US20190067225A1 - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
US20190067225A1
US20190067225A1 US16/029,334 US201816029334A US2019067225A1 US 20190067225 A1 US20190067225 A1 US 20190067225A1 US 201816029334 A US201816029334 A US 201816029334A US 2019067225 A1 US2019067225 A1 US 2019067225A1
Authority
US
United States
Prior art keywords
conductive film
film
semiconductor device
semiconductor substrate
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/029,334
Inventor
Takashi Tonegawa
Hiroshi Inagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Assigned to RENESAS ELECTRONICS CORPORATION reassignment RENESAS ELECTRONICS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INAGAWA, HIROSHI, TONEGAWA, TAKASHI
Publication of US20190067225A1 publication Critical patent/US20190067225A1/en
Priority to US17/225,639 priority Critical patent/US11652072B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49524Additional leads the additional leads being a tape carrier or flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/03444Manufacturing methods by blanket deposition of the material of the bonding area in gaseous form
    • H01L2224/0345Physical vapour deposition [PVD], e.g. evaporation, or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/03444Manufacturing methods by blanket deposition of the material of the bonding area in gaseous form
    • H01L2224/03452Chemical vapour deposition [CVD], e.g. laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/034Manufacturing methods by blanket deposition of the material of the bonding area
    • H01L2224/0346Plating
    • H01L2224/03464Electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/036Manufacturing methods by patterning a pre-deposited material
    • H01L2224/0361Physical or chemical etching
    • H01L2224/03614Physical or chemical etching by chemical means only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/036Manufacturing methods by patterning a pre-deposited material
    • H01L2224/03618Manufacturing methods by patterning a pre-deposited material with selective exposure, development and removal of a photosensitive material, e.g. of a photosensitive conductive resin
    • H01L2224/0362Photolithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/038Post-treatment of the bonding area
    • H01L2224/0381Cleaning, e.g. oxide removal step, desmearing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04026Bonding areas specifically adapted for layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04034Bonding areas specifically adapted for strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/0502Disposition
    • H01L2224/05022Disposition the internal layer being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05075Plural internal layers
    • H01L2224/0508Plural internal layers being stacked
    • H01L2224/05084Four-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05164Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/051Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05163Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05181Tantalum [Ta] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/05186Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05099Material
    • H01L2224/05186Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2224/05187Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05567Disposition the external layer being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05575Plural external layers
    • H01L2224/0558Plural external layers being stacked
    • H01L2224/05583Three-layer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05644Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05655Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05664Palladium [Pd] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/05666Titanium [Ti] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/40139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous strap daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/40247Connecting the strap to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/404Connecting portions
    • H01L2224/40475Connecting portions connected to auxiliary connecting means on the bonding areas
    • H01L2224/40499Material of the auxiliary connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73263Layer and strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/8438Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/84399Material
    • H01L2224/84498Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/84499Material of the matrix
    • H01L2224/8459Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/8438Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/84399Material
    • H01L2224/84498Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/84598Fillers
    • H01L2224/84599Base material
    • H01L2224/846Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/053Oxides composed of metals from groups of the periodic table
    • H01L2924/054313th Group
    • H01L2924/05432Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/201Temperature ranges
    • H01L2924/20105Temperature range 150 C=<T<200 C, 423.15 K =< T < 473.15K
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/206Length ranges
    • H01L2924/2064Length ranges larger or equal to 1 micron less than 100 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3512Cracking
    • H01L2924/35121Peeling or delaminating

Definitions

  • the present invention relates to a semiconductor device and a method of manufacturing the same, which can be applied to, for example, the semiconductor device having an OPM electrode and the method of manufacturing the same.
  • Japanese Unexamined Patent Application Publication No. 2000-235964 discloses a technology of forming an OPM electrode made of a nickel film and a gold film on the pad electrode containing mainly aluminum using electroless plating.
  • Japanese Unexamined Patent Application Publication No. 2007-227412 discloses an IGBT module including a diode and an IGBT (Insulated Gate Bipolar Transistor) coupled in antiparallel with each other.
  • IGBT Insulated Gate Bipolar Transistor
  • the OPM electrode made of the plating film of nickel or the like is formed on the pad electrode containing mainly aluminum as described in Japanese Unexamined Patent Application Publication No. 2000-235964, the OPM electrode is easily removed from the pad electrode, thereby reducing reliability of the semiconductor device.
  • the semiconductor device includes: a pad electrode that is formed over a semiconductor substrate and includes a first conductive film and a second conductive film formed over the first conductive film; and a plating film that is formed over the second conductive film and serves to be coupled to an external connection terminal.
  • FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment
  • FIG. 2 is a s cross-sectional view of the semiconductor device during a manufacturing process that follows FIG. 1 ;
  • FIG. 3 is a s cross-sectional view of the semiconductor device during the manufacturing process that follows FIG. 2 ;
  • FIG. 4 is a s cross-sectional view of the semiconductor device during the manufacturing process that follows FIG. 3 ;
  • FIG. 5 is a s cross-sectional view of the semiconductor device during the manufacturing process that follows FIG. 4 ;
  • FIG. 6 shows a process flow indicative of the manufacturing process of the semiconductor device that follows FIG. 5 ;
  • FIG. 7 is a cross-sectional view of the semiconductor device during the manufacturing process that follows FIG. 6 ;
  • FIG. 8 is a schematic view of the semiconductor device according to the first embodiment and an IGBT in a modularized form
  • FIG. 9 is a plan view showing the semiconductor device of FIG. 8 in a mounted state
  • FIG. 10 is a cross-sectional view taken along a line A-A in FIG. 9 ;
  • FIG. 11 is a cross-sectional view of a main part of the semiconductor device of a third embodiment
  • FIG. 12 is a cross-sectional view of the semiconductor device during the manufacturing process that follows FIG. 11 ;
  • FIG. 13 is a cross-sectional view of the semiconductor device during the manufacturing process that follows FIG. 12 ;
  • FIG. 14 is a plan view showing the semiconductor device of FIG. 13 in the mounted state.
  • This embodiment presents a diode DI used as a super fast recover diode (Fast Recovery Diode), for example, as a semiconductor element mounted on the semiconductor device.
  • a diode DI used as a super fast recover diode (Fast Recovery Diode)
  • Fast Recovery Diode super fast recover diode
  • a substrate is prepared first that has n-type conductivity and includes a semiconductor such as silicon.
  • the substrate configures a drift region DR of the diode DI.
  • An impurity region AN having p-type conductivity is then formed near a surface of the drift region DR by ion implantation or the like.
  • the impurity region AN configures an anode region of the diode DI.
  • This embodiment describes a configuration including the drift region DR and the anode region AN as a semiconductor substrate SUB.
  • a crystal surface on a surface of the drift region DR is a (001) surface. Because a silicon substrate having the (001) surface is commonly used, the manufacturing cost can be suppressed compared with preparing a substrate having another crystal surface. Moreover, the crystal surface on the surface of the anode region AN formed over the surface of the drift region DR is also the (001) surface. That is, the crystal surface on the surface of the semiconductor substrate SUB is the (001) surface.
  • FIG. 1 shows a state in which an insulating film IF 1 is formed over the surface of the semiconductor substrate SUB as a thin natural oxide film or a foreign matter.
  • the surface of the semiconductor substrate SUB is subjected to, for example, a reactive dry etching treatment using a gas containing carbon tetrafluoride (CF4) and a wet etching treatment using a cleaning liquid containing hydrogen fluoride (HF) as a cleaning treatment.
  • the cleaning treatment removes the insulating film IF 1 deposited over the surface of the semiconductor substrate SUB including the anode region AN.
  • the cleaning treatment is performed primarily for reducing forward resistance of the diode DI, and thus for reducing contact resistance between the semiconductor substrate SUB and a pad electrode PD that will be formed later.
  • a conductive film AL 1 containing mainly aluminum and doped with a small amount of silicon is formed over the semiconductor substrate SUB by, for example, sputtering.
  • the thickness of the conductive film AL 1 is about 2,500 nm.
  • Temperature of formation of the conductive film AL 1 by sputtering is about room temperature (23° C.) to 200° C., and more preferably about 150° C. It is to be noted that the reason why the conductive film AL 1 is doped with a small amount of silicon is to prevent an interface between the conductive film AL 1 and the semiconductor substrate SUB from having a spike shape.
  • the conductive film AL 1 is an aluminum film
  • forming the aluminum film by the above-mentioned sputtering makes the crystal structure of the aluminum film a face-centered cubic structure (FCC: Face-Centered Cubic), and therefore the conductive film AL 1 has the (111) surface or close-packed surface on almost all of its surfaces if not affected by its base.
  • the conductive film AL 1 according to the embodiment is formed taking over the crystal surface of the semiconductor substrate SUB, and thus the crystal surface on the surface of the conductive film AL 1 is the (001) surface. This is because the step of forming the conductive film AL 1 is performed immediately after the cleaning treatment illustrated in FIG.
  • a barrier metal film including titanium nitride having higher resistance than that of the conductive film AL 1 is not formed between the conductive film AL 1 and the semiconductor substrate SUB but the conductive film AL 1 is formed directly over the semiconductor substrate SUB.
  • the (001) surface is equivalent to the (100) surface and a (010) surface as a crystal surface. Therefore, the (001) surface of the conductive film AL 1 according to the embodiment is treated as a crystal surface equivalent to the (100) surface disclosed in “zincate Treatment and Electroless Ni—P Plating on Al Single-Crystal Surface,” Journal of The Surface Finishing Society of Japan, Vol. 48, No. 8, p. 820-825, 1997.
  • the cleaning treatment is performed as in this embodiment, the thin natural oxide film or the foreign matter is present over the surface of the semiconductor substrate SUB. If the conductive film AL 1 is formed in such a state, the conductive film AL 1 can hardly take over the crystal surface on the surface of the semiconductor substrate SUB, making it easier for the crystal surface other than the (001) surface to be formed over the surface of the conductive film AL 1 . However, to reduce resistance of the diode DI, it is desirable to perform the cleaning treatment to remove the thin natural oxide film or the foreign matter. This may make the crystal surface on the surface of the conductive film AL 1 configuring the pad electrode PD the (001) surface.
  • the inventors have come up with a method of reducing resistance of the diode DI and making the crystal surface on the surface of the pad electrode PD different from the (001) surface by performing the cleaning treatment.
  • FIG. 4 is a cross-sectional view of the method of manufacturing the semiconductor device that follows FIG. 3 .
  • the crystal surface on the surface of the conductive film AL 1 is the (001) surface.
  • an insulating film BIF is formed over the conductive film AL 1 first.
  • the insulating film BIF is formed by exposing the surface of the conductive film AL 1 to an atmosphere containing oxygen, e.g. by once taking out the semiconductor substrate SUB from a sputtering device and exposing the semiconductor substrate SUB to the atmospheric air at room temperature (23° C.). That is, the insulating film BIF includes an oxide of a material that forms the conductive film ALL such as aluminum oxide.
  • the thickness of the insulating film BIF ranges from 0.5 nm to 4.0, and more preferably from 1.0 nm to 3.0 nm.
  • a conductive film AL 2 containing mainly aluminum, for example, and also doped with silicon is formed over the insulating film BIF by the sputtering, for example.
  • the thickness of the conductive film AL 2 is about 2,500 nm.
  • the temperature for forming the conductive film AL 2 by the sputtering is between about the room temperature (23° C.) and 200° C., and more preferably about 150° C.
  • the conductive film AL 2 does not take over the (001) surface that is the crystal surface on the surface of the conductive film AL 1 and thus it can be formed with the crystal surface different from the (001) surface.
  • the crystal surface on the surface of the conductive film AL 2 is predominantly the (111) surface. Specifically, 90% or more of the surface area of the conductive film AL 2 is the (111) surface. In this manner, even if the (110) surface remains on a part of the conductive film AL 2 after the initial stage of film formation, because particles on the (110) surface are covered by the particles of the (111) surface that configures the most part of the conductive film AL 2 in the subsequent stage of film formation by the sputtering, the most part of the surface of the conductive film AL 2 eventually becomes the (111) surface.
  • 90% or more of the surface of the conductive film AL 2 is finally the (111) surface, and more preferably 99% or more of the surface of the conductive film AL 2 is finally the (111) surface.
  • the insulating film BIF is an orientation blocking film serving as a film for blocking orientation of crystal.
  • the pad electrode PD may have three or more layers by further forming an insulating film such as the insulating film BIF over the conductive film AL 2 and subsequently forming a conductive film such as the conductive film AL 2 thereon.
  • the thickness of the insulating film BIF is no less than 0.5 nm and no more than 4.0 nm, and more preferably no less than 1.0 nm and no more than 3.0 nm. This is the thickness range for the conductive film AL 2 not to take over the crystal surface of the conductive film AL 1 and for sufficient conductivity to be guaranteed between the conductive film AL 2 and the conductive film ALL That is, because voltage of millions of volts is applied to such a diode DI as described in this embodiment, the insulating film BIF having the thickness as described above does not affect properties of the diode DI.
  • the pad electrode PD containing mainly the conductive film AL 2 and the conductive film AL 1 is formed by patterning the conductive film AL 2 , the insulating film BIF, and the conductive film AL 1 using photolithography and dry etching.
  • An insulating film IF 2 including an organic resin such as photosensitive polyimide is then formed over the semiconductor substrate SUB so as to cover the pad electrode PD. Then, an opening OP 1 exposing a part of the pad electrode PD is formed over the insulating film IF 2 by selectively exposing the insulating film IF 2 to light. It is to be noted that a material for the insulating film IF 2 may be inorganic insulating film such as silicon oxide or silicon nitride instead of the organic resin described above.
  • FIG. 6 illustrates a process flow to the step at which a conductive layer OPM is formed as in FIG. 7 to be described later, showing a plasma etching treatment S 11 and plating treatments S 12 to S 20 to be performed on the pad electrode PD.
  • the plating treatment is described to include surface treatments S 12 to S 14 , zincate treatments S 15 to S 17 , and electroless plating treatments S 18 to S 20 .
  • a pure water cleaning treatment may be performed.
  • the plasma etching treatment S 11 and the surface treatments S 12 to S 14 are performed on the surface of the pad electrode PD.
  • the plasma etching treatment S 11 and the surface treatments S 12 to S 14 are performed to remove the natural oxide film, the grease, the foreign matter, and the like present over the surface of the pad electrode PD.
  • the plasma etching treatment is performed first on the surface of the conductive film AL 2 using inert gas such as argon (Ar).
  • inert gas such as argon (Ar).
  • Ar argon
  • the plating treatment is performed on the surface of the conductive film AL 2 in the order of surface treatments S 12 to S 14 , zincate treatments S 15 to S 17 , and electroless plating treatments S 18 to S 20 .
  • the degreasing treatment is performed on the surface of the conductive film AL 2 using a weak alkaline aqueous solution containing sodium hydroxide or the like.
  • the grease over the surface of the conductive film AL 2 and the natural oxide film over the surface of the conductive film AL 2 are primarily removed by the degreasing treatment.
  • the etching treatment is performed using an alkaline aqueous solution containing, for example, copper (Cu).
  • the etching treatment is performed to remove aluminum oxide present near the surface of the conductive film AL 2 , and it is effective where the conductive film AL 2 is made of aluminum doped with silicon as in this embodiment. That is, by dissolving aluminum oxide present near the surface of the conductive film AL 2 with the alkaline aqueous solution and substituting the aluminum surface with copper having a standard electrode potential higher than that of aluminum, it is possible to effectively reduce aluminum oxide present near the surface of the conductive film AL 2 .
  • an acid cleaning is performed on the surface of the conductive film AL 2 using an aqueous solution containing, for example, nitric acid.
  • the acid cleaning allows for the copper substituted at Step S 13 to be dissolved in the aqueous solution containing nitric acid and for removing copper from the surface of the conductive film AL 2 .
  • Step S 15 in FIG. 6 a first zincate treatment is performed on the surface of the conductive film AL 2 .
  • the acid cleaning is performed on the surface of the conductive film AL 2 .
  • the aqueous solution containing nitric acid zinc particles deposited by the first zincate treatment is dissolved in the aqueous solution containing nitric acid. This treatment allows aluminum to appear uniformly on the surface of the conductive film AL 2 .
  • a second zincate treatment is performed on the surface of the conductive film AL 2 .
  • a dense and uniform Zn film can be formed by repeating the zincate treatment two times. This allows the plating film of nickel or the like that will be formed in the following step to be deposited uniformly.
  • Steps S 18 to S 20 in FIG. 6 and in FIG. 7 the electroless plating treatment is performed on the surface of the pad electrode PD, thereby sequentially forming the conductive films PF 1 to PF 3 .
  • the conductive film PF 1 containing mainly nickel (Ni) or the like is formed over the exposed surface of the pad electrode PD (surface of the conductive film AL 2 ) by electroless plating.
  • the surface of the conductive film AL 2 is immersed in plating aqueous solution containing nickel ion or the like.
  • the zinc particles deposited by the zincate treatment in FIG. 6 are dissolved into the plating aqueous solution.
  • nickel is reduced and deposited by electrons emitted from the zinc particles.
  • Steps S 19 and S 20 by sequentially forming the conductive film PF 2 containing mainly palladium (Pd) or the like and the conductive film PF 3 containing mainly gold (Au) over the conductive film PF 1 by electroless plating, the conductive layer OPM including a lamination of the plating films. Because the conductive film PF 2 and the conductive film PF 3 are formed over the conductive film PF 1 having highly uniform thickness, the conductive film PF 2 and the conductive film PF 3 are also formed with highly uniform thickness. Thus, it is possible to improve uniformity of thickness of the conductive layer OPM.
  • the thickness of the conductive film PF 1 is about 1,000 to 4,000 nm
  • the thickness of the conductive film PF 2 is about 100 to 400 nm
  • the thickness of the conductive film PF 3 is about 30 to 200 nm.
  • the conductive film PF 1 is a principal film of the conductive layer OPM, it is preferable to include a material having low sheet resistance.
  • the conductive film PF 3 is provided mainly to improve adhesiveness with an external connection terminal TR, and it is preferable to include a material having higher adhesiveness to the external connection terminal TR than the conductive film PF 1 .
  • the conductive film PF 2 is provided to prevent that the conductive film PF 1 be diffused over the surface of the conductive film PF 3 to corrode a boundary between the conductive film PF 1 and the conductive film PF 3 .
  • the conductive layer OPM may be a lamination of the conductive film PF 1 and the conductive film PF 3 or a lamination of the conductive film PF 1 and the conductive film PF 2 .
  • the conductive film PF 1 and the conductive film PF 2 may contain phosphorus (P).
  • the conductive layer OPM including a plating film is formed over the pad electrode PD. It is to be noted that the conductive layer OPM configures an anode electrode of the diode DI.
  • a cathode region CT and a back electrode BE are formed on the back side of the semiconductor substrate SUB.
  • the back side of the semiconductor substrate SUB is polished to reduce the thickness of the semiconductor substrate SUB.
  • an n-type impurity is introduced from the back side of the semiconductor substrate SUB using ion implantation to form the cathode region CT having a higher impurity concentration than that of the drift region DR.
  • the introduced impurity is activated by heat treatment.
  • metal films including nickel (Ni), titanium (Ti), gold (Au), for example, are deposited in this order from the side abutting the cathode region CT using sputtering, thereby forming a cathode electrode (back electrode) BE including these metal films.
  • the semiconductor device according to the embodiment is manufactured in the above-mentioned steps.
  • FIG. 8 is a schematic view showing one configuration in which a semiconductor wafer having the semiconductor device according to the embodiment formed thereon is diced into a chip CP 1 by a dicing step of a post-processing treatment and then the semiconductor element including the diode DI according to the embodiment and an IGBT is modularized.
  • dimensions of configurations such as the conductive layer OPM are different from those described with reference to FIG. 7 .
  • the chip CP 1 is the semiconductor device including the diode DI according to the embodiment formed thereon, and a chip CP 2 is the semiconductor device including the semiconductor element of IGBT formed thereon.
  • the IGBT includes a configuration shown on the left side of FIG. 8 .
  • a p-type base layer 2 is formed over the surface of the n-type semiconductor substrate that configures a drift region 1 .
  • Formed over the surface of the base layer 2 is an n-type source layer 3 , and the base layer 2 and the source layer 3 are coupled commonly to an emitter electrode 6 including an aluminum film or the like.
  • the base layer 2 arranged between the drift region 1 and the source layer 3 is a channel region, and a gate electrode 5 is formed over the channel region via a gate insulating film 4 .
  • Formed over the back side of the drift region 1 are a buffer layer 7 doped with an n-type impurity, an emitter layer 8 doped with a p-type impurity, and a collector electrode 9 .
  • the cathode electrode BE of the diode DI and the collector electrode 9 of the IGBT are electrically coupled to each other, and the anode electrode (conductive layer) OPM of the diode DI and the emitter electrode 6 of the IGBT are also electrically coupled to each other.
  • FIGS. 9 and 10 show an example in which the chip CP 1 and the chip CP 2 configuring the IGBT shown in FIG. 8 are packaged.
  • FIG. 10 is a cross-sectional view taken along line A-A in the plan view shown in FIG. 9 . It is to be noted that a sealing resin MR and a die pad DP depicted in FIG. 10 are omitted in FIG. 9 for better understanding of the shape of the external connection terminal TR. It is illustrated here that the chip CP 1 and the chip CP 2 are coupled in a single package using a clip including, for example, a copper sheet, as an example of the external connection terminal TR.
  • a clip including, for example, a copper sheet, as an example of the external connection terminal TR.
  • the chip CP 1 and the chip CP 2 are mounted over the die pad DP via a solder BP 1 .
  • the die pad DP also serves as a power source potential terminal DT that supplies power source potential to the chip CP 1 and the chip CP 2 . That is, the cathode electrode BE of the chip CP 1 and the collector electrode 9 of the chip CP 2 are electrically coupled to the power source potential terminal DT (die pad DP) via the solder BP 1 .
  • the external connection terminal TR is coupled to the CP 1 and the chip CP 2 via a solder BP 2 .
  • the external connection terminal TR is electrically coupled to the ground potential terminal ST via a conductive adhesive or the like.
  • the conductive layer OPM of the chip CP 1 is coupled to the solder BP 2 . That is, the anode electrode (conductive layer) OPM of the chip CP 1 and the emitter electrode 6 of the chip CP 2 are electrically coupled to the ground potential terminal ST via the solder BP 2 and the external connection terminal TR.
  • the gate electrode 5 of the IGBT is coupled to another terminal via a bonding wire or the like other than the external connection terminal TR.
  • the chip CP 1 and the chip CP 2 coupled to the die pad DP and the external connection terminal TR are sealed with the sealing resin MR. In this manner, the semiconductor device according to the embodiment is packaged.
  • the external connection terminal TR may be a bonding wire including copper or gold.
  • the external connection terminal TR may be a bonding wire including copper or gold.
  • the semiconductor device that has a large area of the anode electrode (conductive layer) OPM of the diode DI and a large area of the emitter electrode 6 of the IGBT and that is to receive voltage of hundreds of volts as in the embodiment, it is desirable to use a copper clip having a large area to reduce resistance related to coupling to another chip. It is also possible to use sintered silver (Ag) instead of the solders BP 1 , BP 2 .
  • the embodiment is characterized in that the crystal surface on the surface of the conductive film AL 2 is formed with the crystal surface different from that of the crystal surface on the surface of the conductive film AL 1 .
  • the crystal surface on the surface of the pad electrode PD is formed with the (001) surface
  • the first and second zincate treatments in FIG. 6 there is a problem that the size of the deposited zinc particle is so large that the deposition of the plating film such as nickel formed by the electroless plating cannot be performed uniformly and the surface of the plating film becomes rough.
  • moisture or the like enters the interface between the pad electrode PD and the conductive layer OPM facilitating separation in this portion, which reduces reliability of the semiconductor device.
  • appearance abnormality is observed on the surface of the plating film.
  • the conductive film AL 2 formed over the insulating film BIF is not affected by the crystal surface on the surface of the conductive film ALL allowing the he crystal surface on the surface of the conductive film AL 2 to have the (111) surface.
  • the size of each zinc particle deposited during the first and second zincate treatments shown in FIG. 6 is uniform and small, the deposite from the conductive film PF 1 including nickel and the like formed by electroless plating can be formed relatively uniformly. This allows for a configuration in which separation is hardly caused on the interface between the pad electrode PD and the conductive layer OPM, thereby improving reliability of the semiconductor device. Furthermore, appearance abnormality on the surface of the plating film can be minimized.
  • the cleaning treatment is performed on the semiconductor substrate SUB serving as the base of the conductive film AL 1 to keep the surface of the semiconductor substrate SUB clean.
  • the conductive film AL 1 tends to take over the (001) surface that is the crystal surface on the surface of the semiconductor substrate SUB, the crystal surface on the surface of the conductive film AL 1 also tends to have the (001) surface.
  • the crystal surface on the surface of the conductive film AL 2 may have the (111) surface, which achieves the structure in which separation is hardly caused on the interface between the pad electrode PD and the conductive layer OPM. That is, using the technique of the embodiment can improve performance of the semiconductor device and also improve reliability of the semiconductor device.
  • the insulating film BIF is formed over the conductive film AL 1 by once taking out the semiconductor substrate SUB from the sputtering device and exposing it to the atmospheric air, as shown in FIG. 4 .
  • the semiconductor substrate SUB is transferred to another chamber without taking it out of the sputtering device, an oxygen-containing gas is introduced into the sputtering device, and the surface of the conductive film AL 1 is exposed to oxygen atmosphere, thereby forming the insulating film BIF.
  • oxygen atmosphere is performed in oxygen gas atmosphere at room temperature.
  • the oxidation treatment maybe combined with heat treatment, and may be conducted by emitting plasma using oxygen gas.
  • the conductive film AL 2 is formed over the insulating film BIF by the sputtering as in the first embodiment, without taking out the semiconductor substrate SUB from the sputtering device.
  • the conductive film AL 2 is configured using the same material as that of the conductive film ALL the material containing mainly, for example, aluminum doped with silicon.
  • the conductive film AL 2 is configured using a material different from that of the conductive film AL 1 , the material containing mainly, for example, aluminum doped with copper. That is, the element doped into the conductive film AL 2 is different from the element doped into the conductive film AL 1 .
  • the conductive film AL 1 is in direct contact with the diode DI and made of aluminum film doped with silicon for the purpose of reducing spike shapes on the interface between the semiconductor substrate SUB and the conductive film AL 1 .
  • the material of the conductive film AL 2 may be other material than the aluminum film doped with silicon.
  • the copper-doped aluminum film exhibits better electromigration than the silicon-doped aluminum film, the copper doped aluminum film is used as the conductive film AL 2 of the second modification.
  • the etching treatment at Step S 13 in FIG. 6 can be omitted. That is, the aluminum oxide present over the surface of the conductive film AL 2 is substituted using the aqueous solution containing copper having high standard electrode potential at Step S 13 described above.
  • copper is already included in the conductive film AL 2 . Therefore, it is possible to more effectively remove the oxide over the surface of the conductive film AL 2 by the degreasing treatment using the alkaline aqueous solution at Step S 12 or the subsequent zincate treatment.
  • the zincate treatment further facilitates deposition of the zinc particles, and the electroless plating treatment further facilitates substitute and deposite nickel.
  • Step S 13 shown in FIG. 6 can be omitted in the second modification, the method of manufacturing the semiconductor device can be simplified.
  • the conductive film AL 2 may be made of a material containing mainly aluminum and doped with copper and silicon.
  • the insulating film BIF is formed over the conductive film AL 1 to differentiate the crystal surface of the conductive film AL 2 from that of the conductive film ALL
  • amorphous film formed over the conductive film AL 1 is an amorphous film that is a conductive film made of a material different from that of the conductive film AL 1 and in an amorphous state over the conductive film AL 1 .
  • the amorphous film a replacement from the insulating film BIF in the first embodiment and therefore it is not presented in the drawings.
  • the reference symbol “BIF” indicated in FIG. 4 or the like designates the amorphous film.
  • Such an amorphous film is formed by sputtering or CVD and configured by a film containing mainly, for example, tantalum, titanium nitride, or tungsten nitride. Moreover, the thickness of the amorphous film is between 0.5 nm and 4.0 nm, and more preferably between 1.0 nm and 3.0 nm.
  • the above-mentioned material can exist in the amorphous state as long as it has such a small film thickness. Because the amorphous film is in the amorphous state, it does not have a specific crystal surface. Therefore, when the conductive film AL 2 is formed over the amorphous film by sputtering, the conductive film AL 2 does not take over the crystal surface of the conductive film AL 1 but grows mainly based on the (111) surface, as in the first embodiment. That is, the amorphous film is an orientation blocking film serving as a film for blocking orientation of crystal, like the insulating film BIF. Thus, the semiconductor device according to the second embodiment can provide the same effect as the first embodiment.
  • the conductive film AL 1 and the conductive film AL 2 used in the first embodiment are applied to wiring of a power MOS.
  • a case is described in which the conductive film AL 1 and the conductive film AL 2 are applied to a source electrode SPD.
  • a structure of the semiconductor device according to the third embodiment and a method of manufacturing the same are described below with reference to FIGS. 11 to 13 .
  • FIG. 11 shows an n-type power MOS including an n-type gate electrode GE, a gate insulating film GI, an insulating film IF 3 that covers the gate electrode GE, a p-type channel region CH, an n-type source region SR, an n-type drift region NV serving as a drain region, and an n-type substrate SB.
  • the substrate SB having n-type conductivity and including semiconductor such as silicon is prepared first.
  • a drift region NV (impurity region NV) having n-type conductivity and impurity concentration lower than that of the substrate SB is formed over the substrate SB by epitaxy or the like.
  • explanation is given assuming a structure including the substrate SB and the drift region NV as the semiconductor substrate SUB.
  • a gate insulating film GI including silicon oxide is formed over the side face and the bottom face of the groove.
  • the gate electrode GE including polycrystalline silicon or the like is formed over the gate insulating film GI so as to fill the groove.
  • the channel region CH having p-type conductivity is formed on top of the drift region NV by ion implantation.
  • a boundary between the channel region CH and the drift region NV is located above the bottom face of the gate electrode GE.
  • the source region SR (impurity region SR) having n-type conductivity is then formed on top of the channel region CH by ion implantation.
  • the insulating film IF 3 is then selectively formed over a portion of the source region SR and over the gate electrode GE. Next, by performing dry etching on a portion exposed on the insulating film IF 3 , an opening OP 2 reaching the channel region CH through the source region SR is formed.
  • the n-type power MOS is manufactured as described above.
  • the conductive film AL 1 and the conductive film AL 2 serving as the source electrode SPD are formed over the insulating film IF 3 .
  • a barrier metal film BM including titanium tungsten (TiW), titanium nitride (TiN), or the like is formed in the opening OP 2 and over the insulating film IF 3 .
  • the conductive film AL 1 containing mainly aluminum, for example is formed over the barrier metal film BM so as to fill the opening OP 2 . This allows the conductive film AL 1 serving as a part of the source electrode SPD to be electrically coupled to the source region SR and the channel region CH.
  • the barrier metal film BM is formed between the semiconductor substrate SUB and the conductive film AL 1 unlike the first embodiment and the second embodiment described above. Accordingly, the conductive film AL 1 may use a material mainly containing aluminum and doped with silicon or a material mainly containing aluminum and doped with copper.
  • the conductive film AL 1 is formed by sputtering, and the maximum temperature in the forming process ranges from 250 to 400 degrees, which is higher than that in the first embodiment. This is to prevent a void formed in the conductive film AL 1 when the conductive film AL 1 is filled in the opening OP 2 .
  • the formation of the conductive film AL 1 may be performed in two steps including an initial film formation performed at a low temperature ranging from room temperature (23° C.) to 200° C. and a second step performed at a high temperature ranging from 250 to 400° C. for filling. Moreover, a step is made between the surface of the conductive film AL 1 located on top of the opening OP 2 and the surface of the conductive film AL 1 located on top of the gate electrode GE.
  • the conductive layer OPM is formed over the source electrode SPD in a later step.
  • the size of the aluminum particle tends to be larger compared with an aluminum film formed at relatively low temperature as in the first embodiment. That is, the crystal surface on the surface of the conductive film AL 1 tends to have not only the (111) surface but also the (001) surface. Thus, if the conductive layer OPM is formed over the conductive film AL 1 , separation would easily occur between the source electrode SPD and the conductive layer OPM as in the first embodiment.
  • the thin insulating film BIF is formed over the conductive film AL 1 and then the conductive film AL 2 is formed over the conductive film AL 1 as in the first embodiment.
  • This can differentiate the crystal surface on the surface of the conductive film AL 2 from the crystal surface on the surface of the conductive film AL 1 .
  • the method of forming the insulating film BIF and the conductive film AL 2 is the same as that in the first embodiment. Accordingly, the crystal surface on the surface of the conductive film AL 2 in this embodiment is also the (111) surface.
  • the temperature of formation of the conductive film AL 2 is lower than that of the conductive film ALL and it is about room temperature (23° C.) to 200° C., for example, and more preferably about 150° C. That is, because the conductive film AL 1 is formed at relatively high temperature, the flatness of its surface is improved whereas the possibility of generating the (001) surface having a large particle size also increases. Therefore, generation of the (001) surface having the large particle size can be suppressed by forming the conductive film AL 2 at relatively low temperature.
  • the area ratio of the (111) surface on the surface of the conductive film AL 2 is higher than that of the (111) surface on the surface of the conductive film AL 1
  • the source electrode SPD shown in FIG. 12 is formed by patterning the conductive film AL 2 , the insulating film BIF, the conductive film ALL and the barrier metal film BM using photolithography and dry etching. It is to be noted that a gate pad electrode GPD to be coupled to the gate electrode GE of the power MOS is also formed at this time (not shown in the figure).
  • the insulating film IF 2 having the opening OP 1 is formed over the conductive film AL 2 so as to expose a portion of the conductive film AL 2 serving as a portion of the source electrode SPD. It is to be noted that the method of forming the insulating film IF 2 and its material are the same as those in the first embodiment.
  • the conductive layer OPM is formed over the conductive film AL 2 in the opening OP 1 .
  • the back side of the substrate SB is polished to form the drain electrode (back electrode) BE.
  • the semiconductor device of the third embodiment is manufactured according to the above-mentioned steps.
  • the third embodiment it is possible to suppress the separation between the source electrode SPD and the conductive layer OPM and to obtain the same effect as the first embodiment.
  • FIG. 14 shows a view of a chip CP 3 including the power MOS according to the third embodiment formed thereon in the packaged state.
  • the external connection terminal TR to be coupled to the conductive layer OPM a case of using a clip made of a copper sheet is described.
  • the chip CP 3 is mounted over the die pad DP via a solder BP 3 .
  • the die pad DP also serves as the power source potential terminal DT that supplies power source potential to the chip CP 3 . That is, the drain electrode BE of the chip CP 3 is electrically coupled to the power source potential terminal DT (die pad DP) via the solder BP 3 .
  • the external connection terminal TR is coupled to the chip CP 3 via a solder BP 4 .
  • the external connection terminal TR is electrically coupled to the ground potential terminal ST via a solder BP 5 .
  • the conductive layer OPM of the chip CP 3 is coupled to the solder BP 4 . That is, the source electrode SPD of the chip CP 3 is electrically coupled to the ground potential terminal ST via the conductive layer OPM, the solder BP 4 , the external connection terminal TR, and the solder BP 5 .
  • the gate pad electrode GPD of the power MOS is coupled to a gate potential terminal GT via a bonding wire WB.
  • Such a chip CP 3 is sealed with the sealing resin MR. In this manner, the semiconductor device according to the third embodiment is packaged.
  • the conductive film AL 1 and the conductive film AL 2 are employed as the source electrode SPD of the power MOS in the third embodiment, it is also possible to employ the conductive film AL 1 and the conductive film AL 2 as the emitter electrode of the IGBT. Furthermore, when applied to the IGBT, the channel region CH of the power MOS is a base region.
  • the chip CP 3 described in the third embodiment maybe employed instead of the chip CP 2 shown in FIGS. 8 to 10 of the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Chemically Coating (AREA)

Abstract

To improve reliability of a semiconductor device. There are provided the semiconductor device and a method of manufacturing the same, the semiconductor including a pad electrode that is formed over a semiconductor substrate and includes a first conductive film and a second conductive film formed over the first conductive film, and a plating film that is formed over the second conductive film and used to be coupled to an external connection terminal (TR). The first conductive film and the second conductive film contains mainly aluminum. The crystal surface on the surface of the first conductive film is different from the crystal surface on the surface of the second conductive film.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The disclosure of Japanese Patent Application No. 2017-161043 filed on Aug. 24, 2017 including the specification, drawings and abstract is incorporated herein by reference in its entirety.
  • BACKGROUND
  • The present invention relates to a semiconductor device and a method of manufacturing the same, which can be applied to, for example, the semiconductor device having an OPM electrode and the method of manufacturing the same.
  • Recently, based on demands for improving reliability of semiconductor device and so on, there is proposed a structure obtained by forming a pad electrode containing mainly aluminum on a semiconductor substrate, forming a conductive layer called an OPM (Over Pad Metal) electrode on the pad electrode, and coupling an external coupling terminal such as a clip or a bonding wire to the OPM electrode.
  • For example, Japanese Unexamined Patent Application Publication No. 2000-235964 discloses a technology of forming an OPM electrode made of a nickel film and a gold film on the pad electrode containing mainly aluminum using electroless plating.
  • Moreover, Japanese Unexamined Patent Application Publication No. 2007-227412 discloses an IGBT module including a diode and an IGBT (Insulated Gate Bipolar Transistor) coupled in antiparallel with each other.
  • Furthermore, “Zincate Treatment and Electroless Ni—P Plating on Al Single-Crystal Surface,” Journal of The Surface Finishing Society of Japan, Vol. 48, No. 8, p. 820-825, 1997 discloses a technology of obtaining a (100) surface, a (110) surface, and a (111) surface from single-crystal aluminum (Al) and then performing a zincate treatment using an aqueous solution containing zinc (Zn) and an electroless Ni—P plating treatment on these surfaces. The above-mentioned document describes study on how the differences among the crystal surfaces affects the size of deposited Zn particles and growth of an Ni—P plating film.
  • SUMMARY
  • As disclosed in “Zincate Treatment and Electroless Ni—P Plating on Al Single-Crystal Surface,” Journal of The Surface Finishing Society of Japan, Vol. 48, No. 8, p. 820-825, 1997, when zincate treatment is performed on the (100) surface of aluminum, there is a problem that relatively large Zn particles are deposited and the thickness of the Ni—P plating film formed thereon may not be uniform. Because the surface of the Ni—P plating film is rough and does not present a dense film, moisture may easily enter from the outside of the semiconductor device. This may cause such a problem that corrosion occurs to an interface between the Ni—P plating film and an aluminum film, which increases possibility that the Ni—P plating film would be separated from the aluminum film. In such a case, if the OPM electrode made of the plating film of nickel or the like is formed on the pad electrode containing mainly aluminum as described in Japanese Unexamined Patent Application Publication No. 2000-235964, the OPM electrode is easily removed from the pad electrode, thereby reducing reliability of the semiconductor device.
  • Other problems and novel features will become apparent from the following description and accompanying drawings.
  • Outline of representative one of embodiments disclosed herein is briefly described below.
  • According to a semiconductor device and a method of manufacturing the same of one embodiment, the semiconductor device includes: a pad electrode that is formed over a semiconductor substrate and includes a first conductive film and a second conductive film formed over the first conductive film; and a plating film that is formed over the second conductive film and serves to be coupled to an external connection terminal.
  • According to one embodiment, it is possible to improve reliability of the semiconductor device.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment;
  • FIG. 2 is a s cross-sectional view of the semiconductor device during a manufacturing process that follows FIG. 1;
  • FIG. 3 is a s cross-sectional view of the semiconductor device during the manufacturing process that follows FIG. 2;
  • FIG. 4 is a s cross-sectional view of the semiconductor device during the manufacturing process that follows FIG. 3;
  • FIG. 5 is a s cross-sectional view of the semiconductor device during the manufacturing process that follows FIG. 4;
  • FIG. 6 shows a process flow indicative of the manufacturing process of the semiconductor device that follows FIG. 5;
  • FIG. 7 is a cross-sectional view of the semiconductor device during the manufacturing process that follows FIG. 6;
  • FIG. 8 is a schematic view of the semiconductor device according to the first embodiment and an IGBT in a modularized form;
  • FIG. 9 is a plan view showing the semiconductor device of FIG. 8 in a mounted state;
  • FIG. 10 is a cross-sectional view taken along a line A-A in FIG. 9;
  • FIG. 11 is a cross-sectional view of a main part of the semiconductor device of a third embodiment;
  • FIG. 12 is a cross-sectional view of the semiconductor device during the manufacturing process that follows FIG. 11;
  • FIG. 13 is a cross-sectional view of the semiconductor device during the manufacturing process that follows FIG. 12; and
  • FIG. 14 is a plan view showing the semiconductor device of FIG. 13 in the mounted state.
  • DETAILED DESCRIPTION
  • In the following embodiments, although explanation is given with respect to each section or each embodiment as needed for convenience, the sections or embodiments are not irrelevant to each other but one may be a part or all of a modification, detailed description, or supplementary explanation of another, unless otherwise specified.
  • Moreover, in the following embodiments, when a number (including number of pieces, numerical value, amount, range and the like) of an element is referenced, it is not limited to the specific number but may be more or less than the specific number, unless otherwise specified or explicitly limited to the specific number in principle.
  • Furthermore, in the following embodiments, components (including element steps) are not necessarily essential unless otherwise specified or explicitly essential in principle.
  • Similarly, in the following embodiments, when a shape, positional relationship, or the like of the component is referenced, it includes substantially approximate or similar shape or the like unless otherwise specified or explicitly inapplicable in principle. This also applies to the numerical values and ranges described above.
  • Throughout the figures for illustrating the embodiments, like reference numerals designate like parts in principle and the description thereof is not repeated. It is to be noted that a plan view may be hatched for better understanding.
  • First Embodiment
  • With reference to FIGS. 1 to 7, explanation is given about a semiconductor device and a method of manufacturing the same according to a first embodiment. This embodiment presents a diode DI used as a super fast recover diode (Fast Recovery Diode), for example, as a semiconductor element mounted on the semiconductor device.
  • As shown in FIG. 1, a substrate is prepared first that has n-type conductivity and includes a semiconductor such as silicon. The substrate configures a drift region DR of the diode DI. An impurity region AN having p-type conductivity is then formed near a surface of the drift region DR by ion implantation or the like. The impurity region AN configures an anode region of the diode DI.
  • This embodiment describes a configuration including the drift region DR and the anode region AN as a semiconductor substrate SUB.
  • Here, a crystal surface on a surface of the drift region DR is a (001) surface. Because a silicon substrate having the (001) surface is commonly used, the manufacturing cost can be suppressed compared with preparing a substrate having another crystal surface. Moreover, the crystal surface on the surface of the anode region AN formed over the surface of the drift region DR is also the (001) surface. That is, the crystal surface on the surface of the semiconductor substrate SUB is the (001) surface.
  • Moreover, FIG. 1 shows a state in which an insulating film IF1 is formed over the surface of the semiconductor substrate SUB as a thin natural oxide film or a foreign matter.
  • Next, as shown in FIG. 2, the surface of the semiconductor substrate SUB is subjected to, for example, a reactive dry etching treatment using a gas containing carbon tetrafluoride (CF4) and a wet etching treatment using a cleaning liquid containing hydrogen fluoride (HF) as a cleaning treatment. The cleaning treatment removes the insulating film IF1 deposited over the surface of the semiconductor substrate SUB including the anode region AN. The cleaning treatment is performed primarily for reducing forward resistance of the diode DI, and thus for reducing contact resistance between the semiconductor substrate SUB and a pad electrode PD that will be formed later.
  • Next, as shown in FIG. 3, a conductive film AL1 containing mainly aluminum and doped with a small amount of silicon is formed over the semiconductor substrate SUB by, for example, sputtering. The thickness of the conductive film AL1 is about 2,500 nm. Temperature of formation of the conductive film AL1 by sputtering is about room temperature (23° C.) to 200° C., and more preferably about 150° C. It is to be noted that the reason why the conductive film AL1 is doped with a small amount of silicon is to prevent an interface between the conductive film AL1 and the semiconductor substrate SUB from having a spike shape.
  • Here, when the conductive film AL1 is an aluminum film, forming the aluminum film by the above-mentioned sputtering makes the crystal structure of the aluminum film a face-centered cubic structure (FCC: Face-Centered Cubic), and therefore the conductive film AL1 has the (111) surface or close-packed surface on almost all of its surfaces if not affected by its base. However, the conductive film AL1 according to the embodiment is formed taking over the crystal surface of the semiconductor substrate SUB, and thus the crystal surface on the surface of the conductive film AL1 is the (001) surface. This is because the step of forming the conductive film AL1 is performed immediately after the cleaning treatment illustrated in FIG. 2 and therefore the conductive film AL1 tends to take over the crystal surface on the surface of the semiconductor substrate SUB during the forming step. Moreover, with the diode DI according to the embodiment, for the purpose of reducing the forward resistance, a barrier metal film including titanium nitride having higher resistance than that of the conductive film AL1 is not formed between the conductive film AL1 and the semiconductor substrate SUB but the conductive film AL1 is formed directly over the semiconductor substrate SUB.
  • In the light of crystallography, with regard to a cubic crystal, the (001) surface is equivalent to the (100) surface and a (010) surface as a crystal surface. Therefore, the (001) surface of the conductive film AL1 according to the embodiment is treated as a crystal surface equivalent to the (100) surface disclosed in “zincate Treatment and Electroless Ni—P Plating on Al Single-Crystal Surface,” Journal of The Surface Finishing Society of Japan, Vol. 48, No. 8, p. 820-825, 1997. Here, as described in the above-mentioned document, there is a problem that, when the zincate treatment is performed on the (001) surface of the conductive film AL1 in the following step, zinc particles having a relatively large size are deposited, resulting in uneven thickness of the plating film of nickel or the like formed in the following step. This may cause separation between the plating film and the conductive film AL1, thereby reducing reliability of the semiconductor device.
  • In other words, unless the cleaning treatment is performed as in this embodiment, the thin natural oxide film or the foreign matter is present over the surface of the semiconductor substrate SUB. If the conductive film AL1 is formed in such a state, the conductive film AL1 can hardly take over the crystal surface on the surface of the semiconductor substrate SUB, making it easier for the crystal surface other than the (001) surface to be formed over the surface of the conductive film AL1. However, to reduce resistance of the diode DI, it is desirable to perform the cleaning treatment to remove the thin natural oxide film or the foreign matter. This may make the crystal surface on the surface of the conductive film AL1 configuring the pad electrode PD the (001) surface.
  • Therefore, the inventors have come up with a method of reducing resistance of the diode DI and making the crystal surface on the surface of the pad electrode PD different from the (001) surface by performing the cleaning treatment.
  • FIG. 4 is a cross-sectional view of the method of manufacturing the semiconductor device that follows FIG. 3.
  • As described with reference to FIG. 3, the crystal surface on the surface of the conductive film AL1 is the (001) surface. In this state, as shown in FIG. 4, an insulating film BIF is formed over the conductive film AL1 first. The insulating film BIF is formed by exposing the surface of the conductive film AL1 to an atmosphere containing oxygen, e.g. by once taking out the semiconductor substrate SUB from a sputtering device and exposing the semiconductor substrate SUB to the atmospheric air at room temperature (23° C.). That is, the insulating film BIF includes an oxide of a material that forms the conductive film ALL such as aluminum oxide. The thickness of the insulating film BIF ranges from 0.5 nm to 4.0, and more preferably from 1.0 nm to 3.0 nm.
  • Next, a conductive film AL2 containing mainly aluminum, for example, and also doped with silicon is formed over the insulating film BIF by the sputtering, for example. The thickness of the conductive film AL2 is about 2,500 nm. The temperature for forming the conductive film AL2 by the sputtering is between about the room temperature (23° C.) and 200° C., and more preferably about 150° C.
  • Now, due to the insulating film BIF formed between the conductive film AL2 and the conductive film ALL the conductive film AL2 does not take over the (001) surface that is the crystal surface on the surface of the conductive film AL1 and thus it can be formed with the crystal surface different from the (001) surface.
  • In this embodiment, at the initial stage of forming the conductive film AL2 by the sputtering, the crystal surface on the surface of the conductive film AL2 is predominantly the (111) surface. Specifically, 90% or more of the surface area of the conductive film AL2 is the (111) surface. In this manner, even if the (110) surface remains on a part of the conductive film AL2 after the initial stage of film formation, because particles on the (110) surface are covered by the particles of the (111) surface that configures the most part of the conductive film AL2 in the subsequent stage of film formation by the sputtering, the most part of the surface of the conductive film AL2 eventually becomes the (111) surface. Preferably, 90% or more of the surface of the conductive film AL2 is finally the (111) surface, and more preferably 99% or more of the surface of the conductive film AL2 is finally the (111) surface.
  • In this manner, by forming the thin insulating film BIF over the surface of the conductive film AL1 having the (100) crystal surface, the crystal surface on the surface of the conductive film AL2 to be the surface of the pad electrode PD can be the (111) surface. That is, the insulating film BIF is an orientation blocking film serving as a film for blocking orientation of crystal.
  • Although the embodiment shows the pad electrode PD having a two-layer structure of the conductive film AL1 and the conductive film AL2, the pad electrode PD may have three or more layers by further forming an insulating film such as the insulating film BIF over the conductive film AL2 and subsequently forming a conductive film such as the conductive film AL2 thereon.
  • Moreover, as described above, the thickness of the insulating film BIF is no less than 0.5 nm and no more than 4.0 nm, and more preferably no less than 1.0 nm and no more than 3.0 nm. This is the thickness range for the conductive film AL2 not to take over the crystal surface of the conductive film AL1 and for sufficient conductivity to be guaranteed between the conductive film AL2 and the conductive film ALL That is, because voltage of millions of volts is applied to such a diode DI as described in this embodiment, the insulating film BIF having the thickness as described above does not affect properties of the diode DI.
  • Next, as shown in FIG. 5, the pad electrode PD containing mainly the conductive film AL2 and the conductive film AL1 is formed by patterning the conductive film AL2, the insulating film BIF, and the conductive film AL1 using photolithography and dry etching.
  • An insulating film IF2 including an organic resin such as photosensitive polyimide is then formed over the semiconductor substrate SUB so as to cover the pad electrode PD. Then, an opening OP1 exposing a part of the pad electrode PD is formed over the insulating film IF2 by selectively exposing the insulating film IF2 to light. It is to be noted that a material for the insulating film IF2 may be inorganic insulating film such as silicon oxide or silicon nitride instead of the organic resin described above.
  • FIG. 6 illustrates a process flow to the step at which a conductive layer OPM is formed as in FIG. 7 to be described later, showing a plasma etching treatment S11 and plating treatments S12 to S20 to be performed on the pad electrode PD. In this embodiment, the plating treatment is described to include surface treatments S12 to S14, zincate treatments S15 to S17, and electroless plating treatments S18 to S20. After each process at S12 to S20, a pure water cleaning treatment may be performed.
  • Before conductive films PF1 to PF3 that are plating films are formed over the pad electrode PD by the electroless plating treatments S18 to S20, the plasma etching treatment S11 and the surface treatments S12 to S14 are performed on the surface of the pad electrode PD. The plasma etching treatment S11 and the surface treatments S12 to S14 are performed to remove the natural oxide film, the grease, the foreign matter, and the like present over the surface of the pad electrode PD.
  • As indicated at Step S11 in FIG. 6, the plasma etching treatment is performed first on the surface of the conductive film AL2 using inert gas such as argon (Ar). The natural oxide film over the surface of the conductive film AL2 is removed by the plasma etching treatment.
  • Next, the plating treatment is performed on the surface of the conductive film AL2 in the order of surface treatments S12 to S14, zincate treatments S15 to S17, and electroless plating treatments S18 to S20.
  • As indicated at Step S12 in FIG. 6, the degreasing treatment is performed on the surface of the conductive film AL2 using a weak alkaline aqueous solution containing sodium hydroxide or the like. The grease over the surface of the conductive film AL2 and the natural oxide film over the surface of the conductive film AL2 are primarily removed by the degreasing treatment.
  • Next, as indicated at Step S13 in FIG. 6, the etching treatment is performed using an alkaline aqueous solution containing, for example, copper (Cu). The etching treatment is performed to remove aluminum oxide present near the surface of the conductive film AL2, and it is effective where the conductive film AL2 is made of aluminum doped with silicon as in this embodiment. That is, by dissolving aluminum oxide present near the surface of the conductive film AL2 with the alkaline aqueous solution and substituting the aluminum surface with copper having a standard electrode potential higher than that of aluminum, it is possible to effectively reduce aluminum oxide present near the surface of the conductive film AL2.
  • Next, as indicated at Step S14 in FIG. 6, an acid cleaning is performed on the surface of the conductive film AL2 using an aqueous solution containing, for example, nitric acid. The acid cleaning allows for the copper substituted at Step S13 to be dissolved in the aqueous solution containing nitric acid and for removing copper from the surface of the conductive film AL2.
  • Next, as indicated at Step S15 in FIG. 6, a first zincate treatment is performed on the surface of the conductive film AL2.
  • As disclosed in “Zincate Treatment and Electroless Ni—P Plating on Al Single-Crystal Surface,” Journal of The Surface Finishing Society of Japan, Vol. 48, No. 8, p. 820-825, 1997, if ever the surface of the conductive film AL2 is (001) surface, growth of the zinc particles would be less even and its size may further increase.
  • Next, as indicated at Step S16 in FIG. 6, the acid cleaning is performed on the surface of the conductive film AL2. For example, by using the aqueous solution containing nitric acid, zinc particles deposited by the first zincate treatment is dissolved in the aqueous solution containing nitric acid. This treatment allows aluminum to appear uniformly on the surface of the conductive film AL2.
  • Next, as indicated at Step S17 in FIG. 6, a second zincate treatment is performed on the surface of the conductive film AL2. This makes the zinc particles deposited onto aluminum again. A dense and uniform Zn film can be formed by repeating the zincate treatment two times. This allows the plating film of nickel or the like that will be formed in the following step to be deposited uniformly.
  • Next, as indicated at Steps S18 to S20 in FIG. 6 and in FIG. 7, the electroless plating treatment is performed on the surface of the pad electrode PD, thereby sequentially forming the conductive films PF1 to PF3.
  • First, as indicated at Step S18 in FIG. 6, the conductive film PF1 containing mainly nickel (Ni) or the like is formed over the exposed surface of the pad electrode PD (surface of the conductive film AL2) by electroless plating. To form the conductive film PF1, the surface of the conductive film AL2 is immersed in plating aqueous solution containing nickel ion or the like. At this time, the zinc particles deposited by the zincate treatment in FIG. 6 are dissolved into the plating aqueous solution. At the same time, nickel is reduced and deposited by electrons emitted from the zinc particles. That is, in the region where the zinc particles are deposited, nickel is reduced and deposited and the plating film grows using the deposited nickel as catalyst, thereby forming the conductive film PF1. As described above, because the size of each zinc particle is small and constant, the substituted and deposited nickel film also grow uniformly. Thus, it is possible to improve uniformity of the thickness of the conductive film PF1.
  • Then, as indicated at Steps S19 and S20, by sequentially forming the conductive film PF2 containing mainly palladium (Pd) or the like and the conductive film PF3 containing mainly gold (Au) over the conductive film PF1 by electroless plating, the conductive layer OPM including a lamination of the plating films. Because the conductive film PF2 and the conductive film PF3 are formed over the conductive film PF1 having highly uniform thickness, the conductive film PF2 and the conductive film PF3 are also formed with highly uniform thickness. Thus, it is possible to improve uniformity of thickness of the conductive layer OPM.
  • It is to be noted that the thickness of the conductive film PF1 is about 1,000 to 4,000 nm, the thickness of the conductive film PF2 is about 100 to 400 nm, and the thickness of the conductive film PF3 is about 30 to 200 nm.
  • Because the conductive film PF1 is a principal film of the conductive layer OPM, it is preferable to include a material having low sheet resistance. The conductive film PF3 is provided mainly to improve adhesiveness with an external connection terminal TR, and it is preferable to include a material having higher adhesiveness to the external connection terminal TR than the conductive film PF1. The conductive film PF2 is provided to prevent that the conductive film PF1 be diffused over the surface of the conductive film PF3 to corrode a boundary between the conductive film PF1 and the conductive film PF3.
  • Moreover, the conductive layer OPM may be a lamination of the conductive film PF1 and the conductive film PF3 or a lamination of the conductive film PF1 and the conductive film PF2. Furthermore, the conductive film PF1 and the conductive film PF2 may contain phosphorus (P).
  • In this manner, the conductive layer OPM including a plating film is formed over the pad electrode PD. It is to be noted that the conductive layer OPM configures an anode electrode of the diode DI.
  • Next, a cathode region CT and a back electrode BE are formed on the back side of the semiconductor substrate SUB.
  • First, the back side of the semiconductor substrate SUB is polished to reduce the thickness of the semiconductor substrate SUB. Next, an n-type impurity is introduced from the back side of the semiconductor substrate SUB using ion implantation to form the cathode region CT having a higher impurity concentration than that of the drift region DR. Subsequently, the introduced impurity is activated by heat treatment. Then, metal films including nickel (Ni), titanium (Ti), gold (Au), for example, are deposited in this order from the side abutting the cathode region CT using sputtering, thereby forming a cathode electrode (back electrode) BE including these metal films.
  • The semiconductor device according to the embodiment is manufactured in the above-mentioned steps.
  • FIG. 8 is a schematic view showing one configuration in which a semiconductor wafer having the semiconductor device according to the embodiment formed thereon is diced into a chip CP1 by a dicing step of a post-processing treatment and then the semiconductor element including the diode DI according to the embodiment and an IGBT is modularized. In the schematic view, dimensions of configurations such as the conductive layer OPM are different from those described with reference to FIG. 7.
  • In FIG. 8, the chip CP1 is the semiconductor device including the diode DI according to the embodiment formed thereon, and a chip CP2 is the semiconductor device including the semiconductor element of IGBT formed thereon.
  • The IGBT includes a configuration shown on the left side of FIG. 8. As shown in FIG. 8, a p-type base layer 2 is formed over the surface of the n-type semiconductor substrate that configures a drift region 1. Formed over the surface of the base layer 2 is an n-type source layer 3, and the base layer 2 and the source layer 3 are coupled commonly to an emitter electrode 6 including an aluminum film or the like. The base layer 2 arranged between the drift region 1 and the source layer 3 is a channel region, and a gate electrode 5 is formed over the channel region via a gate insulating film 4. Formed over the back side of the drift region 1 are a buffer layer 7 doped with an n-type impurity, an emitter layer 8 doped with a p-type impurity, and a collector electrode 9.
  • Moreover, as shown in FIG. 8, the cathode electrode BE of the diode DI and the collector electrode 9 of the IGBT are electrically coupled to each other, and the anode electrode (conductive layer) OPM of the diode DI and the emitter electrode 6 of the IGBT are also electrically coupled to each other.
  • FIGS. 9 and 10 show an example in which the chip CP1 and the chip CP2 configuring the IGBT shown in FIG. 8 are packaged. FIG. 10 is a cross-sectional view taken along line A-A in the plan view shown in FIG. 9. It is to be noted that a sealing resin MR and a die pad DP depicted in FIG. 10 are omitted in FIG. 9 for better understanding of the shape of the external connection terminal TR. It is illustrated here that the chip CP1 and the chip CP2 are coupled in a single package using a clip including, for example, a copper sheet, as an example of the external connection terminal TR.
  • As shown in FIGS. 9 and 10, the chip CP1 and the chip CP2 are mounted over the die pad DP via a solder BP1. The die pad DP also serves as a power source potential terminal DT that supplies power source potential to the chip CP1 and the chip CP2. That is, the cathode electrode BE of the chip CP1 and the collector electrode 9 of the chip CP2 are electrically coupled to the power source potential terminal DT (die pad DP) via the solder BP1.
  • Moreover, the external connection terminal TR is coupled to the CP1 and the chip CP2 via a solder BP2. The external connection terminal TR is electrically coupled to the ground potential terminal ST via a conductive adhesive or the like. The conductive layer OPM of the chip CP1 is coupled to the solder BP2. That is, the anode electrode (conductive layer) OPM of the chip CP1 and the emitter electrode 6 of the chip CP2 are electrically coupled to the ground potential terminal ST via the solder BP2 and the external connection terminal TR.
  • Although detailed explanation is not provided, the gate electrode 5 of the IGBT is coupled to another terminal via a bonding wire or the like other than the external connection terminal TR.
  • The chip CP1 and the chip CP2 coupled to the die pad DP and the external connection terminal TR are sealed with the sealing resin MR. In this manner, the semiconductor device according to the embodiment is packaged.
  • Moreover, the external connection terminal TR may be a bonding wire including copper or gold. However, for such a semiconductor device that has a large area of the anode electrode (conductive layer) OPM of the diode DI and a large area of the emitter electrode 6 of the IGBT and that is to receive voltage of hundreds of volts as in the embodiment, it is desirable to use a copper clip having a large area to reduce resistance related to coupling to another chip. It is also possible to use sintered silver (Ag) instead of the solders BP1, BP2.
  • Hereinbelow, main features of the embodiment are briefly summarized. The embodiment is characterized in that the crystal surface on the surface of the conductive film AL2 is formed with the crystal surface different from that of the crystal surface on the surface of the conductive film AL1.
  • For example, when the crystal surface on the surface of the pad electrode PD is formed with the (001) surface, in the first and second zincate treatments in FIG. 6, there is a problem that the size of the deposited zinc particle is so large that the deposition of the plating film such as nickel formed by the electroless plating cannot be performed uniformly and the surface of the plating film becomes rough. Thus, moisture or the like enters the interface between the pad electrode PD and the conductive layer OPM facilitating separation in this portion, which reduces reliability of the semiconductor device. Furthermore, appearance abnormality is observed on the surface of the plating film.
  • To the contrary, in this embodiment, by forming the thin insulating film BIF over the conductive film AL1 having the (001) surface, the conductive film AL2 formed over the insulating film BIF is not affected by the crystal surface on the surface of the conductive film ALL allowing the he crystal surface on the surface of the conductive film AL2 to have the (111) surface. Thus, because the size of each zinc particle deposited during the first and second zincate treatments shown in FIG. 6 is uniform and small, the deposite from the conductive film PF1 including nickel and the like formed by electroless plating can be formed relatively uniformly. This allows for a configuration in which separation is hardly caused on the interface between the pad electrode PD and the conductive layer OPM, thereby improving reliability of the semiconductor device. Furthermore, appearance abnormality on the surface of the plating film can be minimized.
  • Especially, in this embodiment, the cleaning treatment is performed on the semiconductor substrate SUB serving as the base of the conductive film AL1 to keep the surface of the semiconductor substrate SUB clean. This reduces the contact resistance between the semiconductor substrate SUB and the conductive film ALL thereby reducing resistance of the diode DI. However, because the conductive film AL1 tends to take over the (001) surface that is the crystal surface on the surface of the semiconductor substrate SUB, the crystal surface on the surface of the conductive film AL1 also tends to have the (001) surface. Here, by forming the conductive film AL2 over the conductive film AL1 via the insulating film BIF as described above, the crystal surface on the surface of the conductive film AL2 may have the (111) surface, which achieves the structure in which separation is hardly caused on the interface between the pad electrode PD and the conductive layer OPM. That is, using the technique of the embodiment can improve performance of the semiconductor device and also improve reliability of the semiconductor device.
  • First Modification of First Embodiment
  • In the first embodiment, the insulating film BIF is formed over the conductive film AL1 by once taking out the semiconductor substrate SUB from the sputtering device and exposing it to the atmospheric air, as shown in FIG. 4.
  • To the contrary, according to a first modification, the semiconductor substrate SUB is transferred to another chamber without taking it out of the sputtering device, an oxygen-containing gas is introduced into the sputtering device, and the surface of the conductive film AL1 is exposed to oxygen atmosphere, thereby forming the insulating film BIF. Specifically, exposure to such oxygen atmosphere is performed in oxygen gas atmosphere at room temperature. The oxidation treatment maybe combined with heat treatment, and may be conducted by emitting plasma using oxygen gas.
  • Subsequently, the conductive film AL2 is formed over the insulating film BIF by the sputtering as in the first embodiment, without taking out the semiconductor substrate SUB from the sputtering device.
  • In this manner, because there is no need of taking out the semiconductor substrate SUB from the sputtering device to form the insulating film BIF, it is possible to perform the next step of forming the conductive film AL2 immediately. Thus, compared with the first embodiment, it is possible to simplify the process of manufacturing the semiconductor device.
  • Second Modification of First Embodiment
  • In the first embodiment, the conductive film AL2 is configured using the same material as that of the conductive film ALL the material containing mainly, for example, aluminum doped with silicon.
  • To the contrary, in a second modification, the conductive film AL2 is configured using a material different from that of the conductive film AL1, the material containing mainly, for example, aluminum doped with copper. That is, the element doped into the conductive film AL2 is different from the element doped into the conductive film AL1.
  • The conductive film AL1 is in direct contact with the diode DI and made of aluminum film doped with silicon for the purpose of reducing spike shapes on the interface between the semiconductor substrate SUB and the conductive film AL1. However, because the conductive film AL2 is not in direct contact with the diode DI, the material of the conductive film AL2 may be other material than the aluminum film doped with silicon. Here, because the copper-doped aluminum film exhibits better electromigration than the silicon-doped aluminum film, the copper doped aluminum film is used as the conductive film AL2 of the second modification.
  • Moreover, by using the copper-doped aluminum film as the conductive film AL2, the etching treatment at Step S13 in FIG. 6 can be omitted. That is, the aluminum oxide present over the surface of the conductive film AL2 is substituted using the aqueous solution containing copper having high standard electrode potential at Step S13 described above. However, in the second modification, copper is already included in the conductive film AL2. Therefore, it is possible to more effectively remove the oxide over the surface of the conductive film AL2 by the degreasing treatment using the alkaline aqueous solution at Step S12 or the subsequent zincate treatment. The zincate treatment further facilitates deposition of the zinc particles, and the electroless plating treatment further facilitates substitute and deposite nickel. Thus, because Step S13 shown in FIG. 6 can be omitted in the second modification, the method of manufacturing the semiconductor device can be simplified.
  • Furthermore, the conductive film AL2 may be made of a material containing mainly aluminum and doped with copper and silicon.
  • It is to be noted that the technique disclosed in the second modification is also applicable to the above-mentioned first modification.
  • Second Embodiment
  • In the first embodiment, the insulating film BIF is formed over the conductive film AL1 to differentiate the crystal surface of the conductive film AL2 from that of the conductive film ALL
  • To the contrary, in the second embodiment, formed over the conductive film AL1 is an amorphous film that is a conductive film made of a material different from that of the conductive film AL1 and in an amorphous state over the conductive film AL1. It is to be noted that the amorphous film a replacement from the insulating film BIF in the first embodiment and therefore it is not presented in the drawings. In other words, the reference symbol “BIF” indicated in FIG. 4 or the like designates the amorphous film.
  • Such an amorphous film is formed by sputtering or CVD and configured by a film containing mainly, for example, tantalum, titanium nitride, or tungsten nitride. Moreover, the thickness of the amorphous film is between 0.5 nm and 4.0 nm, and more preferably between 1.0 nm and 3.0 nm.
  • That is, the above-mentioned material can exist in the amorphous state as long as it has such a small film thickness. Because the amorphous film is in the amorphous state, it does not have a specific crystal surface. Therefore, when the conductive film AL2 is formed over the amorphous film by sputtering, the conductive film AL2 does not take over the crystal surface of the conductive film AL1 but grows mainly based on the (111) surface, as in the first embodiment. That is, the amorphous film is an orientation blocking film serving as a film for blocking orientation of crystal, like the insulating film BIF. Thus, the semiconductor device according to the second embodiment can provide the same effect as the first embodiment.
  • It is to be noted that the second modification of the first embodiment described above can be applied to the technique disclosed in the second embodiment.
  • Third Embodiment
  • In a third embodiment, the conductive film AL1 and the conductive film AL2 used in the first embodiment are applied to wiring of a power MOS. Here, as an example of the wiring of the power MOS, a case is described in which the conductive film AL1 and the conductive film AL2 are applied to a source electrode SPD.
  • A structure of the semiconductor device according to the third embodiment and a method of manufacturing the same are described below with reference to FIGS. 11 to 13.
  • FIG. 11 shows an n-type power MOS including an n-type gate electrode GE, a gate insulating film GI, an insulating film IF3 that covers the gate electrode GE, a p-type channel region CH, an n-type source region SR, an n-type drift region NV serving as a drain region, and an n-type substrate SB.
  • An example method of manufacturing such a power MOS is described below.
  • The substrate SB having n-type conductivity and including semiconductor such as silicon is prepared first. Next, a drift region NV (impurity region NV) having n-type conductivity and impurity concentration lower than that of the substrate SB is formed over the substrate SB by epitaxy or the like. In this embodiment, explanation is given assuming a structure including the substrate SB and the drift region NV as the semiconductor substrate SUB.
  • After forming a groove in the drift region NV, a gate insulating film GI including silicon oxide is formed over the side face and the bottom face of the groove. Next, the gate electrode GE including polycrystalline silicon or the like is formed over the gate insulating film GI so as to fill the groove. Then, the channel region CH having p-type conductivity is formed on top of the drift region NV by ion implantation. A boundary between the channel region CH and the drift region NV is located above the bottom face of the gate electrode GE. The source region SR (impurity region SR) having n-type conductivity is then formed on top of the channel region CH by ion implantation. The insulating film IF3 is then selectively formed over a portion of the source region SR and over the gate electrode GE. Next, by performing dry etching on a portion exposed on the insulating film IF3, an opening OP2 reaching the channel region CH through the source region SR is formed. The n-type power MOS is manufactured as described above.
  • Next, as shown in FIG. 12, the conductive film AL1 and the conductive film AL2 serving as the source electrode SPD are formed over the insulating film IF3.
  • First, a barrier metal film BM including titanium tungsten (TiW), titanium nitride (TiN), or the like is formed in the opening OP2 and over the insulating film IF3. Then, the conductive film AL1 containing mainly aluminum, for example, is formed over the barrier metal film BM so as to fill the opening OP2. This allows the conductive film AL1 serving as a part of the source electrode SPD to be electrically coupled to the source region SR and the channel region CH.
  • It is to be noted that, in the third embodiment, the barrier metal film BM is formed between the semiconductor substrate SUB and the conductive film AL1 unlike the first embodiment and the second embodiment described above. Accordingly, the conductive film AL1 may use a material mainly containing aluminum and doped with silicon or a material mainly containing aluminum and doped with copper.
  • Here, the conductive film AL1 is formed by sputtering, and the maximum temperature in the forming process ranges from 250 to 400 degrees, which is higher than that in the first embodiment. This is to prevent a void formed in the conductive film AL1 when the conductive film AL1 is filled in the opening OP2. The formation of the conductive film AL1 may be performed in two steps including an initial film formation performed at a low temperature ranging from room temperature (23° C.) to 200° C. and a second step performed at a high temperature ranging from 250 to 400° C. for filling. Moreover, a step is made between the surface of the conductive film AL1 located on top of the opening OP2 and the surface of the conductive film AL1 located on top of the gate electrode GE. To minimize the step to make the entire surface of the conductive film AL1 as flat as possible, it is effective to form the conductive film AL1 at high temperature. For the semiconductor device according to this embodiment, the conductive layer OPM is formed over the source electrode SPD in a later step. Thus, by eliminating any void in the conductive film AL1 serving as apart of the source electrode SPD and flattening its surface, it is possible to make the thickness of the conductive layer OPM more uniform.
  • In such an aluminum film formed at relatively high temperature, however, the size of the aluminum particle tends to be larger compared with an aluminum film formed at relatively low temperature as in the first embodiment. That is, the crystal surface on the surface of the conductive film AL1 tends to have not only the (111) surface but also the (001) surface. Thus, if the conductive layer OPM is formed over the conductive film AL1, separation would easily occur between the source electrode SPD and the conductive layer OPM as in the first embodiment.
  • Therefore, in the third embodiment, the thin insulating film BIF is formed over the conductive film AL1 and then the conductive film AL2 is formed over the conductive film AL1 as in the first embodiment. This can differentiate the crystal surface on the surface of the conductive film AL2 from the crystal surface on the surface of the conductive film AL1. It is to be noted that the method of forming the insulating film BIF and the conductive film AL2 is the same as that in the first embodiment. Accordingly, the crystal surface on the surface of the conductive film AL2 in this embodiment is also the (111) surface.
  • In this embodiment, the temperature of formation of the conductive film AL2 is lower than that of the conductive film ALL and it is about room temperature (23° C.) to 200° C., for example, and more preferably about 150° C. That is, because the conductive film AL1 is formed at relatively high temperature, the flatness of its surface is improved whereas the possibility of generating the (001) surface having a large particle size also increases. Therefore, generation of the (001) surface having the large particle size can be suppressed by forming the conductive film AL2 at relatively low temperature. In other words, in the third embodiment, the area ratio of the (111) surface on the surface of the conductive film AL2 is higher than that of the (111) surface on the surface of the conductive film AL1
  • Then, the source electrode SPD shown in FIG. 12 is formed by patterning the conductive film AL2, the insulating film BIF, the conductive film ALL and the barrier metal film BM using photolithography and dry etching. It is to be noted that a gate pad electrode GPD to be coupled to the gate electrode GE of the power MOS is also formed at this time (not shown in the figure).
  • Next, as shown in FIG. 13, the insulating film IF2 having the opening OP1 is formed over the conductive film AL2 so as to expose a portion of the conductive film AL2 serving as a portion of the source electrode SPD. It is to be noted that the method of forming the insulating film IF2 and its material are the same as those in the first embodiment.
  • Next, by sequentially forming the conductive films PF1 to PF3 using the same technique as in the first embodiment, the conductive layer OPM is formed over the conductive film AL2 in the opening OP1.
  • Then, as in the first embodiment, the back side of the substrate SB is polished to form the drain electrode (back electrode) BE.
  • The semiconductor device of the third embodiment is manufactured according to the above-mentioned steps.
  • As described above, according to the third embodiment, it is possible to suppress the separation between the source electrode SPD and the conductive layer OPM and to obtain the same effect as the first embodiment.
  • FIG. 14 shows a view of a chip CP3 including the power MOS according to the third embodiment formed thereon in the packaged state. Here, as an example of the external connection terminal TR to be coupled to the conductive layer OPM, a case of using a clip made of a copper sheet is described.
  • As shown in FIG. 14, the chip CP3 is mounted over the die pad DP via a solder BP3. The die pad DP also serves as the power source potential terminal DT that supplies power source potential to the chip CP3. That is, the drain electrode BE of the chip CP3 is electrically coupled to the power source potential terminal DT (die pad DP) via the solder BP3.
  • Moreover, the external connection terminal TR is coupled to the chip CP3 via a solder BP4. The external connection terminal TR is electrically coupled to the ground potential terminal ST via a solder BP5. Here, the conductive layer OPM of the chip CP3 is coupled to the solder BP4. That is, the source electrode SPD of the chip CP3 is electrically coupled to the ground potential terminal ST via the conductive layer OPM, the solder BP4, the external connection terminal TR, and the solder BP5.
  • Moreover, the gate pad electrode GPD of the power MOS is coupled to a gate potential terminal GT via a bonding wire WB.
  • Such a chip CP3 is sealed with the sealing resin MR. In this manner, the semiconductor device according to the third embodiment is packaged.
  • Furthermore, it is also possible to apply the technique of the first and second modifications of the first embodiment and the second embodiment to the technique disclosed in the third embodiment.
  • Moreover, although the conductive film AL1 and the conductive film AL2 are employed as the source electrode SPD of the power MOS in the third embodiment, it is also possible to employ the conductive film AL1 and the conductive film AL2 as the emitter electrode of the IGBT. Furthermore, when applied to the IGBT, the channel region CH of the power MOS is a base region.
  • Moreover, when applying the technique disclosed in the third embodiment to the IGBT, the chip CP3 described in the third embodiment maybe employed instead of the chip CP2 shown in FIGS. 8 to 10 of the first embodiment.
  • Although the invention made by the inventors are specifically described with reference to the embodiments, the invention is not limited to the embodiments but various modifications may be made without departing from the scope of the invention.

Claims (20)

What is claimed is:
1. A semiconductor device comprising:
a pad electrode that is formed over a semiconductor substrate and comprises a first conductive film and a second conductive film formed over the first conductive film; and
a plating film that is formed over the second conductive film and serves to be coupled to an external connection terminal,
wherein each of the first and second conductive films comprises a film containing mainly aluminum, and
wherein a crystal surface on a surface of the second conductive film is different from the crystal surface on the surface of the first conductive film.
2. The semiconductor device according to claim 1,
wherein the second conductive film is in direct contact with the plating film, and
wherein the crystal surface on the surface of the second conductive film is a (111) surface.
3. The semiconductor device according to claim 2,
wherein a first insulating film comprising an oxide of a material that configures the first conductive film is formed between the first conductive film and the second conductive film.
4. The semiconductor device according to claim 2,
wherein an amorphous film comprising a material different from that of the first conductive film and the second conductive film is formed between the first conductive film and the second conductive film.
5. The semiconductor device according to claim 2,
wherein an element doped into the second conductive film is different from an element doped into the first conductive film.
6. The semiconductor device according to claim 2,
wherein the semiconductor substrate comprises a diode formed thereon,
wherein a surface of semiconductor substrate provided with the diode is in direct contact with the first conductive film, and
wherein a crystal surface on a surface of the semiconductor substrate and a crustal surface on a surface of the first conductive film are a (001) surface.
7. The semiconductor device according to claim 2,
wherein an area ratio of the (111) surface on the surface of the second conductive film is higher than that of the (111) surface on the surface of the first conductive film.
8. The semiconductor device according to claim 7,
wherein the semiconductor substrate comprises a power MOSFET formed thereon, and
wherein a source electrode of the POWER MOSFET comprises the first conductive film and the second conductive film.
9. A method of manufacturing a semiconductor device, comprising the steps of:
(a) forming a first conductive film over a semiconductor substrate by sputtering;
(b) forming a second conductive film over the first conductive film by sputtering;
(c) providing a pad electrode by patterning on the first conductive film and the second conductive film; and
(d) forming a plating film for coupling to the external connection terminal over the pad electrode by electroless plating,
wherein each of the first and second conductive films comprises a film containing mainly aluminum, and
wherein a crystal surface on a surface of the second conductive film is different from the crystal surface on the surface of the first conductive film.
10. The method of manufacturing a semiconductor device according to claim 9,
wherein the second conductive film is in direct contact with the plating film, and
wherein the crystal surface on the surface of the second conductive film is a (111) surface.
11. The method of manufacturing a semiconductor device according to claim 10, further comprising the step of:
(e) forming a first insulating film over the first conductive film between the steps of (a) and (b) by exposing a surface of the first conductive film to oxygen atmosphere.
12. The method of manufacturing a semiconductor device according to claim 11,
wherein the step (e) is performed by taking out the semiconductor substrate from a sputtering device and expose the semiconductor substrate to atmospheric air.
13. The method of manufacturing a semiconductor device according to claim 11,
wherein the step (e) is performed by introducing oxygen gas into the sputtering device without taking out the semiconductor substrate from the sputtering device used at the step (a), and
wherein the step (b) is performed without taking out the semiconductor substrate from the sputtering device after the step (e).
14. The method of manufacturing a semiconductor device according to claim 11, further comprising the step of:
(f) forming an amorphous film over the first conductive film by sputtering or CVD between the steps (a) and (b).
15. The method of manufacturing a semiconductor device according to claim 10,
wherein an element doped into the second conductive film is different from an element doped into the first conductive film.
16. The method of manufacturing a semiconductor device according to claim 10,
wherein the semiconductor substrate comprises a diode formed thereon,
wherein a cleaning treatment is performed on a surface of the semiconductor substrate having the diode formed thereon before the step (a),
wherein the first conductive film is formed to be in direct contact with the surface of the semiconductor substrate at the step (a), and
wherein a crystal surface on a surface of the semiconductor substrate and a crustal surface on a surface of the first conductive film are a (001) surface.
17. The method of manufacturing a semiconductor device according to claim 10,
wherein temperature for forming the first conductive film is higher than temperature for forming the second conductive film, and
wherein an area ratio of the (111) surface on the surface of the second conductive film is higher than that of the (111) surface on the surface of the first conductive film.
18. The method of manufacturing a semiconductor device according to claim 17,
wherein the semiconductor substrate comprises a power MOSFET formed thereon, and
wherein a source electrode of the POWER MOSFET comprises the first conductive film and the second conductive film.
19. The method of manufacturing a semiconductor device according to claim 10,
wherein a zincate treatment is performed two times between the steps (c) and (d).
20. The method of manufacturing a semiconductor device according to claim 19,
wherein the plating film contains mainly nickel.
US16/029,334 2017-08-24 2018-07-06 Semiconductor device and method of manufacturing the same Abandoned US20190067225A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/225,639 US11652072B2 (en) 2017-08-24 2021-04-08 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017161043A JP7027066B2 (en) 2017-08-24 2017-08-24 Semiconductor devices and their manufacturing methods
JP2017-161043 2017-08-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/225,639 Continuation US11652072B2 (en) 2017-08-24 2021-04-08 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
US20190067225A1 true US20190067225A1 (en) 2019-02-28

Family

ID=65435621

Family Applications (2)

Application Number Title Priority Date Filing Date
US16/029,334 Abandoned US20190067225A1 (en) 2017-08-24 2018-07-06 Semiconductor device and method of manufacturing the same
US17/225,639 Active 2039-02-09 US11652072B2 (en) 2017-08-24 2021-04-08 Semiconductor device and method of manufacturing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
US17/225,639 Active 2039-02-09 US11652072B2 (en) 2017-08-24 2021-04-08 Semiconductor device and method of manufacturing the same

Country Status (3)

Country Link
US (2) US20190067225A1 (en)
JP (1) JP7027066B2 (en)
CN (1) CN109427876A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200013749A1 (en) * 2016-05-20 2020-01-09 Infineon Technologies Ag Chip package and method of forming a chip package with a metal contact structure and protective layer, and method of forming an electrical contact
CN112420819A (en) * 2019-08-23 2021-02-26 三菱电机株式会社 Semiconductor device with a plurality of semiconductor chips
US11152318B2 (en) * 2017-11-22 2021-10-19 Mitsubishi Electric Corporation Semiconductor device and manufacturing method of semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7237785B2 (en) * 2019-09-20 2023-03-13 株式会社東芝 Semiconductor device manufacturing method
CN111540680A (en) * 2020-05-29 2020-08-14 上海华虹宏力半导体制造有限公司 Electroless plating method applied to IGBT device
JP7447703B2 (en) 2020-06-26 2024-03-12 株式会社デンソー Semiconductor device and its manufacturing method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100565A (en) * 1982-11-30 1984-06-09 Fujitsu Ltd Semiconductor device
JPS59172770A (en) * 1983-03-22 1984-09-29 Nec Corp Semiconductor device
JPS61242018A (en) * 1985-04-19 1986-10-28 Toshiba Corp Manufacture of semiconductor device
JP2581666B2 (en) 1985-09-06 1997-02-12 株式会社日立製作所 Manufacturing method of wiring structure
US4987562A (en) * 1987-08-28 1991-01-22 Fujitsu Limited Semiconductor layer structure having an aluminum-silicon alloy layer
JP2680468B2 (en) * 1989-07-01 1997-11-19 株式会社東芝 Semiconductor device and method of manufacturing semiconductor device
US5262361A (en) * 1992-01-07 1993-11-16 Texas Instruments Incorporated Via filling by single crystal aluminum
JPH05206054A (en) * 1992-01-29 1993-08-13 Nec Corp Al contact structure and manufacture thereof
US5501174A (en) 1994-04-07 1996-03-26 Texas Instruments Incorporated Aluminum metallization for sige devices
JP3483490B2 (en) 1999-02-16 2004-01-06 シャープ株式会社 Method for manufacturing semiconductor device
JP5033335B2 (en) 2006-02-21 2012-09-26 ルネサスエレクトロニクス株式会社 Semiconductor device and inverter device using the same
JP4973046B2 (en) 2006-07-20 2012-07-11 株式会社デンソー Manufacturing method of semiconductor device
JP5672685B2 (en) 2009-09-29 2015-02-18 富士電機株式会社 Manufacturing method of semiconductor device
JP2016004877A (en) 2014-06-16 2016-01-12 ルネサスエレクトロニクス株式会社 Semiconductor device and electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200013749A1 (en) * 2016-05-20 2020-01-09 Infineon Technologies Ag Chip package and method of forming a chip package with a metal contact structure and protective layer, and method of forming an electrical contact
US10978418B2 (en) * 2016-05-20 2021-04-13 Infineon Technologies Ag Method of forming an electrical contact and method of forming a chip package with a metal contact structure and protective layer
US11152318B2 (en) * 2017-11-22 2021-10-19 Mitsubishi Electric Corporation Semiconductor device and manufacturing method of semiconductor device
CN112420819A (en) * 2019-08-23 2021-02-26 三菱电机株式会社 Semiconductor device with a plurality of semiconductor chips
US11239329B2 (en) * 2019-08-23 2022-02-01 Mitsubishi Electric Corporation Semiconductor device

Also Published As

Publication number Publication date
JP2019040975A (en) 2019-03-14
CN109427876A (en) 2019-03-05
JP7027066B2 (en) 2022-03-01
US20210225789A1 (en) 2021-07-22
US11652072B2 (en) 2023-05-16

Similar Documents

Publication Publication Date Title
US11652072B2 (en) Semiconductor device and method of manufacturing the same
JP3871607B2 (en) Semiconductor device and manufacturing method thereof
US11728376B2 (en) Structure and formation method of semiconductor device structure with gate stack
US11456265B2 (en) Semiconductor device and method of manufacturing the same
JP4221012B2 (en) Semiconductor device and manufacturing method thereof
US7329614B2 (en) Heat resistant ohmic electrode and method of manufacturing the same
KR20170038645A (en) Semiconductor device and method of manufacturing semiconductor device
JP2015056532A (en) Semiconductor device and manufacturing method of the same
US20120220122A1 (en) Nitride semiconductor device and manufacturing method thereof
US20090026486A1 (en) Nitride based compound semiconductor light emitting device and method of manufacturing the same
TWI557944B (en) Optoelectronic semiconductor chip
CN110582852A (en) vertical gallium nitride schottky diode
JP4800239B2 (en) Manufacturing method of semiconductor device
JP2010165983A (en) Light-emitting chip integrated device and method for manufacturing the same
US6838744B2 (en) Semiconductor device and manufacturing method thereof
JP2009004566A (en) Semiconductor device and method of manufacturing semiconductor device
JP2009010421A (en) Method for mounting semiconductor device on circuit board
JP3340648B2 (en) Method for forming electrode of semiconductor device
JP2007305906A (en) Diode
JP6945037B2 (en) Manufacturing method of semiconductor devices
JP2005333147A (en) Semiconductor device and manufacturing method of same
KR101147715B1 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
AS Assignment

Owner name: RENESAS ELECTRONICS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TONEGAWA, TAKASHI;INAGAWA, HIROSHI;REEL/FRAME:046298/0029

Effective date: 20180530

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE AFTER FINAL ACTION FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION