unit 12 includes a functional module 60 to control the 1/3 Scripte equalizer 34 ( FIG.
  • a functional module 62 to provide volume control
  • a functional module 64 to provide paging volume control
  • a functional module 66 to provide spectrum adjustment control of the contoured sound masking signal
  • a functional module 68 to provide timer functions for the system 10
  • a functional module 70 to provide addressing of the master sound masking units 14 in the network 13
  • a functional module 72 for performing diagnostic functions.
  • FIG. 5 shows a start-up process 100 for the control unit 12 .
  • the start-up process 100 is executed in response to a power-up 101 or a reset condition.
  • the start-up process 100 comprises an initialization step 102 which includes configuring the control unit 12 .
  • the control unit 12 runs a display/setup operation 104 as a background loop, and a timer operation LD 106 .
  • the timer operation 106 is periodically executed, for example, on an interrupt driven basis or as part of a polling loop in the display/setup operation.
  • FIG. 6 shows the display/setup operation 104 in more detail.
  • the display/setup operation 104 comprises displaying a series of menu functions on the display 48 ( FIG. 1 ) which are accessed via selections from the keypad 50 ( FIG. 1 ).
  • the menu functions include a Date/Time function menu 110 , a Gain function menu 112 , a Contour menu function 114 , a Paging Volume function menu 116 , an Equalizer Setting function menu 118 , a Timer function menu function 120 , a Diagnostic function menu 122 , a System Configuration function menu 124 , and Serial Number function menu 126 .
  • the processing steps for the Date/Time function menu 110 are shown in FIG. 7 .
  • the first step comprises displaying the time 130 and prompting the user to change the time 132 . If the user selects to change the time, then a set time procedure 134 is executed. Otherwise the date is displayed 136 , and the user is prompted to change the date 138 . If the user selects to change the date, a set date procedure 140 is executed.
  • the first step comprises selecting the master sound masking unit.
  • decision block 150 a selection is made between a single master sound masking unit 14 or multiple master sound masking units 14 . If multiple master sound masking units 14 are to be configured, then the next step 154 involves selecting the range for the sound masking units 14 .
  • the sound masking level i.e.
  • the gain, for the sound masking units 14 in the range is entered in block 156 and transmitted via the network 13 to all the sound masking units 14 in the selected range.
  • the first sound masking unit 14 a in the range is selected, i.e. addressed.
  • the next step 162 involves reading the sound masking gain level setting for the master sound masking unit 14 which was selected in step 160 or as a result of the branch from decision block 152 .
  • the gain level setting received from the sound masking unit 14 is compared to the desired setting stored in the control unit 12 , and if a change in the sound masking level is needed as determined in decision block 164 , then the desired sound masking gain level setting is sent to the selected master sound masking unit 14 in block 166 . If no change is indicated for the selected master sound masking unit 14 , then the next master sound masking unit 14 in the network 13 is selected, i.e. addressed, and the steps 162 and 164 are repeated. The same processing steps are utilized for setting the Contour Control function 114 , the Paging Volume function 116 , and the Equalizer Band function 118 .
  • the first step 170 comprises prompting the user to select the desired equalizer band.
  • the 1/3 Octave Band frequencies comprise 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, 4000, 5000, 6300 and 8000 Hertz (Hz); and the 1/1 linguistic Band frequencies comprise 125, 250, 500, 1000, 2000, 4000, and 8000 Hz.
  • the band menu for the selected band is displayed, and the user is prompted to enter the setting for the band.
  • the control unit 12 then prompts the user to select the next equalizer band in block 174 .
  • the first step 180 as shown in FIG. 8 comprises prompting the user to select one of the master sound masking units 14 for setting the timer function.
  • the control unit 12 displays the Weekday/Time/Level setting for the selected unit 14 , and the user is prompted to change the setting. If the user changes the setting in step 184 , then the new setting is stored by the control unit 12 and also applied to the selected sound masking unit 14 .
  • the first step 190 involves prompting the user to select one of the master sound masking units 14 for the diagnostic test.
  • the control unit 12 retrieves the serial number from the master sound masking unit 14 over the network 13 as indicated by block 192 . If there is an error (as indicated by decision block 194 ), then a communication error 196 is logged for that unit 14 and another unit 14 is selected 210 . If there is no communication error (decision block 194 ), then the control unit 12 checks the serial number against the entry stored in a lookup table in block 198 .
  • serial number does not match the entry in the lookup table, then an identification error is logged in block 202 , and another master sound masking unit 14 is selected in block 210 . If the serial number matches the entry in the lookup table (decision block 200 ), then the status for the master sound masking unit 14 is queried by the control unit 12 in block 204 . The status of the selected master sound masking unit 14 is checked in block 206 , and if the status is fail or does not meet specifications, then a status error is logged in block 208 .
  • the next step in block 210 involves selecting another master sound masking unit 14 and repeating steps 192 through 210 , as described above, until all, or the selected group, of the master sound masking units 14 have been queried as determined in block 212 .
  • the last step in the operation of the diagnostic function module 68 comprises generating and/or displaying a diagnostics report as indicated in block 214 .
  • FIG. 12( a ) shows the operation of the system configuration and addressing functional module 70 and menu for the control unit 12 in more detail.
  • the control unit 12 is preferably password protected, and the first step 220 involves prompting the user to enter a password. If the password is incorrect (decision block 222 ), then further access is denied (block 224 ). If the entered password is correct, the password is displayed in block 226 , and the user is given the option of changing the password (decision block 228 ). If the user changes the password, then the new password is saved in block 230 .
  • the next step 232 involves displaying the number of master sound masking 14 that are presently configured for the network 13 .
  • the number of units may be configured at the factory or entered in the field by the technician.
  • the user is given the option of changing the number of units 14 configured for the system 10 in decision block 234 , and the new number of units 14 is stored in step 236 .
  • the user is prompted to initialize the system 10 . If the user elects to initialize the system 10 , then the control unit 12 executes an initialization procedure indicated generally by reference 240 .
  • the initialization procedure 240 is shown in more detail in FIG. 12( b ) .
  • the first step 241 in the initialization procedure 240 involves resetting all of the master sound masking units 14 connected to the network 13 . As a result of the reset operation 241 , each of the master sound masking units 14 has a logical address of 0. Since all of the units 14 have logical address 0, the first sound masking unit 14 , i.e.
  • the unit 14 a responds when the control unit 12 queries the units 14 as indicated by block 242 .
  • the selected unit 14 is then queried for its serial number in block 244 .
  • the serial number 244 is assigned to the unit 14 at the time of manufacture and preferably comprises a code stored in non-volatile memory in the unit 14 .
  • the serial number may be rewritten by the control unit 12 as described in more detail below.
  • the control unit 12 uses the serial number to generate a unit address, i.e. logical address, for the unit 14 as indicated in block 246 .
  • the serial number is preferably stored in memory, for example a look-up table in the control unit 12 , and provides a cross-reference to the master sound masking unit 14 .
  • the current logical address generated in step 246 is unique for the unit 14 in the present network configuration 10 , but for another network configuration the logical addresses may be regenerated.
  • the next sound masking unit 14 is selected by the control unit 12 and the current logical address is incremented for the next sound masking unit 14 .
  • the operations for assigning the current logical address to the unit 14 based on the serial number according to steps 244 to 248 are repeated. These operations are repeated until all of the sound masking units 14 have been assigned current logical addresses by the control unit 12 as indicated by decision block 250 . Following this scheme, the current logical address for the last sound masking unit 14 is equal to the number of sound masking units 14 connected to the networked system 10 .
  • FIG. 13 shows the timer function 106 ( FIG. 5 ) in more detail.
  • a wake-up call or “clock tick” is periodically issued as indicated in step 260 , and a schedule of timed events is checked in block 262 .
  • the timed events may comprise, for example, changes in the level of the sound masking signal for all or some the master sound masking units 14 (and the associated satellite sound masking units 16 ). If the schedule indicates that there is no change in sound masking level, then the timer function 106 goes to sleep (block 266 ). If there is a scheduled change, then the new level for the sound masking signal is transmitted via the network 13 to the affected sound masking units 14 (block 268 ).
  • FIG. 14 shows in flowchart form the control structure 300 for controlling the master sound masking units 14 .
  • the control structure 300 includes an initialization procedure 301 , a program serial number procedure 302 , a read serial number procedure 303 , an assign logical address procedure 304 , a read sound masking signal level procedure 305 , and a write sound masking signal level procedure 306 .
  • the initialization procedure 301 comprises a function 304 for resetting the logical addresses and a function 306 for generating and writing logical addresses for the units 14 as described above with reference to FIG. 12 .
  • the program serial number procedure 302 provides a mechanism for programming or regenerating the serial number stored in non-volatile memory for each unit 14 .
  • the procedure 302 comprises a write serial number function 312 .
  • the read serial number procedure 303 comprises a read serial number function 314 which the control unit 14 utilizes to read the serial numbers of the units 14 , for example, as described above with reference to FIG. 12 .
  • the assign logical address procedure 304 comprises a write address function 316 for writing, i.e. assigning, logical addresses to the sound masking units 14 .
  • the read level procedure 305 comprises a read level function 318 which allows the control unit 12 to read the current level setting for the sound masking signal in the unit 14 being addressed by the control unit 14 or the remote control unit.
  • the write level procedure 306 comprises a write level function 320 which allows the control unit 12 (or remote control unit) to write, i.e. set, the level setting for the sound masking signal in the unit 14 being addressed by the control unit 14 or the remote control unit.
  • the control unit 12 next selects the function to be queried/programmed, and then reads the parameter setting from the digital control device 33 to 37 (e.g. the digi-pot for the filter stage 32 in FIG. 2 ) using the read level function 318 , or writes the parameter setting to the digital control device 33 to 37 (e.g. the digi-pot the audio power amplifier stage 36 in FIG. 2 ), using the write level function 320 .
  • the remote control unit 18 works in conjunction with the control unit 12 to display and/or adjust the current adjustment settings (i.e. spectrum adjustment settings, equalizer settings, masking signal volume level, and paging volume) for the master units 14 .
  • the remote control unit 18 is operated through menu functions as shown in FIG. 15 .
  • the function menus for the remote control unit 18 comprise a gain control menu 350 , a contour control menu 352 , a paging control menu 354 , and an equalizer control menu 356 .
  • the user uses these menus to program (i.e. write) and read the gain, contour, and paging functions as described above for the control unit 12 .
  • the sound masking units 14 include an equalizer stage 34 which allows the shaping of the sound spectrum of the sound masking noise signal output.
  • the capability to address each of the sound masking units 14 allows the equalizer stage 34 to be individually set for each of the units 14 or a group of the units 14 , and this capability greatly enhances the functionality of the networked sound masking system 10 according to the present invention.
  • FIG. 16 shows a procedure 400 according to another aspect of the invention for controlling the equalizer function in each of the sound masking units 14 .
  • the remote control unit 18 ( FIG. 1 ) includes a serial communication interface 21 (e.g. radio or hard-wire link) which couples to a sound level meter 23 ( FIG. 1 ), such as the RION NA-27 meter.
  • the sound level meter 23 is used to take sound level readings for the physical space and these readings are transmitted to the remote control unit 18 via the serial communication interface 21 .
  • the readings from the sound level meter 23 are used in conjunction with settings in a Prescribed Contour Table stored in the control unit 12 or the remote control unit 18 to adjust the level settings in the equalizer stages 34 for the sound masking units 14 .
  • the first operation in the equalization procedure 400 comprises selecting a 1/1 Octave analysis or a 1/3 Octave analysis as indicated in block 402 .
  • the next operation involves selecting between an automatic mode of operation or a manual mode of operation as indicated in block 404 .
  • the user i.e. technician
  • the remote unit 18 queries the unit 14 for the first sound level setting L.sub.o for the first frequency band f.sub.o as indicated in block 408 .
  • the sound level meter 23 reads the level setting L from the unit 14 (block 410 ) and the level setting L is compared to a minimum level setting L.sub.min in block 412 and a maximum level setting L.sub.max in block 414 .
  • the minimum L.sub.min and maximum L.sub.max level settings are determined from a Prescribed Contour Table 500 (block 416 ) such as depicted in FIG. 17 . If the level setting L is not greater than the minimum level setting L.sub.min, then the remote unit 18 sends a command or message to the control unit 12 to increase the level setting L for the equalizer by one step, as indicated in block 418 .
  • the level setting L is greater than the minimum level setting L.sub.min, then the level setting L is compared to the maximum level setting L.sub.max in decision block 414 . If the level setting L is not less than the maximum level setting L.sub.max, then the remote unit 18 transmits a message to the control unit 12 to decrease the level setting L for the equalizer by one step as indicated in block 420 .
  • the control unit 12 makes the adjustment to the equalizer setting for the addressed unit 14 , and sends a confirmation message to the remote unit 18 .
  • the remote unit 18 accepts a new reading from the sound level meter 23 and the remote unit 18 reads the level setting L in block 410 and the steps in blocks 412 , 418 , 420 are repeated until the level setting L is set within the desired range L.sub.min to L.sub.max as defined by the Prescribed Contour Table 500 ( FIG. 17 ).
  • the Prescribed Contour Table 500 includes the following level ranges (L.sub.min, L.sub.max) for the center frequencies in the 1/1 Octave band or 1/3 Octave band:
  • the level setting L for the current frequency band is set within the range L.sub.min to L.sub.max, the level setting L for the next frequency band is selected as in block 422 , and the remote control unit 18 sends a signal to the sound level meter 23 to read the next level setting L (block 410 ).
  • the first operation LD involves using the remote control unit 18 to receive and display a level setting L from the sound level meter 23 as indicated in block 424 .
  • the level setting L is compared to the range L.sub.min to L.sub.max. If the level setting L is not within the prescribed range, the desired level setting L is set or adjusted using the remote control unit 18 as indicated in block 428 .
  • the remote control unit 18 is used to select the next frequency band for reading the next level setting (block 424 ).
  • the remote control unit 18 in conjunction with a sound level meter 23 provides an effective mechanism for adjusting the equalizer function in each of the sound masking units 14 through the control unit 12 and networked connection without the need for opening the ceiling tile to physically access any of the units 14 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Selective Calling Equipment (AREA)
  • Telephonic Communication Services (AREA)

Abstract

A sound masking system for shaping the ambient noise level in a physical environment. The sound masking system comprises a networked and distributed system having a number of master units coupled together and to a control unit. One or more of the master units may include satellite sound masking units which function to reproduce the sound masking signal generated by the master sound masking unit. Each of the master units is addressable over the network by the control unit enabling the control unit to program the contour, spectral band, and gain characteristics of the sound masking output signal. The system may also include a remote control unit which provides the capability to tune and adjust each master sound masking unit in situ without requiring physical access through the ceiling installation.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This invention is a continuation of U.S. patent application Ser. No. “15/060,433,” filed on Mar. 3, 2016, entitled “Networked Sound Masking System,” which is a continuation of U.S. patent application Ser. No. 13/890,824, filed on May 9, 2013, entitled “Networked Sound Masking System,” which is a continuation of U.S. Pat. No. 8,477,958, filed on Feb. 26, 2001, also entitled “Networked Sound Masking System.” The entire content of each of the foregoing patent applications is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention relates to sound masking, and more particularly to a networked and remote controllable sound masking system.
  • BACKGROUND OF THE INVENTION
  • Sound masking systems are widely used in offices and similar workplaces where an insufficient level of background sound results in diminished speech privacy. Such environments suffer from a high level of noise distractions, and lower comfort levels from an acoustic perspective. Sound masking systems operate on the principle of masking which involves generating a background sound in a given area. The background sound has the effect of limiting the ability to hear two sounds of similar sound pressure level and frequency simultaneously. By generating and distributing the background noise in the given area, the sound masking system masks or covers the propagation of other sounds in the area and thereby increases speech privacy, reduces the intrusion of unwanted noise, and improves the general acoustic comfort level in the area or space.
  • Sound masking systems are of two main types: centrally deployed systems and independent self-contained systems. In a centrally deployed system, a central noise generating source supplies a series of loudspeakers installed throughout the physical area or space to be covered. The independent self-contained system comprises a number of individual self-contained sound masking units which are installed in the physical space. The sound masking units operate independently of each other, but may include a number of satellite speakers which extend the range of each self-contained, i.e. master, sound masking unit. Most sound masking systems include the capability for broadcast announcements and music over the loudspeakers contained in the sound masking units.
  • The primary goal of sound masking systems is to provide an unobtrusive, effective masking sound that is adjustable for maximum consistency, and offers the ability to meet the requirements of the occupants. The masking output is preferably sufficient to accommodate the existing acoustic requirements of the workplace environment and adjustable to handle changes to the acoustic characteristics of environment which occur over time. Similar demands are placed on the system for the public address and music functions. In short, the preferred sound masking system would produce an output with a frequency and volume level that is controllable to produce the desired acoustic response for workplace zones ranging in size from the smallest to larger spaces.
  • Centralized systems are characterized by achieving uniformity of output, but not uniformity of acoustic response for the space. In a centralized system, the frequency spectrum of the sound masking output can only be adjusted at a centrally located equalizer, and as a result the sound masking output has the same frequency spectrum for all of the loudspeakers. Depending on the configuration of the centralized system, volume adjustments may be made for very large physical spaces, i.e. zones, by adjusting the amplifier output; for relatively smaller zones, volume adjustments are made by changing wiring connections or controls on the speaker enclosure, or by adjusting a hardwired zone volume control. In practice, it is difficult to accommodate environmental acoustic variations using a centralized system because the volume and frequency spectrum adjustments required for the typical physical zone size are too large to achieve a uniform acoustic result. A further disadvantage is that many of the adjustments for a centralized sound masking system require an installer or technician to re-enter the ceiling space or to rewire the speakers in the system.
  • The independent self-contained system has a number of important advantages over the centralized arrangement. The independent self-contained system is more effective in terms of sound generation, volume adjustment, and frequency adjustment which, in turn, improves the performance of such systems as compared to centralized systems. In particular, the independent self-contained system provides a defined non-frequency specific output range for the masking output spectrum, and adjustments can be made at each master sound masking unit. The volume controls for an independent self-contained system also provide more flexibility than in the centralized system, and provide for finer adjustments in smaller zones, in addition to centralized volume controls for large zone or global adjustment. However, with existing systems it is still necessary to re-enter the ceiling to adjust the frequency spectrum and volume output level for each master sound masking unit, and the controls for providing multi-unit volume zone adjustments require the hardwiring of the units.
  • While existing independent self-contained systems are more flexible than centralized systems in many regards, they do not satisfy all the requirements of an ideal sound masking system as discussed above. Furthermore, other shortcomings are associated with existing sound masking systems. In both centralized and independent self-contained systems, the public address and music volume controls are limited in the same manner as described above for sound masking output volume controls. Second, any centrally located controls only affect the output level for the speakers or sound masking units which have a hardwired connection. It will be appreciated that this severely limits the adjustability of the system to future changes in the acoustic environment unless at least some of the system is rewired. Third, the tuning procedure for existing systems is time consuming and can still be inaccurate over the system even when undertaken with the appropriate level of skill and attention. And fourthly, adjustments to existing systems must be made on-site.
  • Accordingly, there remains a need for a networked sound masking system with individually controllable and programmable sound masking units, and which system is easily adaptable to changing sound qualities in a physical space or spaces in a building environment.
  • BRIEF SUMMARY OF THE INVENTION
  • The present invention provides a networked sound masking system with individually controllable and programmable sound masking units.
  • In a first aspect, the present invention provides a sound masking system for controlling the ambient noise level in a physical environment, the sound masking system comprises: (a) a communication network spanning at least a portion of the physical environment; (b) a plurality of sound masking units, some of the sound masking units include a sound masking component for generating a sound masking output signal and some of the sound masking units include a communication interface for coupling the sound masking units to the communication network for receiving control signals over the communication network; (c) a control unit having a communication interface for coupling to the communication network for transmitting control signals over the communication network to the sound masking units, and the control signals include signals for controlling the operation of at least some of the sound masking units.
  • In another aspect, the present invention provides a sound masking system for shaping the ambient noise level in a physical environment, the sound masking system comprises: (a) a communication network spanning at least a portion of the physical environment; (b) a plurality of sound masking units, some of the sound masking units include a sound masking circuit for generating a sound masking output signal for shaping the ambient noise level in the vicinity of each of the sound masking units, a programmable controller and at least one digital component for controlling operation of the sound masking circuit, and a communication interface for coupling the sound masking units to the communication network, and the programmable controller being coupled to the communication network for receiving control signals from the communication network for altering the operation of the sound masking circuit; (c) a control unit, the control unit having a communication interface for coupling the control unit to the communication network for transmitting control signals over the communication network to the sound masking units, and the control signals include signals for controlling the operation of at least some of the sound masking units; (d) wherein the sound masking circuit comprises a random noise generating component for generating an incoherent signal output, a filter component for receiving the incoherent signal output and generating an incoherent signal output with a predetermined contour, and an output amplifier for amplifying the contoured incoherent signal output, and the digital component comprising a digital potentiometer coupled to the filter component for altering the contour of the incoherent signal output in response to control signals from the programmable controller.
  • In a further aspect, the present invention provides in a networked sound masking system for controlling ambient noise level in a physical environment, the networked sound masking system having a communication network for coupling a plurality of sound masking units, the sound masking units span the physical environment, the sound masking units include a sound masking component for generating a sound masking output signal and include a communication interface to the communication network for receiving control signals over the communication network, and a control unit having a communication interface for coupling the control unit to the communication network for transmitting control signals to the sound masking units, and the control signals include signals for selectively controlling the operation of the sound masking units, a remote control unit for generating adjustment signals for the control unit for adjusting characteristics of the sound masking signal output produced by the sound masking units, the remote control unit comprises: (a) a remote communication interface for transmitting the adjustment signals to the control unit, and the control unit has an external communication interface compatible with the remote communication interface; (b) an input component for receiving sound level readings for the physical environment; (c) a component responsive to the sound level readings for generating the adjustment signals associated with the characteristics of the sound masking output signal for the sound masking units.
  • Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Reference will now be made to the accompanying drawings, which show, by way of example, a preferred embodiment of the present invention, and in which:
  • FIG. 1 shows in block diagram form a networked sound masking system according to the present invention;
  • FIG. 2 shows a sound masking unit in block diagram form for the networked sound masking system of FIG. 1;
  • FIG. 3 shows in block diagram form a control unit for the networked sound masking system of FIG. 1;
  • FIG. 4 shows the control unit of FIG. 3 in more detail, and in particular the functional modules for the control unit;
  • FIG. 5 shows in flowchart form a main functional processing method for the control unit of FIG. 3;
  • FIG. 6 shows in flowchart form the processing steps for the display/setup function in the control unit for the networked sound masking system according to the present invention;
  • FIG. 7 shows in flowchart form the processing steps for the timer function in the control unit for the networked sound masking system;
  • FIG. 8 shows in flowchart form the processing steps for the gain/contour/paging/band setting functions in the control unit for the networked sound masking system;
  • FIG. 9 shows in flowchart form the processing steps for the equalizer function in the control unit for the networked sound masking system;
  • FIG. 10 shows in flowchart form the steps for setting the timer function for the control unit;
  • FIG. 11 shows in flowchart form the processing steps for a diagnostics function in the control unit for the networked sound masking system;
  • FIG. 12(a) shows in flowchart form the steps for a system configuration function in the control unit for the networked sound masking system;
  • FIG. 12(b) shows in flowchart form the steps for configuring addresses for the sound masking units according to an aspect of the present invention;
  • FIG. 13 shows in flowchart form the processing steps for the timer function for the control unit;
  • FIG. 14 shows in flowchart form functions for controlling the sound masking units in the networked sound masking system according to the present invention;
  • FIG. 15 shows in flowchart form functions implemented for the remote control unit in the networked sound masking system according to the present invention;
  • FIG. 16 shows in flowchart form the processing steps for an equalization function in the networked sound masking system according to the present invention; and
  • FIG. 17 shows in graphical form a Prescribed Spectrum Contour table for the LD sound masking signal.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Reference is first made to FIG. 1, which shows in block diagram form a networked sound masking system according to the present invention and indicated by reference 10.
  • As shown in FIG. 1, the networked sound masking system 10 comprises a control unit 12, and a network 13 comprising a plurality of master sound masking units 14, indicated individually by 14 a, 14 b, 14 c, . . . 14 n, and one or more satellite sound masking units 16, indicated individually by 16 a, 16 b, 16 c, 16 d, . . . 16 m. The physical connections for the network 13 between the master sound masking units 14 may comprise 5, 4 or 3 conductors. In a 5 conductor arrangement, two conductors carry power, two conductors provide a communication channel, and one conductor provides for paging.
  • The master sound masking unit 14 and the satellite sound masking units 16 provide the sound masking functionality, i.e. sound masking and signal generation and amplification. Each sound masking group, i.e. master sound masking unit 14 together with the associated satellite sound masking units 16, is configured for a particular physical spaces, e.g. office, room, zone in a open office, etc. The master sound masking units 14 are configured to generate a specific sound masking signal at a specified output level for performing the sound masking in the physical space. As will be described in more detail below, the sound masking signal is generated according to programmable spectrum, equalizer, and volume settings. The satellite sound masking units 16 are connected to their associated master unit 14 and comprise a speaker which reproduces the sound masking signal generated by the master unit 14. The satellite units 16 provide a cost-effective way to expand the coverage of the master sound masking unit 14 in a building space.
  • The control unit 12 as will be described in more detail couples to the network 13 and provides the capability to adjust the functional aspects of the master sound masking units 14 and the satellite sound masking units 16. The sound masking functions include masking signal spectrum, masking signal output volume, and paging volume. The control unit 12 also provides diagnostic functions and timer control functions. The control unit 12 may also include testing functions, such as a test function which compares existing sound measurements to the desired sound parameters for the space and calculates the adjustments to be made.
  • The control unit 12 configures the network 13 by assigning identities or addresses to each of the master units 14. The addressing of the individual master units 14 enables the control unit 12 to direct commands and/or status requests to individual master sound masking units 14 (and the associated satellite sound masking units 16), or to groups of master sound masking units 14, or to the entire network 13 as a whole. The control unit 12 is then used to set/adjust the masking signal spectrum, the masking signal volume, and/or the paging volume for the selected (i.e. addressed) master and satellite sound masking units 14 and 16. According to another aspect, the master sound LD masking units 14 may include a digital equalizer for providing greater programming flexibility over the spectrum for the sound masking signal generated by the selected master and satellite sound masking units 14 and 16.
  • As also shown in FIG. 1, the system 10 may include a remote control unit 18. The remote control unit 18 works in conjunction with the control unit 12 to display and/or change the current adjustment settings (i.e. spectrum adjustment settings, equalizer settings, masking signal volume level, and paging volume) for the master units 14. As described below, the remote control unit 18 can accept as input sound measurements taken by a sound level meter, or another configuration the remote control unit 14 allows a user to measurements of the acoustical environment for the building space. The remote control unit 18 communicates with the control unit 12 through a communication interface 20, for example a radio signal channel, indicated by reference 19.
  • In addition to the communication channel 19 for the remote control 18, the control unit 12 may also include another communication interface 58. The communication interface 58 provides the capability to access the control unit 12 via a remote location, e.g. an offsite location. The communication interface 58 may comprise a telephone communication, radio communication, computer network (e.g. a Local Area Network (LAN) or a Wide Area Network (WAN)), or a connection through the Internet or World Wide Web (WWW). This provides greater flexibility in configuring, adjusting and maintaining the sound masking system 10 from a remote or off-site location.
  • Reference is next made to FIG. 2 which shows the master sound masking unit 14 in greater detail. As shown in FIG. 2(a), the master unit 14 comprises a random noise generator stage 30, a filter stage 32, an equalizer stage 34, and an audio power amplifier stage 36. The operation of the stages 30, 32, 34, 36 is controlled by a microcontroller 38. As also shown, the master sound masking unit 14 includes a communication interface 40. The communication interface 40 couples the master unit 14 to the network 13 and provides the capability to communicate with the control unit 12 and other master sound masking units 14 b, 14 c in the network 13. The master unit 14 includes a local power supply 42 for powering the circuitry. The audio power amplifier stage 36 drives a speaker 44 which emits the sound masking signal.
  • The random noise generator stage 30 is the signal source for generating the sound masking signal. The random noise generator 30 may comprise a multi-stage shift register and an Exclusive-OR gate network as described in U.S. Pat. No. 4,914,706 which issued to the assignee in common with the subject application. Alternatively, the random noise generator module 30 may be implemented in firmware executed in the microcontroller 38. The random noise generator 30 may also be implemented as an operational amplifier which couples and amplifies the noise produced by a voltage regulator circuit, such as a Zener diode.
  • The filter stage 32 is coupled to the output of the random noise generator 30. The filter stage 32 comprises two filters connected to the respective outputs of the last two stages of the shift register (not shown) in the random noise generator 30 as described in U.S. Pat. No. 4,914,706. Each of the filters comprises a resistive-capacitive ladder network, with one of the filters having a higher cut-off frequency than the other filter. Using this arrangement, each of the filters derives a different output signal from the random noise generator 30 with each of the output signals having a different spectral shape within the defined audio frequency range.
  • In the preferred embodiment, the filter stage 32 is coupled to the microcontroller 38 through a digital control device 33. The digital control device 33 comprises a potential divider which is connected between the output ends of the filters in the filter stage and under the control of the microcontroller 38 the output contour of the filter stage 32 is programmable. The digital control device 33 is preferably implemented using a digital potentiometer, such as the device available from XICOR Corp., and has a continuously adjustable tap with at least 32 tap positions. The tap positions are selectable by the microcontroller 38, and by changing the tap positions the spectral shape of the noise signal output from the random noise generator 30 is controllable.
  • The equalizer stage 34 comprises an one-third Octave equalizer which is used for adjusting the sound spectrum of the noise signal output to the desired contour. In the preferred embodiment, the equalizer comprises 18 adjustable bandpass filter cells for the 1/3 Octave band and 7 adjustable bandpass filter cells for the 1/1 Octave band, and an adder for summing the outputs. Each filter cell is implemented using an operational amplifier or OP Amp, fixed resistors and capacitors as will be within understanding of one skilled in the art. Preferably, each of the filter cells is coupled to the microcontroller 38 through a digital control device 35, such as a digital potentiometer to provide for the independent adjustment of the cell about a fixed center frequency under the control of the microcontroller 38. In the present embodiment, the 1/3 Octave Band frequencies comprise 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, 4000, 5000, 6300 and 8000 Hertz (Hz). The 1/1 Octave Band frequencies comprise 125, 250, 500, 1000, 2000, 4000, and 8000 Hz. Each filter cell is preset to the prescribed contour, e.g. 48 dB<V.sub.f1<57 dB and 24 step<DigiPot.sub.1<30 step. The output from the equalizer stage 34 is a sound masking signal with a controllable contour which is fed to the amplifier power stage 36.
  • The audio power stage 36 provides a controllable output level for the contoured sound masking signal. The contoured sound masked signal is amplified by the audio power stage 36 and output to the speaker 44 which emits a sound masking sound into the physical space. The audio power stage 36 also provides an adjustable amplification level for the providing paging announcements, background music or other broadcasts over the speaker. In the preferred embodiment, the output level of the audio power stage 36 is also controllable by the microcontroller 38 through a digital control device 37. Preferably, the digital control device 37 comprises a digital potentiometer having at least 32 step settings.
  • Referring still to FIG. 2, the communication interface 40 comprises a first serial interface 46, a second serial interface 48, and a switching logic stage 50. The communication interface 40 couples the microcontroller 38 to the network 13 and allows the unit 14 to receive and transmit status requests and control commands. The switching logic stage 50 connects the microcontroller 38 to the first and second serial interfaces 46 and 48. The first serial interface 46 allows the microcontroller 38 to communicate with an upstream device, for example, the master sound masking unit 14 a or the control unit 12. The second serial interface 48 allows the microcontroller 38 to communicate with a downstream device, for example, the master sound masking unit 14 c. In conjunction with the switching logic stage 50, the microcontroller 38 monitors the serially encoded messages and acts upon messages which are addressed to the specified master sound masking unit 14. Each of the master sound masking units 14 is assigned an address according to a self-addressing mechanism as will be described in more detail below.
  • The satellite sound masking units 16 are associated with respective master sound masking units 14. The satellite sound masking units 16 each include a speaker, and are coupled to one of the master sound masking units 14. The satellite sound masking units 16 act as slaves or satellites to the master sound masking unit 14 and reproduce the sound masking signal output generated by the associated master sound masking unit 14.
  • Reference is next made to FIG. 3, which shows the control unit 12 in more detail. As shown, the control unit 12 comprises a processor unit (i.e. a microprocessor) 42, a program memory 44, a data memory 46, a display module 48, a keypad 50, a real-time clock module 52, a parameter memory 54, a serial communication interface 56, and the communication interface 58. As shown in FIG. 4, the control unit 12 includes a functional module 60 to control the 1/3 Octave equalizer 34 (FIG. 2(a)), a functional module 62 to provide volume control, a functional module 64 to provide paging volume control, a functional module 66 to provide spectrum adjustment control of the contoured sound masking signal, a functional module 68 to provide timer functions for the system 10, a functional module 70 to provide addressing of the master sound masking units 14 in the network 13, and a functional module 72 for performing diagnostic functions. The operation of the functional modules in the control unit 12 is now described in more detail with reference to the flowcharts in FIGS. 5 to 17.
  • Reference is first made to FIG. 5, which shows a start-up process 100 for the control unit 12. The start-up process 100 is executed in response to a power-up 101 or a reset condition. The start-up process 100 comprises an initialization step 102 which includes configuring the control unit 12. After the initialization step 102, the control unit 12 runs a display/setup operation 104 as a background loop, and a timer operation LD 106. The timer operation 106 is periodically executed, for example, on an interrupt driven basis or as part of a polling loop in the display/setup operation.
  • Reference is next made to FIG. 6, which shows the display/setup operation 104 in more detail. As shown the display/setup operation 104 comprises displaying a series of menu functions on the display 48 (FIG. 1) which are accessed via selections from the keypad 50 (FIG. 1). As shown in FIG. 6, the menu functions include a Date/Time function menu 110, a Gain function menu 112, a Contour menu function 114, a Paging Volume function menu 116, an Equalizer Setting function menu 118, a Timer function menu function 120, a Diagnostic function menu 122, a System Configuration function menu 124, and Serial Number function menu 126.
  • The processing steps for the Date/Time function menu 110 are shown in FIG. 7. The first step comprises displaying the time 130 and prompting the user to change the time 132. If the user selects to change the time, then a set time procedure 134 is executed. Otherwise the date is displayed 136, and the user is prompted to change the date 138. If the user selects to change the date, a set date procedure 140 is executed.
  • Reference is next made to FIG. 8, which shows in more detail the processing steps for setting the Gain function 112, the Contour Control function 114, the Paging Volume function 116, and the Equalizer Band function 118. The steps for controlling each of these functions is implemented according to the process 111 shown in FIG. 8. As shown, the first step comprises selecting the master sound masking unit. In decision block 150, a selection is made between a single master sound masking unit 14 or multiple master sound masking units 14. If multiple master sound masking units 14 are to be configured, then the next step 154 involves selecting the range for the sound masking units 14. The sound masking level, i.e. the gain, for the sound masking units 14 in the range is entered in block 156 and transmitted via the network 13 to all the sound masking units 14 in the selected range. After the sound masking level has been sent to the sound masking units 14 in the range, the first sound masking unit 14 a in the range is selected, i.e. addressed.
  • Referring still to FIG. 8, the next step 162 involves reading the sound masking gain level setting for the master sound masking unit 14 which was selected in step 160 or as a result of the branch from decision block 152. The gain level setting received from the sound masking unit 14 is compared to the desired setting stored in the control unit 12, and if a change in the sound masking level is needed as determined in decision block 164, then the desired sound masking gain level setting is sent to the selected master sound masking unit 14 in block 166. If no change is indicated for the selected master sound masking unit 14, then the next master sound masking unit 14 in the network 13 is selected, i.e. addressed, and the steps 162 and 164 are repeated. The same processing steps are utilized for setting the Contour Control function 114, the Paging Volume function 116, and the Equalizer Band function 118.
  • Reference is next made to FIG. 9, which shows in more detail the processing steps for the operation of the Octave equalizer module 60 for the control unit 12. The first step 170 comprises prompting the user to select the desired equalizer band. As described above, the 1/3 Octave Band frequencies comprise 160, 200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, 4000, 5000, 6300 and 8000 Hertz (Hz); and the 1/1 Octave Band frequencies comprise 125, 250, 500, 1000, 2000, 4000, and 8000 Hz. Next in block 172, the band menu for the selected band is displayed, and the user is prompted to enter the setting for the band. The control unit 12 then prompts the user to select the next equalizer band in block 174.
  • Reference is next made to FIG. 10, which shows the operation of the timer functional module 68 and menu in more detail. The first step 180 as shown in FIG. 8 comprises prompting the user to select one of the master sound masking units 14 for setting the timer function. In response to the user's action, the control unit 12 displays the Weekday/Time/Level setting for the selected unit 14, and the user is prompted to change the setting. If the user changes the setting in step 184, then the new setting is stored by the control unit 12 and also applied to the selected sound masking unit 14.
  • Reference is next made to FIG. 11, which shows the operation of the diagnostic functional module 68 and menu for the control unit 12 in more detail. The first step 190 involves prompting the user to select one of the master sound masking units 14 for the diagnostic test. In response, the control unit 12 retrieves the serial number from the master sound masking unit 14 over the network 13 as indicated by block 192. If there is an error (as indicated by decision block 194), then a communication error 196 is logged for that unit 14 and another unit 14 is selected 210. If there is no communication error (decision block 194), then the control unit 12 checks the serial number against the entry stored in a lookup table in block 198. If the serial number does not match the entry in the lookup table, then an identification error is logged in block 202, and another master sound masking unit 14 is selected in block 210. If the serial number matches the entry in the lookup table (decision block 200), then the status for the master sound masking unit 14 is queried by the control unit 12 in block 204. The status of the selected master sound masking unit 14 is checked in block 206, and if the status is fail or does not meet specifications, then a status error is logged in block 208. The next step in block 210 involves selecting another master sound masking unit 14 and repeating steps 192 through 210, as described above, until all, or the selected group, of the master sound masking units 14 have been queried as determined in block 212. The last step in the operation of the diagnostic function module 68 comprises generating and/or displaying a diagnostics report as indicated in block 214.
  • Reference is next made to FIG. 12(a), which shows the operation of the system configuration and addressing functional module 70 and menu for the control unit 12 in more detail. The control unit 12 is preferably password protected, and the first step 220 involves prompting the user to enter a password. If the password is incorrect (decision block 222), then further access is denied (block 224). If the entered password is correct, the password is displayed in block 226, and the user is given the option of changing the password (decision block 228). If the user changes the password, then the new password is saved in block 230. The next step 232 involves displaying the number of master sound masking 14 that are presently configured for the network 13. If the system 10 is being setup for the first time, the number of units may be configured at the factory or entered in the field by the technician. The user is given the option of changing the number of units 14 configured for the system 10 in decision block 234, and the new number of units 14 is stored in step 236.
  • Referring still to FIG. 12(a), in decision block 238, the user is prompted to initialize the system 10. If the user elects to initialize the system 10, then the control unit 12 executes an initialization procedure indicated generally by reference 240. The initialization procedure 240 is shown in more detail in FIG. 12(b). As shown, the first step 241 in the initialization procedure 240 involves resetting all of the master sound masking units 14 connected to the network 13. As a result of the reset operation 241, each of the master sound masking units 14 has a logical address of 0. Since all of the units 14 have logical address 0, the first sound masking unit 14, i.e. unit 14 a, responds when the control unit 12 queries the units 14 as indicated by block 242. The selected unit 14 is then queried for its serial number in block 244. The serial number 244 is assigned to the unit 14 at the time of manufacture and preferably comprises a code stored in non-volatile memory in the unit 14. The serial number may be rewritten by the control unit 12 as described in more detail below. The control unit 12 uses the serial number to generate a unit address, i.e. logical address, for the unit 14 as indicated in block 246. The serial number is preferably stored in memory, for example a look-up table in the control unit 12, and provides a cross-reference to the master sound masking unit 14. The current logical address generated in step 246 is unique for the unit 14 in the present network configuration 10, but for another network configuration the logical addresses may be regenerated. Following the addressing operation, the next sound masking unit 14 is selected by the control unit 12 and the current logical address is incremented for the next sound masking unit 14. The operations for assigning the current logical address to the unit 14 based on the serial number according to steps 244 to 248 are repeated. These operations are repeated until all of the sound masking units 14 have been assigned current logical addresses by the control unit 12 as indicated by decision block 250. Following this scheme, the current logical address for the last sound masking unit 14 is equal to the number of sound masking units 14 connected to the networked system 10.
  • Reference is next made to FIG. 13, which shows the timer function 106 (FIG. 5) in more detail. In response to an interrupt or a request from a polling loop, a wake-up call or “clock tick” is periodically issued as indicated in step 260, and a schedule of timed events is checked in block 262. The timed events may comprise, for example, changes in the level of the sound masking signal for all or some the master sound masking units 14 (and the associated satellite sound masking units 16). If the schedule indicates that there is no change in sound masking level, then the timer function 106 goes to sleep (block 266). If there is a scheduled change, then the new level for the sound masking signal is transmitted via the network 13 to the affected sound masking units 14 (block 268).
  • Reference is next made to FIG. 14, which shows in flowchart form the control structure 300 for controlling the master sound masking units 14. As shown, the control structure 300 includes an initialization procedure 301, a program serial number procedure 302, a read serial number procedure 303, an assign logical address procedure 304, a read sound masking signal level procedure 305, and a write sound masking signal level procedure 306.
  • The initialization procedure 301 comprises a function 304 for resetting the logical addresses and a function 306 for generating and writing logical addresses for the units 14 as described above with reference to FIG. 12. The program serial number procedure 302 provides a mechanism for programming or regenerating the serial number stored in non-volatile memory for each unit 14. The procedure 302 comprises a write serial number function 312. The read serial number procedure 303 comprises a read serial number function 314 which the control unit 14 utilizes to read the serial numbers of the units 14, for example, as described above with reference to FIG. 12. The assign logical address procedure 304 comprises a write address function 316 for writing, i.e. assigning, logical addresses to the sound masking units 14. The read level procedure 305 comprises a read level function 318 which allows the control unit 12 to read the current level setting for the sound masking signal in the unit 14 being addressed by the control unit 14 or the remote control unit. The write level procedure 306 comprises a write level function 320 which allows the control unit 12 (or remote control unit) to write, i.e. set, the level setting for the sound masking signal in the unit 14 being addressed by the control unit 14 or the remote control unit. Once the unit 14 is selected, the control unit 12 next selects the function to be queried/programmed, and then reads the parameter setting from the digital control device 33 to 37 (e.g. the digi-pot for the filter stage 32 in FIG. 2) using the read level function 318, or writes the parameter setting to the digital control device 33 to 37 (e.g. the digi-pot the audio power amplifier stage 36 in FIG. 2), using the write level function 320.
  • As described above with reference to FIG. 1, the remote control unit 18 works in conjunction with the control unit 12 to display and/or adjust the current adjustment settings (i.e. spectrum adjustment settings, equalizer settings, masking signal volume level, and paging volume) for the master units 14. The remote control unit 18 is operated through menu functions as shown in FIG. 15. Referring to FIG. 15, the function menus for the remote control unit 18 comprise a gain control menu 350, a contour control menu 352, a paging control menu 354, and an equalizer control menu 356. The user uses these menus to program (i.e. write) and read the gain, contour, and paging functions as described above for the control unit 12.
  • As described above, the sound masking units 14 according to the present invention include an equalizer stage 34 which allows the shaping of the sound spectrum of the sound masking noise signal output. Advantageously, the capability to address each of the sound masking units 14 allows the equalizer stage 34 to be individually set for each of the units 14 or a group of the units 14, and this capability greatly enhances the functionality of the networked sound masking system 10 according to the present invention.
  • Reference is made to FIG. 16 which shows a procedure 400 according to another aspect of the invention for controlling the equalizer function in each of the sound masking units 14. According to this aspect, the remote control unit 18 (FIG. 1) includes a serial communication interface 21 (e.g. radio or hard-wire link) which couples to a sound level meter 23 (FIG. 1), such as the RION NA-27 meter. The sound level meter 23 is used to take sound level readings for the physical space and these readings are transmitted to the remote control unit 18 via the serial communication interface 21. As will now be described with reference to FIG. 16, the readings from the sound level meter 23 are used in conjunction with settings in a Prescribed Contour Table stored in the control unit 12 or the remote control unit 18 to adjust the level settings in the equalizer stages 34 for the sound masking units 14.
  • As shown in FIG. 16, the first operation in the equalization procedure 400 comprises selecting a 1/1 Octave analysis or a 1/3 Octave analysis as indicated in block 402. The next operation involves selecting between an automatic mode of operation or a manual mode of operation as indicated in block 404. Once the mode of operation is selected, the user (i.e. technician) enters the unit ID to address the sound masking unit 14 on which the equalizer function is to be adjusted/programmed (block 406). Once the unit 14 is addressed, the remote unit 18 queries the unit 14 for the first sound level setting L.sub.o for the first frequency band f.sub.o as indicated in block 408.
  • Referring still to FIG. 16, if the automatic mode of operation is selected (block 404), then the sound level meter 23 reads the level setting L from the unit 14 (block 410) and the level setting L is compared to a minimum level setting L.sub.min in block 412 and a maximum level setting L.sub.max in block 414. The minimum L.sub.min and maximum L.sub.max level settings are determined from a Prescribed Contour Table 500 (block 416) such as depicted in FIG. 17. If the level setting L is not greater than the minimum level setting L.sub.min, then the remote unit 18 sends a command or message to the control unit 12 to increase the level setting L for the equalizer by one step, as indicated in block 418. If the level setting L is greater than the minimum level setting L.sub.min, then the level setting L is compared to the maximum level setting L.sub.max in decision block 414. If the level setting L is not less than the maximum level setting L.sub.max, then the remote unit 18 transmits a message to the control unit 12 to decrease the level setting L for the equalizer by one step as indicated in block 420. The control unit 12 makes the adjustment to the equalizer setting for the addressed unit 14, and sends a confirmation message to the remote unit 18. The remote unit 18 then accepts a new reading from the sound level meter 23 and the remote unit 18 reads the level setting L in block 410 and the steps in blocks 412, 418, 420 are repeated until the level setting L is set within the desired range L.sub.min to L.sub.max as defined by the Prescribed Contour Table 500 (FIG. 17). For example, the Prescribed Contour Table 500 includes the following level ranges (L.sub.min, L.sub.max) for the center frequencies in the 1/1 Octave band or 1/3 Octave band:
  • TABLE-US-00001 (L.sub.min, L.sub.max) Center Frequency 48 dB, 56 dB F.sub.0=160 Hz 47.5 dB, 54.5 dB F.sub.1=250 Hz . . . 6.5 dB, 23 dB F.sub.17=8000 Hz
  • Referring back to FIG. 16, once the level setting L for the current frequency band is set within the range L.sub.min to L.sub.max, the level setting L for the next frequency band is selected as in block 422, and the remote control unit 18 sends a signal to the sound level meter 23 to read the next level setting L (block 410).
  • In the manual mode of operation (as selected in block 404), the first operation LD involves using the remote control unit 18 to receive and display a level setting L from the sound level meter 23 as indicated in block 424. In block 426, the level setting L is compared to the range L.sub.min to L.sub.max. If the level setting L is not within the prescribed range, the desired level setting L is set or adjusted using the remote control unit 18 as indicated in block 428. In block 430, the remote control unit 18 is used to select the next frequency band for reading the next level setting (block 424).
  • As described above, the remote control unit 18 in conjunction with a sound level meter 23 provides an effective mechanism for adjusting the equalizer function in each of the sound masking units 14 through the control unit 12 and networked connection without the need for opening the ceiling tile to physically access any of the units 14.
  • The present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Certain adaptations and modifications of the invention will be obvious to those skilled in the art. Therefore, the presently discussed embodiments are considered to be illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein

Claims (1)

What is claimed is:
1. A sound masking system for controlling the ambient noise level in a physical environment, said sound masking system comprising:
(a) a communication network spanning at least a portion of said physical environment;
(b) a plurality of sound masking units, some of said sound masking units including a sound masking component for generating a sound masking output signal and said sound masking units including a communication interface for coupling said sound masking units to said communication network for receiving control signals over said communication network;
(c) a control unit, said control unit having a communication interface for coupling said control unit to said communication network for transmitting control signals over said communication network to said sound masking units, and said control signals including signals for selectively controlling the operation of said sound masking units.
US16/181,120 2001-02-26 2018-11-05 Networked sound masking system Abandoned US20190073991A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/181,120 US20190073991A1 (en) 2001-02-26 2018-11-05 Networked sound masking system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/791,802 US8477958B2 (en) 2001-02-26 2001-02-26 Networked sound masking system
US13/890,824 US9307333B2 (en) 2001-02-26 2013-05-09 Networked sound masking system
US15/060,433 US10121463B2 (en) 2001-02-26 2016-03-03 Networked sound masking system
US16/181,120 US20190073991A1 (en) 2001-02-26 2018-11-05 Networked sound masking system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/060,433 Continuation US10121463B2 (en) 2001-02-26 2016-03-03 Networked sound masking system

Publications (1)

Publication Number Publication Date
US20190073991A1 true US20190073991A1 (en) 2019-03-07

Family

ID=25154824

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/791,802 Expired - Fee Related US8477958B2 (en) 2001-02-26 2001-02-26 Networked sound masking system
US10/646,734 Expired - Fee Related US8817999B2 (en) 2001-02-26 2003-08-25 Networked sound masking and paging system
US13/890,824 Expired - Fee Related US9307333B2 (en) 2001-02-26 2013-05-09 Networked sound masking system
US15/060,433 Expired - Fee Related US10121463B2 (en) 2001-02-26 2016-03-03 Networked sound masking system
US16/181,120 Abandoned US20190073991A1 (en) 2001-02-26 2018-11-05 Networked sound masking system

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US09/791,802 Expired - Fee Related US8477958B2 (en) 2001-02-26 2001-02-26 Networked sound masking system
US10/646,734 Expired - Fee Related US8817999B2 (en) 2001-02-26 2003-08-25 Networked sound masking and paging system
US13/890,824 Expired - Fee Related US9307333B2 (en) 2001-02-26 2013-05-09 Networked sound masking system
US15/060,433 Expired - Fee Related US10121463B2 (en) 2001-02-26 2016-03-03 Networked sound masking system

Country Status (6)

Country Link
US (5) US8477958B2 (en)
EP (1) EP1364363B1 (en)
CN (1) CN1505811B (en)
AU (1) AU2002234468B2 (en)
CA (3) CA2681915C (en)
WO (1) WO2002069317A2 (en)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050254663A1 (en) * 1999-11-16 2005-11-17 Andreas Raptopoulos Electronic sound screening system and method of accoustically impoving the environment
US8477958B2 (en) * 2001-02-26 2013-07-02 777388 Ontario Limited Networked sound masking system
US20030219133A1 (en) * 2001-10-24 2003-11-27 Acentech, Inc. Sound masking system
US7194094B2 (en) * 2001-10-24 2007-03-20 Acentech, Inc. Sound masking system
US20030144847A1 (en) * 2002-01-31 2003-07-31 Roy Kenneth P. Architectural sound enhancement with radiator response matching EQ
US20030142833A1 (en) * 2002-01-31 2003-07-31 Roy Kenneth P. Architectural sound enhancement with test tone diagnostics
US20030198339A1 (en) * 2002-04-19 2003-10-23 Roy Kenneth P. Enhanced sound processing system for use with sound radiators
US20040125922A1 (en) * 2002-09-12 2004-07-01 Specht Jeffrey L. Communications device with sound masking system
US8234395B2 (en) 2003-07-28 2012-07-31 Sonos, Inc. System and method for synchronizing operations among a plurality of independently clocked digital data processing devices
US11106425B2 (en) 2003-07-28 2021-08-31 Sonos, Inc. Synchronizing operations among a plurality of independently clocked digital data processing devices
US8086752B2 (en) 2006-11-22 2011-12-27 Sonos, Inc. Systems and methods for synchronizing operations among a plurality of independently clocked digital data processing devices that independently source digital data
US11106424B2 (en) 2003-07-28 2021-08-31 Sonos, Inc. Synchronizing operations among a plurality of independently clocked digital data processing devices
US11294618B2 (en) 2003-07-28 2022-04-05 Sonos, Inc. Media player system
US10613817B2 (en) 2003-07-28 2020-04-07 Sonos, Inc. Method and apparatus for displaying a list of tracks scheduled for playback by a synchrony group
US11650784B2 (en) 2003-07-28 2023-05-16 Sonos, Inc. Adjusting volume levels
US8290603B1 (en) 2004-06-05 2012-10-16 Sonos, Inc. User interfaces for controlling and manipulating groupings in a multi-zone media system
US9977561B2 (en) 2004-04-01 2018-05-22 Sonos, Inc. Systems, methods, apparatus, and articles of manufacture to provide guest access
US8024055B1 (en) 2004-05-15 2011-09-20 Sonos, Inc. Method and system for controlling amplifiers
US8868698B2 (en) 2004-06-05 2014-10-21 Sonos, Inc. Establishing a secure wireless network with minimum human intervention
US8326951B1 (en) 2004-06-05 2012-12-04 Sonos, Inc. Establishing a secure wireless network with minimum human intervention
GB2416718A (en) * 2004-07-29 2006-02-08 Eminox Ltd Gas treatment apparatus
US8085962B2 (en) * 2004-09-01 2011-12-27 Bose Corporation Audio system for portable device
US8103033B2 (en) * 2004-09-01 2012-01-24 Bose Corporation Audio system for portable device
EP1834505B1 (en) * 2004-12-26 2013-04-17 Biamp Systems Pty Ltd An improved paging system
US8107639B2 (en) 2006-06-29 2012-01-31 777388 Ontario Limited System and method for a sound masking system for networked workstations or offices
US8483853B1 (en) 2006-09-12 2013-07-09 Sonos, Inc. Controlling and manipulating groupings in a multi-zone media system
US9202509B2 (en) 2006-09-12 2015-12-01 Sonos, Inc. Controlling and grouping in a multi-zone media system
US8788080B1 (en) 2006-09-12 2014-07-22 Sonos, Inc. Multi-channel pairing in a media system
US20100027806A1 (en) * 2006-12-14 2010-02-04 Cambridge Sound Management, Llc Distributed emitter voice lift system
EP2095361A1 (en) * 2006-12-18 2009-09-02 Soft Db Inc. Sound volume automatic adjustment method and system
US8798284B2 (en) * 2007-04-02 2014-08-05 Baxter International Inc. User selectable masking sounds for medical instruments
US8767975B2 (en) * 2007-06-21 2014-07-01 Bose Corporation Sound discrimination method and apparatus
DE102007000608A1 (en) * 2007-10-31 2009-05-07 Silencesolutions Gmbh Masking for sound
US8295526B2 (en) * 2008-02-21 2012-10-23 Bose Corporation Low frequency enclosure for video display devices
US8351629B2 (en) * 2008-02-21 2013-01-08 Robert Preston Parker Waveguide electroacoustical transducing
US8611554B2 (en) * 2008-04-22 2013-12-17 Bose Corporation Hearing assistance apparatus
US7913020B2 (en) * 2008-04-29 2011-03-22 Bose Corporation Automated exchangeable docking configuration
US8666086B2 (en) 2008-06-06 2014-03-04 777388 Ontario Limited System and method for monitoring/controlling a sound masking system from an electronic floorplan
ITPO20090006A1 (en) * 2009-06-12 2010-12-13 Tei Alessandro APPARATUS AND MANAGEABLE SYSTEM IN REMOTE TO SHOW ADVERTISING INSERTIONS PAY FOR VIEW ABLE TO FIND THE NUMBER OF SPECTATORS AND METHOD FOR PAYING THE ADVERTISING ON THE BASIS OF THE NUMBER AND TARGET OF THE PRESENT CONTACTS.
US8265310B2 (en) * 2010-03-03 2012-09-11 Bose Corporation Multi-element directional acoustic arrays
US8553894B2 (en) 2010-08-12 2013-10-08 Bose Corporation Active and passive directional acoustic radiating
US8515110B2 (en) * 2010-09-30 2013-08-20 Audiotoniq, Inc. Hearing aid with automatic mode change capabilities
US9078077B2 (en) 2010-10-21 2015-07-07 Bose Corporation Estimation of synthetic audio prototypes with frequency-based input signal decomposition
US11429343B2 (en) 2011-01-25 2022-08-30 Sonos, Inc. Stereo playback configuration and control
US11265652B2 (en) 2011-01-25 2022-03-01 Sonos, Inc. Playback device pairing
US20120239762A1 (en) * 2011-03-14 2012-09-20 Electrolux Home Products, Inc. Remote Communication Systems and Methods for Appliances
US8938312B2 (en) 2011-04-18 2015-01-20 Sonos, Inc. Smart line-in processing
US9042556B2 (en) 2011-07-19 2015-05-26 Sonos, Inc Shaping sound responsive to speaker orientation
JP5884470B2 (en) * 2011-12-26 2016-03-15 コニカミノルタ株式会社 Sound output device
US8397861B1 (en) 2012-03-02 2013-03-19 Bose Corporation Diaphragm surround
US9729115B2 (en) 2012-04-27 2017-08-08 Sonos, Inc. Intelligently increasing the sound level of player
US9008330B2 (en) 2012-09-28 2015-04-14 Sonos, Inc. Crossover frequency adjustments for audio speakers
US9536514B2 (en) 2013-05-09 2017-01-03 Sound Barrier, LLC Hunting noise masking systems and methods
US9244516B2 (en) 2013-09-30 2016-01-26 Sonos, Inc. Media playback system using standby mode in a mesh network
US10166069B2 (en) 2014-01-27 2019-01-01 Medtronic Ardian Luxembourg S.A.R.L. Neuromodulation catheters having jacketed neuromodulation elements and related devices, systems, and methods
US9226073B2 (en) 2014-02-06 2015-12-29 Sonos, Inc. Audio output balancing during synchronized playback
US9226087B2 (en) 2014-02-06 2015-12-29 Sonos, Inc. Audio output balancing during synchronized playback
US10712722B2 (en) 2014-02-28 2020-07-14 Delos Living Llc Systems and articles for enhancing wellness associated with habitable environments
JP6098654B2 (en) * 2014-03-10 2017-03-22 ヤマハ株式会社 Masking sound data generating apparatus and program
CN103886858B (en) * 2014-03-11 2016-10-05 中国科学院信息工程研究所 A kind of sound masking signal generating method and system
USRE49437E1 (en) 2014-09-30 2023-02-28 Apple Inc. Audio driver and power supply unit architecture
JP6526185B2 (en) 2014-09-30 2019-06-05 アップル インコーポレイテッドApple Inc. Loudspeaker with reduced audio coloration caused by surface reflections
CN104575486B (en) * 2014-12-25 2019-04-02 中国科学院信息工程研究所 Sound leakage protection method and system based on the principle of acoustic masking
US9451355B1 (en) 2015-03-31 2016-09-20 Bose Corporation Directional acoustic device
US10057701B2 (en) 2015-03-31 2018-08-21 Bose Corporation Method of manufacturing a loudspeaker
WO2016183662A1 (en) 2015-05-15 2016-11-24 Nureva Inc. System and method for embedding additional information in a sound mask noise signal
US10248376B2 (en) 2015-06-11 2019-04-02 Sonos, Inc. Multiple groupings in a playback system
US10303422B1 (en) 2016-01-05 2019-05-28 Sonos, Inc. Multiple-device setup
US9712348B1 (en) * 2016-01-15 2017-07-18 Avago Technologies General Ip (Singapore) Pte. Ltd. System, device, and method for shaping transmit noise
AU2017268383B2 (en) 2016-05-20 2020-03-26 Cambridge Sound Management, Inc. Self-powered loudspeaker for sound masking
US10257608B2 (en) 2016-09-23 2019-04-09 Apple Inc. Subwoofer with multi-lobe magnet
US10631071B2 (en) 2016-09-23 2020-04-21 Apple Inc. Cantilevered foot for electronic device
US10712997B2 (en) 2016-10-17 2020-07-14 Sonos, Inc. Room association based on name
US10152959B2 (en) 2016-11-30 2018-12-11 Plantronics, Inc. Locality based noise masking
EP3396663B1 (en) 2017-04-25 2020-09-23 Vestel Elektronik Sanayi ve Ticaret A.S. Sound masking for white goods
EP3641343B1 (en) * 2018-10-15 2021-01-20 Mimi Hearing Technologies GmbH Method to enhance audio signal from an audio output device
US11844163B2 (en) 2019-02-26 2023-12-12 Delos Living Llc Method and apparatus for lighting in an office environment
WO2020198183A1 (en) * 2019-03-25 2020-10-01 Delos Living Llc Systems and methods for acoustic monitoring
CN110660032A (en) * 2019-09-24 2020-01-07 Oppo广东移动通信有限公司 Object shielding method, object shielding device and electronic equipment
CN111508461B (en) * 2020-04-13 2023-11-03 山东省计算中心(国家超级计算济南中心) Information centralization management system and method for multi-sound masking system
CN112511952A (en) * 2020-11-26 2021-03-16 南安智能蓝工业设计有限公司 Special remote control system for noise of square dance sound equipment for city management

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319088A (en) * 1979-11-01 1982-03-09 Commercial Interiors, Inc. Method and apparatus for masking sound
US4686693A (en) * 1985-05-17 1987-08-11 Sound Mist, Inc. Remotely controlled sound mask
US5406634A (en) * 1993-03-16 1995-04-11 Peak Audio, Inc. Intelligent speaker unit for speaker system network
US6329908B1 (en) * 2000-06-23 2001-12-11 Armstrong World Industries, Inc. Addressable speaker system
US8817999B2 (en) * 2001-02-26 2014-08-26 777388 Ontario Limited Networked sound masking and paging system

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980827A (en) * 1974-12-19 1976-09-14 Sepmeyer Ludwig W Diversity system for noise-masking
US4009346A (en) * 1974-12-30 1977-02-22 International Business Machines Corporation Distributional activity compression
US4035589A (en) * 1975-12-29 1977-07-12 Marine Electric Corporation Entertainment and public address system with replay of entertainment program after a public address interruption
US4054751A (en) 1976-03-01 1977-10-18 Cdf Industries, Inc. Masking noise generator
US4052720A (en) * 1976-03-16 1977-10-04 Mcgregor Howard Norman Dynamic sound controller and method therefor
US4185167A (en) * 1976-06-28 1980-01-22 Acoustical Design Incorporated Sound masking package
JPS5530888U (en) * 1978-08-21 1980-02-28
US4241235A (en) 1979-04-04 1980-12-23 Reflectone, Inc. Voice modification system
US4476572A (en) 1981-09-18 1984-10-09 Bolt Beranek And Newman Inc. Partition system for open plan office spaces
US4438526A (en) 1982-04-26 1984-03-20 Conwed Corporation Automatic volume and frequency controlled sound masking system
US4761921A (en) 1987-01-16 1988-08-09 Nelson Philip H Sound-masking system for core modules used in an office
US4914706A (en) * 1988-12-29 1990-04-03 777388 Ontario Limited Masking sound device
US5666424A (en) * 1990-06-08 1997-09-09 Harman International Industries, Inc. Six-axis surround sound processor with automatic balancing and calibration
US5594786A (en) 1990-07-27 1997-01-14 Executone Information Systems, Inc. Patient care and communication system
US5440644A (en) * 1991-01-09 1995-08-08 Square D Company Audio distribution system having programmable zoning features
US5584051A (en) * 1991-11-01 1996-12-10 Thomson Consumer Electronics Sales Gmbh Radio broadcast transmission system and receiver for incompatible signal formats, and method therefor
US6490359B1 (en) 1992-04-27 2002-12-03 David A. Gibson Method and apparatus for using visual images to mix sound
US5386478A (en) * 1993-09-07 1995-01-31 Harman International Industries, Inc. Sound system remote control with acoustic sensor
US5826172A (en) 1994-02-03 1998-10-20 Ntt Mobile Communications Network, Inc. Mobile communications system for repeatedly transmitting paging signals
US5675830A (en) * 1994-02-28 1997-10-07 Eaton Corporation Addressing scheme for control network having remote address request device
US5450490A (en) 1994-03-31 1995-09-12 The Arbitron Company Apparatus and methods for including codes in audio signals and decoding
US5887067A (en) * 1996-05-10 1999-03-23 General Signal Corporation Audio communication system for a life safety network
US6389139B1 (en) 1997-11-18 2002-05-14 Dana Innovations Powered volume control for distributed audio system
US6888945B2 (en) * 1998-03-11 2005-05-03 Acentech, Inc. Personal sound masking system
WO1999046958A1 (en) 1998-03-11 1999-09-16 Acentech, Inc. Personal sound masking system
US6145085A (en) 1998-04-30 2000-11-07 Compaq Computer Corporation Method and apparatus for providing remote access to security features on a computer network
US6594365B1 (en) 1998-11-18 2003-07-15 Tenneco Automotive Operating Company Inc. Acoustic system identification using acoustic masking
US6775355B1 (en) * 2000-02-16 2004-08-10 Paradyne Corporation Line sharing multipoint POTS splitter masking noise
DE10048354A1 (en) 2000-09-29 2002-05-08 Siemens Audiologische Technik Method for operating a hearing aid system and hearing aid system
US20020072816A1 (en) * 2000-12-07 2002-06-13 Yoav Shdema Audio system
US7194094B2 (en) * 2001-10-24 2007-03-20 Acentech, Inc. Sound masking system
US20030219133A1 (en) 2001-10-24 2003-11-27 Acentech, Inc. Sound masking system
US20030107478A1 (en) 2001-12-06 2003-06-12 Hendricks Richard S. Architectural sound enhancement system
US20030142833A1 (en) * 2002-01-31 2003-07-31 Roy Kenneth P. Architectural sound enhancement with test tone diagnostics
US20030144847A1 (en) 2002-01-31 2003-07-31 Roy Kenneth P. Architectural sound enhancement with radiator response matching EQ
US6795421B1 (en) 2002-02-12 2004-09-21 Nokia Corporation Short-range RF access point design enabling services to master and slave mobile devices
US20030198339A1 (en) 2002-04-19 2003-10-23 Roy Kenneth P. Enhanced sound processing system for use with sound radiators
CA2690511C (en) 2003-03-13 2016-02-09 777388 Ontario Limited Networked sound masking system with centralized sound masking generation
US7571014B1 (en) 2004-04-01 2009-08-04 Sonos, Inc. Method and apparatus for controlling multimedia players in a multi-zone system
US8107639B2 (en) 2006-06-29 2012-01-31 777388 Ontario Limited System and method for a sound masking system for networked workstations or offices
US8666086B2 (en) 2008-06-06 2014-03-04 777388 Ontario Limited System and method for monitoring/controlling a sound masking system from an electronic floorplan
CA2634268C (en) 2008-06-06 2016-07-19 777388 Ontario Limited System and method for controlling and monitoring a sound masking system from an electronic floorplan
US10038952B2 (en) 2014-02-04 2018-07-31 Steelcase Inc. Sound management systems for improving workplace efficiency

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319088A (en) * 1979-11-01 1982-03-09 Commercial Interiors, Inc. Method and apparatus for masking sound
US4686693A (en) * 1985-05-17 1987-08-11 Sound Mist, Inc. Remotely controlled sound mask
US5406634A (en) * 1993-03-16 1995-04-11 Peak Audio, Inc. Intelligent speaker unit for speaker system network
US6329908B1 (en) * 2000-06-23 2001-12-11 Armstrong World Industries, Inc. Addressable speaker system
US8817999B2 (en) * 2001-02-26 2014-08-26 777388 Ontario Limited Networked sound masking and paging system
US9307333B2 (en) * 2001-02-26 2016-04-05 777388 Ontario Limited Networked sound masking system

Also Published As

Publication number Publication date
CN1505811B (en) 2013-05-01
US20020150261A1 (en) 2002-10-17
AU2002234468B2 (en) 2008-08-28
US20160189701A1 (en) 2016-06-30
WO2002069317A3 (en) 2003-03-13
US9307333B2 (en) 2016-04-05
CA2845172A1 (en) 2002-09-06
EP1364363A2 (en) 2003-11-26
CN1505811A (en) 2004-06-16
US8817999B2 (en) 2014-08-26
CA2438639C (en) 2009-12-22
CA2438639A1 (en) 2002-09-06
CA2681915C (en) 2014-05-20
CA2681915A1 (en) 2002-09-06
US10121463B2 (en) 2018-11-06
US20130243215A1 (en) 2013-09-19
US20040131199A1 (en) 2004-07-08
WO2002069317A2 (en) 2002-09-06
US8477958B2 (en) 2013-07-02
EP1364363B1 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
US10121463B2 (en) Networked sound masking system
US9088856B2 (en) Networked sound masking system with centralized sound masking generation
AU2002234468A1 (en) Networked sound masking and paging system
US8107639B2 (en) System and method for a sound masking system for networked workstations or offices
US6188771B1 (en) Personal sound masking system
US4914706A (en) Masking sound device
US20030142833A1 (en) Architectural sound enhancement with test tone diagnostics
US7548854B2 (en) Architectural sound enhancement with pre-filtered masking sound
US6888945B2 (en) Personal sound masking system
WO2006066351A2 (en) An improved paging system
US20030144847A1 (en) Architectural sound enhancement with radiator response matching EQ
US20040179482A1 (en) Auto-addressing mechanism for a networked system
US20030142814A1 (en) Architectural sound enhancement with DTMF control
KR100431946B1 (en) Multi-room sound system
MANUAL PAC
KR19980013675A (en) Voice limiter

Legal Events

Date Code Title Description
AS Assignment

Owner name: 777388 ONTARIO LIMITED, CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOELLER, KLAUS;MOELLER, NIKLAS;RUSU, MIRCEA;AND OTHERS;REEL/FRAME:047415/0472

Effective date: 20160415

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION