US20190027364A1 - Semiconductor structure and method for preparing the same - Google Patents

Semiconductor structure and method for preparing the same Download PDF

Info

Publication number
US20190027364A1
US20190027364A1 US15/656,668 US201715656668A US2019027364A1 US 20190027364 A1 US20190027364 A1 US 20190027364A1 US 201715656668 A US201715656668 A US 201715656668A US 2019027364 A1 US2019027364 A1 US 2019027364A1
Authority
US
United States
Prior art keywords
region
line patterns
patterns
semiconductor structure
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/656,668
Inventor
Jeng-Ping Lin
Chiang-Lin Shih
Shing-Yih Shih
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanya Technology Corp
Original Assignee
Nanya Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanya Technology Corp filed Critical Nanya Technology Corp
Priority to US15/656,668 priority Critical patent/US20190027364A1/en
Assigned to NANYA TECHNOLOGY CORPORATION reassignment NANYA TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIN, JENG-PING, SHIH, CHIANG-LIN, SHIH, SHING-YIH
Priority to TW106131179A priority patent/TW201909238A/en
Priority to CN201710994380.9A priority patent/CN109285834B/en
Priority to US15/853,411 priority patent/US10090154B1/en
Publication of US20190027364A1 publication Critical patent/US20190027364A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0338Process specially adapted to improve the resolution of the mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0335Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by their behaviour during the process, e.g. soluble masks, redeposited masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • H01L27/10805
    • H01L27/10894
    • H01L27/10897
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/09Manufacture or treatment with simultaneous manufacture of the peripheral circuit region and memory cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/50Peripheral circuit region structures

Definitions

  • the present disclosure relates to a semiconductor structure and a method for preparing the same.
  • Photolithography process is typically used to fabricate electronic and optoelectronic devices on a semiconductor substrate and photoresist patterns prepared by the photolithography process are used as masks in etching or ion implantation. Therefore, the fineness of the photoresist patterns is a very important factor in determining the degree of integration.
  • One method to increase resolution is to use a light source with a shorter wavelength as the exposure light source.
  • a krypton fluoride (KrF) laser is used to provide deep UV light with a wavelength of 248 nanometers and an argon fluoride (ArF) laser is used to provide deep UV light with a wavelength of 193 nanometers.
  • KrF krypton fluoride
  • ArF argon fluoride
  • Another method of forming such fine photoresist patterns on the semiconductor substrate is through double patterning technique. In a double patterning process, a pattern from a first exposure may be etched onto a photoresist layer on the semiconductor substrate, and the semiconductor substrate is subsequently recoated with the photoresist layer to form a second pattern and then re-etched to obtain the desired pattern.
  • the double patterning technique requires that the exposure process be performed twice, which requires very precise alignment between the two exposure processes.
  • One aspect of the present disclosure provides a semiconductor structure comprising: a substrate having a memory array region and a peripheral circuit region; a plurality of first line patterns positioned in the memory array region and extending along a first direction; a plurality of second line patterns positioned over the first line patterns in the memory array region, wherein the plurality of second line patterns extend along a second direction different from the first direction; a plurality of third line patterns disposed over the first line patterns in the memory array region, wherein the plurality of second line patterns and the plurality of third line patterns are disposed over the first line pattern in an alternate manner; and a plurality of linear features positioned in the peripheral circuit region; wherein the plurality of second line patterns, the plurality of third line patterns, and the plurality of linear features are positioned at substantially the same level in the substrate.
  • the peripheral circuit region is in the absence of the first line patterns.
  • the plurality of linear features in the peripheral circuit region are integrally formed with the plurality of second line patterns in the memory array region.
  • the plurality of linear features in the peripheral circuit region are integrally foiiiied with the plurality of third line patterns in the memory array region.
  • Another aspect of the present disclosure provides a semiconductor structure comprising a substrate having a memory array region and a peripheral circuit region; a plurality of island patterns positioned in the memory array region; and a plurality of linear features in the peripheral circuit region; wherein the plurality of island patterns and the plurality of linear features are positioned at substantially different levels in the substrate.
  • the plurality of island patterns are positioned in the memory array region in an array manner, wherein the array extends along a first direction and a second direction substantially not perpendicular to the first direction.
  • the plurality of linear features extend along the first direction in the peripheral circuit region.
  • the plurality of island patterns are positioned at a first level
  • the plurality of linear features are positioned at a second level
  • the first level is substantially lower than the second level in the substrate.
  • Another aspect of the present disclosure provides a method for preparing a semiconductor structure, comprising: forming a plurality of linear core patterns and a plurality of linear spacer patterns on a substrate, wherein the plurality of linear spacer patterns are formed on sidewalls of the linear core patterns; removing the plurality of linear core patterns from the substrate; removing a portion of the substrate not covered by the plurality of linear spacer patterns to form a plurality of first line patterns, wherein the plurality of first line patterns extend along a first direction; performing a first litho-etch process to form a plurality of second line patterns over the first line patterns, wherein the plurality of second line patterns extend along a second direction different from the first direction; and performing a second litho-etch process to form a plurality of third line patterns over the first line patterns, wherein the plurality of second line patterns and the plurality of third line patterns are formed over the first line pattern in an alternate manner.
  • the second direction is substantially not perpendicular to the first direction.
  • the plurality of first line patterns are formed in a mask layer of the substrate, and a patterning process is performed using the plurality of second line patterns and the plurality of third line patterns to pattern the plurality of first line patterns into a plurality of island patterns.
  • the method further comprises performing an etching process using the plurality of island patterns as an etching mask to remove a portion of a target layer under the mask layer.
  • the substrate comprises a memory array region and a peripheral circuit region, and the first litho-etch process and the second litho-etch process are performed to form the plurality of second line patterns and the plurality of third line patterns in the memory array region and a plurality of linear features in the peripheral circuit region.
  • the plurality of linear features in the peripheral circuit region are integrally formed with the plurality of second line patterns in the memory array region.
  • the plurality of linear features in the peripheral circuit region are integrally formed with the plurality of third line patterns in the memory array region.
  • the substrate comprises a memory array region and a peripheral circuit region, the plurality of first line patterns are formed in the memory array region, and the peripheral circuit region is in the absence of the first line patterns.
  • the forming of the plurality of linear core patterns comprises perfoiiiiing an immersion-litho process.
  • the forming of the plurality of first line patterns comprises performing an etching process using the plurality of linear spacer patterns as an etching mask.
  • FIG. 1 is a schematic layout of a DRAM memory device having a memory array region and a peripheral circuit region in accordance with some embodiments of the present disclosure.
  • FIG. 2 depicts a schematic diagram of a DRAM memory cell in accordance with some embodiments of the present disclosure.
  • FIG. 3 schematically depicts the top view of the memory array region in accordance with some embodiments of the present disclosure.
  • FIG. 4 is a flow chart of the method for preparing a semiconductor structure in accordance with some embodiments of the present disclosure.
  • FIGS. 5 to 29 are schematic views of a process for preparing the semiconductor structure by the method in FIG. 4 in accordance with some embodiments of the present disclosure.
  • references to “one embodiment,” “an embodiment,” “exemplary embodiment,” “other embodiments,” “another embodiment,” etc. indicate that the embodiment(s) of the disclosure so described may include a particular feature, structure, or characteristic, but not every embodiment necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in the embodiment” does not necessarily refer to the same embodiment, although it may.
  • the present disclosure is directed to a semiconductor structure and a method for preparing the same.
  • detailed steps and structures are provided in the following description. Obviously, implementation of the present disclosure does not limit special details known by persons skilled in the art. In addition, known structures and steps are not described in detail, so as not to unnecessarily limit the present disclosure. Preferred embodiments of the present disclosure are described in detail below. However, in addition to the detailed description, the present disclosure may also be widely implemented in other embodiments. The scope of the present disclosure is not limited to the detailed description, but is defined by the claims.
  • FIG. 1 is a schematic layout of a DRAM memory device 10 having a memory array region 11 A and a peripheral circuit region 11 B in accordance with some embodiments of the present disclosure.
  • the memory device 10 comprises a memory array 13 in the memory array region 11 A and a plurality of peripheral circuits 15 in the peripheral circuit region 11 B.
  • a plurality of schematically depicted illustrative peripheral circuits 15 are depicted in FIG. 1 .
  • the illustrative peripheral circuits 15 comprise read-write circuits 15 A, sense amp circuits 15 B and power management circuits 15 C.
  • the illustrative peripheral circuits depicted in FIG. 1 do not comprise an exhaustive set of all such peripheral circuits 15 on the memory device 10 .
  • the peripheral circuit 15 may comprise any circuitry on the memory device 10 including those other than the circuitry found within the memory array 13 .
  • the memory array 13 includes a multitude of memory cells arranged in rows and columns. Each of the memory cells is structured for storing digital information in the form of a logical high (i.e., a “1”) or a logical low (i.e., a “0”).
  • a logical high i.e., a “1”
  • a logical low i.e., a “0”.
  • To write (i.e., store) a bit into a memory cell a binary address having portions identifying the cell's row (the “row address”) and column (the “column address”) is provided to addressing circuitry in the memory device 10 to activate the cell, and the bit is then supplied to the cell.
  • the cell is again activated using the cell's memory address and the bit is then output from the cell.
  • FIG. 2 depicts a schematic diagram of a DRAM memory cell 20 in accordance with some embodiments of the present disclosure.
  • the memory cell 20 comprises a capacitor 21 and a transistor 23 .
  • the capacitor 21 can store charge, which represents one bit of information.
  • the transistor 23 acts as a switch, which controls the flow of charge into or out of the capacitor 21 .
  • the control gate of the transistor 23 is coupled to a word line 25
  • the drain of the transistor 23 is coupled to a bit line 27 .
  • the transistor 23 is activated through the word line 25 , and the charge in the capacitor 21 can be detected by a sense amplifier through the bit line 27 and processed to determine the bit state of the cell 20 .
  • a typical memory array 13 contains thousands or millions of cells 20 .
  • FIG. 3 schematically depicts the top view of the memory array region 11 A in accordance with some embodiments of the present disclosure.
  • the memory array region 11 A comprises a plurality of active areas 31 , a plurality of word lines 25 formed between corresponding active areas 29 , a plurality of bit lines 27 coupled to a portion of active areas 29 , and a plurality of capacitors 21 coupled with other portions of active areas 29 .
  • the plurality of active areas 29 are island patterns positioned in the memory array region 11 A in an array manner, and the array extends along a first direction D 1 and a second direction D 2 substantially not perpendicular to the first direction.
  • FIG. 4 is a flow chart of the method 40 for preparing a semiconductor structure in accordance with some embodiments of the present disclosure.
  • the method 40 comprises a step 41 of foiiiiing a plurality of linear core patterns and a plurality of linear spacer patterns on a substrate, wherein the plurality of linear spacer patterns are formed on sidewalls of the linear core patterns; a step 43 of removing the plurality of linear core patterns from the substrate; a step 45 of removing a portion of the substrate not covered by the plurality of linear spacer patterns to form a plurality of first line patterns, wherein the plurality of first line patterns extend along a first direction; a step 47 of performing a first litho-etch process to form a plurality of second line patterns over the first line patterns, wherein the plurality of second line patterns extend along a second direction different from the first direction; and a step 49 of performing a second litho-etch process to form a plurality of third line patterns over the first line patterns, wherein the plurality of second line patterns
  • FIGS. 5 to 29 are schematic views of a process for preparing the semiconductor structure by the method 40 in FIG. 4 in accordance with some embodiments of the present disclosure.
  • a plurality of linear core patterns 61 and a plurality of linear spacer patterns 65 are formed on a substrate 51 , as shown in FIGS. 5 to 10 .
  • the plurality of linear core patterns 61 are formed on the substrate 51 by deposition, lithography and etching processes.
  • FIG. 5 is a top view of the memory array region 11 A and FIG. 6 is a cross-sectional view along a cross-sectional line A-A in FIG. 5 .
  • the substrate 51 comprises a silicon wafer. In some embodiments, the substrate 51 comprises a metal layer 51 A, a first layer 51 B and a second layer 51 C. In some embodiments, the metal layer 51 A comprises tungsten (W), titanium nitride (TiN) or titanium (Ti). In some embodiments, the first layer 51 B and the second layer 51 C comprise different materials selected from the group consisting of silicon oxide, silicon nitride, silicon oxynitride, silicon, carbon, or the combination thereof.
  • FIG. 7 is a top view of the memory array region 11 A and FIG. 8 is a cross-sectional view along a cross-sectional line B-B in FIG. 7 .
  • a deposition process is performed to form a dielectric layer 63 on the substrate 51 .
  • the deposition process is an atomic layer deposition process, and the dielectric layer 63 covers the plurality of linear core patterns 61 and comprises materials selected from the group consisting of silicon oxide, silicon nitride and silicon oxynitride.
  • FIG. 9 is a top view of the memory array region 11 A and FIG. 10 is a cross-sectional view along a cross-sectional line C-C in FIG. 9 .
  • a spacer etching process is performed to remove a portion of the dielectric layer 63 so as to form the plurality of linear spacer patterns 65 on sidewalls of the linear core patterns 61 .
  • FIG. 11 is a top view of the memory array region 11 A and FIG. 12 is a cross-sectional view along a cross-sectional line D-D in FIG. 11 .
  • the plurality of linear core patterns 61 are removed from the substrate 51 .
  • the space between the linear spacer patterns 65 in FIG. 12 is smaller than the space between the linear core patterns 61 in FIG. 6 .
  • the space between the linear spacer patterns 65 in FIG. 12 is half of the space between the linear core patterns 61 in FIG. 6 .
  • FIG. 13 is a top view of the memory array region 11 A and FIG. 14 is a cross-sectional view along a cross-sectional line E-E in FIG. 13 .
  • step 45 of the method 40 a portion of the substrate 51 not covered by the plurality of linear spacer patterns 65 is removed to form a plurality of first line patterns 67 , wherein the plurality of first line patterns 67 extend along a first direction D 1 .
  • an etching process is performed using the linear spacer patterns 65 as etching masks to remove a portion of the second layer 51 C not covered by the plurality of linear spacer patterns 65 , so as to form the plurality of first line patterns 67 under the linear spacer patterns 65 , which are then stripped from the substrate 51 .
  • the plurality of first line patterns 67 are formed in the memory array region 11 A; in other words, the peripheral circuit region 11 B is in the absence of the first line patterns 37 .
  • FIG. 15 is a top view of the memory array region 11 A
  • FIG. 16 is a cross-sectional view along a cross-sectional line F-F in FIG. 15
  • FIG. 17 is a cross-sectional view along a cross-sectional line G-G in FIG. 15
  • a third layer 69 and a fourth layer 71 are formed on the substrate 51 by deposition process.
  • a first litho-etch process is performed to remove a portion of the fourth layer 71 , so as to form a plurality of second line patterns 73 over the first line patterns 67 .
  • the plurality of second line patterns 73 extend along a second direction D 2 different from the first direction D 1 .
  • the second direction D 2 is substantially not perpendicular to the first direction D 1 .
  • the first litho-etch process includes forming a patterned photoresist layer by lithography and performing an etching process using the patterned photoresist layer as an etching mask to remove a portion of the fourth layer 71 not covered by the etching mask.
  • FIG. 18 is a top view of the peripheral circuit region 11 B and FIG. 19 is a cross-sectional view along a cross-sectional line H-H in FIG. 18 .
  • the first litho-etch process also forms a plurality of linear features 75 in the peripheral circuit region 11 B; in other words, the plurality of linear features 75 in the peripheral circuit region 11 B are integrally formed with the plurality of second line patterns 73 in the memory array region 11 A.
  • the corresponding elements of the linear features 75 and the second line patterns 73 are formed substantially by the same fabrication process, and have substantially the same physical and chemical properties as they are integrally formed with each other.
  • FIG. 20 is a top view of the memory array region 11 A
  • FIG. 21 is a cross-sectional view along a cross-sectional line I-I in FIG. 20
  • FIG. 21 is a cross-sectional view along a cross-sectional line J-J in FIG. 20
  • a second litho-etch process is performed to remove a portion of the fourth layer 71 to form a plurality of third line patterns 77 over the first line patterns 67 .
  • the plurality of third line patterns 77 extend along the second direction D 2 different from the first direction D 1 .
  • the plurality of second line patterns 73 and the plurality of third line patterns 77 are formed over the first line patterns 67 in an alternate manner
  • the second litho-etch process includes forming a patterned photoresist layer by lithography and performing an etching process using the patterned photoresist layer as an etching mask to remove a portion of the fourth layer 71 not covered by the etching mask.
  • FIG. 23 is a top view of the peripheral circuit region 11 B and FIG. 24 is a cross-sectional view along a cross-sectional line K-K in FIG. 23 .
  • the second litho-etch process in step 49 of the method 40 , also forms a plurality of linear features 79 in the peripheral circuit region 11 B; in other words, the plurality of linear features 79 in the peripheral circuit region 11 B are integrally formed with the plurality of third line patterns 77 in the memory array region 11 A.
  • the plurality of second line patterns 73 , the plurality of third line patterns 77 , and the plurality of linear features 75 , 79 are positioned at substantially the same level in the substrate 51 .
  • the corresponding elements of the linear features 79 and the third line patterns 77 are formed substantially by the same fabrication process, and have substantially the same physical and chemical properties as they are integrally formed with each other.
  • FIG. 20 is a top view of the memory array region 11 A
  • FIG. 21 is a cross-sectional view along a cross-sectional line L-L in FIG. 20
  • FIG. 21 is a cross-sectional view along a cross-sectional line M-M in FIG. 20
  • FIG. 28 is a top view of the peripheral circuit region 11 B
  • FIG. 29 is a cross-sectional view along a cross-sectional line N-N in FIG. 28 .
  • an etching process is performed using the patterned fourth layer 71 to pattern the third layer 69 in the memory array region 11 A and in the peripheral circuit region 11 B.
  • etching process is performed using the patterned third layer 69 to pattern the second layer 51 C in the memory array region 11 A and in the peripheral circuit region 11 B, so as to form a plurality of island patterns 81 in the memory array region 11 A and a plurality of linear features 83 in the peripheral circuit region 11 B.
  • the plurality of first line patterns 67 are formed in the second layer (mask layer) 51 C of the substrate, and the two-etch process serves as a patterning process using the plurality of second line patterns 73 and the plurality of third line patterns 77 to pattern the plurality of first line patterns 67 into the plurality of island patterns 81 in the memory array region 11 A.
  • the plurality of island patterns 81 and the plurality of linear features 83 are positioned at substantially different levels in the substrate 51 .
  • the plurality of island patterns 81 are positioned at a first level
  • the plurality of linear features 83 are positioned at a second level
  • the first level is substantially lower than the second level in the substrate 51 .
  • the island patterns 81 are active areas positioned in the memory array region 11 A in an array manner, the array extends along the first direction D 1 and the second direction D 2 substantially not perpendicular to the first direction D 1 .
  • the plurality of linear features 83 extend along the first direction D 1 in the peripheral circuit region 11 B.
  • a semiconductor structure includes a substrate having a memory array region and a peripheral circuit region; a plurality of first line patterns positioned in the memory array region and extending along a first direction; a plurality of second line patterns positioned over the first line patterns in the memory array region; and a plurality of linear features positioned in the peripheral circuit region.
  • the plurality of second line patterns extend along a second direction different from the first direction.
  • the plurality of second line patterns and the plurality of linear features are positioned at substantially the same level in the substrate.
  • a semiconductor structure includes a substrate having a memory array region and a peripheral circuit region; a plurality of island patterns positioned in the memory array region; and a plurality of linear features in the peripheral circuit region.
  • the plurality of island patterns and the plurality of linear features are positioned at substantially different levels in the substrate.
  • a method for preparing a semiconductor structure comprises forming a plurality of linear core patterns and a plurality of linear spacer patterns on a substrate, wherein the plurality of linear spacer patterns are fornied on sidewalls of the linear core patterns.
  • the method removes the plurality of linear core patterns from the substrate, and then removes a portion of the substrate not covered by the plurality of linear spacer patterns to form a plurality of first line patterns, wherein the plurality of first line patterns extend along a first direction.
  • the method performs a first litho-etch process to form a plurality of second line patterns over the first line patterns, and performs a second litho-etch process to form a plurality of third line patterns over the first line patterns, wherein the plurality of second line patterns and the plurality of third line patterns are formed over the first line pattern in an alternate manner.
  • the plurality of second line patterns extend along a second direction different from the first direction.

Abstract

A semiconductor structure includes a substrate having a memory array region and a peripheral circuit region; a plurality of first line patterns positioned in the memory array region and extending along a first direction; a plurality of second line patterns positioned over the first line patterns in the memory array region; and a plurality of linear features positioned in the peripheral circuit region. The plurality of second line patterns extend along a second direction different from the first direction. The plurality of second line patterns and the plurality of linear features are positioned at substantially the same level in the substrate.

Description

    TECHNICAL FIELD
  • The present disclosure relates to a semiconductor structure and a method for preparing the same.
  • DISCUSSION OF THE BACKGROUND
  • As the integration density of semiconductor devices increases, the lithographic process requires higher resolution to meet the precision requirements of the semiconductor devices. Photolithography process is typically used to fabricate electronic and optoelectronic devices on a semiconductor substrate and photoresist patterns prepared by the photolithography process are used as masks in etching or ion implantation. Therefore, the fineness of the photoresist patterns is a very important factor in determining the degree of integration.
  • One method to increase resolution is to use a light source with a shorter wavelength as the exposure light source. For example, a krypton fluoride (KrF) laser is used to provide deep UV light with a wavelength of 248 nanometers and an argon fluoride (ArF) laser is used to provide deep UV light with a wavelength of 193 nanometers. Another method of forming such fine photoresist patterns on the semiconductor substrate is through double patterning technique. In a double patterning process, a pattern from a first exposure may be etched onto a photoresist layer on the semiconductor substrate, and the semiconductor substrate is subsequently recoated with the photoresist layer to form a second pattern and then re-etched to obtain the desired pattern. However, the double patterning technique requires that the exposure process be performed twice, which requires very precise alignment between the two exposure processes.
  • This Discussion of the Background section is provided for background information only. The statements in this Discussion of the Background are not an admission that the subject matter disclosed in this section constitutes prior art to the present disclosure, and no part of this Discussion of the Background section may be used as an admission that any part of this application, including this Discussion of the Background section, constitutes prior art to the present disclosure.
  • SUMMARY
  • One aspect of the present disclosure provides a semiconductor structure comprising: a substrate having a memory array region and a peripheral circuit region; a plurality of first line patterns positioned in the memory array region and extending along a first direction; a plurality of second line patterns positioned over the first line patterns in the memory array region, wherein the plurality of second line patterns extend along a second direction different from the first direction; a plurality of third line patterns disposed over the first line patterns in the memory array region, wherein the plurality of second line patterns and the plurality of third line patterns are disposed over the first line pattern in an alternate manner; and a plurality of linear features positioned in the peripheral circuit region; wherein the plurality of second line patterns, the plurality of third line patterns, and the plurality of linear features are positioned at substantially the same level in the substrate.
  • In some embodiments, the peripheral circuit region is in the absence of the first line patterns.
  • In some embodiments, the plurality of linear features in the peripheral circuit region are integrally formed with the plurality of second line patterns in the memory array region.
  • In some embodiments, the plurality of linear features in the peripheral circuit region are integrally foiiiied with the plurality of third line patterns in the memory array region.
  • Another aspect of the present disclosure provides a semiconductor structure comprising a substrate having a memory array region and a peripheral circuit region; a plurality of island patterns positioned in the memory array region; and a plurality of linear features in the peripheral circuit region; wherein the plurality of island patterns and the plurality of linear features are positioned at substantially different levels in the substrate.
  • In some embodiments, the plurality of island patterns are positioned in the memory array region in an array manner, wherein the array extends along a first direction and a second direction substantially not perpendicular to the first direction.
  • In some embodiments, the plurality of linear features extend along the first direction in the peripheral circuit region.
  • In some embodiments, the plurality of island patterns are positioned at a first level, the plurality of linear features are positioned at a second level, and the first level is substantially lower than the second level in the substrate.
  • Another aspect of the present disclosure provides a method for preparing a semiconductor structure, comprising: forming a plurality of linear core patterns and a plurality of linear spacer patterns on a substrate, wherein the plurality of linear spacer patterns are formed on sidewalls of the linear core patterns; removing the plurality of linear core patterns from the substrate; removing a portion of the substrate not covered by the plurality of linear spacer patterns to form a plurality of first line patterns, wherein the plurality of first line patterns extend along a first direction; performing a first litho-etch process to form a plurality of second line patterns over the first line patterns, wherein the plurality of second line patterns extend along a second direction different from the first direction; and performing a second litho-etch process to form a plurality of third line patterns over the first line patterns, wherein the plurality of second line patterns and the plurality of third line patterns are formed over the first line pattern in an alternate manner.
  • In some embodiments, the second direction is substantially not perpendicular to the first direction.
  • In some embodiments, the plurality of first line patterns are formed in a mask layer of the substrate, and a patterning process is performed using the plurality of second line patterns and the plurality of third line patterns to pattern the plurality of first line patterns into a plurality of island patterns.
  • In some embodiments, the method further comprises performing an etching process using the plurality of island patterns as an etching mask to remove a portion of a target layer under the mask layer.
  • In some embodiments, the substrate comprises a memory array region and a peripheral circuit region, and the first litho-etch process and the second litho-etch process are performed to form the plurality of second line patterns and the plurality of third line patterns in the memory array region and a plurality of linear features in the peripheral circuit region.
  • In some embodiments, the plurality of linear features in the peripheral circuit region are integrally formed with the plurality of second line patterns in the memory array region.
  • In some embodiments, the plurality of linear features in the peripheral circuit region are integrally formed with the plurality of third line patterns in the memory array region.
  • In some embodiments, the substrate comprises a memory array region and a peripheral circuit region, the plurality of first line patterns are formed in the memory array region, and the peripheral circuit region is in the absence of the first line patterns.
  • In some embodiments, the forming of the plurality of linear core patterns comprises perfoiiiiing an immersion-litho process.
  • In some embodiments, the forming of the plurality of first line patterns comprises performing an etching process using the plurality of linear spacer patterns as an etching mask.
  • The foregoing has outlined rather broadly the features and technical advantages of the present disclosure in order that the detailed description of the disclosure that follows may be better understood. Additional features and advantages of the disclosure will be described hereinafter, and form the subject of the claims of the disclosure. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the disclosure as set forth in the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete understanding of the present disclosure may be derived by referring to the detailed description and claims when considered in connection with the Figures, where like reference numbers refer to similar elements throughout the Figures, and:
  • FIG. 1 is a schematic layout of a DRAM memory device having a memory array region and a peripheral circuit region in accordance with some embodiments of the present disclosure.
  • FIG. 2 depicts a schematic diagram of a DRAM memory cell in accordance with some embodiments of the present disclosure.
  • FIG. 3 schematically depicts the top view of the memory array region in accordance with some embodiments of the present disclosure.
  • FIG. 4 is a flow chart of the method for preparing a semiconductor structure in accordance with some embodiments of the present disclosure.
  • FIGS. 5 to 29 are schematic views of a process for preparing the semiconductor structure by the method in FIG. 4 in accordance with some embodiments of the present disclosure.
  • DETAILED DESCRIPTION
  • The following description of the disclosure accompanies drawings, which are incorporated in and constitute a part of this specification, and illustrate embodiments of the disclosure, but the disclosure is not limited to the embodiments. In addition, the following embodiments can be properly integrated to complete another embodiment.
  • References to “one embodiment,” “an embodiment,” “exemplary embodiment,” “other embodiments,” “another embodiment,” etc. indicate that the embodiment(s) of the disclosure so described may include a particular feature, structure, or characteristic, but not every embodiment necessarily includes the particular feature, structure, or characteristic. Further, repeated use of the phrase “in the embodiment” does not necessarily refer to the same embodiment, although it may.
  • The present disclosure is directed to a semiconductor structure and a method for preparing the same. In order to make the present disclosure completely comprehensible, detailed steps and structures are provided in the following description. Obviously, implementation of the present disclosure does not limit special details known by persons skilled in the art. In addition, known structures and steps are not described in detail, so as not to unnecessarily limit the present disclosure. Preferred embodiments of the present disclosure are described in detail below. However, in addition to the detailed description, the present disclosure may also be widely implemented in other embodiments. The scope of the present disclosure is not limited to the detailed description, but is defined by the claims.
  • A variety of semiconductor memory devices are used extensively in many consumer products. Illustrative examples of such memory devices include dynamic random access memory (DRAM) and flash memory devices. FIG. 1 is a schematic layout of a DRAM memory device 10 having a memory array region 11A and a peripheral circuit region 11B in accordance with some embodiments of the present disclosure. In general, the memory device 10 comprises a memory array 13 in the memory array region 11A and a plurality of peripheral circuits 15 in the peripheral circuit region 11B. By way of example only, a plurality of schematically depicted illustrative peripheral circuits 15 are depicted in FIG. 1. More specifically, the illustrative peripheral circuits 15 comprise read-write circuits 15A, sense amp circuits 15B and power management circuits 15C. The illustrative peripheral circuits depicted in FIG. 1 do not comprise an exhaustive set of all such peripheral circuits 15 on the memory device 10. In other words, the peripheral circuit 15 may comprise any circuitry on the memory device 10 including those other than the circuitry found within the memory array 13.
  • The memory array 13 includes a multitude of memory cells arranged in rows and columns. Each of the memory cells is structured for storing digital information in the form of a logical high (i.e., a “1”) or a logical low (i.e., a “0”). To write (i.e., store) a bit into a memory cell, a binary address having portions identifying the cell's row (the “row address”) and column (the “column address”) is provided to addressing circuitry in the memory device 10 to activate the cell, and the bit is then supplied to the cell. Similarly, to read (i.e., retrieve) a bit from a memory cell, the cell is again activated using the cell's memory address and the bit is then output from the cell.
  • FIG. 2 depicts a schematic diagram of a DRAM memory cell 20 in accordance with some embodiments of the present disclosure. The memory cell 20 comprises a capacitor 21 and a transistor 23. The capacitor 21 can store charge, which represents one bit of information. The transistor 23 acts as a switch, which controls the flow of charge into or out of the capacitor 21. The control gate of the transistor 23 is coupled to a word line 25, and the drain of the transistor 23 is coupled to a bit line 27. When a cell is read, the transistor 23 is activated through the word line 25, and the charge in the capacitor 21 can be detected by a sense amplifier through the bit line 27 and processed to determine the bit state of the cell 20. A typical memory array 13 contains thousands or millions of cells 20.
  • FIG. 3 schematically depicts the top view of the memory array region 11A in accordance with some embodiments of the present disclosure. As shown in FIG. 3, the memory array region 11A comprises a plurality of active areas 31, a plurality of word lines 25 formed between corresponding active areas 29, a plurality of bit lines 27 coupled to a portion of active areas 29, and a plurality of capacitors 21 coupled with other portions of active areas 29. In some embodiments, the plurality of active areas 29 are island patterns positioned in the memory array region 11A in an array manner, and the array extends along a first direction D1 and a second direction D2 substantially not perpendicular to the first direction.
  • FIG. 4 is a flow chart of the method 40 for preparing a semiconductor structure in accordance with some embodiments of the present disclosure. The method 40 comprises a step 41 of foiiiiing a plurality of linear core patterns and a plurality of linear spacer patterns on a substrate, wherein the plurality of linear spacer patterns are formed on sidewalls of the linear core patterns; a step 43 of removing the plurality of linear core patterns from the substrate; a step 45 of removing a portion of the substrate not covered by the plurality of linear spacer patterns to form a plurality of first line patterns, wherein the plurality of first line patterns extend along a first direction; a step 47 of performing a first litho-etch process to form a plurality of second line patterns over the first line patterns, wherein the plurality of second line patterns extend along a second direction different from the first direction; and a step 49 of performing a second litho-etch process to form a plurality of third line patterns over the first line patterns, wherein the plurality of second line patterns and the plurality of third line patterns are formed over the first line pattern in an alternate manner.
  • The following describes an exemplary process flow of the injection molding simulation method 40 in accordance with some embodiments of the present disclosure. FIGS. 5 to 29 are schematic views of a process for preparing the semiconductor structure by the method 40 in FIG. 4 in accordance with some embodiments of the present disclosure.
  • In step 41 of the method 40, a plurality of linear core patterns 61 and a plurality of linear spacer patterns 65 are formed on a substrate 51, as shown in FIGS. 5 to 10. In some embodiments, referring to FIG. 5 and FIG. 6, the plurality of linear core patterns 61 are formed on the substrate 51 by deposition, lithography and etching processes. FIG. 5 is a top view of the memory array region 11A and FIG. 6 is a cross-sectional view along a cross-sectional line A-A in FIG. 5.
  • In some embodiments, the substrate 51 comprises a silicon wafer. In some embodiments, the substrate 51 comprises a metal layer 51A, a first layer 51B and a second layer 51C. In some embodiments, the metal layer 51A comprises tungsten (W), titanium nitride (TiN) or titanium (Ti). In some embodiments, the first layer 51B and the second layer 51C comprise different materials selected from the group consisting of silicon oxide, silicon nitride, silicon oxynitride, silicon, carbon, or the combination thereof.
  • FIG. 7 is a top view of the memory array region 11A and FIG. 8 is a cross-sectional view along a cross-sectional line B-B in FIG. 7. In some embodiments, a deposition process is performed to form a dielectric layer 63 on the substrate 51. In some embodiments, the deposition process is an atomic layer deposition process, and the dielectric layer 63 covers the plurality of linear core patterns 61 and comprises materials selected from the group consisting of silicon oxide, silicon nitride and silicon oxynitride.
  • FIG. 9 is a top view of the memory array region 11A and FIG. 10 is a cross-sectional view along a cross-sectional line C-C in FIG. 9. In some embodiments, a spacer etching process is performed to remove a portion of the dielectric layer 63 so as to form the plurality of linear spacer patterns 65 on sidewalls of the linear core patterns 61.
  • FIG. 11 is a top view of the memory array region 11A and FIG. 12 is a cross-sectional view along a cross-sectional line D-D in FIG. 11. In step 43 of the method 40, the plurality of linear core patterns 61 are removed from the substrate 51. The space between the linear spacer patterns 65 in FIG. 12 is smaller than the space between the linear core patterns 61 in FIG. 6. In some embodiments, the space between the linear spacer patterns 65 in FIG. 12 is half of the space between the linear core patterns 61 in FIG. 6.
  • FIG. 13 is a top view of the memory array region 11A and FIG. 14 is a cross-sectional view along a cross-sectional line E-E in FIG. 13. In step 45 of the method 40, a portion of the substrate 51 not covered by the plurality of linear spacer patterns 65 is removed to form a plurality of first line patterns 67, wherein the plurality of first line patterns 67 extend along a first direction D1. In some embodiments, an etching process is performed using the linear spacer patterns 65 as etching masks to remove a portion of the second layer 51C not covered by the plurality of linear spacer patterns 65, so as to form the plurality of first line patterns 67 under the linear spacer patterns 65, which are then stripped from the substrate 51. In some embodiments, the plurality of first line patterns 67 are formed in the memory array region 11A; in other words, the peripheral circuit region 11B is in the absence of the first line patterns 37.
  • FIG. 15 is a top view of the memory array region 11A, FIG. 16 is a cross-sectional view along a cross-sectional line F-F in FIG. 15, and FIG. 17 is a cross-sectional view along a cross-sectional line G-G in FIG. 15. In some embodiments, a third layer 69 and a fourth layer 71 are formed on the substrate 51 by deposition process. In step 47 of the method 40, a first litho-etch process is performed to remove a portion of the fourth layer 71, so as to form a plurality of second line patterns 73 over the first line patterns 67. In some embodiments, the plurality of second line patterns 73 extend along a second direction D2 different from the first direction D1. In some embodiments, the second direction D2 is substantially not perpendicular to the first direction D1. In some embodiments, the first litho-etch process includes forming a patterned photoresist layer by lithography and performing an etching process using the patterned photoresist layer as an etching mask to remove a portion of the fourth layer 71 not covered by the etching mask.
  • FIG. 18 is a top view of the peripheral circuit region 11B and FIG. 19 is a cross-sectional view along a cross-sectional line H-H in FIG. 18. In some embodiments, in step 47 of the method 40, the first litho-etch process also forms a plurality of linear features 75 in the peripheral circuit region 11B; in other words, the plurality of linear features 75 in the peripheral circuit region 11B are integrally formed with the plurality of second line patterns 73 in the memory array region 11A. In some embodiments, the corresponding elements of the linear features 75 and the second line patterns 73 are formed substantially by the same fabrication process, and have substantially the same physical and chemical properties as they are integrally formed with each other.
  • FIG. 20 is a top view of the memory array region 11A, FIG. 21 is a cross-sectional view along a cross-sectional line I-I in FIG. 20, and FIG. 21 is a cross-sectional view along a cross-sectional line J-J in FIG. 20. In some embodiments, in step 49 of the method 40, a second litho-etch process is performed to remove a portion of the fourth layer 71 to form a plurality of third line patterns 77 over the first line patterns 67. In some embodiments, the plurality of third line patterns 77 extend along the second direction D2 different from the first direction D1. In some embodiments, the plurality of second line patterns 73 and the plurality of third line patterns 77 are formed over the first line patterns 67 in an alternate manner In some embodiments, the second litho-etch process includes forming a patterned photoresist layer by lithography and performing an etching process using the patterned photoresist layer as an etching mask to remove a portion of the fourth layer 71 not covered by the etching mask.
  • FIG. 23 is a top view of the peripheral circuit region 11B and FIG. 24 is a cross-sectional view along a cross-sectional line K-K in FIG. 23. In some embodiments, in step 49 of the method 40, the second litho-etch process also forms a plurality of linear features 79 in the peripheral circuit region 11B; in other words, the plurality of linear features 79 in the peripheral circuit region 11B are integrally formed with the plurality of third line patterns 77 in the memory array region 11A. In some embodiments, the plurality of second line patterns 73, the plurality of third line patterns 77, and the plurality of linear features 75, 79 are positioned at substantially the same level in the substrate 51. In some embodiments, the corresponding elements of the linear features 79 and the third line patterns 77 are formed substantially by the same fabrication process, and have substantially the same physical and chemical properties as they are integrally formed with each other.
  • FIG. 20 is a top view of the memory array region 11A, FIG. 21 is a cross-sectional view along a cross-sectional line L-L in FIG. 20, and FIG. 21 is a cross-sectional view along a cross-sectional line M-M in FIG. 20. FIG. 28 is a top view of the peripheral circuit region 11B and FIG. 29 is a cross-sectional view along a cross-sectional line N-N in FIG. 28. In some embodiments, an etching process is performed using the patterned fourth layer 71 to pattern the third layer 69 in the memory array region 11A and in the peripheral circuit region 11B. Subsequently, another etching process is performed using the patterned third layer 69 to pattern the second layer 51C in the memory array region 11A and in the peripheral circuit region 11B, so as to form a plurality of island patterns 81 in the memory array region 11A and a plurality of linear features 83 in the peripheral circuit region 11B.
  • Referring to FIG. 13 and FIG. 25, the plurality of first line patterns 67 are formed in the second layer (mask layer) 51C of the substrate, and the two-etch process serves as a patterning process using the plurality of second line patterns 73 and the plurality of third line patterns 77 to pattern the plurality of first line patterns 67 into the plurality of island patterns 81 in the memory array region 11A.
  • In some embodiments, the plurality of island patterns 81 and the plurality of linear features 83 are positioned at substantially different levels in the substrate 51. In some embodiments, the plurality of island patterns 81 are positioned at a first level, the plurality of linear features 83 are positioned at a second level, and the first level is substantially lower than the second level in the substrate 51. In some embodiments, the island patterns 81 are active areas positioned in the memory array region 11A in an array manner, the array extends along the first direction D1 and the second direction D2 substantially not perpendicular to the first direction D1. In some embodiments, the plurality of linear features 83 extend along the first direction D1 in the peripheral circuit region 11B.
  • In some embodiments, a semiconductor structure includes a substrate having a memory array region and a peripheral circuit region; a plurality of first line patterns positioned in the memory array region and extending along a first direction; a plurality of second line patterns positioned over the first line patterns in the memory array region; and a plurality of linear features positioned in the peripheral circuit region. In some embodiments, the plurality of second line patterns extend along a second direction different from the first direction. In some embodiments, the plurality of second line patterns and the plurality of linear features are positioned at substantially the same level in the substrate.
  • In some embodiments, a semiconductor structure includes a substrate having a memory array region and a peripheral circuit region; a plurality of island patterns positioned in the memory array region; and a plurality of linear features in the peripheral circuit region. In some embodiments, the plurality of island patterns and the plurality of linear features are positioned at substantially different levels in the substrate.
  • In some embodiments, a method for preparing a semiconductor structure comprises forming a plurality of linear core patterns and a plurality of linear spacer patterns on a substrate, wherein the plurality of linear spacer patterns are fornied on sidewalls of the linear core patterns. In some embodiments, the method removes the plurality of linear core patterns from the substrate, and then removes a portion of the substrate not covered by the plurality of linear spacer patterns to form a plurality of first line patterns, wherein the plurality of first line patterns extend along a first direction. Subsequently, the method performs a first litho-etch process to form a plurality of second line patterns over the first line patterns, and performs a second litho-etch process to form a plurality of third line patterns over the first line patterns, wherein the plurality of second line patterns and the plurality of third line patterns are formed over the first line pattern in an alternate manner. In some embodiments, the plurality of second line patterns extend along a second direction different from the first direction.
  • Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. For example, many of the processes discussed above can be implemented in different methodologies and replaced by other processes, or a combination thereof.
  • Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims (20)

1. A semiconductor structure, comprising:
a substrate having a first region and a second region;
a plurality of first line patterns positioned in the first region and extending along a first direction;
a plurality of second line patterns positioned over the first line patterns in the first region, wherein the plurality of second line patterns extend along a second direction substantially not perpendicular to the first direction; and
a plurality of linear features positioned in the second region;
wherein the plurality of second line patterns and the plurality of linear features are positioned at substantially the same level in the substrate.
2. The semiconductor structure of claim 1, further comprising a plurality of third line patterns disposed over the first line patterns in the first region, wherein the plurality of second line patterns and the plurality of third line patterns are disposed over the first line pattern in an alternate manner.
3. The semiconductor structure of claim 2, wherein the plurality of second line patterns, the plurality of third line patterns, and the plurality of linear features are positioned at substantially the same level in the substrate.
4. The semiconductor structure of claim 1, wherein the second region is in the absence of the first line patterns.
5. The semiconductor structure of claim 1, wherein the plurality of linear features in the second region are integrally formed with the plurality of second line patterns in the first region.
6. The semiconductor structure of claim 1, wherein the plurality of linear features in the second region are integrally formed with the plurality of third line patterns in the first region.
7. The semiconductor structure of claim 1, wherein the first region is a memory array region, and the second region is a peripheral circuit region.
8. A semiconductor structure, comprising:
a substrate having a first region and a second region;
a plurality of island patterns positioned only in the first region; and
a plurality of linear features only in the second region;
wherein the plurality of island patterns and the plurality of linear features are positioned at substantially different levels in the substrate.
9. The semiconductor structure of claim 8, wherein the plurality of island patterns are positioned in the first region in an array manner, the array extends along a first direction and a second direction substantially not perpendicular to the first direction.
10. The semiconductor structure of claim 9, wherein the plurality of linear features extend along the first direction in the second region.
11. The semiconductor structure of claim 8, wherein the plurality of island patterns are positioned at a first level, the plurality of linear features are positioned at a second level, and the first level is substantially lower than the second level in the substrate.
12. The semiconductor structure of claim 8, wherein the first region is a memory array region, and the second region is a peripheral circuit region.
13. A method for preparing a semiconductor structure, comprising:
forming a plurality of linear core patterns and a plurality of linear spacer patterns on a substrate, wherein the plurality of linear spacer patterns are formed on sidewalls of the linear core patterns;
removing the plurality of linear core patterns from the substrate;
removing a portion of the substrate not covered by the plurality of linear spacer patterns to form a plurality of first line patterns, wherein the plurality of first line patterns extend along a first direction;
performing a first litho-etch process to form a plurality of second line patterns over the first line patterns, wherein the plurality of second line patterns extend along a second direction different from the first direction; and
performing a second litho-etch process to form a plurality of third line patterns over the first line patterns, wherein the plurality of second line patterns and the plurality of third line patterns are formed over the first line pattern in an alternate manner
14. The method for preparing a semiconductor structure of claim 13, wherein the second direction is substantially not perpendicular to the first direction.
15. The method for preparing a semiconductor structure of claim 13, wherein the plurality of first line patterns are formed in a mask layer of the substrate, and a patterning process is performed using the plurality of second line patterns and the plurality of third line patterns to pattern the plurality of first line patterns into a plurality of island patterns.
16. The method for preparing a semiconductor structure of claim 13, wherein the substrate comprises a first region and a second region, and the first litho-etch process and the second litho-etch process are performed to form the plurality of second line patterns and the plurality of third line patterns in the first region and a plurality of linear features in the second region.
17. The method for preparing a semiconductor structure of claim 16, wherein the plurality of linear features in the second region are integrally formed with the plurality of second line patterns in the first region.
18. The method for preparing a semiconductor structure of claim 16, wherein the plurality of linear features in the second region are integrally formed with the plurality of third line patterns in the first region.
19. The method for preparing a semiconductor structure of claim 13, wherein the substrate comprises a first region and a second region, the plurality of first line patterns are formed in the first region, and the second region is in the absence of the first line patterns.
20. The method for preparing a semiconductor structure of claim 13, wherein the forming of the plurality of first line patterns comprises performing an etching process using the plurality of linear spacer patterns as an etching mask.
US15/656,668 2017-07-21 2017-07-21 Semiconductor structure and method for preparing the same Abandoned US20190027364A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/656,668 US20190027364A1 (en) 2017-07-21 2017-07-21 Semiconductor structure and method for preparing the same
TW106131179A TW201909238A (en) 2017-07-21 2017-09-12 Semiconductor structure and method of manufacturing same
CN201710994380.9A CN109285834B (en) 2017-07-21 2017-10-23 Semiconductor structure and manufacturing method thereof
US15/853,411 US10090154B1 (en) 2017-07-21 2017-12-22 Method for preparing a semiconductor structure having second line patterns and third line patterns formed over first line patterns

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/656,668 US20190027364A1 (en) 2017-07-21 2017-07-21 Semiconductor structure and method for preparing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/853,411 Division US10090154B1 (en) 2017-07-21 2017-12-22 Method for preparing a semiconductor structure having second line patterns and third line patterns formed over first line patterns

Publications (1)

Publication Number Publication Date
US20190027364A1 true US20190027364A1 (en) 2019-01-24

Family

ID=63638752

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/656,668 Abandoned US20190027364A1 (en) 2017-07-21 2017-07-21 Semiconductor structure and method for preparing the same
US15/853,411 Active US10090154B1 (en) 2017-07-21 2017-12-22 Method for preparing a semiconductor structure having second line patterns and third line patterns formed over first line patterns

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/853,411 Active US10090154B1 (en) 2017-07-21 2017-12-22 Method for preparing a semiconductor structure having second line patterns and third line patterns formed over first line patterns

Country Status (3)

Country Link
US (2) US20190027364A1 (en)
CN (1) CN109285834B (en)
TW (1) TW201909238A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009461B (en) * 2019-11-25 2021-03-09 长江存储科技有限责任公司 Method for manufacturing semiconductor device

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100279472A1 (en) * 2007-11-15 2010-11-04 Nanya Technology Corporation Manufacturing method of non-volatile memory
US20110198700A1 (en) * 2010-02-16 2011-08-18 Samsung Electronics Co., Ltd. Semiconductor devices with peripheral region insertion patterns and methods of fabricating the same
US8324673B2 (en) * 2009-12-31 2012-12-04 Samsung Electronics Co., Ltd. Semiconductor memory devices and methods of forming the same
US20130171821A1 (en) * 2011-06-01 2013-07-04 Samsung Electronics Co., Ltd. Method of fabricating metal contact using double patterning technology and device formed thereby
US20130344249A1 (en) * 2012-06-21 2013-12-26 Jsr Corporation Directed self-assembly composition for pattern formation and pattern-forming method
US20140038387A1 (en) * 2010-01-29 2014-02-06 Elpida Memory, Inc. Method for manufacturing a semiconductor device
US20140054659A1 (en) * 2012-08-22 2014-02-27 Samsung Electronics Co., Ltd. Semiconductor devices and methods fabricating same
US20140327087A1 (en) * 2013-05-02 2014-11-06 Jiyoung Kim Semiconductor device and method of fabricating the same
US9093297B2 (en) * 2012-09-12 2015-07-28 Samsung Electronics Co., Ltd. Semiconductor devices including a gate structure between active regions, and methods of forming semiconductor devices including a gate structure between active regions
US20150371685A1 (en) * 2014-06-23 2015-12-24 Seok-ho Shin Methods of Forming Semiconductor Devices to Include Single Body Interconnection Patterns Using Fine Patterning Techniques, and Semiconductor Device So Formed
US20160056081A1 (en) * 2014-08-25 2016-02-25 Sanghoon BAEK Semiconductor device and method of fabricating the same
US9281362B2 (en) * 2013-09-27 2016-03-08 Samsung Electronics Co., Ltd. Semiconductor device and method of manufacturing the same
US20160181258A1 (en) * 2014-12-22 2016-06-23 Samsung Electronics Co., Ltd. Methods of Fabricating Semiconductor Devices
US20170025284A1 (en) * 2015-07-24 2017-01-26 SK Hynix Inc. Method for forming patterns of semiconductor device
US20170236707A1 (en) * 2016-02-17 2017-08-17 Samsung Electronics Co., Ltd. Photomask and method for manufacturing semiconductor device using the same
US20170278848A1 (en) * 2014-09-18 2017-09-28 Micron Technology, Inc. Semiconductor Device Having a Memory Cell and Method of Forming the Same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4329414B2 (en) * 2003-06-06 2009-09-09 ソニー株式会社 Method for manufacturing magnetic storage device
KR100817089B1 (en) * 2007-02-28 2008-03-26 삼성전자주식회사 Method of forming fine pattern of semiconductor device using double patterning technique
US8758987B2 (en) * 2009-09-02 2014-06-24 Micron Technology, Inc. Methods of forming a reversed pattern in a substrate
US9209077B2 (en) * 2013-12-20 2015-12-08 Intel Corporation Diagonal hardmasks for improved overlay in fabricating back end of line (BEOL) interconnects
KR102339781B1 (en) * 2014-12-19 2021-12-15 삼성전자주식회사 Semiconductor device and method of manufacturing the same
KR102337410B1 (en) 2015-04-06 2021-12-10 삼성전자주식회사 Method for forming fine patterns of semiconductor device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100279472A1 (en) * 2007-11-15 2010-11-04 Nanya Technology Corporation Manufacturing method of non-volatile memory
US8324673B2 (en) * 2009-12-31 2012-12-04 Samsung Electronics Co., Ltd. Semiconductor memory devices and methods of forming the same
US20140038387A1 (en) * 2010-01-29 2014-02-06 Elpida Memory, Inc. Method for manufacturing a semiconductor device
US20110198700A1 (en) * 2010-02-16 2011-08-18 Samsung Electronics Co., Ltd. Semiconductor devices with peripheral region insertion patterns and methods of fabricating the same
US20130171821A1 (en) * 2011-06-01 2013-07-04 Samsung Electronics Co., Ltd. Method of fabricating metal contact using double patterning technology and device formed thereby
US20130344249A1 (en) * 2012-06-21 2013-12-26 Jsr Corporation Directed self-assembly composition for pattern formation and pattern-forming method
US20140054659A1 (en) * 2012-08-22 2014-02-27 Samsung Electronics Co., Ltd. Semiconductor devices and methods fabricating same
US9093297B2 (en) * 2012-09-12 2015-07-28 Samsung Electronics Co., Ltd. Semiconductor devices including a gate structure between active regions, and methods of forming semiconductor devices including a gate structure between active regions
US20140327087A1 (en) * 2013-05-02 2014-11-06 Jiyoung Kim Semiconductor device and method of fabricating the same
US9281362B2 (en) * 2013-09-27 2016-03-08 Samsung Electronics Co., Ltd. Semiconductor device and method of manufacturing the same
US20150371685A1 (en) * 2014-06-23 2015-12-24 Seok-ho Shin Methods of Forming Semiconductor Devices to Include Single Body Interconnection Patterns Using Fine Patterning Techniques, and Semiconductor Device So Formed
US20160056081A1 (en) * 2014-08-25 2016-02-25 Sanghoon BAEK Semiconductor device and method of fabricating the same
US20170278848A1 (en) * 2014-09-18 2017-09-28 Micron Technology, Inc. Semiconductor Device Having a Memory Cell and Method of Forming the Same
US20160181258A1 (en) * 2014-12-22 2016-06-23 Samsung Electronics Co., Ltd. Methods of Fabricating Semiconductor Devices
US20170025284A1 (en) * 2015-07-24 2017-01-26 SK Hynix Inc. Method for forming patterns of semiconductor device
US20170236707A1 (en) * 2016-02-17 2017-08-17 Samsung Electronics Co., Ltd. Photomask and method for manufacturing semiconductor device using the same

Also Published As

Publication number Publication date
CN109285834A (en) 2019-01-29
CN109285834B (en) 2020-10-30
TW201909238A (en) 2019-03-01
US10090154B1 (en) 2018-10-02

Similar Documents

Publication Publication Date Title
KR101149632B1 (en) Semiconductor constructions, methods of forming multiple lines, and methods of forming high density structures and low density structures with a single photomask
US8034544B2 (en) Method for forming fine contact hole pattern of semiconductor device
US20050012157A1 (en) Semiconductor device having sufficient process margin and method of forming same
Yaegashi et al. Overview: Continuous evolution on double-patterning process
US7368226B2 (en) Method for forming fine patterns of semiconductor device
US20100099046A1 (en) Method for manufacturing semiconductor device
DE10334427B4 (en) A method of forming a gate contact in a semiconductor device
US6381166B1 (en) Semiconductor memory device having variable pitch array
US10090154B1 (en) Method for preparing a semiconductor structure having second line patterns and third line patterns formed over first line patterns
TWI376770B (en) Method of manufacturing sidewall spacers on a memory device, and device comprising same
US8350308B2 (en) Reverse engineering resistant read only memory
US8273522B2 (en) Exposure mask and method for manufacturing semiconductor device using the same
US8574820B2 (en) Method for fabricating semiconductor device
US8890214B2 (en) Method of manufacturing sidewall spacers on a memory device
US20080153247A1 (en) Method For Manufacturing Semiconductor Device
KR950009895B1 (en) Semiconductor memory device having a increased cupacitor of memory cell
CN112599415A (en) Method for manufacturing integrated circuit device
KR100712995B1 (en) Method for fabricating storage node contact hole in semiconductor device
KR101039140B1 (en) Method for fabricating highly integrated semiconductor memory device
US6424882B2 (en) Method for patterning and fabricating wordlines
KR100894102B1 (en) Method for fabricating highly integrated semiconductor memory device
US8426116B2 (en) Method for fabricating a semiconductor device
CN111341725A (en) Method for manufacturing semiconductor pattern
CN111403269B (en) Method for manufacturing patterned structure
KR100653991B1 (en) Exposure system and method for manufacturing active region of the semiconductor memory device by using it

Legal Events

Date Code Title Description
AS Assignment

Owner name: NANYA TECHNOLOGY CORPORATION, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, JENG-PING;SHIH, CHIANG-LIN;SHIH, SHING-YIH;REEL/FRAME:043075/0413

Effective date: 20170504

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION